423-07 WORKPLANS Date: 14.

RECEIVED OCD

2012 NOV -1 P 12: 40

CERTIFIED MAIL RETURN RECEIPT NO. 7008 3230 0001 9310 7778

October 24, 2012

Mr. Ed Hansen New Mexico Energy, Minerals, & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 S. St. Francis Drive Santa Fe, New Mexico 87505

RE: CORRECTIVE ACTION PLAN (CAP) RICE OPERATING COMPANY, JUSTIS E-26 SWD SYSTEM UNIT "E", SEC. 26, T24S, R37E LEA COUNTY, NEW MEXICO NMOCD CASE # 1R423-07

Mr. Hansen:

Tetra Tech Inc. (Tetra Tech) submits the following Corrective Action Plan (CAP) for the RICE Operating Company (ROC), E-26, located in the Justis SWD System. ROC is the service provider (agent) for the Justis SWD System and has no ownership of any portion of the pipeline, well or facility. The Justis SWD system is owned by a consortium of oil producers, System Parties, who provide all operating capital on a percentage ownership/usage basis.

BACKGROUND & PREVIOUS WORK

As part of the ROC Junction Box Upgrade Workplan, starting on June 27, 2003, the junction box was removed and a new, watertight junction box was installed 25 feet south of the former junction box. The former junction box site was excavated to a depth of 12 feet deep with a backhoe. PID readings and chloride field tests were conducted at regular intervals. Based on the field PID readings and the chloride field tests, both the total petroleum hydrocarbons (TPH) and chlorides did not exhibit a decrease with depth. Upon completion of the excavation, the site was backfilled with clean imported soils and brought up to surface grade. In March 2004, ROC submitted a Junction Box Disclosure Report to the NMOCD. See Figures 1 and 2 for site location.

In order to determine the vertical extent of hydrocarbon and chloride impacts, on March 18, 2004, a soil boring (SB-1) was drilled in the former junction box to a depth of 67 feet below ground surface (bgs). Analytical results from the drilling indicate the TPH concentrations decreased with depth, while the chloride concentrations did not exhibit a significant decline

with depth. The chloride concentration was 587 milligrams per kilograms (mg/kg) at 67 feet bgs. Upon completion of the drilling, the soil boring was plugged with bentonite to the ground surface.

Between March 18 and 22, 2010, six additional soil borings (SB-2 through SB-7) and one monitor well (MW-1) were installed in the vicinity of the former junction box in order to delineate the chlorides/TPH within the soil and determine if groundwater was impacted. In SB-2, SB-5, SB-6 and SB-7, laboratory chloride concentrations remained elevated; however, chloride readings decreased with depth. Chloride concentrations were low throughout SB-3 with a concentration of 144 mg/kg at 5 feet and <16 mg/kg at 30 feet. Chloride concentrations also decreased in SB-4 from 592 mg/kg at 20 feet to 160 mg/kg at 50 feet. See Figure 3 for soil analytical results. Groundwater chloride concentrations in monitor well MW-1 were elevated ranging from 1,560 to 2,200 mg/L. Groundwater at the site is located at a depth of approximately 68 feet below ground surface. See attached Tables for groundwater analytical results.

On October 24, 2011, an up-gradient monitor well (MW-2) was installed northwest of the former junction box. Since the MW-2 well installation, chloride analytical results for the well have ranged from 1,460 to 1,580 mg/L, which is comparable with results found in monitor well MW-1 indicating there is an up-gradient source contributing to the degradation of groundwater quality.

In order to complete delineation of the soils at the site, two additional soil borings (SB-8 and SB-9) were installed north of SB-7 on April 24, 2012. See Appendix A for Boring Logs. The chloride concentrations in the soils in SB-8 decreased from 4,960 mg/kg at 10 feet bgs to 1,920 mg/kg at 60 feet bgs, while they decreased from 2,920 mg/kg at 20 feet bgs to 96 mg/kg at 40 feet bgs in SB-9.

