ConocoPhillips

Terry S. Lauck Site Manager

المرجعة والمشرقين والمرجع والمرجع والمسترج والمرجع والمرجع والمرجع والمرجع والمرجع والمرجع والمرجع والمرجع وال

ConocoPhillips Company Risk Management & Remediation 420 South Keeler Avenue Bartlesville, OK 74004 Phone: 918.661.0935 E-mail: Terry S.Lauck@conocophillips.com

Mr. Glenn von Gonten New Mexico Oil Conservation Division 1220 South Saint Francis DR Santa Fe, NM 87505

March 27, 2012

Re: Shepherd & Kelsey No. 1E Remediation Site Closure Request NMOCD No. 3R-098, API No. 30-045-24316

Dear Mr. von Gonten:

ConocoPhillips Company (ConocoPhillips) submits this letter and enclosed final groundwater monitoring report as a formal request for site closure and no further action status for the ConocoPhillips, Shepherd & Kelsey No. 1E Remediation Site (Site).

3K-M

Benzene, toluene, ethylbenzene, and xylenes (BTEX) concentrations at the Site have never exceeded New Mexico Water Quality Control Commission (NMWQCC) standards since the initial groundwater sampling event. The March 2011 sampling event represented the tenth consecutive quarter of BTEX concentrations below NMWQCC standards and laboratory detection limits for all four Site monitor wells. Furthermore, Monitor Wells MW-2 and MW-4, located hydraulically upgradient and side-gradient, respectively, of the subsurface investigation areas, have both exhibited relatively consistent levels of dissolved manganese and total dissolved solids near NMWQCC standards for nine consecutive quarters.

Upon approval of closure by the NMOCD, ConocoPhillips will plug and abandon all monitor wells at the Site. Since the Site is located on private property leased by ConocoPhillips, timeliness of this decision is important. Your prompt response would be greatly appreciated.

Thank you very much for considering this request. Please let me know if you have any questions.

Sincerely. Terry S/ Lauck

Enc

Cc: Kelly E. Blanchard, Conestoga-Rovers & Associates

SEPTEMBER 2011 QUARTERLY GROUNDWATER MONITORING REPORT

0

CONOCOPHILLIPS SHEPHERD & KELSEY No. 1E BLOOMFIELD, SAN JUAN COUNTY, NEW MEXICO API# 30-045-24316 NMOCD# 3R-098

Prepared For:

.

CONOCOPHILLIPS COMPANY

Risk Management and Remediation 420 South Keeler Avenue Bartlesville, OK, 74004

MARCH 2012 REF. NO. 074930 (3) This report is printed on recycled paper.

TABLE OF CONTENTS

1.0 INTRODUCTION 1 1.1 BACKGROUND 1 2.0 GROUNDWATER MONITORING SUMMARY, METHODOLOGY,
AND ANALYTICAL RESULTS 3 2.1 GROUNDWATER MONITORING SUMMARY 3 2.2 GROUNDWATER MONITORING METHODOLOGY 3 2.3 GROUNDWATER MONITORING METHODOLOGY 4 3.0 CONCLUSIONS AND RECOMMENDATIONS 5

....

CONESTOGA-ROVERS & ASSOCIATES

Page

LIST OF FIGURES

- FIGURE 1 SITE LOCATION MAP
- FIGURE 2 SITE PLAN
- FIGURE 3 SEPTEMBER 2011 GROUNDWATER POTENTIOMETRIC SURFACE MAP

LIST OF TABLES

- TABLE 1
 SITE HISTORY TIMELINE
- TABLE 2MONITORING WELL SPECIFICATIONS AND GROUNDWATER
ELEVATIONS (OCTOBER 2008 SEPTEMBER 2011)
- TABLE 3GROUNDWATER ANALYTICAL RESULTS SUMMARY (SEPTEMBER
2007 SEPTEMBER 2011)

