1R - 2/36

Annual GW Mon. Report

Basin Environmental Service Technologies, LLC

3100 Plains Highway P. O. Box 301 Lovington, New Mexico 88260 bjarguijo@basinenv.com Office: (575) 396-2378 Fax: (575) 396-1429

2 2012 APR

2011 ANNUAL MONITORING REPORTOIL Conservation Division 1220 S. St. Francis Drive

Santa Fe, NM 87505

PLAINS MARKETING, L.P. DCP Plant to Lea Station 6-Inch #2 Unit Letter "F" (SENW), Section 31, Township 20 South, Range 37 East Latitude 32.5316667° North, Longitude 103.2911111° West Lea County, New Mexico Plains SRS # 2009-039 NMOCD Reference # 1RP-2136

Prepared For:

Plains Marketing, LP 333 Clay Street, Suite 1600 Houston, Texas 77002

Prepared By:

Basin Environmental Service Technologies, LLC P. O. Box 301 Lovington, New Mexico 88260

March 2012

Ben J Arguijo

Project Manager

PLAINS ALL AMERICAN

RHCHT

March 29, 2012

APR 2 2012

Gil Conservation Division

1220 S. St. Francis Drive

Sante, Fe, NM 87505

Mr. Edward Hansen New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Plains All American – 2011 Annual Monitoring Reports 5 Sites in Lea County, New Mexico 1 Site in Eddy County, New Mexico

Dear Mr. Hansen:

Plains All American is an operator of crude oil pipelines and terminal facilities in the state of New Mexico. Plains All American actively monitors certain historical release sites exhibiting groundwater impacts, consistent with assessments and work plans developed in consultation with the New Mexico Oil Conservation Division (NMOCD). In accordance with the rules and regulations of the NMOCD, Plains All American hereby submits our Annual Monitoring reports for the following sites:

Lovington Gathering WTI	AP-96 (1R-838)	Section 06, T17S, R37E, Lea County
Red Byrd #1	1R-0085	Section 01, T20S, R36E, Lea County
DCP Plant to Lea Sta. 6" #2	1R-2136	Section 31, T20S, R37E, Lea County
DCP Plant to Lea Sta. 6" Sec.31	1R-2166	Section 31, T20S, R37E, Lea County
14" Vac to Jal Legacy	1R-2162	Section 25, T22S, R37E, Lea County
Ballard Grayburg 5-Inch	2R-0053	Section 10, T18S, R29E, Eddy County

Basin Environmental Service Technologies, LLC (Basin) prepared these documents and has vouched for their accuracy and completeness, and on behalf of Plains All American, I have personally reviewed the documents and interviewed Basin personnel in order to verify the accuracy and completeness of these documents. It is based upon these inquiries and reviews that Plains All American submits the enclosed Annual Monitoring Reports for the above facilities.

If you have any questions or require further information, please contact me at (575) 441-1099.

Sincerely, ason

Jason Henry Remediation Coordinator Plains All American

CC: Geoff Leking, NMOCD, Hobbs, NM Enclosures

2530 State Hwv. 214 • Denver City, TX 79323 • (575)441-1099

TABLE OF CONTENTS

INTRODUCTION	1
SITE DESCRIPTION AND BACKGROUND INFORMATION	1
FIELD ACTIVITIES	2
LABORATORY RESULTS	3
SUMMARY	5
ANTICIPATED ACTIONS	5
LIMITATIONS	6
DISTRIBUTION	7

FIGURES

Figure 1 – Site Location Map

Figure 2A – Inferred Groundwater Gradient Map – 1Q2011 Figure 2B – Inferred Groundwater Gradient Map – 2Q2011 Figure 2C – Inferred Groundwater Gradient Map – 3Q2011 Figure 2D – Inferred Groundwater Gradient Map – 4Q2011

Figure 3A – Groundwater Concentration & Inferred PSH Extent Map – 1Q2011 Figure 3B – Groundwater Concentration & Inferred PSH Extent Map – 2Q2011 Figure 3C – Groundwater Concentration & Inferred PSH Extent Map – 3Q2011 Figure 3D – Groundwater Concentration & Inferred PSH Extent Map – 4Q2011

TABLES

Table 1 – 2011 Groundwater Elevation Data

Table 2 – 2011 Concentrations of Benzene & BTEX in Groundwater

Table 3 - Concentrations of RCRA & NMWQCC Metals in Groundwater

Table 4 – Concentrations of Volatile Organic Compounds Groundwater

Table 5 – Concentrations of Semi-Volatile Compounds in Groundwater

Table 6 - Concentrations of Anions/Cations in Groundwater

APPENDICES

Appendix A – Laboratory Analytical Reports

Appendix B – Release Notification and Corrective Action (Form C-141)

Appendix C – Soil Boring & Monitor Well Logs

INTRODUCTION

Basin Environmental Service Technologies, LLC (Basin), on behalf of Plains Pipeline, LP (Plains), is pleased to submit this *Annual Monitoring Report* in compliance with the New Mexico Oil Conservation Division (NMOCD) letter of May 1998, requiring submittal of an Annual Monitoring Report by April 1st of each year. This report is intended to be viewed as a complete document with text, figures, tables, and appendices. This report presents the results of the quarterly groundwater monitoring events conducted in calendar year 2011 only. For reference, a "Site Location Map" is provided as Figure 1.

Groundwater monitoring was conducted during each quarter of 2011 to assess the levels and extent of dissolved phase constituents and Phase-Separated Hydrocarbon (PSH). The groundwater monitoring events consisted of measuring static water levels in the monitor wells, checking for the presence of PSH, and purging and sampling of each well exhibiting sufficient recharge. Monitor wells containing a thickness of PSH greater than 0.01 feet were not sampled.

SITE DESCRIPTION AND BACKGROUND INFORMATION

The legal description of the DCP Plant to Lea Station 6" #2 release site is Unit Letter "F" (SENW), Section 31, Township 20 South, Range 37 East, in Lea County, New Mexico. The property affected by the release is owned by The State of New Mexico (ROE permit #1777) and is administered by the New Mexico State Land Office (NMSLO). The geographic coordinates of the release site are 32.5316667° North latitude and 103.2911111° West longitude.

On February 12, 2009, Plains discovered a crude oil release from a six (6)-inch steel pipeline. During initial response activities, Plains installed a temporary clamp on the pipeline to mitigate the release. Approximately twenty-five (25) barrels of crude oil was released from the Plains pipeline, resulting in a surface stain measuring approximately ten (10) feet in width and twelve (12) feet in length. Plains notified the NMOCD Hobbs District Office of the release, and a "Release Notification and Corrective Action" (Form C-141) was submitted. The cause of the release was attributed to external corrosion of the pipeline.

On February 17, 2009, following initial response activities, excavation of hydrocarbon-impacted soil began at the site. Excavated soil was stockpiled on-site on a plastic liner to mitigate the potential leaching of contaminants into the vadose zone. Approximately 2,700 cubic yards (cy) of soil was stockpiled on-site during excavation activities. The final dimensions of the excavation were approximately sixty-six (66) feet in width, approximately eighty (80) feet in length, and approximately fifteen (15) feet in depth. Upon completion of the excavation activities, confirmation soil samples were collected from the excavation and stockpiles. Review of laboratory analytical results indicated soil samples collected from the excavation and stockpiles were less than NMOCD regulatory standards.

On April 15, 2009, a soil boring (SB-1) was advanced at the release site to evaluate the vertical extent of soil impact. During the advancement of the soil boring, groundwater was encountered at approximately sixty-one (61) feet drilling depth, or approximately seventy-six (76) feet below ground surface (bgs). A temporary casing was installed in the soil boring to allow a groundwater

1

sample to be collected for analysis. During the collection of the groundwater sample, a measurable thickness of PSH was observed on the groundwater. Plains immediately notified NMOCD representatives in the Hobbs District Office and the NMOCD Environmental Bureau (Santa Fe) of the impact to groundwater at the release site. On April 16, 2009, soil boring SB-1 was converted to a four (4) inch monitor well (MW-1).

On June 29, 2009, three (3) additional monitoring wells (MW-2, MW-3, and MW-4) were installed to evaluate the status of the groundwater at the site. Monitor well MW-2 is located approximately seventy-five (75) feet to the northwest (up-gradient) of the release point. The monitor well was installed to a total depth of approximately ninety (90) feet bgs. Monitor well MW-3 is located approximately seventy-five (75) feet to the southwest (cross-gradient) of the release point. The monitor well was installed to a total depth of approximately ninety (90) feet bgs. Monitor well since approximately seventy-five (75) feet to the southwest (cross-gradient) of the release point. The monitor well was installed to a total depth of approximately ninety (90) feet bgs. Monitor well MW-4 is located approximately seventy-five (75) feet to the southeast (down-gradient) of the release point. The monitor well was installed to a total depth of approximately eighty-eight (88) feet bgs. PSH was not observed in monitor wells MW-2, MW-3, or MW-4.

On August 25, 2009, a twenty (20) mil polyurethane liner was installed in the excavation. Monitor well (MW-1), located within the excavation, was extended to the top of the excavation using a four (4)-inch diameter PVC riser. The riser was fitted with a forty (40) mil boot, which was chemically welded to the twenty (20) mil liner to ensure impermeability of the liner. The liner was cushioned by a six (6)-inch layer of sand above and below the liner to protect the liner from damage during backfilling. The excavation was backfilled with the stockpiled soil and compacted in twelve (12)-inch lifts. The disturbed areas were contoured to fit the surrounding topography and seeded with an NMSLO-approved seeding mixture. Supplemental seeding occurred on October 12, 2010.

On January 24, 2011, one (1) additional monitoring well (MW-5) was installed to further monitor the down-gradient migration of the PSH plume. Monitor well MW-5 is located approximately thirty (30) feet to the southeast (down-gradient) of the release point. The monitor well was installed to a total depth of approximately ninety-five (95) feet bgs. PSH was not observed in monitor well MW-5. Laboratory analytical results of soil samples collected during the installation of monitor well MW-5 indicated benzene, BTEX, and TPH concentrations were less than NMOCD regulatory standards in the five (5) submitted soil samples.

Currently, a total of five (5) monitor wells are located at the DCP Plant to Lea Station 6-Inch #2 release site. Monitor wells MW-2, MW-3, MW-4, and MW-5 are gauged and sampled on a quarterly schedule, while MW-1 is gauged weekly but not sampled due to the presence of PSH.

FIELD ACTIVITIES

Product Recovery Efforts

A measurable thickness of PSH was detected in monitor well MW-1 during the initial site investigation. Basin began manual, bi-weekly gauging and recovery of PSH from MW-1 in April 2009. Approximately 2,658 gallons (63.3 barrels) of PSH has been recovered from MW-1 since recovery operations began in 2009, and approximately 1,030 gallons (24.5 barrels) of PSH was

recovered from MW-1 during the 2011 reporting period. The average PSH thickness measured in MW-1 during the reporting period was 4.12 feet, and the maximum PSH thickness was 4.55 feet on October 25, 2011. All recovered fluids are disposed of at an NMOCD- approved disposal facility near Monument, New Mexico.

Mobile Dual-Phase Extraction (MDPE) events were conducted on May 5 and September 9, 2011, by Talon LPE. Approximately 33.83 equivalent gallons of PSH (0.8 barrels) were removed during the May event, and approximately 498.75 equivalent gallons (11.9 barrels) of PSH were removed during the September event.

Groundwater Monitoring

The on-site monitor wells were gauged and sampled on March 25 (1Q2011), May 26 (2Q2011), August 17 (3Q2011), and November 29, 2011 (4Q2011). During these quarterly sampling events, the monitoring wells were purged of a minimum of three (3) well volumes of water or until the wells were dry using a PVC bailer or electrical Grundfos pump. Groundwater was allowed to recharge, and samples were obtained using disposable Teflon bailers. Water samples were stored in clean, glass containers provided by the laboratory and placed on ice in the field. Purge water was collected in a trailer-mounted polystyrene tank and disposed of at an NMOCD-approved disposal facility near Monument, New Mexico.

A yearly monitoring event for polyaromatic hydrocarbons (PAH) was conducted on December 16, 2011. Based on sampling criteria provided by the NMOCD, only monitor wells MW-3 and MW-4 were subject to PAH monitoring during the 2011 calendar year.

Locations of the groundwater monitoring wells and the inferred groundwater elevations, which were constructed from the measurements collected during the 2011 quarterly sampling events, are depicted in Figures 2A through 2D. The "Groundwater Gradient Map" from the most recent sampling event (Figure 2D, November 29, 2011) indicates a general gradient of approximately 0.0022 feet/foot to the southeast as measured between groundwater monitor wells MW-2 and MW-4.

On November 29, 2011, the corrected groundwater elevation ranged between 3,459.11 and 3,459.96 feet above mean sea level in monitor wells MW-4 and MW-1, respectively. The "2011 Groundwater Elevation Data" is provided as Table 1.

LABORATORY RESULTS

Groundwater samples collected from the monitor wells during the quarterly sampling events (1Q2011, 2Q2011, 3Q2011, and 4Q2011) were delivered to Xenco Laboratories in Odessa, Texas, for determination of benzene, toluene, ethylbenzene, and total xylenes (BTEX) constituent concentrations by EPA Method SW846-8021b. A summary of benzene and BTEX constituent concentrations is presented in Table 2, "2011 Concentrations of Benzene & BTEX in Groundwater". Laboratory analytical reports are provided as Appendix A. "Groundwater Concentration & Inferred PSH Extent" maps are provided as Figures 3A through 3D.

Laboratory analytical results were compared to NMOCD regulatory limits based on the New Mexico groundwater standards found in section 20.6.2.3103 of the New Mexico Administrative Code (NMAC).

Monitor well MW-1

Monitor well MW-1 was not sampled during the 2011 reporting period due to the presence of PSH in the monitor well.

Monitor well MW-2

Laboratory analytical results indicated benzene concentrations ranged from less than the laboratory method detection limit (MDL) in 1Q2011 to 0.00258 mg/L in 3Q2011. Toluene, ethylbenzene, and total xylene concentrations were less than the appropriate laboratory MDL during all four quarters of the reporting period. Benzene and BTEX constituent concentrations were less than NMOCD regulatory standards during all four quarters of the reporting period.

Monitor well MW-3

Laboratory analytical results indicated benzene concentrations ranged from 0.00296 mg/L in 4Q2011 to 0.00991 mg/L in 3Q2011. Toluene concentrations ranged from less than the laboratory MDL in 2Q2011 and 4Q2011 to 0.00358 mg/L in 1Q2011. Ethylbenzene and total xylene concentrations were less than the appropriate laboratory MDL during all four quarters of the reporting period. Benzene, toluene, ethylbenzene, and total xylene concentrations were less than NMOCD regulatory standards during all four quarters of the reporting period.

PAH constituent concentrations were both less than the appropriate laboratory MDL and NMOCD regulatory standards in the groundwater sample collected on December 16, 2011.

Monitor well MW-4

Laboratory analytical results indicated benzene concentrations ranged from 0.00885 mg/L in 2Q2011 to 0.0281 mg/L in 3Q2011. Toluene concentrations ranged from 0.00398 mg/L in 2Q2011 to 0.0121 mg/L in 3Q2011. Ethylbenzene and total xylene concentrations were less than the appropriate laboratory MDL during all four quarters of the reporting period. Benzene concentrations exceeded NMOCD regulatory standards in 1Q2011, 3Q2011, and 4Q2011. Toluene, ethylbenzene, and total total xylene concentrations were less than NMOCD regulatory standards during all four quarters of the reporting period.

PAH constituent concentrations were both less than the appropriate laboratory MDL and NMOCD regulatory standards in the groundwater sample collected on December 16, 2011.

Monitor well MW-5

Laboratory analytical results indicated benzene concentrations ranged from 0.122 mg/L in 1Q2011 to 0.0276 mg/L in 3Q2011. Toluene concentrations ranged from 0.0676 mg/L in

1Q2011 to 0.0933 mg/L in 2Q2011. Ethylbenzene ranged from less than the laboratory MLD in 1Q2011 to 0.0101 mg/L in 4Q2011. Total xylene concentrations ranged from less than the laboratory MDL in 1Q2011 to 0.0175 mg/L in 4Q2011. Benzene concentrations exceeded NMOCD regulatory standards during all four quarters of the reporting period. Toluene, ethylbenzene, and total total xylene concentrations were less than NMOCD regulatory standards during all four quarters of the reporting period.

Baseline sampling of monitor well MW-5 was conducted on March 25, 2011. Laboratory analytical results from the baseline monitoring are summarized in Tables 3 through 6. A Monitor Well Log is provided as Appendix C.

SUMMARY

This report presents the results of the monitoring activities for the 2011 annual monitoring period. Currently, there are five (5) groundwater monitor wells (MW-1, MW-2, MW-3, MW-4, and MW-5) on-site. Monitor well MW-1 was not sampled in 2011 due to the presence of PSH in the monitor well. Monitor wells MW-2, MW-3, MW-4, and MW-5 were sampled during all four quarters of the monitoring period, and the results of these sampling events are summarized above.

The "Groundwater Gradient Map" from the most recent sampling event (Figure 2D, November 29, 2011) indicates a general gradient of approximately 0.0022 feet/foot to the southeast as measured between groundwater monitor wells MW-2 and MW-4.

A measurable thickness of PSH was detected in monitor well MW-1 throughout the 2011 reporting period. The average PSH thickness measured in MW-1 during the reporting period was 4.12 feet, and the maximum PSH thickness was 4.55 feet on October 25, 2011.

During the reporting period, approximately 1,030 gallons (24.5 barrels) of PSH was recovered, by manual recovery, from monitor well MW-1. A total of 532.58 equivalent gallons (12.7 barrels) of PSH was recovered by Mobile Dual-Phase Extraction.

Review of laboratory analytical results generated from analysis of groundwater samples collected in 2011 indicated benzene concentrations were less than the NMOCD regulatory standard in monitor wells MW-2 and MW-3. However, benzene concentrations above NMOCD standards were detected in the groundwater samples from MW-4 (1Q2011, 3Q2011 and 4Q2011) and MW-5 (all four quarters of the reporting period).

ANTICIPATED ACTIONS

PSH recovery from monitor well MW-1 will continue on a bi-weekly schedule. All fluids recovered from MW-1 will be disposed of at an NMOCD-permitted disposal facility. Monitor wells MW-2, MW-3, MW-4, and MW-5 will be monitored and sampled quarterly. A yearly PAH monitoring event will be conducted at monitor wells MW-4 and MW-5 during the 2012 calendar year.

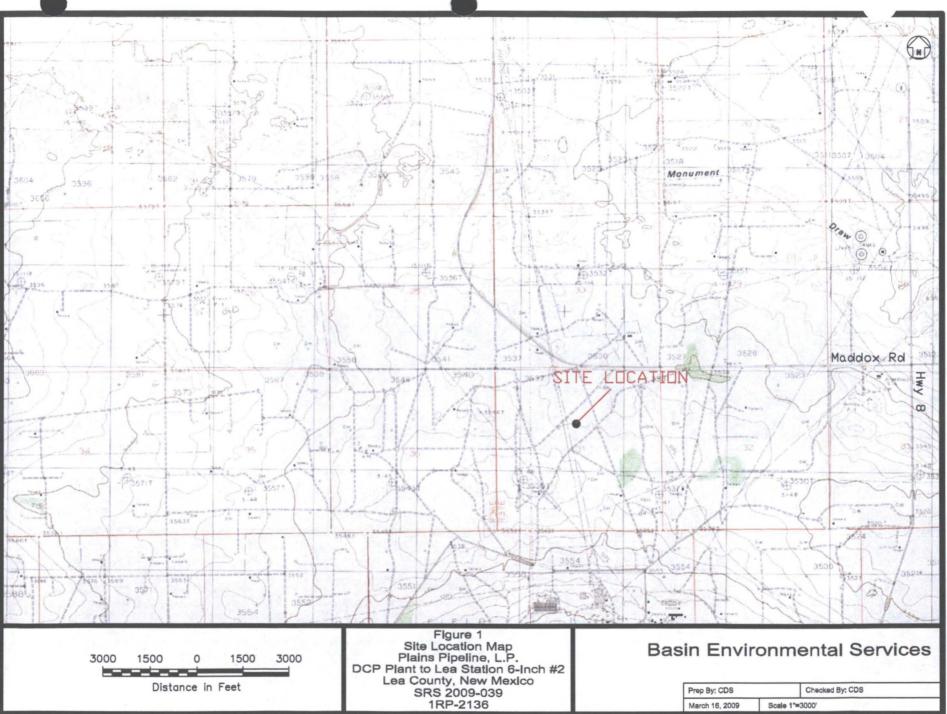
Based on the groundwater sampling results for down-gradient monitor wells MW-4 and MW-5 during the 2011 reporting period, Plains will evaluate the need for an additional down-gradient monitor well. Results from the 2012 sampling events will be reported in the 2012 Annual Monitoring Report, which will be submitted to the NMOCD by April 1, 2013.

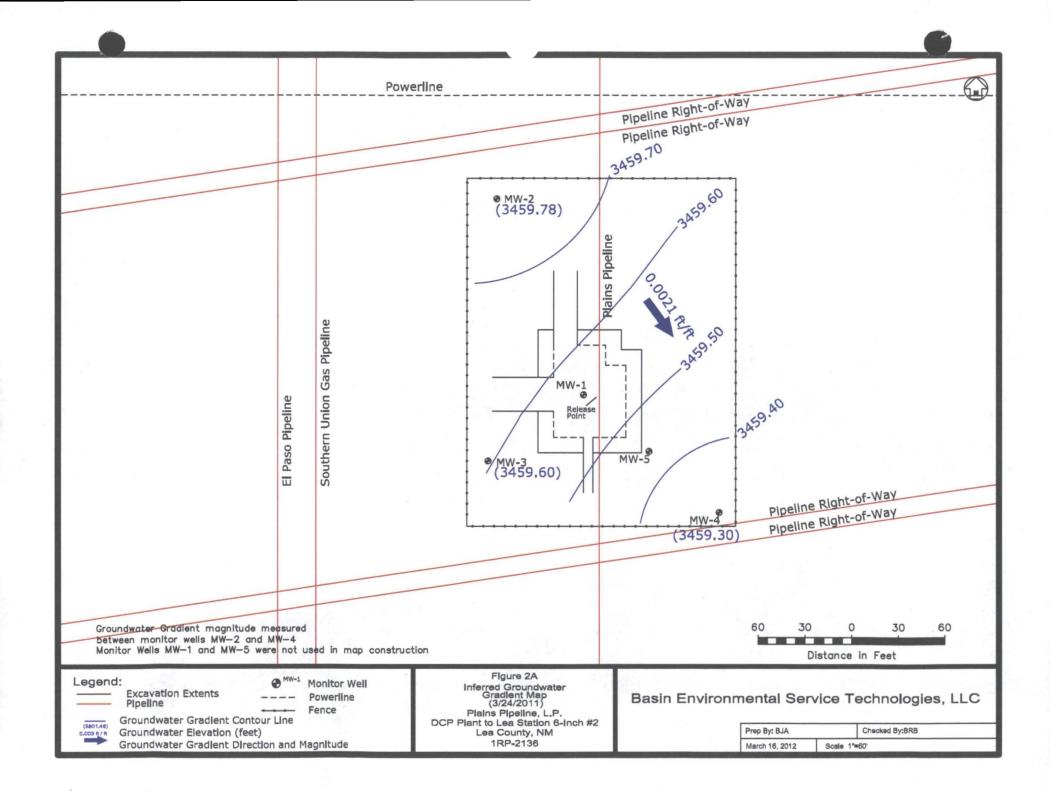
LIMITATIONS

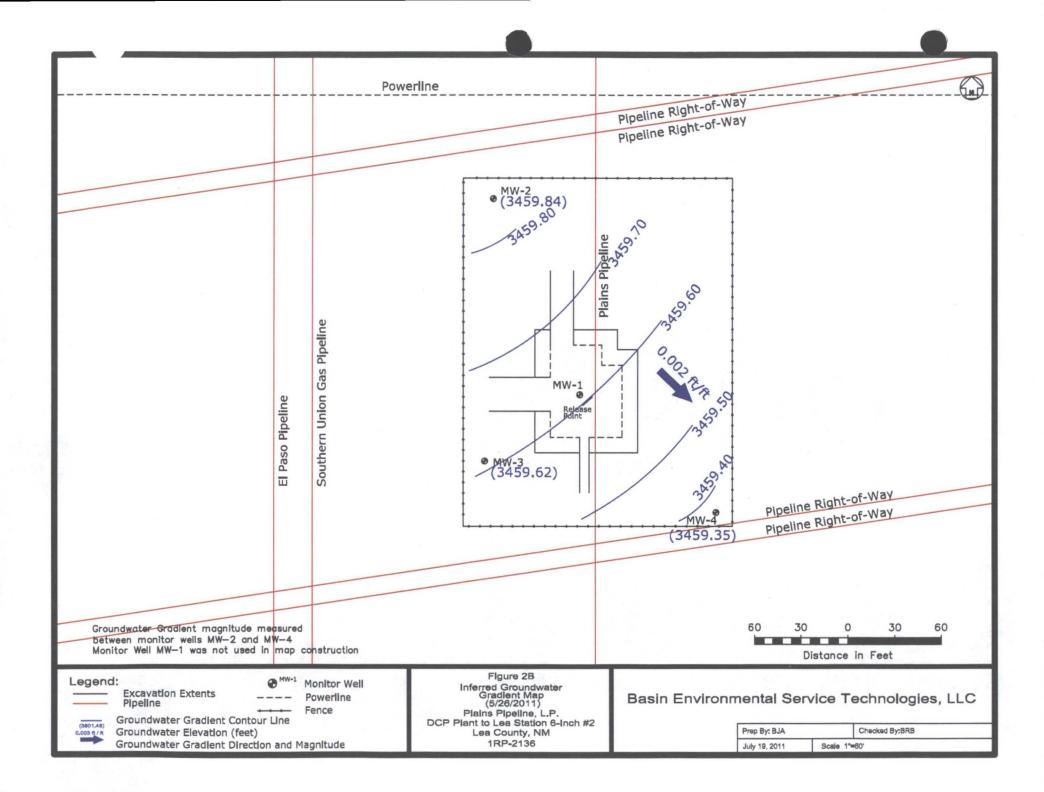
Basin Environmental Service Technologies, LLC, has prepared this *Annual Monitoring Report* to the best of its ability. No other warranty, expressed or implied, is made or intended. Basin has examined and relied upon documents referenced in the report and on oral statements made by certain individuals. Basin has not conducted an independent examination of the facts contained in referenced materials and statements. Basin has presumed the genuineness of these documents and statements and that the information provided therein is true and accurate. Basin has prepared this report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Basin notes that the facts and conditions referenced in this report may change over time, and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

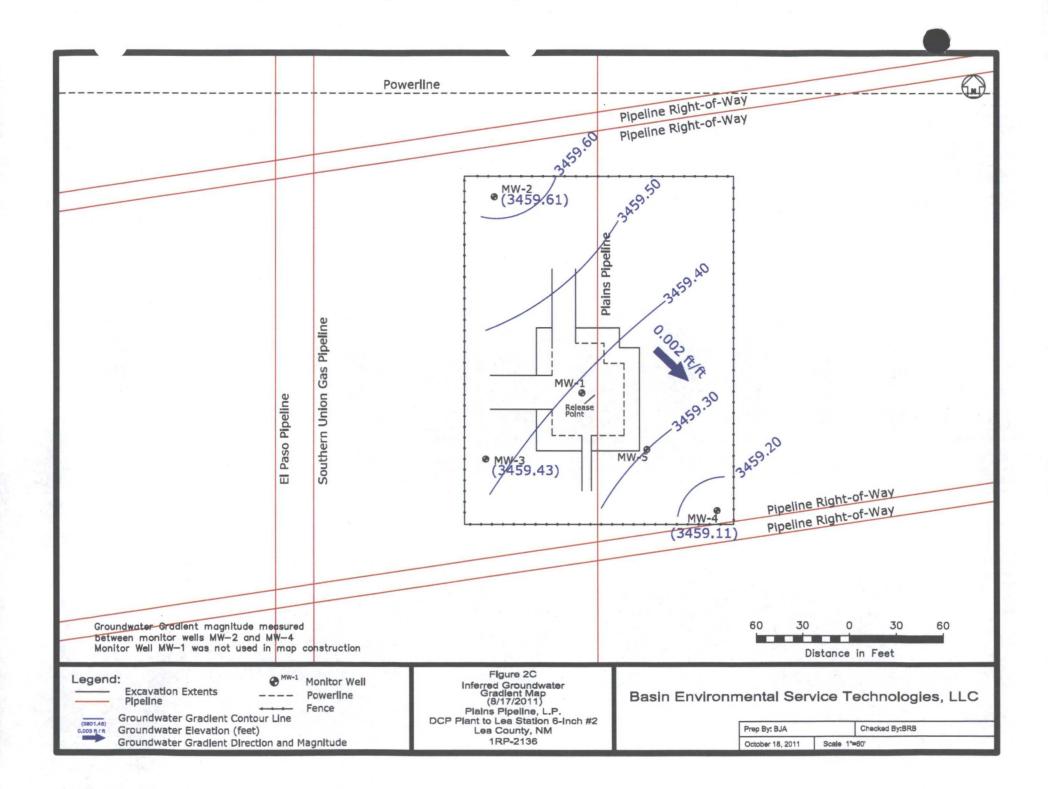
This report has been prepared for the benefit of Plains Marketing, LP. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Basin Environmental Service Technologies, LLC, and/or Plains Marketing, LP.