On August 7, 2012, monitor well MW-1 was plugged and replaced with a 4 inch well (RW-1). The 2-inch PVC casing was removed and the wellbore was filled from 76 feet bgs to 3 feet bgs with a 1% to 3% bentonite slurry mixture. A concrete cap was placed from 3 feet to the surface to complete the capping of the well. RW-1 was installed approximately 10 ft southeast of MW-1. See Appendix A for the RW-1 Boring Log and Appendix B for Well Plugging Log.

PROPOSED SOIL REMEDIATION

Based on the results of the soil boring drilling and sampling at the site, ROC proposes to install a 20-mil polyethylene liner in the vicinity of the former junction box. The proposed dimensions of the liner are 113 feet by 43 feet by 4-5 feet deep. (See Figure 3 for proposed liner location). Upon completion of the installation of the liner, soils with laboratory chloride readings of less than 500 mg/kg and a field PID measurement of less than 100 mg/kg will be placed over the liner and brought up to surface grade. Excavated soils will be evaluated for use as backfill and any soils requiring disposal will be properly disposed of at an NMOCD approved facility. Upon completion of the backfill, the site will be seeded with a blend of native vegetation mix.

Based on the US EPA Exposure Assessment Mulitimed Model, the 20-mil polyethylene liner will allow a maximum breakout concentration of approximately 60.49 mg/kg over a course of 180 years. See Appendix C for Mulitimed File. The installation of the liner should prevent further vertical migration of the chlorides within the soil and be protective of the underlying groundwater.

PROPOSED GROUNDWATER REMEDIATION

The footprint of the soil chloride impact area for the Justis SWD System E-26 is approximately 4,859 ft². If we assume the aquifer thickness is 15 feet and the porosity of the underlying formation (fine grain sand) is 0.25, then the volume of impacted groundwater underlying the site is calculated as follows:

 $4,859 \text{ ft}^2 \text{ x } 15 \text{ ft } \text{ x } 0.25 = 18,221.25 \text{ ft}^3$

Assuming there is 28.3168466 liters of water per cubic feet, the following amount calculated to be removed from the proposed onsite RW-1 recovery well:

 $18,221.25 \text{ ft}^3 \times 28.3168466 \text{ liters/ft}^3 = 515,968.34 \text{ liters}$

Taking the average difference between monitor well MW-1 (source area) and subtract from monitor well MW-2 (up gradient monitor well) yields the following:

1,766 mg/L (MW-1) - 1,506 mg/L (MW-2) = 260 mg/L

This is the average calculated amount of chloride impact concentration from the original source.

To determine the Total Chloride Mass, the volume of the impacted groundwater below the site (515,968.34 L) is multiplied by chloride concentration calculated from the original source (260 mg/L):

515,968.34 L x 260 mg/L = 134,151,768.4 mg. and converting to kg yields 134 kg of Total Chloride Mass to be removed from the site.

The 4 inch well (RW-1) will be utilized for groundwater recovery. This well should have a chloride concentration similar to monitor well MW-1 which was 1,766 mg/L and will be pumped at a constant rate of 1 gal/min. Converting from mg/L to kg/gal yields a conversion factor of 0.00668509 kg/gal. Multiplying the pumping rate (1 gal/min) by the groundwater concentration (0.00668509) in kg/gal yields an extraction rate of 0.00668509 kg/min. Converting this from kg/min to kg/day yields a result of 4.01105349 kg/day based on pumping for 10 hours per day. Removed groundwater will be utilized for pipeline and well maintenance.

The estimated removal time for the 134 kg (20,067 gallons or 478 bbls) of impacted groundwater is approximately 33 days.

Should you have any questions, please contact Hack Conder at (575) 393-9174. Thank you for your attention to this matter.

Tetra Tech, Inc.

Kindlev P.G

Senior Environmental Geologist

cc: ROC – Hack Conder

FIGURES

• • • • • • • • • • • • • •

.

.

...

TABLES

. .

.

