HITP - _32_

GENERAL CORRESPONDENCE

YEAR(S): _2012-2013_

ACKNOWLEDGEMENT OF RECEIPT

Thereby acknowledge receipt of check No. 349076 dated 105/12
or cash received on in the amount of \$50
from DCP All. dstream
for <u>HITP-32</u>
Submitted by: Course Komers Date: 10/16/12
Submitted to ASD by: Jacom Pate: 18/16/12
Received in ASD by: Date:
Filing Fee New Facility Renewal
Modification Other
Organization Code <u>521.07</u> Applicable FY
To be deposited in the Water Quality Management Fund.
Full Payment or Annual Increment

ACKNOWLEDGEMENT OF RECEIPT OF CHECK/CASH

Thereby acknowledge receipt of check No. 349077 dated 10/5/13
or cash received on in the amount of \$00
from PCP Hilstream LP
for HITP-32
Submitted by: LAWRERT CE Portero Date: 10/16/12
Submitted to ASD by: Van gran Date: 101/6/12
Received in ASD by: Date:
Filing Fee New Facility Renewal
Modification Other
Organization Code521.07 Applicable FY
To be deposited in the Water Quality Management Fund.
Full Payment or Annual Increment

DCP Midstream 370 17th Street, Suite 2500 Denver, CO 80202

303-595-3331

October 8, 2012 <u>UPS 2nd Day Air</u> Tracking# 1ZF469150295382177

Brad Jones Oil Conservation Division New Mexico Energy, Minerals, and Natural Resources Department 1220 South Saint Francis Drive Santa Fe, New Mexico 87505

Re: Notice of Intent to Perform a Hydrostatic Test North Jackson Discharge Eddy County, New Mexico

Mr. Jones:

Here is a notice of intent (NOI) prepared by DCP Midstream, LP (DCP) for completing a_{1} hydrostatic test and subsequent test water disposal associated with our North Jackson Booster and pipeline segment O-4-8-17 across Eddy County, New Mexico. We are also enclosing separate checks to cover the filing fee and the temporary permission fees.

This NOI was prepared according to the New Mexico Oil Conservation Division *Guidelines for Hydrostatic Test Dewatering*, dated January 11, 2007, and by following guidance provided by you during recent telephone conversations.

DCP anticipates that the hydrostatic test will be conducted during the week of October 29, 2012.

If you have any questions or would like additional information, please contact me at 303.605.2251 or dnbourne@dcpmidstream.com.

Sincerely,

DCP Midstream, LP

Daniel Bourne Environmental Specialist

Attachments

DCP Midstream, LP Notice of Intent to Perform a Hydrostatic Test Project Name: North Jackson Discharge Hydrotest

Project Background Information

DCP Midstream, LP (DCP) plans to hydrotest an approximately 2.2 mile long previously used 6" diameter pipeline in Eddy County, New Mexico. This section of gathering system pipeline is used to transmit high pressure natural gas from DCP's North Jackson Booster Station to DCP's Jackson Booster Station, with the field gas ending up at DCP's Artesia Gas Plant for treating and processing. DCP will hydro-test the pipe in order to determine if the line can be converted from Low Pressure gathering service to High Pressure discharge service. DCP will set compression at the North Jackson Booster, using the 6" pipe as a discharge line provided that the hydrotest is successful. Testing will be done in one phase, and it is estimated that the test will generate approximately 477 barrels (20,050 gallons) of wastewater. The wastewater generated will be RCRA exempt E&P waste based on the definition in 40 CFR 261.4(b)(5) Drilling fluids, produced waters, and other wastes associated with the exploration, development, or production of crude oil, natural gas or geothermal energy. It is DCP's intention to dispose of the generated wastewater in a state approved Class II disposal well, such that no wastewater will intentionally discharged to ground surface.

DCP is submitting this Notice of Intent (NOI) in accordance with the New Mexico Oil Conservation Division's (NMOCD) "*Guidelines for Hydrostatic Test Dewatering*", dated January 11, 2007.