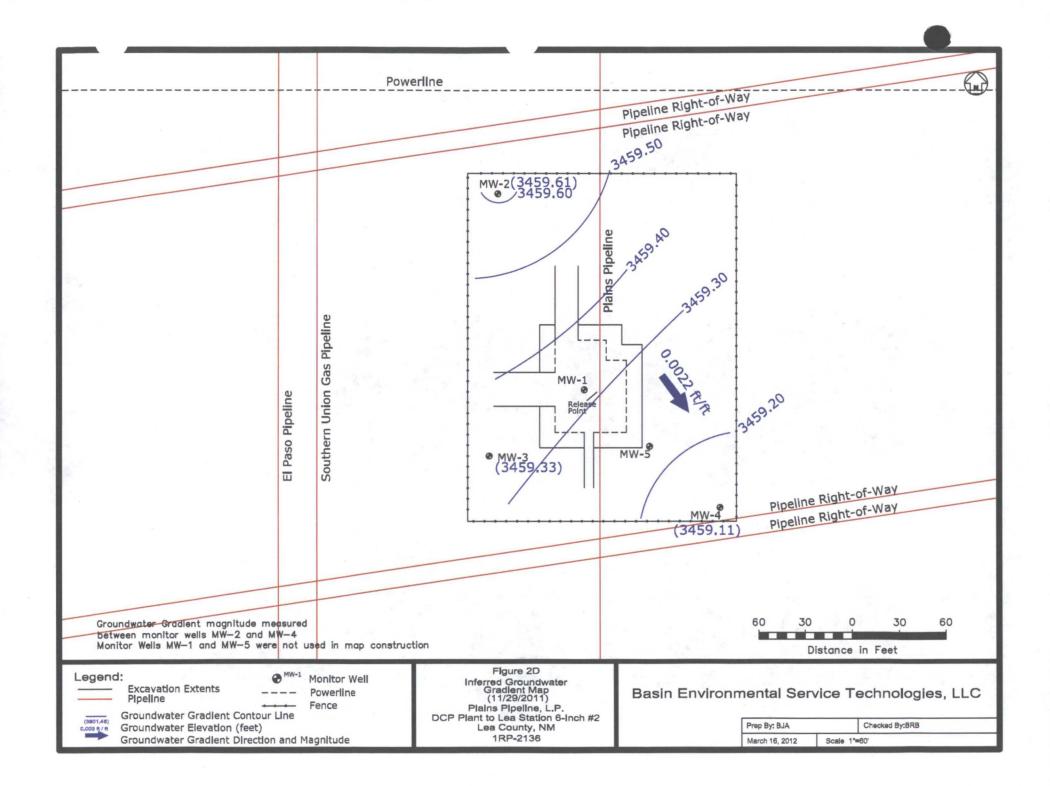
6

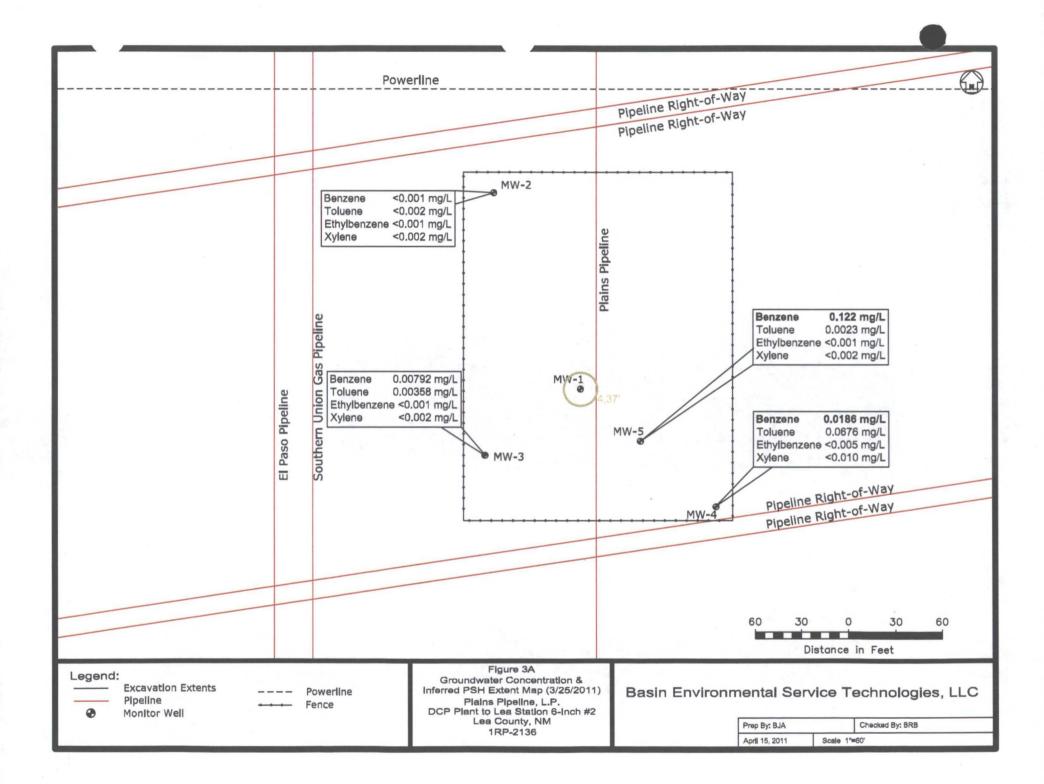

DISTRIBUTION

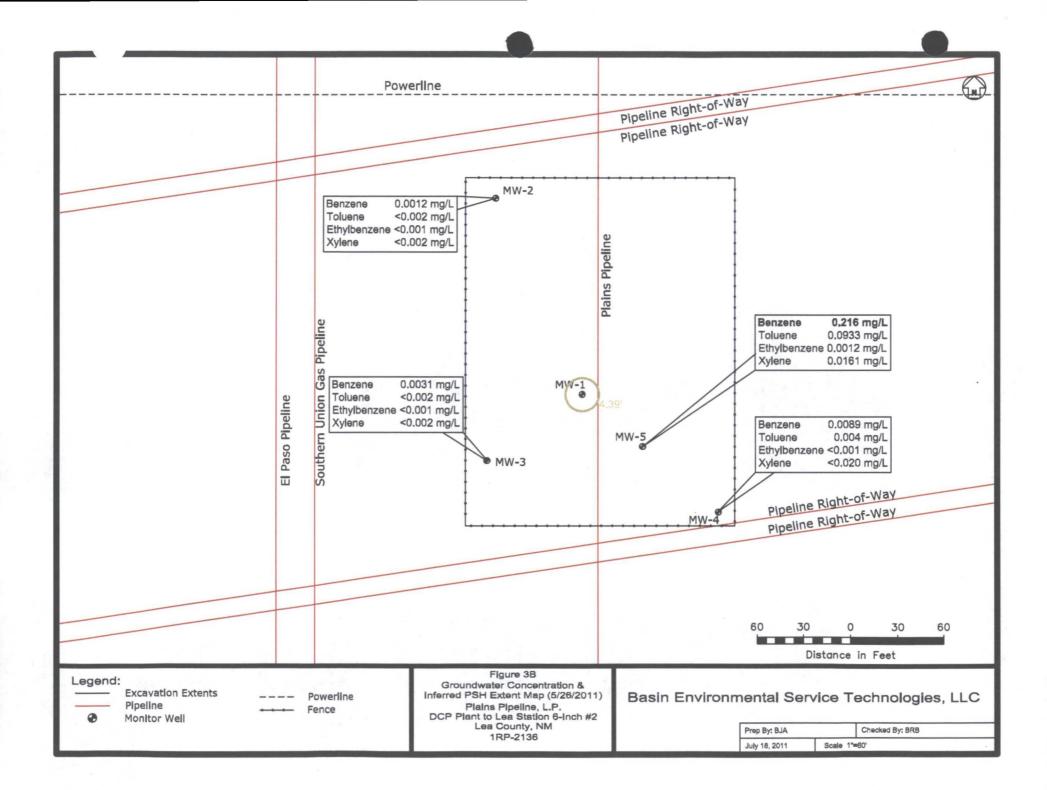

Copy 1: Edward Hansen New Mexico Energy, Minerals and Natural Resources Department **Oil Conservation Division** 1220 South St. Francis Drive Santa Fe, New Mexico 87505 edwardj.hansen@state.nm.us Copy 2: Geoff Leking New Mexico Oil Conservation Division 1625 N. French Drive Hobbs, New Mexico 88240 GeoffreyR.Leking@state.nm.us Copy 3: Jeff Dann Plains Marketing, L.P. 333 Clay Street Suite 1600 Houston, Texas 77002 jpdann@paalp.com Copy 4: Jason Henry Plains Marketing, L.P. 2530 State Highway 214 Denver City, Texas 79323 jhenry@paalp.com Copy 5: Basin Environmental Service Technologies, LLC P. O. Box 301 Lovington, New Mexico 88260

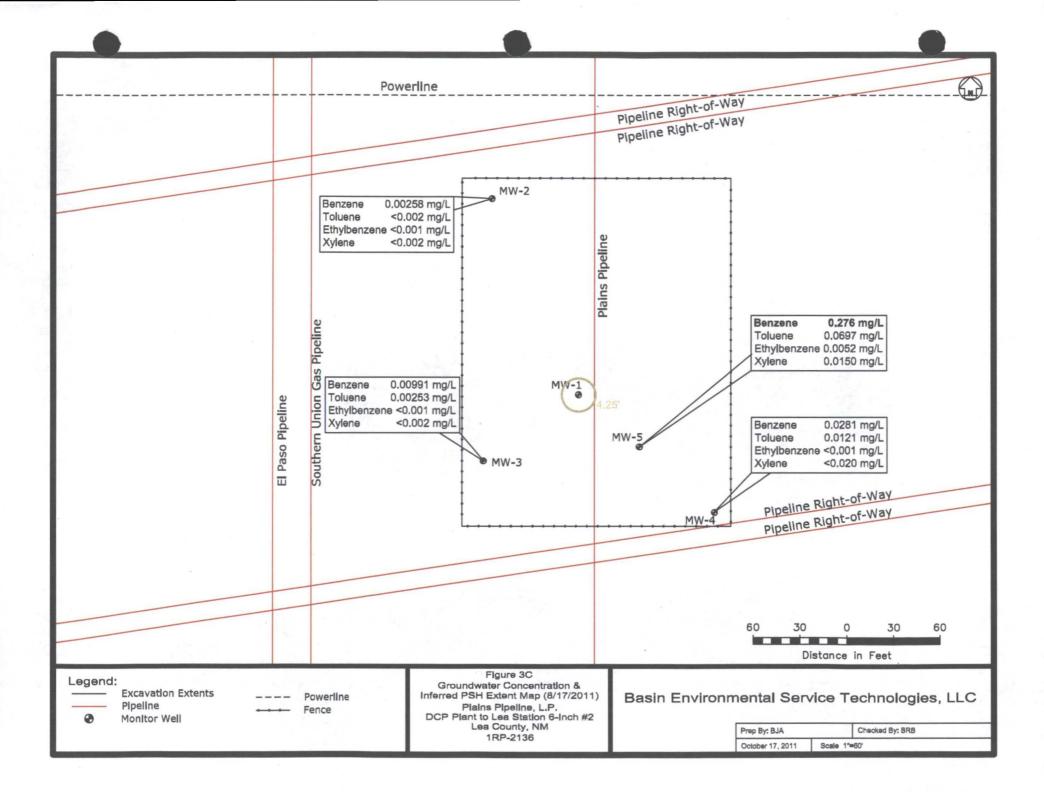

7

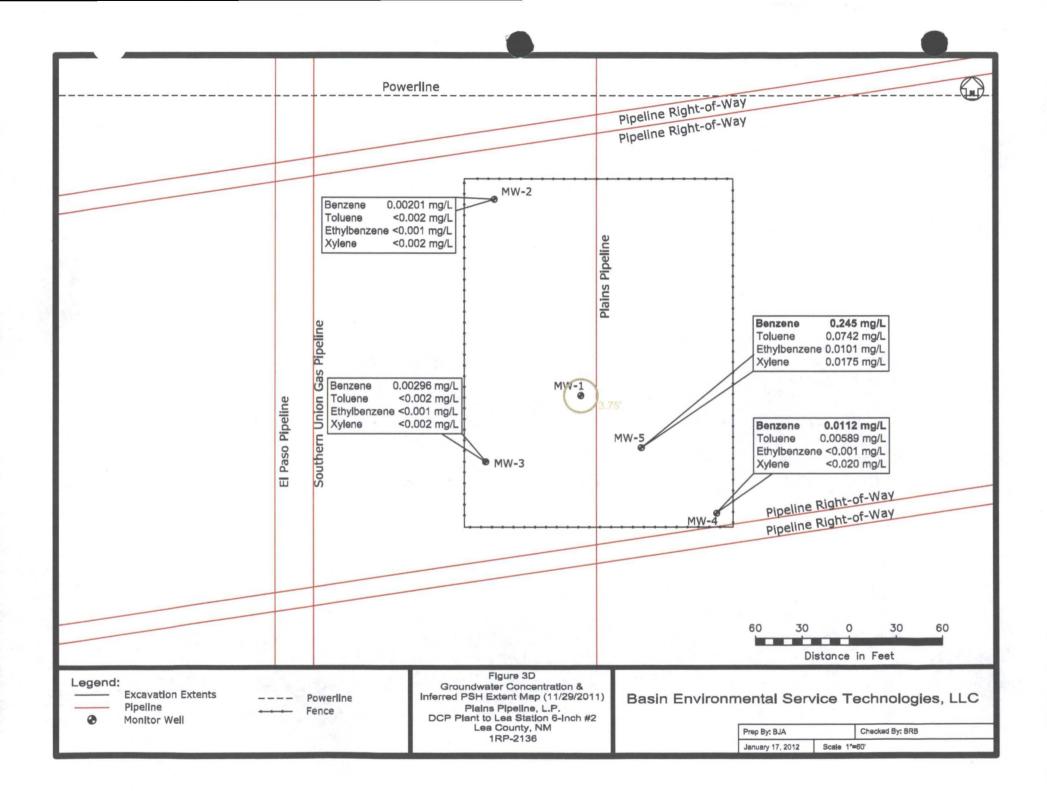

Figures


ί









· · · ·

• •

. . .

TABLE 1

2011 GROUNDWATER ELEVATION DATA

PLAINS PIPELINE, L.P. DCP PLANT TO LEA STATION 6-INCH #2 LEA COUNTY, NEW MEXICO PLAINS SRS NO: 2009-039 NMOCD REF NO: 1RP-2136

WELL NUMBER	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
MW-1	3/24/2011	3,540.25	79.50	83.87	4.37	3,460.09
	5/26/2011	3,540.25	79.55	83.96	4.41	3,460.04
	8/17/2011	3,540.25	79.60	83.85	4.25	3,460.01
	11/29/2011	3,540.25	79.70	83.65	3.95	3,459.96
and the start						
MW-2	3/24/2011	3,538.31	-	78.53	0.00	3,459.78
	5/26/2011	3,538.31	-	78.47	0.00	3,459.84
	8/17/2011	3,538.31	-	78.70	0.00	3,459.61
	11/29/2011	3,538.31	-	78.70	0.00	3,459.61
		Start Contraction		· · · ·		a an an an a
MW-3	3/24/2011	3,539.03	-	79.43	0.00	3,459.60
	5/26/2011	3,539.03	-	79.41	0.00	3,459.62
	8/17/2011	3,539.03	-	79.60	0.00	3,459.43
	11/29/2011	3,539.03	-	79.70	0.00	3,459.33
State State		Stand and Street				
MW-4	3/24/2011	3,539.66	-	80.36	0.00	3,459.30
	5/26/2011	3,539.66	-	80.31	0.00	3,459.35
	8/17/2011	3,539.66	-	80.55	0.00	3,459.11
	11/29/2011	3,539.66	-	80.55	0.00	3,459.11
			d e	• *	() () ()	Sec. 1.
MW-5	3/24/2011	-	-	80.10	0.00	-
	5/26/2011	-	-	80.05	0.00	-
	8/17/2011	-	-	80.20	0.00	· _
	11/29/2011	-	-	80.30	0.00	-
		a the second			in the house	the state of the s

TABLE 2

2011 CONCENTRATIONS OF BENZENE & BTEX IN GROUNDWATER

PLAINS PIPELINE, L.P. DCP PLANT TO LEA STATION 6-INCH #2 LEA COUNTY, NEW MEXICO PLAINS SRS NO. 2009-039 NMOCD REFERENCE NO: 1R-2136

_				METH	ODS: EPA S	W 846-8021b		
SAMPLE LOCATION	SAMPLE DATE	BENZENE (mg/L)	TOLUENE (mg/L)	ETHYL- BENZENE (mg/L)	M,P- XYLENES (mg/L)	O-XYLENES (mg/L)	TOTAL XYLENE (mg/L)	TOTAL BTEX (mg/L)
MW-2	3/25/2011	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020
	5/26/2011	0.00116	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	0.00116
	8/17/2011	0.00258	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	0.00258
	11/29/2011	0.00201	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	0.00201
							ير مو د ي ماني	
<u>MW-3</u>	3/25/2011	0.00792	0.00358	<0.0010	<0.0020	<0.0010	<0.0020	0.0115
	5/26/2011	0.00306	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	0.00306
	8/17/2011	0.00991	0.00253	<0.0010	<0.0020	<0.0010	<0.0020	0.0124
	11/29/2011	0.00296	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	0.00296
		Sec. Sec.					n an	
MW-4	3/25/2011	0.0186	0.00802	<0.0010	<0.0020	<0.0010	<0.0020	0.0266
	5/26/2011	0.00885	0.00398	<0.0010	<0.0020	<0.0010	<0.0020	0.0128
	8/17/2011	0.0281	0.0121	<0.0010	<0.0020	<0.0010	<0.0020	0.0402
	11/29/2011	0.0112	0.00589	<0.0010	<0.0020	<0.0010	<0.0020	0.0171
MW-5	3/25/2011	0.122	0.0676	<0.0050	<0.0100	<0.0050	<0.0020	0.1896
	5/26/2011	0.216	0.0933	0.00123	0.00957	0.0065	0.0161	0.327
	8/17/2011	0.276	0.0697	0.00523	0.0105	0.0045	0.015	0.366
	11/29/2011	0.245	0.0742	0.0101	0.0132	0.00425	0.0175	0.347
NMOCD CRITERIA		0.01	0.75	0.75	TOTAL XY	LENES 0.62		

CONCENTRATIONS OF RCRA & NMWQCC METALS IN GROUNDWATER PLAINS PIPELINE, L.P. DCP PLANT TO LEA STATION 6-INCH #2 LEA COUNTY, NEW MEXICO NMOCD REFERENCE NUMBER 1RP-2136

TABLE 3

							All water	concentratio	ons are repor	ted in mg/L								
					•			EF	PA SW846	-6020A, I	EPA 7470/	1						
SAMPLE LOCATION	SAMPLE DATE	Aluminum	Arsenic	Barium	Boron	Cadmium	Chromium	Cobalt	Copper	Iron	Lead	Manganese	Molybdenum	Nickel	Selenium	Silver	Zinc	Mercury
MW-5	3/25/2011	0.202	<0.010	0.0894	0.511	<0.0050	<0.0050	<0.010	<0.010	0.14	<0.0120	0.122	0.0343	<0.010	<0.010	<0.040	0.011	<0.00025
Maximum Contai from NM WQCC water standards 101.UU and 3-10	Drinking Sections 1-	5.0 mg/L	0.1 mg/L	1.0 mg/L	0.75 mg/L	0.01 mg/L	0.05 mg/L	0.05 mg/L	1.0 mg/L	1.0 mg/L	0.05 mg/L	0.2 mg/L	1.0 mg/L	0.2 mg/L	0.05 mg/L	0.05 mg/L	10 mg/L	0.002 mg/L

Page 1 of 1

CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER PLAINS PIPELINE, LP DCP PLANT TO LEA STATION 6-INCH #2 LEA COUNTY, NEW MEXICO NMOCD REFERENCE NUMBER 1R9-2136

	Acry Acry Acry Acry Acry Acry Acry Acry																	
Date Sampled	• •	Acetone	Acrylonitrile	Benzene	omobenze	ochloromethan	modichlorometha	Lom	Bromomethane	2-Butanone	MTBE	uzeu	-Butylbenze	nze	Carbon Disulfide	on Tetrachlori	oe nze	Chloroethane
3/25/2011	MW-5	<0.1	<0.05	0.122	<0.005	<0.005	<0.005	<0.005	<0.005	<0.05	<0.005	<0.005	<0.005	<0.005	<0.05	<0.005	<0.005	<0.01
Maximum Contarr NMWQCC Drinkin Sections 1-101.	g water standards			0.01 mg/L		^λ Γι =.		٩	•		I		ı	•		0.01 mg/L		

Page 1 of 4

CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER PLAINS PIPELINE, LP DCP PLANT TO LEA STATION 6-INCH #2 LEA COUNTY, NEW MEXICO NMOCD REFERENCE NUMBER 1RP-2136

		•					All wate	er concenti	ations are	in mg/L								_	•
Date Sampled	Sample Location	2-Chloroethyl vinyl ether	Chloroform	Chloromethane	2-Chlorotoluene	4-Chlorotoluene	p-Cymene(p- Isopropyltoluene)	Dibromochloromethane	1,2-Dibromo-3- chloropropane	1,2-Dibromoethane (EDB)	Dibromomethane (methylene bromide)	1,2-Dichlorobenzene	1, 3-Dichlorobenzene	1,4-Dichlorobenzene	Dichlorodifluormethane	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene
3/25/2011	MW-5	<0.005	<0.005	<0.01	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Maximum Contan NMWQCC Drinkin Sections 1-101.	g water standards	•	0.1mg/L	•		•		•		0.0001 mg/L	•	8		1.	•	0.005 mg/L	0.01 mg/L	0.005 mg/L	0.1mg/L

Page 2 of 4

CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER PLAINS PIPELINE, LP DCP PLANT TO LEA STATION 6-INCH #2 LEA COUNTY, NEW MEXICO NMOCD REFERENCE NUMBER 1RP-2136

							All water co	ncentratio	ns are in m	g/L								
Date Sampled	Sample Location	trans-1,2-Dichloroethene	1,2-Dichloropropane	1, 3-Dichloropropane	2,2-Dichloropropane	1,1-Dichloropropane	cis-1,3-Dichloropropene	trans-1,3-Dichloropropene	Ethylbenzene	Hexachlorobutadiene	2-Hexanone	lsopropylbenzene	Methylene chloride	4-Methyl-2-pentanone (MIBK)	Naphthalene	n-Propylbenzene	Styrene	1,1,1,2-Tetrachloroethane
3/25/2011	MW-5	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.05	<0.005	<0.005	<0.05	<0.01	<0.005	< 0.005	<0.005
Maximum Contam NMWQCC Drinkin Sections 1-101.	g water standards			·	T	ĸ	Ţ		0.75 mg/L		•	•	0.1mg/L		0.03 mg/L			

Page 3 of 4

CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER PLAINS PIPELINE, LP DCP PLANT TO LEA STATION 6-INCH #2 LEA COUNTY, NEW MEXICO NMOCD REFERENCE NUMBER 1RP-2136

	_				A	l water conc	entrations	are in mg/	1		•					
Date Sampled	Sample Location	1,1,2,2-Tetrachloroethane	Tetrachloroethene (PCE)	Toluene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethene (TCE)	Trichlorofluoromethane	1,2,3-Trichloropropane	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	o-Xylene	m,p-Xylene	Vinyl Chloride
3/25/2011	MW-5	<0.005	<0.005	0.0676	<0.0099	< 0.0099	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.010	<0.0020
Maximum Contaminant Levels from NMWQCC Drinking water standards Sections 1-101.UU and 3-103.A.			J	0.75 mg/L			0.06 mg/L	•	0.01 mg/ L	I		•	•	Total Xylene	0.62 mg/L	0.001 mg/L

Page 4 of 4

CONCENTRATIONS OF SEMI-VOLATILE COMPOUNDS IN GROUNDWATER
--

PLAINS PIPELINE, L.P.

TABLE 5

DCP PLANT TO LEA STATION 6-INCH #2

LEA COUNTY, NEW MEXICO

NMOCD REFERENCE NUMBER 1RP-2136

						All wat	er concentra	ations are r	eported in r	ng/L							
			•					EPA	SW846-8	270C, 35	10 ·						
SAMPLE LOCATION	SAMPLE DATE	Acenaphthene	Acenaphthylene	Anthracene	Benzo[a]anthracene	Benzo[a]pyrene	Benzo[b]fluoranthene	Benzo[g,h,i]perylene	Benzo[k]fluoranthene	Chrysene	Dibenz[a,h]anthracene	Fluoranthene	Fluorene	Indeno[1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
MW-5	3/25/2011	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
17.28° 1878.2			See Section 2 and a	مر الار مولکو او مراجع									i stati				199 1 - 1997
MW-3	12/16/2011	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005
MW-4	12/16/2011	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
会にておきる	a state a with a			2		R			1. 1				· * .	,			

Page 1 of 1

TABLE 6 CONCENTRATIONS OF ANIONS/CATIONS IN GROUNDWATER PLAINS PIPELINE, L.P. DCP PLANT TO LEA STATION 6-INCH #2 LEA COUNTY, NEW MEXICO NMOCD REFERENCE NUMBER 1RP -2136

All water concentrations are reported in mg/L

SAMPLE DATE	SAMPLE			·.	EPA	SW375.4, 32	5,3, 310, 160	.1 SW846 6010	DB			
DATE	LOCATION	Calcium	Magnesium	Potassium	Sodium	Chloride	Sulfate	Bicarbonate	Carbonate	Nitrate	Phosphate	Flouride
3/25/2011	MW-5	176	72.6	14.3	665	1,040	546	204	<4.00	3.68	7.7	62.4
Levels from Drinking wa	ontaminant NM WQCC Iter standards 101.UU and 3-			•	ı	250 mg/L	600 mg/L		•	10 mg/L		1.6 mg/L

Page 1 of 1

Appendices

· .

·

. .

.

Appendix A

Laboratory Analytical Reports

Analytical Report 411089

for

PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry

DCP Plant to Lea Station 6" #2

2009-039

01-APR-11

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-10-6-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AAL11), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330) Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370) Xenco-Boca Raton (EPA Lab Code: FL01273): Florida(E86240),South Carolina(96031001), Louisiana(04154), Georgia(917) North Carolina(444), Texas(T104704468-TX), Illinois(002295), Florida(E86349)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757), Texas(104704435-10-2), Nevada(NAC-445A), DoD(65816) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

Final 1.000

01-APR-11

Project Manager: Jason Henry PLAINS ALL AMERICAN EH&S 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: 411089 DCP Plant to Lea Station 6" #2 Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 411089. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 411089 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 411089

PLAINS ALL AMERICAN EH&S, Midland, TX

DCP Plant to Lea Station 6" #2

Sample Id	Matrix	Date Collected Sample Depth	Lab Sample Id
MW-2	W	Mar-25-11 07:25	411089-001
MW-3	W	Mar-25-11 07:30	411089-002
MW-4	W	Mar-25-11 07:50	411089-003
MW-5	W	Mar-25-11 08:05	411089-004

Final 1.000

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S

Project Name: DCP Plant to Lea Station 6" #2

Project ID:2009-039Work Order Number:411089

Report Date: 01-APR-11 Date Received: 03/25/2011

Sample receipt non conformances and Comments: None

Sample receipt Non Conformances and Comments per Sample:

None

Analytical Non Conformances and Comments:

Batch: LBA-849659 Anions by E300 E300MI

Batch 849659, Fluoride recovered below QC limits in the Matrix Spike. Samples affected are: 411089-004. The Laboratory Control Sample for Fluoride is within laboratory Control Limits

Batch: LBA-849661 Mercury by EPA 7470A SW7470A

Batch 849661, Mercury recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate.

Samples affected are: 411089-004.

The Laboratory Control Sample for Mercury is within laboratory Control Limits

Batch: LBA-849832 Alkalinity by SM2320B

Batch: LBA-849858 TCLP SVOCs by EPA 8270C SW8270C

Batch 849858, 4-Nitrophenol, Benzoic Acid, Phenol recovered above QC limits in the Matrix Spike.

Samples affected are: 411089-004.

The Laboratory Control Sample for Benzoic Acid, 4-Nitrophenol, Phenol is within laboratory Control Limits

SW8270C

Batch 849858, Pyridine recovered below QC limits in the Blank Spike Duplicate. However, analyte was recovered within QC limits in Blank Spike. Samples affected are: 411089-004.

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP Plant to Lea Station 6" #2

 Project ID:
 2009-039

 Work Order Number:
 411089

Report Date: 01-APR-11 Date Received: 03/25/2011

Batch: LBA-849979 BTEX by EPA 8021B

Batch: LBA-850035 Metals per ICP by SW846 6010B SW6010B_IC

Batch 850035, Magnesium recovered above QC limits in the Matrix Spike and Matrix Spike Duplicate. Calcium, Potassium, Sodium recovered above QC limits in the Matrix Spike Duplicate.

Samples affected are: 411089-004.

The Laboratory Control Sample for Magnesium, Calcium, Sodium, Potassium is within laboratory Control Limits

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP Plant to Lea Station 6" #2

Project ID:2009-039Work Order Number:411089

Report Date: 01-APR-11 Date Received: 03/25/2011

Batch: LBA-850041 VOAs by SW-846 8260B SW8260B

Batch 850041, MTBE recovered above QC limits in the laboratory control sample. Samples affected are: 411089-004.

SW8260B

Batch 850041, 1,1,1,2-Tetrachloroethane, 1,2,3-Trichlorobenzene, 1,2,4-Trichlorobenzene, 1,2-Dibromoethane, 2-Chlorotoluene, MTBE RPD was outside QC limits. Samples affected are: 411089-004

SW8260B

Batch 850041, Ethylbenzene, isopropylbenzene, n-Butylbenzene, tert-Butylbenzene recovered below QC limits in the Matrix Spike. 1,2,4-Trimethylbenzene, 1,3,5-Trimethylbenzene, Naphthalene, Styrene, Vinyl Chloride, m,p-Xylenes, o-Xylene, p-Cymene (p-Isopropyltoluene) recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Trichlorofluoromethane recovered above QC limits in the Matrix Spike and Matrix Spike Duplicate. 1,1,1-Trichloroethane, 1,2-Dibromo-3-Chloropropane, Bromodichloromethane, Bromoform, Carbon Tetrachloride, MTBE recovered above QC limits in the Matrix Spike Duplicate.

Samples affected are: 411089-004.

The Laboratory Control Sample for Bromodichloromethane, Carbon Tetrachloride, m,p-Xylenes, tert-Butylbenzene, Naphthalene, 1,3,5-Trimethylbenzene, 1,2,4-Trimethylbenzene, n-Butylbenzene, Ethylbenzene, o-Xylene, Trichlorofluoromethane, 1,1,1-Trichloroethane, Styrene, p-Cymene (p-Isopropyltoluene), isopropylbenzene, Vinyl Chloride, Bromoform, 1,2-Dibromo-3-Chloropropane is within laboratory Control Limits

Certificate of Analys ummary 411089

PLAINS ALL AMERIC:____H&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" #2

Project Id: 2009-039 Contact: Jason Henry Project Location: Lea County, NM

Date Received in Lab: Fri Mar-25-11 04:50 pm

Report Date: 01-APR-11

roject Location: Lea County, NM								-		D . D		
	<u> </u>									Brent Barron, II	<u></u>	<u> </u>
	Lab Id:	411089-0	001	411089-0	02	411089-0	003	411089-0				
Analysis Requested	Field Id:	MW-2		MW-3		MW-4		MW-5				
Anutysis Kequesieu	Depth:											· •
	Matrix:	WATE	R	WATE	د	WATE	R ·	WATER	ι.			
	Sampled:	Mar-25-11	07:25	Mar-25-11 (07:30	Mar-25-11 (07:50	Mar-25-11 0	8:05			
Alkalinity by SM2320B	Extracted:								•			
	Analyzed:							Mar-29-11 1	3:35			
· .	Units/RL:							mg/L	RL			
Alkalinity, Total (as CaCO3)	- L							204	4.00		·	
Alkalinity, Bicarbonate (as CaCO3)								204	4.00			
Alkalinity, Carbonate (as CaCO3)								ND	4.00			
Anions by E300	Extracted:											
	Analyzed:							Mar-28-11 1	5:15			·
	Units/RL:							mg/L	RL			
Fluoride								62.4	10.0			
Chloride								1040	25.0			
Sulfate								546	25.0			
BTEX by EPA 8021B	Extracted:	Mar-29-11	12:45	Mar-29-11	i2:45	Mar-29-11	12:45				•	
	Analyzed:	Mar-29-11	22:02	Mar-29-11 2	22:24	Mar-29-11	22:47			· ,		
	Units/RL:	mg/L	RL	mg/L	RL.	mg/L	RL			. '		
Benzene		ND	0.0010	0.00792	0.0010	0.0186	0.0010					
Toluene		ND	0.0020	0.00358	0.0020	0.00802	0.0020				•	
Ethylbenzene		ND	0.0010	ND	0.0010	ND	0.0010		•			
m_p-Xylenes		ND	0.0020	ND	0.0020	ND	0.0020					
o-Xylene		· ND	0.0010	ND	0.0010	ND	0.0010					•
Total Xylenes		ND	0.0010	ND	0.0010	ND	0.0010					
Total BTEX		ND	0.0010	0.0115	0.0010	0.0266	0.0010					
Mercury by EPA 7470A	Extracted:							Mar-29-11 0	7:45			
	Analyzed:							Mar-29-11 1	0:57			
	Units/RL:	· · ·						mg/L	RL			
Mercury								ND	0.00025			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron, II

Odessa Laboratory Manager

Page 7 of 41

Project Id: 2009-039

Project Location: Lea County, NM

Contact: Jason Henry

Certificate of Analysis Summary 411089 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" #2

Date Received in Lab: Fri Mar-25-11 04:50 pm

Report Date: 01-APR-11

Project Manager: Brent Barron, II

			1	I			
	Lab Id:	411089-001	411089-002	411089-003	411089-004		
Analysis Requested	Field Id:	MW-2	MW-3	MW-4	MW-5		
Anaiysis Kequesiea	Depth:						
	Matrix:	WATER	WATER	WATER	WATER		
·	Sampled:	Mar-25-11 07:25	Mar-25-11 07:30	Mar-25-11 07:50	Mar-25-11 08:05		
Metals per ICP by SW846 6010B	Extracted:			· · · · · · · · · · · · · · · · · · ·	Mar-31-11 07:00		
SUB: T104704295-TX	Analyzed:				Mar-31-11 13:09		
	Units/RL:				mg/L RL		
Aluminum					0.202 0.0500		
Arsenic			·		ND 0.0100		
Barium					0.0894 0.0100		·
Boron					0.511 0.100		
Cadmium					ND 0.0050		
Calcium					176 0.100		
Chromium					ND 0.0050		
Cobalt					ND 0.0100		
Copper				·	ND 0.0100		
lron					0.140 0.0300		
Lead					ND 0.0120		
Magnesium					72.6 0.0100		
Manganese					0.122 0.0100		
Molybdenum					0.0343 0.0100		•
Nickel					ND 0.0100		
Potassium					14.3 0.500		
Selenium					ND 0.0100		
Silver					ND 0.0040		
Sodium		-			665 D 2.50		×
Zinc		· · · · · · · · · · · · · · · · · · ·			0.0110 0.0100		
					1	·····	1

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results exprisesed throughout this analytical report represent the beet judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron, II

Odessa Laboratory Manager

Certificate of Analysic Summary 411089 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" #2

Project Id: 2009-039 Contact: Jason Henry Project Location: Lea County, NM

Date Received in Lab: Fri Mar-25-11 04:50 pm

Report Date: 01-APR-11

Project Manager: Brent Barron, II Lab Id: 411089-001 411089-002 411089-003 411089-004 Field Id: MŴ-5 MW-2 MW-3 MW-4 Analysis Requested Depth: Matrix: WATER WATER WATER WATER Sampled: Mar-25-11 07:25 Mar-25-11 07:30 Mar-25-11 07:50 Mar-25-11 08:05 SVOAs by EPA 8270C Extracted: Mar-29-11 14:36 SUB: T104704215-TX Analyzed: Mar-30-11 14:55 Units/RL: RL mg/L 1,2,4-Trichlorobenzene 0.0099 ND 1.2-Dichlorobenzene 0.0099 ND 1.3-Dichlorobenzene ND 0.0099 1.4-Dichlorobenzene 0.0099 ND 2.4,5-Trichlorophenol 0.0099 ND 0.0099 2,4,6-Trichlorophenol ND 2,4-Dichlorophenol 0.0099 ND 2.4-Dimethylphenol ND 0.0099 0.0197 2,4-Dinitrophenol ND 2,4-Dinitrotoluene ND 0.0099 2.6-Dinitrotoluene ND 0.0099 2-Chloronaphthalene ND 0.0099 2-Chlorophenol 0.0099 ND 2-Methylnaphthalene 0.0099 ND 2-methylphenol 0.0099 ND 2-Nitroaniline 0.0197 ND 2-Nitrophenol 0.0099 ND 3&4-Methylphenol ND 0.0099 0.0099 3.3-Dichlorobenzidine ND 3-Nitroaniline ND 0.0197 4,6-dinitro-2-methyl phenol ND 0.0099 4-Bromophenyl-phenylether ND 0.0099 4-chloro-3-methylphenol ND 0.0099 4-Chloroaniline ND 0.0197 0.0099 4-Chlorophenyl Phenyl Ether ND

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratorics assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron, II

Odessa Laboratory Manager

Page 9 of 41

Project Id: 2009-039 Contact: Jason Henry Project Location: Lea County, NM

Certificate of Analysis Summary 411089 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" #2

Date Received in Lab: Fri Mar-25-11 04:50 pm

Report Date: 01-APR-11

Project Manager: Brent Barron, II Lab Id: 411089-003 411089-004 411089-001 411089-002 Field Id: MW-2 MW-3 MW-4 MW-5 Analysis Requested Depth: WATER WATER WATER Matrix: WATER Mar-25-11 07:50 Mar-25-11 08:05 Sampled: Mar-25-11 07:25 Mar-25-11 07:30 SVOAs by EPA 8270C Mar-29-11 14:36 Extracted: SUB: T104704215-TX Mar-30-11 14:55 Analyzed: Units/RL: mg/L RL 0.0197 4-Nitroaniline ND 0.0099 4-Nitrophenol ND 0.0099 Acenaphthene ND 0.0099 ND Acenaphthylene Aniline (Phenylamine, Aminobenzene) ND 0.0197 0.0099 Anthracene ND Benzo(a)anthracene ND 0.0099 Benzo(a)pyrene ND 0.0099 Benzo(b)fluoranthene ND 0.0099 Benzo(g,h,i)pervlene 0.0099 ND 0.0099 Benzo(k)fluoranthene ND Benzoic Acid ND 0.0493 Benzyl Butyl Phthalate ND 0.0099 0.0099 bis(2-chloroethoxy) methane ND 0.0099 bis(2-chloroethyl) ether ND bis(2-chloroisopropyl) ether 0.0099 ND bis(2-ethylhexyl) phthalate 0.0099 ND Chrysene ND 0.0099 Dibenz(a,h)Anthracene ND 0.0099 Dibenzofuran ND 0.0099 **Diethyl Phthalate** ND 0.0099 Dimethyl Phthalate ND 0.0099 di-n-Butyl Phthalate 0.0099 ND di-n-Octyl Phthalate 0.0099 ND 0.0099 Fluoranthene ND

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Breňt Barron, II Odessa Laboratory Manager

Page

*4*1

Project Id: 2009-039 .