	···	· · · · ·		- u			Table	1					
				á.	F	Rice Ope	rating	Company					
						Ju	stis E-:	26					
					Ľ	ea Cou	nty, Ne	w Mexico					
MW	Depth to	Total	Well	Volume	Sample	CI	TDS	Benzene	Toluene	Ethyl Benzene	Total Xylenes	Sulfate	Comments
	Water	Depth	Volume	Purged	Date	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
1	67.93	78.65	1.70	10.0	04/11/10	1800	3400	<0.001	<0.001	<0.001	<0.003	299	Clear no odor
1	67.92	78.65	1.70	10.0	06/02/10	1580	3340	<0.001	<0.001	< 0.001	<0.003	265	Clear no odor
1	67.99	78.65	1.70	10.0	08/26/10	1560	3360	<0.001	<0.001	<0.001	<0.003	260	Clear no odor
1	68.02	78.65	1.70	10.0	12/01/10	1680	3650	<0.001	< 0.001	<0.001	<0.003	324	Clear no odor
1	68.02	78.64	1.70	10.0	03/24/11	1840	4000	<0.001	<0.001	<0.001	<0.003	260	Clear no odor
1	68.03	78.64	1.70	10.0	06/10/11	1760	3520	<0.001	<0.001	<0.001	<0.003	266	Clear no odor
1	68.06	78.64	1.70	10.0	09/14/11	1700	3550	<0.001	<0.001	<0.001	<0.003	281	Clear no odor
1	68.13	78.64	1.70	10.0	12/08/11	1680	3600	<0.001	<0.001	<0.001	<0.003	281	Clear no odor
1	68.05	78.64	1.70	10.0	03/08/12	1860	3920	<0.001	<0.001	<0.001	<0.003	292	Clear no odor
1	68.07	78.64	1.70	10.0	06/05/12	2200	4330	<0.001	<0.001	<0.001	<0.003	369	Clear no odo

.

Graph 1 Rice Operating Company MW-1 Justis E-26 Lea County, New Mexico

	Table 2 Rice Operating Company Justis E-26												
					L	ea Cour	nty, Ne	w Mexico					
MW	Depth to	Total	Well	Volume	Sample	CI	TDS	Benzene	Toluene	Ethyl Benzene	Total Xylenes	Sulfate	Comments
	Water	Depth	Volume	Purged	Date	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
2	68.28	78.64	1.70	10.0	12/08/11	1460	3430	<0.001	<0.001	<0.001	<0.003	652	Clear no odor
2	68.23	78.64	1.70	10.0	03/08/12	1480	3370	<0.001	< 0.001	<0.001	<0.003	465	Clear no odor
2	68.27	78.64	1.70	10.0	06/05/12	1580	3670	< 0.001	<0.001	<0.001	<0.003	475	Clear no odor

APPENDIX A BORING LOGS

٦₎

Logger: Kyle Norman Driller: Harrison & Cooper, Inc. Drilling Method: Air rotary Start Date: 4/24/2012 End Date: 4/24/2012 Comments: Located 61 ft north of t samples were DRAFTED BY TD = 60 ft Image: Chloride				per, Inc. y 2 2 prth of t es were TED BY	he former junction box site. All e from cuttings. : L. Weinheimer GW = 68 ft	Project Name: Well ID: Justis E-26 SB- Location: UL/E sec. 26 T24S R37E Lat: 32°11'21.769"N County Long: 103°8'21.783"W State: I				
Depth (feet)	field te	ide sts	LAB	PID	Description		Lithology	Well C	onstruction	
SS	179			0.6	Brown Sand					
5 ft	1037	7	CI- 4960	4.2	Tan Sand With Some Caliche					
			GRO <10 DRO <10							
15 ft	2202	2		2.6	Red Sand					
20 ft	2414	1		2.2						
25 ft	1894	1		2.1						
30 ft	1726	6		3.5	Red Sand, Moist				bentonite seal	
35 ft	1713	3		2.4						

Depth (feet)	Chloride field tests	LAB	PID	Description	Lithology	Well Construction
40 ft	1772		2.7			
45 ft	1622		2.5			
50 ft	743		3.1	Red Sand, Moist		
55 ft	994		2.1			
60 ft	1732	CI- 1920 GRO <10	1.0			
		DRO <10				