Required Information

a. Operator/discharger name and address

Responsible Party

Mr. Jim Allred DCP Midstream, LP 139 W US Hwy 62-180 Hobbs, NM 88240 Cell Phone: 575-802-5131

Operators

Daniel Forlines DCP Midstream, LP 2010 Orchard Lane Carlsbad, NM 88220 Cell: 575-802-5148

b. Location of the discharge, including a street address, if available, and sufficient information to locate the facility with respect to surrounding landmarks

At the completion of the hydrostatic test, DCP will dewater from the pipeline adjacent to the North Jackson Booster Station. Driving from Loco Hills, head west on US-82 W/Lovington Hwy, 6.9 miles to Old Loco Road. Turn right onto Old Loco Road and drive 1.4 miles to an

unnamed road. Turn right onto the unnamed road and head east. Drive about 1 mile and arrive at the dewatering area. The station is at nominal latitude 32.841826 and nominal longitude 104.081255.

DCP plans to dispose of the test water by injection into a state-approved Class II disposal well. The well that will be used is owned by Judah Oil, LLC, and is designated as the Red Lake Salt Water Disposal (SWD) Well. The well is located Eddy County, 1.5 miles north of Highway 82 on CR-208, in the NW ¼ of Section 22, Township 17 South, Range 28 East. The well is permitted by the State of New Mexico under [Administrative Order SWD- 332-A] and the API number is [30-015-22893]. No intentional discharge of water to the ground surface will occur as a result of this project.

c. Legal description (Section/Township/Range) of the discharge location

Dewatering of the line and temporary storage will occur at the following location:

NE ¼ of the NE ¼ of Section 16, Township 17 South, Range 29 East (New Mexico Meridian), Eddy County, New Mexico.

d. Maps (site-specific and regional) indicating the location of the pipelines to be tested Figure 1 is an overview map showing the pipeline that will be hydrostatic tested and the dewatering site overlayed on a topographic map.

Figure 2 is an overview map showing the dewatering site overlayed on recent aerial imagery and shows land use surrounding the dewatering site.

Figure 3 is a topographic map of the dewatering site showing surface contours in the vicinity of the site.

Figure 4 is a detailed map showing planned locations of the frac tank that will temporarily store hydrostatic test discharge water prior to hauling and disposal (overlayed on an aerial photo). The frac tank will be temporarily placed on the pipeline right of way.

Figure 5 is similar to Figure 4, except the information is overlayed on a USGS 1:24,000 map.

e. A demonstration of compliance to the following siting criteria or justification for any exceptions

Since disposal of the hydrostatic test water will take place at a Class II disposal well in Artesia, NM, demonstration of compliance with the siting criteria identified is not required, per Brad Jones.

f. A brief description of the activities that produce the discharge

The wastewater discharge will be generated from the hydrostatic testing of pipeline O-4-8-17 to determine if the line can be converted from LP gathering service to HP discharge service. Testing will be done in one phase, and it is estimated that the test will generate approximately 477 barrels (20,050 gallons) of wastewater.

The water used for the hydrostatic test will be acquired from a Mor/West Inc. fresh water station in Loco Hills, New Mexico. The supplier has provided analytical data on the water quality, and the lab report is included in this application. The hydrostatic test water will not be discharged to the ground surface, but will be withdrawn from the pipeline following completion of the test and placed into a temporary frac tank at the dewatering location. The test water will then be loaded into trucks operated by Texas Lobo Trucking for immediate delivery to Judah Oil's Red Lake SWD.

g. The method and location for collection and retention of fluids and solids

The hydrostatic test will be done in a single phase, and following completion of the hydrostatic test, the water will be transferred directly from the pipeline to the temporary frac tanks (approximately one 500-barrel tank) via a system of flexible hoses and temporary piping at the withdrawal point within DCP's right-of-way. Drip collection trays will be placed below the connection points to prevent test water from reaching the ground surface. Field operators will be present during water transfer operations to immediately close isolation valves in the event of a larger leak or line failure. Solids are not expected to be generated during the hydrostatic test.

h. A brief description of best management practices to be implemented to contain the discharge onsite and to control erosion

The hydrostatic test water will be properly disposed of in the Class II disposal well identified above. Field operators and/or testing personnel will be onsite during the duration of the hydrostatic test and during all water transfer operations. Drip collection trays will be placed below hose and piping connections to prevent hydrostatic test water from making contact with the ground surface from incidental leaks during transfer operations.