LIST OF APPENDICES

- APPENDIX A SEPTEMBER 2011 QUARTERLY GROUNDWATER SAMPLING FIELD FORMS
- APPENDIX B SEPTEMBER 2011 QUARTERLY GROUNDWATER LABORATORY ANALYTICAL REPORT

1.0 INTRODUCTION

This report presents the results of the quarterly groundwater monitoring event conducted by Conestoga-Rovers & Associates (CRA) on September 29, 2011, at the ConocoPhillips Company (ConocoPhillips) Shepherd & Kelsey No. 1E site in Bloomfield, San Juan County, New Mexico (Site). This sampling event represents the 12th consecutive quarter of groundwater monitoring at the Site to include all four Site monitor wells.

The Site is located on private land leased by ConocoPhillips near the intersection of New Mexico Highway 64 and County Road 5097 in Bloomfield, NM. The Site consists of a gas wellhead with associated equipment and installations and is surrounded by agricultural land. The geographical location coordinates are 36° 42′ 6.8″ North and 108° 01′ 12.2″ West; the location and general features of the Site are presented as **Figure 1** and **Figure 2**, respectively.

1.1 <u>BACKGROUND</u>

Contaminated soil was discovered at the Site during routine maintenance on Envirotech Inc. of Farmington, New Mexico (Envirotech) June 5, 2007. performed soil excavation (Excavation #1, Figure 2) at the Site, during which three soil samples were collected and analyzed for total petroleum hydrocarbons (TPH). The concentration of TPH was found to be below the New Mexico Oil Conservation Division (NMOCD) recommended action level. On June 12, 2007, a separate area of TPH soil contamination was discovered. An excavation of the additional area was performed by Envirotech from June 15 through June 18, 2007 (Excavation #2, Figure 2). Soil samples taken during the second excavation were found to be above the NMOCD recommended action level for TPH. Groundwater samples collected from the excavation were found to contain benzene and total xylenes above New Mexico Water Quality Control Commission (NMWQCC) groundwater quality standards. Monitor Well MW-1 was installed by Envirotech on September 26, 2007. Soil and groundwater samples collected during drilling were analyzed for TPH and for benzene, toluene, ethylbenzene and total xylenes (BTEX). Results were below NMOCD In November 2007, Envirotech recommended recommended action levels. plugging and abandoning MW-1 and requested no further action status from NMOCD; however, in April 2008, NMOCD indicated that further investigation was necessary before closure could be granted.

1

Tetra Tech, Inc. (Tetra Tech) began quarterly sampling of MW-1 on October 23, 2008. On January 22, 2009, three additional groundwater monitor wells were installed by WDC Exploration and Drilling of Peralta, NM (WDC), under the supervision of Tetra Tech. Monitor Wells MW-2, MW-3, and MW-4 were initially sampled on January 30, 2009 and have since been incorporated into the quarterly monitoring schedule with MW-1. On June 15, 2011, site consulting responsibilities were transferred from Tetra Tech to CRA of Albuquerque, NM.

Typically, a generalized geologic cross section would have been prepared using soil sampling data collected during drilling activities and added as a figure to this report; however, due to the shallow depth to groundwater, soil samples were not collected, therefore, this could not be compiled. A summary of the Shepherd & Kelsey No. 1E site history can be seen in **Table 1**.

2.0 GROUNDWATER MONITORING SUMMARY, METHODOLOGY, AND ANALYTICAL RESULTS

2.1 **GROUNDWATER MONITORING SUMMARY**

Quarterly groundwater sampling was conducted on September 29, 2011. This monitoring event represents the second quarter of groundwater monitoring with BTEX analysis discontinued. Groundwater samples were collected from Monitor Wells MW-1, MW-2, MW-3 and MW-4. Prior to sampling, depth to groundwater in each well was recorded using an oil/water interface probe. Groundwater elevation measurements are summarized in Table 2.

The top of casing for each Site monitor well as surveyed by Tetra Tech in January 2009, with elevations based on an arbitrary reference elevation of 100 feet above mean sea level (amsl). Using these data, it was determined that the groundwater flow direction at the Site is to the south (**Figure 3**).