Logger: Driller:		K Harriso	Kyle Norm	nan per, Inc.	Tank Bettery Battery B			RECE	and a state of the
Drilling I	Method:		Air rotar	У	585 SB1 260 T SB3	Project Name: Well ID:			
Start Dat	te:		4/24/201	2	The and the sub-	Justis E-26 SB-			
End Date	e:		4/24/201	2	march and				
Comme	ents: Lo	cated	samp	les wer	the former junction box site. All e from cuttings.	Lo	cation: UL/E	sec. 26 12	45 R37E
			DRA	FTED BY	: L. Weinheimer	La	t: 32°11'21.925	5"N	County: Lea
	TD) = 40	ft		GW = 68 ft	Long: 103°8'21.781"W State:			State: NM
Depth (feet)	field to	ride ests	LAB	PID	Description	Lithology Well Constru			Construction
						1			b
					Brown Sand				
SS	14:	3		1.3					
5 ft	31	5		2.1	Tan Sand With Some Caliche				
10 ft	123	2		0.9		-			
45.0									
15 π	148	6		0.9					
		_	CI-		Red Sand		a to the state		bentonite
20 π	212	/	GRO	1.1					seal
			<10 DRO						
			<10						
25 ft	128	8		0.6			A State		
							Sec. Sec.		
30 ft	532	2		0.6	Red Sand, Moist				
									11
35 ft	701	1		0.5			Sector State	1//	

field tests	LAB	PID	Description		Lithology	Well Construction
					1000	
142	CI- 96	0.8	Red Sand, Moist			
	GRO <10					
	DRO <10					
f	142	ield tests LAB ield tests Image: Cl- 96 142 96 GRO <10	Indexts LAB PID ield tests Image: Cl- 142 96 0.8 GRO <10	Initial isolation LAB PID Description Iddatests Iddatests Iddatests Iddatests 142 96 0.8 Red Sand, Moist GRO <10	Indication LAB PID Description ield tests Image: Cl- Image: Cl- Image: Cl- 142 96 0.8 Red Sand, Moist GRO <10	Image: Cl- PID Description Lithology 142 96 0.8 Red Sand, Moist GRO <10

Logger: Driller:		K Harriso	(yle Norm	ian per, Inc.	SB-9 SB-8 SB7 SB6 BS86 BS82		RECS					
Drilling M Start Dat End Date	Method: te: e:		Mud rota 8/7/2011 8/7/2011	ry I	SB2 SB5 SB1 SB3 SB4 MVV1 AVV1	Pro	o ject Name: Justis E	-26	v	Vell ID: RW-1		
Comme	ents: Tl is locate TD	ne wel ed 50 f	I was no ft SE of DRAI	ot samp the cer FTED BY	bled as it was advanced. RW-1 hter of the current junction box. ': L. Weinheimer GW = 68 ft	Lo La Lo	cation: UL/E t: 32°11'20.7 ng: 103°8'21	on: UL/E sec. 26 T24S R37E 2°11'20.782''N County: L 103°8'21.418''W State: NM				
Depth (feet)	Chlo field t	ride tests	LAB	PID	Description		Lithology		onstruction			
SS 10 ft 20 ft					NO SAMPLES TAKEN				4 in PVC	bentonite seal		
30 ft 40 ft 50 ft												
60 ft 70 ft												
80 ft										sand pack		
90 ft												
110 ft												

APPENDIX B WELL PLUGGING LOG

HARRISON & COOPER, INC.

7414 85th Street, Lubbock, Texas 79424-4951

P.O. Box 96, Wolfforth, Texas 79382-0096

Drilling & Pump Professionals

Ph: (806) 866-4026

Fax: (806) 866-4044

hcidrill.com

Plugging Report

Client	Rice Operating
Contractor	Harrison & Cooper
Date Completed	8/7/2012
Site	Justis E-26
Well ID	MW-1
Casing Diameter	2″
Well Depth	76'
Casing Material	PVC
Plugging Material	Portland/Bentonite Slurry
Slurry Interval	3'-76'
Cement Interval	0'-3'

Copies: File Email (Rice)

Regulated by: Texas Dept. of Licensing & Regulation, Water Well Division, P.O. Box 12157, Austin, TX 78711, (800) 803-9202

;

APPENDIX C

.