Water will be transferred to one 500-barrel frac tank within the pipeline right-of-way for temporary storage following completion of the test and prior to disposal. To prevent an inadvertent release of test water to the surrounding environment, the frac tank at the dewatering location will be surrounded by plastic-lined secondary containment sized to be 1.33 times the size of the largest tank or largest interconnected volume (whichever is larger). Since there will not be an intentional surface discharge, erosion control measures are not currently planned for the dewatering location.

i. A request for approval of an alternative treatment, use, and/or discharge location (other than the original discharge site), if necessary

Texas Lobo Trucking has agreed to accept and dispose of the hydrostatic test water using the Class II disposal well identified above. Based on this agreement, no alternative treatment or discharge location is being proposed at this time.

j. A proposed hydrostatic test wastewater sampling plan

DCP will not analyze the hydrostatic test water because it is RCRA exempt E&P waste based on the definition provided in 40 CFR 261.4(b)(5) and because the material will be disposed of in a permitted Class II disposal well.

k. A proposed method of disposal of fluids and solids after test completion, including closure of any pits, in case the water generated from the test exceeds the standards as set forth in Subsections A, B, and C of the 20.6.2.3103 NMAC (the New Mexico Water Quality Control Commission Regulations)

As mentioned in j) above, DCP Midstream will not be analyzing the hydrostatic test water prior to disposal in Judah Oil's Class II disposal well. Solids are not expected to be generated from the hydrostatic test.

I. A brief description of the expected quality and volume of the discharge

Approximately 424 barrels (20,050 gallons) of water is expected to be generated during the hydrostatic test. As mentioned in j) above, DCP will not analyze the hydrostatic test water because it is RCRA exempt E&P waste based on the definition provided in 40 CFR 261.4(b)(5) and because the material will be disposed of in a Class II disposal well. The hydrostatic test water will not contain additives, and the pipeline will be pigged before testing.

m. Geological characteristics of the subsurface at the proposed discharge site

Regional Features

The proposed discharge area is within the Pecos River Basin. The discharge site sits on the eastern flank of a small mesa that slopes gently to the east toward Bear Grass Draw.

Site Geology

The site geology is comprised of Quatenary eolian, piedmont, and alluvial deposits (Holocene to middle Pleistocene). The area is characterized by interlayed eolian sands and piedmont-slope deposits that are typically capped by thin eolian deposits. These deposits unconformably overlie Triassic aged sedimentary rocks of the Dockum Group.

Regional Hydrology

The site is located in the Pecos River Basin but has no connecting drainage to the Pecos River. Average annual precipitation in this area of Eddy County is meager – between 12 and 16 inches per year, and evapotranspiration is a significant component of the water balance in this region. The topography of this area has a small unnamed dry draw that starts a few miles to the west and ends near the dewatering area. The topography of the general area has a gentle easterly flow to the Bear Grass Draw, which ends in a low area a few miles south east of the site.

Local Groundwater Hydrology

The proposed discharge site is located within the Carlsbad Underground Water Basin (UWB). The shallowest Carlsbad UWB aquifer beneath the site is in the Santa Rosa Sandstone (part of the Dockum Group), which is approximately 200 feet thick in this area. The Carlsbad UWB ground-water flow in this part of Eddy County is generally to the east.

n. The depth to and total dissolved solids concentration of the ground water most likely to be affected by the discharge

According to information available from the Eddy County New Mexico Water Plan, depth to groundwater is approximately 300 ft. Total dissolved solids in groundwater from Santa Rosa Sandstone ranges from 635 to 1,950 mg/L.

o. Identification of landowners at and adjacent to the discharge and collection/retention site

The discharge site and the lands surrounding the discharge site are owned by the State of New Mexico and the co tenant of the dewatering site is Bogle LTD. DCP has a 30 foot wide right-of-way along the proposed pipeline route for use (including testing) of the pipeline.

•

FIGURES

.

· · ·

.

·

104°5'10"W

104°5'5"W

104°4'50"W

104°4'45"W

104°4'40"W

Locator Map

1:2,400

Figure 4 **Groundcover Detail Around Dewater Site Jackson Hydrotest** Eddy County, New Mexico October 2012

104°4'40"W

WATER SUPPLY ANALYTICAL REPORT

Page 1 Report #0804011603

S^{oil} W^{ater and} A^{ir} T^{esting} Lab New Mexico State University BOX 30003 Las Cruces, NM 88003 (505)646-4422

Date: 04/01/08

ANALYTICAL REPORT

575-746-2054

To: Caprock Water Company Attn: Sherrell Gurley 401 Bolton Rd. Artesia, NM 88210

Purchase Order #

Below are the results for Lead/Copper Rule.

