
1R - 2166

Annual GW Mon. Report

Basin Environmental Service Technologies, LLC

3100 Plains Highway
P. O. Box 301
Lovington, New Mexico 88260
bjarguijo@basinenv.com
Office: (575) 396-2378
Fax: (575) 396-1429

RI

2011 ANNUAL MONITORING REPORT

APR 2 2012

DCP PLANT TO LEA STATION 6-INCH SECTION 3 (Conservation Division Unit Letter "K" (NESW), Section 31, Township 20 South, Range 37) East Francis Drive Latitude 32.52733° North, Longitude 103.2906° West Lea County, New Mexico Plains SRS Number: 2009-084 NMOCD Reference Number: 1RP-2166

Prepared For:

PLAINS

Plains Marketing, LP 333 Clay Street, Suite 1600 Houston, Texas 77002

Prepared By:

Basin Environmental Service Technologies, LLC P. O. Box 301 Lovington, New Mexico 88260

March 2012

Ben J. Arguijo

Project Manager

PLAINS ALL AMERICAN

March 29, 2012

APR 2 2012

RHCHIV

Oil Conservation Division 1220 S. St. Francis Drive Sunte Fe, NM 87505

Mr. Edward Hansen New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Plains All American – 2011 Annual Monitoring Reports 5 Sites in Lea County, New Mexico

1 Site in Eddy County, New Mexico

Dear Mr. Hansen:

Plains All American is an operator of crude oil pipelines and terminal facilities in the state of New Mexico. Plains All American actively monitors certain historical release sites exhibiting groundwater impacts, consistent with assessments and work plans developed in consultation with the New Mexico Oil Conservation Division (NMOCD). In accordance with the rules and regulations of the NMOCD, Plains All American hereby submits our Annual Monitoring reports for the following sites:

Lovington Gathering WTI	AP-96 (1R-838)	Section 06, T17S, R37E, Lea County
Red Byrd #1	1R-0085	Section 01, T20S, R36E, Lea County
DCP Plant to Lea Sta. 6" #2	1R-2136	Section 31, T20S, R37E, Lea County
DCP Plant to Lea Sta. 6" Sec.31	1R-2166	Section 31, T20S, R37E, Lea County
14" Vac to Jal Legacy	1R-2162	Section 25, T22S, R37E, Lea County
Ballard Grayburg 5-Inch	2R-0053	Section 10, T18S, R29E, Eddy County

Basin Environmental Service Technologies, LLC (Basin) prepared these documents and has vouched for their accuracy and completeness, and on behalf of Plains All American. I have personally reviewed the documents and interviewed Basin personnel in order to verify the accuracy and completeness of these documents. It is based upon these inquiries and reviews that Plains All American submits the enclosed Annual Monitoring Reports for the above facilities.

If you have any questions or require further information, please contact me at (575) 441-1099.

Sincerely,

∮ason Henry Remediation Coordinator Plains All American

CC: Geoff Leking, NMOCD, Hobbs, NM Enclosures

2530 State Hwy, 214 • Denver City, TX 79323 • (575)441-1099

TABLE OF CONTENTS

INTRODUCTION	1
SITE DESCRIPTION AND BACKGROUND INFORMATION	1
FIELD ACTIVITIES	
LABORATORY RESULTS	4
SUMMARY	5
ANTICIPATED ACTIONS	
LIMITATIONS	6
DISTRIBUTION	7

FIGURES

Figure 1 – Site Location Map

Figure 2A – Inferred Groundwater Gradient Map – 1Q2011 Figure 2B – Inferred Groundwater Gradient Map – 2Q2011 Figure 2C – Inferred Groundwater Gradient Map – 3Q2011 Figure 2D – Inferred Groundwater Gradient Map – 4Q2011

Figure 3A – Groundwater Concentration & Inferred PSH Extent Map – 1Q2011 Figure 3B – Groundwater Concentration & Inferred PSH Extent Map – 2Q2011 Figure 3C – Groundwater Concentration & Inferred PSH Extent Map – 3Q2011 Figure 3D – Groundwater Concentration & Inferred PSH Extent Map – 4Q2011

TABLES

Table 1 – 2011 Groundwater Elevation Data

Table 2 - 2011 Concentrations of Benzene & BTEX in Groundwater

Table 3 - Concentrations of RCRA & NMWQCC Metals in Groundwater

Table 4 – Concentrations of Volatile Organic Compounds Groundwater

Table 5 - Concentrations of Semi-Volatile Compounds in Groundwater

Table 6 - Concentrations of Anions/Cations in Groundwater

APPENDICES

Appendix A – Laboratory Analytical Reports

Appendix B – Release Notification and Corrective Action (Form C-141)

Appendix C – Soil Boring & Monitor Well Logs

INTRODUCTION

Basin Environmental Service Technologies, LLC (Basin), on behalf of Plains Pipeline, LP (Plains), is pleased to submit this *Annual Monitoring Report* in compliance with the New Mexico Oil Conservation Division (NMOCD) letter of May 1998, requiring submittal of an Annual Monitoring Report by April 1st of each year. This report is intended to be viewed as a complete document with text, figures, tables, and appendices. This report presents the results of the quarterly groundwater monitoring events conducted in calendar year 2011 only. For reference, a "Site Location Map" is provided as Figure 1.

Groundwater monitoring was conducted during each quarter of 2011 to assess the levels and extent of dissolved phase constituents and Phase-Separated Hydrocarbon (PSH). The groundwater monitoring events consisted of measuring static water levels in the monitor wells, checking for the presence of PSH, and purging and sampling of each well exhibiting sufficient recharge. Monitor wells containing a thickness of PSH greater than 0.01 feet were not sampled.

SITE DESCRIPTION AND BACKGROUND INFORMATION

The legal description of the site is Unit Letter "K" (NESW), Section 31, Township 20 South, Range 37 East, in Lea County, New Mexico. The property affected by the release is owned by The State of New Mexico (ROE permit #1794) and is administered by the New Mexico State Land Office (NMSLO). The geographic coordinates of the release site are 32.52733° North latitude and 103.2906° West longitude.

On April 2, 2009, Plains discovered a crude oil release from a six (6)-inch steel pipeline. During initial response activities, Plains installed a temporary clamp on the pipeline to mitigate the release. The crude oil release resulted in a surface stain measuring approximately six (6) feet in width by eight (8) feet in length. Plains initially classified the release as "non-reportable". Upon further investigation, Plains reclassified the release to "reportable" status and notified the NMOCD Hobbs District Office and submitted a "Release Notification and Corrective Action" (Form C-141) on April 29, 2009. The cause of the release was attributed to external corrosion of the pipeline.. The C-141 indicated approximately twenty (20) barrels of crude oil was released from the pipeline, with no recovery.

On April 15, 2009, one (1) soil boring (SB-1) was advanced approximately ten (10) feet west of the release point to evaluate the vertical extent of soil impact. During advancement of the soil boring, groundwater was encountered at approximately seventy-seven (77) feet below ground surface (bgs). Temporary casing was installed in the boring to obtain a preliminary groundwater sample. On April 16, 2009, a groundwater sample (SB-1) was collected from the temporary casing and submitted to the laboratory for analysis of total dissolved solids (TDS), chlorides, and benzene, toluene, ethylbenzene, and total xylenes (BTEX). Following the collection of the groundwater sample, the temporary casing was removed from the soil boring and the soil boring was plugged with cement and bentonite, as required by the New Mexico Office of the State Engineer (NMOSE). Laboratory analytical results indicated a benzene concentration of 1.915 mg/L, a BTEX concentration of 4.7711 mg/L, a chloride concentration of 54.6 mg/L, and a TDS concentration of 788 mg/L. Based on the analytical results of the submitted groundwater sample, Plains notified NMOCD representatives in the Hobbs District Office and the Santa Fe Office of the laboratory-confirmed impact to groundwater at the release site.

On June 2, 2009, following advancement of the soil boring, excavation of hydrocarbon-impacted soil commenced. Excavated soil was stockpiled on-site on a plastic liner to mitigate the potential leaching of the contaminants into the vadose zone. Approximately 1,400 cubic yards (cy) of soil was stockpiled on-site, pending final disposition. The final dimensions of the excavation were approximately seventy-seven (77) feet in width, approximately eighty (80) feet in length, and fifteen (15) feet in depth.

On September 21 through September 23, 2009, Plains installed and developed four (4) monitor wells (MW-1 through MW-4) at the release site, as approved by the NMOCD. Soil samples were collected at five (5) foot drilling intervals and field screened using a Photo-Ionization Detector (PID). Selected soil samples were submitted to the laboratory for determination of concentrations of BTEX and total petroleum hydrocarbons (TPH) using EPA Methods SW-846 8021b and SW-846 8015M, respectively.

Monitor well MW-1 was installed on the floor of the excavation, at approximately fifteen (15) feet bgs, to a total depth of approximately eighty-six (86) feet bgs. Soil samples collected at twenty-five (25) feet bgs, thirty-five (35) feet bgs, forty-five (45) feet bgs, fifty-five (55) feet bgs, sixty-five (65) feet bgs, and seventy-five (75) feet bgs were submitted to the laboratory for analysis. Laboratory analytical results indicated benzene concentrations were less than the appropriate laboratory method detection limit (MDL) for all of the submitted soil samples. BTEX concentrations ranged from 0.0359 mg/Kg for the soil sample collected at twenty-five (25) feet bgs to 13.444 mg/Kg for the soil sample collected at fifty-five (55) feet bgs. The TPH concentrations ranged from 286 mg/Kg for the soil sample collected at twenty-five (25) feet bgs.

Monitor well MW-2 is located approximately seventy-five (75) feet northwest (up-gradient) of the release point. The monitor well was installed to a total depth of approximately ninety (90) feet bgs. Soil samples collected at fifteen (15) feet bgs, thirty (30) feet bgs, forty-five (45) feet bgs, sixty (60) feet bgs, and seventy-five (75) feet bgs were submitted to the laboratory for analysis. Laboratory analytical results indicated benzene, BTEX, and TPH concentrations were less than the appropriate laboratory MDL for all of the submitted soil samples.

Monitor well MW-3 is located approximately seventy-five (75) feet to the southwest (crossgradient) of the release point. The monitor well was installed to a total depth of approximately ninety (90) feet bgs. Soil samples collected at fifteen (15) feet bgs, thirty (30) feet bgs, forty-five (45) feet bgs, and sixty (60) feet bgs were submitted to the laboratory for analysis. Laboratory analytical results indicated benzene concentrations ranged from less than the appropriate laboratory MDL for the soil samples collected at fifteen (15) feet bgs, thirty (30) feet bgs, fortyfive (45) feet bgs, and sixty (60) feet bgs to 0.0025 mg/Kg for the soil sample collected at sixty (60) feet bgs. Analytical results indicated BTEX concentrations ranged from less than the appropriate laboratory MDL for the soil samples collected at fifteen (15) feet bgs, thirty (30) feet bgs, and forty-five (45) feet bgs to 0.0052 mg/Kg for the soil sample collected at sixty (60) feet bgs. TPH concentrations were less than the appropriate laboratory MDL for all of the submitted soil samples.

Monitor well MW-4 is located approximately seventy-five (75) feet to the southeast (downgradient) of the release point. The monitor well was installed to a total depth of approximately eighty-nine (89) feet bgs. Soil samples collected at fifteen (15) feet bgs, thirty (30) feet bgs,

forty-five (45) feet bgs, and sixty (60) feet bgs were submitted to the laboratory for analysis. Laboratory analytical results indicated benzene, BTEX, and TPH concentrations were less than the appropriate laboratory MDL for all of the submitted soil samples.

On January 25, 2011, one (1) additional monitoring well (MW-5) was installed to further monitor the down-gradient migration of the PSH plume. Monitor well MW-5 is located approximately sixty (60) feet to the southeast (down-gradient) of the release point. The monitor well was installed to a total depth of approximately ninety-five (95) feet bgs. Soil samples collected at fifteen (15) feet bgs, twenty-five (25) feet bgs, forty-five (45) feet bgs, sixty-five (65) feet bgs, and seventy-five (75) feet bgs were submitted to the laboratory for analysis. Laboratory analytical results indicated benzene, BTEX, and TPH concentrations were less than the appropriate laboratory MDL for all of the submitted soil samples. PSH was not observed in monitor well MW-5.

Currently, a total of five (5) monitor wells are located at the DCP Plant to Lea Station 6-Inch Section 31 release site. Monitor wells MW-2, MW-3, MW-4, and MW-5 are gauged and sampled on a quarterly schedule, while MW-1 is gauged weekly but not sampled due to the presence of PSH.

FIELD ACTIVITIES

Product Recovery Efforts

A measurable thickness of PSH was detected in monitor well MW-1 during the initial site investigation. Basin began manual, bi-weekly gauging and recovery of PSH from MW-1 in October 2009. Approximately 1,575 gallons (37.5 barrels) of PSH has been recovered from MW-1 since recovery operations began in 2009, and approximately 1,030 gallons (24.5 barrels) of PSH was recovered from MW-1 during the 2011 reporting period. The average PSH thickness measured in MW-1 during the reporting period was 3.57 feet, and the maximum PSH thickness was 3.74 feet on May 17, 2011. All recovered fluids are disposed of at an NMOCD- approved disposal facility near Monument, New Mexico.

Mobile Dual-Phase Extraction (MDPE) events were conducted on May 4 through May 5 and September 7 through 9, 2011, by Talon LPE. Approximately 40.92 equivalent gallons (0.97 barrels) of PSH were removed during the May event, and approximately 706.74 equivalent gallons (17.8 barrels) of PSH were removed during the September event.

Groundwater Monitoring

The on-site monitor wells were gauged and sampled on March 25 (1Q2011), May 26 (2Q2011), August 17 (3Q2011), and November 29, 2011 (4Q2011). During these quarterly sampling events, the monitoring wells were purged of a minimum of three (3) well volumes of water or until the wells were dry using a PVC bailer or electrical Grundfos pump. Groundwater was allowed to recharge, and samples were obtained using disposable Teflon bailers. Water samples were stored in clean, glass containers provided by the laboratory and placed on ice in the field. Purge water was collected in a trailer-mounted polystyrene tank and disposed of at an NMOCD-approved disposal facility near Monument, New Mexico.

Yearly monitoring events for polyaromatic hydrocarbons (PAH) were conducted on December 16 and December 21, 2011. Based on sampling criteria provided by the NMOCD, only monitor wells MW-3 and MW-4 were subject to PAH monitoring during the 2011 calendar year.

Locations of the groundwater monitoring wells and the inferred groundwater elevations, which were constructed from the measurements collected during the 2011 quarterly sampling events, are depicted in Figures 2A through 2D. The "Groundwater Gradient Map" from the most recent sampling event (Figure 2D, November 29, 2011) indicates a general gradient of approximately 0.0023 feet/foot to the southeast as measured between groundwater monitor wells MW-2 and MW-4.

On November 29, 2011, the corrected groundwater elevation ranged between 3,456.02 and 3,456.64 feet above mean sea level in monitor wells MW-4 and MW-2, respectively. The "2011 Groundwater Elevation Data" is provided as Table 1.

LABORATORY RESULTS

Groundwater samples collected from the monitor wells during the quarterly sampling events (1Q2011, 2Q2011, 3Q2011, and 4Q2011) were delivered to Xenco Laboratories in Odessa, Texas, for determination of benzene, toluene, ethylbenzene, and total xylenes (BTEX) constituent concentrations by EPA Method SW846-8021b. A summary of benzene and BTEX constituent concentrations is presented in Table 2, "2011 Concentrations of Benzene & BTEX in Groundwater". Laboratory analytical reports are provided as Appendix A. "Groundwater Concentration & Inferred PSH Extent" maps are provided as Figures 3A through 3D.

Laboratory analytical results were compared to NMOCD regulatory limits based on the New Mexico groundwater standards found in section 20.6.2.3103 of the New Mexico Administrative Code (NMAC).

Monitor well MW-1

Monitor well MW-1 was not sampled during the 2011 reporting period due to the presence of PSH in the monitor well.

Monitor well MW-2

Laboratory analytical results indicated benzene concentrations ranged from less than the laboratory MDL in 2Q2011 through 4Q2011 to 0.0072 mg/L in 1Q2011. Toluene concentrations ranged from less than the laboratory MDL in 2Q2011 through 4Q2011 to 0.0068 mg/L in 1Q2011. Ethylbenzene and total xylene concentrations were less than the laboratory MDL during all four quarters of the reporting period. Benzene, toluene, ethylbenzene, and total xylene concentrations were less than NMOCD regulatory standards during all four quarters of the reporting period.

Monitor well MW-3

Laboratory analytical results indicated benzene concentrations ranged from less than the laboratory MDL in 1Q2011 to 0.0138 mg/L in 3Q2011. Toluene, ethylbenzene, and total xylene

concentrations were less than the laboratory MDL during all four quarters of the reporting period. Benzene concentrations exceeded NMOCD regulatory standards in 3Q2011. Toluene, ethylbenzene, and total xylene concentrations were less than NMOCD regulatory standards during all four quarters of the reporting period.

PAH constituent concentrations were both less than the appropriate laboratory MDL and NMOCD regulatory standards in the groundwater sample collected on December 16, 2011.

Monitor well MW-4

Laboratory analytical results indicated benzene concentrations ranged from less than the laboratory MDL in 2Q2011 through 4Q2011 to 0.0051 mg/L in 1Q2011. Toluene concentrations ranged from less than the laboratory MDL in 2Q2011 through 4Q2011 to 0.0046 mg/L in 1Q2011. Ethylbenzene and total xylene concentrations were less than the appropriate laboratory MDL during all four quarters of the reporting period. Benzene, toluene, ethylbenzene, and total xylene concentrations were less than NMOCD regulatory standards during all four quarters of the reporting period.

PAH constituent concentrations were both less than the appropriate laboratory MDL and NMOCD regulatory standards in the groundwater sample collected on December 21, 2011.

Monitor well MW-5

Laboratory analytical results indicated benzene concentrations ranged from 0.233 mg/L in 4Q2011 to 1.73 mg/L in 3Q2011. Toluene concentrations ranged from less than the laboratory MDL in 1Q2011 to 0.0560 mg/L in 3Q2011. Ethylbenzene concentrations were less than the laboratory MLD during all four quarters of the reporting period. Total xylene concentrations ranged from 0.00388 in 4Q2011 to 0.0275 mg/L in 2Q2011. Benzene concentrations exceeded NMOCD regulatory standards during all four quarters of the reporting period. Toluene, ethylbenzene, and total total xylene concentrations were less than NMOCD regulatory standards during all four quarters of the reporting period.

Baseline sampling of monitor well MW-5 was conducted on March 25, 2011. Laboratory analytical results from the baseline monitoring are summarized in Tables 3 through 6. A Monitor Well Log is provided as Appendix C.

SUMMARY

This report presents the results of the monitoring activities for the 2011 annual monitoring period. Currently, there are five (5) groundwater monitor wells (MW-1, MW-2, MW-3, MW-4, and MW-5) on-site. Monitor well MW-1 was not sampled in 2011 due to the presence of PSH in the monitor well. Monitor wells MW-2, MW-3, MW-4, and MW-5 were sampled during all four quarters of the monitoring period, and the results of these sampling events are summarized above.

The "Groundwater Gradient Map" from the most recent sampling event (Figure 2D, November 29, 2011) indicates a general gradient of approximately 0.0023 feet/foot to the southeast as measured between groundwater monitor wells MW-2 and MW-4.

A measurable thickness of PSH was detected in monitor well MW-1 throughout the 2011 reporting period. The average PSH thickness measured in MW-1 during the reporting period was 3.57 feet, and the maximum PSH thickness was 3.74 feet on May 17, 2011.

During the reporting period, approximately 1,030 gallons (24.5 barrels) of PSH was recovered, by manual recovery, from monitor well MW-1. A total of 747.66 equivalent gallons (17.8 barrels) of PSH was recovered by Mobile Dual-Phase Extraction.

Review of laboratory analytical results generated from analysis of groundwater samples collected in 2011 indicated benzene concentrations were less than NMOCD regulatory standards for monitor wells MW-2 and MW-4. However, benzene concentrations above NMOCD regulatory standards were detected in one groundwater sample from MW-3 (4Q2011).

ANTICIPATED ACTIONS

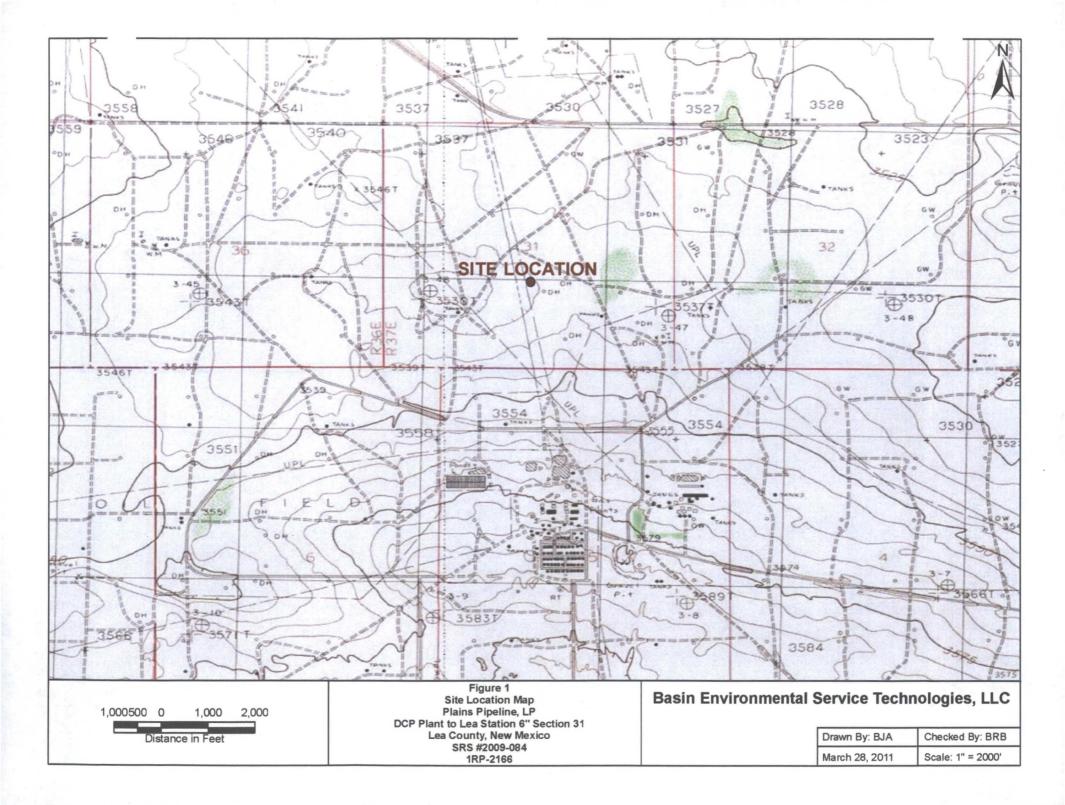
PSH recovery from monitor well MW-1 will continue on a bi-weekly schedule. All fluids recovered from MW-1 will be disposed of at an NMOCD-permitted disposal facility. Monitor wells MW-2, MW-3, MW-4, and MW-5 will be monitored and sampled quarterly. A yearly PAH monitoring event will be conducted at monitor wells MW-3 and MW-5 during the 2012 calendar year. Results from the 2011 sampling events will be reported in the 2012 *Annual Monitoring Report*, which will be submitted to the NMOCD by April 1, 2013.

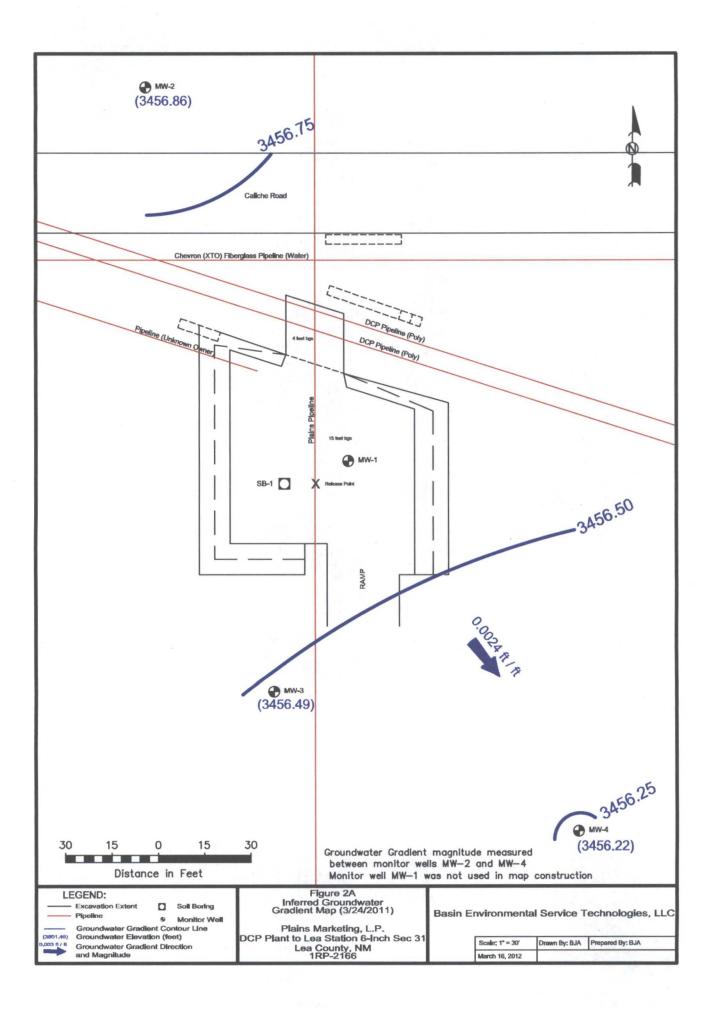
LIMITATIONS

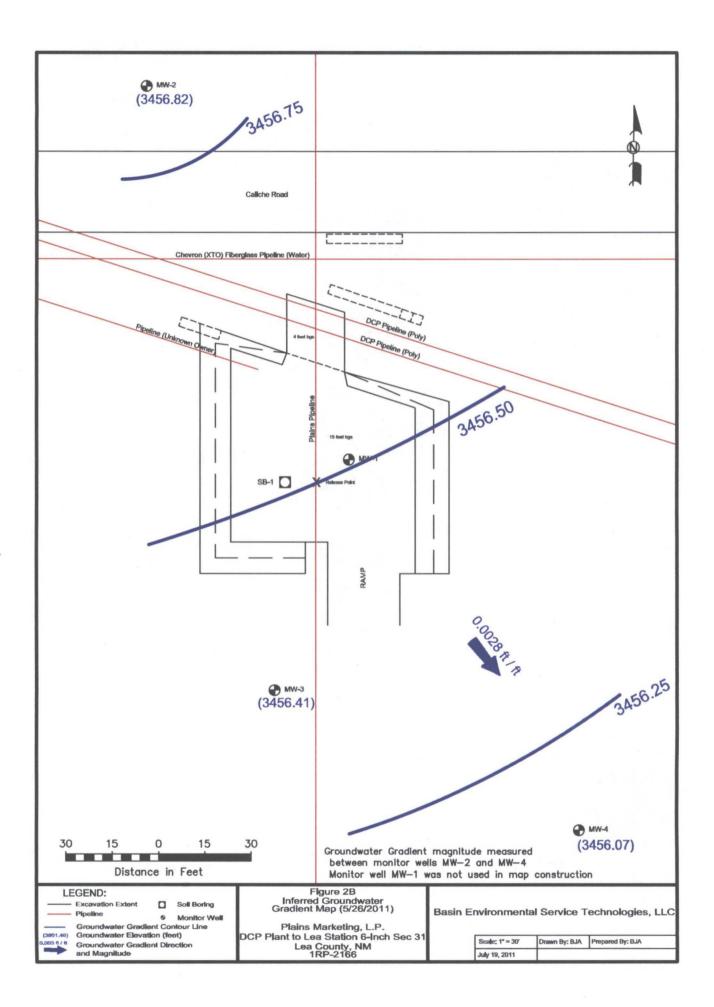
Basin Environmental Service Technologies, LLC, has prepared this *Annual Monitoring Report* to the best of its ability. No other warranty, expressed or implied, is made or intended. Basin has examined and relied upon documents referenced in the report and on oral statements made by certain individuals. Basin has not conducted an independent examination of the facts contained in referenced materials and statements. Basin has presumed the genuineness of these documents and statements and that the information provided therein is true and accurate. Basin has prepared this report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Basin notes that the facts and conditions referenced in this report may change over time, and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

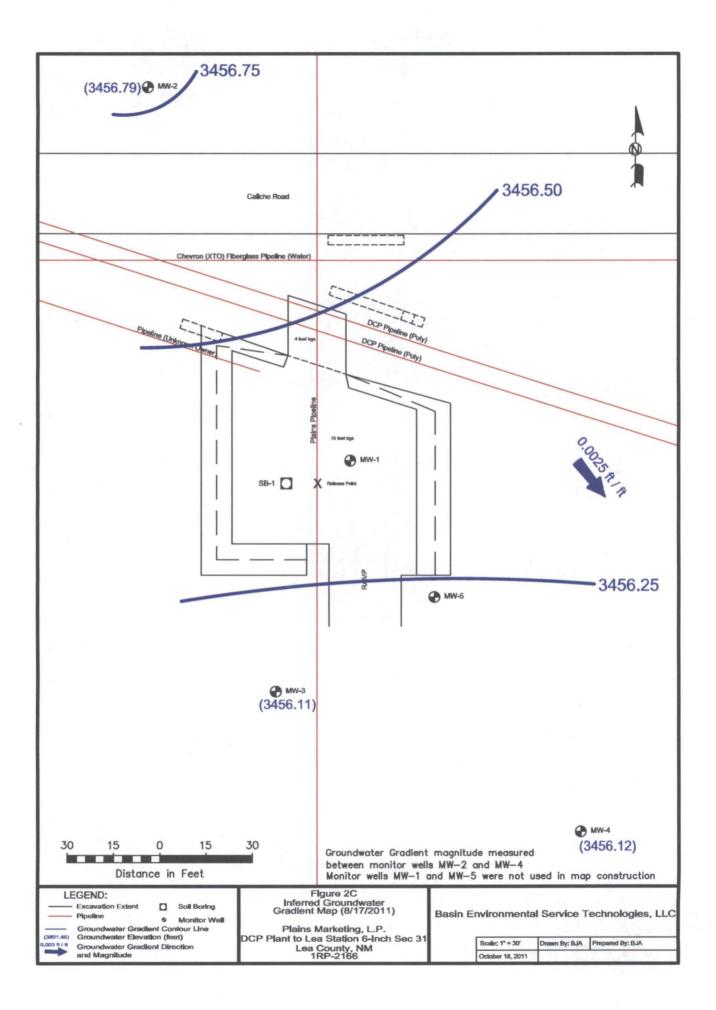
This report has been prepared for the benefit of Plains Marketing, LP. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Basin Environmental Service Technologies, LLC, and/or Plains Marketing, LP.