2.2 <u>GROUNDWATER MONITORING METHODOLOGY</u>

Monitor Wells MW-1, MW-2, MW-3, and MW-4 were sampled during the September 29, 2011 groundwater monitoring event. Prior to sampling, all monitor wells were purged of at least 3 casing volumes of groundwater using a dedicated, 1.5-inch diameter, polyethylene disposable bailer. Groundwater quality parameters were collected using a YSI 556 multi-parameter sonde during each purge. Results were recorded on CRA Well Sampling Field Information Forms (**Appendix A**). The groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped with chain-of-custody documentation to Pace Analytical Services of Lenexa, Kansas. Samples were analyzed for dissolved manganese by EPA Method 6010; and total dissolved solids (TDS) by SM 2540C.

2.3 <u>GROUNDWATER MONITORING ANALYTICAL RESULTS</u>

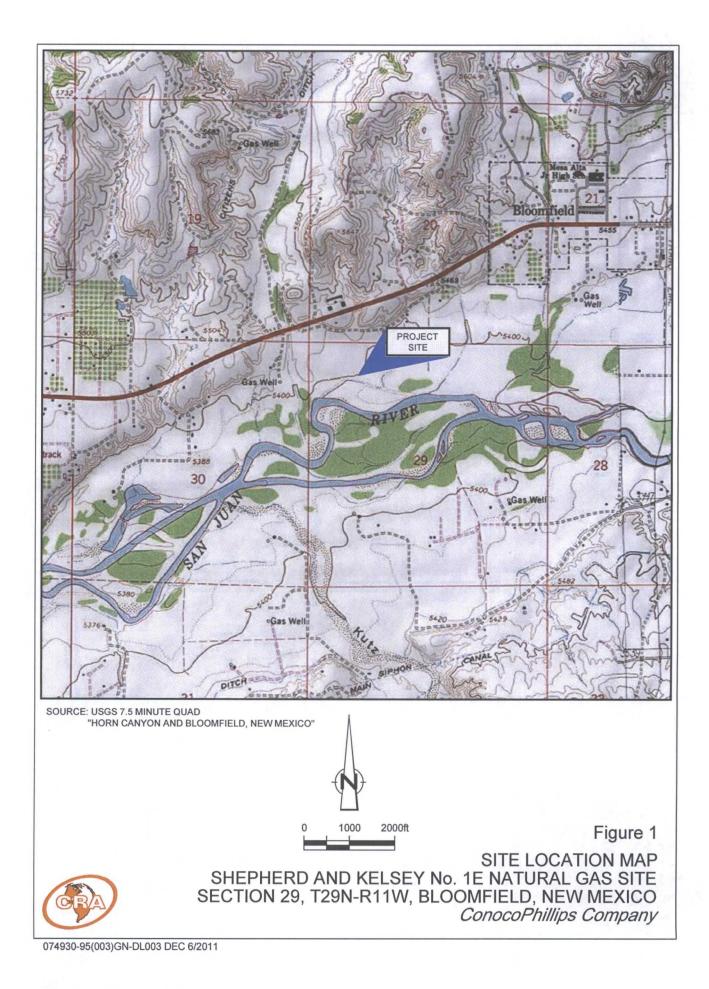
The NMWQCC mandates that groundwater quality in New Mexico be protected, and has issued groundwater quality standards in Title 20, Chapter 6, Part 2, Section 3103 of the New Mexico Administrative Code (20.6.2.3103 NMAC). A historical summary of groundwater analytical results is provided in **Table 3**. The laboratory analytical report is included as **Appendix B**.

- Dissolved Manganese
 - The groundwater quality standard for dissolved manganese is 0.2 milligrams per liter (mg/L). Groundwater samples collected on September 29, 2011 from Monitor Well MW-2 and MW-4 were found to contain dissolved manganese at concentrations of 0.218 mg/L and 0.439 mg/L, respectively. MW-2 is located upgradient of the release area and MW-4 is side-gradient.
- TDS
 - The groundwater quality standard for TDS is 1000 mg/L. Groundwater samples collected on September 29, 2011 from Monitor Wells MW-2 and MW-4 were found to have TDS concentrations of 1,020 mg/L and 1,370 mg/L, respectively. MW-2 is located upgradient of the release area and MW-4 is side-gradient.