(MDL=Method detection limit)

AC06269 Sample I.D. Sample Description: 13334 Lovington Hwy ID #000 Sample collection date: 09/23/07 Sample collection time: 08:00 Submittal date: 03/19/08 Submittal time: 14:46 WSS# 21008 Collector: ANGIE SANCHE Request ID No. Sample Purpose: Compliance Sampling Information: Grab Date of Element Method Result Units MDL **Analysis** Analyst Copper 200.8 31.83 ug/L 0.27 03/20/08 MBL 200.8 ug/L Lead 7.61 0.04 08/20/08 MBL Sample I.D. AC06270 Sample Description: 132593 Lovington Hwy ID #000 Sample collection date: 09/26/07 Sample collection time: 06:00 Submittal date: 03/19/08 Submittal time: 14:46 WSS# 21008 Request ID No. Collector: JOHNNIE JONE Sample Purpose: Compliance Sampling Information: Grab Date of Element Method Result Units MDL **Analysis Analyst** 200.8 86.91 03/20/08 MBL Copper ug/L 0.27 Lead 200.8 0.31 0.04 08/20/08 MBL ug/L Sample I.D. AC06271 Sample Description: 1579 Hagerman Cutoff ID #000 Sample collection date: 09/26/07 Sample collection time: 06:30 Submittal date: 03/19/08 Submittal time: 14:46 WSS# 21008 Request ID No. Collector: PEGGY BELL Sample Purpose: Compliance Sampling Information: Grab Date of Element Method Result Units **MDL** Analysis Analyst 200.8 3.75 03/20/08 MBL Copper ug/L 0.27 08/20/08 Lead 200.8 0.21 0.04 MBL ug/L

			د 	1 1	Page 2 Report #	of 2. 1006/808	3<
Sample I.D. AC32679							
Sample Description:	Entry Point #1 SP (01130071					
Sample collection date	e: 05/25/10	Sample collect	ion time:	10:35		•	
Submittal date:	05/27/10	Submittal time	:	14:21	4		
WSS# 00113	Request ID No. U05218	3 Ca	ollector: I	DON CLAR	K		
Sample Purpose:	Compliance	Sampling Inform	nation: (Grab			
					Date of		
Compound	Method	Result	Units	UCL	Analysis	Analyst	
Semi-vol. Pest. by EPA 525.2 E	D 525.2		ug/L		06/07/10	MAC	
Atrazine	525.2	< Detect Lmt	ug/L	0.22	06/07/10	MAC	
Butachlor	525.2	< Detect Lmt	ug/L	0.088	06/07/10	MAC	
Di(2-ethylhexyi)adipate	525.2	< Detect Lmt	ug/L	1.32	06/07/10	MAC	

Di(2-ethylhexyl)phthalate	525.2	< Detect Lmt	ug/L	1.32	06/07/10	MAC
Metolachlor	\$25.2	< Detect Lmt	ug/L	0.088	06/07/10	MAC
Propachlor	525.2	< Detect Lmt	ug/L	0.088	.06/07/10	MAC
Simazine	525.2	< Detect Lmt	ug/L	0.154	06/07/10	МЛС
Benzo(a)pyrene	525.2	< Detect Lmt	ug/L	0.044	06/07/10	MAC
•.						

Results relate only to the items tested. This report shall not be reproduced except in full, without the written approval of the laboratory. This laboratory is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this report have been determined in accordance with the laboratory's terms of accreditation unless stated otherwise in the report. Those tests not presently accredited are noted by a hyphen. Actual analyte MDLs are certified to be at or lower than those shown.

Codes: tf - tune failure or - over range hb - high recovery on QC but no detect on sample

lb - low recovery on qc but sample over MCL ntrol sample, client samples acceptable qcf - failure of a quality co

Please, advise should you have questions concerning these data. Respectfully submitted,