Project Location: Lea County, NM

Contact: Jason Henry

Certificate of Analys ummary 411089

PLAINS ALL AMERICI ____H&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" #2

Date Received in Lab: Fri Mar-25-11 04:50 pm

Report Date: 01-APR-11

Project Manager: Brent Barron, II Lab Id: 411089-001 411089-002 411089-003 411089-004 Field Id: MW-5 MW-2 MW-3 MW-4 Analysis Requested Depth: Matrix: WATER WATER WATER WATER Sampled: Mar-25-11 07:25 Mar-25-11 07:30 Mar-25-11 07:50 Mar-25-11 08:05 SVOAs by EPA 8270C Extracted: Mar-29-11 14:36 SUB: T104704215-TX Analyzed: Mar-30-11 14:55 Units/RL: mg/L RL 0.0099 Fluorene ND Hexachlorobenzene ND 0.0099 Hexachlorobutadiene ND 0.0099 Hexachlorocyclopentadiene 0.0099 ND Hexachloroethane ND 0.0099 Indeno(1,2,3-c,d)Pyrene ND 0.0099 Isophorone ND 0.0099 Naphthalene ND 0.0099 Nitrobenzene 0.0099 ND 0.0099 N-Nitrosodi-n-Propylamine ND N-Nitrosodiphenylamine ND 0.0099 0.0099 Pentachlorophenol ND Phenanthrene ND 0.0099 Phenol ND 0.0099 ND 0.0099 Pyrene Pyridine ND 0.0197

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron, II

Odessa Laboratory Manager

Project Id: 2009-039

Project Location: Lea County, NM

Contact: Jason Henry

Certificate of Analysis Summary 411089 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" #2

Date Received in Lab: Fri Mar-25-11 04:50 pm

Report Date: 01-APR-11

Project Manager: Brent Barron, II

1,2-Dichlorobenzene ND 0.0050 Image: Constraint of the state of the stat						Troject Manager.	<u></u>	
Analysis Requested MarbinDepth: MarbinWATER WATERWATER WATERWATER WATERWATER WATERWATER WATERWATER WATERWATER WATERWATER WATERWATER WATERWATER Mar-25-11 07:50Wat-30-11 D:-05VOAs by SW-846 8260B SUB: T104704215-TXExtracted. Analyzed. Unic/RL:Extracted. Analyzed. Unic/RL:Mar-25-11 07:50Mar-30-11 D:-05Image: Comparison of the compari		Lab Id:	411089-001	411089-002	411089-003	411089-004		
$ \begin{array}{ c c c c c c } \hline Deprint & WATER & Mar-25-11 07:00 & Mar-25-11 07$	Analysis Descreted	Field Id:	MW-2	MW-3	MW-4	MW-5		
$ \begin{array}{ c c c c c } Samplet: Sam$	Analysis Kequesiea	Depth:		:			•	
VOAs by SW-846 8260B SUB: T104704215-TX Extracted: Analyzed: Units/RL: Mar-30-11 12:047 Mar-30-11 20:47 1,1,2-Tetachloroethane ND 0.0050		Matrix:	WATER	WATER	WATER	WATER		
SUB: T104704215-TX Analyzed: Unix/AL: Mar-30-11 20:47 mg/L RL 1,1,12-Tetrachloroethane mg/L RL mg/L RL 1,1,12-Tetrachloroethane ND 0.005 1,1,2-Tetrachloroethane ND 0.005 1,1-Dichloropropane ND 0.005 1,2,3-Trichlorobenzene ND 0.005 1,2,4-Trinethylbenzene ND 0.005 1,2,2-Dichloroepropane ND 0.005		Sampled:	Mar-25-11 07:25	Mar-25-11 07:30	Mar-25-11 07:50	Mar-25-11 08:05		
SUB: T104704215-TX Analyzed: Unix/AL: Mar-30-11 20:47 mg/L RL 1,1,12-Tetrachloroethane mg/L RL mg/L RL 1,1,12-Tetrachloroethane ND 0.005 1,1,2-Tetrachloroethane ND 0.005 1,1-Dichloropropane ND 0.005 1,2,3-Trichlorobenzene ND 0.005 1,2,4-Trinethylbenzene ND 0.005 1,2,2-Dichloroepropane ND 0.005	VOAs by SW-846 8260B	Extracted:	· · · · · · · · · · · · · · · ·			Mar-30-11 13:19		·······
UnitsRL: mg/L RL 1,1,2-Tetrachloroethane ND 0.0050								
1,1,2-Tetrachloroethane ND 0.0050 Image: Constraint of the con								
N.1. N.1. <th< td=""><td>1 1 1 2 Tetrachloroethane</td><td>Uniis/KL:</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	1 1 1 2 Tetrachloroethane	Uniis/KL:						
N.1,2,2-Tetachloroethane ND 0.0050 Image: constraint of the second o								
1,1,2-Trichloroethane ND 0.0050 Image: constraint of the state of the st								
Number ND ND <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								
1,1-Dickloroethene ND 0.0050 0.0050 1,1-Dickloropropene ND 0.0050 0.0050 1,2,3-Tricklorobenzene ND 0.0050 0.0050 1,2,3-Trickloropropane ND 0.0050 0.0050 1,2,3-Tricklorobenzene ND 0.0050 0.0050 1,2,3-Tricklorobenzene ND 0.0050 0.0050 1,2,4-Tricklorobenzene ND 0.0050 0.0050 1,2,4-Tricklorobenzene ND 0.0050 0.0050 1,2,2-Dibromo-3-Chloropropane ND 0.0050 0.0050 1,2-Dibromoethane ND 0.0050 0.0050 1,2-Dicklorobenzene ND 0.0050 0.0050 1,2-Dickloropenzene ND 0.0050 0.0050 1,2-Dickloropenzen				······································				
1,1-Dichloropropene ND 0.0050 Image: constraint of the second of t		-						
1,2,3-Trichlorobenzene ND 0.0050 0.0050 1,2,3-Trichlorobenzene ND 0.0050 0.0050 1,2,4-Trinethylbenzene ND 0.0050 0.0050 1,2,2-Dibromo-3-Chloropropane ND 0.0050 0.0050 1,2-Dibromo-3-Chloropropane ND 0.0050 0.0050 1,2-Dibromo-thane ND 0.0050 0.0050 1,2-Dichlorobenzene ND 0.0050 0.0050 1,2-Dichloropropane ND 0.0050 0.0050 1,2-Dichloropenzene ND 0.0050 0.0050					· · · · · · · · · · · · · · · · · · ·			
1,2,3-Trichloropropane ND 0.0050 Image: constraint of the symbol o			····					<u></u>
1,2,4-Trichlorobenzene ND 0.0050 Image: constraint of the symbol o			·····				1	
1,2,4-Trimethylbenzene ND 0.0050 Image: Constraint of the cons								
1,2-Dibromo-3-Chloropropane ND 0.0050 Image: Chloropropane 1,2-Dibromoethane ND 0.0050 Image: Chloropropane 1,2-Dichlorobenzene ND 0.0050 Image: Chloropropane 1,2-Dichloropropane ND 0.0050 Image: Chloropropane 1,2-Dichloropropane ND 0.0050 Image: Chloropropane						ND 0.0050		
1,2-Dibromoethane ND 0.0050 Image: Mode of the state of the	-					ND 0.0050		
1,2-Dichloropropane ND 0.0050 1,2-Dichloropropane ND 0.0050	1,2-Dibromoethane					ND 0.0050)	
1,2-Dichloropropane ND 0.0050	1,2-Dichlorobenzene				· · ·	ND 0.0050		· · · · · · ·
1,2-Dichloropropane ND 0.0050	1,2-Dichloroethane	· · · · · · · · · · · · · · · · · · ·	····			ND 0.0050	1	
1.3.5.Trimethylbenzene ND 0.0050	1,2-Dichloropropane				· ·	ND 0.0050		
ND NOOD	1,3,5-Trimethylbenzene					ND 0.0050)	
1,3-Dichlorobenzene ND 0.0050	1,3-Dichlorobenzene					ND 0.0050)	
1,3-Dichloropropane ND 0.0050	1,3-Dichloropropane		· · · ·			ND 0.0050		
	1,4-Dichlorobenzene							
2,2-Dichloropropane ND 0.0050	2,2-Dichloropropane				· · ·	ND 0.0050		
	2-Chlorotoluene			•				
	4-Chlorotoluene							
	Benzene							
Bromobenzene ND 0.0050	Bromobenzene					ND 0.0050		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron, II

Odessa Laboratory Manager

Final 1.000

1

Certificate of Analys' `ummary 411089

PLAINS ALL AMERICA __H&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" #2

Date Received in Lab: Fri Mar-25-11 04:50 pm Report Date: 01-APR-11

Contact: Jason Henry **Project Location:** Lea County, NM

Project Id: 2009-039

					Project Manager:	Brent Barron, II	·
	Lab Id:	411089-001	411089-002	411089-003	411089-004		
Anglusia Degrand	Field Id:	MW-2	MW-3	MW-4	MW-5		
Analysis Requested	Depth:			• .			
	Matrix:	WATER	WATER	WATER	WATER		
· · ·	Sampled:	Mar-25-11 07:25	Mar-25-11 07:30	Mar-25-11 07:50	Mar-25-11 08:05		
VOAs by SW-846 8260B		•			· · · · · · · · · · · · · · · · · · ·		
SUB: T104704215-TX	Extracted:				Mar-30-11 13:19		
SUB. 1104/04215-1A	Analyzed:				Mar-30-11 20:47		
	Units/RL:				• mg/L RL		
Bromochloromethane				·	ND 0.0050	,	
Bromodichloromethane					ND 0.0050		
Bromoform					ND 0.0050		
Bromomethane					ND 0.0050		
Carbon Tetrachloride					ND 0.0050		
Chlorobenzene					ND 0.0050		
Chloroethane					ND 0.0100		
Chloroform .		· · · · · · · · · · · · · · · · · · ·			ND 0.0050		
Chloromethane					ND 0.0100		
cis-1,2-Dichloroethene					ND 0.0050		
cis-1,3-Dichloropropene					ND 0.0050	·	
Dibromochloromethane					ND 0.0050		
Dibromomethane					ND 0.0050		
Dichlorodifluoromethane					ND 0.0050		
Ethylbenzene					ND 0.0050		
Hexachlorobutadiene					ND 0.0050		·····
isopropylbenzene					ND 0.0050	· · · · · · · · · · · · · · · · · · ·	
m,p-Xylenes				· · · · · · · · · · · · · · · · · · ·	ND 0.0100	· · · · · · · · · · · · · · · · · · ·	•
Methylene Chloride					ND 0.0050		
MTBE		,		**	ND. 0.0050		
Naphthalene	·	,			ND 0.0100		
n-Butylbenzene			· · · · ·		ND 0.0050	<u> </u>	
n-Propylbenzene					ND 0.0050		
o-Xylene	•				ND 0.0050		
p-Cymene (p-lsopropyltoluene)					ND 0.0050		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratorics assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron, II

Odessa Laboratory Manager

Page 13 of 41

Laboratories

Project Id: 2009-039

Project Location: Lea County, NM

Contact: Jason Henry

Certificate of Analysis Summary 411089 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" #2

Date Received in Lab: Fri Mar-25-11 04:50 pm

Report Date: 01-APR-11

Project Manager: Brent Barron, II

	Lab Id:	411089-001	411089-002	411089-003	411089-004		
Aughoria Descreted	Field Id:	MW-2	MW-3	MW-4	MW-5		
Analysis Requested	Depth:						
	Matrix:	WATER	WATER	WATER	WATER		
	Sampled:	Mar-25-11 07:25	Mar-25-11 07:30	Mar-25-11 07:50	Mar-25-11 08:05		
VOAs by SW-846 8260B	Extracted:				Mar-30-11 13:19		
SUB: T104704215-TX	Analyzed:		· ·		Mar-30-11 20:47		
•	Units/RL;				mg/L RL		
Sec-Butylbenzene					ND 0.0050		
Styrene					ND 0.0050		
tert-Butylbenzene					ND 0.0050	•	
Tetrachloroethylene					ND 0.0050		
Toluene					0.0676 0.0050		
trans-1,2-dichloroethene					ND 0.0050		
trans-1,3-dichloropropene					ND 0.0050		
Trichloroethene					ND 0.0050		
Trichlorofluoromethane					ND 0.0050		
Vinyl Chloride					ND 0.0020		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratorics. XENCO Laboratorics assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

. Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron, II

Odessa Laboratory Manager

Page

-1

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.

F RPD exceeded lab control limits.

J The target analyte was positively identified below the MQL and above the SQL.

U Analyte was not detected.

- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.

K Sample analyzed outside of recommended hold time.

JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit

PQL Practical Quantitation Limit

* Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

4143 Greenbriar Dr, Stafford, Tx 77477 9701 Harry Hines Blvd, Dallas, TX 75220 5332 Blackberry Drive; San Antonio TX 78238 2505 North Falkenburg Rd, Tampa, FL 33619 5757 NW 158th St, Miami Lakes, FL 33014 12600 West I-20 East, Odessa, TX 79765 842 Cantwell Lane, Corpus Christi, TX 78408 Phone Fax (281) 240-4200 (281) 240-4280 (214) 902 0300 (214) 351-9139 (210) 509-3334 (210) 509-3335 (813) 620-2000 (813) 620-2033 (305) 823-8500 (305) 823-8555 (432) 563-1800 (432) 563-1713 (361) 884-0371 (361) 884-9116

Project Name: DCP Plant to Lea Station 6" #2

ork Orders : 411089 Lab Batch #: 849979	, Sample: 599342-1-BKS / B	Project ID: 2009-039 B/ BKS Batch: 1 Matrix: Water								
Units: mg/L	Date Analyzed: 03/29/11 19:23	3 SURROGATE RECOVERY STUDY								
втех	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
	Analytes			[D]						
1,4-Difluorobenzene		0.0305	0.0300	102	80-120					
4-Bromofluorobenzene	· .	0.0307	0.0300	102	80-120					
Lab Batch #: 849979	Sample: 599342-1-BSD / B	SD Bate	h: 1 Matrix	:Water						
Units: mg/L	Date Analyzed: 03/29/11 19:46	SU	RROGATE R	ECOVERY S	STUDY					
втех	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorobenzene		0.0305	0.0300	102	80-120					
4-Bromofluorobenzene		0.0298	0.0300	99	80-120					
Lab Batch #: 849979	Sample: 599342-1-BLK / B	LK Batc	h; ¹ Matrix	Water	I					
Units: mg/L	Date Analyzed: 03/29/11 20:54		RROGATE R		STUDY					
BTEX	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorobenzene		0.0281	0.0300	94	80-120					
4-Bromofluorobenzene		0.0284	0.0300	95	80-120	······= ···				
Lab Batch #: 849979	Sample: 411089-001 / SMP	Bate	h: ¹ Matrix	:Water						
Units: mg/L	Date Analyzed: 03/29/11 22:02		RROGATE R	ECOVERY S	STUDY					
BTEX	6 by EPA 8021B	Amount	True	Recovery	Control Limits	Flags				
	Analytes	Found [A]	Amount [B]	Recovery %R [D]	%R					
1 4-Difluorobenzene	Analytes	[A]	[B]	%R [D]						
1,4-Difluorobenzene 4-Bromofluorobenzene				%R	%R 80-120 80-120					
4-Bromofluorobenzene	-	[A] 0.0282 0.0295	[B] 0.0300 0.0300	%R [D] 94 98	80-120					
		[A] 0.0282 0.0295 Batc	[B] 0.0300 0.0300	%R [D] 94 98 ::Water	80-120 80-120					
4-Bromofluorobenzene Lab Batch #: 849979 Units: mg/L	Sample: 411089-002 / SMP Date Analyzed: 03/29/11 22:24 X by EPA 8021B	[A] 0.0282 0.0295 Batc	[B] 0.0300 0.0300 h: ! Matrix	%R D 94 98 (:Water ECOVERY S Recovery %R	80-120 80-120	Flage				
4-Bromofluorobenzene Lab Batch #: 849979 Units: mg/L	Sample: 411089-002 / SMP Date Analyzed: 03/29/11 22:24	[A] 0.0282 0.0295 Batcl SU Amount Found	[B] 0.0300 0.0300 h: 1 Matrix RROGATE R True Amount	%R D 94 98 (: Water ECOVERY S Recovery	80-120 80-120 STUDY Control Limits	Flag				

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: DCP Plant to Lea Station 6" #2

ork Orders : 411089 Lab Batch #: 849979	Sample: 411089-003 / SMP								
Units: mg/L BTE2	Date Analyzed: 03/29/11 22:47 X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1,4-Difluorobenzene		0.0287	0.0300	96	80-120	_			
4-Bromofluorobenzene		0.0293	0.0300	98	80-120				
	Sample: 410846-003 S / MS	Batc	h: 1 Matrix	:Water					
Units: mg/L	Date Analyzed: 03/30/11 01:03		RROGATE R	-	STUDY				
BTE	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R {D}	Control Limits %R	Flags			
1,4-Difluorobenzene		0.0303	0.0300	101	80-120				
4-Bromofluorobenzene	· · · · · · · · · · · · · · · · · · ·	0.0307	0.0300	102	80-120				
Lab Batch #: 849979	Sample: 410846-003 SD / M	-							
Units: mg/L	Date Analyzed: 03/30/11 01:26	SU	RROGATE R	ECOVERY	STUDY				
BTE	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R D]	Control Limits %R	Flags			
4-Difluorobenzene		0.0302	0.0300	101	80-120	<u>.</u>			
4-Bromofluorobenzene		0.0307 .	0.0300	102	80-120				
Lab Batch #: 849858	Sample: 599181-1-BLK / BI	.K Bate	h: 1 Matrix	:Water		_			
Units: mg/L	Date Analyzed: 03/29/11 16:30	SU	RROGATE R	ECOVERY S	STUDY	_			
SVOA	s by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
2-Fluorobiphenyl		0.0400	0.0500	80	43-116				
2-Fluorophenol		0.0346	0.0500	69	21-100				
Nitrobenzene-d5		0.0418	0.0500	84	35-114				
Phenol-d6		0.0252	0.0500	50	10-94				
Terphenyl-D14		0.0426	0.0500	. 85	33-141				
2,4,6-Tribromophenol	· · · · · · · · · · · · · · · · · · ·	0.0372	0.0500	74	10-123	_			

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / B

"results are based on MDL and validated for QC purposes.

Project Name: DCP Plant to Lea Station 6" #2

ork Orders : 411089 Lab Batch #: 849858	, Sample: 599181-1-BKS / B		n: 1 Matrix			
Units: mg/L	Date Analyzed: 03/29/11 16:54	SUI	RROGATE R	ECOVERY S	STUDY	
SVOA	s by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Fluorobiphenyl		0.0421	0.0500	84	43-116	
2-Fluorophenol	·	0.0369	0.0500	74	21-100	
Nitrobenzene-d5	· · · · · · · · · · · · · · · · · · ·	0.0440	0.0500	88	35-114	
Phenol-d6		0.0297	0.0500	59	10-94	·
Terphenyl-D14	· .	0.0453	0.0500	91	33-141	
2,4,6-Tribromophenol		0.0423	0.0500	85	10-123	
Lab Batch #: 849858	Sample: 599181-1-BSD / B	SD Batch	n: 1 Matrix	:Water		
Units: mg/L Date Analyzed: 03/29/11 17:18 SURROGATE RECOVERY STUDY						
SVOA	s by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Fluorobiphenyl		0.0403	0.0500	81	43-116	
2-Fluorophenol		0.0357	0.0500	71	21-100	. <u> </u>
Nitrobenzene-d5		0.0430	0.0500	86	35-114	
Phenol-d6		0.0299	0.0500	60	10-94	
Terphenyl-D14	· · · · · · · · · · · · · · · · · · ·	0.0430	0.0500	86	, 33-141	•
2,4,6-Tribromophenol		0.0402	0.0500	80	10-123	
Lab Batch #: 849858	Sample: 410972-001 S / MS			-	· · · · · · · · · ·	
Units: mg/L	Date Analyzed: 03/30/11 01:57	SUI	RROGATE R	ECOVERY S	STUDY	
SVOA	s by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Fluorobiphenyl		0.234	0.250	94	43-116	
2-Fluorophenol		0.212	0.250	. 85	21-100	•
Nitrobenzene-d5		0.233	0.250	93	35-114	
Phenol-d6	· · · · · · · · · · · · · · · · · · ·	0.206	0.250	82	10-94	
Terphenyl-D14		0.242	0.250	97	33-141	
2,4,6-Tribromophenol		0.240	0.250	96	10-123	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: DCP Plant to Lea Station 6" #2

)rk Orders : 411089 Lab Batch #: 849858 Units: mg/L	, Sample: 411089-004 / SMP Date Analyzed: 03/30/11 14:55	Project ID: 2009-039 MP Batch: 1 Matrix: Water SURROGATE RECOVERY STUDY							
SVOA	s by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
2-Fluorobiphenyl	· · · · ·	0.0407	0.0493	83	43-116				
2-Fluorophenol		0.0203	0.0493	41	21-100	•			
Nitrobenzene-d5		0.0412	0.0493	84	35-114				
Phenol-d6		0.0113	0.0493	23	10-94				
Terphenyl-D14		0.0439	0.0493	89 ·	33-141				
2,4,6-Tribromophenol		0.0379	0.0493	77	10-123				
Lab Batch #: 850041	Sample: 599371-1-BKS/BK	LS Bate	h: 1 Matrix	:Water					
Units: mg/L	Date Analyzed: 03/30/11 14:23	SU	RROGATE R	ECOVERY	STUDY				
VOAs	by SW-846 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
4-Bromofluorobenzene		0.0482	0.0500	96	74-124				
Dibromofluoromethane		0.0527	0.0500	105	75-131				
1,2-Dichloroethane-D4	· · · ·	0.0530	0.0500	106	63-144				
Toluene-D8		0.0534	0.0500	107	80-117				
.ab Batch #: 850041	Sample: 599371-1-BLK / BL	.K Batc	h: ¹ Matrix	:Water					
Units: mg/L	Date Analyzed: 03/30/11 15:18	SU	RROGATE R	ECOVERY S	STUDY				
VOAs	by SW-846 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
4-Bromofluorobenzene		0.0486	0.0500	97	74-124				
Dibromofluoromethane		0.0602	0.0500	120	75-131				
I,2-Dichloroethane-D4		0.0572	0.0500	114	63-144				
			1	4	L				

* Surrogate outside of Laboratory QC limits
** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

" results are based on MDL and validated for QC purposes.

Project Name: DCP Plant to Lea Station 6" #2

Vork Orders : 411089 Lab Batch #: 850041	, Sample: 411082-008 S / MS	S Bato	-	D: 2009-039 Water		<i>.</i>
Units: mg/L	Date Analyzed: 03/30/11 16:12	SU	IRROGATE R	ECOVERY S	STUDY	
VOAs	by SW-846 8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
4-Bromofluorobenzene		0.0473	0.0500	. 95	74-124	
Dibromofluoromethane		0.0548	0.0500	110	75-131	
1,2-Dichloroethane-D4		0.0549	0.0500	- 110	63-144	· ·
Tóluene-D8		0.0545	0.0500	109	80-117	
Lab Batch #: 850041	Sample: 411082-008 SD / M	ASD Bate	ch: 1 Matrix	Water		
Units: mg/L	Date Analyzed: 03/30/11 16:40	SL	RROGATE R	ECOVERY S	STUDY	
VOAs	by SW-846 8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
· ·	Analytes			[D]		
4-Bromofluorobenzene		0.0453	0.0500	91	74-124	
Dibromofluoromethane		0.0552	0.0500 -	110	75-131	
1,2-Dichloroethane-D4		0.0563	0.0500	113	63-144	
Toluene-D8	· · · · · · · · · · · · · · · · · · ·	0.0509	0.0500	102	80-117	
Lab Batch #: 850041	Sample: 411089-004 / SMP	Bato	:h: ¹ Matrix	Water		
Units: mg/L	Date Analyzed: 03/30/11 20:47	SU	RROGATE R	ECOVERY S	STUDY	
VOAs	by SW-846 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene		0.0503	0.0500	101	74-124	
Dibromofluoromethane	· · · · · · · · · · · · · · · · · · ·	0.0638	0.0500	128	75-131	
1,2-Dichloroethane-D4		0.0639	0.0500	128 -	63-144	
Toluene-D8	· · · · · · · · · · · · · · · · · · ·	0.0481	0.0500	. 96	80-117	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.

Project Name: DCP Plant to Lea Station 6" #2

work Order #: 411089		Pr	oject ID:		. 2	.009-039
Lab Batch #: 850041	Sample: 599371	-1-BKS	Matrix:	Water		
Date Analyzed: 03/30/2011	Date Prepared: 03/30/2	011	Analyst:			
Reporting Units: mg/L	Batch #: 1		BLANK SPI	KE REC	OVERY	STUDY
VOAs by SW-846 8260B Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
1,1,1,2-Tetrachloroethane	<0.00500	0.0500	0.0516	<u>103</u>	75-125	
1,1,1-Trichloroethane	<0.00500	0.0500	0.0565	113	75-125	
1,1,2,2-Tetrachloroethane	<0.00500	0.0500	0.0511	102	50-130	
1,1,2-Trichloroethane	<0.00500	0.0500	0.0567	113	75-127	1
1,1-Dichloroethane	. <0.00500	0.0500	0.0556	111	60-130	•
1,1-Dichloroethene	<0.00500	0.0500	0.0506	101	59-172	1
1,1-Dichloropropene	<0.00500	0.0500	0.0490	98	75-125	
1,2,3-Trichlorobenzene	<0.00500	0.0500	0.0526	105	75-137	
1,2,3-Trichloropropane	<0.00500	0.0500	0.0570	114	75-125	
1,2,4-Trichlorobenzene	<0.00500	0.0500	0.0489	98	75-135	
1,2,4-Trimethylbenzene	<0.00500	0.0500	· 0.0477	95	75-125	
1,2-Dibromo-3-Chloropropane	< 0.00500	0.0500	0.0585	117	59-125	
1,2-Dibromoethane	<0.00500	0.0500	0.0522	104	73-125	
Dichlorobenzene	<0.00500	0.0500	0.0496	99	75-125	
Dichloroethane	<0.00500	0.0500	0.0574	115	68-127	
1,2-Dichloropropane	<0.00500	0.0500	0.0505	101	74-125	
1,3,5-Trimethylbenzene	<0.00500	0.0500	0.0539	108	70-125	
1,3-Dichlorobenzene	<0.00500	0.0500	0.0500	100	75-125	
1,3-Dichloropropane	<0.00500	0.0500	0.0560	112	75-125	
1,4-Dichlorobenzene	<0.00500	0.0500	0.0495	99	75-125	
2,2-Dichloropropane	<0.00500	0.0500	0.0547	109	60-140	
2-Chlorotoluene	<0.00500	0.0500	0.0529	106	73-125	
4-Chlorotoluene	<0.00500	0.0500	0.0511	102	74-125	
Benzene	<0.00500	0.0500	0.0517	103	66-142	
Bromobenzene	<0.00500	0.0500	0.0504	101	60-130	·
Bromochloromethane	<0.00500	0.0500	0.0509	102	73-125	
Bromodichloromethane	<0.00500	0.0500	0.0596	119	75-125	
Bromoform	<0.00500	0.0500	0.0547	109	75-125	
Bromomethane	<0.00500	0.0500	0.0515	103	70-130	
Carbon Tetrachloride	<0.00500	0.0500	0.0565	113	62-125	
Chlorobenzene	<0.00500	0.0500	0.0488	98	60-133	
Chloroethane	<0.0100	0.0500	0.0562	112	70-130	
Chloroform	<0.00500	0.0500	0.0535	107	74-125	

Blank Spike Recovery [D] = 100*[C]/[B] All results are based on MDL and validated for QC purposes.