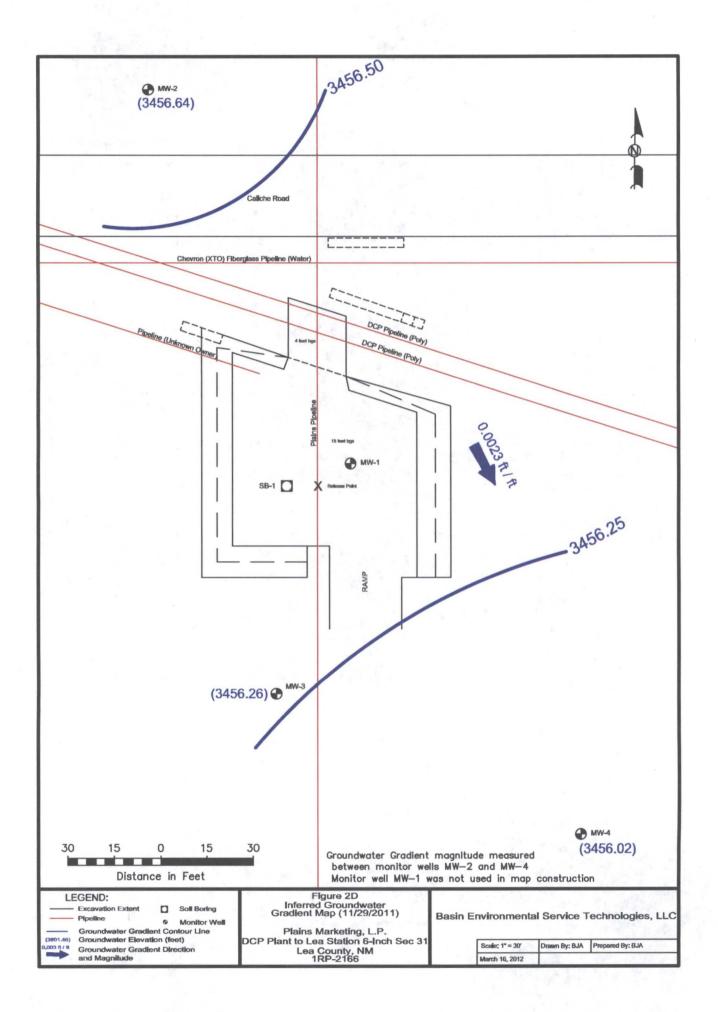
DISTRIBUTION

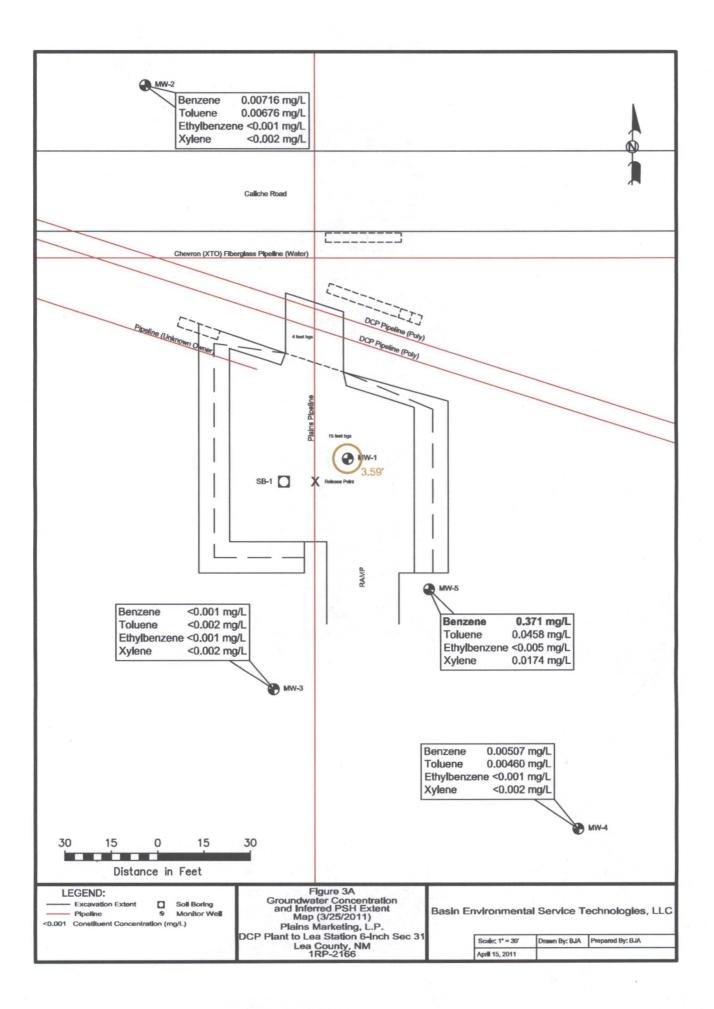

Copy 1:	Edward Hansen New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505 edwardj.hansen@state.nm.us
Copy 2:	Geoff Leking New Mexico Oil Conservation Division 1625 N. French Drive Hobbs, New Mexico 88240 GeoffreyR.Leking @state.nm.us
Copy 3:	Jeff Dann Plains Marketing, L.P. 333 Clay Street Suite 1600 Houston, Texas 77002 jpdann@paalp.com
Copy 4:	Jason Henry Plains Marketing, L.P. 2530 State Highway 214 Denver City, Texas 79323 jhenry@paalp.com
Copy 5:	Basin Environmental Service Technologies, LLC P. O. Box 301 Lovington, New Mexico 88260

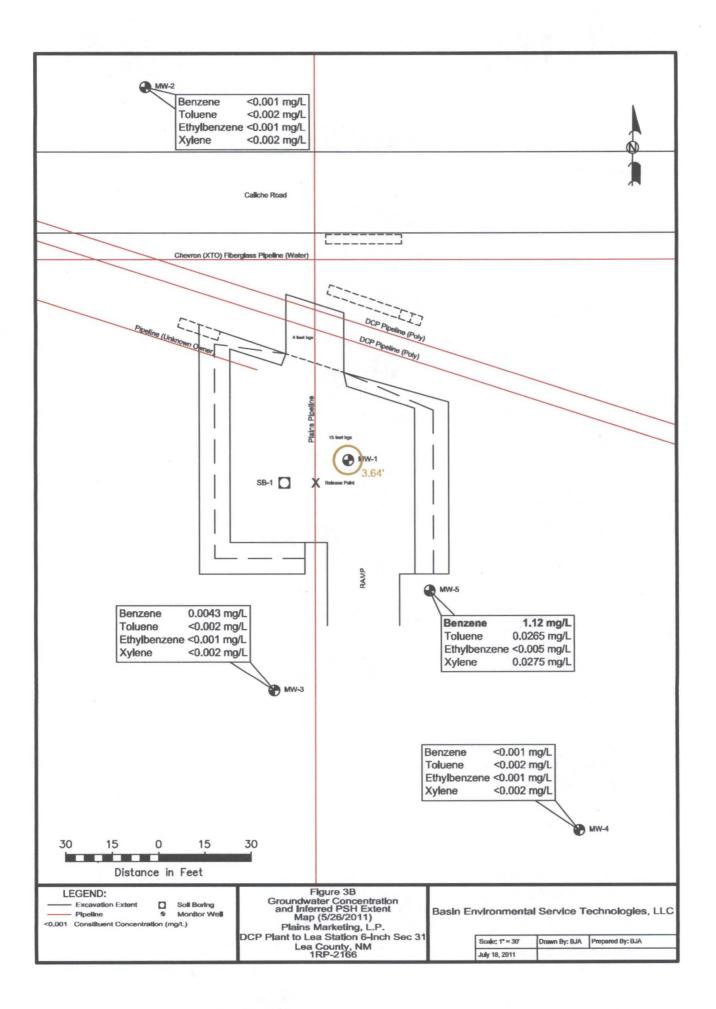

Figures

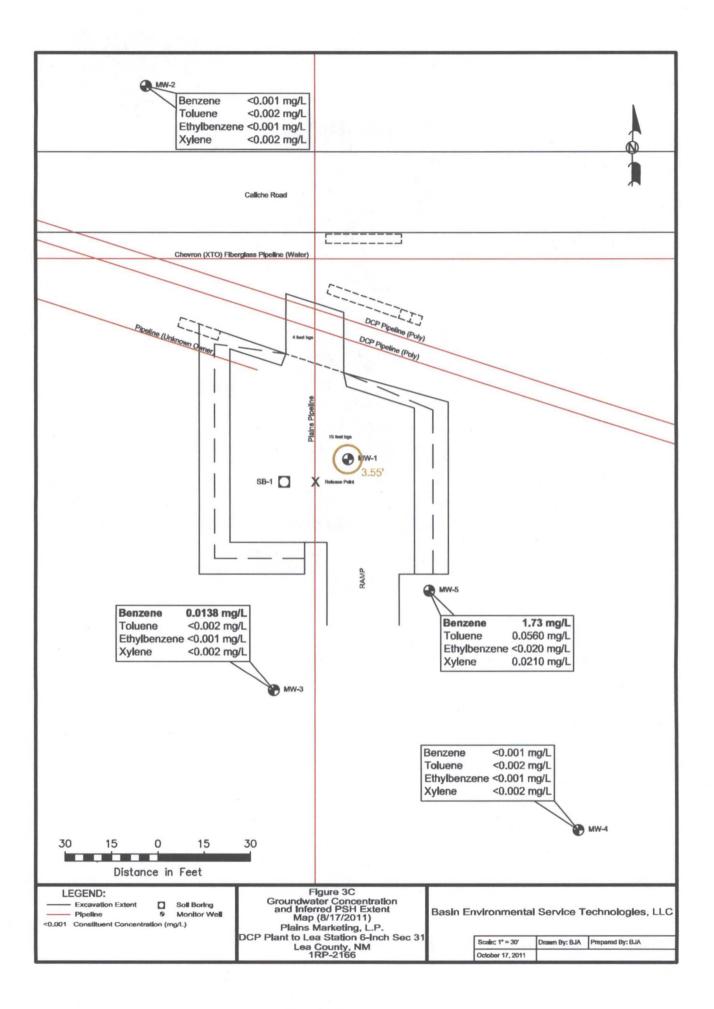

•

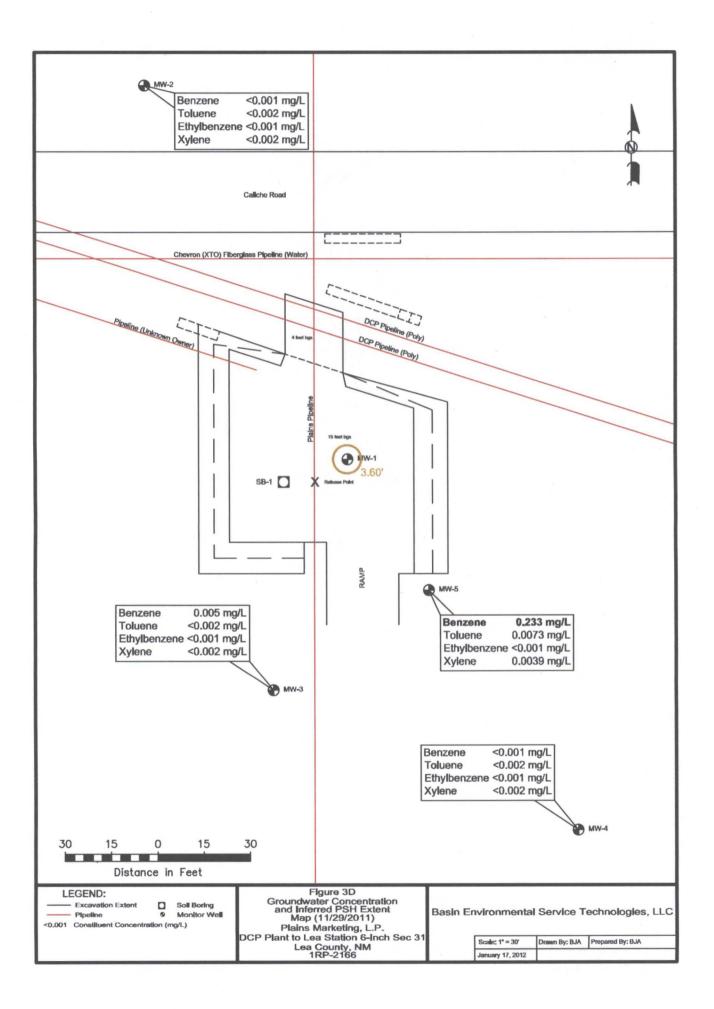

)


ז . . .









Tables

TABLE 1

GROUNDWATER ELEVATION DATA

PLAINS MARKETING, L.P. DCP PLANT TO LEA STATION 6-INCH SEC. 31 LEA COUNTY, NEW MEXICO PLAINS SRS NO: 2009-084 NMOCD REF NO: 1RP-2166

WELL NUMBER	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
MW-1	3/24/2011	-	79.25	82.84	3.59	-
	5/25/2011	-	79.29	82.89	3.60	-
	8/17/2011	-	79.10	82.65	3.55	-
	11/29/2011	-	79.40	83.00	3.60	-
MW-2	3/24/2011	3,539.39	-	82.53	0.00	3,456.86
	5/25/2011	3,539.39	-	82.57	0.00	3,456.82
	8/17/2011	3,539.39	-	82.60	0.00	3,456.79
	11/29/2011	3,539.39		82.75	0.00	3,456.64
MW-3	3/24/2011	3,539.31	-	82.82	0.00	3,456.49
	5/25/2011	3,539.31	-	82.90	0.00	3,456.41
	8/17/2011	3,539.31	-	83.20	0.00	3,456.11
	11/29/2011	3,539.31	-	83.05	0.00	3,456.26
State 1.						Stor & State 1
MW-4	3/24/2011	3,540.12	-	83.90	0.00	3,456.22
	5/25/2011	3,540.12	. –	84.05	0.00	3,456.07
	8/17/2011	3,540.12	-	84.00	0.00	3,456.12
	11/29/2011	3,540.12	-	84.10	0.00	3,456.02
		Manifest and a state				
MW-5	3/24/2011	-	-	83.52	0.00	· •
	5/25/2011	-	-	83.57	0.00	-
	8/17/2011	-	-	83.60	0.00	-
,	11/29/2011	-	-	83.75	0.00	-
Sold State				and the second sec	A. S.	Antonia and Antonia

TABLE 2

2011 CONCENTRATIONS OF BENZENE & BTEX IN GROUNDWATER

PLAINS MARKETING, L.P. DCP PLANT TO LEA STATION 6-INCH SEC. 31 LEA COUNTY, NEW MEXICO PLAINS SRS NO. 2009-084 NMOCD REFERENCE NO: 1RP-2166

				METH	ODS: EPA S	W 846-8260b		·
SAMPLE LOCATION	SAMPLE DATE	BENZENE (mg/L)	TOLUENE (mg/L)	ETHYL- BENZENE (mg/L)	M,P- XYLENES (mg/L)	O-XYLENES (mg/L)	TOTAL XYLENE (mg/L)	TOTAL BTEX (mg/L)
MW-2	03/25/11	0.0072	0.0068	<0.0010	<0.0020	<0.0010	<0.0020	0.0139
	5/26/2011	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020
	8/17/2011	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020
	11/29/2011	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020
		E Barren and	CALLY Y					June of Street
MW-3	03/25/11	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020
•	5/26/2011	0.00425	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	0.00425
	8/17/2011	0.0138	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	0.0138
· ·	11/29/2011	0.0050	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	0.0050
MW-4	03/25/11	0.0051	0.0046	<0.0010	<0.0020	<0.0010	<0.0020	0.0097
	5/26/2011	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020
	8/17/2011	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020
	11/29/2011	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020
						新生产的。 199		
MW-5	03/25/11	0.371	<0.0020	<0.0050	0.0115	0.0060	0.0175	0.3885
	5/26/2011	1.12	0.0265	<0.0010	0.0137	0.0138	0.0275	1.17
	8/17/2011	1.73	0.0560	<0.0020	<0.0040	0.0210	0.0210	1.81
	11/29/2011	0.233	0.0073	<0.0010	0.0020	0.00188	0.00388	0.244
		9 4 4 A				Ser and		
NMOCD CRITERI		0.01	0.75	0.75	TOTAL XY	LENES 0.62		

TABLE 3
CONCENTRATIONS OF RCRA & NMWQCC METALS IN GROUNDWATER

PLAINS PIPELINE, L.P.

DCP PLANT TO LEA STATION 6-INCH SEC. 31

LEA COUNTY, NEW MEXICO

NMOCD REFERENCE NUMBER 1RP-2166

					_		All water	concentratio	ons are repor	ted in mg/L								
								EF	PA SW846	-6020A, I	EPA 7470	1						
SAMPLE LOCATION	SAMPLE DATE	Aluminum	Arsenic	Barium	Boron	Cadmium	Chromium	Cobalt	Copper	Iron	Lead	Manganese	Molybđenum	Nickel	Selenium	Silver	Zinc	Mercury
MW-5	3/25/2011	1.34	<0.010	0.0941	1.60	<0.0050	<0.0050	<0.010	<0.010	1.13	<0.0120	0.120	0.00502	<0.010	0.0505	<0.040	0.0112	<0.00025
Maximum Conta from NM WQCC water standards 101.UU and 3-10	Drinking Sections 1-	5.0 mg/L	0.1 mg/L	1.0 mg/L	0.75 mg/l.	0.01 mg/L	0.05 mg/L	0.05 mg/L	1.0 mg/L	1.0 mg/L	0.05 mg/L	0.2 mg/L	1.0 mg/L	0.2 mg/L	0.05 mg/L	0.05 mg/L	10 mg/L	0:002 mg/L

.

Table 4

CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER PLAINS PIPELINE, LP DCP PLANT TO LEA STATION 6-INCH SEC. 31 LEA COUNTY, NEW MEXICO . NMOCD REFERENCE NUMBER 1R9-2136

	All water concentrations are in mg/L																	
Date Sampled	Sample Location	Acetone	Acrylonitrile	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Bromomethane	2-Butanone	MTBE	n-Butylbenzene	sec-Butylbenzene	tert-Butylbenzene	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane
3/25/2011	MW-5	<0.1	<0.05	0.371	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.05	<0.005	<0.005	<0.005	<0.005	<0.05	<0.005	<0.005	<0.01
Maximum Contam NMWQCC Drinking Sections 1-101.I	g water standards			0.01 mg/L	I							-	•	•		0.01 mg/L	. •	

.....

		· · · · · · · · · · · · · · · · · · ·	1
Maximum Contaminant Levels from NMWQCC Drinking water standards Sections 1-101.UU and 3-103.A	3/25/2011	Date Sampled	
inant Levels from 3 water standards JU and 3-103.A.	MW-5	Sample Location	
. -	<0.005	2-Chloroethyl vinyl ether	
0.1mg/L	<0.005	Chloroform	
· · ·	<0.01	Chloromethane	CONCE
	<0.005	2-Chlorotoluene	CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN PLAINS PIPELINE, LP DCP PLANT TO LEA STATION 6-INCH SEC. 3 LEA COUNTY, NEW MEXICO NMOCD REFERENCE NUMBER 1RP-2166 All water concentrations are in mg/L
-	<0.005	4-Chlorotoluene	ons of DCP PI NMO
-	<0.005	p-Cymene(p- Isopropyltoluene)	NS OF VOLATILE ORGANIC COMPOUNDS IN PLAINS PIPELINE, LP DCP PLANT TO LEA STATION 6-INCH SEC. 31 LEA COUNTY, NEW MEXICO NMOCD REFERENCE NUMBER 1RP-2166 All water concentrations are in mg/L
· -	<0.005	Dibromochloromethane	OLATILE ORGANIC COMPOL PLAINS PIPELINE, LP NT TO LEA STATION 6-INCH LEA COUNTY, NEW MEXICO D REFERENCE NUMBER 1RI All water concentrations are in mg/L
-	<0.005	1,2-Dibromo-3- chloropropane	ANIC CC PELINE, IATION (NEW M E NUMB E NUMB
0.0001 mg/L	<0.005	1,2-Dibromoethane (EDB)	DMPOUN LP 6-INCH \$ EXICO ER 1RP- ER 1RP-
- .	<0.005	Dibromomethane (methylene bromide)	
	<0.005	1,2-Dichlorobenzene	GROUNDWATER
-	<0.005	1,3-Dichlorobenzene	WATER
	<0.005	1,4-Dichlorobenzene	
••	<0.005	Dichlorodifluormethane	
0.005 mg/L	<0.005	1,1-Dichloroethane	
0.01 mg/L	<0.005	1,2-Dichloroethane	
0.005 mg/L	<0.005	1,1-Dichloroethene	
0.1mg/L	<0.005	cis-1,2-Dichloroethene	

Table 4

Page 2 of 4

.

Pa
ge
ω
с,
N

Maximum Contaminant Levels from NMWQCC Drinking water standards Sections 1-101. UU and 3-103. A. Date Sampled 3/25/2011 Sample Location MW-5 A 0.005 trans-1,2-Dichloroethene -6.005 1,2-Dichloropropane A0.005 1,3-Dichloropropane 6.005 2,2-Dichloropropane <0.005 1,1-Dichloropropane <0.005 cis-1,3-Dichloropropene <0.005 trans-1,3-Dichloropropene .005 Ethylbenzene 0.75 mg/L -0.005 Hexachlorobutadiene <u>0</u>05 2-Hexanone ≜0.005 Isopropylbenzene ≙ 805 0.1mg/L Methylene chloride <0.05 4-Methyl-2-pentanone (MIBK) <u>6</u> <u>9</u> Naphthalene 0.03 mg/L n-Propylbenzene <0.005 Styrene <0.005 1,1,1,2-Tetrachloroethane

Table 4

CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER PLAINS PIPELINE, LP

DCP PLANT TO LEA STATION 6-INCH SEC. 31 LEA COUNTY, NEW MEXICO

NMOCD REFERENCE NUMBER 1RP-2166

All water concentrations are in mg/L

Table 4

CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER PLAINS PIPELINE, LP DCP PLANT TO LEA STATION 6-INCH SEC. 31 LEA COUNTY, NEW MEXICO NMOCD REFERENCE NUMBER 1RP-2166

<u></u>					A	ll water cond	centrations	are in mg	۸L			•				
Date Sampled	Sample Location	1,1,2,2-Tetrachloroethane	Tetrachloroethene (PCE)	Toluene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethene (TCE)	Trichlorofluoromethane	1,2,3-Trichloropropane	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	o-Xylene	m,p-Xylene	Vinyl Chloride
3/25/2011	MW-5	<0.005	<0.005	0.0458	<0.0099	<0.0099	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.00597	0.0115	<0.0020
Maximum Contarr NMWQCC Drinkin Sections 1-101.	g water standards			0.75 mg/L		•	0.06 mg/L		0.01 mg/ L	•	•	•	•	Total Xylene	0.62 mg/L	0.001 mg/L

Page 4 of 4

CONCENTRATIONS OF SEMI-VOLATILE COMPOUNDS IN GROUNDWATER

TABLE 5

PLAINS PIPELINE, L.P.

DCP PLANT TO LEA STATION 6-INCH SEC. 31

LEA COUNTY, NEW MEXICO

NMOCD REFERENCE NUMBER 1RP-2166

	All water concentrations are reported in mg/L															_	
								EPA	SW846-8	270C, 351	10						
SAMPLE LOCATION	SAMPLE DATE	Acenaphthene	Acenaphthylene	Anthracene	Benzo[a]anthracene	Benzo[a]pyrene	Benzo(b)fluoranthene	Benzo(g,h,i]perylene	Benzo[k]fluoranthene	Chrysene	Dibenz[a,h]anthracene	Fluoranthene	Fluorene	Indeno[1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
MW-5	3/25/2011	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	· 4					a						a. 143. a.	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -			*-	
MW-3	12/16/2011	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
N. C. S.							38. C. C.			3 3			N. A. S. S. S.				新闻 注意
MW-4	12/21/2011	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
新闻和 和194	1				建汽车的	and Barrison .	Star Alt			Р	a the state			A Contraction	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		1.

TABLE 6 CONCENTRATIONS OF ANIONS/CATIONS IN GROUNDWATER PLAINS PIPELINE, L.P. DCP PLANT TO LEA STATION 6-INCH SEC. 31 LEA COUNTY, NEW MEXICO NMOCD REFERENCE NUMBER 1RP-2166

	All water concentrations are reported in mg/L												
SAMPLE DATE	SAMPLE LOCATION	EPA SW375.4, 325,3, 310, 160.1 SW846 6010B											
		Calcium	Magnesium	Potassium	Sodium	Chloride	Sulfate	Bicarbonate	Carbonate	Nitrate	Phosphate	Flouride	
3/25/2011	MW-5	118	37.1	9.36	346	392	288	318	<4.00	4.17	3.09	30.5	
Maximum Contaminant Levels from NM WQCC Drinking water standards Sections 1-101.UU and 3- 103.A.			•		1.	250 mg/L	600 mg/L		•	10 mg/L		1.6 mg/L	

All water concentrations are reported in mg/L

.

Appendices

۰. .

. . . .

· · ·

Appendix A

Laboratory Analytical Reports

Analytical Report 411097

for

PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry

DCP Plant to Lea Station 6" Section 31

2009-084

05-APR-11

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

 Texas (T104704215-10-6-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330) Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370) Xenco-Boca Raton (EPA Lab Code: FL01273): Florida(E86240),South Carolina(96031001), Louisiana(04154), Georgia(917) North Carolina(444), Texas(T104704468-TX), Illinois(002295), Florida(E86349)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757), Texas(104704435-10-2), Nevada(NAC-445A), DoD(65816) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

Final 1.000

05-APR-11

Project Manager: Jason Henry PLAINS ALL AMERICAN EH&S 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: 411097 DCP Plant to Lea Station 6" Section 31 Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 411097. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 411097 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 411097

PLAINS ALL AMERICAN EH&S, Midland, TX

DCP Plant to Lea Station 6" Section 31

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-2	W	Mar-25-11 08:45		411097-001
MW-3	W	Mar-25-11 08:55		411097-002
MW-4	W	Mar-25-11 09:00		411097-003
MW-5	W	Mar-25-11 09:10		411097-004

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP Plant to Lea Station 6" Section 31

Project ID:2009-084Work Order Number:411097

Report Date: 05-APR-11 Date Received: 03/25/2011

Sample receipt non conformances and Comments: None

Sample receipt Non Conformances and Comments per Sample:

None

Analytical Non Conformances and Comments:

Batch: LBA-849659 Anions by E300 E300MI

Batch 849659, Fluoride recovered below QC limits in the Matrix Spike. Samples affected are: 411097-004. The Laboratory Control Sample for Fluoride is within laboratory Control Limits

Batch: LBA-849661 Mercury by EPA 7470A SW7470A

Batch 849661, Mercury recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate.

Samples affected are: 411097-004.

The Laboratory Control Sample for Mercury is within laboratory Control Limits

Batch: LBA-849832 Alkalinity by SM2320B

Batch: LBA-849858 TCLP SVOCs by EPA 8270C SW8270C

Batch 849858, Pyridine recovered below QC limits in the Blank Spike Duplicate. However, analyte was recovered within QC limits in Blank Spike. Samples affected are: 411097-004.

SW8270C

Batch 849858, 4-Nitrophenol, Benzoic Acid, Phenol recovered above QC limits in the Matrix Spike.

Samples affected are: 411097-004.

The Laboratory Control Sample for Benzoic Acid, 4-Nitrophenol, Phenol is within laboratory Control Limits

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP Plant to Lea Station 6" Section 31

 Project ID:
 2009-084

 Work Order Number:
 411097

Report Date: 05-APR-11 Date Received: 03/25/2011

Batch: LBA-849979 BTEX by EPA 8021B

Batch: LBA-850035 Metals per ICP by SW846 6010B SW6010B_IC

Batch 850035, Magnesium recovered above QC limits in the Matrix Spike and Matrix Spike Duplicate. Calcium, Potassium, Sodium recovered above QC limits in the Matrix Spike Duplicate.

Samples affected are: 411097-004.

The Laboratory Control Sample for Magnesium, Calcium, Sodium, Potassium is within laboratory. Control Limits

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP Plant to Lea Station 6" Section 31

 Project ID:
 2009-084

 Work Order Number:
 411097

Report Date: 05-APR-11 Date Received: 03/25/2011

Batch: LBA-850041 VOAs by SW-846 8260B SW8260B

Batch 850041, Ethylbenzene, isopropylbenzene, n-Butylbenzene, tert-Butylbenzene recovered below QC limits in the Matrix Spike. 1,2,4-Trimethylbenzene, 1,3,5-Trimethylbenzene, Naphthalene, Styrene, Vinyl Chloride, m,p-Xylenes, o-Xylene, p-Cymene (p-Isopropyltoluene) recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Trichlorofluoromethane recovered above QC limits in the Matrix Spike and Matrix Spike Duplicate. 1,1,1-Trichloroethane, 1,2-Dibromo-3-Chloropropane, Bromodichloromethane, Bromoform, Carbon Tetrachloride, MTBE recovered above QC limits in the Matrix Spike Duplicate.

Samples affected are: 411097-004.

The Laboratory Control Sample for Bromodichloromethane, Carbon Tetrachloride, m,p-Xylenes, tert-Butylbenzene, Naphthalene, 1,3,5-Trimethylbenzene, 1,2,4-Trimethylbenzene, n-Butylbenzene, Ethylbenzene, o-Xylene, Trichlorofluoromethane, 1,1,1-Trichloroethane, Styrene, p-Cymene (p-Isopropyltoluene), isopropylbenzene, Vinyl Chloride, Bromoform, 1,2-Dibromo-3-Chloropropane is within laboratory Control Limits

SW8260B

Batch 850041, MTBE recovered above QC limits in the laboratory control sample. Samples affected are: 411097-004.

SW8260B

Batch 850041, 1,1,1,2-Tetrachloroethane, 1,2,3-Trichlorobenzene, 1,2,4-Trichlorobenzene, 1,2-Dibromoethane, 2-Chlorotoluene, MTBE RPD was outside QC limits. Samples affected are: 411097-004

Batch: LBA-850255 VOAs by SW-846 8260B SW8260B

Batch 850255, Vinyl Chloride recovered below QC limits in the Matrix Spike. MTBE recovered above QC limits in the Matrix Spike and Matrix Spike Duplicate. Samples affected are: 411097-004. The Laboratory Control Sample for MTBE, Vinyl Chloride is within laboratory Control Limits

Project Id: 2009-084 Contact: Jason Henry Project Location: Lea County, NM

Certificate of Analys ummary 411097

PLAINS ALL AMERICA __H&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" Section 31

Date Received in Lab: Fri Mar-25-11 04:50 pm

Report Date: 05-APR-11

Project Manager: Brent Barron, II Lab Id: 411097-001 411097-002 411097-004 411097-003 Field Id: MW-2 MW-3 **MW-4** MW-5 Analysis Requested Depth: Matrix: WATER WATER -WATER WATER Mar-25-11 08:45 Sampled: Mar-25-11 08:55 Mar-25-11 09:00 Mar-25-11 09:10 Alkalinity by SM2320B Extracted: Analyzed: Mar-29-11 13:40 Units/RL: RL mg/L Alkalinity, Total (as CaCO3) 4.00 318 Alkalinity, Bicarbonate (as CaCO3) 318 4.00 Alkalinity, Carbonate (as CaCO3) ND 4.00 Anions by E300 Extracted: Analyzed: Mar-28-11 15:15 Units/RL: RL mg/L Fluoride 30.5 5.00 Chloride 392 12.5 288 12.5 Sulfate BTEX by EPA 8021B Mar-29-11 12:45 Extracted: Mar-29-11 12:45 Mar-29-11 12:45 Analyzed: Mar-29-11 23:10 Mar-29-11 23:33 Mar-29-11 23:55 RL Units/RL: mg/L mg/L RL mg/L RL 0.00716 0.0010 0.00507 Benzene ND 0.0010 0.0010 0.00676 0.0020 0.0020 0.00460 0.0020 Toluene ND 0.0010 ND 0.0010 0.0010 Ethylbenzene ND ND 0.0020 m p-Xylenes ND ND 0.0020 ND 0.0020 o-Xylene ND 0.0010 ND 0.0010 ND 0.0010 Total Xylenes ND 0.0010 ND 0.0010 ND 0.0010 Total BTEX 0.0139 0.0010 ND 0.0010 0.00967 0.0010 Mercury by EPA 7470A Extracted: Mar-29-11 07:45 Mar-29-11 10:57 Analyzed: Units/RL: mg/L RL 0.00025 ND Mercury

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron, II

Odessa Laboratory Manager

Page 7 of 47

aborato

Project Id: 2009-084 Contact: Jason Henry

Project Location: Lea County, NM

Certificate of Analysis Summary 411097 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" Section 31

Date Received in Lab: Fri Mar-25-11 04:50 pm

Report Date: 05-APR-11

Project Manager: Brent Barron, II 411097-002 411097-003 411097-004 Lab Id: 411097-001 Field Id: MW-2 MW-3 MW-4 MW-5 Analysis Requested Depth: WATER WATER WATER Matrix: WATER Mar-25-11 08:55 Mar-25-11 09:00 Mar-25-11 09:10 Sampled: Mar-25-11 08:45 Metals per ICP by SW846 6010B Mar-31-11 07:00 Extracted: SUB: T104704295-TX Mar-31-11 13:23 Analyzed: Units/RL: mg/L RL 1.34 0.0500 Aluminum ND 0.0100 Arsenic 0.0941 0.0100 Barium 0.100 Boron 1.60 0.0050 Cadmium ND 0.100 Calcium 118 Chromium ND 0.0050 Cobalt ND 0.0100 Copper ND 0.0100 1.13 0.0300 lron ND 0.0120 Lead Magnesium 37.1 0.0100 Manganese 0.120 0.0100 0.0502 0.0100 Molybdenum 0.0100 Nickel ND 9.36 0.500 Potassium 0.0505 Selenium 0.0100 0.0040 Silver ND Sodium 346 0.500 Zinc 0.0112 0.0100

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratorics. XENCO Laboratorics assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron, II -Odessa Laboratory Manager

Page

Project Id: 2009-084 Contact: Jason Henry Project Location: Lea County, NM

Certificate of Analys `ummary 411097

PLAINS ALL AMERICA. _H&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" Section 31

Date Received in Lab: Fri Mar-25-11 04:50 pm

Report Date: 05-APR-11

		-			Project Manager:	Brent Barron, II	
	Lab Id:	411097-001	411097-002	411097-003	411097-004		
Another Deve and al	Field Id:	MW-2	MW-3	MW-4	MW-5		
Analysis Requested	Depth:					•	
•	Matrix:	WATER	WATER	WATER	WATER ·		
	Sampled:	Mar-25-11 08:45	Mar-25-11 08:55	Mar-25-11 09:00	Mar-25-11 09:10		
SVOAs by EPA 8270C	Extracted:	•			Mar-29-11 14:39		
SUB: T104704215-TX	Analyzed:				Mar-30-11 15:19		
	Units/RL:				mg/L RL		
1,2,4-Trichlorobenzene	Unus RL.				ND 0.0100)	
1,2-Dichlorobenzene					ND 0.0100		
1.3-Dichlorobenzene		· · · ·			ND 0.0100		
1.4-Dichlorobenzene		· · · · ·			ND 0.0100		· · · · · · · · · · · · · · · · · · ·
2,4,5-Trichlorophenol					ND 0.0100		
2,4,6-Trichlorophenol			· · · · · · · · · · · · · · · · · · ·		ND 0.0100)	•
2,4-Dichlorophenol		•			ND 0.0100)	······································
2,4-Dimethylphenol	_				ND 0.0100)	<u> </u>
2,4-Dinitrophenol				•	ND 0.0199		
2,4-Dinitrotoluene		· ·			ND 0.0100		
2,6-Dinitrotoluene					ND 0.0100)	····.
2-Chloronaphthalene			······································		ND 0.0100		
2-Chlorophenol			-		ND 0.0100		
2-Methylnaphthalene		· · · ·			ND 0.0100		·····
2-methylphenol					ND 0.0100		
2-Nitroaniline					ND 0.0199		
2-Nitrophenol					ND 0.0100		
3&4-Methylphenol					ND 0.0100		
3,3-Dichlorobenzidine				· ·	ND 0.0100		
3-Nitroaniline					ND 0.0199		
4,6-dinitro-2-methyl phenol					ND 0.0100		
4-Bromophenyl-phenylether					ND 0.0100		
4-chloro-3-methylphenol					ND 0.0100		
4-Chloroaniline					ND 0.0199		
4-Chlorophenyl Phenyl Ether					ND 0.0100		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron, II

Odessa Laboratory Manager

Page 9 of 47

Laboratorie

Project Id: 2009-084 Contact: Jason Henry Project Location: Lea County, NM

Certificate of Analysis Summary 411097 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" Section 31

Date Received in Lab: Fri Mar-25-11 04:50 pm

Report Date: 05-APR-11

					Project Manager:	Brent Barron, II
	Lab Id:	411097-001	411097-002	411097-003	411097-004	
	Field Id:	MW-2	MW-3	MW-4	MW-5	
Analysis Requested	Depth:					
	Matrix:	WATER	WATER	WATER	WATER	
	Sampled:	Mar-25-11 08:45	Mar-25-11 08:55	Mar-25-11 09:00	Mar-25-11 09:10	
SVOAs by EPA 8270C	Extracted:				Mar-29-11 14:39	
SUB: T104704215-TX						
505. 1104/04215-1A	Analyzed:				Mar-30-11 15:19	
	Units/RL:				mg/L RL ND 0.0199	
4-Nitroaniline						
4-Nitrophenol						
Acenaphthene					ND 0.0100	· · · ·
Acenaphthylene					ND 0.0100	
Aniline (Phenylamine, Aminobenzene)					ND 0.0199	
Anthracene					ND 0.0100	
Benzo(a)anthracene					ND 0.0100	
Benzo(a)pyrene					ND 0.0100	
Benzo(b)fluoranthene					ND 0.0100	
Benzo(g,h,i)perylene					ND 0.0100	
Benzo(k)fluoranthene					ND 0.0100	
Benzoic Acid					ND 0.0498	
Benzyl Butyl Phthalate					ND 0.0100	
bis(2-chloroethoxy) methane	-				ND 0.0100	
bis(2-chloroethyl) ether					ND 0.0100	
bis(2-chloroisopropyl) ether					ND. 0.0100	
bis(2-ethylhexyl) phthalate					ND 0.0100	
Chrysene					ND 0.0100	
Dibenz(a,h)Anthracene					ND 0.0100	
Dibenzofuran					ND 0.0100	
Diethyl Phthalate					ND 0.0100	
Dimethyl Phthalate				•	ND 0.0100	
di-n-Butyl Phthalate		- · · · · · · · · · · · · · · · · · · ·			ND 0.0100	
di-n-Octyl Phthalate					ND . 0.0100	
Fluoranthene					ND 0.0100	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron, II

Odessa Laboratory Manager

Page 5

47

Project Id: 2009-084

Project Location: Lea County, NM

Contact: Jason Henry

Certificate of Analys' ummary 411097 PLAINS ALL AMERICA

LH&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" Section 31

Date Received in Lab: Fri Mar-25-11 04:50 pm

Report Date: 05-APR-11

Project Manager: Brent Barron, II 411097-001 411097-004 Lab Id: 411097-002 411097-003 Field Id: MW-2 MW-4 MW-5 MW-3 Analysis Requested Depth: Matrix: WATER WATER WATER WATER Sampled: Mar-25-11 08:45 Mar-25-11 08:55 Mar-25-11 09:00 Mar-25-11 09:10 SVOAs by EPA 8270C Extracted: Mar-29-11 14:39 SUB: T104704215-TX Analyzed: Mar-30-11 15:19 Units/RL: mg/L RL ND 0.0100 Fluorene Hexachlorobenzene 0.0100 ND Hexachlorobutadiene 0.0100 ND Hexachlorocyclopentadiene 0.0100 ND Hexachloroethane 0.0100 ND 0.0100 Indeno(1,2,3-c,d)Pyrene ND 0.0100 Isophorone ND Naphthalene ND 0.0100 Nitrobenzene ND 0.0100 N-Nitrosodi-n-Propylamine ND 0.0100 N-Nitrosodiphenylamine ND 0.0100 0.0100 Pentachlorophenol ND Phenanthrene ND 0.0100 0.0100 Phenol ND Pyrene ND 0.0100 ND 0.0199 Pyridine

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratorics. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron, II

Odessa Laboratory Manager

Page 11 of 47

Laboratories

Project Id: 2009-084 Contact: Jason Henry Project Location: Lea County, NM

Certificate of Analysis Summary 411097 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" Section 31

Date Received in Lab: Fri Mar-25-11 04:50 pm

Report Date: 05-APR-11

oject Location: Lea County, NM					Project Manager:	Brent Barron, II	
	Lab Id:	411097-001	411097-002	411097-003	411097-004		
	Field Id:	MW-2	MW-3 ~	MW-4	MW-5		
Analysis Requested	Depth:						
	Matrix:	WATER	WATER	WATER	WATER		
· · ·	Sampled:	Mar-25-11 08:45	Mar-25-11 08:55	Mar-25-11 09:00	Mar-25-11 09:10		
	Sampieu:	Mar-23-11 08:43	Mai-23-11 08.33	Mai-23-11 09.00			
VOAs by SW-846 8260B	Extracted:				Mar-30-11 13:20		
SUB: T104704215-TX	Analyzed:				Mar-30-11 21:14		
	Units/RL:			•	mg/L RL		
1,1,1,2-Tetrachloroethane					ND 0.0050		
1,1,1-Trichloroethane					ND 0.0050		
1,1,2,2-Tetrachloroethane					ND 0.0050		
1,1,2-Trichloroethane					ND 0.0050		
1,1-Dichloroethane			•		ND 0.0050		
1,1-Dichloroethene		<u></u>			ND 0.0050		
1,1-Dichloropropene		······································			ND 0.0050		
1,2,3-Trichlorobenzene					ND 0.0050		
1,2,3-Trichloropropane					ND 0.0050		
1,2,4-Trichlorobenzene					ND 0.0050		
1,2,4-Trimethylbenzene					ND 0.0050		
1,2-Dibromo-3-Chloropropane					ND 0.0050		·
1,2-Dibromoethane		······································			ND 0.0050		
1,2-Dichlorobenzene					ND 0.0050		
1,2-Dichloroethane					ND 0.0050		
1,2-Dichloropropane					ND 0.0050		
1,3,5-Trimethylbenzene					ND 0.0050		
1,3-Dichlorobenzene					ND 0.0050		
1,3-Dichloropropane					ND 0.0050		
1,4-Dichlorobenzene					ND 0.0050		
2,2-Dichloropropane		· · · · · · · · · · · · · · · · · · ·			ND 0.0050		
2-Chlorotoluene		•		•	ND 0.0050	· ·	
4-Chlorotoluene	· · ·				ND 0.0050		
Benzene					0.371 D 0.0250		
Bromobenzene					ND 0.0050		

Page 1

.7

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron, II

Odessa Laboratory Manager

Certificate of Analys ummary 411097

PLAINS ALL AMERICA. LH&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" Section 31

Project Id: 2009-084 Contact: Jason Henry Project Location: Lea County, NM

Date Received in Lab: Fri Mar-25-11 04:50 pm

Report Date: 05-APR-11

roject Location: Lea County, NM			•		Project Manager:	Brent Barron, II	
	Lab Id:	411097-001	411097-002	411097-003	411097-004	1	
	Field Id:	MW-2	MW-3	MW-4	• MW-5		
Analysis Requested	Depth:						
	Matrix:	WATER	WATER	WATER	WATER		
		Mar-25-11 08:45	Mar-25-11 08:55	Mar-25-11 09:00			
	Sampled:	Iviar-23-11 08:45	Mar-25-11 08:55	Mar-25-11 09:00	Mar-25-11 09:10	······	,
VOAs by SW-846 8260B	Extracted:				Mar-30-11 13:20		
SUB: T104704215-TX	Analyzed:				Mar-30-11 21:14	· .	
	Units/RL:				mg/L RL		
Bromochloromethane					ND 0.0050		
Bromodichloromethane		· · · · · · · · · · · · · · · · · · ·			ND 0.0050		
Bromoform					ND 0.0050		
Bromomethane					ND 0.0050		
Carbon Tetrachloride					ND 0.0050		
Chlorobenzene					ND 0.0050		
Chloroethane					ND 0.0100		
Chloroform	,				ND 0.0050		
Chloromethane					ND 0.0100		
cis-1,2-Dichloroethene					ND 0.0050		
cis-1,3-Dichloropropene					ND 0.0050		
Dibromochloromethane					ND 0.0050		
Dibromomethane					ND 0.0050		
Dichlorodifluoromethane					ND 0.0050		
Ethylbenzene					ND 0.0050		
Hexachlorobutadiene	-				ND 0.0050		. •
isopropylbenzene					ND 0.0050		•
m,p-Xylenes					0.0115 0.0100		· .
Methylene Chloride					ND 0,0050		
MTBE		·			ND 0.0050		
Naphthalene					ND 0.0100		
n-Butylbenzene					ND 0.0050		
n-Propylbenzene				-	ND 0.0050		
o-Xylene	· ·				0.00597 0.0050		· · · · · · · · · · · · · · · · · · ·
p-Cymene (p-lsopropyltoluene)					ND 0.0050		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented.

Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron, II

Odessa Laboratory Manager

Page 13 of 47

Laboratorics

Certificate of Analysis Summary 411097 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" Section 31

Project Id: 2009-084 Contact: Jason Henry Project Location: Lea County, NM

Date Received in Lab: Fri Mar-25-11 04:50 pm

Report Date: 05-APR-11

roject Location: Lea County, NM					Project Manager:	Brent Barron, II	
	Lab Id:	411097-001	411097-002	411097-003	411097-004		
Analusis Basyssed	Field Id:	MW-2	MW-3	MW-4	MW-5		
Analysis Requested	Depth:						
	Matrix:	WATER	WATER	WATER	WATER		
	Sampled:	Mar-25-11 08:45	Mar-25-11 08:55	Mar-25-11 09:00	Mar-25-11 09:10		
VOAs by SW-846 8260B	Extracted:	, ·,			Mar-30-11 13:20		
SUB: T104704215-TX	Analyzed:				Mar-30-11 21:14		
· · ·	Units/RL:				mg/L RL		
Sec-Butylbenzene				· · ·	ND 0.0050		
Styrene					ND 0.0050		
tert-Butylbenzene					ND 0.0050		
Tetrachloroethylene					ND 0.0050		
Toluene					0.0458 0.0050		
trans-1,2-dichloroethene	•				ND 0.0050		
trans-1,3-dichloropropene		.			ND 0.0050		
Trichloroethene		······			ND 0.0050		
Trichlorofluoromethane		·····			ND 0.0050		
Vinyl Chloride					ND 0.0020		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratorics. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron, II

Odessa Laboratory Manager

Page 1

.7

XENCO Laboratories

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.

F RPD exceeded lab control-limits.

J The target analyte was positively identified below the MQL and above the SQL.

U Analyte was not detected.

- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.

K Sample analyzed outside of recommended hold time.

JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit

PQL Practical Quantitation Limit

* Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

	Phone	гах
4143 Greenbriar Dr. Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
842 Cantwell Lane, Corpus Christi, TX 78408	(361) 884-0371	(361) 884-9116

Project Name: DCP Plant to Lea Station 6" Section 31

Vork Orders : 411097 Lab Batch #: 849979	7, Sample: 599342-1-BKS / B		h: 1 Matrix			
Units: mg/L	Date Analyzed: 03/29/11 19:23	SU	RROGATE RI	ECOVERY S	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			{D}	· ·	
1,4-Difluorobenzene		0.0305	0.0300	102	80-120	
4-Bromofluorobenzene		0.0307	0.0300	102	80-120	
Lab Batch #: 849979	Sample: 599342-1-BSD / B					
Units: mg/L	Date Analyzed: 03/29/11 19:46	SU	RROGATE RI	ECOVERY S	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
l,4-Difluorobenzene		0.0305	0.0300	102	80-120	
4-Bromofluorobenzene		0.0298	0.0300	99	80-120	
Lab Batch #: 849979	Sample: 599342-1-BLK / B	BLK Batc	h; ¹ Matrix:	• Water	<u></u>	
Units: mg/L	Date Analyzed: 03/29/11 20:54		RROGATE RI		STUDY	
втех	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0281	0.0300	94	80-120	
4-Bromofluorobenzene		0.0284	0.0300	95	80-120	
Lab Batch #: 849979	Sample: 411097-001 / SMP	P Batel	h: ¹ Matrix:	:Water		
Units: mg/L	Date Analyzed: 03/29/11 23:10	SU	RROGATE RI	ECOVERY S	STUDY	<u></u>
BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes	ļ		[D]		
1,4-Difluorobenzene	·	0.0281	0.0300	94	80-120	
4-Bromofluorobenzene		0.0285	0.0300	95	80-120	
Lab Batch #: 849979	Sample: 411097-002 / SMP					
Units: mg/L	Date Analyzed: 03/29/11 23:33	SU	RROGATE RI	ECOVERY :	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
	Anarytes	<u> </u> '	·	'	ļ]	ļ
1,4-Difluorobenzene		0.0277	0.0300	92 ·	80-120	1

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: DCP Plant to Lea Station 6" Section 31

rk Orders : 411097 Lab Batch #: 849979 Units: mg/L	, Sample: 411097-003 / SMP Date Analyzed: 03/29/11 23:55	Batc SU	•	D: 2009-084 : Water ECOVERY :	STUDY	
BTEX	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0280	0.0300	93	80-120	
4-Bromofluorobenzene		0.0288	0.0300	96	80-120	•
Lab Batch #: 849979	Sample: 410846-003 S / MS	Batc	h: ¹ Matrix	Water		
Units: mg/L	Date Analyzed: 03/30/11 01:03	SU	RROGATE R	ECOVERY S	STUDY	
BTE	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0303	0.0300	101	80-120	
4-Bromofluorobenzene		0.0307	0.0300	102	80-120	
Lab Batch #: 849979	Sample: 410846-003 SD / M	ISD Batc	h: ¹ Matrix	Water		
Units: mg/L	Date Analyzed: 03/30/11 01:26	SURROGATE RECOVERY STUDY				
BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
4-Difluorobenzene		0.0302	0.0300	101	80-120	
4-Bromofluorobenzene		0.0307	0.0300	102	80-120	
Lab Batch #: 849858	Sample: 599181-1-BLK / BI			:Water		
Units: mg/L	Date Analyzed: 03/29/11 16:30	SÜ	RROGATE R	ECOVERY S	STUDY	
SVOA	s by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Fluorobiphenyl		0.0400	0.0500	· 80	43-116	
2-Fluorophenol		0.0346	0.0500	69	21-100	
Nitrobenzene-d5		0.0418	0.0500	84	35-114	
Phenol-d6		0.0252	0.0500	50	10-94	
Terphenyl-D14	· · · · · · · · · · · · · · · · · · ·	0.0426	0.0500	85	33-141	
2,4,6-Tribromophenol		0.0372	0.0500	74	10-123	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

esults are based on MDL and validated for QC purposes.

Project Name: DCP Plant to Lea Station 6" Section 31

Work Orders : 411097 Lab Batch #: 849858	, Sample: 599181-1-BKS / B	KS Bate	, .): 2009-084 Water			
Units: mg/L	Date Analyzed: 03/29/11 16:54	SURROGATE RECOVERY STUDY					
SVOA	s by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
2-Fluorobiphenyl		0.0421	0.0500	84	43-116		
2-Fluorophenol		0.0369	0.0500	74	21-100		
Nitrobenzene-d5	· · · · · · · · · · · · · · · · · · ·	0.0440	0.0500	· 88	35-114		
Phenol-d6		0.0297	0.0500	59	10-94		
Terphenyl-D14		0.0453	0.0500	91	* 33-141		
2,4,6-Tribromophenol		0.0423	0.0500	85	10-123		
Lab Batch #: 849858	Sample: 599181-1-BSD / B	SD Batc	h: 1 Matrix:	Water			
Units: mg/L	Date Analyzed: 03/29/11 17:18	SU	RROGATE RI	ECOVERY	STUDY		
SVOA	s by EPA 8270C	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
	Analytes			[D]			
2-Fluorobiphenyl		0.0403	0.0500	81	43-116		
2-Fluorophenol	· · · · · · · · · · · · · · · · · · ·	0.0357	0.0500	71	21-100		
Nitrobenzene-d5		0.0430	0.0500	86	35-114		
Phenol-d6		0.0299	0.0500	60	10-94		
Terphenyl-D14		0.0430	0.0500	86	33-141		
2,4,6-Tribromophenol		0.0402	0.0500	80	10-123		
Lab Batch #: 849858	Sample: 410972-001 S / M	S Batc	h: 1 Matrix	:Soil			
Units: mg/L	Date Analyzed: 03/30/11 01:57	SU	RROGATE RI	ECOVERY	STUDY		
SVOA	s by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
2-Fluorobiphenyl	· · · · · · · · · · · · · · · · · · ·	0.234	0.250	94	43-116		
2-Fluorophenol		0.212	0.250	85	21-100		
Nitrobenzene-d5		0.233	0.250	93	35-114		
Phenol-d6	·	0.206	0.250	82	10-94		
Terphenyl-D14		0.242	0.250	97	33-141		
2,4,6-Tribromophenol		0.240	0.250	96	10-123		

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: DCP Plant to Lea Station 6" Section 31

rk Orders : 411097 Lab Batch #: 849858	Sample: 411097-004 / SMP	Project ID: 2009-084 P Batch: 1 Matrix: Water SURROGATE RECOVERY STUDY						
Units: mg/L SVOA	Date Analyzed: 03/30/11 15:19 s by EPA 8270C	Amount Found [A]	True Amount [B]	ECOVERY Recovery %R [D]	Control Limits %R	Flags		
	Analytes		,					
2-Fluorobiphenyl		0.0399	0.0498	80	43-116			
2-Fluorophenol		0.0193	0.0498	39	21-100			
Nitrobenzene-d5		0.0395	0.0498	79	35-114			
Phenol-d6	· · ·	0.0112	0.0498	22	10-94			
Terphenyl-D14		0.0421	0.0498	85	33-141			
2,4,6-Tribromophenol		0.0424	0.0498	85	10-123 ·			
Lab Batch #: 850041 Sample: 599371-1-BKS / BKS Batch: 1 Matrix: Water								
Units: mg/L	Date Analyzed: 03/30/11 14:23	SURROGATE RECOVERY STUDY						
VOAs	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
4-Bromofluorobenzene		0.0482	0.0500	96	74-124			
Dibromofluoromethane	· · · · ·	0.0527	0.0500	105	75-131			
1,2-Dichloroethane-D4		0.0530	0.0500	106	63-144			
Toluene-D8		0.0534	0.0500	107	80-117			
ab Batch #: 850041	Sample: 599371-1-BLK / BL	.K Batc	h: ¹ Matrix	:Water				
Units: mg/L	Date Analyzed: 03/30/11 15:18	SU	RROGATE R	ECOVERY	STUDY			
VOAs	by SW-846 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
4-Bromofluorobenzene		0.0486	0.0500	97	74-124			
Diomondolobenzene			0.0500	120	75-131			
· · · · · · · · · · · · · · · · · · ·	•	0.0602	0.0500	1 120	10 101 1			
Dibromofluoromethane 1,2-Dichloroethane-D4		0.0602	0.0500	114	63-144			

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

esults are based on MDL and validated for QC purposes.

Project Name: DCP Plant to Lea Station 6" Section 31

Work Orders: 411097	•): 2009-084		•
Lab Batch #: 850041	Sample: 411082-008 S / MS		h: 1 Matrix: RROGATE RI		STUDY	
Units: mg/L VOAs	Date Analyzed: 03/30/11 16:12 by SW-846 8260B Analytes	Amount Found [A]	True Amount (B)	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene		0.0473	0.0500	95	74-124	
Dibromofluoromethane		0.0548	0.0500	110	75-131	
1,2-Dichloroethane-D4	· · · · · · · · · · · · · · · · · · ·	0.0549	0.0500	110	63-144	
Toluene-D8	·	0.0545	0.0500	109	80-117	
Lab Batch #: 850041	Sample: 411082-008 SD / N	ASD Bate	h: 1 Matrix	Water	<u> </u>	
Units: mg/L	Date Analyzed: 03/30/11 16:40	SU	RROGATE RI	ECOVERY S	STUDY	
VOAs	by SW-846 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene		0.0453	0.0500	91	74-124	
Dibromofluoromethane		0.0552	0.0500	110	75-131	
1,2-Dichloroethane-D4		0.0563	0.0500	113	63-144	
Toluene-D8		0.0509	0.0500	102	80-117	
Lab Batch #: 850041	Sample: 411097-004 / SMP	Batc	h: 1 Matrix	Water	L	
Units: mg/L	Date Analyzed: 03/30/11 21:14		RROGATE RI	ECOVERY	STUDY	
VOAs	by SW-846 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene		0.0518	0.0500	104	74-124	
Dibromofluoromethane	· · · · ·	0.0568	0.0500	114	75-131	:
1,2-Dichloroethane-D4	·	0.0579	0.0500	116	63-144	
Toluene-D8	· · · · · ·	0.0481	0.0500	96	80-117	
Lab Batch #: 850255	Sample: 599477-1-BKS / B	KS Batc	h: ¹ Matrix	Water		
Units: mg/L	Date Analyzed: 03/31/11 11:00	SU	RROGATE RI	ECOVERY	STUDY	
VOAs	by SW-846 8260B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4 Drame fluench and	Analytes	0.0/02	1			
4-Bromofluorobenzene		0.0492	0.0500	98	74-124	
Dibromofluoromethane		0.0492	0.0500	. 98	75-131	
1,2-Dichloroethane-D4 Toluene-D8		0.0489	0.0500	98	. 63-144	
Toruene-178		0.0500	0.0500	100	80-117	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

50 C	[]	. 1		• 1
<u></u>				
	• T •]	1	τ .	65

Project Name: DCP Plant to Lea Station 6" Section 31

rk Orders: 411097	· · · · · · · · · · · · · · · · · · ·		Project II	D:2009-084		
Lab Batch #: 850255	Sample: 599477-1-BLK / B	LK Batc	h: 1 Matrix	:Water		·
Units: mg/L	Date Analyzed: 03/31/11 11:44	· SU	RROGATE R	ECOVERY	STUDY	
VOAs	by SW-846 8260B Analytes	Amount Found [A]	True Amount B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene		0.0506	0.0500 .	101	74-124	
Dibromofluoromethane	·······	0.0472	0.0500	94	75-131	
1,2-Dichloroethane-D4	· · · · · · · · · · · · · · · · · · ·	0.0509	0.0500	102	63-144	
Toluene-D8	·	0.0495	0.0500	99	80-117	
Lab Batch #: 850255	Sample: 411256-001 S / MS					•
Units: mg/L	Date Analyzed: 03/31/11 14:46	SU	RROGATE RI	ECOVERY	STUDY	
VOAs	by SW-846 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene	•	0.0508	0.0500	102	74-124	
Dibromofluoromethane		0.0506	0.0500	101	75-131	
1,2-Dichloroethane-D4		0.0510	0.0500	102	63-144	
Toluene-D8		0.0498	0.0500	100	80-117	
Lab Batch #: 850255	Sample: 411256-001 SD / N	ASD Bate	h: ¹ Matrix	•Water		
Units: mg/L	Date Analyzed: 03/31/11 15:08		RROGATE R		STUDY	
	by SW-846 8260B Analytes	Amount Found [A] [']	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene	· · · · · · · · · · · · · · · · · · ·	0.0508	0.0500	102	74-124	
Dibromofluoromethane		0.0490	0.0500	98	75-131	
1,2-Dichloroethane-D4	•	0.0483	0.0500	97	63-144	
Toluene-D8		0.0497	0.0500	99	80-117	
Lab Batch #: 850255	Sample: 411097-004 / DL	Batcl	h: ¹ Matrix	Water	· · · · · · · · · · · · · · · · · · ·	
Units: mg/L	Date Analyzed: 03/31/11 19:52	SU	RROGATE RI	ECOVERY	STUDY	
VOAs	by SW-846 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
A Dromofluor-L	Analyws	0.0505				
4-Bromofluorobenzene		0.0506	0.0500	101 94	74-124 75-131	
Dibromofluoromethene		0.0470				
Dibromofluoromethane		0.0470	0.0500			
Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8		0.0470 0.0477 0.0488	0.0500	95 98	63-144 80-117	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

results are based on MDL and validated for QC purposes.

Work Order #: 411097		Project ID: 2009-084							
Lab Batch #: 850041	Sample: 599371-	-1-BKS	Matrix:						
Date Analyzed: 03/30/2011	Date Prepared: 03/30/2	011	Analyst:						
Reporting Units: mg/L	Batch #: 1	BLANK /	BLANK SPI	OVERY	STUDY				
VOAs by SW-846 8260B Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags			
1,1,1,2-Tetrachloroethane	<0.00500	0.0500	0.0516	103	75-125				
1,1,1-Trichloroethane	<0.00500	0.0500	0.0565	113	75-125	+			
1,1,2,2-Tetrachloroethane	<0.00500	0.0500	0.0511	102	50-130				
1,1,2-Trichloroethane	<0.00500	0.0500	0.0567	113	75-127	· · · · · · · · · · · · · · · · · · ·			
1.1-Dichloroethane	<0.00500	0.0500	0.0556	111	60-130	+			
1,1-Dichloroethene	<0.00500	0.0500	0.0506	101	59-172	+			
1,1-Dichloropropene	<0.00500	0.0500	0.0490	98	75-125	+			
1,2,3-Trichlorobenzene	< 0.00500	0.0500	0.0526	105	75-137	+			
1,2,3-Trichloropropane	<0.00500	0.0500	0.0570	114	75-125				
1,2,4-Trichlorobenzene	< 0.00500	0.0500	0.0489	98	75-135				
1,2,4-Trimethylbenzene	<0.00500	0.0500	0.0477	95	75-125	+			
1,2-Dibromo-3-Chloropropane	< 0.00500	0.0500	0.0585	117	59-125				
1,2-Dibromoethane	< 0.00500	0.0500	0.0522	104	73-125				
1,2-Dichlorobenzene	<0.00500	0.0500	0.0496	99	75-125	· · · · · · · · · · · · · · · · · · ·			
1,2-Dichloroethane	< 0.00500	0.0500	0.0574	11.5	68-127				
1,2-Dichloropropane	<0.00500	0.0500	0.0505	101	74-125				
1,3,5-Trimethylbenzene	< 0.00500	0.0500	0.0539	108	70-125	1			
1,3-Dichlorobenzene	<0.00500	0.0500	0.0500	100	75-125				
1,3-Dichloropropane	< 0.00500	0.0500	0.0560	112	75-125				
1,4-Dichlorobenzene	<0.00500	0.0500	0.0495	99	75-125				
2,2-Dichloropropane	<0.00500	0.0500	0.0547	109	60-140				
2-Chlorotoluene	<0.00500	0.0500	0.0529	106	73-125	-			
4-Chlorotoluene	<0.00500	0.0500	0.0511	102	74-125				
Benzene	<0.00500	0.0500	0.0517	103	66-142	1			
Bromobenzene	<0.00500	0.0500	, 0.0504	101	60-130	1			
Bromochloromethane	<0.00500	0.0500	0.0509	102	73-125				
Bromodichloromethane	<0.00500	0.0500	0.0596	119	75-125				
Bromoform	<0.00500	0.0500	0.0547	109	75-125	1			
Bromomethane	<0.00500	0.0500	0.0515	103	70-130				
Carbon Tetrachloride	<0.00500	0.0500	0.0565	113	62-125	1.			
Chlorobenzene	< 0.00500	0.0500	0.0488	98	60-133	1			
Chloroethane	<0.0100	0.0500	0.0562	112	.70-130				
Chloroform	. <0.00500	0.0500	0.0535	107	74-125				

Blank Spike Recovery [D] = 100*[C]/[B] All results are based on MDL and validated for QC purposes.

BRL - Below Reporting Limit

Work Order #: 411097		Pr		2009-084		
Lab Batch #: 850041 Date Analyzed: 03/30/2011	Sample: 599371 Date Prepared: 03/30/2		Matrix: Analyst:			
Reporting Units: mg/L	Batch #: 1	BLANK /	STUDY			
VOAs by SW-846 8260B Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
Chloromethane	<0.0100	0.0500	0.0560	112	70-130	
cis-1,2-Dichloroethene	<0.00500	0.0500	0.0508	102	60-130	
cis-1,3-Dichloropropene	<0.00500	0.0500	0.0484	97	60-140	
Dibromochloromethane	<0.00500	0.0500	0.0539	108	60-130	
Dibromomethane	<0.00500	0.0500	0.0537	107	69-127	
Dichlorodifluoromethane	<0.00500	0.0500	0.0518	104	70-130	
Ethylbenzene	<0.00500	0.0500	0.0514	103	75-125	
Hexachlorobutadiene	<0.00500	0.0500	0.0489	.98	75-125	1
isopropylbenzene	<0.00500	0.0500	0.0470	94	75-125	
m,p-Xylenes	<0.0100	0.100	0:108	108	75-125	
Methylene Chloride	<0.00500	0.0500	0.0524	105	75-125	
MTBE	<0.00500	0.0500	0.0653	131	75-125	Н
Naphthalene	<0.0100	0.0500	0.0557	111	65-135	
tylbenzene	<0.00500	0.0500	0.0506	101	75-125	
opylbenzene	<0.00500	0.0500	0.0515	103	75-125	
o-Xylene	<0.00500	0.0500	0.0498	100	75-125	
p-Cymene (p-Isopropyltoluene)	<0.00500	0.0500	0.0478	96	75-125	
Sec-Butylbenzene	. <0.00500	0.0500	0.0533	107	75-125	
Styrene	<0.00500	0.0500	0.0476	95	60-130	
tert-Butylbenzene	< 0.00500	0.0500	0.0466	93	75-125	
Tetrachloroethylene	<0.00500	0.0500	0.0483	97	60-130	
Toluene	<0.00500	0.0500	0.0539	108	59-139	
trans-1,2-dichloroethene	<0.00500	0.0500	0.0509	102	60-130	
trans-1,3-dichloropropene	<0.00500	0.0500	0.0553	- 111 ₁	66-125	
Trichloroethene	` <0.00500	0.0500	0.0494	99 .	62-137	
Trichlorofluoromethane	<0.00500	0.0500	0.0601	120	67-125	
Vinyl Chloride	< 0.00200	0.0500	0.0404	81	75-125	

Blank Spike Recovery [D] = 100*[C]/[B] All results are based on MDL and validated for QC purposes.

Below Reporting Limit

Work Order #: 411097		Project ID: 2							
Lab Batch #: 850255	Sample: 599	477-1-BKS	Matrix						
Date Analyzed: 03/31/2011	Date Prepared: 03/3		Analyst						
Reporting Units: mg/L	Batch #:	BLANK	BLANK SPI	OVERY	STUDY				
VOAs by SW-846 8260B Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags			
I,1,1,2-Tetrachloroethane	<0.00500	0.0500	0.0557	111	75-125	<u>↓</u>			
1,1,1-Trichloroethane	<0.00500	0.0500	0.0532	. 106	75-125	<u> </u>			
1,1,2,2-Tetrachloroethane	<0.00500	0.0500	0.0544	109	50-130				
1,1,2-Trichloroethane	<0.00500	0.0500	0.0520	104	75-127				
1,1-Dichloroethane	<0.00500	0.0500	0.0526	105	60-130	†			
1,1-Dichloroethene	<0.00500	0.0500	0.0518	104	59-172	1			
1,1-Dichloropropene	<0.00500	0.0500	0.0509	102	75-125	1			
1,2,3-Trichlorobenzene	<0.00500	0.0500	0.0557	111	75-137	1			
1,2,3-Trichloropropane	. <0.00500	0.0500,	0.0541	108	75-125	<u> </u>			
1,2,4-Trichlorobenzene	<0.00500	0.0500	0.0566	- 113	75-135	1			
l,2,4-Trimethylbenzene	<0.00500	0.0500	0.0558	112	75-125	<u> </u>			
1,2-Dibromo-3-Chloropropane	<0.00500	0.0500	0.0496	99	59-125				
1,2-Dibromoethane	<0.00500	0.0500	0.0538	108	73-125	<u> </u>			
1,2-Dichlorobenzene	<0.00500	0.0500	0.0522	104	75-125				
1,2-Dichloroethane	<0.00500	0.0500	0.0490	98 .	68-127				
1,2-Dichloropropane	<0.00500	0.0500	0.0523	105	74-125				
1,3,5-Trimethylbenzene	<0.00500	0.0500	0.0552	110	70-125				
I,3-Dichlorobenzene	<0.00500	0.0500	0.0520	. 104	75-125				
1,3-Dichloropropane	<0.00500	0.0500	0.0522	104	75-125				
1,4-Dichlorobenzene	<0.00500	0.0500	0.0510	102	75-125				
2,2-Dichloropropane	<0.00500	0.0500	0.0563	113	. 60-140	f			
2-Chlorotoluene	<0.00500	0 0.0500	0.0536	107	73-125				
4-Chlorotoluene	<0.00500	0.0500	0.0522	104	74-125				
Benzene	<0.00500	0.0500	0.0511	102	66-142				
Bromobenzene	<0.00500	0.0500	0.0517	103	60-130	<u> </u>			
Bromochloromethane	<0.00500	0.0500	0.0521	104	73-125	1			
Bromodichloromethane	< 0.00500	0.0500	0.0551	110	75-125				
Bromoform	<0.00500	0.0500	0.0461	92	75-125				
Bromomethane	<0.00500	0.0500	0.0446	89	70-130	1			
Carbon Tetrachloride	<0.00500	0.0500	0.0537	107	62-125	1			
Chlorobenzene	<0.00500	0.0500	0.0521	104	60-133				
Chloroethane	<0.0100	0.0500	0.0454	91	70-130	1			
Chloroform	<0.00500	0.0500	0.0504	101	74-125	i —			

Blank Spike Recovery [D] = 100*[C]/[B]All results are based on MDL and validated for QC purposes.

BRL - Below Reporting Limit

2009-084 Work Order #: 411097 **Project ID:** Lab Batch #: 850255 Sample: 599477-1-BKS Matrix: Water Date Prepared: 03/31/2011 Date Analyzed: 03/31/2011 Analyst: CYE **BLANK /BLANK SPIKE RECOVERY STUDY** Reporting Units: mg/L Batch #: 1 Blank VOAs by SW-846 8260B Blank Spike Blank Control Result Added Spike Spike Limits Flags [B] [A] Result %R %R Analytes [D] < 0.0100 0.0500 0.0475 95 70-130 Chloromethane < 0.00500 0.0500 0.0510 102 60-130 cis-1,2-Dichloroethene 92 cis-1,3-Dichloropropene < 0.00500 0.0500 0.0460 60-140 < 0.00500 0.0500 0.0472 94 60-130 Dibromochloromethane Dibromomethane <0.00500 0.0500 0.0504 101 69-127 101 Dichlorodifluoromethane < 0.00500 0.0500 0.0503 70-130 Ethylbenzene < 0.00500 0.0500 0.0528 106 75-125 Hexachlorobutadiene < 0.00500 0.0500 0.0532 106 75-125 isopropylbenzene <0.00500 0.0500 0.0539 108 75-125 < 0.0100 0.100 0.107 107 75-125 m,p-Xylenes Methylene Chloride <0.00500 0.0500 0.0521 104 75-125 мтве < 0.00500 0.0595 119 0.0500 75-125 Naphthalene < 0.0100 0.0500 0.0524 105 65-135 < 0.00500 0.0546 109 ttylbenzene 0.0500 75-125 < 0.00500 0.0500 0.0543 109 opylbenzene 75-125 o-Xylene < 0.00500 0.0500 0.0553 111 75-125 < 0.00500 0.0500 0.0519 104 75-125 p-Cymene (p-lsopropyltoluene) Sec-Butylbenzene < 0.00500 0.0500 0.0551 110 75-125 Styrene < 0.00500 0.0500 0.0562 112 60-130 < 0.00500 0.0500 111 tert-Butylbenzene 0.0556 75-125 < 0.00500 0.0500 0.0518 104 Tetrachloroethylene 60-130 Toluene < 0.00500 0.0500 0.0506 101 59-139 trans-1,2-dichloroethene < 0.00500 0.0500 0.0508 102 60-130 < 0.00500 0.0500 0.0459 92 66-125 trans-1,3-dichloropropene Trichloroethene < 0.00500 0.0500 0.0509 102 62-137 < 0.00500 0.0500 0.0523 105 67-125 Trichlorofluoromethane < 0.00200 0.0500 0.0439 88 75-125 Vinyl Chloride

Blank Spike Recovery [D] = 100*[C]/[B]

All results are based on MDL and validated for QC purposes.