MULTIMED FILE

i

Justis E-26 (1R423-07) Multimed Input.out MULTIMED V1.01 DATE OF CALCULATIONS: 26-SEP-2012 TIME: 16:15:36

U.S. ENVIRONMENTAL PROTECTION AGENCY

EXPOSURE ASSESSMENT

MULTIMEDIA MODEL

MULTIMED (Version 1.50, 2005)

1 Run options

Justis E-26

Chemical simulated is Chloride

Saturated and unsaturated zone models Option Chosen DETERMIN Run was Infiltration Specified By User: 7.620E-03 m/yr Run was transient Well Times: Entered Explicitly Reject runs if Y coordinate outside plume Reject runs if Z coordinate outside plume Gaussian source used in saturated zone model 1 1 UNSATURATED ZONE FLOW MODEL PARAMETERS (input parameter description and value) Total number of nodal points
 Number of different porous materials 240 NP NMAT 1 KPROP - Van Genuchten or Brooks and Corey 1 IMSHGN - Spatial discretization option 1 NVFLAYR - Number of layers in flow model ĩ **OPTIONS CHOSEN** ----Van Genuchten functional coefficients

User defined coordinate system

Layer information

LAYER NO.	LAYER THICKNESS	MATERIAL PROPERTY
1	4.88	1

DATA FOR MATERIAL 1

VADOSE ZONE MATERIAL VARIABLES

Page 1

VARIABLE NAME	Justis E-26 (UNITS	(1R423-07) Multimed DISTRIBUTION	Input.out PARA MEAN	METERS STD DEV	LI Min	MITS MAX	
Saturated hydraulic conductivity	cm/hr	CONSTANT	3.60	-999.	-999.	-999.	
Unsaturated zone porosity		CONSTANT	0.250	-999.	-999.	-999.	
Air entry pressure head	m	CONSTANT	0.700	-999.	-999.	-999.	
Depth of the unsaturated zone	m	CONSTANT	4.88	0.000	0.000	0.000	

DATA FOR MATERIAL 1

VADOSE ZONE FUNCTION VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION	PARAM	ETERS STD DEV	LI MIN	MITS MAX	
Residual water content Brook and Corey exponent,EN ALFA coefficient Van Genuchten exponent, ENN	 1/cm 	CONSTANT CONSTANT CONSTANT CONSTANT CONSTANT	0.116 -999. 0.500E-02 1.09	-999. -999. -999. -999.	-999. -999. -999. -999.	-999. -999. -999. -999.	

1

UNSATURATED ZONE TRANSPORT MODEL PARAMETERS

NLAY	-	Number of different layers used	1
NTSTPS	-	Number of time values concentration calc	40
DUMMY	-	Not presently used	1
ISOL	-	Type of scheme used in unsaturated zone	2
Ν	-	Stehfest terms or number of increments	18
NTEL	-	Points in Lagrangian interpolation	3
NGPTS		Number of Gauss points	104
NIT	-	Convolution integral segments	2
IBOUND	-	Type of boundary condition	3
ITSGEN		Time values generated or input	1
TMAX		Max simulation time	0.0
WTFUN	-	Weighting factor	1.2

OPTIONS CHOSEN Convolution integral approach Exponentially decaying continuous source Computer generated times for computing concentrations 1

.

DATA FOR LAYER 1

VADOSE TRANSPORT VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION	PARA	METERS	LI	MITS	
			MEAN	STD DEV	MIN	MAX	
Thickness of layer	m	CONSTANT	4.88	-999.	-999.	-999.	
Percent organic matter	m 	CONSTANT	-999.	-999.	-999.	-999.	
Bulk density of soil for layer	g/cc	CONSTANT Page 2	1.99	-999.	-999.	-999.	

Biological decay coefficient

1

1

1

Justis E-26 (1R423-07) Multimed Input.out 1/yr CONSTANT 0.000 -999.