3.0 <u>CONCLUSIONS AND RECOMMENDATIONS</u>

The September 2011 monitoring event represents the second quarter of groundwater monitoring with BTEX analysis discontinued for all four Site monitor wells. During this latest monitoring period, two wells, MW-2 and MW-4, revealed dissolved manganese and TDS concentrations above the NMWQCC standards. MW-2, located upgradient of known impacts, and MW-4, located side-gradient of known impacts, have both exhibited relatively consistent levels of dissolved manganese and TDS that are very close to NMWQCC standards for nine consecutive quarters.

CRA recommends remediation Site closure and no further action status due to the relatively stable levels of dissolved manganese and TDS found only in the background/upgradient well and the well located side-gradient of the known impact areas.


h

÷

_. .

FIGURES

074930 (3)

074930-95(003)GN-DL001 DEC 6/2011

074930-95(003)GN-DL002 DEC 6/2011

· .

. . .

. . .

.

.

074930 (3)

. . .

TABLES

.

SITE HISTORY TIMELINE CONOCOPHILLIPS SHEPHERD & KELSEY NO. 1E

Date/Time Period	Event/Action	Description/Comments
June 5, 2007	Initial Site Assessment	Hydrocarbon-impacted soil discovered during routine maintenance at the Site. Soil excavation was performed at the Site, and three soil samples were obtained. Sample results showed total petroleum hydrocarbon (TPH) concentrations below the NMOCD regulations of 100 parts per million (ppm). Original source of contamination was unknown.
June 12, 2007	Investigation	A separate area of TPH soil contamination discovered.
June 15-18, 2007	Secondary Site Assessment	A 50 foot by 20 foot by 4 foot excavation was completed. Soil samples taken from the second excavation show TPH at 992 ppm. Water samples obtained show benzene and total xylenes above State of New Mexico drinking water standards.
September 26, 2007	Groundwater monitor well installation and groundwater monitoring	Ground water monitor well installed to a depth of ten (10) feet below ground surface (bgs) by Envirotech Inc. of Farmington, NM (Envirotech). Depth to groundwater recorded at four (4) feet bgs. Soil and groundwater samples obtained for TPH, benzene, and benzene, toluene, ethylbenzene and total xylenes (BTEX) were below the respective NMOCD regulations of 100 ppm, 10 ppm and 50 ppm.
November 1, 2007	Recommendations	Envirotech report recommends plugging and abandonment of the temporary ground water monitor well and no further action for the Site (Envirotech, 2007).
April 8, 2008	Additional Monitoring Requested by OCD	Oil Conservation Division of NM Energy, Minerals, and Resources Dept. indicates additional investigation and sampling is necessary for closure consideration during a meeting with Glenn von Gonten.
October 23, 2008	Groundwater monitoring	1st quarter sampling of MW-1 conducted by Tetra Tech.
January 9, 2009	Groundwater monitor well installation	Installed additional Monitor Wells MW-2, MW-3 and MW-4.
January 30, 2009	Groundwater monitoring	2nd quarter sampling of MW-1 by Tetra Tech; initial sampling of MW-2, MW-3, and MW-4.
April 1, 2009	Groundwater monitoring	Quarterly sampling of Monitor Wells MW-1, MW-2, MW-3, and MW-4.
June 18, 2009	Groundwater monitoring	Quarterly sampling of Monitor Wells MW-1, MW-2, MW-3, and MW-4.
September 21, 2009	Groundwater monitoring	Quarterly sampling of Monitor Wells MW-1, MW-2, MW-3, and MW-4. Dissolved metals analysis initated at the Site for metals with elevated total metal concentrations.
December 14, 2009	Groundwater monitoring	Quarterly sampling of Monitor Wells MW-1, MW-2, MW-3, and MW-4.
March 31, 2010	Groundwater monitoring	Quarterly sampling of Monitor Wells MW-1, MW-2, MW-3, and MW-4.
June 7, 2010	Groundwater monitoring	Quarterly sampling of Monitor Wells MW-1, MW-2, MW-3, and MW-4.
September 29, 2010	Groundwater monitoring	Quarterly sampling of Monitor Wells MW-1, MW-2, MW-3, and MW-4.
December 14, 2010	Groundwater monitoring	Tetra Tech conducted the ninth quarterly groundwater monitoring event at the Site (sampling of Monitor Wells MW-1, MW-2, MW-3, and MW-4).
March 14, 2011	Groundwater monitoring	Tetra Tech conducted the tenth quarterly groundwater monitoring event at the Site (sampling of Monitor Wells MW-1, MW-2, MW-3, and MW-4). Tetra Tech recommended that sampling for BTEX be discontinued in the quarterly groundwater monitoring report following the March 2011 groundwater sampling event.
June 15, 2011	Transfer of site consulting responsibilities	On June 15, 2011, site consulting responsibilities were transferred from Tetra Tech of Albuquerque, NM to CRA of Albuquerque, NM.
June 23, 2011	Groundwater monitoring	CRA conducted the 11th quarterly groundwater monitoring event at the Site (sampling of Monitor Wells MW-1, MW-2, MW-3, and MW-4). This was the first quarterly groundwater monitoring event with BTEX analysis discontinued.
September 29, 2011	Groundwater monitoring	CRA conducted the 12th quarterly groundwater monitoring event at the Site (sampling of Monitor Wells MW-1, MW-2, MW-3, and MW-4). This was the second quarterly groundwater monitoring event with BTEX analysis discontinued.