Below Reporting Limit

Work Order #: 411097	Project ID: 2009-084										
Analyst: ALA	Da	ate Prepar	ed: 03/29/201	11			Date A	nalyzed: (3/29/2011		
Lab Batch ID: 849832 Sample: 849832-1-	BKS	Batcl	1#: 1					Matrix: \	Vater		
Units: mg/L		BLAN	K/BLANK S	SPIKE / E	BLANK S	SPIKE DUPI	JICATE 1	RECOVI	ERY STUD	Y	
Alkalinity by SM2320B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Bik. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Alkalinity, Total (as CaCO3)	<4.00	. 250	260	104	250	260	104	0 .	80-120	20	
Alkalinity, Bicarbonate (as CaCO3)	<4.00	250	260	104	250	260	104	0	80-117	20	
Alkalinity, Carbonate (as CaCO3)	<4.00	250	260	104	250	260	104	0	80-120	20	
							.			•	
Analyst: ASA	Da		ed: 03/29/201	1				-	3/29/2011		
Analyst: ASA Lab Batch ID: 849979 Sample: 599342-1-1			ed: 03/29/201 1#: 1	11				nalyzed: (Matrix: \			
•		Batcl	n#: 1		BLANK S	PIKE DUPI		Matrix: \	Vater	OY	
Lab Batch ID: 849979 Sample: 599342-1-1		Batcl	n#: 1		BLANK S Spike Added [E]	PIKE DUPI Blank Spike Duplicate Result [F]		Matrix: \	Vater	Control Limits %RPD	Flag
Lab Batch ID: 849979 Sample: 599342-1- Units: mg/L BTEX by EPA 8021B	3KS Blank Sample Result	Batcl BLAN Spike Added	n #: 1 K /BLANK S Blank Spike Result	SPIKE / F Blank Spike %R	Spike Added	Blank Spike Duplicate	LICATE Bik. Spk Dup. %R	Matrix: \ RECOVI	Vater CRY STUD Control Limits	Control Limits	Flag
Lab Batch ID: 849979 Sample: 599342-1- Units: mg/L BTEX by EPA 8021B Analytes Benzene	3KS Blank Sample Result [A]	Batcl BLAN Spike Added [B]	1 #: 1 K /BLANK S Blank Spike Result [C]	SPIKE / F Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	LICATE Bik. Spk Dup. %R [G]	Matrix: \ RECOVE RPD %	Vater CRY STUD Control Limits %R	Control Limits %RPD	Flag
Lab Batch ID: 849979 Sample: 599342-1- Units: mg/L BTEX by EPA 8021B Analytes Benzene	Blank Sample Result [A]	Batcl BLAN Spike Added [B] 0.100	1 #: 1 K/BLANK S Blank Spike Result [C] 0.116	SPIKE / F Blank Spike %R [D] 116	Spike Added [E] 0.100	Blank Spike Duplicate Result [F] 0.113	LICATE 1 Bik. Spk Dup. %R [G] 113	Matrix: \ RECOVE RPD % 3	Vater CRY STUD Control Limits %R 70-125	Control Limits %RPD 25	Flag
Lab Batch ID: 849979 Sample: 599342-1-1 Units: mg/L BTEX by EPA 8021B Analytes Benzene Toluene	3KS Blank Sample Result [A] <0.00100 <0.00200	Batcl BLAN Spike Added [B] 0.100 0.100	1 #: 1 K/BLANK S Blank Spike Result [C] 0.116 0.117	SPIKE / F Blank Spike %R [D] 116 117	Spike Added [E] 0.100 0.100	Blank Spike Duplicate Result [F] 0.113 0.114	LICATE 1 Bik. Spk Dup. %R [G] 113 114	Matrix: N RECOVE	Vater CRY STUD Control Limits %R 70-125 70-125	Control Limits %RPD 25 25	Flag

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: DCP Plant to Lea Station 6" Section 31

Work Order #: 411097Analyst: LATCORLab Batch ID: 849659Sample:	D 849659-1-BKS	Bate	ed: 03/28/20 h #: 1				Date A	nalyzed: (Matrix:)	•		
Units: mg/L		BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY							ŶY		
Anions by E300 Analytes	Biank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Fluoride	<0.200	2.00	2.18	109	2.00	2.25	113	3	80-120	20	<u> </u>
Chloride	<0.500	10.0	10.2	102	10.0	10.5	105	3	80-120	20	· · ·
Sulfate	<0.500	10.0	10.3	. 103	10.0	10.6	106	3	80-120	20	
Analyst: LATCOR	·	· -	ed: 03/29/20	11				•	03/29/2011		
Lab Batch ID: 849661 Sample: Units: mg/L	599146-1-BKS		h #: 1 K /BLANK	SPIKE / 1	BLANK S	PIKE DUP	•	Matrix: ` RECOVI		ν	
Mercury by EPA 7470A Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Bik. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Mercury	< 0.000250	0.00100	0.00102	102	0.00100	0.00104	104	2	75-125	20	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: DCP Plant to Lea Station 6" Section 31

Work Order #: 411097 Analyst: DAT				ed: 03/31/201	1			Date A	•	3/31/2011		
Lab Batch ID: 850035	Sample: 599312-1-	BKS		h#: 1					Matrix: \			
Units: mg/L			BLAN	K/BLANK S	SPIKE / E	BLANK S	PIKE DUPI	LICATE	RECOVI	ERY STUD	Y	
Metals per ICP by	SW846 6010B	Blank Sample Result [A]	Spike Added [B]	Biank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Bik. Spk Dup. %R G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	· · · · · · · · · · · · · · · · · · ·											
Aluminum		<0.0500	1.00	1.11	111	1.00 .	1.12	112	1	85-115	20	
Arsenic	·	<0.0100	1.00	1.09	109	1.00	1.10	110	1	85-115	20	
Barium		<0.0100	1.00	0.992	99	1.00	0.983	98	1	85-115	20	
Boron		<0.100	1.00	1.02	102	1.00	1.04	104	2 .	85-115	20	
Cadmium		<0.00500	1.00	1.12	112	1.00	1.13	113	1	85-115	20	
Calcium	· · · · · · · · · · · · · · · · · · ·	<0.100	1.00	1.11	111	1.00	1.13	113	2	85-115	20	
Chromium		<0.00500	1.00	1.10	110	1.00	1.10	110	0	85-115	20 · ·	
Cobalt		<0.0100	1.00	1.12	112	1.00	1.13	113	1	85-115	20	
Copper	· · · · · · · · · · · · · · · · · · ·	<0.0100	1.00	1.06	106	1.00	1.07	107	1	85-115	20	
Iron		< 0.0300	1.00.	1.15	115	1.00 .	1.09	109	5	85-115	20	
Lead		<0.0120	1.00	1.12	112	1.00	1.12	112	0	85-115	20	
Magnesium		<0.0100	1.00	1.11	111	1.00	1.12	112	1	85-115	20	
Manganese		<0.0100	1.00	1.00	100	1.00	0.970	97	3	85-115	20	1
Molybdenum		<0.0100	1.00	1.07	107	1.00	1.08	· 108	1	85-115	20	
Nickel		<0.0100	1.00	1.12	112	1.00	1.13	113	1	85-115	20	
Potassium	· · · · · ·	<0.500	10.0	9.39	94	10.0	9.48	95	. 1	85-115	.20	
Selenium	<u></u>	<0.0100	1.00	1.10	110	1.00	. 1.11	111	1	85-115	20	
Silver	······	<0.00400	1.00	1.05	105	1.00	1.05	105	0	85-115	20	İ.
Sodium		<0.500	11.0	11.1	101	11.0	.11.1	101	. 0	85-115	20	
Zinc	· · · · · · · · · · · · · · · · · · ·	<0.0100	. 1.00	1.09	109	1.00	1.10	110	1	85-115	20	<u> </u>

Relative Percent Difference RPD = 200*[(C-F)/(C+F)] Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

.7

BS / BS. ecoveries

Project Name: DCP Plant to Lea Station 6" Section 31

Analyst: ZHO Lab Batch ID: 849858 Sample: 599		Date Prepared: 03/29/2011 1-1-BKS Batch #: 1 BLANK /BLANK SPIKE / BLANK \$ 1					Date Analyzed: 03/29/2011 Matrix: Water						
Units: mg/L SVOAs by EPA 8270C	Blank Sample Result	Spike	Blank Spike	Blank Spike	Spike Added	Blank Spike	Bik. Spk Dup.	RPD	Control Limits	Control Limits	Flag		
Analytes	[A]	[B]	Result [C]	%R [D]	[E]	Duplicate Result [F]	%R [G]	%	%R	%RPD			
1,2,4-Trichlorobenzene	<0.0100	0.0500	0.0466	93	0.0500	0.0444	89	5	56-104	. 25			
1,2-Dichlorobenzene	<0.0100	0.0500	0.0484	. 97	0.0500	0.0457	. 91	6	53-106	25			
1,3-Dichlorobenzene	<0.0100	0.0500	0.0464	93	0.0500	0.0440	88	5	52-105	25			
1,4-Dichlorobenzene	<0.0100	0.0500	0.0468	94	0.0500	0.0444	89	5	54-105	25			
2,4,5-Trichlorophenol	. <0.0100	0.0500	0.0474	95	0.0500	0.0441	88	. 7	55-114	25			
2,4,6-Trichlorophenol	<0.0100	0.0500	0.0496	99	0.0500	0.0467	93	6	57-113	25			
2,4-Dichlorophenol	<0.0100	0.0500	0.0480	96	0.0500	0.0460	92	4	60-110	25			
2,4-Dimethylphenol	<0.0100	0.0500	0.0502	100	0.0500	0.0481	96	4	50-108	25			
2,4-Dinitrophenol	<0.0200	0.0500	0.0451	90	0.0500	0.0437	87	· 3	52-111	25			
2,4-Dinitrotoluene	<0.0100	0.0500	0.0516	103	0.0500	0.0488	98	6	60-116	25			
2,6-Dinitrotoluene	<0.0100	0.0500	0.0491	98	0.0500	0.0468	94	5	60-115	25			
2-Chloronaphthalene	<0.0100	0.0500	0.0430	86	0.0500	0.0409	82	5	58-105	25			
2-Chlorophenol	<0.0100	0.0500	0.0491	98	0.0500	0.0463	. 93	6	58-106	25			
2-Methylnaphthalene	<0.0100	0.0500	0.0490	98	0.0500	0.0471	94	4	57-106	25			
2-methylphenol	<0.0100	0.0500	0.0479	96	0.0500	0.0451	90	6	52-106	25			
2-Nitroaniline	<0.0200	0.0500	0.0558	112	0.0500	0.0519	104	7.	55-120	25			
2-Nitrophenol	<0.0100	0.0500	0.0475	95	0.0500	0.0465	93	2	57-105	25			
3&4-Methylphenol	<0.0100	0.0500	0.0478	96	0.0500	0.0454	91	5	23-140	25			
3,3-Dichlorobenzidine	<0.0100	0.0500	0.0578	116	0.0500	0.0545	109 ·	6	36-123	25			
3-Nitroaniline	<0.0200	0.0500	0.0529	106	0.0500	0.0498	100	6	49-120	25	[

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: DCP Plant to Lea Station 6" Section 31

Work Order #: 411097 Analyst: ZHO	D	Date Prepared: 03/29/2011					Project ID: 2009-084 Date Analyzed: 03/29/2011						
Lab Batch ID: 849858 Sample: 59	9181-1-BKS	Bate	h#: 1					Matrix:	Water				
Units: mg/L				_									
SVOAs by EPA 8270C Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag		
4,6-dinitro-2-methyl phenol	<0:0100	0.0500	0.0482	96	0.0500	0.0464	93	4	57-119	25			
4-Bromophenyl-phenylether	<0.0100	0.0500	0.0481	96	0.0500	0.0454	91	6	58-112	25	<u> </u>		
4-chloro-3-methylphenol	<0.0100	0.0500	0.0502	100	0.0500	0.0486	97	3	58-116	. 25	<u> </u>		
4-Chloroaniline	<0.0200	0.0500	0.0508	102	0.0500	0.0483	97	5	2-123	25	<u> </u>		
4-Chlorophenyl Phenyl Ether	<0.0100	0.0500	0.0482	96	0.0500	0.0454	91	6	59-109	25			
4-Nitroaniline	<0.0200	0.0500	0.0538	108	0.0500	0.0500	100	7	52-118	25			
4-Nitrophenol	<0.0100	0.0500	0.0432	86	0.0500	0.0431	86	0	18-104	25			
Acenaphthene	<0.0100	0.0500	0.0500	100	0.0500	0.0467	93	7	54-114	25			
Acenaphthylene	<0.0100	0.0500	0.0503	101	0.0500	0.0476	95	6	53-113	25			
Aniline (Phenylamine, Aminobenzene)	<0.0200	0.0500	0.0441	88	0.0500	0.0390	78	12	35-104	25			
Anthracene	<0.0100	0.0500	0.0519	104	0.0500	0.0494	99	5	56-116	25			
Benzo(a)anthracene	<0.0100	0.0500	0.0503	101	0.0500	0.0482	96	4	59-116	25			
Benzo(a)pyrene	<0.0100	0.0500	0.0546	109	0.0500	0.0514	103	6	58-118	25			
Benzo(b)fluoranthene	<0.0100	0.0500	0.0559	112	0.0500	0.0510	102	9	54-123	25			
Benzo(g,h,i)perylene	<0.0100	0.0500	0.0503	101	0.0500	0.0477	95	5	47-129	25			
Benzo(k)fluoranthene	<0.0100	0.0500	0.0510	102	0.0500	0.0493	99	3	52-122	25 .	<u> </u>		
Benzoic Acid	<0.0500	0.150	0.146	97	0.150	0.152	101	4	4-113	25			
Benzyl Butyl Phthalate	<0.0100	0.0500	0.0550	110	0.0500	0.0519	104	6	57-122	25	<u> </u>		
bis(2-chloroethoxy) methane	<0.0100	0.0500	0.0497	99	0.0500	0.0474	95	5	53-112	25			
bis(2-chloroethyl) ether	<0.0100	0.0500	0.0502	100	0.0500	0.0476	95	5	57-108	25			

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

	na	•
KN /	BS	ecoveries

Work Order #: 411097

Work Order #: 411097		5. S.	Project ID: 2009-084
Analyst: ZHO		Date Prepared: 03/29/2011	Date Analyzed: 03/29/2011
Lab Batch ID: 849858	Sample: 599181-1-BKS	Batch #: 1	Matrix: Water

Units: mg/L

SVOAs by EPA 8270C	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Controi Limits %RPD	Flag
Analytes		[B]	[C]	[D] ·	[E]	Result [F]	[G]				
bis(2-chloroisopropyl) ether	<0.0100	0.0500	0.0485	97	0.0500	0.0462	92	5	54-111	25	
bis(2-ethylhexyl) phthalate	<0.0100	0.0500	0.0557	111	0.0500	0.0535	107	4	59-119	25	
Chrysene	<0.0100	0.0500	0.0519	104	0.0500	0.0497	99	4	58-116	25	
Dibenz(a,h)Anthracene	<0.0100	0.0500	0.0558	112	0.0500	0.0527	105	6	46-131	25	
Dibenzofuran	<0.0100	0.0500	0.0475	95	0.0500	.0.0448	90	6	56-111	25	
Diethyl Phthalate	<0.0100	0.0500	0.0522	104	0.0500	0.0489	98	7	62-114	25	
Dimethyl Phthalate	<0.0100	0.0500	0.0522	104	0.0500	0.0491	98	6	59-113	25	
di-n-Butyl Phthalate	<0.0100	0.0500	0.0555	111	0.0500	0.0528	106	5	60-118	25.	
di-n-Octyl Phthalate.	<0.0100	0.0500	0.0567	113	0.0500	0.0533	107	6	49-129	25	
Fluoranthene	<0.0100	0.0500	0.0539	108	0.0500	0.0506	101	6	55-120	25	
Fluorene	<0.0100	0.0500	0.0493	99	0.0500	0.0472	94	4	56-114	25	
Hexachlorobenzene	<0.0100	0.0500	0.0474	95	0.0500	0.0451	90	5	60-109	25	
Hexachlorobutadiene	<0.0100	0.0500	0.0442	· 88	0.0500	0.0410	82	8	52-107	25	
Hexachlorocyclopentadiene	<0.0100	0.0500	0.0443	89	0.0500	0.0419	84	6	32-115	25	
Hexachloroethane	<0.0100	0.0500	0.0475	95	0.0500	0.0452	90	5	46-115	25	
Indeno(1,2,3-c,d)Pyrene	<0.0100	0.0500	0.0560	112	0.0500	0.0519	104	8	44-132	25	
Isophorone	<0.0100	0.0500	0.0502	100	0.0500	0.0481	.96 ·	4	57-107	25	
Naphthalene	<0.0100	0.0500	0.0468	94	0.0500	0.0447	89	5	53-110	25	
Nitrobenzene	<0.0100	0.0500	0.0496	99	0.0500	0.0472	94	5	56-107	25	
N-Nitrosodi-n-Propylamine	<0.0100	0.0500	· 0.0539	108	0.0500	0.0514	103	5	21-137	25	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: DCP Plant to Lea Station 6" Section 31

Work Order #: 411097 Date Prepared: 03/29/2011 Analyst: ZHO Date Prepared: 03/29/2011							Project ID: 2009-084 Date Analyzed: 03/29/2011							
Lab Batch ID: 849858	Sample: 599181-1-	-BKS	Batci	n#: 1		Matrix: Water								
Units: mg/L									•					
SVOAs by EPA	8270C	Biank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Límíts %RPD	Flag		
Analytes			[B]	[C]	[D]	[E]	Result [F]	[G]						
N-Nitrosodiphenylamine		<0.0100	0.0500	0.0522	104	0.0500	0,0498	100	5	50-121	25			
Pentachlorophenol		<0.0100	0.0500	0.0489	98	0.0500	0.0463	93	5	36-132	25			
Phenanthrene		<0.0100	0.0500	0.0504	101	0.0500	0.0487	97	3	56-116	25			
Phenol		<0.0100	0.0500	0.0342	68	0.0500	0.0337	67	1	19-89	25			
Pyrene		<0.0100	0.0500	0.0499	100	0.0500	0.0476	95	5	57-119	25			
Pyridine		<0.0200	0.0500	0.0227	45	0.0500	<0.0200	0	NC	5-94	25	L		

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

,7

Form 3 - MS Recoveries

Project Name: DCP Plant to Lea Station 6" Section 31

**************************************			Pro	oject ID:	2009-084				
Date Analyzed: 03/28/2011	Date Prepared: 03/28/	2011	. A	.nalyst: L	ATCOR				
QC- Sample ID: 411097-004 S	Batch #: 1	·	Matrix: Water						
Reporting Units: mg/L	rting Units: mg/L MATRIX / MATRIX SPIKE RECOVERY STU								
Inorganic Anions by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag			
Analytes	[A]	[B]							
Fluoride	30.5	50.0	51.3	42	80-120	x			
Chloride	392	250	627	94	80-120				
Sulfate	288	250	530	97	80-120				

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference $[E] = 200^{\circ}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

Β' elow Reporting Limit

Form 3 - MS Recoveries

Project Name: DCP Plant to Lea Station 6" Section 31

Work Order #: 411097 Lab Batch #: 849858 Date Analyzed: 03/30/2011	Date Prepared: 03/2	9/2011		oject ID: nalyst: Zl	2009-084 HO	
QC- Sample ID: 410972-001 S	Batch #: 1			Matrix: So		<u></u>
Reporting Units: mg/L		RIX / MA	TRIX SPIKE	RECOV	VERY STU	DY
SVOAs by SW-846 8270C Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
1,2,4-Trichlorobenzene	<0.0500	0.250	0.244	98	56-104	
1,2-Dichlorobenzene	<0.0500	0.250	0.242	97	53-106	
1,3-Dichlorobenzene	<0.0500	0.250	0.235	94	52-105	
I,4-Dichlorobenzene	<0.0500	0.250	0.235	94	54-105	
2,4,5-Trichlorophenol	<0.0500	0.250	0.247	99	55-114	
2,4,6-Trichlorophenol	<0.0500	0.250	0.266	106	57-113	
2,4-Dichlorophenol	<0.0500	0.250	0.259	104	60-110	
2,4-Dimethylphenol	<0.0500	0.250	0.268	107	50-108	
2,4-Dinitrophenol	<0.100	0.250	0.205	82	52-111	
2,4-Dinitrotoluene	<0.0500	0.250	0.263	1.05	60-116	
2,6-Dinitrotoluene	<0.0500	0.250	0.257	1 03	60-115	
2-Chloronaphthalene	<0.0500	0.250	0.224	. 90	58-105	
2-Chlorophenol	<0.0500	0.250	0.255	102	58-106	
2-Methylnaphthalene	<0.0500	0.250	0.262	105	57-106	
2-methylphenol	<0.0500	0.250	0.255	102	52-106	
2-Nitroaniline	<0.100	0.250	0.274	110	55-120	
2-Nitrophenol	<0.0500	0.250	0.251	100	57-105	
3&4-Methylphenol	<0.0500	0.250	0.257	103	23-140	
3,3-Dichlorobenzidine	<0.0500	0.250	0.276	110	36-123	
3-Nitroaniline	<0.100	0.250	0.263	105	49-120	
4,6-dinitro-2-methyl phenol	<0.0500	0.250	0.217	87	57-119	
4-Bromophenyl-phenylether	<0.0500	0.250	0.253	101	58-112	
4-chloro-3-methylphenol	<0.0500	0.250	0.265	106	58-116	
4-Chloroaniline	<0.100	0.250	0.240	96	2-123	
4-Chlorophenyl Phenyl Ether	<0.0500	0.250	0.257	103	59-109	
4-Nitroaniline	<0.100	0.250	0.268	107	52-118	
4-Nitrophenol	<0.0500	0.250	0.269	108	18-104	x
Acenaphthene	<0.0500	0.250	0.261	104	54-114	
Acenaphthylene	<0.0500	0.250	0.267	107	53-113	
Aniline (Phenylamine, Aminobenzene)	<0.100	0.250	0.233	93	35-104	
Anthracene	<0.0500	0.250	0.266	106	56-116	
Benzo(a)anthracene	<0.0500	0.250	0.261	104	59-116	
Benzo(a)pyrene	<0.0500	0.250	0.274	110	58-118	
Benzo(b)fluoranthene	< 0.0500	0.250	0.261	104	54-123	

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference $[E] = 200^{\circ}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

8 (L. 12)	in a second s
8. J	
27 Q	
1	
3 1 1	oratories

Form 3 - MS Recoveries

Project Name: DCP Plant to Lea Station 6" Section 31

**'~rk Order #: 411097									
ab Batch #: 849858			Pro	oject ID:	2009-084				
Date Analyzed: 03/30/2011	Date Prepared: 03/29	9/2011	Α	Analyst: ZHO					
QC- Sample ID: 410972-001 S	Batch #: 1			Matrix: So					
Reporting Units: mg/L	MATR	IX / MA	TRIX SPIKE	RECOV	VERY STU	DY			
SVOAs by SW-846 8270C Analytes		Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag			
Benzo(g,h,i)perylene	<0.0500	0.250	0.251	100	47-129				
Benzo(k)fluoranthene	<0.0500	0.250	0.260	104	52-122				
Benzoic Acid	<0.250	0.750	0.950	127	4-113	x			
Benzyl Butyl Phthalate	<0.0500	0.250	0.279	112	57-122				
bis(2-chloroethoxy) methane	<0.0500	0.250	0.249	100	53-112				
bis(2-chloroethyl) ether	<0.0500	0.250	0.251	100	57-108				
bis(2-chloroisopropyl) ether	<0.0500	0.250	0.244	98	54-111				
bis(2-ethylhexyl) phthalate	<0.0500	0.250	0.285	114	59-119				
Chrysene	<0.0500	0.250	0.265	106	58-116				
Dibenz(a,h)Anthracene	<0.0500	0.250	0.269	108	46-131				
Dibenzofuran	<0.0500	0.250	0.255	102	56-111				
Diethyl Phthalate	< 0.0500	0.250	0.266	106	62-114	ļ			
Dimethyl Phthalate	<0.0500	0.250	0.264	106	59-113				
di-n-Butyl Phthalate	<0.0500	0.250	0.279	112	60-118				
Octyl Phthalate	<0.0500	0.250	0.291	116	49-129				
nthene	<0.0500	0.250	0.274	110	55-120				
+ iuorene	<0.0500	0.250	0.266	106	56-114				
Hexachlorobenzene	<0.0500	0.250	0.252	101	60-109				
Hexachlorobutadiene	<0.0500	0.250	0.238	95	52-107				
Hexachlorocyclopentadiene	<0.0500	0.250	0.208	83	32-115				
Hexachloroethane	<0.0500	0.250	0.239	96	46-115				
Indeno(1,2,3-c,d)Pyrene	<0.0500	0.250	0.277	111	44-132				
Isophorone	<0.0500	0.250	0.261	104	57-107				
Naphthalene	<0.0500	0.250	0.245	98	53-110				
Nitrobenzene	<0.0500	0.250	0.251	100	56-107				
N-Nitrosodi-n-Propylamine	<0.0500	0.250	0.264	106	21-137				
N-Nitrosodiphenylamine	<0.0500	0.250	0.268	107	50-121				
Pentachlorophenol	<0.0500	0.250	0.262	105	36-132				
Phenanthrene	<0.0500	0.250	0.258	103	56-116				
Phenol	<0.0500	0.250	0.224	90	19-89	X			
Pyrene	<0.0500	0.250	0.260	104	57-119				
Pyridine	<0.100	0.250	0.190	76	5-94				

Matrix Spike Percent Recovery $[D] = 100^{+}(C-A)/B$ Relative Percent Difference $[E] = 200^{+}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

P elow Reporting Limit

Form 3 - MS / MSD Recoveries

Project Name: DCP Plant to Lea Station 6" Section 31

Work Order #: 411097	Project ID: 2009-084										
Lab Batch ID: 849979 Date Analyzed: 03/30/2011 Reporting Units: mg/L	QC- Sample ID: Date Prepared:	03/29/2	011	An		1 Matri: ASA KE DUPLICA	TE PEC	OVERV	STUDY		
BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]		Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00100	0.100	0.108	108	0.100	0.107	107	1	70-125	25	
Toluene	<0.00200	0.100	0.109	109	0.100	0.109	109	0	70-125	25	
Ethylbenzene	<0.00100	0.100	0.108	108	0.100	0.108	108	0	71-129	25	
m_p-Xylenes	<0.00200	0.200	0.213	107	0.200	0.209	105	2	70-131	25	
o-Xylene	<0.00100	0.100	0.108	108	0.100	0.108	108	0	71-133	25	
Lab Batch ID: 849661 Date Analyzed: 03/29/2011 Reporting Units: mg/L	QC- Sample ID: Date Prepared:	03/29/2	011	An	•	1 Matri LATCOR KE DUPLICA	x: Water	OVERY	STUDY		
Mercury by EPA 7470A Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Mercury	<0.000250	0.00100	0.000550	55	0.00100	0.000560	56	2	75-125	20	x

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(C-F)/(C+F)]

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

MSD Recoveries Form 3 - M

Project Name: DCP Plant to Lea Station 6" Section 31

Work Order # : 411097				Project ID: 2009-084								
Date Analyzed: 03/31/2011	QC- Sample ID: Date Prepared:				tch #: alyst:	1 Matri DAT	x: Water	•	• •	. ·		
Reporting Units: mg/L	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY											
Metals per ICP by SW846 6010B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag	
Aluminum	. 0.202	1.00	1.33	113	1.00	1.35	115	1	75-125	20		
Arsenic	<0.0100	1.00	1.07	107	1.00	1.08	108	. 1	75-125	20		
Barium	0.0894	1.00	1.05	96	1.00	1.06	97	· 1	75-125	20		
Boron	0.511	1.00	1.58	107	1.00	1.64	113	• 4	75-125	20		
Cadmium	<0.00500	1.00	1.02	102	1.00	. 1.05	105	· 3	75-125	20		
Calcium	176	+1.00	177	100	1.00	180	400	2	75-125	20	Х	
Chromium	<0.00500	1.00	1.00	100	1.00	1.03	103	3.	75-125	20		
Cobalt	<0.0100	1.00	0.995	100	1.00	1.01	101	1 ·	75-125	20		
Copper ,	<0.0100	1.00	1.00	100	1.00	' 1.03	103	3	75-125	20		
Iron	0.140	1.00	1.21	107	1.00	1.24	110	2	75-125	20		
Lead	<0.0120	1.00	0.986	99	1.00	1.00	100	1	75-125	20		
Magnesium	72.6	1.00	74.6	200	1.00	76.3	370	.2	·75-125	20	X	
Manganese	0.122	1.00	1.07	95	1.00	· 1.09	97	2	75-125	20		
Molybdenum	0.0343	1.00	1.07	104	1.00	1.09	106	2	75-125	20		
Nickel	<0.0100	1.00	0.990 ·	99	1.00	1.01	101	2	75-125 -	20		
Potassium	14.3	10.0	26.5	122	10.0	27.2	129	3	75-125	20	X	
. Selenium	<0.0100	1.00	1.08	108	1.00	1.11	111	3	75-125	20		
Silver	· <0.00400	1.00	0.990	99	1.00	1.02	102	3	75-125	20		
Sodium	593	11.0	602	82	11.0	619	.236	3	75-125	20	X	
Zinc	0.0110	1.00	1.02	101	1.00	1.00	99	2	75-125	20		

Matrix Spike Percent Recovery [D] = 100*(C-A)/B. Relative Percent Difference RPD = 200*[(C-F)/(C+F)]

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Form 3 - MS / MSD Recoveries

Project Name: DCP Plant to Lea Station 6" Section 31

Work Order #: 411097 Project ID: 2009-084 Lab Batch ID: 850041 QC- Sample ID: 411082-008 S Batch #: 1 Matrix: Water CYE Date Analyzed: 03/30/2011 Date Prepared: 03/30/2011 Analyst: Reporting Units: mg/L **MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY** Parent Spiked Sample Spiked Duplicate Spiked Control Control VOAs by SW-846 8260B Sample Spike Result Spiked Sample RPD Flag Sample Spike Dup. Limits Limits Result Added |C|%R Added Result |F| %R % %R %RPD Analytes [A] **|B**| **[D**] [E] [G] 1,1,1,2-Tetrachloroethane < 0.00500 0.0500 0.0459 92 0.0500 0.0574 115 22 75-125 20 F 1.1.1-Trichloroethane < 0.00500 0.0500 0.0548 110 0:0500 0.0642 128 16 75-125 20 х 95 1,1,2,2-Tetrachloroethane < 0.00500 0.0500 0.0473 0.0500 0.0555 111 16 50-130 31 1,1,2-Trichloroethane < 0.00500 0.0500 0.0515 103 0.0500 0.0561 112 9 75-127 20 1,1-Dichloroethane < 0.00500 0.0500 0.0503 101 0.0500 0.0582 -116 15 60-130 20 1,1-Dichloroethene < 0.00500 0.0500 0.0446 89 0.0500 0.0525 16 22 105 59-172 1.1-Dichloropropene < 0.00500 0.0500 0.0395 79 0.0500 0.0432 86 9 20 75-125 1,2,3-Trichlorobenzene < 0.00500 0.0500 0.0414 83 0.0500 0.0517 103 22 75-137 20 F 1,2,3-Trichloropropane < 0.00500 0.0500 0.0378 76 0.0500 0.0440 88. 15 75-125 20 1,2,4-Trichlorobenzene < 0.00500 0.0500 0.0404 81 0.0500 0.0508 102 23 75-135 20 F 1,2,4-Trimethylbenzene < 0.00500 < 0.00500 0 0.0500 < 0.00500 NC х 0.0500 0 75-125 20 1,2-Dibromo-3-Chloropropane < 0.00500 0.0500 0.0509 102 0.0500 0.0665 133 27 59-1-25 28 х 1.2-Dibromoethane < 0.00500 0.0500 0.0442 88 0.0500 0.0543 109 21 F 73-125 20 85 1,2-Dichlorobenzene • • < 0.00500 0.0500 0.0425 0.0500 0.0500 100 16 75-125 20 1,2-Dichloroethane < 0.00500 0.0500 0.0530 106 0.0500 0.0605 121 13 68-127 20 1,2-Dichloropropane < 0.00500 0.0500 0.0477 95 0.0500 0.0531 106 11 74-125 20 0 1,3,5-Trimethylbenzene < 0.00500 0.0500 < 0.00500 0.0500 < 0.00500 0 NC 70-125 20 Х < 0.00500 0.0453 91 0.0500 0.0502 1,3-Dichlorobenzene 0.0500 100 10 75-125 20 1,3-Dichloropropane < 0.00500 0.0500 0.0480 96 0.0500 0.0552 Ĩ10 14 75-125 20 89 1,4-Dichlorobenzene < 0:00500 0.0500 0.0444 0.0500 0.0489 98 10 75-125 20 < 0.00500 0.0500 0.0534 0.0500 16 2,2-Dichloropropane 107 0.0625 125 60-140 20 2-Chlorotoluene < 0.00500 0.0500 0.0392 78 0.0500 .0.0485 97 21 73-125 20 F 4-Chlorotoluene < 0.00500 0.0500 0.0417 83 0.0475 13 20 0.0500 95 74-125

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference RPD = $200^{\circ}(C-F)/(C+F)$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Relative Percent Difference RPD = 200*((C+F)/(C+F))

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Laboratories

MSD Recoveries Form 3 - M

Project Name: DCP Plant to Lea Station 6" Section 31

Work Order #: 411097 .

Lab Batch ID: 850041

Date Analyzed: 03/30/2011

Reporting Units: mg/L

QC- Sample ID: 411082-008 S Date Prepared: 03/30/2011

Batch #: 1 Matrix: Water Analyst: CYE

Project ID: 2009-084

VOAs by SW-846 8260B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00500	0.0500	0.0484	97	0.0500	0.0563	113	15	66-142	21 ·	
Bromobenzene	<0.00500	0.0500	0.0445	89	0.0500	0.0493	99	10	60-130	20	
Bromochloromethane	. <0.00500	0.0500	0.0474	95	0.0500	0.0563	113	17	73-125	20	
Bromodichloromethane	<0.00500	0.0500	0.0559	112	0.0500	0.0648	130	15 .	75-125	20	x
Bromoform	0.0209	0.0500	0.0763	111	0.0500	0.0864	131	12	75-125	20	x
Bromomethane	<0.00500	0.0500	0.0522	104	0.0500	0.0530	106	2	70-130	20	
Carbon Tetrachloride	<0.00500	0.0500	0.0573	115	0.0500	0.0680	136	17	62-125	20	X
Chlorobenzene	<0.00500	0.0500	0.0427	85	0.0500	0.0510	102	18	60-133	21	
Chloroethane	<0.0100	0.0500	0.0540	108	0.0500	0.0591	118	9	70-130	20	
Chloroform	0.0143	0.0500	0.0621	96	0.0500	0.0708	113	13	74-125	20 ·	
Chloromethane	<0.0100	0.0500	0.0552	110	0.0500	0.0604	121	9	70-130	20	
cis-1,2-Dichloroethene	<0.00500	0.0500	0.0478	96	0.0500	0.0566	113	17	60-130	20	
cis-1,3-Dichloropropene	<0.00500	0.0500	0.0371	74	0.0500	0.0402	80	8	60-140	20	
Dibromochloromethane	<0.00500	0.0500	0.0498	100	0.0500	0.0595	119	18	60-130	20	
Dibromomethane	<0.00500	0.0500	0.0502	100	0.0500	0.0587	117	16	69-127	23	
Dichlorodifluoromethane	<0.00500	0.0500	. 0.0556	111	0.0500	0.0600	120	8	70-130	23	
Ethylbenzene	<0.00500	0.0500	0.0363	73	0.0500	0.0420	84	15	75-125	20	Х
Hexachlorobutadiene	<0.00500	0.0500	0.0448	90	0.0500	0.0526	105	16	75-125	20	
isopropylbenzene	<0.00500	0.0500	0.0328	66	0.0500	0.0381	76	15	75-125	20	x
m,p-Xylenes	<0.0100	0.100	0.0271	27	0.100	0.0231	23	16	75-125	20	X
Methylene Chloride	<0.00500	0.0500	0.0488	98	0.0500	0.0594	119	20	75-125	. 35	
MTBE	<0.00500	0.0500	0.0532	106	0.0500	0.0676	135	24	75-125	20	XF
Naphthalene	<0.0100	0.0500	<0.0100	0	0.0500	<0.0100	0	NC	65-135	20	X

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*[(C-F)/(C+F)] Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Form 3 - MS / MSD Recoveries

Project Name: DCP Plant to Lea Station 6" Section 31

Work Order #: 411097 Project ID: 2009-084 Lab Batch ID: 850041 QC- Sample ID: 411082-008 S Batch #: 1 Matrix: Water Date Prepared: 03/30/2011 CYE Date Analyzed: 03/30/2011 Analyst: Reporting Units: mg/L Parent Spiked Sample Spiked Duplicate Spiked Control Control VOAs by SW-846 8260B Sample Spike Spike Result Sample Spiked Sample Dup. RPD Limits Limits Flag Result %R Result |F| %R % %R %RPD Added [C] Added Analytes D |G| **|B|** [E] n-Butylbenzene < 0.00500 0.0500 0.0357 71 0.0500 0.0384 77 7 75-125 20 х < 0.00500 0.0500 0.0378 76 0.0500 0.0409 82 8 75-125 20 n-Propylbenzene 0.0500 0.0192 38 0.0500 38 2 o-Xylene < 0.00500 0.0188 75-125 20 Х 0.0500 0.0231 0.0500 0.0205 41 12 p-Cymene (p-lsopropyltoluene) < 0.00500 46 75-125 20 х 0.0500 87 10 Sec-Butylbenzene < 0.00500 0.0500 0.0396 79 0.0436 75-125 20 < 0.00500 0.0500 < 0.00500 0 0.0500 < 0.00500 0 NC 60-130 51 х Styrene < 0.00500 0.0500 0.0371 74 0.0500 0.0424 85 13 75-125 20 tert-Butylbenzene х Tetrachloroethylene 0.00536 0.0500 0.0476 84 0.0500 0.0565 102 17 60-130 20 82 Toluene < 0.00500 0.0500 0.0411 0.0500 0.0429 86 4 59-139 21 < 0.00500 0.0500 0.0483 97 0.0500 0.0570 114 17 60-130 20 trans-1,2-dichloroethene 87 90 4 trans-1,3-dichloropropene < 0.00500 0.0500 0.0434 0.0500 0.0451 66-125 20 Trichloroethene < 0.00500 0.0500 0.0505 101 0.0500 0.0576 115 13 62-137 24 Trichlorofluoromethane < 0.00500 0.0500 0.0632 126 0.0500 0.0665 133 5 67-125 20 х 74 - 72 2 -X Vinyl Chloride < 0.00200 0.0500 0.0371 0.0500 - 0.0362-75-125-20

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Form 3 - M' MSD Recoveries

Project Name: DCP Plant to Lea Station 6" Section 31

Work Order #: 411097 Project ID: 2009-084 Lab Batch ID: 850255 OC- Sample ID: 411256-001 S **Batch #:** 1 Matrix: Water Date Prepared: 03/31/2011 Analyst: CYE Date Analyzed: 03/31/2011 Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY Parent Spiked Sample Spiked Duplicate Spiked Control Control VOAs by SW-846 8260B Sample Spike Result Sample Spike Spiked Sample RPD Limits Limits Flag Dup. Result Added [C] %R Added Result [F] %R % %R %RPD Analytes [A] IGI [B] **D [E]**. 1,1,1,2-Tetrachloroethane < 0.00500 0.0500 0.0549 110 0.0500 0.0555 111 1 75-125 20 < 0.00500 0.0500 0.0516 103 0.0500 0.0524 105 2 75-125 1.1.1-Trichloroethane 20 < 0.00500 0.0500 0.0569 114 0.0579 2 1,1,2,2-Tetrachloroethane 0.0500 116 50-130 31 1,1,2-Trichloroethane < 0.00500 0.0500 0.0520 104 0.0500 0.0530 106 2 75-127 20 1.1-Dichloroethane < 0.00500 0.0500 0.0548 110 0.0500 0.0550 110 0 60-130 20 1,1-Dichloroethene < 0.00500 0.0500 0.0481 96 0.0500 0.0488 98 59-172 22 1 1,1-Dichloropropene < 0.00500 0.0500 0.0481 96 0.0500 0.0482 96 0 75-125 20 1,2,3-Trichlorobenzene < 0.00500 0.0500 0.0564 113 0.0500 0.0572 114 1 75-137 20 İ11 0.0567 113 75-125 1,2,3-Trichloropropane < 0.00500 0.0500 0.0556 0.0500 2 20 1,2,4-Trichlorobenzene < 0.00500 0.0500 0.0562 112 0.0500 0.0570 114 1 75-135 20 1.2.4-Trimethylbenzene < 0.00500 0.0500 0.0556 111 0.0500 0.0573 115 3 75-125 20 1,2-Dibromo-3-Chloropropane < 0.00500 0.0500 0.0488 98 0.0500 0.0524 105 7 59-125 28 < 0.00500 0.0536 107 0.0500 0.0544 109 1 73-125 20 1,2-Dibromoethane 0.0500 1.2-Dichlorobenzene < 0.00500 0.0500 0.0531 106 0.0500 0.0544 109 2 75-125 20 0.0500 0.0478 96 0.0500 0.0465 93 3 68-127 20 1.2-Dichloroethane < 0.00500 < 0.00500 0.0500 0.0521 104 0.0500 0.0513 103 2 74-125 20 1.2-Dichloropropane 1,3,5-Trimethylbenzene < 0.00500 0.0500 0.0546 109 0.0500 0.0559 112 2 70-125 20 1.3-Dichlorobenzene < 0.00500 0.0500 0.0525 105 0.0500 0.0531 106 1 75-125 20 107 0.0500 20 1,3-Dichloropropane < 0.00500 0.0500 0.0536 0.0541 108 1 75-125 1,4-Dichlorobenzene < 0.00500 0.0500 0.0518 104 0.0500 0.0531 106 2 75-125 20 2,2-Dichloropropane < 0.00500 0.0500 0.0545 109 0.0500 0.0560 112 3 60-140 20 0.0533 107 2-Chlorotoluene < 0.00500 0.0500 0.0500 109 2 73-125 20 0.0545 4-Chlorotoluene < 0.00500 0.0500 0.0515 103 0.0500 0.0529 106 3 74-125 20

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference RPD = $200^{\circ}[(C-F)/(C+F)]$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Form 3 - MS / MSD Recoveries

Project Name: DCP Plant to Lea Station 6" Section 31

Work Order #: 411097

Lab Batch ID: 850255

Date Analyzed: 03/31/2011

Reporting Units: mg/L

QC- Sample ID: 411256-001 S **Date Prepared:** 03/31/2011

Batch #: 1 Matrix: Water Analyst: CYE

Project ID: 2009-084

VOAs by SW-846 8260B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00500	0.0500	0.0509	102	0.0500	0.0500	100	2	66-142	21	
Bromobenzene	<0.00500	0.0500	0.0526	105	0.0500	0.0534	107	2 ·	60-130	20	
Bromochloromethane	<0.00500	0.0500	0.0525	105	0.0500	0.0543	109	3	73-125	20	
Bromodichloromethane	<0.00500	0.0500	0.0544	109	0:0500	0.0540	108	1	75-125	20	
Bromoform	<0.00500	0.0500	0.0448	90	0.0500	0.0471	94	5	75-125	20	
Bromomethane	<0.00500	0.0500	0.0425	85	0.0500	0.0436	87	3	70-130	20	
Carbon Tetrachloride	<0.00500	0.0500	0.0511	102	0.0500	0.0513	103	0	62-125	20	•
Chlorobenzene	<0.00500	0.0500	0.0501	100	0.0500	0.0502	100	0	60-133	21	
Chloroethane	<0.0100	0.0500	0.0419	84	0.0500	0.0417	83	0	70-130	20	
Chloroform	<0.00500	0.0500	0.0512	102	0.0500	0.0512	102	0	74-125	20	
Chloromethane	< 0.0100	0.0500	0.0431	86	0.0500	0.0440	88	2	70-130	20	
cis-1,2-Dichloroethene	<0.00500	0.0500	0.0524	105	0.0500	0.0514	103	2	60-130	20	
cis-1,3-Dichloropropene	<0.00500	0.0500	0.0447	89	0.0500	0.0456	91	2	60-140	20	
Dibromochloromethane	<0.00500	0.0500	-0.0463 -	· 93 · ·	0.0500	0.0460	92	1	60-130	- <u>-</u> 20	
Dibromomethane	<0.00500	0.0500	0.0516	103	0.0500	0.0511	102	1	69-127	23	
Dichlorodifluoromethane	<0.00500	0.0500	0.0460	· 92	0.0500	0.0470	94	2	70-130	23	
Ethylbenzene	<0.00500	0.0500	0.0510	102	0.0500	0.0505	101	1	75-125	20	
Hexachlorobutadiene	<0.00500	0.0500	0.0502	100	0.0500	0.0527	105	5	75-125	20	
isopropylbenzene	<0:00500	0.0500	0.0505	101	0.0500	0.0502	100	1	75-125	20	
m,p-Xylenes	<0.0100	.0.100	0.105	105	0.100	0.104	104	1	75-125	20	
Methylene Chloride	<0.00500	0.0500	0.0512	102	0.0500	0.0521	104	2	75-125	35	
МТВЕ	<0.00500	0.0500	0.0675	135	0.0500	0.0681	136	1	75-125	20	x
Naphthalene	<0.0100	0.0500	0.0548	110	0.0500	0.0548	110	0	65-135	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*[(C-F)/(C+F)] Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

.7

 $\frac{1}{200^{-1}(C+F)}$

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit

Page .