Below Reporting Limit

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 411089		Project ID:			2009-039		
Lab Batch #: 850041 Date Analyzed: 03/30/2011 Reporting Units: mg/L	Sample: 599371- Date Prépared: 03/30/20 Batch #: 1)11	Matrix: Analyst: BLANK SPI	CYE	COVERY STUDY		
VOAs by SW-846 8260B Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result {C}	Blank Spike %R [D]	Control Limits · %R	Flags	
Chloromethane	<0.0100	0.0500	0.0560	112	70-130		
cis-1,2-Dichloroethene	<0.00500	0.0500	0.0508	102	60-130		
cis-1,3-Dichloropropene	<0.00500	0.0500	0.0484	97	60-140		
Dibromochloromethane	<0.00500	0.0500	0.0539	. 108	60-130		
Dibromomethane	<0.00500	0.0500	0.0537	107	69-127		
Dichlorodifluoromethane	<0.00500	0.0500	0.0518	104	. 70-130		
Ethylbenzene	<0.00500	0.0500	0.0514	103	75-125		
Hexachlorobutadiene	<0.00500	0.0500	0.0489	98	75-125		
isopropylbenzene	< 0.00500	0.0500	0.0470	94	75-125		
m,p-Xylenes	<0.0100	0.100	0.108	108	75-125		
Methylene Chloride	<0.00500	0.0500	0.0524	105	75-125		
MTBE	<0.00500	0.0500	0.0653	131	75-125	н	
Naphthalene	< 0.0100	0.0500	0.0557	111	65-135		
n-Butylbenzene	<0.00500	0.0500	0.0506	101	75-125		
n-Propylbenzene	<0.00500	0.0500	0.0515	103	75-125		
o-Xylene	< 0.00500	0.0500	0.0498	100	75-125	· .	
p-Cymene (p-lsopropyltoluene)	<0.00500	0.0500	0.0478	96	75-125		
Sec-Butylbenzene	<0.00500	0.0500	0.0533	107	75-125		
Styrene	<0.00500	0.0500	0.0476	. 9.5	60-130		
tert-Butylbenzene	<0.00500	0.0500	0.0466	93	75-125		
Tetrachloroethylene	<0.00500	0.0500	0.0483	97	60-130		
Toluene	<0.00500	0.0500	0.0539	108	59-139		
trans-1,2-dichloroethene	<0.00500	0.0500	0.0509	102	60-130		
trans-1,3-dichloropropene	<0.00500	0.0500	0.0553	111	66-125		
Trichloroethene	<0.00500	0.0500	0.0494	99	62-137		
Trichlorofluoromethane	<0.00500	0.0500	0.0601	120	67-125		
Vinyl Chloride	<0.00200	0.0500	0.0404	81	75-125		

Blank Spike Recovery [D] = 100*[C]/[B] All results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

BS / BSD Recoveries

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 411089							Pro	ject ID: 2	2009-039		
Analyst: ALA	Da	ate Prepar	ed: 03/29/201	1				•	3/29/2011		
Lab Batch ID: 849832 Sample: 849832-1-	BKS	Batcl	h #: 1					Matrix: \	Water		
Units: mg/L		BLAN	K/BLANK S	SPIKE / E	BLANK S	PIKE DUPI	LICATE	RECOVI	ERY STUD	Y	
Alkalinity by SM2320B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Alkalinity, Total (as CaCO3)	<4.00	250	260	104	250	260	104	0	80-120	20	
Alkalinity, Bicarbonate (as CaCO3)	<4.00	250	260	104	250	260	104	0	80-117	20	
Alkalinity, Carbonate (as CaCO3)	<4.00	250	260	104	250	260	104	0	80-120	20	
Analyst: ASA	Da	ate Prepar	ed: 03/29/201	1			Date A	nalyzed: (3/29/2011		
Analyst: ASA Lab Batch ID: 849979 Sample: 599342-1-		-	ed: 03/29/201					nalyzed: (Matrix: \			
•		Batcl			BLANK S	PIKE DUPI		Matrix: \	Water	OY _	
Lab Batch ID: 849979 Sample: 599342-1-		Batcl	n#: 1		BLANK S Spike Added [E]	PIKE DUPI Blank Spike Duplicate Result [F]		Matrix: \	Water	Control Limits %RPD	Flag
Lab Batch ID: 849979 Sample: 599342-1- Units: mg/L BTEX by EPA 8021B	BKS Blank Sample Result	Batcl BLAN Spiké Added	1 #: 1 K /BLANK S Blank Spike Result	SPIKE / E Blank Spike %R	Spike Added	Blank Spike Duplicate	LICATE I Bik. Spk Dup. %R	Matrix: \ RECOVE	Water CRY STUD Control Limits	Control Limits	Flag
Lab Batch ID: 849979 Sample: 599342-1- Units: mg/L BTEX by EPA 8021B Analytes	BKS Blank Sample Result [A]	Batcl BLAN Spiké Added [B]	n #: 1 K/BLANK S Blank Spike Result [C]	SPIKE / E Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	LICATE Bik. Spk Dup. %R [G]	Matrix: \ RECOVE RPD %	Vater ERY STUD Control Limits %R	Control Limits %RPD	Flag
Lab Batch ID: 849979 Sample: 599342-1- Units: mg/L BTEX by EPA 8021B Analytes Benzene	BKS Blank Sample Result [A] <0.00100	Batcl BLAN Spiké Added [B] 0.100	n #: 1 K/BLANK S Blank Spike Result [C] 0.116	Blank Spike %R [D] 116	Spike Added [E] 0.100	Blank Spike Duplicate Result [F] 0.113	Bik. Spk Dup. %R [G]	Matrix: N RECOVE RPD % 3	Water CRY STUD Control Limits %R 70-125	Control Limits %RPD 25	Flag
Lab Batch ID: 849979 Sample: 599342-1- Units: mg/L BTEX by EPA 8021B Analytes Benzene Toluene Toluene	BKS Blank Sample Result [A]										

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 411089		Project ID: 2009-039 Date Prepared: 03/28/2011 Date Analyzed: 03/28/2011										
Analyst: LATCOR Lab Batch ID: 849659	Sample: 849659-1-B			ea: 03/28/201					Matrix: V			
Units: mg/L	Sumple 047037-1-1	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY								Y		
Anions by Analytes	E300	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Fluoride		<0.200	2.00	2.18	109	2.00	2.25	113	3	80-120	20	
Chloride		<0.500	10.0	10.2	102	10.0	10.5	105	3	80-120	20	
Sulfate		<0.500	10.0	10.3	103	10.0	10.6	106	3	80-120	20	
Analyst: LATCOR		Da	ate Prepar	ed: 03/29/201	11			Date A	nalyzed: (03/29/2011		
Lab Batch ID: 849661	Sample: 599146-1-B	KS	Batc	h #: 1					Matrix: \	Water		
Units: mg/L			BLAN	K/BLANK S	SPIKĘ / I	BLANK S	PIKE DUP	LICATE	RECOVI	ERY STUD	γ	
Mercury by El	PA 7470A	Blank Sample Result . [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Biank Spike Duplicate Result [F]	Bik. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Mercury		<0.000250	0.00100	0.00102	102	0.00100	0.00104	104	2	75-125	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

CARDINE BUILDINGS, SAV	- 10 Mar 10 Mar 10	A MARINE CATALORIZADA

BS / **BS** .ecoveries

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 411089 Analyst: DAT	Da	ate Prepar	ed: 03/31/201	1				ject ID: 2 nalyzed: 0	2009-039 3/31/2011		٠
Lab Batch ID: 850035 Sample: 599312-1-B	KS	Batel	n #: 1					Matrix: \	Vater		
Units: mg/L		BLAN	K /BLANK S	PIKE / E	BLANK S	PIKE DUPI	ICATE I	RECOVE	ERY STUD	Y	
Metals per ICP by SW846 6010B Analytes	Blank Sample Result [A]	Spike Added [Bj	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Aluminum	<0.0500	1.00	1.11	111	1.00	1.12	112	1	85-115	20	
Arsenic	<0.0100	1.00	1.09	109	1.00	1.10	110	1	85-115	20	
Barium	<0.0100	1.00	0.992	99 .	1.00	0.983	98	1	85-115	• 20	
Boron	<0.100	1.00	1.02	102	1.00	1.04	104	2	85-115	20 .	
Cadmium	<0.00500	1.00	1.12	112	1.00	Ĩ.13	113	- 1	85-115	20	
Calcium	<0.100	1.00	1.11	111	. 1.00	1.13	113	2	85-115	20	
Chromium	<0.00500	1.00	1.10	110	1.00	1.10	110	0	85-115	20	
Cobalt	<0.0100	1.00	1.12	112	1.00	1.13	113	1	85-115	20	
Copper	<0.0100	1.00 -	1.06	106	1.00	1.07	107	1	85-115	20	
lron	<0.0300	1.00	1.15	115	1.00	1.09	109	5	85-115	20	
Lead	<0.0120	1.00	1.12	112	1.00	. 1.12	112	0	85-115	20	
Magnesium	<0.0100	1.00	1.11	111	1.00	1.12	112	1	85-115	20	
Manganese	<0.0100	1.00	. 1.00	100	1.00	0.970	97	3	85-115	20	
Molybdenum	<0.0100	1.00	1.07	107	1.00	1.08	108	1	85-115	20	
Nickel	<0.0100	1.00	1.12	112	1.00	1.13	113	1	85-115	20	
Potassium	<0.500	10.0	9.39	94	10.0	9.48	95	1	85-115	20 ·	
Selenium	<0.0100	1.00	1.10	110	1.00	1.11	111	1	85-115	20	
Silver	<0.00400	1.00	1.05	105	1.00	1.05	105	• 0	85-115	20	
Sodium	<0.500	11.0	11.1	101	11.0	11.1	101 ·	0	85-115	20	· · ·
Zinc	<0.0100	1.00	1.09	109	1.00	1.10	110	. 1	85-115	20	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 411089 Analyst: ZHO	D	ate Prepar	ed: 03/29/201	11			Date A	nalyzed: (2009-039)3/29/2011		
Lab Batch ID: 849858	Sample: 599181-1-BKS		li #: 1					Matrix: `			
Units: mg/L		BLAN	K/BLANK S	SPIKE / I	BLANK S	PIKE DUPI	LICATE	RECOVI	ERY STUD)Y	
SVOAs by EPA 82	70C Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	·								56104		
1,2,4-Trichlorobenzene	<0.0100	0.0500	0.0466	93	0.0500	0.0444	89	5	56-104	25	
1,2-Dichlorobenzene	<0.0100	0.0500	0.0484	97	0.0500	0.0457	91	6	53-106	25	ļ,
1,3-Dichlorobenzene	<0.0100	0.0500	0.0464	93	0.0500	0.0440	88	5	52-105	25	ļ
1,4-Dichlorobenzene	<0.0100	0.0500	0.0468	94	0.0500	0.0444	89	5	54-105	25	<u> </u>
2,4,5-Trichlorophenol	<0.0100	0.0500	0.0474	95	0.0500	0.0441	88	7	55-114	25	
2,4,6-Trichlorophenol	<0.0100	0.0500	0.0496	99	0.0500	0.0467	93	6	57-113	25	
2,4-Dichlorophenol	<0.0100	0.0500	0.0480	96	0.0500	0.0460	92	4	60-110	25	
2,4-Dimethylphenol	<0.0100	0.0500	0.0502	100	0.0500	0.0481	96	4	50-108	25	
2,4-Dinitrophenol	, <0.0200	0.0500	0.0451	90.	0.0500	0.0437	87	3	52-111	25	
2,4-Dinitrotoluene	<0.0100	0.0500	0.0516	103	0.0500	0.0488	98	6	60-116	25	,
2,6-Dinitrotoluene	<0.0100	0.0500	0.0491	98	0.0500	0.0468	94	5	60-115	25	
2-Chloronaphthalene	<0.0100	0.0500	0.0430	86	0.0500	0.0409	82	5	58-105	25	
2-Chlorophenol	< 0.0100	0.0500	0.0491	98 ·	0.0500	0.0463	93	6	58-106	25	
2-Methylnaphthalene	<0.0100	0.0500	0.0490	98	·0.0500	0.0471	94	4	57-106	25	
2-methylphenol	<0.0100	0.0500	0.0479	96	0.0500	0.0451	90	6	52-106	25	-
2-Nitroaniline	<0.0200	0.0500	0.0558	112	0.0500	0.0519	104	7	55-120	25	
2-Nitrophenol	<0.0100	0.0500	0.0475	95	0.0500	0.0465	93	2	57-105	25	·
3&4-Methylphenol	<0.0100	0.0500	0.0478	96	0.0500	0.0454	91	5	23-140	25	<u> </u>
3,3-Dichlorobenzidine	<0.0100	0.0500	0.0578	116	0.0500	0.0545	109	6	36-123	25	
3-Nitroaniline	<0.0200	0.0500	0.0529	106	0.0500	0.0498	100	6	49-120	25	

Relative Percent Difference RPD = 200*[(C-F)/(C+F)]Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

.1

BS / BS. .ecoveries

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 411089

Analyst: ZHO

· · ·

Date Prepared: 03/29/2011

Project ID: 2009-039 Date Analyzed: 03/29/2011 Matrix: Water

Lab Batch ID: 849858

9858 Sample: 599181-1-BKS

Batch #: 1

Units: mg/L

SVOAs by EPA 8270C Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
4,6-dinitro-2-methyl phenol	<0.0100	0.0500	0.0482	96	0.0500	0.0464	93	4	57-119	25	
21											
4-Bromophenyl-phenylether	<0.0100	0.0500	0.0481	96	0.0500	0.0454	91	6	58-112	25	
4-chloro-3-methylphenol	<0.0100	0.0500	0.0502	100	0.0500	0.0486	97	3	58-116	25	
4-Chloroaniline	<0.0200	0.0500	0.0508	102	0.0500	0.0483	97	5	2-123	25	
4-Chlorophenyl Phenyl Ether	<0.0100	0.0500	0.0482	96	0.0500	0.0454	91	6	59-109	25	
4-Nitroaniline	<0.0200	0.0500	0.0538	108	0.0500	0.0500	100	7	52-118	25	
4-Nitrophenol	<0.0100	0.0500	0.0432	86	0.0500	0.0431	86	0	18-104	25	
Acenaphthene	<0.0100	0.0500	0.0500	100	0.0500	0.0467	93	7	54-114	25	
Acenaphthylene	<0.0100	0.0500	0.0503	101	0.0500	0.0476	95	6	53-113	25	
Aniline (Phenylamine, Aminobenzene)	<0.0200	0.0500	0.0441	88	0.0500	0.0390	78	12	35-104	25	
Anthracene	<0.0100	0.0500	0.0519	104	0.0500	0.0494	. 99	5	56-116	25	
Benzo(a)anthracene	<0.0100	0.0500	0.0503	101	0.0500	0.0482	96	4	59-116	25	
Benzo(a)pyrene	<0.0100	0.0500	0.0546	109	0.0500	0.0514	103	6	58-118	25	
Benzo(b)fluoranthene	<0.0100	0.0500	0.0559	112	0.0500	0.0510	102	9	54-123	25	
Benzo(g,h,i)perylene	<0.0100	0.0500	0.0503	101	0.0500	0.0477	95	5	47-129	25	
Benzo(k)fluoranthene	< 0.0100	0.0500	0.0510	102	0.0500	0.0493	99	3	52-122	25	
Benzoic Acid	<0.0500	0.150	0.146	97	0.150	0.152	101	4	4-113	25	
Benzyl Butyl Phthalate	<0.0100	0.0500	0.0550	110	0.0500	0.0519	104	6	57-122	25	
bis(2-chloroethoxy) methane	<0.0100	0.0500	0.0497	99	0.0500	0.0474	95	5	53-112	25	
bis(2-chloroethyl) ether	<0.0100	0.0500	0.0502	100	0.0500	0.0476	95	5	57-108	25	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 411089 Analyst: ZHO	D	ate Prepar	ed: 03/29/20	11		Project ID: 2009-039 Date Analyzed: 03/29/2011						
Lab Batch ID: 849858 Sample: 599	0181-1-BKS	Batel	1#: 1					Matrix: `	Water			
Units: mg/L												
SVOAs by EPA 8270C Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added E	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag	
bis(2-chloroisopropyl) ether	<0.0100	0.0500	0.0485	97	0.0500	0.0462	92	5	54-111	25		
bis(2-ethylhexyl) phthalate	<0.0100	0.0500	0.0557	111	0.0500	0.0535	107	4	59-119	25	<u> </u>	
Chrysene	<0.0100	0.0500	0.0519	104	0.0500	0.0497	99	4	58-116	25	-	
Dibenz(a,h)Anthracene	<0.0100	0.0500	0.0558	112	0.0500	0.0527	105	6	46-131	25	-	
Dibenzofuran	< 0.0100	0.0500	0.0475	95	0.0500	0.0448	90	6	56-111	25	<u> </u>	
Diethyl Phthalate	< 0.0100	0.0500	0.0522	104	0.0500	0.0489	98	7	62-114	25	<u> </u>	
Dimethyl Phthalate	<0.0100	0.0500	0.0522	104	0.0500	0.0491	98	6	59-113	25	· .	
di-n-Butyl Phthalate	<0.0100	0.0500	- 0.0555	111	0.0500	0.0528	106	5	60-118	25	-	
di-n-Octyl Phthalate	<0.0100	0.0500	0.0567	113	0.0500	0.0533	107	6	49-129	25	—	
Fluoranthene	<0.0100	0.0500	0.0539	108	0.0500	0.0506	101	6	55-120	25		
Fluorene	<0.0100	0.0500	0.0493	99	0.0500	0.0472	94	4	56-114	25		
Hexachlorobenzene	<0.0100	0.0500	0.0474	95	0.0500	0.0451	90	5	60-109	25		
Hexachlorobutadiene	<0.0100	0.0500	0.0442	88	0.0500	0.0410	82	8	52-107	25		
Hexachlorocyclopentadiene	<0.0100	0.0500	0.0443	89	0.0500	0.0419	84	6	32-115	25		
Hexachloroethane	<0.0100	0.0500	0.0475	95	0.0500	0.0452	90	5	46-115	25		
Indeno(1,2,3-c,d)Pyrene	<0.0100	0.0500	0.0560	112	0.0500	0.0519	104	8	44-132	25		
lsophorone	<0.0100	0.0500	0.0502	100	0.0500	0.0481	96	4.	57-107	25		
Naphthalene	<0.0100	0.0500	0.0468	94	0.0500	0.0447	89	5	53-110	25		
Nitrobenzene	<0.0100	0.0500	0.0496	99	0.0500	0.0472	94	5	56-107	25		
N-Nitrosodi-n-Propylamine	<0.0100	0.0500	0.0539	108	0.0500	0.0514	103	5	21-137	25		

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

.

Page 2.

___1

BS / BSI Recoveries

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 411089

•	Work Order #: 411089			• •		Project ID: 2009-039
	Analyst: ZHO		Date Prepared:	03/29/2011		Date Analyzed: 03/29/2011
	Lab Batch ID: 849858	Sample: 599181-1-BKS	Batch #:	1	· ·	Matrix: Water
	7					

Units: mg/L

SVOAs by EPA 8270C Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
N-Nitrosodiphenylamine	<0.0100	0.0500	0.0522	104	0.0500	0.0498	100	5	50-121	25	
Pentachlorophenol	<0.0100	0.0500	0.0489	98	0.0500	0.0463	93	5	36-132	25	
Phenanthrene	<0.0100	0.0500	0.0504	101	0.0500	0.0487	97	3	56-116	25	
Phenol	<0.0100	0.0500	0.0342	68	0.0500	0.0337	67	1	19-89	25	
Pyrene	<0.0100	0.0500	0.0499	100	0.0500	0.0476	95	5	57-119	25	
Pyridine	<0.0200	0.0500	0.0227	45	0.0500	<0.0200	0	NC	5-94	25	L

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 411089 Lab Batch #: 849659 Date Analyzed: 03/28/2011

Date Prepared: 03/28/2011

Project ID: 2009-039 Analyst: LATCOR

QC- Sample ID: 411097-004 S Batch #: 1 Matrix: Water Reporting Units: mg/L MATRIX / MATRIX SPIKE RECOVERY STUDY Parent Spiked Sample Control **Inorganic Anions by EPA 300** Sample Spike Result %R Limits Flag Result Added [D] %R · [C] [A] [B] Analytes Fluoride 30.5 50.0 42 80-120 51.3 х Chloride 392 250 94 627 80-120 288 250 97 80-120 Sulfate 530

Matrix Spike Percent Recovery [D] = $100^{+}(C-A)/B$ Relative Percent Difference [E] = $200^{+}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS Recoveries

Project Name: DCP Plant to Lea Station 6" #2

W'~~k Order #: 411089						
ab Batch #: 849858	· . ·			-	2009-039	
Date Analyzed: 03/30/2011	Date Prepared: 03/29	0/2011	А	nalyst: Z	HO	
QC- Sample ID: 410972-001 S	Batch #: 1			Matrix: So		
Reporting Units: mg/L	MATR	IX / MA	TRIX SPIKE	RECOV	ERY STU	DY
SVOAs by SW-846 8270C	Parent Sample Result [A]	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag ·
Analytes	[A]	[B]				
1,2,4-Trichlorobenzene	<0.0500	0.250	0.244	98	56-104	
1,2-Dichlorobenzene	<0.0500	0.250	0.242	97	53-106	
1,3-Dichlorobenzene	<0.0500	0.250	0.235	94	52-105	
1,4-Dichlorobenzene	<0.0500	0.250	0.235	94	54-105	
2,4,5-Trichlorophenol	<0.0500	0.250	0.247	99	55-114	
2,4,6-Trichlorophenol	<0.0500	0.250	0.266	106	57-113	
2,4-Dichlorophenol	<0.0500	0.250	0.259	104	60-110	
2,4-Dimethylphenol	<0.0500	0.250	0.268	107	50-108	
2,4-Dinitrophenol	<0.100	0.250	0.205	82	52-111	
2,4-Dinitrotoluene	<0.0500	0.250	0.263	105	60-116	
2,6-Dinitrotoluene	<0.0500	0.250	0.257	103	60-115	
2-Chloronaphthalene	<0.0500	0.250	0.224	90	58-105	
2-Chlorophenol	<0.0500	0.250	0.255	102	58-106	•
2-Methylnaphthalene	<0.0500	0.250	0.262	105	57-106	
? ∼thylphenol	<0.0500	0.250	0.255	102	52-106	
aniline	<0.100	0.250	0.274	110	55-120	
2-Nitrophenol	<0.0500	0.250	0.251	100	57-105	
3&4-Methylphenol	<0.0500	0.250	0.257	103	23-140	
3,3-Dichlorobenzidine	<0.0500	0.250	0.276	110	36-123	
3-Nitroaniline	<0.100	0.250	0.263	105	49-120	
4,6-dinitro-2-methyl phenol	<0.0500	0.250	0.217	87	57-119	
4-Bromophenyl-phenylether	<0.0500	0.250	0.253	101	58-112	
4-chloro-3-methylphenol	<0.0500	0.250	0.265	106	58-116	
4-Chloroaniline	<0.100	0.250	0.240	96	2-123	
4-Chlorophenyl Phenyl Ether	<0.0500	0.250	0.257	103	59-109	
4-Nitroaniline	<0.100	0.250	0.268	107	52-118	
4-Nitrophenol	< 0.0500	. 0.250	0.269	108	18-104	х
Acenaphthene	<0.0500	0.250	0.261	104	54-114	
Acenaphthylene	<0.0500	0.250	0.267	107	53-113	
Aniline (Phenylamine, Aminobenzene)	<0.100	0.250	0.233	93	35-104	
Anthracene	<0.0500	0.250	0.266	106	56-116	
Benzo(a)anthracene	<0.0500	0.250	0.261	104	59-116	
Benzo(a)pyrene	<0.0500	0.250	0.274	110	58-118	
Benzo(b)fluoranthene	<0.0500	0.250	0.261	104	54-123	

Matrix Spike Percent Recovery [D] = $100^{\circ}(C-A)/B$ Relative Percent Difference [E] = $200^{\circ}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

BF low Reporting Limit

Form 3 - MS Recoveries

Project Name: DCP Plant to Lea Station 6" #2

Lab Batch #: 849858 Date Analyzed: 03/30/2011 D	ate Prepared: 03/2	9/2011		nallyst: Z	2009-03 <u>9</u> HO	•
OC- Sample ID: 410972-001 S	Batch #: 1			Matrix: S		
Reporting Units: mg/L		RIX / MA	TRIX SPIKE			DY
SVOAs by SW-846 8270C		Spike Added	Spiked Sample Result [C]		Control Limits %R	Flag
Analytes		(B)				
Benzo(g,h,i)perylene	<0.0500	0.250	0.251	100	47-129	
Benzo(k)fluoranthene	<0.0500	0.250	0.260	104	52-122	
Benzoic Acid	<0.250	0.750	0.950	127	4-113	X
Benzyl Butyl Phthalate	<0.0500	0.250	0.279	112	57-122	
bis(2-chloroethoxy) methane	<0.0500	0.250	0.249	100	53-112	
bis(2-chloroethyl) ether	<0.0500	0.250	0.251	100	57-108	
bis(2-chloroisopropyl) ether	<0.0500	0.250	0.244	98	54-111	
bis(2-ethylhexyl) phthalate	<0.0500	0.250	0.285	114	59-119	
Chrysene	<0.0500	0.250	0.265	106	58-116	
Dibenz(a,h)Anthracene	<0.0500	0.250	0.269	108	46-131	
Dibenzofuran ,	<0.0500	0.250	0.255	102	56-111	
Diethyl Phthalate	<0.0500	0.250	0.266	106	62-114	
Dimethyl Phthalate	<0.0500	0.250	0.264	106	59-113	
di-n-Butyl Phthalate	<0.0500	0.250	0.279	112	60-118	
di-n-Octyl Phthalate	<0.0500	0.250	0.291	116	49-129	
Fluoranthene	<0.0500	0.250	0.274	110	55-120	
Fluorene	<0.0500	0.250	0.266	106	56-114	
Hexachlorobenzene	<0.0500	0.250	0.252	101	60-1'09	
Hexachlorobutadiene	<0.0500	0.250	0.238	95	52-107	•
Hexachlorocyclopentadiene	< 0.0500	0.250	0.208	83	32-115	
Hexachloroethane	< 0.0500	0.250	0.239	96	46-115	
Indeno(1,2,3-c,d)Pyrene	<0.0500	0.250	0.277	111	. 44-132	
Isophorone	<0.0500	0.250	0.261	104	57-107	
Naphthalene	<0.0500	0.250	0.245	98	53-110	
Nitrobenzene	<0.0500	0.250	0.251	100	56-107	
N-Nitrosodi-n-Propylamine	<0.0500	0.250	0.264	106	21-137	
N-Nitrosodiphenylamine	<0.0500	0.250	0.268	107	50-121	
Pentachlorophenol	<0.0500	0.250	0.262	105	36-132	
Phenanthrene	<0.0500	0.250	0.258	103	56-116	
Phenol	<0.0500	0.250	0.224	90	19-89	X
Pyrene	< 0.0500	0.250	0.260	104	57-119	
Pyridine	<0.100	0.250	0.190	76	5-94	

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference $[E] = 200^{\circ}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

.

BRL - Below Reporting Limit

Form 3 - M MSD Recoveries

Work Order #: 411089						Project II): 2009-0	39			
Date Analyzed: 03/30/2011	C- Sample ID: Date Prepared:				tch #: alyst:	l Matrix ASA	: Water				΄,
Reporting Units: mg/L		- M	IATRIX SPIKI	E / MAT	RIX SPI	KE DUPLICA	TE RECO	OVERY S	STUDY		
BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]		[D]	[E]-		[Ġ]				
Benzene	<0.00100	0.100	0.108	108	0.100	0.107	107	1	70-125	25	
Toluene	<0.00200	0.100	0.109	109	0.100	0.109	109	0	70-125	25	
Ethylbenzene	<0.00100	0.100	0.108	108	0.100	0.108	108	0	71-129	25	
m_p-Xylenes	<0.00200	0.200	0.213	107	0.200	0.209	105	2	70-131	25	
o-Xylene	<0.00100	0.100	0.108	108	0.100	0.108	108	0	71-133	25	
Date Analyzed: 03/29/2011	C- Sample ID: Date Prepared:	03/29/2	011	An	•	1 Matrix LATCOR					
Reporting Units: mg/L		M	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY S	STUDY		
Mercury by EPA 7470A Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Метситу	<0.000250	0.00100	0.000550	55	0.00100	0.000560	56	2	75-125	20	x

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*[(C-F)/(C+F)]

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, I = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Form 3 - MS / MSD Recoveries

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 411089	Project ID: 2009-039															
Lab Batch ID: 850035 Date Analyzed: 03/31/2011	QC- Sample ID: Date Prepared:				tch #: alyst:	l Matrix DAT	: Water									
Reporting Units: mg/L	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY															
Metals per ICP by SW846 6010B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits Flag %RPD						
Aluminum	0.202	1.00	1.33	113	1.00	1.35	115	1	75-125	20						
Arsenic	<0.0100	1.00	1.07	107	1.00	1.08	108	1	75-125	20						
Barium	0.0894	1.00	1.05	96	1.00	1.06	97	1	75-125	20						
Boron	0.511	1.00	1.58	107	1.00	1.64	113	4	75-125	20						
Cadmium	<0.00500	1.00	1.02	102	1.00	1.05	105	3	75-125	20						
Calcium	176	1.00	177	100	1.00	180	400	2	75-125	20	x					
Chromium	<0.00500	1.00	1.00	100	1.00	1.03	103	3	75-125	20						
Cobalt	<0.0100	1.00	0.995	100	1.00	1.01	101	1	75-125	20						
Copper	<0.0100	1.00	1.00	100	1.00	1.03	103	3	75-125	20						
Iron	0.140	1.00	1.21	107	1.00	1.24	110	2	75-125	20						
Lead	<0.0120	1.00	0.986	99	1.00	1.00	100	1	75-125	20						
Magnesium	72.6	1.00	74.6	. 200	1.00	76.3	370	2	75-125	20	x					
Manganese	0.122	1.00	1.07	95	1.00	1.09	97	2	75-125	20						
Molybdenum	0.0343	1.00	1.07	104	1.00	1.09	106	2	75-125	20						
Nickel	<0.0100	1.00	0.990	99	1.00	1.01	101	. 2	75-125	20						
Potassium	14.3	10.0	26.5	122	10.0	27.2	129	3.	75-125	20	x					
Selenium	<0.0100	1.00	1.08	108	1.00	1.11	111	3	75-125	20						
Silver	<0.00400	1.00	0.990	99	1.00	1.02	102	3	75-125	20						
Sodium	593	11.0	602	82	11.0	619	236	3	75-125	20	X .					
Zinc	. 0.0110	1.00	1.02	101.	1.00	1.00 .	99	2	75-125	20						

Matrix Spike Percent Recovery $[D] = 100^{+}(C-A)/B$ Relative Percent Difference RPD = $200^{+}(C-F)/(C+F)$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Form 3 - M² MSD Recoveries

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 411089 Project ID: 2009-039 Lab Batch ID: 850041 QC- Sample ID: 411082-008 S Batch #: Matrix: Water 1 Date Prepared: 03/30/2011 CYE Date Analyzed: 03/30/2011 Analyst: Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY Parent Duplicate Spiked Sample Spiked Spiked Control Control VOAs by SW-846 8260B Sample Spike Result Sample Spike Spiked Sample Dup. RPD Limits Limits Flag Result %R %R %RPD Added [C] Added Result [F] % %R Analytes [A] [B] [D] [E] [G] 1,1,1,2-Tetrachloroethane < 0.00500 0.0500 0.0459 92 0.0500 0.0574 115 22 75-125 20 F 1,1,1-Trichloroethane < 0.00500 0.0500 0.0548 110 0.0500 0.0642 128 16 75-125 20 х 1,1,2,2-Tetrachloroethane < 0.00500 0.0500 0.0473 95 0.0500 0.0555 111 16 50-130 31 1,1,2-Trichloroethane < 0.00500 0.0500 0.0515 103 0.0500 0.0561 112 9 75-127 20 1,1-Dichloroethane < 0.00500 0.0500 0.0503 101 0.0500 0.0582 15 60-130 20 116 1,1-Dichloroethene < 0.00500 0.0500 0.0446 89 0.0500 0.0525 105 16 59-172 22 1,1-Dichloropropene < 0.00500 0.0500 0.0395 79 9 0.0500 0.0432 86 75-125 20 1,2,3-Trichlorobenzene 83 < 0.00500 0.0500 0.0414 0.0500 0.0517 103 22 75-137 20 F 1,2,3-Trichloropropane 0.0500 0.0378 76 0.0500 0.0440 88 15 < 0.00500 75-125 20 1,2,4-Trichlorobenzene < 0.00500 0.0500 0.0404 81 0.0500 0.0508 102 23 75-135 20 F 1,2,4-Trimethylbenzene < 0.00500 0.0500 < 0.00500 0.0500 < 0.00500 Ó NC Х 0 75-125 20 1,2-Dibromo-3-Chloropropane 0.0500 102 0.0500 0.0665 133 27 < 0.00500 0.0509 59-125 28 х < 0.00500 0.0500 0.0442 88 0.0500 0.0543 109 21 73-125 20 F 1.2-Dibromoethane 1,2-Dichlorobenzene < 0.00500 0.0500 0.0425 85 0:0500 0.0500 100 16 75-125 .20 1.2-Dichloroethane 0.0500 0.0605 121 < 0.00500 0.0500 0.0530 106 13 68-127 20 0.0500 0.0477 95 0.0500 0.0531 11 20 1,2-Dichloropropane < 0.00500 106 74-125 1,3,5-Trimethylbenzene < 0.00500 0.0500 < 0.00500 0 0.0500 < 0.00500 0. NC 70-125 20 Х 1,3-Dichlorobenzene < 0.00500 0.0500 0.0453 91 0.0500 0.0502 100 10 75-125 20 96 < 0.00500 0.0500 0.0480 0.0500 0.0552 110 14 75-125 20 1,3-Dichloropropane 89 1,4-Dichlorobenzene < 0.00500 0.0500 0.0444 0.0500 0.0489 98 10 75-125 20 < 0.00500 0.0500 0.0534 107 0.0500 0.0625 125 2,2-Dichloropropane 16 60-140 20 < 0.00500 0.0500 0.0392 78 0.0500 0.0485 97 21 73-125 F 2-Chlorotoluene 20 0.0500 0.0417 83 4-Chlorotoluene < 0.00500 0.0500 0.0475 95 13 74-125 20

Matrix Spike Percent Recovery $[D] = 100^{+}(C-A)/B$ Relative Percent Difference RPD = $200^{+}[(C-F)/(C+F)]$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, I = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Form 3 - MS / MSD Recoveries

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 411089

Lab Batch ID: 850041

Date Analyzed: 03/30/2011

Reporting Units: mg/L

VOAs by SW-846 8260B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00500	0.0500	0.0484	97	0.0500	0.0563	113	15	66-142	21	
Bromobenzene	<0.00500	0.0500	0.0445	89	0.0500	0.0493	99	10	60-130	20	
Bromochloromethane	<0.00500	0.0500	0.0474	95	0.0500	0.0563	113	17	73-125	20	
Bromodichloromethane	<0.00500	0.0500	0.0559	112	0.0500	0.0648	130	15 ·	75-125	20	X
Bromoform	0.0209	0.0500	0.0763	111	0.0500	0.0864	131	12	75-125	20	X
Bromomethane	<0.00500	0.0500	0.0522	. 104	0.0500	0.0530	106	2	70-130	20	
Carbon Tetrachloride	<0.00500	0.0500	0.0573	115	0.0500	0.0680	136	17	62-125	20	x
Chlorobenzene	<0.00500	0.0500	0.0427	85	0.0500	0.0510	102	18	60-133	21	
Chloroethane	<0.0100	0.0500	. 0.0540	108	0.0500	0.0591 ·	118	9	70-130	20	
Chloroform	0.0143	0.0500	0.0621	96	0.0500	0.0708	113	13	74-125	20	
Chloromethane	<0.0100	0.0500	0.0552	110	0.0500	0.0604	121	9	70-130	20	
cis-1,2-Dichloroethene	<0.00500	0.0500	0.0478	96	0.0500	0.0566	113	17	60-130	20	
cis-1,3-Dichloropropene	<0.00500	0.0500	0.0371	74	0.0500	0.0402	80	8	60-140	20	
Dibromochloromethane	<0.00500	0.0500	0.0498	100	0.0500	0.0595	119	18	60-130	20	
Dibromomethane	<0.00500	0.0500	0.0502	100	0.0500	0.0587	117	16	69-127	23	
Dichlorodifluoromethane	<0.00500	0.0500	0.0556	111	0.0500	0.0600	120	8	70-130	23	
Ethylbenzene	<0.00500	0.0500	0.0363	73	0.0500	0.0420	84	15	75-125	20	x
Hexachlorobutadiene	<0:00500	0.0500	0.0448	90	0.0500	0.0526	105	16	75-125	20	
isopropylbenzene	<0.00500	0.0500	0.0328	. 66	0.0500	0.0381	76	15	75-125	20	x
m,p-Xylenes	<0.0100	0.100	0.0271	27	0.100	0.0231	23	16	75-125	20	x
Methylene Chloride	<0.00500	0.0500	0.0488	98	0.0500	0.0594	119	20	75-125	. 35	
МТВЕ	<0.00500	0.0500	0.0532	106	0.0500	0.0676	135	24	75-125	20	XF
Naphthalene	< 0.0100	0.0500	<0.0100	0	0.0500	<0.0100	• 0	NC	65-135	20	x