MONITOR WELL SPECIFICATIONS & GROUNDWATER ELEVATIONS OCTOBER 2008 - SEPTEMBER 2011 CONOCOPHILLIPS SHEPHERD & KELSEY No. 1E

Well ID	Total Depth (ft below TOC)	Elevation *	Screen Interval (ft bgs)	Date Measured	Depth to Groundwater (ft below TOC)	Relative Water Level
				10/23/2008	4.02	92.51
				1/30/2009	5.70	90.83
				4/1/2009	5.90	90.63
				6/18/2009	4.01	92.52
				9/21/2009	5.62	90.91
				12/14/2009	5.51	91.02
MW-1	12	96.53	2.5 - 10	3/31/2010	5.72	90.81
				6/7/2010	4.74	91.79
				9/26/2010	5.10	91.43
				12/14/2010	4.76	91.77
				3/14/2011	· 5.42	91.11
				6/23/2011	4.69	91.84
				9/29/2011	4.31	92.22 ·
				12/14/2009 5.51 2.5 - 10 3/31/2010 5.72 6/7/2010 4.74 9/26/2010 5.10 12/14/2010 4.76 3/14/2011 5.42 6/23/2011 4.69 <td>92.64</td>	92.64	
					· · · · · · · · · · · · · · · · · · ·	92.27
		98.05			2.50	95.55
				9/21/2009	4.60	93.45
				12/14/2009	4.99	93.06
	20.0		20 190		5.53	92.52
MW-2	20.3		3.0 - 18.0			95.35
					3.56	94.49
						93.82
						92.98
			[2.75	95.30
						96.04
	1			1/30/2009	5.29	90.31
					5.46	90.14
						91.96
						90.35
						90.41
						90.30
MW-3	20.1	95.6	3.0 - 18.0			90.08
						90.79
				12/14/2010	5.13	90.47
				3/14/2011	5.05	90.55
				6/23/2011	4.45	91.15
	· · · · _ · ·				4.09	91.51
		-		1/30/2009	6.33	89.90
				4/1/2009	6.40	89.83
				6/18/2009	5.51	90.72
				9/21/2009	6.13	90.10
				12/14/2009	5.91	90.32
MW-4	20.7	96.23	3.7 - 18.7	3/31/2010	6.10	90.13
14144-4	20./	90.23	5.7 - 10.7	6/7/2010	5.31	90.92
				9/29/2010	5.59	90.64
			1	12/14/2010	5.57	90.66
			ŀ	3/14/2011	5.78	90.45
				6/23/2011	5.18	91.05
				9/29/2011	5.07	91.16