CHEMICAL SPECIFIC VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION	PARA	METERS	LI	MITS	
			MEAN	STD DEV	MIN	MAX	
Solid phase decay coefficient	1/vr	DERIVED	-999.	-999.	-999.	-999.	
Dissolved phase decay coefficient	1/vr	DERIVED	-999	-999.	-999.	-999.	
Overall chemical decay coefficient	1/vr	DERIVED	-999	-999.	-999	-999.	
Acid catalyzed hydrolysis rate	1/M-yr	CONSTANT	0.000	-999.	-999.	-999.	
Neutral hydrolysis rate constant	1/yr	CONSTANT	0.000	-999.	-999.	-999.	
Base catalyzed hydrolysis rate	1/M-yr	CONSTANT	0.000	-999.	-999.	-999.	
Reference temperature	c i	CONSTANT	25.0	-999.	-999.	-999	
Normalized distribution coefficient	ml/g	CONSTANT	0.000	-999.	-999.	-999.	
Distribution coefficient		DERIVED	-999.	-999.	-999.	-999.	
Biodegradation coefficient (sat. zone)	1/yr	CONSTANT	0.000	-999.	-999.	-999.	
Air diffusion coefficient	cm2/s	CONSTANT	-999.	-999.	-999.	-999.	
Reference temperature for air diffusion	י כ	CONSTANT	-999.	-999.	-999.	-999.	
Molecular weight	g/M	CONSTANT	-999.	-999.	-999.	-999.	
Mole fraction of solute		CONSTANT	-999.	-999.	-999.	-999.	
Vapor pressure of solute	mm Hg	CONSTANT	-999.	-999.	-999.	-999.	
Henry's law constant	atm-m^37M	CONSTANT	-999.	-999.	-999.	-999.	
Overall 1st order decay sat. zone	1/yr	DERIVED	0.000	0.000	0.000	1.00	
Not currently used	-	CONSTANT	0.000	0.000	0.000	0.000	
Not currently used		CONSTANT	0.000	0.000	0.000	0.000	

SOURCE SPECIFIC VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION	PARAMI MEAN	ETERS STD DEV	LI	MITS MAX	
Infiltration rate Area of waste disposal unit Duration of pulse Spread of contaminant source Recharge rate Source decay constant Initial concentration at landfill Length scale of facility Width scale of facility Near field dilution	m/yr m^2 yr m/yr 1/yr mg/1 m m	CONSTANT CONSTANT DERIVED DERIVED CONSTANT CONSTANT CONSTANT DERIVED DERIVED DERIVED	0.762E-02 451. 50.0 -999. 0.000 0.250E-01 0.140E+04 -999. -999. 1.00	-999. -999. -999. -999. 0.000 -999. -999. -999. -999. 0.000	-999. -999. -999. -999. 0.000 -999. -999. -999. -999. 0.000	-999. -999. -999. -999. 0.000 -999. -999. -999. 1.00	· · · · · · · · · · · · · · · · · · ·

AQUIFER SPECIFIC VARIABLES

VARIABLE NAME	UNITS	DISTRIBUTION	PARAM	ETERS	L]	MITS	
			MEAN	STD DEV	MIN	MAX	
Particle diameter Aquifer porosity Bulk density Aquifer thickness Source thickness (mixing zone depth) Conductivity (hydraulic) Gradient (hydraulic)	cm g/cc m m/yr	CONSTANT CONSTANT CONSTANT CONSTANT DERIVED CONSTANT CONSTANT	-999. 0.300 1.86 6.10 -999. 315. 0.400E-02	-999. -999. -999. -999. -999. -999. -999.	-999. -999. -999. -999. -999. -999. -999.	-999. -999. -999. -999. -999. -999. -999.	· · · · · · · · · · · · · · · · · · ·

Page 3

	Justis E-26 (1	1R423-07) Multimed	Input.out			
Groundwater seepage velocity	m/yr	DERIVED	-999.	-999.	-999.	-999.
Retardation coefficient		DERIVED	-999.	-999.	-999.	-999.
Longitudinal dispersivity	'n	FUNCTION OF X	-999.	-999.	-999.	-999.
Transverse dispersivity	m	FUNCTION OF X	-999.	-999.	-999.	-999.
Vertical dispersivity	m	FUNCTION OF X	-999.	-999.	-999.	-999.
Temperature of aquifer	с	CONSTANT	20.0	-999.	-999.	-999.
pH		CONSTANT	7.00	-999.	-999.	-999.
Organic carbon content (fraction)		CONSTANT	0.000	-999.	-999.	-999.
Well distance from site	m	CONSTANT	1.00	-999.	-999.	-999.
Angle off center	degree	CONSTANT	0.000	-999.	-999.	-999.
Well vertical distance	m	CONSTANT	0.000	-999.	-999.	-999.