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference RPD = $200^{\circ}[(C-F)/(C+F)]$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Relative Percent Difference RPD = $200^{+}(C-F)/(C+F)$

ND = Not Detected, I = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Page :

Final 1.000

Date Prepared: 03/30/2011

Batch #: 1 Matrix: Water Analyst: CYE

Project ID: 2009-039

Form 3 - M MSD Recoveries

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 411089

Project ID: 2009-039

Lab Batch ID: 850041

Date Analyzed: 03/30/2011

QC- Sample ID: 411082-008 S **Date Prepared:** 03/30/2011 Batch #: 1 Matrix: Water Analyst: CYE

Reporting Units: mg/L

VOAs by SW-846 8260B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
n-Butylbenzene	<0.00500	0.0500	0.0357	71	0.0500	0.0384	77	· 7	75-125	. 20	x
n-Propylbenzene	<0.00500	0.0500	0.0378	76	0.0500	0.0409	82	8	75-125	20	
o-Xylene	<0.00500	0.0500	0.0192	38.	0.0500	0.0188	38	2	75-125	20	х
p-Cymene (p-lsopropyltoluene)	<0.00500	0.0500	0.0231	46	0.0500	0.0205	41	12	75-125	20	X
Sec-Butylbenzene	<0.00500	0.0500	0.0396 ·	79	0.0500	0.0436	87	10	75-125	20	
Styrene	<0.00500	0.0500	<0.00500	0	0.0500	<0.00500	0	NC	60-130	51	X
tert-Butylbenzene	<0.00500	0.0500	0.0371	74	0.0500	0.0424	85	13	75-125	20	х
Tetrachloroethylene	0.00536	0.0500	0.0476	84	0.0500	0.0565	102	17	60-130	20	
Toluene	<0.00500	0.0500	0.0411	82	0.0500	0.0429	86	4	59-139	21	
trans-1,2-dichloroethene	. <0.00500	0.0500	0.0483	9 7	0.0500	0.0570	114	17	60-130	20	
trans-1,3-dichloropropene	- <0.00500	0.0500	0.0434	87	0.0500	0.0451	90	4	66-125	20	
Trichloroethene	<0.00500	0.0500	0.0505	101	0.0500	0.0576	115	13	62-137	24	
Trichlorofluoromethane	<0.00500	0.0500	0.0632	126	0.0500	0.0665	133	. 5	67-125	20	X ·
Vinyl Chloride	<0.00200	0.0500	0.0371	74	0.0500	0.0362	72	· 2	75-125	20	x

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*((C-F)/(C+F)] Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Sample Duplicate Recovery

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 411089

Lab Batch #: 849832 Date Analyzed: 03/29/2011 13:25 QC- Sample ID: 410758-001 D	Date Prepar Batch	ed: 03/29/2011	Ana Ma	9		
Reporting Units: mg/L		SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Alkalinity by SM2320B Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	. Flag
Alkalinity, Total (as CaCO3)		786	. 786	0	20	
Alkalinity, Bicarbonate (as CaCO3)		959	959	0	20	
Alkalinity, Carbonate (as CaCO3)		<4.00	<4.00	0	20	
Lab Batch #: 849832 Date Analyzed: 03/29/2011 13:20 QC- Sample ID: 410832-001 D	Date Prepar Batcl	ed: 03/29/2011		llyst: ALA trix: Water		1
Reporting Units: mg/L		SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
Alkalinity by SM2320B		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Analyte			· · · · ·			
Alkalinity, Total (as CaCO3) Alkalinity, Bicarbonate (as CaCO3)		232	• 230	1	20	
Alkalinity, Carbonate (as CaCO3)		232	230	0	20	<u> </u>
		<4.00	<4.00	0	20	<u> </u>
Lab Batch #: 849659 Date Analyzed: 03/28/2011 15:15 QC- Sample ID: 411097-004 D	Date Prepar Batch	ed:03/28/2011		lyst:LATC		. '
Reporting Units: mg/L		SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
Anions by E300 Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Fluoride		30.5 ·	30.6	0	20	1
Chloride	· · ·	392 .	374	5	20	1
Sulfate		288	280	3	20	1

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

X 30 Laboratories

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765 Phone: 432-563-1800 Fax: 432-563-1713

	Project Manager:	Ben J. Arguijo															Pr	ojec	t Na	ime:	DC	PF	lan	nt to	<u>Le</u>	<u>a (</u>	itat	ion	6" #	2			
	Company Name	Basin Environmental Se	ervice T	echno	logies, LLC													P	roje	ct #:	200)9-0)39										
	Company Address:	P. O. Box 301		•	· · · · · ·												. 1	Proj	ect	Loc:	Lea	Co	unty	<u>, N</u>	M								
	City/State/Zip:	Lovington, NM 88260			· · · ·	· · ·													P	0 #:	PA/	A - J	. He	enry									
	Telephone No:-	(575)396-2378				Fax No:		(57	'5 <u>)</u> 3	<u> 96-1</u>	429						Repor	t Fo	rma	it:	X	Sta	ndar	rdi			TRF	RP	I	П и	PDE	s	
	Sampler Signature:	- Ching				e-mail:		bja	rgu	ijo@	basi	inen	IV.C	om									_									-	i
																				_	_		Ar	aly.	ze F	or:		÷,	<u> </u>		┥╻		
(iab use							•											\vdash			T01	LP:	-	_	-	x					2		
ORDEF	e#: 411089			r		r		·	F	Prese	ervatio	on & i	# of (Contai	iners	3	Matrix	<u>15</u> 8	Γ		Ĩ		Se	-				(g			24, 48,		1
LAB # (lab use only)	FIEL	_D CODE	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of Containers	lice	HNO,	ΗĊ	H ₂ SO4	NaOH	Na ₂ S ₂ O ₃	None	Other (Specify)	DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid NP=Non-Potable Specify Other	TPH: 418.1 8015M 80	TPH: TX 1005 TX 1006	Cations (Ca. Mg. Na, K)	Anions (Cl. SO4, Alkalinity)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg	Volatites	Semivolatiles	BTEX 80218/5030 or BTEX 8260	RCI	NMWQCC Metals (see Attached)				Standard TAT 4 DAY	
·	ĥ	1W-2			03/25/11	0725		3	x		x						GW									X					T	X	
	n	1W-3			03/25/11	0730		3	x		X	·					GW									X	Ĺ	Ц		\downarrow	\bot	×	ļ
	٨	1W-4			03/25/11	0750		3	x		X						GW									X		\square	\vdash		\bot	×	Į
	N	1W-5	ļ		03/25/11	0805	_	6	<u>x</u>	X	x	_		_	4	_	GW	_	_	X	X	_	X	X	X	\vdash	\vdash	X	┝─╋		╀	⊥×	ł
			+	┼──					┝	$\left \cdot \right $		-		+	+			┢╴				_	-			\vdash	$\left - \right $	┝╌┥	┢╌┽	+	╋	┿╸	1
				┢───			-					-+		+	-†			┢	┝━		-+	┥		-		┝─┤	\vdash	\vdash	H	+	1		1
																											\Box	\Box	\square	\square	I	L	
			ļ				•			$\left \right $		-		_	_	_			_		\neg			_			\square		┢╼┽	+	┾	╞	$\frac{1}{2}$
		· · ·																L													⊥	┛	4
Special	instructions:				_															Sar	oral nple Cs F	Cor	ntair	iers	Inta		, -		Ć	P Y	Z Z	A	1
Relinquis	hed by	Date 2 5/11		me SO	Received by:											Da	te	Tim	e	Cus		/ sea	als c	on c	onta	ainer er(s)			g	5.	2 Ha	₹ ₹	M
Refinquis	heuloy	Date	† Ti	me	Received by:									1		Da	m, Sampler/Client Ben 2								Star								
Relinquis	hed by:	Date	Ti	ime Received by ELOT: E							ate Time 2501-1, 500 m/ W/HN23, VORS								;														

XENCO Laboratories

Atlanta, Boca Raton, Corpus Christi, Dallas

Houston, Miami, Odessa, Philadelphia

Phoenix, San Antonio, Tampa

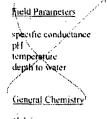
Document Title: Sample Receipt Checklist Document No.: SYS-SRC Revision/Date: No. 01, 5/27/2010 Effective Date: 6/1/2010 Page 1 of 1

Prelogin / Nonconformance Report - Sample Log-In

client: Plains	<u> </u>
Date/Time: 3-25 16:50	· · ·
Lab ID #: 411089	
Initials: XM	

Sample Receipt Checklist

1. Samples on ice?	Blue	(Water)	No	
2. Shipping container in good condition?	Yes	No	None	
3. Custody seals intact on shipping container (cooler) and bottles?	(Yes)	No	N/A	
4. Chain of Custody present?	Yes	No		
5. Sample instructions complete on chain of custody?	Nes	No		
6. Any missing / extra samples?	Yes	No		•
7. Chain of custody signed when relinguished / received?	Yes	No		
8. Chain of custody agrees with sample label(s)?	Yes	No		
9. Container labels legible and intact?	Yes	Ňo	·	
10. Sample matrix / properties agree with chain of custody?	Yes	No		
11. Samples in proper container / bottle?	(Yes)	No		
12. Samples property preserved?	(Tes)	No	N/A	
13. Sample container intact?	Yes	No		
14. Sufficient sample amount for indicated test(s)?	(Yes)	No		
16. All samples received within sufficient hold time?	Yes	No		
16. Subcontract of sample(s)?	Yes	No	N/A	
17. VOC sample have zero head space?	Yes	No	N/A	
18. Cooler 1 No. Cooler 2 No. Cooler 3 No.	Cooler 4 N	0	Cooler 5 No.	
Ibs 2.6 °C Ibs °C Ibs	°C Ibs	°0	lbs	°C


Nonconformance Documentation

Contact:	Contacted by:	Date/Time:	
Regarding:			
· · · · · · · · · · · · · · · · · · ·			
Corrective Action Taken:			
<u> </u>			
			<u> </u>
Check all that apply: □Co	oling process has begun shortly after sa	mpling event and out of temperatu	ITO

condition acceptable by NELAC 5.5.8.3.1.a.1.

Client understands and would like to proceed with analysis

NMOCD - Analytical Parameters for Initial Groundwater Sampling (3-12-08)

331009

Calcium Magnesium Potassium Sodium Chloride Sulfate Bicarbonate Alkalinity Carbonate Alkalinity Nitrate Phosphate Huoride

RCRA Metals

Arsenic Baruno Cadmium Chronnium Lead Mercury Selenium Silver

Additional WOCC Metals

Copper Iron Zine Aluminuni Boron Cobalt Molybdenum

Nickel

All compounds listed in U.S. EPA SW-846 Methods. 8260 (VOCs) & 8270 (SVOCs)

Page 28 of 29

Page 41 of 41

Analytical Report 411660

for PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry

DCP Plant to Lea Station 6" # 2

2009-039

04-APR-11

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-10-6-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054)

New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AAL11), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330) Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370) Xenco-Boca Raton (EPA Lab Code: FL01273): Florida(E86240),South Carolina(96031001), Louisiana(04154), Georgia(917) North Carolina(444), Texas(T104704468-TX), Illinois(002295), Florida(E86349)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757), Texas(104704435-10-2), Nevada(NAC-445A), DoD(65816) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

04-APR-11

Project Manager: Jason Henry PLAINS ALL AMERICAN EH&S 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: 411660 DCP Plant to Lea Station 6" # 2 Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 411660. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 411660 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 411660

PLAINS ALL AMERICAN EH&S, Midland, TX

DCP Plant to Lea Station 6" # 2

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-5	W	Mar-30-11 14:00		411660-001

Page 3 of 11

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP Plant to Lea Station 6" # 2

Project ID:2009-039Work Order Number:411660

Report Date: 04-APR-11 Date Received: 03/31/2011

Sample receipt non conformances and Comments: None

Sample receipt Non Conformances and Comments per Sample:

None

Analytical Non Conformances and Comments:

Batch: LBA-850439 Inorganic Anions In Water by E300 E300MI

Batch 850439, Ortho-Phosphate recovered below QC limits in the Matrix Spike. Samples affected are: 411660-001. The Laboratory Control Sample for Ortho-Phosphate is within laboratory Control Limits

Certificate of Analy PLAINS ALL AMERICA _H&S, Midland, TX

ummary 411660

Project Name: DCP Plant to Lea Station 6" # 2

Project Id: 2009-039 Contact: Jason Henry Project Location: Lea County, NM

Date Received in Lab: Thu Mar-31-11 04:25 pm

Report Date: 04-APR-11

Project Manager: Brent Barron, II

	Lab Id:	411660-001			- -	
Analysis Requested	Field Id:	MW-5				
Anutysis Requested	Depth:					
· · ·	Matrix:	WATER	· ·	· .		· · ·
· · · · ·	Sampled:	Mar-30-11 14:00				
Inorganic Anions In Water by E300	Extracted:	· · · · · · · · · · · · · · · · · · ·				
	Analyzed:	Apr-01-11 09:34				•
	Units/RL:	mg/L RL			· ·	
Nitrate as N		3.68 1.25				
Ortho-Phosphate		7.70 6.25				

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratorics assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron, II-

Odessa Laboratory Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.

JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit

PQL Practical Quantitation Limit

* Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

	Phone	Fax
4143 Greenbriar Dr. Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
842 Cantwell Lane, Corpus Christi, TX 78408	(361) 884-0371	(361) 884-9116

Project Name: DCP Plant to Lea Station 6" # 2

Work Order #: 411660 Analyst: LATCOR Lab Batch ID: 850439 Sample: 850439-1		-	ed: 04/01/201	1		· .	Date A		2009-039)4/01/2011 Water		
Units: mg/L		BLAN	K/BLANK S	SPIKE / F	BLANK S	PIKE DUPI	LICATE	RECOVI	ERY STUD	Ŷ	•
Inorganic Anions In Water by E300	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Bik. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	_ [C]	[D]	[E]	Result [F]	[G]				
Nitrate as N	<0:0500	2.26	2.20	97 ·	2.26	2.12	94	4	80-120	20	
Ortho-Phosphate	<0.250	2.00	1.94	· 97	2.00	1.94	97	0	80-120	20	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: DCP Plant to Lea Station 6" # 2

Work Order #: 411660													
Lab Batch #: 850439			Pro	oject ID:	2009-039								
Date Analyzed: 04/01/2011	Date Prepared: 04/01	/2011	А	nalyst: L	ATCOR								
QC- Sample ID: 411663-005 S	Batch #: 1		P	Matrix: V	Vater								
Reporting Units: mg/L	MATRIX / MATRIX SPIKE RECOVERY STUDY												
Inorganic Anions by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag							
Analytes	· [A]	(B)											
Nitrate as N	6.55	56.5	54.4	85	80-120								
Ortho-Phosphate	7.73	50.0	36.6	58	80-120	X							

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference $[E] = 200^{*}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Sample Duplicate Recovery

Project Name: DCP Plant to Lea Station 6" # 2

Work Order #: 411660

Lab Batch #: 850439 Date Analyzed: 04/01/2011 09:34 QC- Sample ID: 411663-005 D Reporting Units: mg/L	Date Prepar Bate	·	Ana	yst:LATC		r.
Inorganic Anions In Water	by E300	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Nitrate as N		6.55	6.58	0	20	
Ortho-Phosphate		7.73	7.70	0	20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

Xenco Laboratories

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765

Phone: 432-563-1800 Fax: 432-563-1713

	Project Manager:	Ben J. Arguijo				<u> </u>										F	Proje	ct Na	me:	DCI	P.PI	ant	to L	ea	Stat	ion	6" #	12		
	Company Name	Basin Environmental S	ervice T	echnol	ogies, LLC												F	roje	:t #:_	200	9-03	9								
	Company Address:	P. O. Box 301															Pro	iect l	.oc:	Lea	Cour	nty, f	M							
	City/State/Zip:	Lovington, NM 88260							_									P) #: ر	PAA	- J.	Hen	γ		_					
	Telephone No:	(575)396-2378				Fax No:		(57	5) 39	<u>96-1</u> 4	29					Rep	ort Fo	orma	ı: [X s	Stand	lard			TR	RP			PDES	3
	Sampler Signature:	1 mm	ne esta			e-mail:		bja	rguij	io@b	asir	nenv.	.com	_			-					Analy							_	1 ·
(lab use c	only)										,						E			TC	LP:	-viary						- [-	2	
ORDER	#: 41161	JQ.		•				1	F	reser	vation	n & # c	of Con	tainer	s	Matrix	ر ه	Т		TOT			┿╌	X	{		S.	- {.	48, 72	
LAB # (lab use only)	FIEL	D CODE	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of Containers	lce	HNO	HCI	H ₂ SO ₄	Na ₂ S ₂ O ₃	None	Other (Specify)	ê lê	NP=Non-Potable Specify Other 7 TPH: 418.1 8015M 8015B	05 TX 10	Cations (Ca, Mg, Na, K)	Anions (Cl, SO4, Alkalinity)	SAR / ESP / CEC Metals: As Ao Ba Cri Cr Ph Hri Se	Volatiles	Semivolatiles	BTEX 8021B/5030 or BTEX 8260	RCI	NMWQCC Metals (see Attached)	Nitrate / philos Phys		RUSH TAT (Pre-Schedule) 24,	Standard TAT 4 DAY
01	N	NW-5			03/30/11	14:00		1	X							GW	T				Ţ					\Box	N	\Box		x
	·		+							-	╉	-	╀				╉		$\left \right $	-+	╀	┽╴				┢─┥	┿	+	╄┤	
													1				T					T	T				1	T	\Box	
. <u>.</u>	<u> </u>			ļ				_	[]	\rightarrow	\downarrow	_					1	_		•			 			\square	_	\downarrow		
										-+	+	_	+	 	-		+-		-+	+	+	╇				\dashv	_	+	╉╌╁	
		· · · · · · · · · · · · · · · · · · ·	-+	<u> </u>						+	+		+				╋	┼╌		+	+	+		\vdash			- +-	+-	╊┥	-
			-+	1	<u> </u>				$\left \right $	\neg	+	+	\uparrow				╈	+		+	╈	+	+				+	+-	\uparrow	-
		· ·											1				·	Γ					Γ						\mathbf{T}	-
Special I	nstructions:											_							Sam	ple (ory C Conta ee of	iner	s inte	act?			Å	>	N	$\overline{\ }$
Relinquish	ned by	Date		ime 75	Received by:								<u> </u>		Dat	e	Tin	ne	Labe Cust	els or ody	n con seals seals	taine on c	er(s) conta	iner			R & R - C	3	≥ z €	
Relinquish		Date		me	Received by:										Dat		Τin		Sam	ple H ov Sa	fand Imple	Delin r/Clie	vered	d 90. ?	DHL	. 1	FedE:	D D X Lon	N ' N	ar
Relinquish	ned by:	Date	Ti	ime	Received by EL	ot: <u>la El</u>	L -2	2						3.	Dat 31)	Tin 6:1		Tem	ŻŚ⁻ pera	ture	Jpoh	ට යා Rec	H cenpt.	:			<u></u>	°C	

Statistics of

XENCO Laboratories

Atlanta, Boca Raton, Corpus Christi, Dallas

Houston, Miami, Odessa, Philadelphia

Phoenix, San Antonio, Tampa

Document Title: Sample Receipt Checklist Document No.: SYS-SRC Revision/Date: No. 01, 5/27/2010 Effective Date: 6/1/2010 Page 1 of 1

Prelogin / Nonconformance Report - Sample Log-In

asin Env.	/ Plain	5
3 31 11	16:25	<u>.</u>
i-11166	0	
AE		
	2511 Env. 3 31 11 411(0(0 AE	2511 Env. / Plain 3 31 11 16 25 411660 AE

Sample Receipt Checklist

1. Samples on ice?		Blue	Water	No	
2. Shipping container in good condition?		(Yes)	No	None	
3. Custody seals intact on shipping container (cooler) and bottles?)		Tes	No	N/A	
4. Chain of Custody present?		Yes	No		
5. Sample instructions complete on chain of custody?		(Yes)	No		
6. Any missing / extra samples?		Yes	No		
7. Chain of custody signed when relinquished / received?		Yes	No		
8. Chain of custody agrees with sample label(s)?		Yes	No		
9. Container labels legible and intact?		Yes	No		
10. Sample matrix / properties agree with chain of custody?	·	(Yes)	No -		
11. Samples in proper container / bottle?		Yes	No		• •
12. Samples property preserved?		Yes	No	N/A	
13. Sample container intact?		Yes	No		
14. Sufficient sample amount for indicated test(s)?		Yes	No		
15. All samples received within sufficient hold time?		(Yes)	No		
16. Subcontract of sample(s)?		Yes	No	(NA)	
17. VOC sample have zero head space?		Yes	No	(NA)	
18. Cooler 1 No. Cooler 2 No. Cooler 3 No.		Cooler 4 No).	Cooler 5 No.	
ibs 5.(0 ℃ ibs ℃ ibs	°C	lbs	°C	; ibs	°C

Nonconformance Documentation

Contact:	Contacted by:		Date/Time:	
Regarding:				<u></u>
Corrective Action Tak	en <u>:</u>		· · · · · · · · · · · · · · · · · · ·	·····
	· · · · · · · · · · · · · · · · · · ·			
Check all that apply:	□ Cooling process has begun condition acceptable b □ Initial and Backup Temperate □ Client understands and wou	by NELAC 5.5.8.3.1.a.1. ure confirm out of temp	erature conditions	··.

Analytical Report 418095

for PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry DCP Plant to Lea Station 6" #2

2009-039

07-JUN-11

Collected By: Client

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AAL11), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330) Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370) Xenco-Boca Raton (EPA Lab Code: FL01273): Florida(E86240),South Carolina(96031001), Louisiana(04154), Georgia(917) North Carolina(444), Texas(T104704468-TX), Illinois(002295), Florida(E86349)

> Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757), Texas(104704435-10-2), Nevada(NAC-445A), DoD(65816) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

07-JUN-11

Project Manager: Jason Henry PLAINS ALL AMERICAN EH&S 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: 418095 DCP Plant to Lea Station 6" #2 Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 418095. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 418095 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 418095

PLAINS ALL AMERICAN EH&S, Midland, TX

DCP Plant to Lea Station 6" #2

Sample Id	Matrix	Date Collected Sample Depth	Lab Sample Id
MW-2	W	May-26-11 08:25	418095-001
MW-3	W	May-26-11 08:35	418095-002
MW-4	W	May-26-11 08:45	418095-003
MW-5	W	May-26-11 08:55	418095-004
Travel Blank	W	May-26-11 07:00	418095-005

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP Plant to Lea Station 6" #2

Project ID:2009-039Work Order Number:418095

Report Date: 07-JUN-11 Date Received: 05/27/2011

Sample receipt non conformances and comments: None

Sample receipt non conformances and comments per sample:

None

Certificate of Analys' `ummary 418095

PLAINS ALL AMERICA _H&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" #2

Date Received in Lab: Fri May-27-11 04:42 pm

Project Id: 2009-039 Contact: Jason Henry Project Location: Lea County, NM

Report Date: 07-JUN-11

TOJECT LOCATION. Lea COUNTY, INIVI								-		-		
	- ···· -	7.75						Project Ma	nager: 1	Brent Barron,	<u>п</u>	
	Lab Id:	418095-0	001	418095-0	002	418095-0	003	· 418095-0	004	418095-0	05	
Analysis Requested	Field Id:	MW-2	2	MW-3	;	MW-4	4	MW-5	5	Travel Bl	ank	
Analysis Kequesieu	Depth:											
• • • •	Matrix:	WATE	R	WATE	R.	WATE	R.	· WATE	R	WATE	ર	
	Sampled:	May-26-11	08:25	May-26-11	08:35	May-26-11	08:45	May-26-11	08:55	May-26-11	07:00	×
BTEX by EPA 8021	Extracted:	Jun-03-11	15:00	Jun-03-11	15:00	Jun-01-11	11:34	Jun-01-11	11:34	Jun-06-11	2:50	
	Analyzed:	Jun-04-11	01:13	Jun-04-11 (01:36	Jun-02-11	12:49	Jun-02- 11	13:11	Jun-07-11 (02:06	• •
· · ·	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	· .
Benzene		0.00116	0.0010	0.00306	0.0010	0.00885	0.0010	0.216	0.0010	ND	0.0010	
Toluene		ND	0.0020	ND	0.0020	0.00398	0.0020	0.0933	0.0020	ND	0.0020	······································
Ethylbenzene		ND	0.0010	ND	0.0010	ND	0.0010	0.00123	0.0010	ND	0.0010	
m_p-Xylenes		ND	· 0.0020	ND	0.0020	ND	0.0020	0.00957	0.0020	ND	0.0020	
o-Xylene		ND	0.0010	ND	0.0010	ND	0.0010	0.00650	0.0010	ND	0.0010	
Xylenes, Total		·ND	0.0010	ND	0.0010	ND	0.0010	0.0161	0.0010	ŃD	0.0010	
Total BTEX		0.00116	0.0010	0.00306	0.0010	0.0128	0.0010	0.327	0.0010	ND	0.0010	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratorics assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron, II

Odessa Laboratory Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.

F RPD exceeded lab control limits.

J The target analyte was positively identified below the MQL and above the SQL.

U Analyte was not detected.

- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit

PQL Practical Quantitation Limit

LOD Limit of Detection

LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

+ Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa/Lakeland - Miami - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, Tx 77477 9701 Harry Hines Blvd, Dallas, TX 75220 5332 Blackberry Drive, San Antonio TX 78238 2505 North Falkenburg Rd, Tampa, FL 33619 5757 NW 158th St, Miami Lakes, FL 33014 12600 West I-20 East, Odessa, TX 79765 842 Cantwell Lane, Corpus Christi, TX 78408 3725 E. Atlanta Ave, Phoenix, AZ 85040

Phone Fax (281) 240-4200 (281) 240-4280 (214) 902 0300 (214) 351-9139 (210) 509-3334 (210) 509-3335 (813) 620-2000 (813) 620-2033 (305) 823-8500 (305) 823-8555 (432) 563-1800 (432) 563-1713 (361) 884-0371 (361) 884-9116 (602) 437-0330

Project Name: DCP Plant to Lea Station 6" #2

rk Orders : 418095	; Sample: 604212-1-BKS / Bl	KS Bate		D: 2009-039		
Units: mg/L	Date Analyzed: 06/01/11 12:10		RROGATE R	ECOVERY S	STUDY	
BTE	CX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0310	0.0300	103	80-120	
4-Bromofluorobenzene		0.0333	0.0300	111	80-120	
Lab Batch #: 858471	Sample: 604212-1-BSD / B	SD Bate	h: ¹ Matrix	Water		
Units: mg/L	Date Analyzed: 06/01/11 12:33	SU	RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	5	0.0321	0.0300	107	80-120	
4-Bromofluorobenzene		0.0337	0.0300	112	80-120	
Lab Batch #: 858471	Sample: 604212-1-BLK / B	LK Batc	h: 1 Matrix	:Water		
Units: mg/L	Date Analyzed: 06/01/11 13:42	SU	RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Difluorobenzene		0.0285	0.0300	95	80-120	
+-Bromofluorobenzene		0.0311	0.0300	104	80-120	
Lab Batch #: 858471	Sample: 418009-008 S / MS			Water		
Units: mg/L	Date Analyzed: 06/01/11 17:52	SU	RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0302	0.0300	101	80-120	
4-Bromofluorobenzene	· · · · · · · · · · · · · · · · · · ·	0.0314	0.0300	105	80-120	
Lab Batch #: 858471	Sample: 418095-003 / SMP	Batc		:Water		
Units: mg/L	Date Analyzed: 06/02/11 12:49	SU	RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0302	· 0.0300	101	80-120	
			A			

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B ^1} results are based on MDL and validated for QC purposes.

Project Name: DCP Plant to Lea Station 6" #2

Work Orders : 418095 Lab Batch #: 858471	, Sample: 418095-004 / SMP	Potel	Project II h: 1 Matrix	D: 2009-039	ł	
Units: mg/L	Date Analyzed: 06/02/11 13:11	-	RROGATE RI		STUDY	
	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes .			{D}		
1,4-Difluorobenzene		0.0333	0.0300	111	80-120	
4-Bromofluorobenzene	· · ·	0.0296	0.0300	99	80-120	
Lab Batch #: 858712	Sample: 604361-1-BKS / BI	KS Batel	h: ¹ Matrix	Water		
Units: mg/L	Date Analyzed: 06/03/11 22:11	SU	RROGATE RI	ECOVERY	STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0311	0.0300	104	80-120	
4-Bromofluorobenzene		0.0331	0.0300	110	80-120	
Lab Batch #: 858712	Sample: 604361-1-BSD / BS	SD Batcl	h: ¹ Matrix	Water	·	
Units: mg/L	Date Analyzed: 06/03/11 22:34		RROGATE RI		STUDY	,
	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0306	0.0300	102	80-120	
4-Bromofluorobenzene		0.0318	0.0300	106	· 80-120	
Lab Batch #: 858712	Sample: 604361-1-BLK / Bi	LK Bate	h: ¹ Matrix	Water	•	
Units: mg/L	Date Analyzed: 06/03/11 23:42		RROGATE	ECOVERY	STUDY	·····,
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0292	0.0300	97	80-120	
4-Bromofluorobenzene		0.0304	0.0300	101	80-120	·
Lab Batch #: 858712	Sample: 418095-001 / SMP.	Bate	h: ¹ Matrix	Water	L	
Units: mg/L	Date Analyzed: 06/04/11 01:13		RROGATE R		STUDY	
	CX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene	· · · · ·	0.0288	0.0300	96	80-120	
4-Bromofluorobenzene		0.0311	0.0300	104	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Project Name: DCP Plant to Lea Station 6" #2

rk Orders : 418095 Lab Batch #: 858712	h #: 858712 Sample: 418095-002 / SMP Batch: 1 Matrix: Water							
Units: mg/L	Date Analyzed: 06/04/11 01:36	. SU	RROGATE RI	ECOVERY	STUDY			
BTE	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
	Analytes	-		[D]				
1,4-Difluorobenzene		0.0302	0.0300	101	80-120			
4-Bromofluorobenzene		0.0283	0.0300	94	80-120			
Lab Batch #: 858892	Sample: 604471-1-BKS / B							
Units: mg/L	Date Analyzed: 06/07/11 00:13	SU	RROGATE RI	ECOVERY	STUDY			
BTE	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R {D]	Control Limits %R	Flags		
1.4-Difluorobenzene	Analytes	0.0007	0.0200		00.120			
4-Bromofluorobenzene	· · · ·	0.0287	0.0300	96. 95	80-120 80-120			
					80-120			
Lab Batch #: 858892	Sample: 604471-1-BSD / B							
Units: mg/L	Date Analyzed: 06/07/11 00:36	SU	RROGATE RI					
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Difluorobenzene	· · · · · · · · · · · · · · · · · · ·	0.0306	0.0300	102	80-120			
-Bromofluorobenzene		0.0319	0.0300	106	80-120			
Lab Batch #: 858892	Sample: 604471-1-BLK / B	LK Bate	h: 1 Matrix:	Water	I I			
Units: mg/L	Date Analyzed: 06/07/11 01:43	SU	RROGATE RI	ECOVERY S	STUDY			
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorobenzene		0.0283	0.0300	94	80-120			
4-Bromofluorobenzene	······································	0.0309	0.0300	103	80-120			
Lab Batch #: 858892	Sample: 418095-005 / SMP	Bate	h: Matrix:	Water				
Units: mg/L	Date Analyzed: 06/07/11 02:06		RROGATE RI		STUDY			
· · · · · · · · · · · · · · · · · · ·	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorobenzene		0.0274	0.0300	91	80-120			
4-Bromofluorobenzene		0.0298	0.0300	99	80-120			

* Surrogate outside of Laboratory QC limits
** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: DCP Plant to Lea Station 6" #2

Work Orders : 418095				D: 2009-039		
Lab Batch #: 858892	Sample: 418630-001 S / MS			: Water		
Units: mg/L	Date Analyzed: 06/07/11 06:14	s	JRROGATE R	ECOVERY :	STUDY	
BTE	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
· .	Analytes			[D]		
1,4-Difluorobenzene		0.0295	0.0300	98 .	80-120	
4-Bromofluorobenzene		0.0322	0.0300	107	80-120	•
Lab Batch #: 858892	Sample: 418630-001 SD / N	ASD Bate	ch: 1 Matrix	:Water		
Units: mg/L	Date Analyzed: 06/07/11 06:37	SL	JRROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R {D}	Control Limits %R	Flags
1,4-Difluorobenzene		0.0268	0.0300	89	80-120	
4-Bromofluorobenzene	•	0.0264	0.0300	88	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