MSD Recoveries Form 3 - M

Project Name: DCP Plant to Lea Station 6" Section 31

Work Order # : 411097

Lab Batch ID: 850255

Date Analyzed: 03/31/2011

Reporting Units: mg/L

QC- Sample ID: 411256-001 S Date Prepared: 03/31/2011

Batch #: 1 Matrix: Water Analyst: CYE

Project ID: 2009-084

VOAs by SW-846 8260B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	%R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]		. [D]	[E]		[G]	•			
n-Butylbenzene	<0.00500	0.0500	0.0513	103	0.0500	0.0524	105	2	75-125	. 20	
n-Propylbenzene	<0.00500	0.0500	0.0535	107	0.0500	0.0558	112	4	75-125	20	
o-Xylene	<0.00500	0.0500	0.0553	111	0.0500	0.0544	109	2	75-125	20	
p-Cymene (p-Isopropyltoluene)	<0.00500	0.0500	0.0512	102	0.0500	0.0529	106	3	75-125	20	
Sec-Butylbenzene	<0.00500	0.0500	0.0539	108	0.0500	0.0552	110	2	75-125	20	
Styrene	<0.00500	0.0500	0.0557	111	0.0500	0.0555	111	0	60-130	51	
tert-Butylbenzene	<0.00500	0.0500	0.0560	112	0.0500	0.0581	116	4	75-125	20	
Tetrachloroethylene	<0.00500	0.0500	0.0508	102	0.0500	0.0506	101	0	60-130	20	
Toluene	<0.00500	0.0500	0.0495	99	0.0500	0.0504	101	2.	59-139	21	
trans-1,2-dichloroethene	<0.00500	0.0500	0.0489	98	0.0500	0.0493	99	1	60-130	20	
trans-1,3-dichloropropene	<0.00500	0.0500	0.0445	89	0.0500	0.0444	89	0	66-125	. 20	
Trichloroethene	<0.00500	0.0500	0.0491	98	0.0500	0.0480	96	2	62-137	24	
Trichlorofluoromethane	<0.00500	0.0500	0.0497	99	0.0500	0.0508	102	2	67-125	20	
Vinyl Chloride	<0.00200	0.0500	0.0365	73	0.0500	0.0378	76	3 ·	75-125	20	X

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Sample Duplicate Recovery

Project Name: DCP Plant to Lea Station 6" Section 31

Work Order #: 411097

Lab Batch #: 849832					D: 2009-084	4
Date Analyzed: 03/29/2011 13:25	Date Prepar	ed: 03/29/2011				
QC- Sample ID: 410758-001 D	Batch		Ma			
Reporting Units: mg/L		SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Alkalinity by SM2320B		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Alkalinity, Total (as CaCO3)		786	786	0	20	
Alkalinity, Bicarbonate (as CaCO3)		959	959	0	20	
Alkalinity, Carbonate (as CaCO3)		<4.00	<4.00	Ö	. 20	
Lab Batch #: 849832				•	<u> </u>	<u>.</u>
Date Analyzed: 03/29/2011 13:20	Date Prepar	ed: 03/29/2011	Ana	lyst: ALA		
QC- Sample ID: 410832-001 D	Batch	#: 1	Ma	trix: Water		
Reporting Units: mg/L		.SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Alkalinity by SM2320B Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Alkalinity, Total (as CaCO3)		232	230	· 1	20	
Alkalinity, Bicarbonate (as CaCO3)		232	230		20	
Alkalinity, Carbonate (as CaCO3)		<4.00	<4.00	0	20	
Lab Batch #: 849659		<u> </u>				
Date Analyzed: 03/28/2011 15:15 QC- Sample ID: 411097-004 D	Date Prepar Batch	ed:03/28/2011		lyst:LATC trix: Water		·
Reporting Units: mg/L		SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Anions by E300 Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Fluoride		30.5	30.6	0	20	
Chloride		392	374	5	20	
Sulfate		288	280	3	20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

Xe o Laboratories

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765

Phone: 432-563-1800 Fax: 432-563-1713

	Project Manager:	Ben J. Arguijo															_	P	rojec	ct Na	ime:		P P	lant	t to	Lea	a Sti	atior	n 6"	Sec	tion	<u>31</u>
	Company Name	Basin Environ	mental Se	rvice T	echnol	logies, LLC				_					<u>.</u>		_		P	roje	ct #:	20	09-0	84								
	Company Address:	P.O. Box 301													-				Proj	ect	Loc:	Lea	a Cou	inty	, NM	J						
	City/State/Zip: I	Lovington, NM	88260		-												_			P	0#:	PA	A • J.	Her	nry							
	Telephone No: (575)396-2378					Fax No	:	(57	(5) 3	96-1	429))				_	Repo	rt Fo				Stan			. [ТГ	RRP		 ۱	NPDE	 s
	Sampler Signature:	-44	<u>a</u>	-	_	<u>`</u>	e-mail	:	bja	rgu	ijo@)bas	lnen	v.co	m ·		-		Г	_				And	alvze	For						T
(lab use	oniy)												•					• .					CLP:	7	Í	T	x	Τ	\Box	T	2 112	
ORDE	R#: 411097					, 	<u> </u>		-		Prese	ervat	ă noi	# of C	ontaine	ers	N	latrix	8	T	1	Ē	┍─┼	8	+			5			\$	
LAB # (lab use only)	FIELD	CODE		Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total # of Containers	ice	HNO3	HCI	H ₂ SO4	NaOH	Na ₂ >2U ₃ None	Other (Specify)	DW=Drinking Water SL=Sludge	GV/ ≈ Groundwater S≂Soä/Solid ND≈Non-Driahia Scendu Other	8015M	ē	Cations (Ca, Mg. Na, K)	Anions (Cl. SO4. Alkalinity)		As Ag Ba Cd Cr Pb Hg	Volatikes	Semivolatiles ATEX 8021046030 cv BTEV 8260	BIEA 8021B/5030 OF BIEX 82 RCI	NMWQCC Metals (see Attached)			RUSH TAT (Pre-Schedule) 24.	Standard TAT 4 DAY
01	M	N-2				03/25/11	0845		3	x		x				+-	1	GW	T	f				-	1)		1	$\uparrow \uparrow$	+	Ť	x
02	M	N-3				03/25/11	0855		3	x		x		Ĩ				GW								٦,	x			Ĩ	T	x
03	M	N-4				03/25/11	0900		3	х		x					i (GW)	<u>k</u>				Τ	x
04	M	N-5				03/25/11	0910		6	x	x	X			_			GW	+-	L	X	X		x	X	×	\mp	X	П	\downarrow		X
				<u> </u>									┢╴┤		-+				╞					┿		+	╈	+	┢╾┥	+	╧	┢╴┥
													┢╌╽						\mathbf{L}					\pm		\pm	\pm	\pm	⊢	\pm	\pm	\mathbb{H}
				 			· · · · · ·	-		-	-		┝╌┤			-	-		╀	┢				╇	╉	┿	╇	+	┢╌┥	+		+
Special	Instructions:			<u> </u>	<u> </u>	· ·	I	<u>1</u>	L4	L	L	<u> </u>	·			1_	L		1	L	Sar	nple	tory (Cont ree o	aine	ers, Ir	ntact		<u> </u>	- ($\overline{\mathcal{O}}$	N N	
Relinquit Relinquit	1 april 1	<u>ز</u>	Dáte	/6 Ti	me S) me	Received by: Received by:	· · · · · · · · · · · · · · · · · · ·										ate		Tìm Tim	-	Lab Cus Cus	eis (stody stody nple by S	on coi y seal y seal Hanc Sample Courier	ntair is on is on d De er/Cl	ner(s n cor n coc eliver lient	s) ntaine oler(s red	er(s) s)					
Relinqui	shed by:		Date	Т	me	Received by EL	OT: Murdock	k							3		ate 5~	16	Tim ,:5		Ten		ature					-		26		

XENCO Laboratories

Atlanta, Boca Raton, Corpus Christi, Dallas

Houston, Miami, Odessa, Philadelphia Phoenix, San Antonio, Tampa

Document Title: Sample Receipt Checklist Document No.: SYS-SRC Revision/Date: No. 01, 5/27/2010 Effective Date: 6/1/2010 Page 1 of 1

Prelogin / Nonconformance Report - Sample Log-In

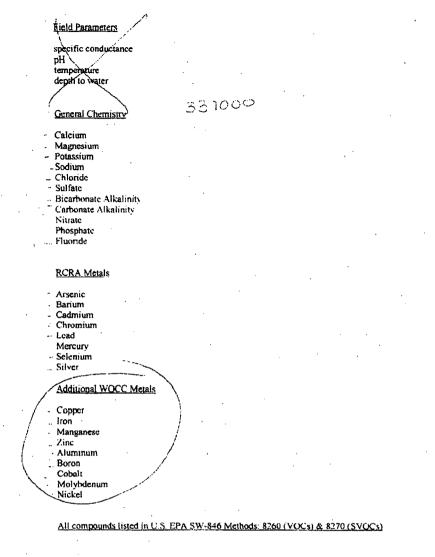
client: Plains
Date/Time: 3-25-11 11, 50
Lab ID #: 411097
Initials: LM

Sample Receipt Checklist

1. Samples on ice?	Blue	Water	No	<u> </u>
2. Shipping container in good condition?	Yes	No	None	
3. Custody seals intact on shipping container (cooler) and bottles?	Yes	No	N/A	
4. Chain of Custody present?	Yes	No		
5. Sample instructions complete on chain of custody?	(as)	No		
6. Any missing / extra samples?	Yes	No		· ·
7. Chain of custody signed when relinquished / received?	Tes	No	·	
8. Chain of custody agrees with sample label(s)?	Yes	No		
9. Container labels legible and intact?	Yes	No		
10. Sample matrix / properties agree with chain of custody?	Tes	No		
11. Samples in proper container / bottle?	Tes	No		
12. Samples properly preserved?	Yes,	No	N/A	
13. Sample container intact?	Yes	No		
14. Sufficient sample amount for indicated test(s)?	Yes	No		
15. All samples received within sufficient hold time?	Yes	No	1	
16. Subcontract of sample(s)?	(Yes)	No	N/A	
17. VOC sample have zero head space?	Yes	No	N/A	
18. Cooler 1 No. Cooler 2 No. Cooler 3 No.	Cooler 4 N	0.	Cooler 5 No.	
ibs 2.6 °C ibs °C ibs	°C lbs	°C	ibs	°C

Nonconformance Documentation

Contact:	Contacted by:	Date/Time:
Regarding:	MU-3 has 1 sample with headspace	2


Corrective Action Taken:

Check all that apply: DCooling process has begun shortly after sampling event and out of temperature condition acceptable by NELAC 5.5.8.3.1.a.1.

Initial and Backup Temperature confirm out of temperature conditions

Client understands and would like to proceed with analysis

NMOCD - Analytical Parameters for Initial Groundwater Sampling (3-12-08)

Page 28 of 29

Analytical Report 411661

for

PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry

DCP Plant to Lea Station 6" Section 31

2009-084

04-APR-11

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AAL11), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330) Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370) Xenco-Boca Raton (EPA Lab Code: FL01273): Florida(E86240),South Carolina(96031001), Louisiana(04154), Georgia(917) North Carolina(444), Texas(T104704468-TX), Illinois(002295), Florida(E86349)

> Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757), Texas(104704435-10-2), Nevada(NAC-445A), DoD(65816) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

04-APR-11

Project Manager: Jason Henry PLAINS ALL AMERICAN EH&S 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: 411661 DCP Plant to Lea Station 6" Section 31 Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 411661. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 411661 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 411661

PLAINS ALL AMERICAN EH&S, Midland, TX

DCP Plant to Lea Station 6" Section 31

Sample Id	. *	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-5		. W	Mar-30-11 15:00		411661-001

Page 3 of 11

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP Plant to Lea Station 6" Section 31

Project ID:2009-084Work Order Number:411661

Report Date: 04-APR-11 Date Received: 03/31/2011

Sample receipt non conformances and Comments:

None

Sample receipt Non Conformances and Comments per Sample:

None

Analytical Non Conformances and Comments:

Batch: LBA-850439 Inorganic Anions In Water by E300 E300MI

Batch 850439, Ortho-Phosphate recovered below QC limits in the Matrix Spike. Samples affected are: 411661-001. The Laboratory Control Sample for Ortho-Phosphate is within laboratory Control Limits

Certificate of Analys 11661

PLAINS ALL AMERICA __H&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" Section 31

Project Id: 2009-084 Contact: Jason Henry Project Location: Lea County, NM

Date Received in Lab: Thu Mar-31-11 04:25 pm

Report Date: 04-APR-11

Project Manager: Brent Barron, II

	Lab Id:	411661-001				
Analysis Requested	Field Id:	MW-5				
Anutysis Kequesieu	Depth:		· · · · ·			
	Matrix:	WATER				
	Sampled:	Mar-30-11 15:00				
Inorganic Anions In Water by E300	Extracted:			· ·		
	Analyzed:	Apr-01-11 09:34		а. — на — — — — — — — — — — — — — — — — —		
	Units/RL:	mg/L RL				
Nitrate as N		4.17 0.500			· · ·	
Ortho-Phosphate		3.09 2.50				

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratorics assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron, II

Odessa Laboratory Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.

F RPD exceeded lab control limits.

J The target analyte was positively identified below the MQL and above the SQL.

U Analyte was not detected.

- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.

K Sample analyzed outside of recommended hold time.

JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit

PQL Practical Quantitation Limit

* Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

4143 Greenbriar Dr, Stafford, Tx 77477 9701 Harry Hines Blvd , Dallas, TX 75220 5332 Blackberry Drive, San Antonio TX 78238 2505 North Falkenburg Rd, Tampa, FL 33619 5757 NW 158th St, Miami Lakes, FL 33014 12600 West I-20 East, Odessa, TX 79765 842 Cantwell Lane, Corpus Christi, TX 78408 Phone Fax (281) 240-4200 (281) 240-4280 (214) 902 0300 (214) 351-9139 (210) 509-3335 (210) 509-3334 (813) 620-2000 (813) 620-2033 (305) 823-8500 (305) 823-8555 (432) 563-1800 (432) 563-1713 (361) 884-0371 (361) 884-9116

Project Name: DCP Plant to Lea Station 6" Section 31

Work Order #: 411661 Analyst: LATCOR Lab Batch ID: 850439 Sample: 850439-	*	-	ed: 04/01/20 h #: 1	11	•		Date A		2009-084)4/01/2011 Water			
Units: mg/L	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY											
Inorganic Anions In Water by E300	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Controi Limits %R	Control Limits %RPD	Flag	
Analytes		[B]	[C] -	[D]	[E]	Result [F]	[G]					
Nitrate as N	<0.0500	2.26	2.20	97	2.26	2.12	94	4	80-120	20		
Ortho-Phosphate	<0.250	.2.00	1.94	97	2.00	1.94	97	0	80-120	20		

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: DCP Plant to Lea Station 6" Section 31

Work Order #: 411661									
Lab Batch #: 850439			Pro	oject ID:	2009-084				
Date Analyzed: 04/01/2011	Date Prepared: 04/01/2	: 04/01/2011 Analyst: LATCOR							
QC- Sample ID: 411663-005 S	Batch #: 1	Batch #: 1 Matrix: Water							
Reporting Units: mg/L	MATRIX / MATRIX SPIKE RECOVERY STUDY								
Inorganic Anions by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag			
Analytes	[A]	[B]							
Nitrate as N	6.55	56.5	54.4	85	. 80-120				
Ortho-Phosphate	7.73	50.0	36.6	58	80-120	x			

Matrix Spike Percent Recovery [D] = $100^{\circ}(C-A)/B$ Relative Percent Difference [E] = $200^{\circ}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Sample Duplicate Recovery

Project Name: DCP Plant to Lea Station 6" Section 31

Work Order #: 411661

Lab Batch #: 850439 Date Analyzed: 04/01/2011 09:34 D QC- Sample ID: 411663-005 D	eate Prepared: 04/01/201 Batch #: 1									
Reporting Units: mg/L	SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY					
Inorganic Anions In Water by E3	00 Parent Sample Result [A]	Duplicate Result	RPD -	Control Limits %RPD	Flag					
Analyte		[[B]								
Nitrate as N	6.55	6.58	0	20]					
Ortho-Phosphate	. 7.73	7.70	0	20						

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

Xenco Laboratories

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765

والمراجعة الأقادين

Phone: 432-563-1800 Fax: 432-563-1713

	Project Manager:	Ben J. Arguij	o			· · · · · · · · · · · · · · · · · · ·						_	<u></u>		·			Pr	ojec	t Na	me:	DCP	Pla	nt t	<u>L</u>	ea S	Stati	on	<u>6" S</u>	ecti	<u>on 3</u>	1
	Company Name	Basin Enviro	nmental Ser	vice To	echnol	ogies, LLC													Pr	ojec	:t #: _	2009	-084	4								
	Company Address:	P. O. Box 301																	Proje	oct L	.oc: <u> </u>	.ea C	oun	ty, N	M							
	City/State/Zip:	Lovington, N	M 88260				<u></u>													PC	⊃#: <u> </u>	- 44	J. H	lenry	<u> </u>						_	
	Telephone No:	(575)396-2378	8				Fax No:		(57	(5) 3	96-1	429					F	Repo	t Fo	rmat	. [× s	anda	ard			TRF	٩P	[PDES	,
	Sampler Signature:		10-				e-mail:		bja	rgui	ijo@	basi	inen	v.com)					-		_			_							1
(lab use	only)		\leq_{1}					,											-	_		TCLE	_	naly 1	ze F	or:					┥╷╿	ı
ORDE	1111	001							j	<u>, </u>	Prese	rvatio	on 8 #	of Cor	ntainei	5	M	atrix		 T		TOTAL		†		X					48, 72 hrs	I
LAB # (lab use only)		LD CODE	A	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of Containers	lce	9			NaOH Na ₂ S ₂ O ₃			SL=Sludge	GW & Groundwater S=Soil/Solid NP=Non-Potable Specify Other	1	TPH: TX 1005 TX 1006	Cations (Ca, Mg, Na, K)	Anions (Cl. SO4, Alkalinity) SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg Se	Volatites	Semivolatiles	BTEX 80218/5030 or BTEX 8260	RCI	VQCC Met	1 4 4ak flug Vak		ž	Standard TAT 4 DAY
GT	Λ	AW-5	·		<u> </u>	03/30/11	122-53		1	x			\neg	-				SW	T	i i	-		+=-	Ť		_	<u> </u>		v	+	Ħ	x
			~	<u> </u>	<u> </u>							1	-	+							1	\uparrow	+-				-+	-#	4	+-	H	4
				<u>+</u>	<u> </u>								-+	+	+				t	Η	+	-†-	+	1-1			-+	+	+-	+-	++	-
				1	<u> </u>								-†	+	†-				t	Η	-	+	+-		_		-+	+	+	+	\mathbf{H}	-
				<u> </u>										+	1						+	+	+				-+	+	+	+-	++	4
				<u> </u>	<u> </u>								-+	+							-+	+	-				-	+	+	+	$\uparrow \uparrow$	-
				†										-					t		-		+				-	十	+	+	\mathbf{H}	\neg
				1									\neg	-				_	t		-	1	1.				1	\uparrow	\uparrow	1-	H	-
				1									•						Γ				1				-	1	+	+	Ħ	1
	· · · · · · · · · · · · · · · · · · ·																		Γ			T	1				1	1	+	1	Ħ	7
	Instructions:				•	· · · · · · · · · · · · · · · · · · ·	·														Labo Sam VOC	ole Ca s Fre	ontai e of I	ners Head	Inta Ispa	ct?			œ X	, ,	N MA	
Relinquis	hed by:		Date 3/3/1/	160	me)5	Received by:										Da	te		Tim		Labe Custo Custo	ison odys	conta eals	ainer on c	(s) onta	iner(s)		Ě	>		
Relinquis	hed by		Date		me	Received by:									1	Da	te	-	Tim	•	Samı b	ole Ha y San y Cou	and [hpler/	Deliv /Clier	ered	р.?	DHL	F	A A A A A A A A A A A A A A A A A A A	>	N N N N N	
Relinquis	hed by:		Date	Ti	me	Received by EL	or: Na El) 	<u>~</u>						3	Dat - 3			Timi o	25	Temp		ine U	ipon		eipt:					°C	'.

XENCO Laboratories

Atlanta, Boca Raton, Corpus Christi, Dallas

Houston, Miami, Odessa, Philadelphia

Document Title: Sample Receipt Checklist Document No.: SYS-SRC Revision/Date: No. 01, 5/27/2010 Effective Date: 6/1/2010 Page 1 of 1

Phoenix, San Antonio, Tampa

Prelogin / Nonconformance Report - Sample Log-In

<u>Client:</u> R	ASIN F.NV.	Plains	
Date/Time:	3.31.11 1	0:25	·
Lab ID #:	411661		
Initials:	AE_		

Sample Receipt Checklist

1. Samples on ice?	Blue	Water	No	
2. Shipping container in good condition?	(Yes)	No	None	
3. Custody seals intact on shipping container (cooler) and cotties?	Yes	No	N/A	
4. Chain of Custody present?	Yes	No		
5. Sample instructions complete on chain of custody?	Yes	No		
6. Any missing / extra samples?	Yes	(No)		
7. Chain of custody signed when relinquished / received?	Yes	No		
8. Chain of custody agrees with sample label(s)?	(Yes)	No		
9. Container labels legible and intact?	Yes	No		
10. Sample matrix / properties agree with chain of custody?	Yes	No .		
11. Samples in proper container / bottle?	Yes	No		
12. Samples property preserved?	Yes	No	N/A	
13. Sample container intact?	Yes	No		
14. Sufficient sample amount for indicated test(s)?	Yes	No		
15. All samples received within sufficient hold time?	Yes	No		
16. Subcontract of sample(s)?	Yes	No	(NA)	
17. VOC sample have zero head space?	Yes	No	(N/A)	
18. Cooler 1 No. Cooler 2 No. Cooler 3 No.	Cooler 4 No.		Cooler 5 No.	
ibs 5, 6 °C ibs °C ibs °C	lbs	⊃°	lbs	°C

Nonconformance Documentation

Analytical Report 418094

for

PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry DCP Plant to Lea Station 6" Section 31

2009-084

06-JUN-11 .

Collected By: Client

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AAL11), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330) Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370) Xenco-Boca Raton (EPA Lab Code: FL01273): Florida(E86240),South Carolina(96031001), Louisiana(04154), Georgia(917) North Carolina(444), Texas(T104704468-TX), Illinois(002295), Florida(E86349)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757), Texas(104704435-10-2), Nevada(NAC-445A), DoD(65816) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

Project Manager: Jason Henry PLAINS ALL AMERICAN EH&S 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: 418094 DCP Plant to Lea Station 6" Section 31 Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 418094. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 418094 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 418094

PLAINS ALL AMERICAN EH&S, Midland, TX

DCP Plant to Lea Station 6" Section 31

Sample Id		Matrix	Date Collected Sat	mple Depth Lab Sample Id
MW-2		W	May-26-11 09:05	418094-001
MW-3		. W	May-26-11 09:15	418094-002
MW-4	•	W	May-26-11 09:20	418094-003
MW-5		W	May-26-11 09:25	418094-004

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP Plant to Lea Station 6" Section 31

Project ID:2009-084Work Order Number:418094

Report Date: 06-JUN-11 Date Received: 05/27/2011

Sample receipt non conformances and comments: None

Sample receipt non conformances and comments per sample:

None

Analytical non nonformances and comments:

Batch: LBA-858471 BTEX by EPA 8021 SW8021BM

Batch 858471, 1,4-Difluorobenzene recovered above QC limits . Matrix interferences is suspected; data confirmed by re-analysis Samples affected are: 418094-004.

Project Id: 2009-084 Contact: Jason Henry Project Location: Lea County, NM

Certificate of Analys ummary 418094

PLAINS ALL AMERICA _H&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" Section 31

Date Received in Lab: Fri May-27-11 04:42 pm

Report Date: 06-JUN-11

· · · · · · · · · · · · · · · · · · ·		•						Project Ma	nager:	Brent Barron, II	
	Lab Id:	418094-0	01	418094-0	02	418094-0	003	418094-0	004		
Analysis Requested	Field Id:	MW-2		MW-3		MW-4	F j	MW-5			
Analysis Requested	Depth:										
	Matrix:	WATE	ι	· WATE	٤	WATE	R ·	WATE	R.		
	Sampled:	May-26-11	09:05	May-26-11	09:15	May-26-11	09:20	May-26-11	09:25		
BTEX by EPA 8021	Extracted:	Jun-01-11	1:34	Jun-01-11 1	1:34	Jun-01-11	11:34	Jun-01-11	11:34		
	Analyzed:	Jun-01-11	5:35	Jun-01-11 1	5:58	Jun-01-11	16:20	Jun-01-11	16:43	-	
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL		
Benzene		ND	0.0010	0.00425	0.0010	ND	0.0010	1.12 D	0.0250		
Toluene		ND	0.0020	ND	0.0020	ND	0.0020	0.0265	0.0020		
Ethylbenzene		ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010		
m_p-Xylenes		ND	0.0020	ND	0.0020	ND	0.0020	0.0137	0.0020		·
o-Xylene		ND	0.0010	ND	0.0010	ND	0.0010	0.0138	0.0010		
Xylenes, Total		ND	0.0010	ND	0.0010	ND	0.0010	0.0275	0.0010		
Total BTEX		ND	0.0010	0.00425	0.0010	ND	0.0010	1.1 7 D	0.0010	•	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron, II

Odessa Laboratory Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.

F RPD exceeded lab control limits.

J The target analyte was positively identified below the MQL and above the SQL.

U Analyte was not detected.

- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit

PQL Practical Quantitation Limit

LOD Limit of Detection

LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

+ Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa/Lakeland - Miami - Phoenix.- Latin America

4143 Greenbriar Dr, Stafford, Tx 77477 9701 Harry Hines Blvd, Dallas, TX 75220 5332 Blackberry Drive, San Antonio TX 78238 2505 North Falkenburg Rd, Tampa, FL 33619 5757 NW 158th St, Miami Lakes, FL 33014 12600 West I-20 East, Odessa, TX 79765 842 Cantwell Lane, Corpus Christi, TX 78408 3725 E. Atlanta Ave, Phoenix, AZ 85040 Phone Fax (281) 240-4200 (281) 240-4280 (214) 902 0300 (214) 351-9139 (210) 509-3334 (210) 509-3335 (813) 620-2000 (813) 620-2033 (305) 823-8500 (305) 823-8555 (432) 563-1800 (432) 563-1713 (361) 884-0371 (361) 884-9116 (602) 437-0330

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6" Section 31

rk Orders : 418094 Lab Batch #: 858471	, Sample: 604212-1-BKS / E	SKS Batch		D : 2009-084		
Units: mg/L	• .		RROGATE R		STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0310	0.0300	103	80-120	
4-Bromofluorobenzene		. 0.0333	0.0300	111	80-120	
Lab Batch #: 858471	Sample: 604212-1-BSD / E	SD Batch	n: ¹ Matrix	:Water		
Units: mg/L	Date Analyzed: 06/01/11 12:33	SUI	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0321	0.0300	107	80-120	
4-Bromofluorobenzene		0.0337	0.0300	112	80-120	
Lab Batch #: 858471	Sample: 604212-1-BLK / E	BLK Batch	: 1 Matrix	:Water		
Units: mg/L	Date Analyzed: 06/01/11 13:42	SUI	RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Difluorobenzene		0.0285	0.0300	· 95	80-120	·
4-Bromofluorobenzene	•	0.0311	0.0300	104	80-120	
Lab Batch #: 858471	Sample: 418094-001 / SMI					
Units: mg/L	Date Analyzed: 06/01/11 15:35	SUI	RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0298	0.0300	99	80-120	
4-Bromofluorobenzene		0.0310	0.0300	103	80-120	
Lab Batch #: 858471	Sample: 418094-002 / SMI	Batch	: 1 Matrix	:Water		
Units: mg/L	Date Analyzed: 06/01/11 15:58	SUI	RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	•	0.0287	0.0300	96	80-120	
4-Bromofluorobenzene		0.0311	0.0300	104	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

" results are based on MDL and validated for QC purposes..

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6" Section 31

Vork Orders: 418094		• • • •		D: 2009-084		
Lab Batch #: 858471	Sample: 418094-003 / SMP		h: <u>1</u> Matrix: RROGATE RE		et unv	
Units: mg/L BTE	Date Analyzed: 06/01/11 16:20	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes		1	[D]		1
1,4-Difluorobenzene		0.0281	0.0300	94	80-120	í
4-Bromofluorobenzene		0.0288	0.0300	96	80-120	I
Lab Batch #: 858471	Sample: 418094-004 / SMP	Batch	h: ¹ Matrix:	Water	<u> </u>	
Units: mg/L	Date Analyzed: 06/01/11 16:43	SUI	RROGATE RE	COVERY S	STUDY	·
BTE	EX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0528	0.0300	176	80-120	**
4-Bromofluorobenzene		0.0289	0.0300	96	80-120	i
Lab Batch #: 858471	 Sample: 418009-008 S / MS	S Batch	<u> </u>	•Water	·	·
Units: mg/L	Date Analyzed: 06/01/11 17:52		RROGATE RE		STUDY	<u>.</u>
BTE	CX by EPA 8021 Analytes	Amount Found {A}	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0302	0.0300	101	80-120	i
4-Bromofluorobenzene	· · · · · · · · · · · · · · · · · · ·	0.0314	0.0300	101	80-120	i
Lab Batch #: 858712	Sample: 604361-1-BKS / BF					4
Units: mg/L	Date Analyzed: 06/03/11 22:11		RROGATE RE		STUDY	
	CX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
1	Analytes	l .	1	[D]		I
1,4-Difluorobenzene		0.0311	0.0300	. 104	80-120	i
4-Bromofluorobenzene		0.0331	0.0300	110	· 80-120	
Lab Batch #: 858712	Sample: 604361-1-BSD / BS	SD Batch	h: 1 Matrix:	Water		
Units: mg/L	Date Analyzed: 06/03/11 22:34	SUI	RROGATE RE	COVERY S	STUDY	
BTE	CX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0306	0.0300	102	80-120	i <u></u>
4-Bromofluorobenzene		0.0318	0.0300	106	80-120	
				<u> </u>		

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6" Section 31

rk Orders : 418094 Lab Batch #: 858712 Units: mg/L	, Sample: 604361-1-BLK / B Date Analyzed: 06/03/11 23:42	A 41		ID: 2009-084 x: Water RECOVERY (STUDY	· .
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0292	0.0300	97	80-120	
4-Bromofluorobenzene		0.0304	0.0300	101	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B ' results are based on MDL and validated for QC purposes.