Notes:

1. ft = Feet

2. TOC = Top of casing

3. bgs = below ground surface

4. * Elevation relative to an arbitrary reference elevation of 100 ft.

-

GROUNDWATER ANALYTICAL RESULTS SUMMARY SEPTEMBER 2007 - SEPTEMBER 2011 CONOCOPHILLIPS COMPANY SHEPHERD & KELSEY No. 1E

Well ID	Sample ID	Date	Senzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total) (mg/L)	Iron (dissolved) (mg/L)	Manganese (dissolved) (mg/L)	Sulfate (mg/L)	Total dissolved solids (TDS) (mg/L)
	MW-1	9/26/2007	0.0004	0.0004	0.0005	0.0011				
	MW-1	10/23/2008	< 0.005	< 0.005	< 0.005	< 0.005	-		438	
	MW-1	1/30/2009	< 0.005	< 0.005	< 0.005	< 0.005			303	692
	MW-1	4/1/2009	< 0.005	< 0.005	< 0.005	< 0.005			258	1340
[MW-1	6/18/2009	< 0.005	< 0.005	< 0.005	< 0.005	ŧ	1		
[MW-1	9/21/2009	< 0.001	< 0.001	< 0.001	< 0.002	0.0458	0.0356	324	700 `
MW-1	MW-1	12/14/2009	< 0.001	< 0.001	< 0.001	< 0.001		0.0539		661
10100-1	MW-1 '	3/31/2010	< 0.001	< 0.001	< 0.001	< 0.001		0.0662		697
[MW-1	6/7/2010	< 0.001	< 0.001	< 0.001	< 0.001		0.0599		778
[MW-1	9/29/2010	< 0.001	< 0.001	< 0.001	< 0.001	-	0.117	-	853
1 [MW-1	12/14/2010	< 0.001	< 0.001	< 0.001	< 0.001		0.102	-	770
	MW-1	3/14/2011	< 0.001	< 0.001	< 0.001	< 0.001		0.117		782
	GW-74930-062311-PG-02	6/23/2011						0.0963		828
	GW-074930-092911-CB-009	9/29/2011						0.102		724
Ĩ	MW-2	1/30/2009	< 0.005	< 0.005	< 0.005	< 0.005		-	706	1130
	MW-2	4/1/2009	< 0.005	< 0.005	< 0.005	< 0.005			613	1420
	MW-2	6/18/2009	< 0.005	< 0.005	< 0.005	< 0.005				
	MW-2	9/21/2009	< 0.001	< 0.001	< 0.001	< 0.002	< 0.02	0.158	421	740
	MW-2	12/14/2009	< 0.001	< 0.001	< 0.001	< 0.001		0.106		764
	MW-2	3/31/2010	< 0.001	< 0.001	< 0.001	< 0.001		0.144	-	804
MW-2	MW-2	6/7/2010	< 0.001	< 0.001	< 0.001	< 0.001		0.152		826
	MW-2	9/29/2010	< 0.001	< 0.001	< 0.001	< 0.001	-	0.212		1090
	MW-2	12/14/2010	< 0.001	< 0.001	< 0.001	< 0.001		0.194		1120
	MW-2	3/14/2011	< 0.001	< 0.001	< 0.001	< 0.001		0.242	-	1000
	GW-74930-062311-PG-01	6/23/2011						0.25		1150
	GW-074930-092911-CB-006	9/29/2011						0.218		1020
	MW-3	1/30/2009	< 0.005	< 0.005	< 0.005	< 0.005			427	918
	MW-3	4/1/2009	< 0.005	< 0.005	< 0.005	< 0.005			416	1010
	MW-3	6/18/2009	< 0.005	< 0.005	< 0.005	< 0.005				
	MW-3	9/21/2009	< 0.001	< 0.001	< 0.001	< 0.002	< 0.02	0.115	359	733
l h	MW-3	12/14/2009	< 0.001	< 0.001	< 0.001	< 0.001		0.154		712
l · F	MW-3	3/31/2010	< 0.001	< 0.001	< 0.001	< 0.001		0.219		898
MW-3	MW-3	6/7/2010	< 0.001	< 0.001	< 0.001	< 0.001		0.132	_	841
	MW-3	9/29/2010	< 0.001	< 0.001	< 0.001	< 0.001		0.147		849
	MW-3	12/14/2010	< 0.001	< 0.001	< 0.001	< 0.001	_	0.161	_	835
	MW-3	3/14/2011	< 0.001	< 0.001	< 0.001	< 0.001		0.156		- · · 882
	GW-74930-062311-PG-03	6/23/2011						0.168		869
	GW-074930-092911-CB-008	9/29/2011				1		0.137		868