•

1

TIME	CONCENTRATION
0.100E+0	03 0.49545E+01
0.120E+0	03 0.20904E+02
0.140E+	03 0.42942E+02
0.160E+	03 0.58208E+02
0.180E+0	03 0.60491E+02
0.200E+0	03 0.52540E+02
0.220E+0	03 0.40017E+02
0.240E+0	03 0.28230E+02
0.260E+	03 0.18840E+02
0.280E+0	03 0.12066E+02

.

.

. .

.

Page 4

Hansen, Edward J., EMNRD

From:	Katie Jones <kjones@riceswd.com></kjones@riceswd.com>
Sent:	Monday, November 26, 2012 1:14 PM
To:	Hansen, Edward J., EMNRD
Cc:	Hack Conder; Laura Pena; Kindley, Jeff
Subject:	Justis E-26 (1R423-07) CAP Addendum
Attachments:	Justis E-26 (1R423-07) Chloride Mass.xlsx

Mr. Hansen,

The following is an Addendum to the Justis E-26 (1R423-07) CAP submitted to the NMOCD on October 24th, 2012.

Pages 3-4, Section: Proposed Groundwater Remediation; red lettering will be deleted from the paragraph and blue lettering should be added to the paragraph.

"The footprint of the soil chloride impact area for the Justis SWD System E-26 is approximately 4,859 ft². If we assume the aquifer thickness is 15 feet and the porosity of the underlying formation (fine grain sand) is 0.25, then the volume of impacted groundwater underlying the site is calculated as follows:

• 4,859 ft² x 15 ft x 0.25 = 18,221.25 ft³

Assuming there is 28.3168466 liters of water per cubic feet, the following amount calculated to be removed from the proposed onsite RW-1 recovery well:

• 18,221.25 ft³ x 28.3168466 liters/ft³ = 515,968.34 liters

Taking the average difference between monitor well MW-1 (source area) and subtract from monitor well MW-2 (up gradient monitor well) yields the following:

• 1,766 mg/L (MW-1) - 1,506 mg/L (MW-2) = 260 mg/L

This is the average calculated amount of chloride impact concentration from the original source.

To determine the Total Chloride Mass, the volume of the impacted groundwater below the site (515,968.34 L) is multiplied by chloride concentration calculated from the original source (260 mg/L):

• 515,968.34 L x 260 mg/L = 134,151,768.4 mg. and converting to kg yields 134 kg of Total Chloride Mass to be removed from the site.

The estimated chloride mass based on residual soil chloride is as follows:

Estimate of Chloride Mass in the Vadose Zone

Parameter	Unit	Value	Description
Impact area	ft²	2,550	Estimated area of impact with chloride concentrations in

			the 10 ft above the water table
Vadose Zone Thickness	ft	10	10 ft of vadose above the water table
Volume of Impacted Vadose Zone	ft ³	25,500	Impact Area x Vadose Zone Thickness
Mass of Impacted Vadose Zone	kg	1,157,700	Volume of Impacted Vadose Zone x Mass Density (1 ft ³ of soil weighs approx. 45.4 kg or 100 lb/ft ³)
Chloride Concentration Added to Soil From Source	mg/kg	628	The average background concentration subtracted from the average soil bore concentrations from the bottom 10 ft of the SB-3, SB-4, SB-5, SB-6, and SB-9
CHLORIDE MASS	kg	727	Mass of Impacted Vadose Zone x Chloride Concentration Added to Soil From Source

TOTAL CHLORIDE	ka	961	Sum of chlorido mass in CW/ and Chlorido mass in Vadesa
MASS	кg	100	Sum of chloride mass in Gvv and chloride mass in vadose

Estimated Groundwater Recovery System Removal at the Justis E-26

Parameter	Unit	Value	Description
Groundwater Concentration	mg/L	1,766	Groundwater Concentration from RW-1
Groundwater Concentration	kg/gal	0.00668509	Conversion from mg/L to kg/gal
Pumping Rate	gals/min	1	Given
Extraction Rate	kg/min	0.00668509	Pumping rate x Groundwater Concentration (kg/gal)
Extraction Rate	kg/day	4.01105349	Conversion from kg/min to kg/day
Representative Total Chloride Mass	kg	861	From above
Volume Removal	gals	128,822	Pumping rate x Estimated Removal Time x 60 min/hour x 10 hr/day
Volume Removal	bbls	3,067.2	Conversion from gals to bbls
ESTIMATED REMOVAL TIME	day	215	Representative Total Chloride Mass/Extraction Rate