Project Name: DCP Plant to Lea Station 6" Section 31

Work Order #: 418094							Pro	ject ID: 2	2009-084		
Analyst: ASA	Da	ate Prepar	ed: 06/01/201	1			Date A	nalyzed: (06/01/2011		
Lab Batch ID: 858471 Sample: 604212-1	-BKS	Bate	h #: 1					Matrix: V	Water		
Units: mg/L		BLAN	K/BLANK S	SPIKE / 1	BLANK S	SPIKE DUPI	LICATE	RECOVI	ERY STUD	Y	
BTEX by EPA 8021 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Biank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Bik. Spk Dup %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00100	0.100	0.101	101	0.100	0.103	103	2	70-125	25	
Toluene	<0.00200	0.100	0.104	104	0.100	0.106	106	2	70-125	25	
Ethylbenzene	· <0.00100	0.100	0.102	102	0.100	0.105	105	3	71-129	25	
m_p-Xylenes	<0.00200	0.200	0.219	110	0.200	0.224	112	2	70-131	25	
o-Xylene	<0.00100	0.100	0.118	118	0.100	0.121	121	3	71-133	25	
Analyst: ASA	D	ate Prepar	ed: 06/03/201	1			Date A	nalyzed: ()6/03/2011		
Lab Batch ID: 858712 Sample: 604361-1	-BKS	Bate	h #: 1					Matrix: \	Water		
Units: mg/L		BLAN	K/BLANK S	SPIKE / I	BLANK S	SPIKE DUPI	LICATE	RECOVI	ERY STUD	Ŷ	
BTEX by EPA 8021	Blank Sample Result [A]	Spike Added B	Blank Spike Result	Blank Spike %R [D]	Spike Added	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		נסן	[C]		[E]						
Benzene		0.100	0.0917	92	0.100	0.0994	99	8	70-125	25	
Toluene	<0.00200	0.100	0.0925	93	0.100	0.102	102	10	70-125	25	<u>`</u>
Ethylbenzene	<0.00100	0.100	0.0911	91	0.100	0.0996	100	9	71-129	25	L
m_p-Xylenes	<0.00200	0.200	0.196	98	0.200	0.212	106	. 8	70-131	25	
o-Xylene	<0.00100	0.100	0.109	109	0.100	0.115	115	5	71-133	25	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

13

•

Form 3 - MS Recoveries

Project Name: DCP Plant to Lea Station 6" Section 31

*** *** *****************************						
ab Batch #: 858471	. ·		Pro	oject ID	2009-084	
Date Analyzed: 06/01/2011	Date Prepared: 06/0	1/2011	А	nalyst: A	SA	
QC- Sample ID: 418009-008 S	Batch #: 1		N	Matrix: V	Vater	
Reporting Units: mg/L	MATR	RIX- / MA	TRIX SPIKE	RECO	VERY STU	DY
BTEX by EPA 8021B	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Analytes						
Benzene	0.00219	0.100	0.0889	87	70-125	
Toluene	<0.00200	0.100	0.0899	90	70-125	А. П. С.
Ethylbenzene	<0.00100	0.100	0.0867	87	71-129	
m_p-Xylenes	<0.00200	0.200	0.182	91	• 70-131	
o-Xylene	0.00271	0.100	0.0997	97	71-133	

Matrix Spike Percent Recovery $[D] = 100^{+}(C-A)/B$ Relative Percent Difference $[E] = 200^{+}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

P 'elow Reporting Limit

Xenco Laboratories

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765

Phone: 432-563-1800 Fax: 432-563-1713

	Project Manager:	Ben J. Arguijo															_ '	Pr	ojec	t Na	me:	DC	P PI	ant	to l	_ea	Sta	tion	6"	Sect	ion	<u>31</u>
	Company Name	Basin Environment	al Servi	c <u>e T</u> e	echnol	logies, LLC							·····				-		Pı	ojec	:t #:_	200	9-01	<u>84</u>								
	Company Address:	P. O. Box 301								,	•						_	!	Proje	ect L		Lea	Cou	nty,	NM							
	City/State/Zip:	Lovington, NM 8820	50								_						_			PC)#:	PAA	- J.	Hen	ry							
	Telephone No:	(575)396-2378					Fax No:		(57	5) 3	96-1	429)				F	Repor	t Fo	rmat	.	X,	Stand	dard		٢] tr	RP		ΠN		 s
	Sampler Signature:	Bry hory	5	_	-		e-mail:		bja	rgu	ijo@	bas	inen	v.con	n		-	-	_							-						_
(lab use	only)										• .	·							E			тс		Ana	yze	For:	Ţ	Ţ			- []
ORDER	• -								I		Prese	rvati	on & #	of Co	ntain	ers	M	atrix	8			101			Ŧ						48. 72 I	[
LAB # (lab use oniy)		D CODE		Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of Containers	13		-		NaOH Na-S-0-		(Specify)	r SL=Sludge	GW = Groundwater S=Sait/Saitd NP=Non-Patable Specify Other		TPH: TX 1005 TX 1006	Cations (Ca, Mg, Na, K)	Anions (Cl. SO4, Alkalinity)	SAM (ESP / CEC Metale: An An Bo Cal Cal Dh Ha Sh		Semivolatites	BTEX 80218/5030 or BTEX 8260	RCI	NMWQCC Metals (see Attached)			2	× Standard TAT 4 DAY
001	N	1W-2				05/26/11	0905			x		X			T		G	w						T	Ť	X	1				T	X
002	h	1W-3				05/26/11	0915		3	X		X					G	W						Τ	Ι	X					T	x
003	N	1W-4	_			05/26/11	0920		3	x		x	\square				6	W								X						X
004	N	1W-5				05/26/11	0925		3	X		X	┠─┼	+	╉	┼─	6	W	┠╢		\rightarrow	+	+	+	╀	×	$\downarrow \downarrow$	$\left - \right $	┝─┼		╇─	×
		··					·								╧		È						1	+-	1					+		Н
						<u> </u>						_		-	╀	┼─	-				-+	+	╉	+	┿	╞	┝┤	\vdash	-+	╇	╉┙	
·																									\uparrow	\square				+	\mathbf{H}	\vdash
		· · · · · · · · · · · · · · · · · · ·																									\Box	\Box	\Box		\Box	
	Instructions :		·														ite		Time		Sam VOC	ple (s Fre	ee of	iner Hea	s int Idspa	act? ace?			() Opposed Opposed	20	NN	
Relinquis	head by	5m		Tir <i>130</i>		Received by: Sharm	on Brow	n							1.	5:2	7-11	1	30C		Cust Cust	ody: ody:	seals	on i on i	conta coole	ainer er(s)			Che Che Che Che Che Che Che Che Che Che	K A	N N N	
Relinquis Sh	med by:		11-9	Tir 16:	42	Received by:										Da	ite		Time		Sam t	ple H by Sa	land	Deli r/Clie	vere	d ep.?		-	Fore	ひー	N N ne Sta	ar
Relinquis	hed by:	Da	te	Tir	ne	Received by ELC	urdort								5	Da - 27			Time , 4		Tem	pera	ure	Upor	Re	ceipt	.:		-	5.6	°C	

XENCO Laboratories

Atlanta, Boca Raton, Corpus Christi, Dallas

Houston, Miami, Odessa, Philadelphia

Phoenix, San Antonio, Tampa

Document Title: Sample Receipt Checklist Document No.: SYS-SRC Revision/Date: No. 01, 5/27/2010 Effective Date: 6/1/2010 Page 1 of 1

Prelogin / Nonconformance Report - Sample Log-In

Client	Plains	
Date/Time:	5-27-11 16:42	
Lab ID # :	418094	
Initials:	LM	

Sample Receipt Checklist

1. Samples on ice?	Blue	Water	No	
2. Shipping container in good condition?	Tes	No	None	
3. Custody seals intact on shipping container (cooler) and bottles?	(Tes)	No	- (NA)-	94
4. Chain of Custody present?	(B)	No		
5. Sample instructions complete on chain of custody?	(es)	No		
6. Any missing / extra samples?	Man	No		
7. Chain of custody signed when relinquished / received?	(165)	No		
8. Chain of custody agrees with sample label(s)?	(Jee)	No		
9. Container labels legible and intact?	(Tes	No		
10. Sample matrix / properties agree with chain of custody?	(Yeg)	No .		
11. Samples in proper container / bottle?	(Ye	No		
Samples properly preserved?	(Yes	No	N/A	
.s. Sample container intact?	Ye	No		
14. Sufficient sample amount for indicated test(s)?		No		·
15. All samples received within sufficient hold time?		No		
16. Subcontract of sample(s)?		6	N/A	
17. VOC sample have zero head space?	(Yes	No	N/A	
18. Cooler 1 No. Cooler 2 No. Cooler 3 No.	Cooler 4 No. Cooler 5 No.		·	
Ibs 5.6 °C Ibs °C Ibs °C	ibs	°C	ibs	°C

Nonconformance Documentation

Contact	Contacted by:	Date/Time:	
Regarding:			
Corrective Action Taken:			
	· · · · · · · · · · · · · · · · · · ·		
N		· · · · · · · · · · · · · · · · · · ·	

1000

Check all that apply: Cooling process has begun shortly after sampling event and out of temperature condition acceptable by NELAC 5.5.8.3.1.a.1. Initial and Backup Temperature confirm out of temperature conditions

Client understands and would like to proceed with analysis

• . ·

Analytical Report 426114

for

PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry DCP Plant to Lea Station 6" Section 31

2009-084

26-AUG-11

Collected By: Client

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330)
Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)
Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

26-AUG-11

Project Manager: Jason Henry PLAINS ALL AMERICAN EH&S 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: 426114 DCP Plant to Lea Station 6" Section 31 Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 426114. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 426114 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994: Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 426114

PLAINS ALL AMERICAN EH&S, Midland, TX

DCP Plant to Lea Station 6" Section 31

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-2	W	08-17-11 16:25		426114-001
MW-3	W	08-17-11 14:30		426114-002
MW-4	W	08-17-11 15:10		426114-003
MW-5	W	08-17-11 16:00		426114-004

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP Plant to Lea Station 6" Section 31

Project ID:2009-084Work Order Number:426114

Report Date: 26-AUG-11 Date Received: 08/19/2011

Sample receipt non conformances and comments: None

Sample receipt non conformances and comments per sample:

None

Certificate of Analys' ummary 426114 PLAINS ALL AMERICAL, LH&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" Section 31

Project Id: 2009-084 Contact: Jason Henry Project Location: Lea County, NM

Date Received in Lab: Fri Aug-19-11 11:58 am

Report Date: 26-AUG-11

					Project Manager:	Brent Barron II
Lab Id:	426114-001		426114-002	426114-003	426114-004	
Field Id:	MW-2		MW-3	MW-4	MW-5	
Depth:						
Matrix:	WATER		WATER	WATER	WATER	
Sampled:	Aug-17-11 16:25	;	Aug-17-11 14:30	Aug-17-11 15:10	Aug-17-11 16:00	
Extracted:	Aug-22-11 16:00)	Aug-22-11 16:00	Aug-22-11 16:00	Aug-24-11 16:45	· · · · · · · · · · · · · · · · · · ·
Analyzed:	Aug-23-11 01:25	5	Aug-23-11 01:48	Aug-23-11 02:11	Aug-25-11 03:33	
Units/RL:	mg/L I	RL	mg/L RL	mg/L RL	mg/L RL	
	ND 0.00	0100	0.0138 0.00100	ND 0.00100	1.73 0.0200	
	ND 0.00	200	ND 0.00200	ND 0.00200	0.0560 0.0400	
	ND 0.00	0100	ND 0.00100	ND 0.00100	ND 0.0200	· · · · · · · · · · · · · · · · · · ·
	ND 0.00	200	ND 0.00200	ND 0.00200	· ND 0.0400	
	ND 0.00	0100	ND 0.00100	ND 0.00100	0.0210 0.0200	
	ND 0.00	0100	ND 0.00100	ND 0.00100	0.0210 0.0200	
	ND 0.00	0100	0.0138 0.00100	ND 0.00100	1.81 0.0200	
	Field Id: Depth: Matrix: Sampled: Extracted: Analyzed:	Field Id: MW-2 Depth: WATER Matrix: WATER Sampled: Aug-17-11 16:25 Extracted: Aug-22-11 16:00 Analyzed: Aug-23-11 01:25 Units/RL: mg/L ND 0.00 ND 0.00	Field Id: MW-2 Depth: WATER Matrix: WATER Sampled: Aug-17-11 16:25 Extracted: Aug-22-11 16:00 Analyzed: Aug-23-11 01:25 Units/RL: mg/L RL ND 0.00100 ND 0.00200 ND 0.00200 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100	Field Id: MW-2 MW-3 Depth: Matrix: WATER WATER Sampled: Aug-17-11 16:25 Aug-17-11 14:30 Extracted: Aug-22-11 16:00 Aug-22-11 16:00 Analyzed: Aug-23-11 01:25 Aug-23-11 01:48 Units/RL: mg/L RL ND 0.00100 0.0138 0.00100 ND 0.00100 ND 0.00200 ND 0.00100 ND 0.00200 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100	Field Id: MW-2 MW-3 MW-4 Depth: Matrix: WATER WATER WATER WATER Matrix: WATER: Mu-1/11 6:00 Aug-17-11 15:10 Extracted: Aug-22-11 6:00 Aug-22-11 6:00 Aug-22-11 6:00 Imalyzed: Aug-23-11 01:25 Aug-23-11 01:48 Aug-23-11 02:11 Units/RL: mg/L RL mg/L RL mg/L RL ND 0.00100 0.0138 0.00100 ND 0.00200 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00200 ND 0.00100 ND 0.00100 ND 0.00200 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100 ND 0.00100 ND <td>Field Id: MW-2 MW-3 MW-4 MW-5 Depth: Matrix: WATER WATER WATER WATER WATER Mu-17-11 5:00 Aug-17-11 6:00 Aug-22-11 6:00 Aug-22-11 6:00 Aug-22-11 6:00 Aug-22-11 6:00 Aug-22-11 6:00 Aug-22-11 0:00 0:00 0:00:00</td>	Field Id: MW-2 MW-3 MW-4 MW-5 Depth: Matrix: WATER WATER WATER WATER WATER Mu-17-11 5:00 Aug-17-11 6:00 Aug-22-11 6:00 Aug-22-11 6:00 Aug-22-11 6:00 Aug-22-11 6:00 Aug-22-11 6:00 Aug-22-11 0:00 0:00 0:00:00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratorics. XENCO Laboratorics assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron II

Odessa Laboratory Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit

LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit

LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

+ Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Miami - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, Tx 77477 9701 Harry Hines Blvd, Dallas, TX 75220 5332 Blackberry Drive, San Antonio TX 78238 2505 North Falkenburg Rd, Tampa, FL 33619 5757 NW 158th St, Miami Lakes, FL 33014 12600 West I-20 East, Odessa, TX 79765 6017 Financial Drive, Norcross, GA 30071 3725 E. Atlanta Ave, Phoenix, AZ 85040

Fax Phone (281) 240-4200 (281) 240-4280 (214) 902 0300 (214) 351-9139 (210) 509-3334 (210) 509-3335 (813) 620-2000 (813) 620-2033 (305) 823-8500 (305) 823-8555 (432) 563-1800 (432) 563-1713 (770) 449-8800 (770) 449-5477 (602) 437-0330

Project Name: DCP Plant to Lea Station 6" Section 31

ork Orders : 426114, Lab Batch #: ⁸⁶⁸⁰³⁹	Sample: 426114-001 / SMP	Project ID:2009-084 AP Batch: 1 Matrix:Water SURROGATE RECOVERY STUDY										
Units: mg/L	Date Analyzed: 08/23/11 01:25	SU	RROGATE R	ECOVERY	STUDY							
BTEX	by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags						
A	nalytes			[D]								
1,4-Difluorobenzene	· · · · · · · · · · · · · · · · · · ·	0.0282	0.0300	94	80-120							
4-Bromofluorobenzene		0.0288	0.0300	96	80-120							
Lab Batch #: 868039	Sample: 426114-002 / SMP	Batc	h: ¹ Matrix	Water								
Units: mg/L	Date Analyzed: 08/23/11 01:48	SU	RROGATE R	ECOVERY	STUDY							
	by EPA 8021 nalytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags						
1,4-Difluorobenzene		0.0287	0.0300	96	80-120							
4-Bromofluorobenzene	· · · · ·	0.0281	0.0300	94	80-120							
Lab Batch #:868039	Sample: 426114-003 / SMP	Batc	h: ¹ Matrix	Water	L							
Units: mg/L	Date Analyzed: 08/23/11 02:11	SU	RROGATE R	ECOVERY	STUDY							
	by EPA 8021 nalytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags						
,4-Difluorobenzene	-,	0.0279	0.0300	93	80-120							
4-Bromofluorobenzene		0.0301	0.0300	100	80-120							
Lab Batch #:868312	Sample: 426114-004 / SMP	Bate	h: ¹ Matrix	:Water								
Units: mg/L	Date Analyzed: 08/25/11 03:33	SU	RROGATE R	ECOVERY	STUDY							
	by EPA 8021 nalytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags						
					1							
1,4-Difluorobenzene	•	0.0303	0.0300	101	80-120							
1,4-Difluorobenzene 4-Bromofluorobenzene	• 	0.0303	0.0300	101 95	80-120 80-120							
·	Sample: 610293-1-BLK / B	0.0285	0.0300	95								
4-Bromofluorobenzene		0.0285 LK Batc	0.0300	95 :Water	80-120							
4-Bromofluorobenzene Lab Batch #:868039 Units: mg/L BTEX	Sample: 610293-1-BLK / Bl Date Analyzed: 08/23/11 01:02 by EPA 8021	0.0285 LK Batc	0.0300 h: ¹ Matrix	95 :Water	80-120	Flags						
4-Bromofluorobenzene Lab Batch #:868039 Units: mg/L BTEX	Sample: 610293-1-BLK / Bl Date Analyzed: 08/23/11 01:02	0.0285 JK Bate SU Amount Found	0.0300 h: 1 Matrix RROGATE R True Amount	95 :Water ECOVERY Recovery %R	80-120 STUDY Control Limits	Flags						

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

" results are based on MDL and validated for QC purposes.

Project Name: DCP Plant to Lea Station 6" Section 31

Vork Orders 426114, Lab Batch #:868312	, Sample: 610433-1-BLK / B	ELK Batc		D: 2009-084		
Units: mg/L	Date Analyzed: 08/25/11 01:39		RROGATE R		STUDY	
· · · · · · · · · · · · · · · · · · ·	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0275	0.0300	92	80-120	
4-Bromofluorobenzene		0.0281	0.0300	94	80-120	
Lab Batch #: 868039	Sample: 610293-1-BKS / B	KS Bate	h: ¹ Matrix	:Water		
Units: mg/L	Date Analyzed: 08/22/11 23:32	SU	RROGATE R	ECOVERY	STUDY	
	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0305	0.0300	102	80-120	
4-Bromofluorobenzene		0.0296	0.0300	99	80-120	
Lab Batch #:868312	Sample: 610433-1-BKS / B	KS Bate	n: ¹ Matrix	Water	<u> </u>	
Units: mg/L	Date Analyzed: 08/25/11 00:08		RROGATE R		STUDY	
	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits · %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0275	0.0300	92	80-120	
4-Bromofluorobenzene		0.0280	0.0300	93	80-120	
Lab Batch #: 868039	Sample: 610293-1-BSD / B					
Units: mg/L	Date Analyzed: 08/22/11 23:55	SU	RROGATE R	ECOVERY	STUDY	
	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
I,4-Difluorobenzene		0.0296	.0.0300	99	80-120	
4-Bromofluorobenzene	-	0.0291	0.0300	97 .	80-120	
Lab Batch #: 868312	Sample: 610433-1-BSD / B					
Units: mg/L	Date Analyzed: 08/25/11 00:31	SU	RROGATE R	ECOVERY :	STUDY	
	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes	· · ·		[D]		
1,4-Difluorobenzene		0.0292	0.0300	97	80-120	_
4-Bromofluorobenzene	,	0.0309	0.0300	103	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Project Name: DCP Plant to Lea Station 6" Section 31

ork Orders 426114, Lab Batch #:868039 Sample: 42	26114-001 S / MS	Batch	•	D: 2009-084 :Water		
Units: mg/L Date Analyzed: 04			RROGATE RE		STUDY	
BTEX by EPA 8021 Analytes	. F	mount 'ound A]	True Amount B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.	.0294	0.0300	98	80-120	
4-Bromofluorobenzene	0.	.0288	0.0300	96	80-120	
Lab Batch #:868312 Sample: 4	26116-001 S / MS	Batch	h: ¹ Matrix:	Water		
Units: mg/L Date Analyzed: 0	8/25/11 04:19	SUF	RROGATE, RE	ECOVERY	STUDY	
BTEX by EPA 8021 Analytes	F	mount 'ound [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.	.0313	0.0300	104	80-120	i
4-Bromofluorobenzene	· . 0.	.0293	0.0300	. 98	80-120	
Lab Batch #:868039 Sample: 4	26114-001 SD / MSD	Batch	h: ¹ Matrix:	Water	µ, · · · · · ·	
Units: mg/L Date Analyzed: 0		SUI	RROGATE RE	ECOVERY ?	STUDY	
BTEX by EPA 8021 Analytes	F	mount 'ound [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
j,4-Difluorobenzene	0	.0295	0.0300	98	80-120	1
4-Bromofluorobenzene	. 0.	.0276	0.0300	92 -	80-120	 I
Lab Batch #:868312 Sample: 4	26116-001 SD / MSD	Batch	h: ¹ Matrix:	Water		
Units: mg/L Date Analyzed: 0	8/25/11 04:41	SUF	RROGATE RE	COVERY	STUDY	
BTEX by EPA 8021	F	mount 'ound [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Analytes	· .		0.0200		80.100	ł
4-Bromofluorobenzene		.0283	0.0300	94	80-120 80-120	·

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

I results are based on MDL and validated for QC purposes.

BS / BSD Recoveries

Project Name: DCP Plant to Lea Station 6" Section 31

Work Order #: 426114 Analyst: ASA	D	ate Prepa	red: 08/22/201		·			ject ID: 2 nalyzed: (
Lab Batch ID: 868039 Sample: 610293-1	-BKS	Batc	h #: 1					Matrix: \	Water		
Units: mg/L		BLAN	K/BLANK S	SPIKE / B	BLANK S	PIKE DUPL	ICATE I	RECOVE	RY STUD	Y	
BTEX by EPA 8021 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G] -	RPD %	Control Limits %R	Control Limits % RPD	Flag
Benzene	<0.00100	0.100	0.114	114	0.100	0.112	112	2	70-125	25	
Toluene	<0.00200	0.100	0.100	100	0.100	0.0991	99	1	70-125	25	
Ethylbenzene	<0.00100	0.100	0.109	109	0.100	0.108	108	• 1	71-129	25	
m_p-Xylenes	<0.00200	0.200	0.218	109	0.200	0.214	107	2	70-131	25	
o-Xylene	<0.00100	0.100	0.103	103	0.100	0.101	101	2	71-133	25	
Analyst: ASA Lab Batch ID: 868312 Sample: 610433-1		-	red: 08/24/201 h #: 1					nalyzed: (Matrix: [\])8/25/2011 Water		
Units: mg/L			K /BLANK S	SPIKE / B	BLANK S	PIKE DUPL				Y	
BTEX by EPA 8021	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added	Biank Spike Duplicate Result [F]	Bik. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits % RPD	Flag
Analytes		[D]			[E]	Kesun [F]	[0]				
Benzene	<0.00100	0.100	0.110	110	0.100	0.115	115	4	70-125	25	
Toluene	<0.00200	0.100	0.0970	97	0.100	0.102	102	5	70-125	25	
Ethylbenzene	<0.00100	0.100	0.106	106	0.100	0.111	111	5	71-129	25	
m_p-Xylenes	<0.00200	0.200	.0.211	106	0.200	0.221	111	5	70-131	25	
o-Xylene	<0.00100	0.100	0.0979	98	0.100	0.106	106	8	71-133	25	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

.3

Form 3 - M MSD Recoveries

Project Name: DCP Plant to Lea Station 6" Section 31

Work Order #: 426114						Project I	D: 2009-0	84		· .	
Lab Batch ID: 868039 Date Analyzed: 08/23/2011	QC- Sample ID: Date Prepared:				itch #: alyst:	1 Matri ASA	k: Water				
Reporting Units: mg/L		N	AATRIX SPIK	E / MAI	RIX SP	KE DUPLICA	TE REC	OVERY	STUDY		
BTEX by EPA 8021 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00100	. 0.100	0.113	113	0.100	0.110	110	3	70-125	25	
Toluene	<0.00200	0.100	0.0994	99	0.100	0.0953	95	4	70-125	25 ·	
Ethylbenzene	<0.00100	0.100	0.106	106	0.100	· 0.104	104	2	71-129	25	
m_p-Xylenes	<0.00200	0.200	0.209	105	0.200	0.200	100	4	70-131	25	
						0.00-1	ó	3	71.100		
o-Xylene	<0.00100	0.100	0.100	100	0.100	0.0974	97		71-133	25	
	<pre><0.00100 QC- Sample ID: Date Prepared:</pre>	426116	-001 S	Ba	itch #:		97 x: Water	3		25	
Lab Batch ID: 868312	QC- Sample ID:	426116 : 08/24/2	-001 S 011	Ba An	itch #: alyst:	l Matri	x: Water	L <u>.</u>		25	
Lab Batch ID: 868312 Date Analyzed: 08/25/2011	QC- Sample ID:	426116 : 08/24/2	-001 S 011	Ba An	itch #: alyst:	1 Matrix ASA	x: Water	L <u>.</u>		25 Control Limits %RPD	Flag
Lab Batch ID: 868312 Date Analyzed: 08/25/2011 Reporting Units: mg/L BTEX by EPA 8021	QC- Sample ID: Date Prepared: Parent Sample Result	426116 08/24/2 N Spike Added	-001 S 011 AATRIX SPIK Spiked Sample Result	Ba An E / MAT Spiked Sample % R	itch #: alyst: `RIX SPI Spike Added	1 Matri ASA KE DUPLICA Duplicate Spiked Sample	x: Water TE REC Spiked Dup. %R	OVERY	STUDY Control Limits	Control Limits	Flag
Lab Batch ID: 868312 Date Analyzed: 08/25/2011 Reporting Units: mg/L BTEX by EPA 8021 Analytes	QC- Sample ID: Date Prepared: Parent Sample Result [A]	426116 08/24/2 Spike Added [B]	-001 S 011 AATRIX SPIK Spiked Sample Result [C]	Ba An E / MAT Spiked Sample % R [D]	itch #: alyst: `RIX SPI Spike Added [E]	1 Matri ASA KE DUPLICA Duplicate Spiked Sample Result [F]	x: Water TE REC Spiked Dup. %R [G]	OVERY RPD %	STUDY Control Limits %R	Control Limits %RPD	Flag
Lab Batch ID: 868312 Date Analyzed: 08/25/2011 Reporting Units: mg/L BTEX by EPA 8021 Analytes Benzene	QC- Sample ID: Date Prepared: Parent Sample Result [A] 0.00258	426116 08/24/2 Spike Added [B] 0.100	-001 S 011 ATRIX SPIK Spiked Sample Result [C] 0.115	Ba An E / MAT Spiked Sample % R [D] 112	itch #: alyst: TRIX SPI Spike Added [E] 0.100	1 Matri ASA KE DUPLICA Duplicate Spiked Sample Result [F] 0.113	x: Water TE REC Spiked Dup. %R [G] 110	OVERY RPD %	STUDY Control Limits %R 70-125	Control Limits % RPD 25	Flag
Lab Batch ID: 868312 Date Analyzed: 08/25/2011 Reporting Units: mg/L BTEX by EPA 8021 Analytes Benzene Toluene	QC- Sample ID: Date Prepared: Parent Sample Result [A] 0.00258 <0.00200	426116 08/24/2 Spike Added [B] 0.100 0.100	-001 S 011 IATRIX SPIK Spiked Sample Result [C] 0.115 0.0998	Ba An E / MAT Spiked Sample %R [D] 112 100	itch #: alyst: TRIX SPI Spike Added [E] 0.100 0.100	1 Matrix ASA KE DUPLICA Duplicate Spiked Sample Result [F] 0.113 0.0979	x: Water TE REC Spiked Dup. %R [G] 110 98	OVERY RPD %	STUDY Control Limits %R 70-125 70-125	Control Limits %RPD 25 25	Flag

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}[(C-F)/(C+F)]$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Xenco Laboratories

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765 Phone: 432-563-1800 Fax: 432-563-1713

	Project Manager:	Ben J. Argui	Ben J. Arguijo									Project Name: DCP Plant to Lea Station 6" Section					<u>n 31</u>														
	Company Name	Basin Enviro	onmental Ser	vice Te	chnol	ogies, LLC											_		Pr	rojec	t #:_	200	9-08	4							
	Company Address:	P. O. Box 30	91														Project Loc: Lea County, NM						<u>_</u>								
	City/State/Zip:	Lovington, N	NM 88260														-			P) #: <u> </u>	PAA	- J. I	Henr	у						
	Telephone No:	(575)396-237	78				Fax No:		(57	5) 3	96-1	429					_	Repo	rt Fo	rmai	. [X,	Stand	ard			TRF	٩P] NPI	DES
	Sampler Signature:	Dukon	h var	ط			e-mail:		bja	rgui	jo@	basi	inen	v.con	1							=									
(lab use	only)		——–								-								-			TCI		Analy	/ze F	or:				┯┥	<u>e</u>
ORDEF	R#: 426114									F	Prese	rvatio	on & #	of Co	ntaine	ers	T N	latrix	8			тот		<u> </u>	Ŧ	X					48, 72 hrs
LAB # (lab use only)		D CODE		Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of Containers	lce	HNO ₃	ЧСІ	H ₂ SO,	NaOH Nacs-O.	None	Other (Specify)	DW=Drinking Water SL=Studge	GW = Groundwater S=Soil/Solid NP=Non-Potable Specify Other		TPH: TX 1005 ' TX 1006	Cations (Ca, Mg, Na, K)	Anions (Cl. SO4, Alkalinity)	SAR / ESP / CEC Metals: As Ao Ba Cd Cr Pb Ho Se	Volatiles	Sernivolatiles		RCI	N.O.R.M.	Chlorides		RUSH TAT (Pre-Schedule) 24, Standard TAT 4 DAY
001	N	1W-2				08/17/11	1625		3	x		x			Γ			GW	\Box							X	\Box	\square		\Box	X
002 003	N	NW-3				08/17/11	1430		3	X		X		_	+	_		GW				_	_		┢	X	┝╌┥	-+		+	X
<u>003</u>		IW-4	<u> </u>		·	08/17/11	1510		3	X		X	_	-	+	╞	1	GW	┢	Ļ	-+	4	+	-	╞	X	\vdash	-+	+-	╇┙	X
004	N	1W-5	······			08/17/11	1600		3	X		X	-		╇	+	<u> '</u>	GW	╀	-		-+	+		╀─	X	\vdash	-+	-+-	\vdash	×
	· · · · · · · · · · · · · · · · · · ·									Н	\vdash			-+-	┿	+	╂─		┢	┢		-+		┽	┢	+	┝╌┤	-+	┿	╉┙	┠╶╄╼┥
· · · ·					·					\square		-	\rightarrow	÷	╧╋╌╸		┢		╋		-+	+	+	+	┢		\vdash	+	+	+ -	+ + - 1
		<u>_</u>							Ì			-		╈	+-	\uparrow	┢		\uparrow	\square	-+	-	+	1	\uparrow	\square	\square		\top		
																											\Box	\Box			
															-								ŀ] .			Ц				
Special I	nstructions:				•••				, -											•	Sam	iple (ory C Conta ree of	liner	s Inti	act?			Ś	>	N N
	ofah word		Date 8/11/11	17 "		Received by:	45					_			6	8/1	-	, ,	Tim 29	Y,	Cusi Cusi	tody tody	n con seals seals	s on i s on i	conta coole	ainer er(s)	·(s)		0000	, , ,	N N N N N N Star
Relinquist	119		Date	Tir 08.		Received		n	Ţ						8	1		Ģ	Tim 200 Tim)	1	by Sa by Ca	Hand ample purier	?©[ie	ent R	<u>ب</u>	, DHL	. 1	FedEx	Lor	N N se Star
KIC1	- na Bernal	1	8/19/11	<u> :8</u>	-		Ima		Q						8					38	Tem	ipera) iv iture	Upor	n Re	ceipt	<u>:</u>		5_	5	°C
11		-	[, ,] ,[· · ·	(F	ag/	1	2								•										į	\mathcal{I}		

XENCO Laboratories

Atlanta, Boca Raton, Corpus Christi, Dallas

Houston, Miami, Odessa, Philadelphia

Phoenix, San Antonio, Tampa

Document Title: Sample Receipt Checklist,						
Document No.: SYS-SRC						
Revision/Date: No. 01, 5/27	7/2010					
Effective Date: 6/1/2010	Page 1 of 1					

Prelogin / Nonconformance Report - Sample Log-In

Client: Plans	·	 :
Date/Time: 8 9/1	11:58	<u></u>
Lab ID #: 4261	14	
Initials: AH		

Sample Receipt Checklist

1. Samples on ice?	Blue	(Water)	No	
2. Shipping container in good condition?	(Yes)	No	None	
3. Custody seals intact on shipping container (cooler) and bottles?	Yes	No	N/A	
4. Chain of Custody present?	Yes	No		
5. Sample instructions complete on chain of custody?	Yes	No		
6. Any missing / extra samples?	Yes	No		
7. Chain of custody signed when relinquished / received?	Yes	No		
8. Chain of custody agrees with sample label(s)?	Yes	No		
9. Container labels legible and intact?	Yes	No		
10. Sample matrix / properties agree with chain of custody?	Yes	No		
11. Samples in proper container / bottle?	Yes	No		
2. Samples properly preserved?	Yes	No	N/A	
13. Sample container intact?	Yes	No	·	
14. Sufficient sample amount for indicated test(s)?	Yes	No		
15. All samples received within sufficient hold time?	Yes	No		
16. Subcontract of sample(s)?	Yes	No	(NA)	
17. VOC sample have zero head space?	Yes	No	N/A	
18. Cooler 1 No. Cooler 2 No. Cooler 3 No.	Cooler 4 N	lo.	Cooler 5 No.	
lbs 5.5 °C lbs °C lbs °C	lbs	°C	lbs	°C

Nonconformance Documentation

Contact:	Contacted by:	Date/Time:	
Regarding:			
Corrective Action Taken:			
· · · · · · · · · · · · · · · · · · ·	·		
Check all that apply: □Coo	ling process has begun shortly after san condition acceptable by NELAC 5.5.8.3		

□ Initial and Backup Temperature confirm out of temperature conditions □ Client understands and would like to proceed with analysis

Analytical Report 432429

for

PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry DCP Plant to Lea Station 6" Section 31

2009-084

08-DEC-11

Collected By: Client

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330)
Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)
Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

08-DEC-11

Project Manager: Jason Henry PLAINS ALL AMERICAN EH&S 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: 432429 DCP Plant to Lea Station 6" Section 31 Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 432429. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 432429 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 432429

PLAINS ALL AMERICAN EH&S, Midland, TX

DCP Plant to Lea Station 6" Section 31

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-2	W	11-29-11 12:30	· · · · ·	432429-001
MW-3	W	11-29-11 13:00		432429-002
MW-4	W	11-29-11 13:55		432429-003
MW-5	W	11-29-11 14:00		432429-004

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP Plant to Lea Station 6" Section 31

 Project ID:
 2009-084

 Work Order Number:
 432429

Report Date: 08-DEC-11 Date Received: 11/30/2011

Sample receipt non conformances and comments: None

Sample receipt non conformances and comments per sample:

None

j

Certificate of Analys' ummary 432429

PLAINS ALL AMERICA. _H&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" Section 31

Project Id: 2009-084 Contact: Jason Henry Project Location: Lea County, NM

Date Received in Lab: Wed Nov-30-11 02:37 pm

Report Date: 08-DEC-11

					•			Project Ma	nager:	Brent Barron II	
	Lab Id:	432429-001		432429-	002	432429-0	003	432429-	004		
Aughoria Degranded	Field Id:	MW-2		MW-3	3	MW-4	4	MW-	5		
Analysis Requested	Depth:										
· · · · · · ·	Matrix:	• WATER		· WATE	R	WATE	R	WATE	R		
	Sampled:	Nov-29-11 12:	30	Nov-29-11	13:00	Nov-29-11	13:55	Nov-29-11	14:00		
BTEX by EPA 8021	Extracted:	Dec-02-11 16:	39	Dec-02-11	16:39	Dec-02-11	16:39	Dec-02-11	16:39		
	Analyzed:	Dec-02-11 23:	58	Dec-03-11	01:51	Dec-03-11	02:14	Dec-03-11	02:37		
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL		•
Benzene		ND 0.	00100	0.00500	0.00100	ND	0.00100	0.233	0.00100		
Toluene		ND 0.	00200	ND	0.00200	ND	0.00200	0.00730	0.00200		
Ethylbenzene		ND 0.	00100	ND	0.00100	ND	0.00100	ND	0.00100		
m_p-Xylenes		ND 0.0	00200	ND	0.00200	ND	0.00200	0.00200	0.00200		
o-Xylene		ND 0.0	00100	ND	0.00100	ND	0.00100	0.00188	0.00100		
Xylenes, Total		ND 0.	00100	ND	0.00100	ND	0.00100	0.00388	0.00100		
Total BTEX	•	ND 0.0	00100	0.00500	0.00100	ND	0.00100	0.244	0.00100		
	,										

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratorics. XENCO Laboratorics assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron II Odessa Laboratory Manager

Laboratorics

Certificate of Analysis Summary 432429 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" Section 31

Project Id: 2009-084 Contact: Jason Henry Project Location: Lea County, NM

Date Received in Lab: Wed Nov-30-11 02:37 pm

Report Date: 08-DEC-11

Toject Location: Lea County, NM					Project Manager:	Brent Barron II	
	Lab Id:	432429-001	432429-002	432429-003	432429-004		
tustusis Descussed	Field Id:	MW-2	MW-3	MW-4	MW-5		
Analysis Requested	Depth:						
	Matrix:	WATER	WATER	WATER	WATER		
	Sampled:	Nov-29-11 12:30	Nov-29-11 13:00	Nov-29-11 13:55	Nov-29-11 14:00		
SVOA PAHs List	Extracted:				Dec-05-11 10:12		
SUB: TX104704215	Analyzed:				Dec-06-11 16:13		
	Units/RL:				mg/L RL		
Acenaphthene					ND 0.0112		
Acenaphthylene					ND 0.0112		
Anthracene					ND 0.0112		
Benzo(a)anthracene		·			ND 0.0112		
Benzo(a)pyrene					ND 0.0112		_
Benzo(b)fluoranthene					ND 0.0112		
Benzo(k)fluoranthene					ND 0.0112		
Benzo(g,h,i)perylene					ND 0.0112		
Chrysene					ND 0.0112		
Dibenz(a,h)anthracene					ND 0.0112		
Fluoranthene					ND 0.0112		
Fluorene					ND 0.0112		
Indeno(1,2,3-c,d)Pyrene					ND 0.0112		
1-Methylnaphthalene					ND 0.00559		
2-Methylnaphthalene					ND 0.0112		
Naphthalene					ND 0.0112		
Phenanthrene					ND 0.0112		
Ругепе					ND 0.0112		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron II Odessa Laboratory Manager

6

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.