Lal nager (575)646-4422

Page 1 of 2 Soil Water and Air Testing Lab Report # /006/8083</ New Mexico State University BOX 30003 Las Cruces, NM 88003 Date: 06/18/10 (575)646-4422 ٠,٠ ANALYTICAL REPORT 0.01 12540 $\mathbb{N} \subseteq \mathbb{N}$ P 11 APPOCK.WAter ÷ To: Mer-West C : :: Attn: Sherrell Gurley P.O. Box 35 Purchase Order # Maljamar, NM 88264 (UCL=Upper control limit = 2.2x MDL)Below are the results for SOCs Sample I.D. AC32679 Entry Point #1 SP 001130071 Sample Description: Sample collection time: 10:35 Sample collection date: 05/25/10 05/27/10 Submittal time: 14:21 Submittal date: Collector: DON CLARK WSS# 00113 Request ID No. U052183 Sampling Information: Grab Sample Purpose Compliance Date of Units UCL **Analysis** Analyst Method Result Compound 05/28/10 ug/Ľ, JIM EDB and DBCP by EPA 504 504.1 1,2-Dibromoethane 504.1 Not detected ug/L 0.022 05/28/10 JIM 0.044 05/28/10 JIM 1.2-Dibromo-3-Chloropropane 504.1 Not detected ug/L JIM 06/01/10 Pesticides and PCBs by EPA 505 505 ug/L ug/L 0.44 06/01/10 JIM 505 < Detect Lmt Alachlor 505 < Detect Lmt 0.44 06/01/10 JIM Chlordane ug/L Endrin 505 < Detect Lmt ug/L 0.022 06/01/10 JIM 06/01/10 ЛM Heptachlor 505 < Detect Lmt ug/L 0.088 ug/L 06/01/10 JIM 505 0.044 Heptachlor Epoxide < Detect Lmt ug/L 0.22 06/01/10 JIM Hexachlorobenzene 505 < Detect Lmt 0.044 06/01/10 JIM Lindane 505 < Detect Lmt ug/L 0.22 06/01/10 JIM Methoxychlor 505 < Detect Lmt ug/L 06/01/10 JIM 505 < Detect Lmt 2.2 Toxaphene ug/L ug/L 0.08 06/01/10 JIM Aroclor 1016 505 < Detect Lmt Aroclor 1221 505 < Detect Lmt ug/L 0.5 06/01/10 JIM 06/01/10 JIM ug/L 0.10 Arcelor 1232 505 < Detect Lmt Aroclor 1242 505 < Detect Lmt ug/L 0.10 06/01/10 JIM IIM 0.10 06/01/10 Aroclor 1248 505 < Detect Lmt ug/L ug/L 0.03 06/01/10 JIM Aroclor 1254 505 < Detect Lmt 0.02 06/01/10 JIM Aroclor 1260 505 < Detect Lmt ug/L JÌМ 06/01/10 Hexachlorocyclopentadiene 505 < Detect Lmt ug/L 0.22 06/09/10 JIM Herbicides by EC/GC (EPA 515.2) 515.2 ug/L < Detect Lmt 0.22 06/09/10 JIM 2,4-D 515.2 ug/L 2,4,5-T (Silvex) 0.44 06/09/10 JIM 515.2 < Detect Lmt ug/L < Detect Lmt ug/L. 0.44 06/09/10 JIM Dinoseb 515.2 0.088 06/09/10 JIM Pentachlorophenol 515.2 < Detect Lmt ug/L Picloram 515.2 < Detect Lmt ug/L 0.22 06/09/10 JIM 06/07/10 JIM Dalapon by EPA 552.1 ug/L 552.1 < Detect Lmt ug/L 0.5 06/07/10 JIM 552.1 Dalapon 06/01/10 SS Carbamate Pest. by EPA 531.1 ug/L 531.1 1.98 06/01/10 SS 531.1 Not detected ug/L Carbofuran ug/L 06/01/10 SS Not detected 4.4 Oxamyl 531.1 SS 06/08/10 Glyphosate by EPA 547 ug/L 547 06/08/10 SS ug/L 5.0 Not detected Glyphosate 547 ug/L 06/14/10 MAC Endothall by EPA 548.1 548.1 Endothall 548.1 < Detect Lmt ug/L 6 06/14/10 MAC SS Diquat by EPA 549.1 549.1 ug/L 06/01/10 06/01/10 SS 0.2 . 549.1 Not detected ug/L . Diguat 🚽