2

The 4 inch well (RW-1) will be utilized for groundwater recovery. This well should have a chloride concentration similar to monitor well MW-1 which was 1,766 mg/L and will be pumped at a constant rate of 1 gal/min. Converting from mg/L to kg/gal yields a conversion factor of 0.00668509 kg/gal. Multiplying the pumping rate (1 gal/min) by the groundwater concentration (0.00668509) in kg/gal yields an extraction rate of 0.00668509 kg/min. Converting this from kg/min to kg/day yields a result of 4.01105349 kg/day based on pumping for 10 hours per day. Removed groundwater will be utilized for pipeline and well maintenance.

The estimated removal time for the 134861 kg (20,067128,822 gallons or 4783,067.2 bbls) of impacted groundwater is approximately 33215 days."

If you have any questions or require any additional information, please contact Hack Conder at (575)393-9174.

Thank you.

Katie Jones Environmental Project Manager RICE Operating Company

Justis E-26 (1R423-07)

Chloride Mass Calculation

Estimate of Chloride Mass in Groundwater

Parameter	Unit	Value	Description
Impact area	ft ²	4,859	Estimated Area of Impact
Aquifer Thickness	ft	15	NMOCD Approved Estimation
Porosity	%	0.25	Professional Estimate for Water Saturated Pore Volume
Volume of Impacted Groundwater Below Site	ft ³	18,221	Impact Area x Aquifer Thickness x Porosity
Volume of Impacted Groundwater Below Site	L	515,968.34	Conversion from ft ³ to Liters
Chloride Concentration from Source	mg/L	260	Difference between Concentrations in Monitor Wells (MW-1 = 1,766 mg/L and MW-2 = 1,506 mg/L)
CHLORIDE MASS	kg	134	Volume of Impacted Groundwater Below Site x Chloride Concentration Added to Soil from Source

Estimate of Chloride Mass in the Vadose Zone

Parameter	Unit	Value	Description
Impact area	ft ²	2,550	Estimated Area of Impact
Vadose Zone Thickness	ft	·10	10 ft of vadose above groundwater
Volume of impacted	ft ³	25,500	Impact Area x Vadose Zone Thickness
Mass of Impacted Vadose Zone	kg	1,157,700	Volume of Impacted Vadose Zone x Mass Density (1 ft ³ of soil weighs approx. 45.4 kg or 100 lb/ft ³)
Chloride Concentration Added to Soil From Source	mg/kg	628	Average Soil Bore Concentrations From the bottom 10 ft of the SB-3, SB-4, SB-5, SB-6, and SB-9 subtracted from the average background concentration
CHLORIDE MASS	kg	727	Mass of Impacted Vadose Zone x Chloride Concentration Added to Soil From Source

TOTAL CHLORIDE MASS	kg	861	Sum of chloride mass in GW and Chloride mass in Vadose
---------------------	----	-----	--

Estimated Groundwater Recovery System Removal at the Justis E-26

Parameter	Unit	Value	Description
Groundwater	mg/L	1,766	Groundwater Concentration from RW-1
Concentration			
Groundwater	kg/gal	0.00668509	Conversion from mg/L to kg/gal
Concentration			
Pumping Rate	gals/min	1	Given
Extraction Rate	kg/min	0.00668509	Pumping rate x Groundwater Concentration (kg/gal)
Extraction Rate	kg/day	4.01105349	Conversion from kg/min to kg/day
Representative Total	kg	861	From above
Chloride Mass			
Volume Removal	gals	128,822	Pumping rate x Estimated Removal Time x 60 min/hour x 10
			hr/day
Volume Removal	bbls	3,067	Conversion from gals to bbls
ESTIMATED REMOVAL	day	215	Representative Total Chloride Mass/Extraction Rate
TIME			