F RPD exceeded lab control limits.

J The target analyte was positively identified below the quantitation limit and above the detection limit.

U Analyte was not detected.

- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

* Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit

PQL Practical Quantitation Limit MQL Method Quantitation Limit

LOD Limit of Detection

LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

+ Outside XENCO's scope of NELAC Accreditation.

^ NELAC or State program does not offer Accreditation at this time.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Miami - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, TX 77477 9701 Harry Hines Blvd, Dallas, TX 75220 5332 Blackberry Drive, San Antonio TX 78238 2505 North Falkenburg Rd, Tampa, FL 33619 5757 NW 158th St, Miami Lakes, FL 33014 12600 West I-20 East, Odessa, TX 79765 6017 Financial Drive, Norcross, GA 30071 3725 E. Atlanta Ave, Phoenix, AZ 85040 Phone Fax (281) 240-4200 (281) 240-4280 (214) 902 0300 (214) 351-9139 (210) 509-3334 (210) 509-3335 (813) 620-2000 (813) 620-2033 (305) 823-8555 (305) 823-8500 (432) 563-1800 (432) 563-1713 (770) 449-8800 (770) 449-5477 (602) 437-0330

Project Name: DCP Plant to Lea Station 6" Section 31

ork Orders : 432429),		Project II	D: 2009-084	•••	
Lab Batch #: 876337	Sample: 432429-001 / SMP	Batc				
Units: mg/L	Date Analyzed: 12/02/11 23:58	SU	RROGATE RI	ECOVERY	STUDY	
BTE	CX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0280	0.0300	93	· 80-120	
4-Bromofluorobenzene		0.0291	0.0300	97	80-120	
Lab Batch #: 876337	Sample: 432429-002 / SMP	Batc	h: ¹ Matrix	Water		
Units: mg/L	Date Analyzed: 12/03/11 01:51	SU	RROGATE RI	ECOVERY	STUDY	
BTE	CX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	Analytes	0.0251	0.0300	84	80-120	
4-Bromofluorobenzene		0.0261	0.0300	87	80-120	· · · · · ·
Lab Batch #: 876337	Sample: 432429-003 / SMP	Batc	h: ¹ Matrix	•Water		
Units: mg/L	Date Analyzed: 12/03/11 02:14		RROGATE RI		STUDY	,
	CX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
I,4-Difluorobenzene		0.0263	0.0300	88	80-120	
4-Bromofluorobenzene		0.0268	0.0300	89	80-120	
Lab Batch #: 876337	Sample: 432429-004 / SMP	Batc	h: ¹ Matrix	:Water		
Units: mg/L	Date Analyzed: 12/03/11.02:37	• SU	RROGATE RI	ECOVERY	STUDY	
BTE	EX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluorobenzene	Analytes	0.0315	0.0300	105	80-120	
r,Dilluorobenzene		0.031.3	1 1.1.1.1.1.1.1	103		

* Surrogate outside of Laboratory QC limits

- ** Surrogates outside limits; data and surrogates confirmed by reanalysis
- *** Poor recoveries due to dilution
- Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: DCP Plant to Lea Station 6" Section 31

)rk Orders : 432429 Lab Batch #: 876470	, Sample: 432429-004 / SMP	Bate		D: 2009-084 ::Water		
Units: mg/L	Date Analyzed: 12/06/11 16:13	SU	RROGATE R	ECOVERY	STUDY	
SVO	DA PAHs List Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Fluorobiphenyl	6	0.0452	0.0559	81	44-117	
2-Fluorophenol		0.0253	0.0559	45	30-100	
Nitrobenzene-d5		0.0442	0.0559	79	46-111	• ·
Phenol-d6		0.0152	0.0559	27	15-94	
Terphenyl-D14		0.0589	0.0559	105	46-126	
2,4,6-Tribromophenol		0.0463	0.0559	83	48-117	
Lab Batch #: 876337	Sample: 614999-1-BLK / BL	K Batc	h: 1 Matrix	Water	•	
Units: mg/L	Date Analyzed: 12/02/11 19:48	SU	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0274	0.0300	91	80-120	
4-Bromofluorobenzene		0.0264	0.0300	88	80-120	
Lab Batch #: 876470	Sample: 614891-1-BLK / BL	K Batc	h: 1 Matrix	Water		
Units: mg/L	Date Analyzed: 12/06/11 11:56	ŞU	RROGATE R	ECOVERY	STUDY	
SVO	DA PAHs List Analytes	Amount Found , [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Fluorobiphenyl		0.0453	0.0500	91	44-117	
2-Fluorophenol		0.0327	0.0500	65	30-100	
Nitrobenzene-d5		0.0438	0.0500	88	46-111	
Phenol-d6		0.0227	0.0500	45	15-94	
Terphenyl-D14		0.0547	0.0500	109	46-126	
2,4,6-Tribromophenol		0.0351	0.0500	70	48-117	
Lab Batch #: 876337	Sample: 614999-1-BKS / BK	S Batc	h: ¹ Matrix	Water	,	
Units: mg/L	Date Analyzed: 12/02/11 18:17	SU	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

1,4-Difluorobenzene ·

4-Bromofluorobenzene

" results are based on MDL and validated for QC purposes.

0.0294

0.0289

0.0300

0.0300

98

96

80-120

80-120

٦

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6" Section 31

Vork Orders : 43242 Lab Batch #: 876470		KS Batc		D: 2009-084 Water		•
Units: mg/L	Date Analyzed: 12/06/11 12:19		RROGATE RI		STUDY	
	'OA PAHs List Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Fluorobiphenyl	•.	0.0481	0.0500	. 96	44-117	
2-Fluorophenol		0.0346	0.0500	69	. 30-100	
Nitrobenzene-d5		0.0462	0.0500	· 92	46-111	i
Phenol-d6	······································	0.0246	0.0500	.49	15-94	
Terphenyl-D14		0.0502	0.0500	100	46-126	
2,4,6-Tribromophenol	· .	0.0448	0.0500	90	48-117	
Lab Batch #: 876337	Sample: 614999-1-BSD / B	SD Bate	h: l Matrix	Water		
Units: mg/L	Date Analyzed: 12/02/11 18:40	SU	RROGATE RI	ECOVERY	STUDY	
BTI	EX by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0280	0.0300	93	80-120	
4-Bromofluorobenzene		0.0278	0.0300	93	80-120	
Lab Batch #: 876470	Sample: 614891-1-BSD / B	SD Bate	h: 1 Matrix	Water		
Units: mg/L	Date Analyzed: 12/06/11 12:43	SU	RROGATE RI	ECOVERY	STUDY	
SV	OA PAHs List	Amount Found	True Amount	Recovery	Control Limits	Flags
	Analytes	[A]	[B]	%R [D]	%R	
2-Fluorobiphenyl	Analytes	1	(B) 0.0500			
2-Fluorobiphenyl 2-Fluorophenol	Analytes	[A]		[D]	%R	
	Analytes	[A] 0.0484	0.0500	[D]	%R 44-117	
2-Fluorophenol	Analytes	[A] 0.0484 0.0349	0.0500	[D] 97 70	%R 44-117 30-100	
2-Fluorophenol Nitrobenzene-d5	Analytes	[A] 0.0484 0.0349 0.0465	0.0500 0.0500 0.0500	[D] 97 70 93	%R 44-117 30-100 46-111	
2-Fluorophenol Nitrobenzene-d5 Phenol-d6	Analytes	[A] 0.0484 0.0349 0.0465 0.0256	0.0500 0.0500 0.0500 0.0500	[D] 97 70 93 51	%R 44-117 30-100 46-111 15-94	
2-Fluorophenol Nitrobenzene-d5 Phenol-d6 Terphenyl-D14	Analytes Sample: 432132-001 S / M	[A] 0.0484 0.0349 0.0465 0.0256 0.0505 0.0460	0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	[D] 97 70 93 51 101 92	%R 44-117 30-100 46-111 15-94 46-126	
2-Fluorophenol Nitrobenzene-d5 Phenol-d6 Terphenyl-D14 2,4,6-Tribromophenol		[A] 0.0484 0.0349 0.0465 0.0256 0.0505 0.0460 S Batc	0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	[D] 97 70 93 51 101 92 Water	%R 44-117 30-100 46-111 15-94 46-126 48-117	
2-Fluorophenol Nitrobenzene-d5 Phenol-d6 Terphenyl-D14 2,4,6-Tribromophenol Lab Batch #: 876337 Units: mg/L	Sample: 432132-001 S / M	[A] 0.0484 0.0349 0.0465 0.0256 0.0505 0.0460 S Batc	0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 h: 1 Matrix	[D] 97 70 93 51 101 92 Water	%R 44-117 30-100 46-111 15-94 46-126 48-117	Flags
2-Fluorophenol Nitrobenzene-d5 Phenol-d6 Terphenyl-D14 2,4,6-Tribromophenol Lab Batch #: 876337 Units: mg/L	Sample: 432132-001 S / M: Date Analyzed: 12/03/11 00:21 EX by EPA 8021	[A] 0.0484 0.0349 0.0465 0.0256 0.0505 0.0460 S Batc SU Amount Found	0.0500 0.0500 0.0500 0.0500 0.0500 h: 1 Matrix: RROGATE RI True Amount	[D] 97 70 93 51 101 92 Water ECOVERY S Recovery %R	%R 44-117 30-100 46-111 15-94 46-126 48-117 STUDY Control Limits	Flags

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: DCP Plant to Lea Station 6" Section 31

)rk Orders : 432429 Lab Batch #: 876337 Units: mg/L	, Sample: 432132-001 SD / 1 Date Analyzed: 12/03/11 00:43			ID: 2009-084 x: Water RECOVERY 3	STUDY	
BTE	X by EPA 8021 Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0274	0.0300	91	80-120	
4-Bromofluorobenzene	•	0.0288	0.0300	96	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

" results are based on MDL and validated for QC purposes.

Project Name: DCP Plant to Lea Station 6" Section 31

Work Order #: 432429 Analyst: ASA Lab Batch ID: 876337	Sample: 614 <u>999-1-BI</u>	Project ID: 2009-084 Date Prepared: 12/02/2011 Date Analyzed: 12/02/2011 BKS Batch #: 1 Matrix: Water BLANK/BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY											
Units: ^{mg/L} BTEX by EP. Analytes	A 8021	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Biank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag	
Benzene		<0.00100	0.100	0.102	102	0.100	0.101	101	1	70-125	25		
Toluene		<0.00200	0.100	0.104	104	0.100	0.103	103	1	• 70-125	25		
Ethylbenzene		<0.00100	0.100	0.110	110	0.100	0.108	108	2	71-129	25		
m_p-Xylenes		<0.00200	0.200	0.221	111	0.200	0.215	108	3	70-131	25		
o-Xylene		<0.00100	0.100	0.111	111	0.100	0.108	108	3	71-133	25		

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

.6

BS / BS1 .ecoveries

Project Name: DCP Plant to Lea Station 6" Section 31

Work Order #: 432429 Analyst: WEW	Da	ate Prepar	ed: 12/05/20	11	Project ID: 2009-084 Date Analyzed: 12/06/2011 Matrix: Water E / BLANK SPIKE DUPLICATE RECOVERY STUDY									
Lab Batch ID: 876470 Sample: 61	4891-1-BKS	Batch	1 #: 1	·										
Units: mg/L		BLAN	K/BLANK	SPIKE / I										
SVOA PAHs List Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Bik. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag			
Acenaphthene	<0.0100	0.0500	0.0465	93	0.0500	0.0478	96	3	27-132	31				
Acenaphthylene	<0.0100	0.0500	0.0446	89	0.0500	0.0455	91	2	46-108	25				
Anthracene	<0.0100	0.0500	0.0459	92	0.0500	0.0469	94	2	47-145	25				
Benzo(a)anthracene	<0.0100	0.0500	0.0477	95	0.0500	0.0482	96	1	33-143	25				
Benzo(a)pyrene	<0.0100	0.0500	0.0427	85	0.0500	0.0436	87	2	65-135	25				
Benzo(b)fluoranthene	<0.0100	0.0500	0.0432	86	0.0500	0.0458	92	6	24-159	25				
Benzo(k)fluoranthene	<0.0100	0.0500	0.0483	97	0.0500	0.0486	97	1	25-125	25				
Benzo(g,h,i)perylene	<0.0100	0.0500	0.0456	91	0.0500	0.0459	92	1	65-135	25				
Chrysene	<0.0100	0.0500	0.0466	93	0.0500	0.0466	93	0.	65-135	25				
Dibenz(a,h)anthracene	<0.0100	0.0500	0.0454	91	0.0500	0.0461	92	2	50-125	25	·			
Fluoranthene	<0.0100	0.0500	0.0427	85	0.0500	0.0431	86	1	47-125	25				
Fluorene	<0.0100	0.0500	0.0476	95	0.0500	0.0488	98	2	48-139	25				
indeno(1,2,3-c,d)Pyrene	<0.0100	0.0500	0.0411	82	0.0500	0.0423	85	3	27-160	. 25				
Naphthalene	<0.0100	0.0500	0.0469	94	0.0500	0.0477	95	_ 2	26-175	25				
Phenanthrene	<0.0100	0.0500	0.0458	92	0.0500	0.0460	92	0	65-135	25	• .			
Pyrene	<0.0100	0.0500	0.0471	94	0.0500	0.0480	96	2	23-152	31				

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: DCP Plant to Lea Station 6" Section 31

Work Order #: 432429 **Project ID: 2009-084** Lab Batch ID: 876337 QC- Sample ID: 432132-001 S Batch #: 1 Matrix: Water Date Prepared: 12/02/2011 ASA Date Analyzed: 12/03/2011 Analyst: Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY Parent Spiked Sample Duplicate Spiked Control Spiked Control BTEX by EPA 8021 Sample Flag Spike Result Sample Spike Spiked Sample Dup. RPD Limits Limits Result Added [C] %R Added Result [F] %R % %R %RPD Analytes [A] [D] [G] [B] [E] Benzene < 0.00100 0.100 0.0993 99 0.100 0.0972 97 2 70-125 25 0.0987 99 3 25 < 0.00200 0.100 0.102 102 0.100 70-125 Toluene < 0.00100 0.100 0.105 105 0.100 0.103 103 2 71-129 25 Ethylbenzene 2 70-131 m p-Xylenes < 0.00200 0.200 0.207 104 0.200 0.203 102 25 25 0.103 103 0.100 , 0.102 102 1 71-133 o-Xylene < 0.00100 0.100

·

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference RPD = $200^{\circ}(C-F)/(C+F)$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Page 6

Xe...o Laboratories

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765 Phone: 432-563-1800 Fax: 432-563-1713

	Project Manager:	Ben J. Arguijo)														-	Pr	ojec	t Na	me:	DCI	P PI	ant	to L	ea S	stati	ion	6" :	Sec	tion	31
	Company Name	Basin Environ	mental Ser	vice T	echnol	ogies, LLC											_		Pı	rojec	:t #:	200	9-08	34								
	Company Address:	P. O. Box 301								_							_	.	Proj	ect l	.oc:	Lea	Cou	nty,	NM							
	City/State/Zip:	Lovington, NN	1 88260						_				•							P	O #:	PAA	J.	Hen	rγ.							
· .	Telephone No:	(575)396-2378					Fax No:		(57	5) 3	96-1	429						Repor	t Fo	rmai	t:	X,	Stan	dard			TRF	RP			NPDE	s
	Sampler Signature:	Mieneel	hun	i	\sim		- e-mail:	•	bja	rgui	ijo@	basi	nen	v.co	m		-															_
(lab use)													F			тс	_	Anal	yze F	or:				_	Η,]
ORDEI		429									Drocc	ovatio	- 8 t	tot	ontaii	005		latrix			 T T	TOT	AL:			X					48. 72 hrs	
LAB # (lab use only)		.D CODE		Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of Containers	ţœ	2 ³				6	None Other (Specify)	SL=Sludge	CW = Groundwater S=Soil/Solid	8015M	TPH: TX 1005 TX 1006	Cations (Ca, Mg, Na, K)	Anions (CI, SO4, Alkalinity)	SAR / ESP / CEC	Metals: As Ag da Lo Lr Po Hg Se Volatiles	Semivolatiles	BTEX 8021B/5030 or BTEX 8260	RCI	N.O.R.M.	РАН	Chlorides	RUSH TAT (Pre-Schedule) 24. 4	
- ÔI	N	AW-2				11/29/11	12:30		3	х		x				Τ		GW								X	\Box					X
3.2	N	NW-3				11/29/11	13:00		3	. X		X						GW								X		Ŀ			1	×
03	N	1W-4				11/29/11	13:55		3	х		X			·			GW						_		X				$ \rightarrow $	╇	X
04	N	AW-5			ļ	11/29/11	14:00	ļ	3	X		X	_		_	\downarrow	<u> </u>	GW	Ļ	<u> </u>				+	<u> </u>	X		\vdash	X		_	×
								-					+	-+	-+	-		_		<u> </u>		-+		-	+-	┝	\vdash		\vdash	\rightarrow	-+-	╋┥
	· · · · · ·	· · · · ·	·		[┢─					╉	-+	╉	-	┢			-	$\left - \right $	+	╉	+	╋	┢─┦	┝┥	┝─┩		\rightarrow	+	╉╼╢
						[Ť	1		1	Ĺ			ŀ												\Box
							·																	1-						⊢┥	_	\square
																<u> </u>	<u> </u>													<u> </u>		
	Instructions:												-								San VO(n ple Cs Fr	Cont ree o	ainei f He	•	act? ace?				Y Y	N N N	
	legod France		Date //30/0)ų	me 37	Received by:					_						ate		Tim		Cus Cus	tody tody	seal	s on s on	cook	ainer er(s)				Y Y	N	
Relinquis		6	Date		me	Received by:										. 0	ate		Tim	_		by Sa		er/Cli	ivere ent R UP	lep. ?	? DHL	L		Y Y Ex I	N N Lone S	
Relinquis	hed by:	· .	Date	Tir	me	Received by EL									/		ate /	. 14	Tim گزار		Terr	pera	ature	Upo	n Re	ceipt	l:		×.	$\overline{\mathcal{O}}$	• (;

XENCO Laboratorias Atlanta, Boca Raton, Corpus Christi, Dailas Houston, Miami, Odessa, Philadelphia Phoenix, San Antonio, Tampa

Document Title: Sample Re	ceipt Checklist
Document No.: SYS-SRC	
Revision/Date: No. 01, 5/27	7/2010
Effective Date: 6/1/2010	Page 1 of 1

Prelogin / Nonconformance Report - Sample Log-In

Client Basin Env.	Plains
Date/Time: 11-30-11	4:37
Lab 10#: 4324	129
Initials: B	

Sample Receipt Checklist

1. Samples on ice?	Blue	(Hati)	No	
2. Shipping container in good condition?	Yes	No	None	
3. Custody seals intact on shipping container (cooler) and bottles?	(Yes)	No	NKA	
4. Chain of Custody present?	Ates	No		
5. Sample instructions complete on chain of custody?	Yes	No		
6. Any missing / extra samples?	Yes	No		
7. Chain of custody signed when relinquished / received?	Tes	No		
8. Chain of custody agrees with sample label(s)?	Nes	No		
8. Container labels legible and intact?	Te	No		
10. Sample matrix / properties agree with chain of custody?		No		
11. Samples in proper container / bottle?	Yes	No		
12. Samples properly presarved?	(Yee	No	NA	
13. Sample container intact?	Yes	No		
14. Sufficient sample amount for indicated test(s)?	Tes	No		
15. All samples received within sufficient hold time?	Yes	No		· · ·
16. Subcontract of sample(s)?	Yes	No	(NA)	
17. VOC sumple have zero head space?		No	NA	
18. Cooler 1 No. Cooler 2 No. Cooler 3 No.	Cooler 4	No.	Cooler 5 No.	
liss 2.0 °C liss °C liss	°C 11:	s °(lbs	°C

Nonconformance Documentation

Contact

1

Regarding:

Corrective Action Taken:

· · · ·

Contacted by:

Check all that apply: Cooling process has begun shortly after sampling event and out of temperature condition acceptable by NELAC 5.5.8.1.2.1.

Client understands and would like to proceed with analysis

Date/Time:

Analytical Report 433648

for

PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry DCP Plant to Lea Station 6" Section 31

2009-084

27-DEC-11

Collected By: Client

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco²Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330)
Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)
Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

27-DEC-11

Project Manager: Jason Henry PLAINS ALL AMERICAN EH&S 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: 433648 DCP Plant to Lea Station 6" Section 31 Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 433648. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 433648 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 433648

PLAINS ALL AMERICAN EH&S, Midland, TX

DCP Plant to Lea Station 6" Section 31

Sample Id		Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-3		• W	12-16-11 12:40		433648-001
	:				

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP Plant to Lea Station 6" Section 31

Project ID: 2009-084 Work Order Number: 433648 Report Date: 27-DEC-11 Date Received: 12/19/2011

Sample receipt non conformances and comments:

Sample -002 (MW-4) was broken during shipment to Houston office, client will resample.

Sample receipt non conformances and comments per sample:

None

Analytical non nonformances and comments:

Batch: LBA-877812 SVOA PAHs List by SW-846 8270C SW8270C

Batch 877812, Nitrobenzene-d5 recovered above QC limits Data confirmed by re-analysis. Samples affected are: 615639-1-BKS.

Terphenyl-D14 recovered above QC limits Data confirmed by re-analysis. Samples affected are: 615639-1-BLK,433648-001.

SW8270C

Batch 877812, Acenaphthylene recovered above QC limits in the laboratory control sample. Samples affected are: 433648-001.

Surrogates recovered high, however all analytes were non-detect. Compounds in QC recovered high, however all samples were non-detect. Samples reported as is

Certificate of Analys

ummary 433648

PLAINS ALL AMERICA _H&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" Section 31

Project Id: 2009-084 Contact: Jason Henry Project Location: Lea County, NM

Date Received in Lab: Mon Dec-19-11 10:50 am

Report Date: 27-DEC-11

Project Manager: Brent Barron II

	Lab Id:	433648-001				•	
Analysis Requested	Field Id:	MW-3					-
Analysis Kequesieu	Depth:		· ·	· · · · ·			· ·
	Matrix:	WATER	· · ·		· ,	· .	
	Sampled:	Dec-16-11 12:40					-
SVOA PAHs List	Extracted:	Dec-20-11 15:09					• • •
SUB: TX104704215	Analyzed:	Dec-23-11 11:08					а. — с. — с.
·	Units/RL:	mg/L RL		•			· · · ·
Acenaphthene	-	ND 0.0111					
Acenaphthylene		ND 0.0111					
Anthracene		ND 0.0111					-
Benzo(a)anthracene		ND 0.0111					•
Benzo(a)pyrene		ND 0.0111	,				
Benzo(b)fluoranthene		ND 0.0111	•				
Benzo(k)fluoranthene		ND 0.0111					
Benzo(g,h,i)perylene	•.	ND 0.0111	:				
Chrysene		ND -0.0111					
Dibenz(a,h)anthracene		ND 0.0111					
Fluoranthene		ND 0.0111					
Fluorene		ND 0.0111	-				
Indeno(1,2,3-c,d)Pyrene		ND 0.0111					
l-Methylnaphthalene		ND 0.00556					
2-Methylnaphthalene		ND 0.0111		· · · · · · · · · · · · · · · · · · ·			
Naphthalene	· ·	ND 0.0111					
Phenanthrene		ND 0.0111		,			
Pyrene		ND 0.0111					

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the bost judgment of XENCO Laboratories. XENCO Laboratorics assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron II Odessa Laboratory Manager

XENCO Laboratories

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

* Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit

PQL Practical Quantitation Limit MQL Method Quantitation Limit

LOD Limit of Detection

LOO Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

+ Outside XENCO's scope of NELAC Accreditation.

^ NELAC or State program does not offer Accreditation at this time.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Miami - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, TX 77477 9701 Harry Hines Blvd, Dallas, TX 75220 5332 Blackberry Drive, San Antonio TX 78238 2505 North Falkenburg Rd, Tampa, FL 33619 5757 NW 158th St, Miami Lakes, FL 33014 12600 West I-20 East, Odessa, TX 79765 6017 Financial Drive, Noreross, GA 30071 3725 E. Atlanta Ave, Phoenix, AZ 85040

i none	1 a.
(281) 240-4200	(281) 240-428
(214) 902 0300	(214) 351-9139
(210) 509-3334	(210) 509-333
(813) 620-2000	(813) 620-203
(305) 823-8500	(305) 823-855
(432) 563-1800	(432) 563-1713
(770) 449-8800	(770) 449-547
(602) 437-0330	•

Project Name: DCP Plant to Lea Station 6" Section 31

rk Orders : 433648 Lab Batch #: 877812	, Sample: 433648-001 / SMP		h: 1 Matrix	D: 2009-084 : Water							
Units: mg/L	Date Analyzed: 12/23/11 11:08	SU	RROGATE R	ECOVERY S	STUDY						
SVO	DA PAHs List Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
2-Fluorobiphenyl		0.0585	0.0556	105	44-117						
2-Fluorophenol		0.0284	0.0556	51	30-100						
Nitrobenzene-d5		0.0594	0.0556	107	46-111						
Phenol-d6	······································	0.0158	0.0556	28	15-94						
Terphenyl-D14	· ·	0.0726	0.0556	131	46-126	**					
2,4,6-Tribromophenol		0.0511	0.0556	92	48-117						
Lab Batch #: 877812	Sample: 615639-1-BLK / B	LK Bate	h: 1 Matrix	:Water							
Units: mg/L	Date Analyzed: 12/23/11 08:25	SURROGATE RECOVERY STUDY									
SVO	DA PAHs List Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
2-Fluorobiphenyl	· · · · · · · · · · · · · · · · · · ·	0.0538	0.0500	108	44-117						
2-Fluorophenol		0.0460	0.0500	92	30-100						
Nitrobenzene-d5		0.0539	0.0500	108	46-111						
Phenol-d6		0.0424	0.0500	85	15-94						
erphenyl-D14	,	0.0654	0.0500	131	46-126	**					
2,4,6-Tribromophenol		0.0445	0.0500	89	48-117						
Lab Batch #: 877812	Sample: 615639-1-BKS / B	KS Batc	h: ¹ Matrix	:Water							
Units: mg/L	Date Analyzed: 12/23/11 08:48	SU	RROGATE R	ECOVERY S	STUDY	•					
SVO	DA PAHs List Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
2-Fluorobiphenyl		0.0572	0.0500	114	44-117						
2-Fluorophenol		0.0372	0.0500	. 95	30-100						
Nitrobenzene-d5		0.0558	0.0500	112	46-111	**					
Phenol-d6	· .	0.0472	0.0500	94	15-94						
Terphenyl-D14		0.0580	0.0500	116	46-126						
2,4,6-Tribromophenol		0.0518	0.0500	104	48-117						

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

" results are based on MDL and validated for QC purposes.

Project Name: DCP Plant to Lea Station 6" Section 31

Vork Orders: 433648	,		Project ID: 2009-084									
Lab Batch #: 877812	Sample: 615639-1-BSD / E	BSD Batch: 1 Matrix: Water										
Units: mg/L	Date Analyzed: 12/23/11 09:12	ate Analyzed: 12/23/11 09:12 SURROGATE RECOVERY STUDY										
SV	OA PAHs List Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags						
2-Fluorobiphenyl		0.0540	0.0500	108	44-117							
2-Fluorophenol	· · · · · · · · · · · · · · · · · · ·	0.0451	0.0500	90	30-100	•						
Nitrobenzene-d5		0.0530	0.0500	106	46-111							
Phenol-d6	÷ · · · ·	0.0450	0.0500	90	15-94							
Terphenyl-D14	•	0.0557	0.0500	111	46-126							
2,4,6-Tribromophenol	· · · · · · · · · · · · · · · · · · ·	0.0495	0.0500	99	48-117							

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

BS / BS. .ecoveries

Project Name: DCP Plant to Lea Station 6" Section 31

Work Order #: 433648 Analyst: MCH	Ľ	Date Prepared: 12/20/2011							Project ID: 2009-084 Date Analyzed: 12/23/2011								
Lab Batch ID: 877812 San	nple: 615639-1-BKS	Batc	h#: 1					Matrix: `	Water		•						
Units: mg/L		BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY															
SVOA PAHs List Analytes	Biank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Bik. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag						
Acenaphthene	<0.0100	0.0500	0.0548	110	0.0500	0.0537	107	2	27-132	31							
Acenaphthylene	<0.0100	0.0500	0.0549	110	0.0500	0.0533	107	3	46-108	25	н						
Anthracene	<0.0100	0.0500	0.0504	101	0.0500	0.0494	99	2	47-145	25							
Benzo(a)anthracene	<0.0100	0.0500	0.0515	103	0.0500	0.0506	. 101	2	33-143	25							
Benzo(a)pyrene	<0.0100	0.0500	0.0510	102	0.0500	0.0510	102	0	65-135	25							
Benzo(b)fluoranthene	<0.0100	0.0500	0.0506	101	0.0500	0.0479	96	5	24-159	25							
Benzo(k)fluoranthene	<0.0100	0.0500	0.0478	96	0.0500	0.0494	99	3	25-125	25							
Benzo(g,h,i)perylene	<0.0100	0.0500	0.0472	94	0.0500	0.0464	93	2	65-135	25							
Chrysene	<0.0100	0.0500	0.0542	108	0.0500	0.0530	106	• 2	. 65-135	25							
Dibenz(a,h)anthracene	<0.0100	0.0500	0.0538	· 108	0.0500	0.0533	107	1	50-125	25	· ·						
Fluoranthene	<0.0100	0.0500	0.0523	105	0.0500	0.0513	103	2	47-125	25							
Fluorene	<0.0100	0.0500	0.0540	108	0.0500	0.0525	105	3	48-139	25							
Indeno(1,2,3-c,d)Pyrene	<0.0100	0.0500	0.0541	108	0.0500	0.0535	107	1	27-160	25							
Naphthalene	<0.0100	0.0500	0.0504	101	0.0500	0.0490	98	3	26-175	25							
Phenanthrene	<0.0100	0.0500	0.0476	95	0.0500	0.0464	93	3	65-135	25							
Pyrene	<0.0100	0.0500	0.0524	105	0.0500	0.0513	103	2	23-152	31							

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

NATIONAL CONTRACTOR OF THE OWNER OWN

Xenco Laboratories

24 A.

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765 Phone: 432-563-1800 Fax: 432-563-1713

	Project Manager:	Ben J. Arguijo														Pr	ojeci	t Nar	ne: <u>C</u>	CP	Pla	nt to	Lea	<u>i St</u> i	atior	<u>ו 6"</u>	Sec	tion	31
	Company Name	Basin Environmental	Service	Techno	logies, LLC												Pr	rojec	i#: <u>2</u>	009	-084	<u>ا</u>							
	Company Address:	P. O. Box 301							<u> </u>							I	Proje	ect L	oc: <u>L</u>	ea C	ount	ty, NI	<u>N</u>						
	City/State/Zip:	Lovington, NM 88260)							_								PC) #: <u>P</u>	<u>AA -</u>	<u>Ј. н</u>	en ry							
	Telephone No:	(575)396-2378	_			Fax No:		(575)	396-	1429	•					Repor	rt Fo	rmat	. [(] _{St}	anda	ard		ד 🛛	RRP	,		NPDE	ES
	Sampler Signature:	Mayor	pren	~_	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	e-mail:		bjarg	uijo@)bas	siner	1V.CC	m										فيهيه						
(lab use (only)	·	,		\bigcirc												┝			TCLF	-	nalyz	e Fo	<u>г</u>			, ,		e
ORDER	1:00.	ua						F	Dest			# +6.0				Aatrix		····		OTAL				X				Î	52 UL2
UNDER				<u> </u>		Γ		+	Pres	ervat	ion &	# of C	contai	ners	+^		80156	98			Hg Se			8260				5	s
LAB # (lab use only)	FIEL	-D CODE	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	rield Filtered	Total #. of Containers	HNO3	HCI	H ₂ SO,	NaOH	Na ₂ S ₂ O ₃	None Other (Snecify)	DW=Dninking Water SL=Sludge	GW = Groundwater S=Soil/Solid NP=Non-Potable Specify Other		1	Cations (Ca, Mg, Na, K)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg Se	Volatiles	Semivolatiles	BTEX 80218/5030 or BTEX 8260	RCI N.O.R.M.	РАН	Chlorides	1.1.0.1 TAT Patrodula	Standard TAT 4 DAY
Ø	1	//W-3	<u>~</u>		12/16/11	1240	<u> </u>	<u> </u>	x	┢					-	<u> </u>	ſ	,		<u>`</u>		ŕ	<u> </u>	-	-	x			x
02		/W-4			12/16/11	1215		-+	x	1						GW	T			T				Τ	Τ	X			X
		•																											
																												\square	\perp
														_														$ \downarrow \downarrow$	<u> </u>
																		ļ		\downarrow				\downarrow		\perp	\square		╇
		<u></u>								1										\perp			\square	\downarrow		\perp	\square	┝╌╇	+
	······································				L	·		_ _		Ļ					1		1_			4	<u> </u>		⊢∔-	_	_∔_	Ļ.	$\downarrow \downarrow$	┝╌╄	
	· · · · · · · · · · · · · · · · · · ·	<u> </u>					L.	\bot	<u> </u>	-					\bot		-			+	\downarrow	_	┝╇	\downarrow			┿┙	┝╼╋	
Consist I		·····			L	l								1.										1		<u> </u>			
Relipquish	nstructions:	Date		ime	Received by:				-				- <u>,</u>		Date	<u> </u>	Tim	ne	Samı VOC: Labe	bie C s Fre Is on	onta e of cont	iners Head tainei	ents: Intac Ispac r(s)	ct? ce?	_1			N 8	
Relinquist	lyll fur fed by:	Date	1	ime	Received by:										Date		Tim	ne	Custo Sami b	odys ole H y Sar	eals iand npler urjer?	on c Deliv /Clier	t Rep UPS	(\$) 5.? [s) DHL	(Fe		۴ ۱ ۱ Lone	N I
Relinquish	ed by:	Date		ime	Received by EL	ot: <u>dua</u>	-	1 21	27_				Į	ایک	Date [9.	n li	Tim Class		Tem) Derat			Rece			-	\sim	• 	°C

XENCO Laboratories Atlanta, Boca Raton, Corpus Christi, Dallas Houston, Miami, Odessa, Philadelphia Phoenix, San Antonio, Tampa

Document Title: Sample Receipt Checklist Document No.: SYS-SRC Revision/Date: No. 01, 5/27/2010 Effective Date: 6/1/2010 Page 1 of 1

Prelogin / Nonconformance Report - Sample Log-In

Client: PX	asin / Plains	
Date/Time:	12.19.11 10:50	
Lab ID # :	4336482	
Initials:	NE	_

Sample Receipt Checklist

1. Samples on ice?		Blue	Water	No	
2. Shipping container in good condition?		Yes	No	None	•
3. Custody seals intact on shipping container (cooler) and bottles?		(Yes)	No	MADE	·
4. Chain of Custody present?		Yes	No		
5. Sample instructions complete on chain of custody?		Yes	No		
6. Any missing / extra samples?		Yes	(No>		
7. Chain of custody signed when relinquished / received?		Yes	No		
8. Chain of custody agrees with sample label(s)?		(Yes)	No		
9. Container labels legible and intact?		(Yes)	No		
10. Sample matrix / properties agree with chain of custody?		(Yes)	No ·		
11. Samples in proper container / bottle?		(Yes)	No		
12. Samples property preserved?		Yes	No	N/A	
13. Sample container intact?		Yes	No		
14. Sufficient sample amount for indicated test(s)?		Yes	No		
15. All samples received within sufficient hold time?		Yes?	No		
16. Subcontract of sample(s)?		(Yes)	No	N/A	
17. VOC sample have zero head space?		Yes	No	(N/A)	
18. Cooler 1 No. Cooler 2 No. Cooler 3 No.		Cooler 4 No.		Cooler 5 No.	
ibs 🔿 °C ibs °C ibs	°Ċ	lbs	°C	lbs	°C

Nonconformance Documentation

____ Contacted by:__ Contact: Date/Time:__ **Regarding:** . Corrective Action Taken:

方法の時代に対対の時間は一支には行いっ

condition acceptable by NELAC 5.5.8.3.1.a.1. Initial and Backup Temperature confirm out of temperature conditions

Client understands and would like to proceed with analysis

. . .