CRA 074930-RPT3-TBLS

GROUNDWATER ANALYTICAL RESULTS SUMMARY SEPTEMBER 2007 - SEPTEMBER 2011 CONOCOPHILLIPS COMPANY SHEPHERD & KELSEY No. 1E

Well ID	Sample ID	Date	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total) (mg/L)	Iron (dissolved) (mg/L)	Manganese (dissolved) (mg/L)	Sulfate (mg/L)	Total dissolved solids (TDS) (mg/L)
	MW-4	1/30/2009	< 0.005	< 0.005	< 0.005	< 0.005			539	1000
	MW-4	4/1/2009	< 0.005	< 0.005	< 0.005	< 0.005		-	512	1010
	MW-4	6/18/2009	< 0.005	< 0.005	< 0.005	< 0.005	-	-		
	MW-4	9/21/2009	< 0.001	< 0.001	< 0.001	< 0.002	0.0376	0.286	472	963
	MW-4	12/14/2009	< 0.001	< 0.001	< 0.001	< 0.001	-	0.283		861
MW-4	MW-4	3/31/2010	< 0.001	< 0.001	< 0.001	< 0.001		0.336		1000
101 0 0	MW-4	6/7/2010	< 0.001	< 0.001	< 0.001	< 0.001		0.373		1300
	MW-4	9/29/2010	< 0.001	< 0.001	< 0.001	< 0.001		0.571		1720
	MW-4	12/14/2010	< 0.001	< 0.001	< 0.001	< 0.001		0.514		1580
	MW-4	3/14/2011	< 0.001	< 0.001	< 0.001	< 0.001	·	0.602		1810
	GW-74930-062311-PG-04	6/23/2011						0.468		1530
	GW-074930-092911-CB-007	9/29/2011	-			-		0.439		1370
NN	MWQCC Groundwater Quality S	Standards	0.01	0.75	0.75	0.62	1.0	0.2	600	1000

Notes:

1. MW = monitoring well

2. NMWQCC = New Mexico Water Quality Control Commission

3. Constituents in BOLD are in excess of NMWQCC groundwater quality standards

4. mg/L = milligrams per liter (parts per million)

5. < 1.0 = Below laboratory detection limit of 1.0 mg/L

6. -- = Sample not collected

APPENDICES

, .