BS / BS. Recoveries

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 418095							Pro	ject ID: 2	2009-039		
Analyst: ASA	Da	te Prepar	ed: 06/01/201	1		. •	Date A	nalyzed: (6/01/2011		
Lab Batch ID: 858471 Sample: 604212-1-E	BKS	Batel	h #: 1					Matrix: \	Water		
Units: mg/L		BLAN	K /BLANK S	SPIKE / E	BLANK S	PIKE DUPI	LICATE	RECOVE	ERY STUD	Y	
BTEX by EPA 8021 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00100	0.100	0.101	101	0.100	0.103	103	2	70-125	25	
Toluene	<0.00200	0.100	0.104	104	0.100	0.106	106	2	70-125	25	
Ethylbenzene	<0.00100	0.100	0.102	102	0.100	0.105	105.	3	71-129	25	
m_p-Xylenes	<0.00200	0.200	0.219	110	0.200	0.224	112	2	70-131	25	
o-Xylene	< 0.00100	0.100	0.118	118	0.100	0.121	121	3	71-133	25	
	-0.00100	0.100	0.116	110	0.100	0.121	121	,	71-155	25	
Analyst: ASA			ed: 06/03/201		0.100	0.121		nalyzed: (
	L Da	ite Prepar			0.100		Date A		6/03/2011		
Analyst: ASA	L Da	ite Prepar Batcl	ed: 06/03/201	1		<u>-</u> .	Date A	nalyzed: () Matrix: \	06/03/2011 Water		
Analyst: ASA Lab Batch ID: 858712 Sample: 604361-1-F	L Da	ite Prepar Batcl	ed: 06/03/201 h #: 1	1		<u>-</u> .	Date A	nalyzed: () Matrix: \	06/03/2011 Water		Flag
Analyst: ASA Lab Batch ID: 858712 Sample: 604361-1-E Units: mg/L BTEX by EPA 8021	Da BKS Blank Sample Result	nte Prepar Batcl BLAN Spike Added	ed: 06/03/201 h #: 1 K /BLANK S Blank Spike Result	1 PIKE / E Blank Spike %R	Spike Added	PIKE DUPI Blank Spike Duplicate	Date A LICATE Blk. Spk Dup. %R	nalyzed: () Matrix: \ RECOVE RPD	06/03/2011 Water CRY STUD Control Limits	Y Control Limits	Flag
Analyst: ASA Lab Batch ID: 858712 Sample: 604361-1-F Units: mg/L BTEX by EPA 8021 Analytes	Da BKS Blank Sample Result [A]	nte Prepar Batcl BLAN Spike Added [B]	ed: 06/03/201 h #: 1 K /BLANK S Blank Spike Result [C]	1 Blank Spike %R [D]	Spike Added [E]	PIKE DUPI Blank Spike Duplicate Result [F]	Date A LICATE Bik. Spk Dup. %R [G]	nalyzed: () Matrix: \ RECOVE RPD %	06/03/2011 Vater CRY STUD Control Limits %R	Control Limits %RPD	Flag
Analyst: ASA Lab Batch ID: 858712 Sample: 604361-1-E Units: mg/L BTEX by EPA 8021 Analytes Benzene	Da BKS Blank Sample Result [A] <0.00100	nte Prepar Batcl BLAN Spike Added [B] 0.100	ed: 06/03/201 h #: 1 K /BLANK S Blank Spike Result [C] 0.0917	1 Blank Spike %R [D] 92	Spike Added [E] 0.100	PIKE DUPI Blank Spike Duplicate Result [F] 0.0994	Date A JICATE Bik. Spk Dup. %R [G] 99	nalyzed: () Matrix: \ RECOVE RPD %	6/03/2011 Water CRY STUD Control Limits %R 70-125	Y Control Limits %RPD 25	Flag
Analyst: ASA Lab Batch ID: 858712 Sample: 604361-1-E Units: mg/L BTEX by EPA 8021 Analytes Benzene Toluene	Da BKS Biank Sample Result [A] <0.00100 <0.00200	nte Prepar Batcl BLAN Spike Added [B] 0.100 0.100	ed: 06/03/201 h #: 1 K /BLANK S Blank Spike Result [C] 0.0917 0.0925	1 Blank Spike %R [D] 92 93	Spike Added [E] 0.100 0.100	PIKE DUPI Blank Spike Duplicate Result [F] 0.0994 0.102	Date A LICATE Bik. Spk Dup. %R [G] 99 102	nalyzed: () Matrix: \ RECOVE % 8 10	6/03/2011 Water CRY STUD Control Limits %R 70-125 70-125	Control Limits %RPD 25 25	Flag

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 418095 Analyst: ASA Lab Batch ID: 858892 Sample: 60	Date Prepared: 06/06/2011 Project ID: 2009-039 Date Analyzed: 06/07/2011 Date Analyzed: 06/07/2011 Sample: 604471-1-BKS Batch #: 1 Matrix: Water										
Units: mg/L	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY										
BTEX by EPA 8021	Blank Sample Result [A]	Spike Added [B]	Biank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Bik. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	-0.00100							11	70.125	25	<u> </u>
Benzene	<0.00100	0.100	0.0939	94	0.100	0.105	105	11	70-125	25	
Toluene	<0.00200	0.100	0.0874	87	0.100	0.0963	96	10	70-125	25	
Ethylbenzene	<0.00100	0.100	0.0954	95	0.100	0.107	107	11	71-129	25	
m_p-Xylenes	<0.00200	0.200	0.185	93	0.200	0.207	104	11	70-131	25	
o-Xylene	<0.00100	0.100	0.0931	93	0.100	0.105	105	12	71-133	25	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

E	ico
Labor	atories

Form 3 - MS Recoveries

Project Name: DCP Plant to Lea Station 6" #2

Work Order #: 418095										
ab Batch #: 858471				Pro	oject ID:	2009-039				
Date Analyzed: 06/01/2011	Date Pre	pared: 06/0	1/2011	Analyst: ASA						
QC- Sample ID: 418009-008 S		Batch #: 1 Matrix: Water								
Reporting Units: mg/L	. Г	MATE	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY			
BTEX by EPA 8021B		Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag			
Analytes		[A]	[B]							
Benzene		0.00219	0,100	0.0889	. 87	70-125				
Toluene		<0.00200	0.100	0.0899	90	70-125				
Ethylbenzene		<0.00100	0.100	0.0867	87	71-129				
m_p-Xylenes		<0.00200	0.200	0.182	91	70-131				
o-Xylene		0.00271	0.100 ·	0.0997	97	71-133				

Matrix Spike Percent Recovery $[D] = 100^{+}(C-A)/B$ Relative Percent Difference $[E] = 200^{+}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

B^r slow Reporting Limit

Form 3 - MS / MSD Recoveries

Project Name: DCP Plant to Lea Station 6" #2

Work Order # : 418095						Project II	D: 2009-0	39			
Lab Batch ID: 858892 Date Analyzed: 06/07/2011	QC- Sample ID: Date Prepared:	06/06/2	011	An		ASA	x: Water				
Reporting Units: mg/L		M	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		ľ
BTEX by EPA 8021	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample		RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	· %R [D]	Added [E]	Result [F]	%R [G]	%.	%R	%RPD	•
Benzene	<0.00100	0.100	0.0941	94	0.100	0.0873	87	7	70-125	25	
Toluene	· <0.00200	0.100	0.0866	87	0.100	0.0786	79	10	70-125	25	
Ethylbenzene	<0.00100	0.100	0.0932	93	0.100	0.0854	85	9	• 71-129	25	
m_p-Xylenes	<0.00200	0.200	0.176	88	0.200	0.160	80	10	70-131	. 25 .	
o-Xylene	<0.00100	0.100	0.0902	90	0.100	0.0817	82	10	71-133	. 25	

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference RPD = $200^{\circ}[(C-F)/(C+F)]$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

X ;o Laboratories

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765

Phone: 432-563-1800 Fax: 432-563-1713

	Project Manager:	Ben J. Arguijo						-			<u> </u>		<u>-</u>				-	P	rojec	at Na	me	<u>D(</u>		Plai	nt te	L	ea S	itati	ion	6" #2	2		
	Company Name	Basin Environmental	Service 1	echno	logies, LLC												-		Ρ	roje	ct #:	20	09-	039)								
	Company Address:	P. O. Box 301		• .		·····													Proj	ect l	Loc:	Le	a Co	unt	y, N	м							
	City/State/Zip:	Lovington, NM 88260			· ·												-			P	0 #:	PA	<u>A.</u>	<u>ј. н</u>	enry	<u> </u>							
	Telephone No:	(575)396-2378				Fax No:		(57	/5) 3	96-1	429	9					. 1	Repo	rt Fo	rma	t:	X	Sta	Inda	rd			TRR	ŧР	[] NF	PDES	;
	Sampler Signature:	Jos hory	5	<u> </u>	·	e-mail:		bja	ırgu	ijo@)bas	siner	nv.c	om	_																		
(lab use	only)				· · · ·	•													F	_		Ŧ	CLP:	Ai	naly: T	ze F	or:	<u> </u>		 -	—	-	
ľ												_											TAL:				X					72 hrs	
ORDE	R#: 418095				1	1	, _			Prese	ervai	tion &	#of	Cont	ainer	5	M	atrix	158	Γ		Į		Se			8					4	
LAB # (lab use only)	FIEI	LD CODE	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of Containers	Ice	HNO3	HCI	H ₂ SO4	NaOH	Na ₂ S ₂ O ₃	None	Other (Specify)	DW=Drinking Water SL=Sludge	GW = Groundwater S=Soil/Soid NP=Nm-Prishs Coacia Office		TPH: TX 1005 TX 1006	Cations (Ca, Mg, Na, K)	Anions (Cl. SO4, Alkalinity)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg	Volatites	Semivolatiles	BTEX 80218/5030 Jr BTEX 8260	RCI	N.O.R.M.	Chlorides		RUSH TAT (Pre-Schedule) 24.	K Standard TAT 4 DAY
001		MW-2			05/26/11	0825		3	-		x						0	GW	T	T							X	1	1	T	1	П	X
032		WW-3			05/26/11	0835		3	x		x						. (SW	Γ	Γ							x		T	\top	T		x
003	l	WW-4			05/26/11	0845		3	X		x							SW	Ι								x					\square	x
004		WW-5			05/26/11	0855		3	X		X					•	0	SW	\vdash								X		$\overline{+}$	$\overline{+}$	\vdash	П	X
005	Trav	vel Blank			05/26/11	0700		3	X		x					_	DI	H ₂ 0	t								x	+	+	+	╞		x
<u>-</u>	· · · · ·										-	$\left \right $				_			╂─	┡							┝─╋	╉	+	╋	┼─	┣─┤	_
 																		· · · · · · · · · · · · · · · · · · ·	╞					_				+	-	+	┢		
	· · · · ·											\square							T									\uparrow		+	+	\square	
Special	Instructions:				· · _ · · · · · · · · · · · · · · · · ·					L		,'					·				Sar	nple	o Co	ntair	mm ners lead	Inta	ct?			R S I		N N	
Relinquis	shed by: annin Berr	Date 5.27- Date Date	ר ו ד יפיו וו	ime Ime 12 Tre ime	Received by:	m Bron									5	Da Da Da	<u>7-1</u> te	//	Tim 30 Tim Tim	<u>ð</u>	Lat Cus Cus	xels stod stod nple by \$	on c y se y se Ha	onta als c als c nd D pler/	ainer on co on co Delivo Clier	(s) onta oole erec	iiner(r(s) 1 ap. ?	(s) DHL	Ę	ARABINA .	, ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ > ⇒ > Lor	N N N N N	ar
					Lise N		l								5.	27	-11	1	'ių î	2	Ter	npe	ratur	e U	роп	Rec	eipt:			5	.6	•C	

XENCO Laboratories

Atlanta, Boca Raton, Corpus Christi, Dallas

Houston, Miami, Odessa, Philadelphia

Phoenix, San Antonio, Tampa

Document Title: Sample Receipt Checklist Document No.: SYS-SRC Revision/Date: No. 01, 5/27/2010 Effective Date: 6/1/2010 Page 1 of 1

Prelogin / Nonconformance Report - Sample Log-In

Client:	Plains	
Date/Time:	5-27-11 16:42	
Lab ID # :	418095	
Initials:	LM	

Sample Receipt Checklist

	Phas	Water	No	
1. Samples on ice?	Blue			
2. Shipping container in good condition?	(Tes)	No	None	CA
3. Custody seals intact on shipping container (cooler) and bottles?	(Yes)	No	- (1/4)	7
4. Chain of Custody present?	(B)	No		
5. Sample instructions complete on chain of custody?	(ES)	No		
6. Any missing / extra samples?	M.Som	No		
7. Chain of custody signed when relinquished / received?	(105)	No		
8. Chain of custody agrees with sample label(s)?	Tee	No		
9. Container labels legible and intact?	Yes	No	<u> </u>	
10. Sample matrix / properties agree with chain of custody?	(Yes)	No		
11. Samples in proper container / bottle?	Tes	No		
12. Samples property preserved?	Yes	No	N/A	
13. Sample container intrict?	Yes	No		
14. Sufficient sample amount for indicated test(s)?	Yee	No		·
15. All samples received within sufficient hold time?	Tes	No		
16. Subcontract of sample(s)?	Yes	No	N/A	
17. VOC sample have zero head space?	(Tes)	No	N/A	
18. Cooler 1 No. Cooler 2 No. Cooler 3 No.	Cooler 4 No)	Cooler 5 No)
ibs 5.6 °C ibs °C ibs °C	C lbs	°C	lbs	°C

Nonconformance Documentation

Contact:	Contacted by:	Date/Time:	
Regarding:			
Corrective Action Tak	en:		
Check all that apply:	C Cooling process has begun shortly after condition acceptable by NELAC 5	5.8.3.1.a.1.	•

Initial and Backup Temperature confirm out of temperature conditions

Client understands and would like to proceed with analysis

Analytical Report 426116

for PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry DCP Plant to Lea Station 6" # 2

2009-039

26-AUG-11

Collected By: Client

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

 Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330)
Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)
Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

Project Manager: Jason Henry PLAINS ALL AMERICAN EH&S 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: 426116 DCP Plant to Lea Station 6" # 2 Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 426116. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 426116 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 426116

PLAINS ALL AMERICAN EH&S, Midland, TX

DCP Plant to Lea Station 6" # 2

Sample Id		Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-2		W	08-17-11 11:20		426116-001
MW-3		W	08-17-11 12:00		426116-002
MW-4		W	08-17-11 13:00		426116-003
MW-5	· .	W	08-17-11 13:30		426116-004

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP Plant to Lea Station 6" # 2

Project ID:2009-039Work Order Number:426116

Report Date: 26-AUG-11 Date Received: 08/19/2011

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Certificate of Analys' ummary 426116

PLAINS ALL AMERICA _H&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" # 2

Project Id: 2009-039 Contact: Jason Henry Project Location: Lea County, NM

Date Received in Lab: Fri Aug-19-11 11:58 am

Report Date: 26-AUG-11

						-		Project M	anager:	Brent Barror	П		
	Lab Id:	426116-0	001	426116-	002	426116-0	003	426116-	004				
Analysis Requested	Field Id:	MW-	2	MW-	3	MW-	4	MW-	5		•		
Analysis Kequesieu	Depth:										· .		
· .	Matrix:	WATE	R	WATE	R	WATE	R	WATE	ER				•
	Sampled:	Aug-17-11	11:20	Aug-17-11	12:00	Aug-17-11	13:00	Aug-17-11	13:30	•			
BTEX by EPA 8021	Extracted:	Aug-24-11	16:45	Aug-24-11	16:45	Aug-24-11	16:45	Aug-22-11	16:00	-			
	Analyzed:	Aug-25-11	02:02	Aug-25-11	02:25	Aug-25-11	02:48	Aug-23-11	04:05			1	
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL				
Benzene		0.00258	0.00100	0.00991	0.00100	0.0281	0.00100	0.276	0.00100				
Toluene		ND	0.00200	0.00253	0.00200	0.0121	0.00200	0.0697	0.00200				
Ethylbenzene		ND	0.00100	ND	0.00100	ND	0.00100	0.00523	0.00100			1	
m_p-Xylenes		ND	0.00200	ND	0.00200	ND	0.00200	0.0105	0.00200			1 -	
o-Xylene		ND	0.00100	ND	0.00100	ND	0.00100	0.00450	0.00100			1	
Xylenes, Total		ND	0.00100	ND	0.00100	ND	0.00100	0.0150	0.00100		•	1	
Total BTEX		0.00258	0.00100	0.0124	0.00100	0.0402	0.00100	0.366	0.00100				

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron II

Odessa Laboratory Manager

Page 5 of 13

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.

F RPD exceeded lab control limits.

J The target analyte was positively identified below the quantitation limit and above the detection limit.

U Analyte was not detected.

- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit

LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit

DL Method Detection Limit

NC Non-Calculable

+ Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Miami - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, Tx 77477 9701 Harry Hines Blvd, Dallas, TX 75220 5332 Blackberry Drive, San Antonio TX 78238 2505 North Falkenburg Rd, Tampa, FL 33619 5757 NW 158th St, Miami Lakes, FL 33014 12600 West I-20 East, Odessa, TX 79765 6017 Financial Drive, Norcross, GA 30071 3725 E. Atlanta Ave, Phoenix, AZ 85040

11011	1 4 1
(281) 240-4200	(281) 240-4280
(214) 902 0300	(214) 351-9139
(210) 509-3334	(210) 509-3335
(813) 620-2000	(813) 620-2033
(305) 823-8500	(305) 823-8555
(432) 563-1800	(432) 563-1713
(770) 449-8800	(770) 449-5477
(602) 437-0330	

Phone

Project Name: DCP Plant to Lea Station 6" # 2

ork Orders : 426116, Lab Batch #:868039	Sample: 426116-004 / SMP	Batc		D: 2009-039 : Water		
Units: mg/L	Date Analyzed: 08/23/11 04:05	-	RROGATE R		STUDY	
	K by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0330	0.0300	110	80-120	
4-Bromofluorobenzene		0.0276	0.0300	92	80-120	
Lab Batch #:868312	Sample: 426116-001 / SMP	Batc	h: ¹ Matrix	:Water		
Units: mg/L	Date Analyzed: 08/25/11 02:02	SU	RROGATE R	ECOVERY	STUDY	
	K by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	· · · · · · · · · · · · · · · · · · ·	0.0277	0.0300 '	92	80-120	
4-Bromofluorobenzene		0.0297	0.0300	99	80-120	
Lab Batch #: 868312	Sample: 426116-002 / SMP	Bate	h: ¹ Matrix	:Water		
Units: mg/L	Date Analyzed: 08/25/11 02:25	SU	RROGATE R	ECOVERY	STUDY	
	K by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Difluorobenzene		0.0289	0.0300	96 ·	80-120	
4-Bromofluorobenzene	• · ·	0.0290	0.0300	· 97	80-120	
Lab Batch #: 868312	Sample: 426116-003 / SMP	Batc	h: ¹ Matrix	Water		
Units: mg/L	Date Analyzed: 08/25/11 02:48	SU	RROGATE R	ECOVERY	STUDY	
	K by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0285	0.0300	95	80-120	
4-Bromofluorobenzene		0.0292	0.0300	97 [·]	80-120	2
Lab Batch #: 868039	Sample: 610293-1-BLK / BL	K Batcl	h: ¹ Matrix	Water		
Units: mg/L	Date Analyzed: 08/23/11 01:02	SU	RROGATE R	ECOVERY	STUDY	
	K by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
	Analytes					
1.4-Difluorobenzene	Analytes	0.0284	0.0300	95	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B *" results are based on MDL and validated for QC purposes.

Project Name: DCP Plant to Lea Station 6" # 2

Work Orders 426116 Lab Batch #:868312	, Sample: 610433-1-BLK / Bl	LK Bate		D: 2009-039		
Units: mg/L	Date Analyzed: 08/25/11 01:39		RROGATE R		STUDY	
(X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0275	0.0300	92	.80-120	
4-Bromofluorobenzene		0.0281	0.0300	94	80-120	
Lab Batch #:868039	Sample: 610293-1-BKS / B	KS Bate	h: 1 Matrix	Water		
Units: mg/L	Date Analyzed: 08/22/11 23:32	SU	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			(D)		
1,4-Difluorobenzene		0.0305	0.0300	102	80-120	
4-Bromofluorobenzene		0.0296	0.0300	99	80-120	
Lab Batch #: 868312	Sample: 610433-1-BKS / B	KS Bate	h: ¹ Matrix	Water		
Units: mg/L	Date Analyzed: 08/25/11 00:08	SU	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	Analytes	0.0275	0.0300	92	80-120	
4-Bromofluorobenzene		0.0275	0.0300	92	80-120	
L,	Sample: 610293-1-BSD / B					<u> </u>
Lab Batch #:868039 Units: mg/L	Date Analyzed: 08/22/11 23:55		RROGATE R	-	STUDY	
	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0296	0.0300	99	80-120	
4-Bromofluorobenzene		0.0291	0.0300	97	80-120	
Lab Batch #: 868312	Sample: 610433-1-BSD / B	SD Bate	:h: ¹ Matrix	:Water		
Units: mg/L	Date Analyzed: 08/25/11 00:31	SU SU	IRROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	· · · · · · · · · · · · · · · · · · ·	0.0292	0.0300	97	· 80-120	
4-Bromofluorobenzene		0.0309	0.0300	103	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Project Name: DCP Plant to Lea Station 6" # 2

)rk Orders : 426116, Lab Batch #:868039	Sample: 426114-001 S / MS		h: ¹ Matrix			
Units: mg/L	Date Analyzed: 08/23/11 04:27	SU	RROGATE R	ECOVERY	STUDY	
•	by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
	nalytes					
1,4-Difluorobenzene 4-Bromofluorobenzene		0.0294	0.0300	98	80-120 80-120	•
	·	0.0288	0.0300	·96	80-120	
Lab Batch #:868312	Sample: 426116-001 S / MS	Bate				
Units: mg/L	Date Analyzed: 08/25/11 04:19	SU	RROGATE R	ECOVERY	STUDY	
	by EPA 8021 Inalytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluorobenzene		0.0313	0.0300	104	80-120	
4-Bromofluorobenzene		0.0293	0.0300	98	80-120	
Lab Batch #: 868039	Sample: 426114-001 SD / M	SD Bate	h: ¹ Matrix	·Water	11	
Units: mg/L	Date Analyzed: 08/23/11 04:50		RROGATE R		STUDY	
: ·	by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Difluorobenzene		0.0295	0.0300	98	80-120	
+-Bromofluorobenzene		0.0276	0.0300	92	80-120	
Lab Batch #:868312	Sample: 426116-001 SD / M	SD Batc	h: ¹ Matrix	Water		
Units: mg/L	Date Analyzed: 08/25/11 04:41	SU	RROGATE R	ECOVERY	STUDY	
	by EPA 8021 Inalytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluorobenzene		0.0283	0.0300	94	80-120	
4-Bromofluorobenzene		0.0303	0.0300	101	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B*11 results are based on MDL and validated for QC purposes.

N Lake the

Project Name: DCP Plant to Lea Station 6" # 2

Work Order #: 426116 Analyst: ASA	מ	ate Prena	red: 08/22/201	1		· · · ·		ject ID: 2 nalvzed: (2009-039)8/22/2011 -		
Lab Batch ID: 868039 Sample: 610293-	•	-	h#: 1	-				Matrix: `			
Units: mg/L		BLAN	K /BLANK S	PIKE / E	BLANK S	PIKE DUPI	ICATE F	RECOVE	RY STUD	Y	
BTEX by EPA 8021 Analytes	Blank Sample Result [A]	Spike Added [B]	Biank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Bik. Spk Dup. % R [G]	RPD %	Control Limits %R	Control Limits % RPD	Flag
Benzene	<0.00100	0.100	0.114	114	0.100	0.112	112	2	70-125	25	
Toluene	<0.00200	0.100	0.100	100	. 0.100	0.0991	99	1	70-125	25	
Ethylbenzene	<0.00100	0.100	0.109	109	0.100	0.108	108	1	71-129	25	
m_p-Xylenes	<0.00200	0.200	0.218	109	0.200	0.214	107	2	70-131	25	
o-Xylene	<0.00100	0.100	0.103	103	0.100	0.101	101	2	71-133	25	
Analyst: ASA Lab Batch ID: 868312 Sample: 610433-		-	red: 08/24/201 h #: 1	1		•	Date A	nalyzed: (Matrix: `	08/25/2011 Water		
Units: mg/L		BLAN	K /BLANK S	PIKE / E	BLANK S	PIKE DUPL	ICATE F	RECOVE	RY STUD	Y	
BTEX by EPA 8021	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R D	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R G	RPD %	Control Limits %R	Control Limits % RPD	Flag
Analytes	•										ļ
Benzene	<0.00100	0.100	0.110	110	0.100	0.115	115	4	70-125	25	ļ
Toluene	<0.00200	0.100	0.0970	97	0.100	0.102	102	5	70-125	25	ļ
Ethylbenzene	<0.00100	0.100	0.106	106	0.100	0.111	111	5	71-129	25	
m_p-Xylenes	<0.00200	0.200	0.211	106	0.200	0.221	111	5	70-131	25 _	
o-Xylene	<0.00100	0.100	0.0979	98	0.100	0.106	106	8	71-133	25	! .

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Form 3 - M MSD Recoveries

Project Name: DCP Plant to Lea Station 6" # 2

Work Order #: 426116	· ·					Project I	D: 2009-0	139			
Lab Batch ID: 868039 Date Analyzed: 08/23/2011	QC- Sample ID Date Prepared				atch #: alyst:		x: Water	. •		×	
Reporting Units: mg/L		. N	AATRIX SPIK	E / MAT	RIX SP	IKE DUPLICA	TE REC	OVERY	STUDY		
BTEX by EPA 8021 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample % R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00100	0.100	0.113	113	0.100	0.110	110	3	70-125	25	
Toluene	. <0.00200	0.100	0.0994	99	0.100	0.0953	95	4	70-125	25	
Ethylbenzene	<0.00100	0.100	0.106	106	0.100	0.104	104	2	71-129	25	
m_p-Xylenes	<0.00200	0.200	0.209	105	0.200	0.200	100	4	70-131	25	
o-Xylene	<0.00100	0.100	0.100	100	0.100	0.0974	97	. 3	71-133	25	
Lab Batch ID: 868312 Date Analyzed: 08/25/2011	QC- Sample ID Date Prepared				ntch #:- alyst:	1 Matri ASA	x: Water				
Reporting Units: mg/L		N	AATRIX SPIK	E / MAT	RIX SP	IKE DUPLICA	TE REC	OVERY	STUDY		
BTEX by EPA 8021 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample % R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	0.00258	0.100	0.115	112	0.100	0.113	110	2	70-125	25	
Toluene	<0.00200	0.100	0.0998	100	0.100	0.0979	98	2	70-125	25	
Ethylbenzene	<0.00100	0.100	0.108	108	0.100	0.106	106	2	71-129	25	
m_p-Xylenes	<0.00200	0.200	0.214	107	0.200	0.211	106	1	70-131	25	
o-Xylene	< 0.00100	0.100	0.101	101	0.100	0.0995	100	1	71-133	25	i —

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*[(C-F)/(C+F)] Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Xenco Laboratories

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

														0 Eas ; 7976											10:4 : 4							
	Project Manager:	Ben J. Arguijo											`.					Pr	ojec	t Na	me:	DC	P P	ant	t to l	_ea	Sta	tion	<u>6" ‡</u>	12		
	Company Name	Basin Environm	ental Ser	vice T	echnol	logies, LLC	·			<u>.</u>									Pr	ojec	:t #:	200	9-0	39								
	Company Address:	P. O. Box 301																1	Proje	ect L	.oc:	Lea	Čou	nty	, NM							
	City/State/Zip:	Lovington, NM 8	88260																												-	
		<u></u>																					Stan			— Г] TR			Π.	IPDE	
	Telephone No:	(575)396-2378				•	Fax No:		(57	5) 3	96-1	429					F	epor	t Fo	rmat	:: 1	تت	Stan	dard	1	Ĺ	JIR	RP			PUC	.5
	Sampler Signature:	JAED tu ly	wuv,				e-mail:		bja	rgui	jo@	basi	nen	v.com					m					An	alyze	For:	_				Т	٦
lab use							·												F	_		TC TOT		Ŧ	Ŧ	Ŧx	T	Π		T	2 112	
ORDEF	x#: 426116		<u> </u> .		T ···-		T			F	rese	rvatio	n & #	of Con	tainen	s	М	atrix	3				1	8 8	+		-			}	24, 48,	Ē
LAB # (lab use only)	FIFI	D CODE		Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Fittered	Total #. of Containers	ICe	HNO ₃	ĤĊ	H ₂ SO ₄	Na ₂ S ₂ O ₃	None			GW ≈ Groundwater S≕Solt/Solid NP=Non-Potable Specify Other	TPH. 418.1 Bayand Apr	TPH: TX 1005 TX 1006	Cations (Ca, Mg. Na, K)	Anions (Cl. SO4, Alkalinity)	SAR / ESP / CEC	s Ag Ba Cd Cr Pb Hg	Volatiles Semivolatiles	BTEX 80218/5030 or BTEX 8260	RCI	N.O.R.M.	-	Chlorides	RUSH TAT (Pre-Schedule) 24	Standard TAT 4 DAY
001		IW-2			<u> </u>	08/17/11	1120	<u>.</u>		- X	-	x	-		-	Ť		iw W	F	-	0	4	<u>~ ·</u>	1	7	X			-+	1	十	X
		1W-3				08/17/11	1200	-	_	X		x		╧				W	ŀ			_			T	X				\Box	T	X
002 003	N	1W-4				08/17/11	1300		3	x		x					G	W						\Box		X				\perp	╇	X
004	N	IW-5		<u> </u>		08/17/11	1330		3	x		×	_				G	W					_	\downarrow	+	<u> </u>	+	┞┥	┝╌┽	_+	╋	X
								<u> </u>				+		+-	$\left - \right $				_	\vdash			+	+	+	╇	+	┝┥	┝╌╋	+	╋	╉┙
		_		<u> </u>							_	-+	-+	+-	\vdash				┝	$\left - \right $		-+	+	+	+	┿	┢	┝╌┥	┝╌╋	+	╋	╋┙
		·····									\neg	╉	╺╾┼	· .	┼─┥				┢	$\left - \right $		-+	-	+	+	+	†-	┝┦		+	╋	+
	· · · · · · · · · · · · · · · · · · ·	<u> </u>										1	_†	-	\square				\square				1	1		+-	T	\Box		Ť	I	
														T						·			Ι	\Box	\Box							
	nstructions:													•							San VO(nple Os Fi	Cont ree c	taine of He	nmen ers in eadsp	ntact? pace?			e X		N N	1
elinquish	•	· · · ·	Date 8 /1///		^{ne} 45	Received by:	u –									Da1	te ///		Tim 179	10	Cus	tody	sea	is or	iner(s n con	itaine	r(s)		ξ	Z	N N	1
elinquish	HON WALL		0 /1'//1/ Date			Received by:	2									Dat		+	Tim	- 1	Cus San	nple	sea Han	is or d De	n coo eliver	er(s) set) ~		ېچ	P.	N	1
<u>A</u>	19		9/11		W	KVISTULIA	Buin	L							0	11		16	<u>300</u>			by S by C	ampi ourie	er/Q ⊭?i	lient I	Rep.	ッ DH	K.	Fedi	DI N	N one :	
	2 Brinal	. 8/1	Date 9/11	۳in ک[[Received by EU	Irn		` ≨	Q					8	jDat		<u> </u>	Time 51		Ten	lpera	+U ature	м L .Up 	V	eceip	nt: 		C.	5 6) •)	;
,		,	+			•				X	2																					

Ħ

XENCO Laboratories ۰÷., Atlanta, Boca Raton, Corpus Christi, Dallas Houston, Miami, Odessa, Philadelphia Phoenix, San Antonio, Tampa

Document Title: Sample Rea	ceipt Checklist.
Document No.: SYS-SRC	
Revision/Date: No. 01, 5/27	/2010
Effective Date: 6/1/2010	Page 1 of 1

Prelogin / Nonconformance Report - Sample Log-In

Client: PC	uns	
Date/Time: 8	19/11 11:58	
Lab ID # :	426116	
Initials: A		

Sample Receipt Checklist

1. Samples on ice?	Blue	Water	No	
2. Shipping container in good condition?	Yes	No	None	
3. Custody seals intact on shipping container (cooler) and bottles?	Yes	No	N/A	
4. Chain of Custody present?	Yes	No		
5. Sample instructions complete on chain of custody?	Yes	No		
6. Any missing / extra samples?	Yes	No		
7. Chain of custody signed when relinquished / received?	Yes	No		
8. Chain of custody agrees with sample label(s)?	Yes	No		-
9. Container labels legible and intact?	Yes	No		
10. Sample matrix / properties agree with chain of custody?	(Yes)	No		
11. Samples in proper container / bottle?	Yes	No		
Samples properly preserved?	Yes	No	N/A	
.s. Sample container intact?	Yes	No		
14. Sufficient sample amount for indicated test(s)?	Yes	No		
15. All samples received within sufficient hold time?	(Yes)	No		
16. Subcontract of sample(s)?	Yes	No	NA	
17. VOC sample have zero head space?	Yes	No	N/A	
18. Cooler 1 No. Cooler 2 No. Cooler 3 No.	Cooler 4 N	0.	Cooler 5 No.	
ibs 5.5 °c ibs °c ibs °c	lbs	°C	lbs	°C

Nonconformance Documentation

_____Contacted by:____ Contact: Date/Time:_ Regarding: **Corrective Action Taken:**

Check all that apply: Cooling process has begun shortly after sampling event and out of temperature condition acceptable by NELAC 5.5.8.3.1.a.1.