. : .<u>.</u>

۰.

Analytical Report 433833

for

PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry

DCP Plant to Lea Station 6" Section 31

2009-084

29-DEC-11

Collected By: Client

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AAL11), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330)
Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)
Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757)
Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)
Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

29-DEC-11

Project Manager: Jason Henry PLAINS ALL AMERICAN EH&S 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: 433833 DCP Plant to Lea Station 6" Section 31 Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 433833. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 433833 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 433833

PLAINS ALL AMERICAN EH&S, Midland, TX

DCP Plant to Lea Station 6" Section 31

Sample Id	· .	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-4		. W	12-21-11 09:30		433833-001
		•			

Page 3 of 11

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP Plant to Lea Station 6" Section 31

Project ID:2009-084Work Order Number:433833

Report Date: 29-DEC-11 Date Received: 12/21/2011

Sample receipt non conformances and comments: None

Sample receipt non conformances and comments per sample:

None

Project Id: 2009-084

Project Location: Lea County, NM

Contact: Jason Henry

Certificate of Analys ummary 433833

PLAINS ALL AMERICA. _H&S, Midland, TX

Project Name: DCP Plant to Lea Station 6" Section 31

Date Received in Lab: Wed Dec-21-11 01:20 pm

Report Date: 29-DEC-11

Project Manager: Brent Barron II

	Lab Id:	433833-001					
Analysis Baay astad	Field Id:	MW-4					
Analysis Requested	Depth:			· · · ·		1 a.	
	Matrix:	WATER					
•	Sampled:	Dec-21-11 09:30	•		· · ·		
SVOA PAHs List by EPA 8270C	Extracted:	Dec-28-11 16:00		· · · · · · · · · · · · · · · · · · ·			
SUB: E871002	Analyzed:	Dec-29-11 15:45		• .			· · · · · ·
	Units/RL:	mg/L RL			-		
Acenaphthene	• .	ND 0.0102		· ·			
Acenaphthylene		ND 0.0102					
Anthracene		ND 0.0102		•	<i></i>		
Benzo(a)anthracene		ND 0.0102	· .				
Benzo(a)pyrene		ND 0.0102					
Benzo(b)fluoranthene		ND 0.0102					
Benzo(k)fluoranthene		ND 0.0102				-	
Benzo(g,h,i)perylene		ND 0.0102		***		· · · ·	
Chrysene		ND 0.0102	1				
Dibenz(a,h)Anthracene		ND 0.0102					
Fluoranthene		ND 0.0102		•			
Fluorene	•	ND 0.0102		· · · · · · · · · · · · · · · · · · ·		· ·	
Indeno(1,2,3-c,d)Pyrene		ND 0.0102					
1-Methylnaphthalene		ND 0.00510					
2-Methylnaphthalene		ND 0.0102					
Naphthalene		ND 0.0102			· •		•
Phenanthrene		ND 0.0102	•				
Pyrene		ND 0.0102			· · ·	· · · · ·	
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	1		·

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron II Odessa Laboratory Manager

Page 5 of 11

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.

E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.

F RPD exceeded lab control limits.

J The target analyte was positively identified below the quantitation limit and above the detection limit.

U Analyte was not detected.

- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.

K Sample analyzed outside of recommended hold time.

JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

* Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit

PQL Practical Quantitation Limit MQL Method Quantitation Limit

LOD Limit of Detection

nit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

+ Outside XENCO's scope of NELAC Accreditation.

^ NELAC or State program does not offer Accreditation at this time.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Miami - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, TX 77477 9701 Harry Hines Blvd, Dallas, TX 75220 5332 Blackberry Drive, San Antonio TX 78238 2505 North Falkenburg Rd, Tampa, FL 33619 5757 NW 158th St, Miami Lakes, FL 33014 12600 West 1-20 East, Odessa, TX 79765 6017 Financial Drive, Norcross, GA 30071 3725 E, Atlanta Ave, Phoenix, AZ 85040

FIIORC	гах
(281) 240-4200	(281) 240-4280
(214) 902 0300	(214) 351-9139
(210) 509-3334	(210) 509-3335
(813) 620-2000	(813) 620-2033
(305) 823-8500	(305) 823-8555
(432) 563-1800	(432) 563-1713
(770) 449-8800	(770) 449-5477
(602) 437-0330	

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6" Section 31

ork Orders : 433833			Project I	D: 2009-084		· •
Lab Batch #: 878168	Sample: 433833-001 / SMP		h: 1 Matrix			
Units: ug/L	Date Analyzed: 12/29/11 15:45	SU	RROGATE	ECOVERY S	STUDY	
SVOA PAI	Hs List by EPA 8270C	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
	Analytes					
2-Fluorobiphenyl	``````````````````````````````````````	40.4	51.0	79	44-117	
2-Fluorophenol		25.8	51.0	_ 51	30-100	
Nitrobenzene-d5	•	43.6	51.0	85	46-111	
Phenol-d6		14.5	51.0	, 28	15-94	
Terphenyl-D14		60.1	51.0	118 .	46-126	
2,4,6-Tribromophenol		45.0	51.0	88	48-117	-
Lab Batch #: 878168	Sample: 615966-1-BLK / BL	.K Batc	ch: ¹ Matrix	:Water		
Units: ug/L	Date Analyzed: 12/29/11 11:50	SU	RROGATE R	ECOVERY S	STUDY	
SVOA PAI	Hs List by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Fluorobiphenyl		46.0	50.0	92	44-117	
2-Fluorophenol		39.6	50.0	79	30-100	
Nitrobenzene-d5		46.8	50.0	94	46-111	
Phenol-d6	· · · · · ·	30.6	50.0	61	15-94	
erphenyl-D14		58.8	50.0	118	46-126	
2,4,6-Tribromophenol		42.5	50.0	85	48-117	
Lab Batch #: 878168	Sample: 615966-1-BKS / BK	KS Bate	ch: 1 Matrix	:Water		
Units: ug/L	Date Analyzed: 12/29/11 12:37	SU	RROGATE R	ECOVERY S	STUDY	
SVOA PAI	Hs List by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Fluorobiphenyl		48.0	50.0 -	96	44-117	
2-Fluorophenol	·	39.0	50.0	78	30-100	
Nitrobenzene-d5	· · ·	47.4	50.0	95	46-111	
Phenol-d6		33.1	50.0	66	15-94	
Terphenyl-D14	· · · · · · · · · · · · · · · · · · ·	50.1	50.0	100	46-126	
			1	1	4 1	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station 6" Section 31

Vork Orders : 433833 Lab Batch #: 878168	Sample: 615966-1-BSD / B	Project ID: 2009-084 SD Batch: 1 Matrix: Water SURROGATE RECOVERY STUDY									
Units: ug/L SVOA PAH	Date Analyzed: 12/29/11 13:01 Is List by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
2-Fluorobiphenyl		46.8	50.0	94	44-117						
2-Fluorophenol	· .	39.1	50.0	78	30-100						
Nitrobenzene-d5		48.0	50.0	96	46-111						
Phenol-d6	· · · · · · · · · · · · · · · · · · ·	33.1	50.0	66	15-94						
Terphenyl-D14	· · · · · · · · · · · · · · · · · · ·	48.4	50.0	97	46-126						
2,4,6-Tribromophenol	· · · · · · · · · · · · · · · · · · ·	50.6	50.0	101	48-117						

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: DCP Plant to Lea Station 6" Section 31

Work Order #: 433833 Analyst: MCH	D	ate Prepar	ed: 12/28/20	11	·				2009-084 12/29/2011		
Lab Batch ID: 878168 Sample: 615966	-1-BKS	Batcl	1 #: 1					Matrix: `	Water		
Units: mg/L		BLAN	K/BLANK	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUD	Ŷ	
SVOA PAHs List by EPA 8270C Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Acenaphthene	<0.0100	0.0500	0.0489	98	0.0500	0.0480	96	2	54-114	25	
Acenaphthylene	<0.0100	0.0500	0.0490	98	0.0500	0.0477	95	3	53-113	25	
Anthracene	<0.0100	0.0500	0.0483	97	0.0500	0.0489	98	1	56-116	25	· ·
Benzo(a)anthracene	<0.0100	0.0500	0.0487	97	0.0500	0.0481	96	1	59-116	25 .	
Benzo(a)pyrene	<0.0100	0.0500	0.0499	100	0.0500	0.0503	101	1	58-118	25	
Benzo(b)fluoranthene	<0.0100	0.0500	0.0454	91	0.0500	0.0472	94	4	54-123	. 25	
Benzo(k)fluoranthene	<0.0100	0.0500	0.0517	103	0.0500	0.0502	100	3	52-122	25	
Benzo(g,h,i)perylene	<0.0100	0.0500	0.0516	103	0.0500	0.0497	99	4	47-129	25	
Chrysene	< 0.0100	0.0500	0.0482	96	0.0500	0.0469	94	3	58-116	25	
Dibenz(a,h)Anthracene	<0.0100	0.0500	0.0483	97	0.0500	0.0474	95	2	46-131	25	
Fluoranthene	<0.0100	0.0500	0.0481	96	0.0500	0.0491	98	2	55-120	25	
Fluorene	<0.0100	0.0500	0.0482	96	0.0500	0.0479	96	1	56-114	25	
Indeno(1,2,3-c,d)Pyrene	<0.0100	0.0500	0.0513	103	0.0500	0.0508	102	1	44-132	25	
1-Methylnaphthalene	<0.00500	0.0500	0.0465	93	0.0500	0.0468	94	1	47-113	25	
2-Methylnaphthalene	<0.0100	0.0500	0.0468	94	0.0500	0.0475	95	1	57-106	25	
Naphthalene	<0.0100	0.0500	0.0463	93	0.0500	0.0463	93	0	53-110	25	
Phenanthrene	<0.0100	0.0500	0.0484	97	0.0500	0.0489	98	1	56-116	25	
Pyrene	<0.0100	0.0500	0.0500	100	0.0500	0.0472	94	6	57-119	25	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Xenco Laboratories

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765 Phone: 432-563-1800 Fax: 432-563-1713

and the second second second second second second second second second second second second second second second

	Project Manager:	Ben J. Arguijo								·						-	Pr	ojec	t Na	ne:	DC	PP	lan	it to	Lea	St	atio	<u>n 6'</u>	' Se	ctior	n 31	<u> </u>
	Company Name	Basin Environmental Se	ervice T	echno	logies, LLC				:							-		Pr	ojec	t #:	200)9-0	84									
	Company Address:	P. O. Box 301																Proje	ect L	oc:	Lea	Co	unty	/, NM	1							
•	City/State/Zip:	Lovington, NM 88260			. •														PC) #:`	PA/	۲ - ۲	. He	nry								_
	Telephone No:	(575)396-2378				Fax No:		(57	5) 39	6-14							lepo	t Fó				Star]	— Ът	RRP			NPD		-
	Sampler Signature:	MM AL		$\overline{}$	$\overline{\langle}$	e-mail:	•						.con	n						•		otai		u	L					NFU	23	
(lab uso				. (\supset	-	-											F			TC	LP:	An	alyze	e For							
(lab use ORDE								ſ	p	'ASO(vation	N.R.#	of Co	ntaine	15	M	atrix					AL:	_	_	1						0, 72 hrs	
LAB # (lab use only)	FIEL	LD CODE	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered		Ice	HNO ₃				·None	secify)	DW≂Drinking Water SL≖Studge	GW = Groundwater S=Soi(/Soild NP=Non-Polable Specify Other	8015N	TPH: TX 1005 TX 1006	Cations (Ca, Mg, Na, K)	Anions (Ci, SO4, Alkalinity)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg Se	Volatiles	Semivolatiles RTEX 8034 R/K030 or RTEX 8260		N.O.R.M.				RUSH TAT (Pre-Bohedule) 24, 48, Standard TAT A DAV	
• <u>•</u> ••••	N	/W-4	· ·		12/21/11	0930		1	x	_	-	_	-			Ģ	W				_	-		\downarrow	+	╇	╇	<u>x</u>	_	\vdash	_ <u>_</u> }	×
								-	\rightarrow		-+-	-+	+	+							_	-		-+	+	+	╋	+	+	┝╼╋	+	4
			+		[╄╼╼──┤	\neg	┨	-	+	┽	+	+-	+-	$\left\{ -\right\}$			┢	$\left - \right $			-f	+	+	┽	╋	╋	┽	╀┦	r-†-	┽	\neg
								-1	-	1	-+			1				┢						+	╈	╋	ϯ	+	\square		+	4
										ľ																	T	T				
					[$ \downarrow$			_						ŀ						\downarrow	\square	Ţ	T	\square	\Box	. I	\Box	
·				ļ			_	_		-				_			<u></u>	╞				_	_	4	+	+-	+		\square		_	
<u> </u>	<u> </u>		+					-		+	\rightarrow	÷	+-	+				┢	\vdash		-	\rightarrow	\rightarrow	+		+-	+-	+	$\left - \right $	-+		-
Speciai	instructions:		<u>. </u>	L	I	<u> </u>		1	L	. 1					<u>1</u> _1	L		1		Sam	nple	Сол	tain		nts: ntact space				¢ ¢	N		
Relinquis	upr Kam	Date (2.2/.1) Date	1/3.	me ` <i>20</i> me	Received by:		<							\Box	Da			Tim		Cust Cust	tody tody	sea sea	ls o Is o		ntaine oler(s		•		ବ ମ ିତ୍ର ବ୍ୟ	N N N N N N	4	
Reiniquis																			-	3011 	by S by C	amp	ier/C	Jient	Rep. JPS	? וס	HL		Ø	N Lone	1	
Relinquis	shed by:	Date	Т	me	Received by EL	or: Tano								10	Da 2/3		/	Tim 7 7							Recei			.O		• •(

e i șt din a composite de la co

XENCO Laboratories

र इस्ते झेल्ड हे

Atlanta, Boca Raton, Corpus Christi, Dallas

Houston, Miami, Odessa, Philadelphia Phoenix, San Antonio, Tampa

Document Title: Sample Receipt Checklist Document No.: SYS-SRC Revision/Date: No. 01, 5/27/2010 Effective Date: 6/1/2010 Page 1 of 1

Prelogin / Nonconformance Report - Sample Log-In

-1

Client: Basin Envi	ironmental
Date/Time: 12-21-11	
Lab ID # : 43563	
Initials: TR	

ពេល	ais:	
_		

1

Sample Receipt Checklist

1. Samples on ice?	Blue	Water	No	
2. Shipping container in good condition?	Tes	No	None	
3. Custody seals intact on shipping container (cooler) and bottles?	Fes	No	N/A	
4. Chain of Custody present?	শন্ত	No		
5. Sample instructions complete on chain of custody?	Tes	No		
6. Any missing / extra samples?	Yes	Ø		
7. Chain of custody signed when relinquished / received?	Tes	No		
8. Chain of custody agrees with sample label(s)?	(es	<u>No</u>		
9. Container labels legible and intact?	Ter	No		
10. Sample matrix / properties agree with chain of custody?	(es	No		
11. Samples in proper container / bottle?	Ges	No		
12. Samples property preserved?	Ves	No	N/A .	
13. Sample container intect?	Yes	No		
14. Sufficient sample amount for indicated test(s)?	Tes	No		
15. All samples received within sufficient hold time?	Tes	No		
16. Subcontract of sample(s)?	Yes	No	N/A	
17. VOC sample have zero head space?	Tes	No	N/A	
18. Cooler 1 No. Cooler 2 No. Cooler 3 No.	Cooler 4 No)	Cooler 5 No.	
Ibs 62 D °C Ibs °C Ibs °C	lbs	°C	ibs	°C

Nonconformance Documentation

Contact:

Regarding:

目話書

Corrective Action Taken:

144

,

Contacted by:_

Check all that apply: Dooling process has begun shortly after sampling event and out of temperature condition acceptable by NELAC 5.5.8.3.1.a.1.

Initial and Backup Temperature confirm out of temperature conditions Client understands and would like to proceed with analysis

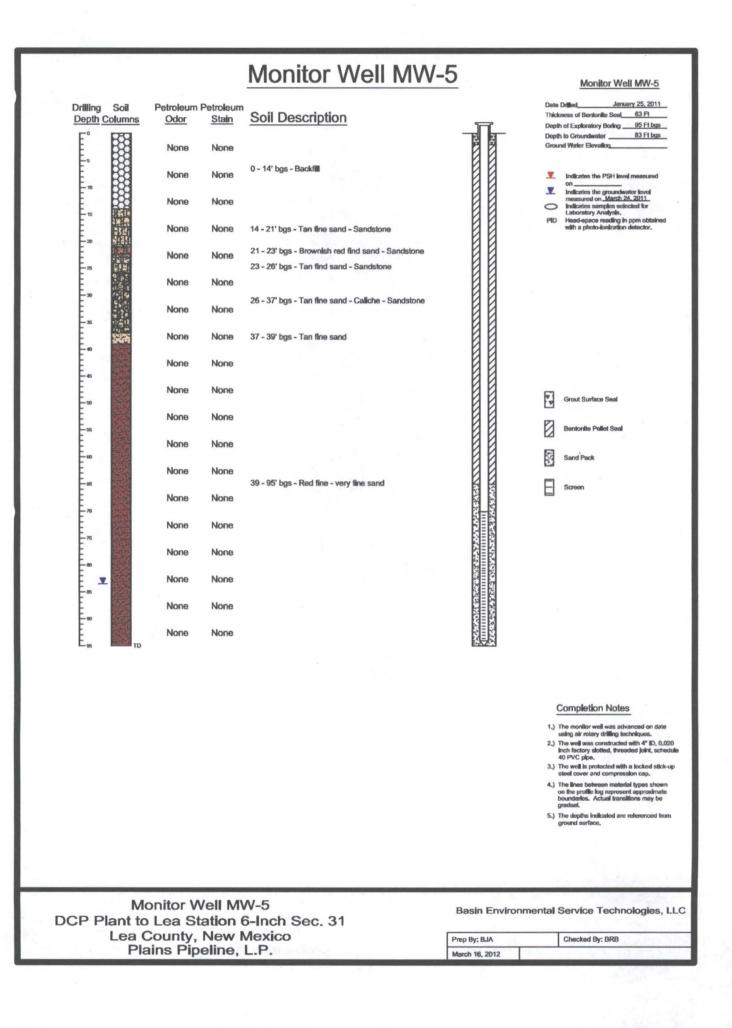
Date/Time:

Appendix B Release Notification & Corrective Action (Form C-141)

District I 1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Gread Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztoc, NM 87410 District III

District IV 1220 S. SL Francis Dr., Santa Fe, NM 87505

RECEIVED State of New Mexico Energy Minerals and Natural Resources


Form C-141 October 10, 2003

APR 2 9 2009 Submit 2 Copies to appropriate HOBBSOCD Strict Office in accordance with Rule 116 on back side of form

220 S. SL. Francis Dr., Santa Fe, NM 87505	Santa I	e, NM 875	05				side of for
Release Notif	ficatio	n and Co	rrective A	ctio	1		
		OPERA		1		Lial Report	Final Rep
Name of Company Plains Pipeline, LP		Contact	Jason Henry	$-\epsilon$	KOJ 100	Garricport	I diat Kep
Address 2530 Hwy 214 – Deaver City, Tx 79.	323		lo. (575) 441-				
Facility Name DCP Plant to Les Station 6-inch Sec		Facility Typ					····
Surface Owner NM SLO Minera	I Owner				Lease		
Surface Owner AM SEO	u Owner				Lease	<u>NO.</u>	· · · · · · · · · · · · · · · · · · ·
LOC	CATIO	N OF REL	LEASE		•		· · · · · · · · · · · · · · · · · · ·
Unit Letter Section Township Range Feet from the	e Nort	h/South Line	Feet from the	East/	West Line	County	
K 31 205 37E			1			Len	
	-	33° Longitude	W 103.2906*			·	
Type of Release Crude Oil		the second second second second second second second second second second second second second second second s	Release 20 bbl	x	Volume	Recovered	0 bbls
Source of Release 6" Steel Pipeline			our of Occurrent		the second second second second second second second second second second second second second second second s	Hour of Dis	second successive statements and successive statements
•		Unknown				09 15:00	-
Was Immediate Notice Given?	Required		Whom? on 04/2		2-3 bbls b	ased on sma	ill surface stain)
By Whom? Jason Henry		Date and H					able on 04/29/2005
Was a Watercourse Reached?			tume Impacting			يستنب ومسهول محسو	
						•	
If a Watercourse was Impacted, Describe Fully.*			•				
	L.						
Describe Cause of Problem and Remedial Action Taken.*							
Describe Cause of Problem and Remedial Action Taken.* External corrosion of 6" lack pipeline caused a release of cr the subject line is 660 bbls/day and the operating pressure o 2' bgs. The H2S concentration in the crude is less than 10 p	of the pip	eline is 45 psi.	The depth of the	pipeliae be pipel	to mitigation the states	to the release release pola	e, Throughput fo It is approximately
External corrosion of 6" lach pipeline caused a release of cr the subject line is 660 bbls/day and the operating pressure o	of the pip	eline is 45 psi.	The depth of the	pipeliae he pipel	to mitigat inc at the	ic the releas release poin	e, Throughput fo It is approximately
External corrosion of 6" lack pipeline caused a release of cr the subject line is 660 bbls/day and the operating pressure o 2° bgs. The H2S concentration in the crude is less than 10 p	of the pip ppm and	eline is 45 pst. the gravity of (The depth of ti the crude is 65.	he pipel	ine at the	release poin	t is approximately
External corrosion of 6" inch pipeline caused a release of cr the subject line is 660 bbls/day and the operating pressure of 2' bgs. The H2S concentration in the crude is less than 10 g Describe Area Affected and Cleanup Action Taken." The released crude resulted in a surface stain that measured	d approx mplete to in release eport by t d remedia	eline is 45 psi. the gravity of (imately 6' x 8' the best of my notifications ar he NMOCD m ate contamination	The depth of ti the crude is 65. . The impacted knowledge and i d perform corre- arked as "Final R on that pose a that	he pipel l area w understa ctive act koport ^a (reat to g	ise at the i ill be remained ind that pur ions for re locs not re round wate	ediated per suant to NM leases which lieve the ope r, surface w	applicable may endanger may endanger mator of liability ater, human health
External corrosion of 6" inch pipeline caused a release of cr the subject line is 660 bbls/day and the operating pressure of 2' bgs. The H2S concentration in the crude is less than 10 g Describe Area Affected and Cleanup Action Taken." . The released crude resulted in a surface stain that measured guidelines. I hereby certify that the information given above is true and con regulations all operators are required to report and/or file certai public health or the environment. The acceptance of a C-141 m should their operations have failed to adequately investigate an or the environment. In addition, NMOCD acceptance of a C-14 federal, state, or local laws and/or regulations.	d approx mplete to in release eport by t d remedia	eline is 45 psi. the gravity of (imately 6' x 8' the best of my notifications ar he NMOCD m ate contamination	The depth of ti the crude is 65. . The impacted knowledge and i d perform corre- arked as "Final R on that pose a that	l area w undersia ctive act coport" (reat to g respons	ise at the ill be remo nd that pur loss not re round wate ibility for o VATION	ediated per suant to NM leases which lieve the ope r, surface w compliance v	applicable OCD rules and may endanger mator of Hability ater, human health with any other
External corrosion of 6" inch pipeline caused a release of cr the subject line is 660 bbls/day and the operating pressure of 2' bgs. The H2S concentration in the crude is less than 10 g Describe Area Affected and Cleanup Action Taken.* . The released crude resulted in a surface stain that measured guidelines. I hereby certify that the information given above is true and con regulations all operators are required to report and/or file certai public health or the environment. The acceptance of a C-141 m should their operations have failed to adequately investigate an or the environment. In addition, NMOCD acceptance of a C-141 m	d approx mplete to in release eport by t d remedia	eline is 45 pst. the gravity of (imately 6' x 8' the best of my notifications ar he NMOCD my ste contaminatio does not reliew	The depth of the the crude is 65. The impacted is for the impacted is the impacted is the impact of the impact of the the operator of the operator of OIL CON	area w andersia ctive act loport" (reat to g respons	ine at the state of the state o	release polo ediated per suant to NM leases which lieve the ope r, surface w compliance v 1 DIVISI(applicable IOCD rules and may endanger mator of liability ater, human health with any other DN
External corrosion of 6" inch pipeline caused a release of cr the subject line is 660 bbls/day and the operating pressure of 2' bgs. The H2S concentration in the crude is less than 10 g Describe Area Affected and Cleanup Action Taken." . The released crude resulted in a surface stain that measured guidelines. I hereby certify that the information given above is true and con regulations all operators are required to report and/or file certai public health or the environment. The acceptance of a C-141 m should their operations have failed to adequately investigate an or the environment. In addition, NMOCD acceptance of a C-14 federal, state, or local laws and/or regulations.	d approx mplete to in release eport by t d remedia	eline is 45 pst. the gravity of (imately 6' x 8' the best of my notifications ar he NMOCD my ste contaminatio does not reliew	The depth of ti the crude is 65. . The impacted knowledge and it d perform corre- arked as "Final R on that pose a the e the operator of	area w andersia ctive act loport" (reat to g respons	ine at the state of the state o	release polo ediated per suant to NM leases which lieve the ope r, surface w compliance v 1 DIVISI(applicable IOCD rules and may endanger mator of Hability ater, human health with any other DN
External corrosion of 6" inch pipeline caused a release of cr the subject line is 660 bbls/day and the operating pressure of 2' bgs. The H2S concentration in the crude is less than 10 g Describe Area Affected and Cleanup Action Taken.* . The released crude resulted in a surface stain that measured guidelines. I hereby certify that the information given above is true and con regulations all operators are required to report and/or file certain public health or the environment. The acceptance of a C-141 m should their operations have failed to adequately investigate an or the environment. In addition, NMOCD acceptance of a C-14 federal, state, or local laws and/or regulations.	d approx mplete to in release eport by t d remedia	eline is 45 pst. the gravity of (imately 6' x 8' the best of my notifications as he NMOCD my tic contamination does not relieve Approved by	The depth of the the crude is 65. The impacted is for the impacted is the impacted is the impact of the impact of the the operator of the operator of OIL CON	area w understa ctive act coport" (reat to g respons SERV MME	ine at the state of the state o	ediated per suant to NM leases which lieve the ope at, surface we compliance with compliance w	applicable IOCD rules and may endanger mator of liability ater, human health with any other DN
External corrosion of 6" inch pipeline caused a release of cr the subject line is 660 bbls/day and the operating pressure of 2" bgs. The H2S concentration in the crude is less than 10 g Describe Area Affected and Cleanup Action Taken." The released crude resulted in a surface stain that measures guidelines. I hereby certify that the information given above is true and con regulations all operators are required to report and/or file certai public health or the environment. The acceptance of a C-141 m should their operations have failed to adequately investigate an or the environment. In addition, NMOCD acceptance of a C-14 federal, state, or local laws and/or regulations Signature: Descriptions Henry Printed Name: Jason Henry Title: Remediation Coordinator	d approx mplete to in release eport by t d remedia	eline is 45 pst. the gravity of (imately 6' x 8' the best of my notifications as he NMOCD my tic contamination does not relieve Approved by	The depth of the the crude is 65. The impacted is 65. The impacted is for the impact of the impact of the impact of the impact of the impact of the impact of the operator of <u>OIL CON</u> District Shype is a final for the impact of the operator of <u>OIL CON</u> District Shype is a final for the impact of the impa	area w understa ctive act coport" (reat to g respons SERV MME	ise at the fill be remained that purious for re- tions for re- toos not re- tooling water ibility for a VATION	ediated per suant to NM leases which lieve the ope ar, surface w compliance v I DIVISIC OD VGINEER Date: 6	t is approximately applicable OCD rules and may endanger meter of liability ater, human health with any other DN
External corrosion of 6" inch pipeline caused a release of cr the subject line is 660 bbls/day and the operating pressure of 2' bgs. The H2S concentration in the crude is less than 10 g Describe Area Affected and Cleanup Action Taken.* . The released crude resulted in a surface stain that measured guidelines. I hereby certify that the information given above is true and con regulations all operators are required to report and/or file certain should their operations have failed to adequately investigate an or the environment. In addition, NMOCD acceptance of a C-141 re should their operations have failed to adequately investigate an or the environment. In addition, NMOCD acceptance of a C-141 federal, state, or local laws and/or regulations. Signature: Dason Henry Title: Remediation Coordinator E-mail Address: jhenry@paslp.com	of the pip ppm and d approx mplete to in release eport by t of remedia 41 report	eline is 45 pst. the gravity of (imately 6' x 8' the best of my notifications as he NMOCD my ate contamination does not rellew Approved by Approved by	The depth of the the crude is 65. The impacted is 65. The impacted is for the impact of the impact of the impact of the impact of the impact of the impact of the operator of <u>OIL CON</u> District Shype is a final for the impact of the operator of <u>OIL CON</u> District Shype is a final for the impact of the impa	area w understa ctive act coport" (reat to g respons SERV MME	ise at the fill be remained that purious for re- tions for re- toos not re- tooling water ibility for a VATION	ediated per suant to NM leases which izve the oper a, surface w DIDIVISIO ODV VGINEER Date: 6 Attached	applicable IOCD rules and may endanger mator of Hability ater, human health with any other DN · 29.09 I
External corrosion of 6" inch pipeline caused a release of cr the subject line is 660 bbls/day and the operating pressure of 2' bgs. The H2S concentration in the crude is less than 10 g Describe Area Affected and Cleanup Action Taken.* . The released crude resulted in a surface stain that measures guidelines. I hereby certify that the information given above is true and con regulations all operators are required to report and/or file certain public health or the environment. The acceptance of a C-141 federal, state, or local laws and/or regulations. Signature: Dason Henry Tritle: Remediation Coordinator E-mail Address: jhenry@paslp.com Date: 04 (29/2009 Phone: (575) 441-105	of the pip ppm and d approx mplete to in release eport by t of remedia 41 report	eline is 45 pst. the gravity of (imately 6' x 8' the best of my notifications as he NMOCD my ate contamination does not rellew Approved by Approved by	The depth of the the crude is 65. The impacted is 65. The impacted is for the impact of the impact of the impact of the impact of the impact of the impact of the operator of <u>OIL CON</u> District Shype is a final for the impact of the operator of <u>OIL CON</u> District Shype is a final for the impact of the impa	area w understa ctive act coport" (reat to g respons SERV MME	ise at the fill be remained that purious for re- tions for re- toos not re- tooling water ibility for a VATION	ediated per suant to NM leases which izve the oper a, surface w DIDIVISIO ODV VGINEER Date: 6 Attached	applicable OCD rules and may endanger meter of Hability ater, human health with any other <u>DN</u>
External corrosion of 6" inch pipeline caused a release of cr the subject line is 660 bbls/day and the operating pressure of 2' bgs. The H2S concentration in the crude is less than 10 g Describe Area Affected and Cleanup Action Taken.* . The released crude resulted in a surface stain that measured guidelines. I hereby certify that the information given above is true and con regulations all operators are required to report and/or file certain should their operations have failed to adequately investigate an or the environment. In addition, NMOCD acceptance of a C-141 re should their operations have failed to adequately investigate an or the environment. In addition, NMOCD acceptance of a C-141 federal, state, or local laws and/or regulations. Signature: Dason Henry Title: Remediation Coordinator E-mail Address: jhenry@paslp.com	of the pip ppm and d approx mplete to in release eport by t of remedia 41 report	eline is 45 pst. the gravity of (imately 6' x 8' the best of my notifications as he NMOCD my ate contamination does not rellew Approved by Approved by	The depth of the the crude is 65. The impacted is 65. The impacted is for the impact of the impact of the impact of the impact of the impact of the impact of the operator of <u>OIL CON</u> District Shype is a final for the impact of the operator of <u>OIL CON</u> District Shype is a final for the impact of the impa	area w understa ctive act coport" (reat to g respons SERV MME	ise at the fill be remained that purious for re- tions for re- toos not re- tooling water ibility for a VATION	ediated per suant to NM leases which izve the oper a, surface w DIDIVISIO ODV VGINEER Date: 6 Attached	applicable IOCD rules and may endanger mator of Hability ater, human health with any other DN - 29.09 - 1
External corrosion of 6" inch pipeline caused a release of cr the subject line is 660 bbls/day and the operating pressure of 2' bgs. The H2S concentration in the crude is less than 10 g Describe Area Affected and Cleanup Action Taken.* . The released crude resulted in a surface stain that measures guidelines. I hereby certify that the information given above is true and con regulations all operators are required to report and/or file certain public health or the environment. The acceptance of a C-141 federal, state, or local laws and/or regulations. Signature: Dason Henry Tritle: Remediation Coordinator E-mail Address: jhenry@paslp.com Date: 04 (29/2009 Phone: (575) 441-105	of the pip ppm and d approx mplete to in release eport by t of remedia 41 report	eline is 45 pst. the gravity of (imately 6' x 8' the best of my notifications as he NMOCD my ate contamination does not rellew Approved by Approved by	The depth of the the crude is 65. The impacted is 65. The impacted is for the impact of the impact of the impact of the impact of the impact of the impact of the operator of <u>OIL CON</u> District Shype is a final for the impact of the operator of <u>OIL CON</u> District Shype is a final for the impact of the impa	area w understa ctive act coport" (reat to g respons SERV MME	ise at the fill be remained that purious for re- tions for re- toos not re- tooling water ibility for a VATION	ediated per suant to NM leases which izve the oper a, surface w DIDIVISIO ODV VGINEER Date: 6 Attached	applicable IOCD rules and may endanger mator of Hability ater, human health with any other DN . 29.09

Oil Conservation Division 1220 South St. Francis Dr.

Appendix C Monitor Well Logs