Page 2 of 2 Report #080(01160

Sample I.D. AC06272	,					3			
Sample Description	1: Lovington Hwy	ID #000							
Sample collection date: 09/26/07 Submittal date: 03/19/08		Sample collection time: 07:00							
		Submittal	Submittal time: 14:46						
WSS# 21008	Request ID No.		Collector: P.	CHAMBE	ERS				
Sample Purpose:	Compliance	Sampling In	formation: G	rab					
Element	Metho	d Result	Units	MDL	Date of Analysis	Analyst			
Copper Lead	200.8 200.8	11.24 0.58	ug/L ug/L	0.27 0.04	03/20/08 08/20/08	MBL MBL			
Sample I.D. AC06273									
Sample Description	a: 13311 Lovingto	n Hwy ID #000							
Sample collection d	late: 09/26/07	Sample co	llection time:	04:10					
Submittal date:	03/19/08	Submittal	time:	14:46		•			
WSS# 21008	Request ID No.		Collector: DI	EBBIE CA	RRE				
Sample Purpose:	Compliance	Sampling In	formation: Gi	rab					
	····	· · · · · · · · · · · · · · · · · · ·			Date of				
Element	Metho	d Result	Units	MDL	Analysis	Analyst			
Copper	200.8	22.45	ug/L	0.27	03/20/08	MBL			
Lead	200.8	0.29	ug/L	0.04	08/20/08	MBL			

Results relate only to the items tested. This report shall not be reproduced except in full, without the written approval of the laboratory. This laboratory is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this report have been determined in accordance with the laboratory's terms of accreditation unless stated otherwise in the report. Those tests not presently accredited are noted by a hyphen.

Please advise should you have questions concerning these data. Respectfully submitted,

(505)646-4422 .

CAPROCK WATER COMPANY The Water We Drink 2011

Spanish (Espanol)

Este informe contiene informacion muy importante sobre la calidad de su agua potable. Por favor lea este informe o comuniquese con alguien que pueda traducir la informacion.

Is my water safe?

We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. We are committed to providing you with information because informed customers are our best allies.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

Our water source is groundwater pumped from seven wells that draw from the Ogallala Aquifer.

Source water assessment and its availability

A source Water Assessment was conducted and concluded that Caprock Water Company water system is well-maintained and operated, and the sources of drinking water are generally protected from potential sources of contamination based on well construction, hydrogeologic settings, and system operations and management. The susceptibility rank of the entire water system is Moderate. Please contact Sherrell Gurley at (575)677-2221, (575)703-6403 or (575)746-2054 to discuss the findings of the SWAPP report or to request a copy. Although throughout the United States, it is common to find potential sources of contamination located atop wellheads, continued regulatory oversight, wellhead protection plans, and other planning efforts continue to be primary methods of protecting and ensuring high quality drinking water. If you would like more information regarding Source Water Protection, please contact the Drinking Water Bureau's Santa Fe Office at (505)476-8631.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity: microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses; organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

How can I get involved?

We want our valued customers to be informed about their water utility, so if you have any questions about this report or concerning your water utility, please contact Sherrell Gurley at (575)677-2221, (575) 703-6403 or Johnnie Jones at (575)677-3202. Please call us if you have questions or a problem.

Description of Water Treatment Process

Your water is treated by disinfection. Disinfection involves the addition of chlorine or other disinfectant to kill dangerous bacteria and microorganisms that may be in the water. Disinfection is considered to be one of the major public health advances of the 20th century.

Cross Connection Control Survey

The purpose of this survey is to determine whether a cross-connection may exist at your home or business. A cross connection is an unprotected or improper connection to a public water distribution system that may cause contamination or pollution to enter the system. We are responsible for enforcing cross-connection control regulations and insuring that no contaminants can, under any flow conditions, enter the distribution system. If you have any of the devices listed below please contact us so that we can discuss the issue, and if needed, survey your connection and assist you in isolating it if that is necessary.

- Boiler/ Radiant heater (water heaters not included)
- Underground lawn sprinkler system
- Pool or hot tub (whirlpool tubs not included)
- Additional source(s) of water on the property
- Decorative pond
- Watering trough

Source Water Protection Tips

Protection of drinking water is everyone's responsibility. You can help protect your community's drinking water source in several ways:

- Eliminate excess use of lawn and garden fertilizers and pesticides they contain hazardous chemicals that can reach your drinking water source.
- Pick up after your pets.
- If you have your own septic system, properly maintain your system to reduce leaching to water sources or consider connecting to a public water system.
- Dispose of chemicals properly; take used motor oil to a recycling center.
- Volunteer in your community. Find a watershed or wellhead protection organization in your community and volunteer to help. If there are no active groups, consider starting one. Use EPA's Adopt Your Watershed to locate groups in your community, or visit the Watershed Information Network's How to Start a Watershed Team.
- Organize a storm drain stenciling project with your local government or water supplier. Stencil a message next to the street drain reminding people "Dump No Waste - Drains to River" or "Protect Your Water." Produce and distribute a flyer for households to remind residents that storm drains dump directly into your local water body.