 $\hfill\square$ Initial and Backup Temperature confirm out of temperature conditions Client understands and would like to proceed with analysis

Analytical Report 432428

for

PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry DCP Plant to Lea Station 6" # 2

2009-039

08-DEC-11

Collected By: Client

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330)
Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)
Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

08-DEC-11

Project Manager: Jason Henry PLAINS ALL AMERICAN EH&S 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: 432428 DCP Plant to Lea Station 6" # 2 Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 432428. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 432428 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 432428

PLAINS ALL AMERICAN EH&S, Midland, TX

DCP Plant to Lea Station 6" # 2

Sample Id		Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-2	•	W	11-29-11 11:00		432428-001
MW-3		W	11-29-11 09:35		432428-002
MW-4		\mathbf{W}^{\perp}	11-29-11 10:20		432428-003
MW-5		W	11-29-11 12:00		432428-004

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP Plant to Lea Station 6" # 2

Project ID: 2009-039 Work Order Number: 432428 Report Date: 08-DEC-11 Date Received: 11/30/2011

Sample receipt non conformances and comments: None

Sample receipt non conformances and comments per sample:

None

Certificate of Analysian Summary 432428 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" # 2

Date Received in Lab: Wed Nov-30-11 02:37 pm

Report Date: 08-DEC-11 Project Manager: Brent Barron II

Contact: Jason Henry Project Location: Lea County, NM

Project Id: 2009-039

	Lab Id:	432428-	001	432428-	002	432428-0	003	432428-	004			
Analysis Requested	Field Id:	MW-	2	MW-3	3	MW-4	1	MW-	5			
Anutysis Requested	Depth:											
· · · ·	Matrix:	WATE	R	WATE	R	· WATE	R	WATE	ER			•
	Sampled:	Nov-29-11	11:00	Nov-29-11	09:35	Nov-29-11	10:20	Nov-29-11	12:00			
BTEX by EPA 8021	Extracted:	Dec-02-11	16:39	Dec-02-11	16:39	Dec-02-11	16:39	Dec-02-11	16:39			
	Analyzed:	Dec-02-11	22:28	Dec-02-11	22:50	Dec-02-11	23:13	Dec-02-11	23:36			
	Units/RL:	mg/L	RL	mg/L	RL.	mg/L	RL	mg/L	RL			
Benzene		0.00201	0.00100	0.00296	0.00100	0.0112	0.00100	0.245	0.00100	•		
Toluene		ND	0.00200	ND	0.00200	0.00589	0.00200	0.0742	0.00200			
Ethylbenzene		ND	0.00100	ND	0.00100	ND	0.00100	0.0101	0.00100		· .	
m_p-Xylenes		ND	0.00200	ND	0.00200	ND	0.00200	0.0132	0.00200			
o-Xylene		ND	0.00100	ND	0.00100	ND	0.00100	0.00425	0.00100			•
Xylenes, Total		ND	0.00100	ND	0.00100	ND	0.00100	0.0175	0.00100			
Total BTEX		0.00201	0.00100	0.00296	0.00100	0.0171	0.00100	0.347	0.00100			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratorics assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

· Brent Barron II Odessa Laboratory Manager

Page 5 of 16

Laboratorie

Project Id: 2009-039

Project Location: Lea County, NM

Contact: Jason Henry

Certificate of Analysis Summary 432428 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" # 2

Date Received in Lab: Wed Nov-30-11 02:37 pm

Report Date: 08-DEC-11

				····	Project Manager:	Brent Barron II	
	Lab Id:	432428-001	432428-002	432428-003	432428-004		
Analysis Requested	Field Id:	MW-2	MW-3	MW-4	MW-5		
Anuiysis Kequesieu	Depth:						
	Matrix:	WATER	WATER	WATER ·	WATER		
	Sampled:	Nov-29-11 11:00	Nov-29-11 09:35	Nov-29-11 10:20	Nov-29-11 12:00		
SVOA PAHs List	Extracted:				Dec-05-11 10:09		
SUB: TX104704215	Analyzed:				Dec-06-11 15:50		
	Units/RL:			,	mg/L RL		
Acenaphthene					ND 0.00980		
Acenaphthylene					ND 0.00980		· · · · · · · · · · · · · · · · · · ·
Anthracene		· · · · · · · · · · · · · · · · · · ·			ND 0.00980		
Benzo(a)anthracene					. ND 0.00980		
Benzo(a)pyrene					ND 0.00980		
Benzo(b)fluoranthene					ND 0.00980		
Benzo(k)fluoranthene					ND 0.00980		
Benzo(g,h,i)perylene					ND 0.00980		
Chrysene					ND 0.00980		
Dibenz(a,h)anthracene					ND 0.00980		
Fluoranthene					ND 0.00980		
Fluorene		• .			ND 0.00980		
Indeno(1,2,3-c,d)Pyrene					ND 0.00980		
1-Methylnaphthalene		· · ·			ND 0.00490		
2-Methylnaphthalene					ND 0.00980	· ·	
Naphthalene					ND 0.00980		
Phenanthrene					ND 0.00980		
Pyrene					ND 0.00980		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron II Odessa Laboratory Manager

Page

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.

F RPD exceeded lab control limits.

J The target analyte was positively identified below the quantitation limit and above the detection limit.

U Analyte was not detected.

- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.

K Sample analyzed outside of recommended hold time.

JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

* Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit

PQL Practical Quantitation Limit MQL Method Quantitation Limit

LOD Limit of Detection

DL Method Detection Limit

NC Non-Calculable

+ Outside XENCO's scope of NELAC Accreditation.

^ NELAC or State program does not offer Accreditation at this time.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Miami - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, TX 77477 9701 Harry Hines Blvd, Dallas, TX 75220 5332 Blackberry Drive, San Antonio TX 78238 2505 North Falkenburg Rd, Tampa, FL 33619 5757 NW 158th St, Miami Lakes, FL 33014 12600 West I-20 East, Odessa, TX 79765 6017 Financial Drive, Noreross, GA 30071 3725 E. Atlanta Ave, Phoenix, AZ 85040 Phone Fax (281) 240-4200 (281) 240-4280 (214) 902 0300 (214) 351-9139 (210) 509-3334 (210) 509-3335 (813) 620-2000 (813) 620-2033 (305) 823-8500 (305) 823-8555 (432) 563-1800 (432) 563-1713 (770) 449-8800 (770) 449-5477 (602) 437-0330

Project Name: DCP Plant to Lea Station 6" # 2

Vork Orders: 432428			-	D: 2009-039		
Lab Batch #: 876337	Sample: 432428-001 / SMP	Bate				
Units: mg/L	Date Analyzed: 12/02/11 22:28	SU	RROGATE RI	ECOVERY	STUDY	
BTE	CX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	· · · · · · · · · · · · · · · · · · ·	0.0260	0.0300	87	80-120	
4-Bromofluorobenzene		0.0273	0.0300		80-120	
Lab Batch #: 876337	Sample: 432428-002 / SMP	Batc	h: ¹ Matrix	Water		
Units: mg/L	Date Analyzed: 12/02/11 22:50	SU	RROGATE RI	ECOVERY	STUDY	
BTE	CX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R [D]	. Control Limits %R	Flags
	Analytes		· · · · · · · · · · · · · · · · · · ·			
1,4-Difluorobenzene		0.0269	0.0300	90	80-120	
4-Bromofluorobenzene		0.0266	0.0300	89	80-120	
Lab Batch #: 876337	Sample: 432428-003 / SMP	Bate	-			
Units: mg/L	Date Analyzed: 12/02/11 23:13	SU	RROGATE RI	ECOVERY	STUDY	
BTE	CX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	-	0.0278	0.0300	93	80-120	
4-Bromofluorobenzene	· · · · · · · · · · · · · · · · · · ·	0.0279	0.0300	93	80-120	•
Lab Batch #: 876337	Sample: 432428-004 / SMP	Batc	h: 1 Matrix	Water		
Units: mg/L	Date Analyzed: 12/02/11 23:36	SU	RROGATE RI	ECOVERY S	STUDY	
BTE	CX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0288	0.0300	96	80-120	<u></u>
4-Bromofluorobenzene		0.0277	0.0300	92	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: DCP Plant to Lea Station 6" # 2

rk Orders : 432428	s, Sample: 432428-004 / SMP	Bato		D: 2009-039 c: Water								
Units: mg/L	Date Analyzed: 12/06/11 15:50	SU	RROGATE R	ECOVERY	STUDY							
SV	OA PAHs List	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags						
	Analytes			[D]								
2-Fluorobiphenyl		0.0406	0.0490	· 83	44-117							
2-Fluorophenol		0.0260	0.0490	53	30-100							
Nitrobenzene-d5		0.0396	0.0490	81	46-111							
Phenol-d6 .	· ·	0.0166	0.0490	34	15-94							
Terphenyl-D14		0.0541	0.0490	110	46-126							
2,4,6-Tribromophenol		0.0414	0.0490	84	48-117							
Lab Batch #: 876337	Sample: 614999-1-BLK / B			x: Water								
Units: mg/L	Date Analyzed: 12/02/11 19:48	SU	RROGATE R	ECOVERY	STUDY							
BTE	EX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags						
1,4-Difluorobenzene		0.0274	0.0300	91	80-120							
4-Bromofluorobenzene	· · · · · · · · · · · · · · · · · · ·	0.0264	0.0300	88	80-120							
Lab Batch #: 876470	Sample: 614891-1-BLK / B	LK Bate	h: 1 Matrix	water								
Units: mg/L	Date Analyzed: 12/06/11 11:56	SURROGATE RECOVERY STUDY										
SV	OA PAHs List Analytes	Amount Found [A]	True Amount B]	Recovery %R [D]	Control Limits %R	Flags						
2-Fluorobiphenyl		0.0453	0.0500	91	44-117							
2-Fluorophenol		0.0433	0.0500	65	30-100							
_		0.0327	0.0500	88	46-111							
Phenol-d6		0.0438	0.0500	45	15-94							
Ferphenyl-D14		0.0547	0.0500	109	46-126							
2,4,6-Tribromophenol		0.0351	0.0500	70	48-117							
Lab Batch #: 876337	Sample: 614999-1-BKS / B		1	:Water								
Units: mg/L	Date Analyzed: 12/02/11 18:17		RROGATE R		STUDY							
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags						
1,4-Difluorobenzene		0.0294	• 0.0300	98	80-120							

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

" results are based on MDL and validated for QC purposes.

Project Name: DCP Plant to Lea Station 6" # 2

Work Orders: 432428, Lab Batch #: 876470 Sample: 614891-1-BKS / B3	KS Batc	•	D: 2009-039 Water		
Units: mg/L Date Analyzed: 12/06/11 12:19	SU	RROGATE RI	ECOVERY	STUDY	
SVOA PAHs List Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Fluorobiphenyl	0.0481	0.0500	96	44-117	
2-Fluorophenol	0:0346	0.0500	69	30-100	
Nitrobenzene-d5	0.0462	0.0500	92	46-111	
Phenol-d6	0.0246	0.0500	49	15-94	
Terphenyl-D14	0.0502	0.0500	100	46-126	
2,4,6-Tribromophenol	0.0448	0.0500	90	48-117	
Lab Batch #: 876337 Sample: 614999-1-BSD / B:	SD Batc	h: 1 Matrix	Water		
Units: mg/L Date Analyzed: 12/02/11 18:40	SU	RROGATE RI	ECOVERY	STUDY	
BTEX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0280	0.0300	93	80-120	
4-Bromofluorobenzene	0.0278	0.0300	93	80-120	
Lab Batch #: 876470 Sample: 614891-1-BSD / B	SD Bate	h: 1 Matrix	Water		
					<u> </u>
Units: mg/L Date Analyzed: 12/06/11 12:43	SU	RROGATE RI	ECOVERY	STUDY	
Units: mg/L Date Analyzed: 12/06/11 12:43 SVOA PAHs List Analytes	SU Amount Found [A]	True Amount [B]	Recovery %R [D]	STUDY Control Limits '%R	Flags
SVOA PAHs List	Amount Found	True Amount	Recovery %R	Control Limits	Flags
SVOA PAHs List Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits '%R	Flags
SVOA PAHs List Analytes 2-Fluorobiphenyl	Amount Found [A] 0.0484	True Amount [B] 0.0500	Recovery %R [D] 97	Control Limits %R	Flags
SVOA PAHs List Analytes 2-Fluorobiphenyl 2-Fluorophenol	Amount Found [A] 0.0484 0.0349	True Amount [B] 0.0500 0.0500	Recovery %R [D] 97 70	Control Limits %R 44-117 30-100	Flags
SVOA PAHs List Analytes 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5	Amount Found [A] 0.0484 0.0349 0.0465	True Amount [B] 0.0500 0.0500 0.0500	Recovery %R [D] 97 70 93	Control Limits %R 44-117 30-100 46-111	Flags
SVOA PAHs List Analytes 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d6	Amount Found [A] 0.0484 0.0349 0.0465 0.0256	True Amount [B] 0.0500 0.0500 0.0500 0.0500	Recovery %R [D] 97 70 93 51	Control Limits %R 44-117 30-100 46-111 15-94	
SVOA PAHs List Analytes 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d6 Terphenyl-D14	Amount Found [A] 0.0484 0.0349 0.0465 0.0256 0.0256 0.0505 0.0460	True Amount [B] 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	Recovery %R [D] 97 70 93 51 101 92	Control Limits %R 44-117 30-100 46-111 15-94 46-126	
SVOA PAHs List Analytes 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d6 Terphenyl-D14 2,4,6-Tribromophenol	Amount Found [A] 0.0484 0.0349 0.0465 0.0256 0.0505 0.0460 Batcl	True Amount [B] 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	Recovery %R [D] 97 70 93 51 101 92 Water	Control Limits %R 44-117 30-100 46-111 15-94 46-126 48-117	
SVOA PAHs List Analytes 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d6 Terphenyl-D14 2,4,6-Tribromophenol Lab Batch #: 876337 Sample: 432132-001 S / MS	Amount Found [A] 0.0484 0.0349 0.0465 0.0256 0.0505 0.0460 Batcl	True Amount [B] 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 h: 1 Matrix:	Recovery %R [D] 97 70 93 51 101 92 Water	Control Limits %R 44-117 30-100 46-111 15-94 46-126 48-117	Flags
SVOA PAHs List Analytes 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d6 Terphenyl-D14 2,4,6-Tribromophenol Lab Batch #: 876337 Sample: 432132-001 S / MS Units: mg/L Date Analyzed: 12/03/11 00:21 BTEX by EPA 8021	Amount Found [A] 0.0484 0.0349 0.0465 0.0256 0.0256 0.0505 0.0460 S Batcl SU Amount Found	True Amount [B] 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 True Amount	Recovery %R [D] 97 70 93 51 101 92 Water ECOVERY S Recovery %R	Control Limits %R 44-117 30-100 46-111 15-94 46-126 48-117 STUDY Control Limits	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Project Name: DCP Plant to Lea Station 6" # 2

ork Orders : 432428 Lab Batch #: 876337 Units: mg/L	•	Project ID: 2009-039 Sample: 432132-001 SD / MSD Batch: 1 Matrix: Water ate Analyzed: 12/03/11 00:43 SURROGATE RECOVERY STUDY										
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags						
1,4-Difluorobenzene		0.0274	0.0300	91	80-120							
4-Bromofluorobenzene	· · · · · · · · · · · · · · · · · · ·	0.0288	0.0300	96	80-120							

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

"I results are based on MDL and validated for QC purposes.

BS / BSD Recoveries

Project Name: DCP Plant to Lea Station 6" # 2

Work Order #: 432428 Analyst: ASA Lab Batch ID: 876337 Units: mg/L	Sample: 614999-1-		Batcl	ed: 12/02/201 h #: 1 K /BLANK S		BLANK S	SPIKE DUPI	Date A	Matrix: \	2/02/2011 Water	•Y	
BTEX by EP Analytes	A 8021	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene		<0.00100	0.100	0.102	102	0.100	0.101	101	1	70-125	25	
Toluene		<0.00200	0.100	0.104	104	0.100	0.103	103	1	70-125	25	
Ethylbenzene		<0.00100	0.100	· 0,110	110	0.100	0.108	108	2	71-129	25	
m_p-Xylenes		<0.00200	0.200	0.221	111	0.200	0.215	108	3	70-131	25	
o-Xylene		<0.00100	0.100	0.111	111	0.100	0.108	108	3	71-133	25	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

ć

Project Name: DCP Plant to Lea Station 6" # 2

Work Order #: 432428 Analyst: WEW		-	ed: 12/05/201	11			Date A		2009-039 12/06/2011		
Lab Batch ID: 876470 Sample: 6 Units: mg/L	14891-1-BKS		h #: 1 K /BLANK S	SPIKE / I	BLANK S	PIKE DUP)Y	
SVOA PAHs List Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result {C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Acenaphthene	<0.0100	0.0500	0.0465	93	0.0500	0.0478	96	3	27-132	31	<u> </u>
Acenaphthylene	<0.0100	0.0500	0.0446	89	0.0500	0.0455	91	2	46-108	25	<u> </u>
Anthracene	<0.0100	0.0500	0.0459	92	0.0500	0.0469	94	2	47-145	25 ·	· ·
Benzo(a)anthracene	<0.0100	0.0500	0.0477	95	0.0500	0.0482	96	1	33-143	· 25	
Benzo(a)pyrene	<0.0100	0.0500	0.0427	85	0.0500	0.0436	87	2	65-135	25	
Benzo(b)fluoranthene	<0.0100	0.0500	0.0432	86	0.0500	0.0458	92	6	24-159	· 25	
Benzo(k)fluoranthene	<0.0100	0.0500	0.0483	97	0.0500	0.0486	97	1	25-125	25	
Benzo(g,h,i)perylene	<0.0100	0.0500	0.0456	91	0.0500	0.0459	92	1	65-135	25	
Chrysene	<0.0100	0.0500	0.0466	93	0.0500	0.0466	93	0	65-135	25	
Dibenz(a,h)anthracene	<0.0100	0.0500	0.0454	91	0.0500	0.0461	92	2	50-125	25	[
Fluoranthene	<0.0100	0.0500	0.0427	85	0.0500	0.0431	86	1	47-125	25	
Fluorene	<0.0100	0.0500	0.0476	95 .	0.0500	0.0488	98	2	48-139	25	
Indeno(1,2,3-c,d)Pyrene	<0.0100	0.0500	0.0411	82	0.0500	0.0423	85	3	27-160	25	
Naphthalene	<0.0100	0.0500	0.0469	94	0.0500	0.0477	95	2	26-175	25	
Phenanthrene	<0.0100	0.0500	0.0458	92	0.0500	0.0460	92	0	65-135	25	
Pyrene .	<0.0100	0.0500	0.0471	94	0.0500	0.0480	96	2 .	23-152	31	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

.....

Project Name: DCP Plant to Lea Station 6" # 2

Work Order # : 432428		Project ID: 2009-039											
Lab Batch ID: 876337 Date Analyzed: 12/03/2011	QC- Sample ID: Date Prepared:				tch #: alyst:		: Water						
Reporting Units: mg/L		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY				
BTEX by EPA 8021	Parent Sample Result	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag		
Analytes	[A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	% ·	%R	%RPD			
Benzene	<0.00100	0.100	0.0993	99	0.100	0.0972	97	2	70-125	25			
Toluene	<0.00200	0.100	0.102	102	0.100	0.0987	99	3	70-125	25			
Ethylbenzene	<0.00100	0.100	0.105	105	0.100	0.103	103	2	71-129	25			
m_p-Xylenes	<0.00200	0.200	0.207	104	0.200	0.203	102	2	70-131	25			
o-Xylene	<0.00100	0.100	0.103	103	0.100	0.102	102	1	71-133	25			

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*[(C-F)/(C+F)] Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

6

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Xe. J Laboratories

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

	•						j.							20 Ea s 797										Phone Fax:								
	Project Manager:	Ben J. Arguijo					·										_	Pre	ojeci	t Na	me:	DC	P P	lant	to I	_ea	Sta	tion	16"	#2		
	Company Name	Basin Environ	nmental Ser	rvice T	echnol	logies, LLC		<u>.</u>									-		Pr	ojec	:t#:	20	09-0	39								
	Company Address:	P. O. Box 301					·										-	ş	Proje	ect L	.oc:	Lea	Co	unty,	NM							
•	City/State/Zip:	Lovington, NM	A 88260			<u></u>											-	-		P) #:	PA	<u> </u>	. Hen	iry			<u> </u>				<u> </u>
	Telephone No:	(575)396-2378	<u> </u>				Fax No:		(57	5) 3	96-1	429)					Repor	t Fo	ma	t:	X	Star	ndard		Γ] TR	(RP			NPD	ES
	Sampler Signature:	Manuk	- An	in	<u>کمب</u>		e-mail:		bja	rgu	ijo@	bas	inen	v.coi	n									<u> </u>		<u> </u>						-
(lab use	only)																		⊢		_	TC	LP:	Anal	T	T	—	<u></u>	<u> </u>			g .
ORDEF	1120	428				, A					D			# -(C)				Matrix		- -		то	TAL:	+	\mp	X	-					5 JUN 2
				-					s		Prese	rvau		# of Co	ЛЦАН		SL=Studge	- *	8015M 8015B	TX 1006	Na, K)	(alinity)		Cd Cr Pb Hg Se		or BTEX 8260					2	DAY
LAB # (lab use only)	EIE	LD CODE		Beginning Depth	Ending Depth	Date Sampled	Time Sampled	ield Filtered	Total #. of Containers	lce	HNO ₃	HCI	H ₂ SO4	HOBN	Mazuzug	Other (Specify)			TPH: 418.1 801	TPH: TX 1005	Cations (Ca, Mg, Na	Anions (CI, SO4, Alkalinity)	SAR / ESP / CEC	Metals: As Ag Ba Co Volatiles	voraures Sernivolatiles	BTEX 8021B/5030 or BTEX 8260	RCI	N.O.R.M.	PAH	Chlorides	115U TAT (012 C	Standard TAT 4 DAY
0		WW-2			<u> </u>	11/29/11	11:00	l ü	يّ ع	x		x	-		+	+		<u> </u>			0	∢	°	<u> </u>	<u>-</u>		-		┣┻┥	\vdash	╶┼╴	X
0)		WW-3	·	<u> </u>		11/29/11	9:35		3	-		x		+	╈	╈	\uparrow	GW					\neg	+	+		-	†	F	\neg	十	Tx
03		/W-4				11/29/11	10:20		3	x		x			T	T	Τ	GW						1	T	X	T		Π			x
04		MW-5				11/29/11	12:00		3	х		Х					Ι	GW							Ι	X			X		Τ	X
				_													L															
				ļ	<u> </u>											╇	╞				_		_	\downarrow	\downarrow	╞	\downarrow	┢	Ŀ	┝╍┥	4	\downarrow
				┝	· · ·								\square		+	╇	╀		┢					+	∔	╄	╄	┢──	\square	⊢	╇	+ - 1
,. 				┼──		· · · ·								-+-	+		╉		-				-+	+	╋	+	┢	┢──	┝╍┙	┝╼╼╋	╋	+-1
			<u> </u>	<u> </u>								-	$\left \right\rangle$	-+-	+	╋	╋		┼─				-+	+	╋	╀	╀	┝─	┝─┤	-+	╋	++
Special I	Instructions:			1	L	· .	<u></u>			L	1		L				<u> </u>		ł		San	nple	Con	Com taine of He	rs In	tact?		<u> </u>	L]	Y Y Y	N N	
	epin han	m	Date 1 (/ 3 ()	14	ime / <u>, , , , , , , , , , , , , , , , , , ,</u>	Received by:	·								T		ate		Tim		Lab Cus Cus	els (stod) stod)	on co / sea / sea	ontain als on als on	ner(s con) taine ler(s)	er(s)			Ý Y Y	: N N N	
Relinquis	L L		Date 7		me	Received by:											Date		Tim			by S		id Del ler/Cli er?	ient F		? . DH	IL.		Y Y IEx I	N N Lone :	
Relinquis	nea by:		Date		ime .	Received by EL													Tim ز ۹۰ ز		Ten	nper	ature	e Upo	n Re	ceip	st:		יר	1	°C	:

XENCO Laboratories Atlanta, Boca Raton, Corpus Christi, Dallas, Houston, Miami, Odessa, Philadelphia

Phoenix, San Antonio, Tampa

Document Title: Sample	Receipt Checklist
Document No.: SYS-SR	с ·
Revision/Date: No. 01.	5/27/2010
Effective Date: 6/1/2010) Page 1 of 1

Prelogin / Nonconformance Report - Sample Log-In

Client:	asin Env. 1	Plains
Date/Time:	11.30.11 19	+:37
Lab ID #:	43242	0
Initials:	a a company say B	· ·

Sample Receipt Checklist

1. Samples on ice?	Blue	Wateb	No	
2. Shipping container in good condition?	Yes	No	None	
3. Custody spals intact on shipping container (cooler) and bottles?	(Yes)	No	N/A	
4. Chain of Custody present?	Yes	No		
5. Semple instructions complete on chain of custody?	Yes	No		
6. Any missing / extra samples?	Yes	(No.		
7. Chain of custody signed when relinguished / received?	Yes	No		
8. Chain of custody agrees with sample label(s)?	Nes	No		
9. Container labels legible and intact?	Yes	No		<u> </u>
10. Sample matrix / properties agree with chain of custody?		No		
11. Samples in proper container / bottle?	(Yes)	No		
12. Samples properly preserved?	Yes	No	N/A	•
13. Sample container intact?	Yes	No		
14. Sufficient sample amount for indicated test(s)?	Tes	No		
15. All samples received within sufficient hold time?	Yes	No		
16. Subcontract of sample(s)?	Yes	No	(NA)	
17. VOC sample have zero head space?	Yes	No	N/A	
18. Cooler 1 No. Cooler 2 No. Cooler 3 No.	Cooler 4 N	o	Cooler 5 No.	
lbs 2, °C lbs °C lbs	°C lbs	9	C lbs	°C

Nonconformance Documentation

Contacted by: Contact: Date/Time; **Regarding:** 1 **Corrective Action Taken:**

Check all that apply: Cooling process has begun shortly after sampling event and out of temperature condition acceptable by NELAC 5.5.8.1.a.1.

Initial and Backup Temperature confirm out of temperature conditions

Client understands and would like to proceed with analysis

Analytical Report 433649

for

PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry DCP Plant to Lea Station 6" # 2

2009-039

27-DEC-11

Collected By: Client

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AAL11), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330)
Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)
Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Phoenix Mobile (EPA Lab code: AZ00989): Arizona (AZ0758)

27-DEC-11

Project Manager: Jason Henry PLAINS ALL AMERICAN EH&S 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: 433649 DCP Plant to Lea Station 6" # 2 Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 433649. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 433649 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

<u>a server and a server a server as a server as a server a</u>

Sample Cross Reference 433649

PLAINS ALL AMERICAN EH&S, Midland, TX

DCP Plant to Lea Station 6" # 2

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-3	W	12-16-11 11:00		433649-001
MW-4	W	12-16-11 11:40		433649-002

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP Plant to Lea Station 6" # 2

Project ID:2009-039Work Order Number:433649

Report Date: 27-DEC-11 Date Received: 12/19/2011

Sample receipt non conformances and comments: None

Sample receipt non conformances and comments per sample:

None

Analytical non nonformances and comments:

Batch: LBA-877812 SVOA PAHs List by SW-846 8270C SW8270C

Batch 877812, Acenaphthylene recovered above QC limits in the laboratory control sample. Samples affected are: 433649-002, -001.

SW8270C

Batch 877812, Nitrobenzene-d5 recovered above QC limits Data confirmed by re-analysis. Samples affected are: 615639-1-BKS.

Terphenyl-D14 recovered above QC limits Data confirmed by re-analysis. Samples affected are: 615639-1-BLK,433649-002,433649-001.

Surrogates recovered high, however all analytes were non-detect. Compounds in QC recovered high, however all samples were non-detect. Samples reported as is

Project Id: 2009-039

Project Location: Lea County, NM

Contact: Jason Henry

Certificate of Analy: ummary 433649

PLAINS ALL AMERICA. H&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" # 2

Date Received in Lab: Mon Dec-19-11 10:50 am

Report Date: 27-DEC-11

Project Manager: Brent Barron II

· · · · · · · · · · · · · · · · · · ·	Lab Id:	433649-0	01	433649-0	02				
Analysis Requested	Field Id:	MW-3		MW-4	.•				
Analysis Requested	Depth:								
	Matrix:	WATE	R	WATE	R	•	• *	: :	
	Sampled:	Dec-16-11	11:00	Dec-16-11	11:40.				
SVOA PAHs List	Extracted:	Dec-20-11	15:12	Dec-20-11	15:15	· · · · ·		· .	
SUB: TX104704215	Analyzed:	Dec-23-11	11:31	Dec-23-11	11:55	· ·			
	Units/RL:	mg/L	RL	mg/L	RL				
Acenaphthene		ND	0.0110	ND	0.0110				
Acenaphthylene		ND	0.0110	ND	0.0110				-
Anthracene		ND	0.0110	ND	0.0110				
Benzo(a)anthracene		ND	0.0110	ND	0.0110	······································			
Benzo(a)pyrene		ND	0.0110	ND	0.0110	· · · · · · · · · · · · · · · · · · ·			
Benzo(b)fluoranthene		ND	0.0110	ND	0.0110				
Benzo(k)fluoranthene		ND	0.0110	ND	0.0110				
Benzo(g,h,i)perylene		ND	0.0110	ND	0.0110				
Chrysene		ND	0.0110	ND	0.0110				
Dibenz(a,h)anthracene		ND	0.0110	ND	0.0110	·····.			
Fluoranthene		ND	0.0110	ND	0.0110				
Fluorene		ND	0.0110	ND	0.0110				
Indeno(1,2,3-c,d)Pyrene		ND	0.0110	ND	0.0110				
1-Methylnaphthalene		ND	0.00549	ND	0.00549				
2-Methylnaphthalene		ND	0.0110	ND	0.0110				
Naphthalene		ND	0.0110	ND	0.0110				
Phenanthrene	-	ND	0.0110	ND	0.0110	•			
Pyrene		ND	0.0110	ND	0.0110			· · ·	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the bost judgment of XENCO Laboratorics. XENCO Laboratorics assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron II Odessa Laboratory Manager

Page 5 of 11

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- The target analyte was positively identified below the quantiation limit and above the detection limit. J
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

* Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit

PQL Practical Quantitation Limit MQL Method Quantitation Limit

LOD Limit of Detection LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

+ Outside XENCO's scope of NELAC Accreditation.

^ NELAC or State program does not offer Accreditation at this time.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Miami - Phoenix - Latin America

	4143 Greenbriar Dr, Stafford, TX 77477
	9701 Harry Hines Blvd , Dallas, TX 75220
	5332 Blackberry Drive, San Antonio TX 78238
	2505 North Falkenburg Rd, Tampa, FL 33619
	5757 NW 158th St, Miami Lakes, FL 33014
	12600 West I-20 East, Odessa, TX 79765
	6017 Financial Drive, Norcross, GA 30071
•	3725 E. Atlanta Ave, Phoenix, AZ 85040

Phone	Fax
(281) 240-4200	(281) 240-4280
(214) 902 0300	(214) 351-9139
(210) 509-3334	(210) 509-3335
(813) 620-2000	(813) 620-2033
(305) 823-8500	(305) 823-8555
(432) 563-1800	(432) 563-1713
(770) 449-8800	(770) 449-5477
(602) 437-0330	

Project Name: DCP Plant to Lea Station 6" # 2

rk Orders : 433649 Lab Batch #: 877812	, Sample: 433649-001 / SMP_	Bate		D : 2009-039 a: Water				
Units: mg/L	Date Analyzed: 12/23/11 11:31	SURROGATE RECOVERY STUDY						
SVO	OA PAHs List Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
2-Fluorobiphenyl		0.0577	0.0549	105	44-117			
2-Fluorophenol		0.0285	0.0549	52	30-100			
Nitrobenzene-d5	0.0205	0.0549	105	46-111				
Phenol-d6		0.0159	0.0549	29	15-94			
Terphenyl-D14		0.0708	0.0549	129	46-126	**		
2,4,6-Tribromophenol		0.0506	0.0549	92	48-117			
			1		40-117			
Lab Batch #: 877812	Sample: 433649-002 / SMP	Bate		Water				
Units: mg/L	Date Analyzed: 12/23/11 11:55	SU	RROGATE R	ECOVERY	STUDY	·		
SVO	DA PAHs List Analytes	Amount Found [A]	True Amount B}	Recovery %R [D]	Control Limits %R	Flags		
2-Fluorobiphenyl	· · · · · · · · · · · · · · · · · · ·	0.0581	0.0549	106	44-117			
2-Fluorophenol		0.0266	0.0549	• 48	30-100			
Nitrobenzene-d5		0.0570	0.0549	104	46-111			
Phenol-d6		0.0146	0.0549	27	15-94			
erphenyl-D14		0.0696	0.0549	127	46-126	**		
2,4,6-Tribromophenol		0.0502	0.0549	91	48-117			
Lab Batch #: 877812	Sample: 615639-1-BLK / BL	K Batc	h: ¹ Matrix	Water				
Units: mg/L	Date Analyzed: 12/23/11 08:25		RROGATE R		STUDY			
	DA PAHs List Analytes	Amount Found [A]	True Amount [B]	Recovery %R D]	Control Limits %R	Flags		
2-Fluorobiphenyl		0.0538	0.0500	108	44-117	• •		
2-Fluorophenol		0.0460	0.0500	92	30-100			
Nitrobenzene-d5	·	0.0539	0.0500	108	46-111			
Phenol-d6		0.0424	0.0500	85	15-94			
Terphenyl-D14		0.0654	0.0500	131 .	46-126	**		
reiphenyi-Di4	•							

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B ¹¹ results are based on MDL and validated for QC purposes.

Project Name: DCP Plant to Lea Station 6" # 2

ork Orders: 433649		Project ID: 2009-039								
Lab Batch #: 877812	Sample: 615639-1-BKS / B									
Units: mg/L	Date Analyzed: 12/23/11 08:48	SURROGATE RECOVERY STUDY								
SV	OA PAHs List Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
2-Fluorobiphenyl		0.0572	0.0500	114	44-117	•				
2-Fluorophenol	· · ·	0.0476	0.0500	95	30-100					
Nitrobenzene-d5		0.0558	0.0500	112	46-111	**				
Phenol-d6		0.0472	0.0500	94	15-94					
Terphenyl-D14	· · ·	0.0580	0.0500	116	46-126					
2,4,6-Tribromophenol	· · · · · · · · · · · · · · · · · · ·	0.0518	0.0500	104	• 48-117					
Lab Batch #: 877812	Sample: 615639-1-BSD / B	SD Bate	h: 1 Matrix	:Water						
Units: mg/L	Date Analyzed: 12/23/11 09:12	SU	RROGATE R	EÇOVERY	STUDY					
SV	OA PAHs List Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag				
2-Fluorobiphenyl	· · · · · · · · · · · · · · · · · · ·	0.0540	0.0500	108	44-117					
2-Fluorophenol		0.0451	0.0500	90	30-100					
Nitrobenzene-d5	· · · · ·	0.0530	0.0500	106	46-111					
Phenol-d6	,	0.0450	0.0500	90	15-94					
Terphenyl-D14		0.0557	0.0500	111	46-126					
2,4,6-Tribromophenol		0.0495	0.0500	99	48-117					

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

BS / BSD Recoveries

Project Name: DCP Plant to Lea Station 6" # 2

Work Order #: 433649 Analyst: MCH	D	ata Dranar	adı 12/20/201	1					2009-039				
v	5639-1-BKS						Date Analyzed: 12/23/2011 Matrix: Water K SPIKE DUPLICATE RECOVERY STUDY						
Units: mg/L													
SVOA PAHs List Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R D	Spike Added [E]	Blank Spike Duplicate Result (F)	Blk. Spk Dup. %R G	RPD %	Control Limits %R	Control Limits %RPD	Flag		
Acenaphthene	<0.0100	0.0500	0.0548	110	0.0500	0.0537	107	2	27-132	31			
Acenaphthylene	<0.0100	0.0500	0.0549	110	0.0500	0.0533	107	3	. 46-108	25	н		
Anthracene	<0.0100	0.0500	0.0504	101	0.0500	0.0494	99	2	47-145	25			
Benzo(a)anthracene	<0.0100	0.0500	0.0515	103	0.0500	0.0506	101	2	33-143	25			
Benzo(a)pyrene	<0.0100	0.0500	0.0510	102	0.0500	0.0510	102	0	65-135	25			
Benzo(b)fluoranthene	<0.0100	0.0500	0.0506	101	0.0500	0.0479	96	5	24-159	25			
Benzo(k)fluoranthene	<0.0100	0.0500	0.0478	96	0.0500	0.0494	99	. 3	25-125	25			
Benzo(g,h,i)perylene	<0.0100	0.0500	0.0472	94	0.0500	0.0464	93	2	65-135	25			
Chrysene	<0.0100	0.0500	0.0542 .	108	0.0500	0.0530	106	2	65-135	25			
Dibenz(a,h)anthracene	<0.0100	0.0500	0.0538	108	0.0500	0.0533	107	1 .	50-125	25			
Fluoranthene	<0.0100	0.0500	0.0523	105	0.0500	0.0513	. 103	2 .	47-125	25			
Fluorene	<0.0100	0.0500	0.0540	108	0.0500	0.0525	105	3	48-139	25			
Indeno(1,2,3-c,d)Pyrene	<0.0100	0.0500	0.0541	108	0.0500	0.0535	107	1	27-160	25			
Naphthalene	<0.0100	0.0500	0.0504	101	0.0500	0.0490	98 ·	3	26-175	25			
Phenanthrene	<0.0100	0.0500	0.0476	95	0.0500	0.0464	93	3.	65-135	25			
Pyrene	<0.0100	0.0500	0.0524	105	0.0500	0.0513	103	2	23-152	- 31			

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Xenco Laboratories CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST 12600 West I-20 East Phone: 432-563-1800 Odessa, Texas 79765 Fax: 432-563-1713 Project Name: DCP Plant to Lea Station 6" #2 Project Manager: Ben J. Arguijo **Company Name** Project #: 2009-039 **Basin Environmental Service Technologies, LLC** Company Address: P. O. Box 301 Project Loc: Lea County, NM City/State/Zip: PO #: PAA - J. Henry Lovington, NM 88260 X Standard **NPDES** Telephone No: Report Format: (575)396-2378 Fax No: (575) 396-1429 1VUI Sampler Signature: e-mail: bjargulio@basinenv.com Analyze For: (lab use only) TCLP: 72 hrs TOTAL Х 433649 ORDER #: ş Preservation & # of Containers Matrix 8015B Hg.Se BTEX 8021B/5030 or BTEX 8260 24 TX 1006 Aetals: As Ag Ba Cd Cr Pb RUSH TAT (Pre-Schedule) S=Soil/Solid Alkalinity) SL=Sludg 4 DAY only) 8015M £ **Beginning Depth** ž otal #. of Containers Date Sampled Time Sampled Standard TAT use SQ4. Ending Depth SAR / ESP / CEC DW=Drinking Water ĝ Other (Specify) TX 1005 418.1 AB # (lab ield Filtered Cations (Ca. Chlorides GW = Ground Anions (CI, Na₂S₂O₃ N.O.R.M. Volatiles H₂SO. NaOH HN03 None PAH Ω Ηd Ξ Ş 6 FIELD CODE \mathcal{O} Х Х Х GW MW-3 12/16/11 1100 1 03 X x X MW-4 12/16/11 1140 1 GW PedEx Lone Star Laboratory Comments: Special Instructions: Sample Containers Intact? VOCs Free of Headspace? Relinquished by Date Time Labels on container(s) Date Time Received by: Custody seals on container(s) Custody seals on cooler(s) Date Time Sample Hand Delivered Relinquished by: Date Time Received by: by Sampler/Client Rep. ? by Courier? UPS DHL Relinquished by: Date Time Received by ELOT Date Time Lanlow ۰C India 12-14-11 Temperature Upon Receipt: 10:30

1

「「「「「「「「「「「」」」」

XENCO Laboratories

Atlanta, Boca Raton, Corpus Christi, Dallas

Houston, Miami, Odessa, Philadelphia

Phoenix, San Antonio, Tampa

Document Title: Sample Receipt Checklist Document No.: SYS-SRC Revision/Date: No. 01, 5/27/2010 Effective Date: 6/1/2010 Page 1 of 1

Prelogin / Nonconformance Report - Sample Log-In

Client:	resivi	Plains	
Date/Time:	12:19:11	10.50	
Lab ID # :	زند کم	5649	
Initials:	<u>A</u> .	E	

Sample Receipt Checklist

1. Samples on ice?	Blue	(Wate)	No	
2. Shipping container in good condition?	Yes	. No	None	
3. Custody seals intact on shipping container (coole) and bottles?	Tes	No	N/A	<u></u>
4. Chain of Custody present?	Yes-	No		
5. Sample instructions complete on chain of custody?	Yes	No		v
6. Any missing / extra samples?	Yes	(No)		····
7. Chain of custody signed when relinquished / received?	(Yes)	No	· .	
8. Chain of custody agrees with sample label(s)?	Yes	No		
9. Container labels legible and intact?	Yes	No		
10. Sample matrix / properties agree with chain of custody?	Yes	No		
11. Samples in proper container / bottle?	Yes	No		
12. Samples properly preserved?	(-Yes	No	N/A	ð
13. Sample container intact?	Yes	No		
14. Sufficient sample amount for indicated test(s)?	(Yes)	No		
15. All samples received within sufficient hold time?	Yes	No		
16. Subcontract of sample(s)?	Yes	No	N/A	
17. VOC sample have zero head space?	Yes	No	CNIR	
18. Cooler 1 No. Cooler 2 No. Cooler 3 No.	Cooler 4 No	0.	Cooler 5 No.	
	°C lbs	°(C Ibs	°C

Nonconformance Documentation

condition acceptable by NELAC 5.5.8.3.1.a.1.

Client understands and would like to proceed with analysis

Appendix B Release Notification & Corrective Action (Form C-141)

Suici II Energy Mineral				New Mex and Natura				Re		rm C-141 er 10, 2003	
NIALII)1 W. Grand Avenue, Artes strict.111	sia. NM 88210										
00 Rio Brazos Road, Aziec. strict [V	. NM 87410			vation Div St. France			Submit 2 Copies to appropriate District Office in accordance with Bule 116 on back				
20 S. St. Francis Dr., Santa	Fe, NM 87505			Fe, NM 87505			with Rule 116 on back side of form				
	R	elease Notific			يعتدفا فيشوا كالتقاد والمتعاد	ctio	n			ini da	
			••••	OPERA			-	il Report	∏ Fi	nal Repor	rt .
	Plains Pipeline, L			Contact	Jason Henry]
		Denver City, Tx 79			10. (575) 441-	1099	· · ·				-
		Station 6-inch #2	L	raciiny i yp	e Pipeline						
Surface Owner NM SI	0	Mineral (Jwner				Lease N	10.30-02			
Unit Letter Section	Township Ran			NOF REJ South Line	Feet from the	East/	West Linc	County	Fail		1
F 36	205 371	E .						Lea			!
	• •	Latitude N 32.5			1	110			:		
ype of Release Crud	e Oil	NAT	URE	OF REL	EASE Release 25 bbls	ç	Volume	lecovered) hhie		-,
	Steel Pipeline			Date and H	our of Occurrent		Date and	Hour of Dis			
Was Immediate Notice Gi	iven?	~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		02/12/2009			02/12/200	9 12:30			-
		🛛 No 🗌 Not R	equired	1	son (revised relea	ase volu	ume on 02/2:	5/2009)			
By Whom? Jason Henry	10	***************************************		Date and H				······································			1
Was a Watercourse Reach	ned?	No No		II YES, VO	lume Impacting	the Wat	ercourse.				
f a Watercourse was Imp				l		RE	CEIV	ED			-
						M	AR 232	109			
•		· .									1
ixternal corrosion of 6" in	nch pipeline caused	t a release of crude of				ne to mi		lease. Thro			
External corrosion of 6" in ubject line is 660 bbls/da 12S concentration in the Describe Area Affected a	nch pipeline caused ay and the operating crude is less than 11 nd Cleanup Action	t a release of crude o g pressure of the pipe 0 ppm and the gravit Taken.*	line is 45 y of the c	i psi. The de trude is 65.	pth of the pipelin	ne to mi e at the	itigate the re- release poir	lease. Thro n is approxi	mately 2°	bgs. The	hu murane and
Describe Cause of Problem External corrosion of 6" in subject line is 660 bbls/da 42S concentration in the Describe Area Affected at The released crude results	nch pipeline caused ay and the operating crude is less than 11 nd Cleanup Action	t a release of crude o g pressure of the pipe 0 ppm and the gravit Taken.*	line is 45 y of the c	i psi. The de trude is 65.	pth of the pipelin	ne to mi e at the	itigate the re- release poir	lease. Thro n is approxi	mately 2°	bgs. The	
External corrosion of 6" in ubject line is 660 bbls/da 42S concentration in the Describe Area Affected as The released crude results hereby certify that the in egulations all operators a sublic health or the enviro hould their operations ha or the environment. In ad	nch pipeline caused ay and the operating crude is less than 1 and Cleanup Action ed in a surface stain formation given ab the required to repor- ported to repor- portent. The accep- tive failed to adequa Idition, NMOCD ad	d a release of crude of g pressure of the pipe 0 ppm and the gravit Taken.* that measured appro- prove is true and comp rt and/or file certain of tance of a C-141 reputely investigate and r coeptance of a C-141	line is 45 y of the c eximately elete to the clease no ort by the emediate	i psi. The de rude is 65. 10' x 12'. The best of my the best of my contaminations at NMOCD m contaminations at	the impacted area knowledge and a d perform corre arked as "Final R on that pose a tho	a will be understa ctive aci leport" (reat to g	itigate the re release poir e remediated und that purs- tions for relu does not reli round water	lease. Thro tt is approxi per applica uant to NM eases which eve the ope , surface wa	mately 2' l able guidel OCD rules may enda rator of lia ater, huma	bgs. The ines. s and nger bility n health	du munit
External corrosion of 6" in subject line is 660 bbls/da 12S concentration in the Describe Area Affected as The released crude results hereby certify that the in regulations all operators a public health or the enviro should their operations ha or the environment. In ad	nch pipeline caused ay and the operating crude is less than 1 and Cleanup Action ed in a surface stain formation given ab the required to repor- ported to repor- portent. The accep- tive failed to adequa Idition, NMOCD ad	d a release of crude of g pressure of the pipe 0 ppm and the gravit Taken.* that measured appro- prove is true and comp rt and/or file certain of tance of a C-141 reputely investigate and r coeptance of a C-141	line is 45 y of the c eximately elete to the clease no ort by the emediate	i psi. The de rude is 65. 10' x 12'. The best of my the best of my contaminations at NMOCD m contaminations at	the impacted area knowledge and a d perform corre arked as "Final R on that pose a tho	ac to mi e at the a will be understa ctive aci leport" (reat to g respons	tigate the re release poir e remediated und that purs tions for rel does not reli round water sibility for e	lease. Thro t is approxi per application users which eve the ope sufface we ompliance we	mately 2' l ble guidel OCD rules may enda rator of lia ater, huma vith any ot	bgs. The ines. s and nger bility n health	du munit
External corrosion of 6" in ubject line is 660 bbls/da 12S concentration in the Describe Area Affected au he released crude resulte hereby certify that the in egulations all operators a ublic health or the enviro hould their operations has or the environment. In ad ederal, state, or local law	nch pipeline caused ay and the operating crude is less than 1 and Cleanup Action ed in a surface stain formation given ab the required to repor- ported to repor- portent. The accep- tive failed to adequa Idition, NMOCD ad	d a release of crude of g pressure of the pipe 0 ppm and the gravit Taken.* that measured appro- prove is true and comp rt and/or file certain of tance of a C-141 reputely investigate and r coeptance of a C-141	line is 45 y of the c eximately elete to the release no ont by the emediate report de	i psi. The de rude is 65. 10' x 12'. The best of my otifications a : NMOCD m contaminations not reliev	the impacted area knowledge and a d perform corre- arked as "Final F on that pose a th e the operator of OIL CON	a will be understa ctive act teport o respons SERV	tigate the re release poir e remediated und that purs tions for rel does not reli round water sibility for e	lease. Thro t is approxi per application users which eve the ope sufface we ompliance we	mately 2' l ble guidel OCD rules may enda rator of lia ater, huma vith any ot	bgs. The ines. s and nger bility n health	da mare a da
External corrosion of 6" in subject line is 660 bbls/da 12S concentration in the Describe Area Affected au The released crude results hereby certify that the in regulations all operators a bublic health or the enviro should their operations ha or the environment. In ad ederal, state, or local law Signature:	nch pipeline caused ay and the operating crude is less than H and Cleanup Action ed in a surface stain formation given ab the required to reper content. The acceptive failed to adeque idition, NMOCD act is and/or regulation action and acception between the acception of the acception by the acception of the acception of the acception of the acception of the acception by the acception of the acception of the acception of the standard of the acception of the accep	d a release of crude of g pressure of the pipe 0 ppm and the gravit Taken.* that measured appro- prove is true and comp rt and/or file certain of tance of a C-141 reputely investigate and r coeptance of a C-141	line is 45 y of the c eximately elete to the clease no ort by the emediate report de	i psi. The de rude is 65. 10' x 12'. 1 te best of my otifications a NMOCD m e contaminations not reliev Approved by	The impacted area knowledge and u ad perform corre- arked as "Final R on that pose a thi e the operator of <u>OIL CON</u> District Supervise	a will be understa ctive act teport o respons SERV	tigate the re release poir e remediated and that purs tions for rel does not reli round water sibility for c	lease. Thro t is approxi per applics usant to NM eases which eve the ope , surface wa ompliance v	mately 2' l ble guidel OCD rules may enda rator of lia ater, huma vith any ot	bgs. The ines. s and nger bility n health	La manuel de la constante de l
External corrosion of 6" in abject line is 660 bbls/da 42S concentration in the Describe Area Affected au The released crude results hereby certify that the in egulations all operators a sublic health or the enviro should their operations ha or the environment. In ad ederal, state, or local law Signature:	nch pipeline caused ay and the operating crude is less than H and Cleanup Action ed in a surface stain formation given ab the required to reper poment. The acceptive failed to adequa idition, NMOCD act is and/or regulation and/or regulation	d a release of crude of g pressure of the pipe 0 ppm and the gravit Taken.* that measured appro- prove is true and comp rt and/or file certain of tance of a C-141 reputely investigate and r coeptance of a C-141	line is 45 y of the c eximately elete to the clease no ort by the report de	i psi. The de rude is 65. 10' x 12'. The best of my otifications a : NMOCD m contaminations not reliev	The impacted area in impacted area in perform corre- arked as "Final R on that pose a the e the operator of <u>OIL CON</u> District Supervise area	a will be understa ctive act teport o respons SERV	tigate the re release poir e remediated und that purs tions for rel does not reli round water sibility for e	lease. Thro t is approxi per applics muant to NM eases which eve the ope , surface we ompliance v DIVISIC	mately 2' l ble guidel OCD rules may enda rator of lia tier, human vith any of	bgs. The ines. s and nger bility n health	
External corrosion of 6" in ubject line is 660 bbls/da 12S concentration in the Describe Area Affected as The released crude results hereby certify that the in egulations all operators a public health or the enviro hould their operations ha or the environment. In ad ederal, state, or local law Signature: Affect Printed Name: Jason Her Fitte: Remediation Coor	nch pipeline caused y and the operating crude is less than 14 nd Cleanup Action ed in a surface stain iformation given at the required to repor- poment. The accept two failed to adequa- idition, NMOCD ac- is and/or regulation Decygnamic the accept the failed to adequa- tion adopt the accept the accept	d a release of crude of g pressure of the pipe 0 ppm and the gravit Taken.* that measured appro- pove is true and comp rt and/or file certain of tance of a C-141 rep mely investigate and r ecceptance of a C-141 S.	line is 45 y of the c eximately elete to the clease no ort by the report de	i psi. The de rude is 65. 10' x 12'. 1 te best of my otifications a NMOCD m e contaminations not reliev Approved by Approved by	The impacted area knowledge and u ad perform corre- arked as "Final R on that pose a the e the operator of <u>OIL CON</u> District Supervise (c: CApproval:	a will be understa ctive act leport" (reat to g respons SERV	tigate the re release point e remediated and that purs- tions for rel does not reli- round water sibility for c /ATION Expiration	lease. Thro t is approxi per applics usant to NM eases which eve the ope , surface wa ompliance v	mately 2' l ble guidel OCD rules may enda rator of lia tier, human vith any of	bgs. The ines. s and nger bility n health	
external corrosion of 6" in ubject line is 660 bbls/da 125 concentration in the describe Area Affected as the released crude resulted hereby certify that the in equilations all operators a ublic health or the environ- hould their operations ha r the environment. In ad ederal, state, or local law ignature: Allor rinted Name: Jason Here Title: Remediation Coor mail Address: jhenry@ Date: O3 / 2.3 / 200	nch pipeline caused ay and the operating crude is less than H and Cleanup Action ed in a surface stain formation given ab the required to report comment. The acceptive failed to adequa to adequa t	d a release of crude of g pressure of the pipe 0 ppm and the gravit Taken.* that measured appro- prove is true and comp rt and/or file certain of tance of a C-141 reputely investigate and r coeptance of a C-141	line is 45 y of the c eximately elete to the clease no ort by the report de	i psi. The de rude is 65. 10' x 12'. 1 te best of my otifications a NMOCD m e contaminations not reliev Approved by Approved by	The impacted area knowledge and u ad perform corre- arked as "Final R on that pose a the e the operator of <u>OIL CON</u> District Supervise (c: CApproval:	a will be understa ctive act leport" (reat to g respons SERV	tigate the re release poir e remediated and that purs tions for rel does not reli round water sibility for c	lease. Thro t is approxi per applics muant to NM eases which eve the ope , surface we ompliance v DIVISIC	mately 2' l ble guidel OCD rules may enda rator of lia tier, human vith any of	bgs. The ines. s and nger bility n health	
External corrosion of 6" in ubject line is 660 bbls/da 125 concentration in the Describe Area Affected as The released crude resulte hereby certify that the in egulations all operators a sublic health or the environ- hould their operations has or the environment. In ad- ederal, state, or local law strinted Name: Jason Her Title: Remediation Coor i-mail Address: jhenry@ Date: 03/23/20	nch pipeline caused ay and the operating crude is less than H and Cleanup Action ed in a surface stain formation given ab the required to report comment. The acceptive failed to adequa to adequa t	d a release of crude of g pressure of the pipe 0 ppm and the gravit Taken.* that measured appro- pove is true and comp rt and/or file certain of tance of a C-141 rep mely investigate and r ecceptance of a C-141 S.	line is 45 y of the c eximately elete to the clease no ort by the report de	i psi. The de rude is 65. 10' x 12'. 1 te best of my otifications a NMOCD m e contaminations not reliev Approved by Approved by	The impacted area knowledge and u ad perform corre- arked as "Final R on that pose a the e the operator of <u>OIL CON</u> District Supervise (c: CApproval:	a will be understa ctive act leport" (reat to g respons SERV	tigate the re release point e remediated and that purs- tions for rel does not reli- round water sibility for c /ATION Expiration	lease. Thro t is approxi per applics muant to NM eases which eve the ope , surface we ompliance v DIVISIC	mately 2' l ble guidel OCD rules may enda rator of lia tier, human vith any of	bgs. The ines. s and nger bility n health	
External corrosion of 6" in ubject line is 660 bbls/da 125 concentration in the Describe Area Affected as The released crude resulte hereby certify that the in egulations all operators a sublic health or the environ- hould their operations has or the environment. In ad- ederal, state, or local law strinted Name: Jason Her Title: Remediation Coor i-mail Address: jhenry@ Date: 03/23/20	nch pipeline caused ay and the operating crude is less than H and Cleanup Action ed in a surface stain formation given ab the required to report comment. The acceptive failed to adequa to adequa t	d a release of crude of g pressure of the pipe 0 ppm and the gravit Taken.* that measured appro- pove is true and comp rt and/or file certain of tance of a C-141 rep mely investigate and r ecceptance of a C-141 S.	line is 45 y of the c eximately elete to the clease no ort by the report de	i psi. The de rude is 65. 10' x 12'. 1 te best of my otifications a NMOCD m e contaminations not reliev Approved by Approved by	The impacted area knowledge and u ad perform corre- arked as "Final R on that pose a the e the operator of <u>OIL CON</u> District Supervise (c: CApproval:	a will be understa ctive act leport" (reat to g respons SERV	tigate the re release point e remediated and that purs- tions for rel does not reli- round water sibility for c /ATION Expiration	lease. Thro t is approxi per applics muant to NM eases which eve the ope , surface we ompliance v DIVISIC	mately 2' l ble guidel OCD rules may enda rator of lia tier, human vith any of	bgs. The ines. s and nger bility n health	
External corrosion of 6" in ubject line is 660 bbls/da 42S concentration in the Describe Area Affected au The released crude resulte hereby certify that the in egulations all operators a sublic health or the environ- hould their operations ha or the environment. In ad ederal, state, or local law signature: Affected au Frinted Name: Jason Here File: Remediation Coor i-mail Address: jhenry@ Date: 03/23/200	nch pipeline caused ay and the operating crude is less than H and Cleanup Action ed in a surface stain formation given ab the required to report comment. The acceptive failed to adequa to adequa t	d a release of crude of g pressure of the pipe 0 ppm and the gravit Taken.* that measured appro- pove is true and comp rt and/or file certain of tance of a C-141 rep mely investigate and r ecceptance of a C-141 S.	line is 45 y of the c eximately elete to the clease no ort by the report de	i psi. The de rude is 65. 10' x 12'. 1 te best of my otifications a NMOCD m e contaminations not reliev Approved by Approved by	The impacted area knowledge and u ad perform corre- arked as "Final R on that pose a the e the operator of <u>OIL CON</u> District Supervise (c: CApproval:	a will be understa ctive act leport" (reat to g respons SERV	tigate the re release point e remediated and that purs- tions for rel does not reli- round water sibility for c /ATION Expiration	lease. Thro t is approxi per applics muant to NM eases which eve the ope , surface we ompliance v DIVISIC	mately 2' l ble guidel OCD rules may enda rator of lia tier, human vith any of	bgs. The ines. s and nger bility n health	
External corrosion of 6" in ubject line is 660 bbls/da 125 concentration in the Describe Area Affected as The released crude resulte hereby certify that the in egulations all operators a sublic health or the environ- hould their operations has or the environment. In ad- ederal, state, or local law strinted Name: Jason Her Title: Remediation Coor i-mail Address: jhenry@ Date: 03/23/20	nch pipeline caused ay and the operating crude is less than H and Cleanup Action ed in a surface stain formation given ab the required to report comment. The acceptive failed to adequa to adequa t	d a release of crude of g pressure of the pipe 0 ppm and the gravit Taken.* that measured appro- pove is true and comp rt and/or file certain of tance of a C-141 rep mely investigate and r ecceptance of a C-141 S.	line is 45 y of the c eximately elete to the clease no ort by the report de	i psi. The de rude is 65. 10' x 12'. 1 te best of my otifications a NMOCD m e contaminations not reliev Approved by Approved by	The impacted area knowledge and u ad perform corre- arked as "Final R on that pose a the e the operator of <u>OIL CON</u> District Supervise (c: CApproval:	a will be understa ctive act leport" (reat to g respons SERV	tigate the re release point e remediated and that purs- tions for rel does not reli- round water sibility for c /ATION Expiration	lease. Thro t is approxi per applics muant to NM eases which eve the ope , surface we ompliance v DIVISIC	mately 2' l ble guidel OCD rules may enda rator of lia tier, human vith any of	bgs. The ines. s and nger bility n health	
External corrosion of 6" in abject line is 660 bbls/da 12S concentration in the Describe Area Affected au The released crude results hereby certify that the in regulations all operators a bublic health or the enviro should their operations has or the environment. In ad ederal, state, or local law Signature:	nch pipeline caused ay and the operating crude is less than H and Cleanup Action ed in a surface stain formation given ab the required to report comment. The acceptive failed to adequa to adequa t	d a release of crude of g pressure of the pipe 0 ppm and the gravit Taken.* that measured appro- pove is true and comp rt and/or file certain of tance of a C-141 rep mely investigate and r ecceptance of a C-141 S.	line is 45 y of the c eximately elete to the clease no ort by the report de	i psi. The de rude is 65. 10' x 12'. 1 te best of my otifications a NMOCD m e contaminations not reliev Approved by Approved by	The impacted area knowledge and u ad perform corre- arked as "Final R on that pose a the e the operator of <u>OIL CON</u> District Supervise (c: CApproval:	a will be understa ctive act leport" (reat to g respons SERV	tigate the re release point e remediated and that purs- tions for rel does not reli- round water sibility for c /ATION Expiration	lease. Thro t is approxi per applics muant to NM eases which eve the ope , surface we ompliance v DIVISIC	mately 2' l ble guidel OCD rules may enda rator of lia tier, human vith any of	bgs. The ines. s and nger bility n health	
External corrosion of 6" in abject line is 660 bbls/da 12S concentration in the Describe Area Affected as The released crude resulte hereby certify that the in egulations all operators a sublic health or the envir should their operations ha or the environment. In ad ederal, state, or local law Signature: Affected as Printed Name: Jason Her File: Remediation Coor i-mail Address: jhenry@ Date: 03/23/20	nch pipeline caused ay and the operating crude is less than H and Cleanup Action ed in a surface stain formation given ab the required to report comment. The acceptive failed to adequa to adequa t	d a release of crude of g pressure of the pipe 0 ppm and the gravit Taken.* that measured appro- pove is true and comp rt and/or file certain of tance of a C-141 rep mely investigate and r ecceptance of a C-141 S.	line is 45 y of the c eximately elete to the clease no ort by the report de	i psi. The de rude is 65. 10' x 12'. 1 te best of my otifications a NMOCD m e contaminations not reliev Approved by Approved by	The impacted area knowledge and u ad perform corre- arked as "Final R on that pose a the e the operator of <u>OIL CON</u> District Supervise (c: CApproval:	a will be understa ctive act leport" (reat to g respons SERV	tigate the re release point e remediated and that purs- tions for rel does not reli- round water sibility for c /ATION Expiration	lease. Thro t is approxi per applics muant to NM eases which eve the ope , surface we ompliance v DIVISIC	mately 2' l ble guidel OCD rules may enda rator of lia tier, human vith any of	bgs. The ines. s and nger bility n health	
External corrosion of 6" in ubject line is 660 bbls/da 42S concentration in the Describe Area Affected au The released crude resulte hereby certify that the in egulations all operators a sublic health or the environ- hould their operations ha or the environment. In ad ederal, state, or local law signature: Affected au Frinted Name: Jason Here File: Remediation Coor i-mail Address: jhenry@ Date: 03/23/200	nch pipeline caused ay and the operating crude is less than H and Cleanup Action ed in a surface stain formation given ab the required to report comment. The acceptive failed to adequa to adequa t	d a release of crude of g pressure of the pipe 0 ppm and the gravit Taken.* that measured appro- pove is true and comp rt and/or file certain of tance of a C-141 rep mely investigate and r ecceptance of a C-141 S.	line is 45 y of the c eximately elete to the clease no ort by the report de	i psi. The de rude is 65. 10' x 12'. 1 te best of my otifications a NMOCD m e contaminations not reliev Approved by Approved by	The impacted area knowledge and u ad perform corre- arked as "Final R on that pose a the e the operator of <u>OIL CON</u> District Supervise (c: CApproval:	a will be understa ctive act leport" (reat to g respons SERV	tigate the re release point e remediated and that purs- tions for rel does not reli- round water sibility for c /ATION Expiration	lease. Thro t is approxi per applics muant to NM eases which eve the ope , surface we ompliance v DIVISIC	mately 2' l ble guidel OCD rules may enda rator of lia tier, human vith any of	bgs. The ines. s and nger bility n health	

•

Appendix C Monitor Well Logs

		Monitor Well MW-5	Monitor Well MW-5
Drilling Soil	Petroleum Pet	roleum	Date DrilledJanuary 24, 2011
Depth Columns		Stain Soil Description	Thickness of Bentonite Seet 63 Ft
C ⁰			Depth of Exploratory Boring <u>95 Ft bgs</u> Depth to Groundwater <u>80 Ft bgs</u>
10 10 10 10 10 10 10 10 10 10 10 10 10 1	None	None 0 - 6' bgs - Tan fine sand - Caliche - Sandstone	Ground Water Elevation
0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		88	
istie !	None	None 6 - 9' bgs - Tan fine sand - Sandstone	Indicates the PSH level measured
- 10			Indicates the groundwater level
	None	None 9 - 18' bgs - Tan very fine sand - Sandstone	measured on <u>March 24, 2011</u> Indicates samples selected for
	Non		Laboratory Analysis. PID Head-space reading in ppm obtained with a photo-ionization detector.
-20 話感	None	None	with a photo-tonization detector.
	None	None 18 - 28' bgs - Calliche - Tan find sand - Sandstone	
-25	NUTC	None 10 - 20 bys - Galicite - Tail lind sand - Sandstone	
18 1	None I	lone	
- 30 9 95			
	None	None 28 - 36' bgs - Tan fine sandstone - Tan fine sand	
-36			
E	None I	None	
40			
-45	None I	lone	
E B	None 1	lone	
50	None		Grout Surface Seal
	None 1	lone	
-55			Bentonite Pellet Seal
-	None 1	lone	
60		36 - 93' bgs - Reddish brown fine to very fine sand	Sand Pack
E	None N	lone	_
-65		None 0 - 6' bgs - Tan fine sand - Caliche - Sandstone None 6 - 9' bgs - Tan fine sand - Sandstone None 9 - 18' bgs - Tan very fine sand - Sandstone None 18 - 28' bgs - Caliche - Tan find sand - Sandstone None 28 - 36' bgs - Tan fine sandstone - Tan fine sand None 28 - 36' bgs - Tan fine sandstone - Tan fine sand None 36 - 93' bgs - Reddish brown fine to very fine sand None None None None 36 - 93' bgs - Reddish brown fine to very fine sand	Screen
E_70	None	lone 🤤	
	None N	lone SER	
-75			
-	None N	lone	
- 80			
E	None N	lone Gale M	
- 85			
-	None N	lone	
- 90	None N		
E _{ss} TD	None	Ione 93 - 95' bgs - Reddish brown fine-very fine sand w/ clay	
			Completion Notes The monitor well was advanced on date using air rotary drilling techniques. The well was constructed with 4* ID (0.0 Inch factory dotted. Wreaded joint, sche
			 40 PVC pipe. The well is protected with a locked stick-steel cover and compression cap. The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be
			gradual. 5.) The depths indicated are referenced from
			ground surface.

Monitor Well MW-5 DCP Plant to Lea Station 6-Inch #2 Lea County, New Mexico Plains Pipeline, L.P.

Basin Environmental Service Technologies, LLC

Checked By: BRB

Prep By: BJA March 16, 2012