Water Quality Data Table

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. Although many more contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below the table.

[MCLG	MCL,						
	or	TŢ, or	Your	Ra	inge	Sample		, ,
<u>Contaminants</u>	MRDLG	MRDL	<u>Water</u>	Low	<u>High</u>	<u>Date</u>	<u>Violation</u>	Typical Source
Inorganic Contamin	ants							
Barium (ppm)	2	2	0.01	0.01	0.01	2011	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Fluoride (ppm)	4	4	0.63	0.63	0.63	-2011	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Nitrate [measured as Nitrogen] (ppm)	10	10	2.8	2.8	2.8	2011	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Arsenic (ppb)	0	10	8	4	8	2011	No	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes
Selenium (ppb)	50	50	4	4	4	2011	No ·	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines
Microbiological Con	taminants							
Total Coliform (positive samples/month)	0	1	0	NA		2011	No	Naturally present in the environment
Radioactive Contam	inante			• ••				
Beta/photon emitters (pCi/L)	0	50	3.34	3.34	3.34	2011	No	Decay of natural and man-made deposits. The EPA considers 50 pCi/L to be the level of concern for Beta particles.
Uranium (ug/L)	0	30	0.00185	0.001 85	0.0018 5	2011	No	Erosion of natural deposits

Water Quality Data Table

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. Although many more contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below the table.

	MCLG	MCL,	·					
	or	TT, or	Your	Ra	nge	Sample		
<u>Contaminants</u>	MRDLG	MRDL	Water	Low	<u>High</u>	<u>Date</u>	<u>Violation</u>	Typical Source
Inorganic Contamin	ants		f,		4.1. ¹⁴ .141			
Barium (ppm)	2	2	0.1	0.1	0.1	2010	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Fluoride (ppm)	4	4	0.63	0.63	0.63	2010	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Nitrate [measured as Nitrogen] (ppm)	10	10	2.8	2.8	2.8	2014	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Arsenic (ppb)	0.	10	8	4	8	2010	No	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes
Selenium (ppb)	50	50	4	4	4	2010	No	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines
Lead - source water (mg/L)	0	15	4.09	4.09	4.09	2007	No	Corrosion of household plumbing systems; Erosion of natural deposits
Copper - source water (mg/L)	1.3	1.3	0.059(M PL)	0.059	0.059	2007	No	Corrosion of household plumbing systems; Erosion of natural deposits
Microbiological Con	taminants							
Total Coliform (positive samples/month)	0	1	0	NA		2011	No	Naturally present in the environment
Radioactive Contam	inants							

Beta/photon emitters (pCi/L)	0	50	3.34	3.34	3.34	2006	No	Decay of natural and man-made deposits. The EPA considers 50 pCi/L to be the level of concern for Beta particles.
Uranium (ug/L)	0	30	0.00185	0.001 85	0.0018 5	2006	No	Erosion of natural deposits

Unit Descriptions	
Term	Definition
ug/L	ug/L : Number of micrograms of substance in one liter of water
ppm	ppm: parts per million, or milligrams per liter (mg/L)
ррь	ppb: parts per billion, or micrograms per liter (µg/L)
pCi/L	pCi/L: picocuries per liter (a measure of radioactivity)
positive samples/month	positive samples/month: Number of samples taken monthly that were found to be positive
NA	NA: not applicable
ND	ND: Not detected
NR	NR: Monitoring not required, but recommended.

Important Drinking Water Definitions	
Term	Definition
MCLG	MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
MCL	MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
TT	TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.
AL	AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
Variances and Exemptions	Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.
MRDLG	MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
MRDL	MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
MNR	MNR: Monitored Not Regulated
MPL	MPL: State Assigned Maximum Permissible Level

For more information please contact:

Contact Name: Sherrell Gurley Address: 401 S. Bolton Road Artesia, NM 88210 Phone: 575-677-2221 E-Mail: cwidmayer@pvtnetworks.net