APPENDIX A

SEPTEMBER 2011 QUARTERLY GROUNDWATER SAMPLING FIELD FORMS

	WELL SAMPLING FIELD INFORMATION FORM
ITE/PROJECT NA	ME: Aughered & Kelsey No. /E JOB# 074930
SAMPLE	ID: <u>(4W-074430-929/11-0B-009</u> WELL# <u>MW-</u>
9,29,11 PURGE DATE (MM DD YY)	Mell Purging information 120 Sample date Sample time (MM DD YY) (24 HOUR)
PURGING EQUIPMENT	PURGING AND SAMPLING EQUIPMENT DEDICATED N SAMPLING EQUIPMENTDEDICATED N
PURGING EQUIPMENT	DEDICATED N SAMPLING EQUIPMENTDEDICATED V N (CIRCLE ONE) (CIRCLE ONE)
PURGING DEVICE	A-SUBMERSIBLE PUMP D-GAS LIFT PUMP G-BAILER X=
SAMPLING DEVICE	B - PERISTALTIC PUMP E - PURGE PUMP H - WATERRA® PURGING DEVICE OTHER (SPECIFY) C - BLADDER PUMP F - DIPPER BOTTLE X - OTHER X=
	SAMPLING DEVICE OTHER (SPECIFY)
PURGING MATERIAL	A - TEFLON D - PVC X= B - STAINLESS STEEL E - POLYETHYLENE PURGING MATERIAL OTHER (SPECIFY)
SAMPLING MATERIAL	B-STAINLESS STEEL E-POLYETHYLENE PURGING MATERIAL OTHER (SPECIFY) C-POLYPROPYLENE X-OTHER X-OTHER X-
	SAMPLING MATERIAL OTHER (SPECIFY)
PURGE TUBING	A - TEFLON D - POLYPROPYLENE G - COMBINATION X= B - TYGON E - POLYETHYLENE TEFLON/POLYPROPYLENE PURGE TUBING OTHER (SPECIFY)
SAMPLING TUBING	C-ROPE F-SILICONE X-OTHER X=
ILTERING DEVICES 0.45	SAMPLING TUBING OTHER (SPECIFY)
· · · · · · · · · · · · · · · · · · ·	FIELD MEASUREMENTS
DEPTH TO WATH	1 1 21
WELL DEPI	
TEMPERATURE	pH TDS CONDUCTIVITY ORP VOLUME
1,40 (°C)	7.42 (std) 0.054 (g/L) 859 (us/cm) 82.8 (mV) 3.5 (
1 17,37 (ro)	7,37 (std) 0,1052 (g/L) 858 (us/cm) 81,2 (mv) 4,0 (
17,39, Ico	7.36 (std) 0, 049 (g/L) 862 (uS/cm) 78.9 (mV) 4.5 (
· · ·	
(°C)	
AMPLE APPEARANCE:	FIELD COMMENTS
/EATHER CONDITIONS:	TEMPERATURE U - 75 WINDY YN PRECIPITATION YN TYPE
PECIFIC COMMENTS:	Rug rolpine = 3162
	Dudit 0 :
<u></u>	White 6, 1705 GW-074930-092911-CB-010
LCERTIFY THAT SAMPI INC	PROCEDURES WIRE IN ACCORDANCE WITH APPLICABLE CRA PROTOCOLS
9.79. W	horney los

		WELL SAMPLIN	G FIELD INFO	RMATION F	ORM	
(⊥TE/PROJECT NAME		Ketsy # IE	јов#	74930	•
	SAMPLE IL	»: <u>Gw-074930</u>	7-92911-18-00(e Well#	MW-2	······································
	9.29.11 PURGE DATE (MM DD YY)	SAMPLE DATE (MM DD YY)	WELL PURGING INFOR L 6 05 SAMPLE TIME (24 HOUR) GING AND SAMPLING	WATER VOL. IN C		
	PURGING EQUIPMENTDED				NG EQUIPMENTDEDIC	ATED Y N (CIRCLE ONE)
	PURGING DEVICE	A - SUBMERSIBLE PUMP B - PERISTALTIC PUMP C - BLADDER PUMP	E - PURGE PUMP H -	BAILER WATERRA® OTHER	X= PURGING DEVICE OTF X= SAMPLING DEVICE OT	
	PURGING MATERIAL	A - TEFLON B - STAINLESS STEEL	D - PVC E - POLYETHYLENE		X= PURGING MATERIAL C	
	SAMPLING MATERIAL	C-POLYPROPYLENE	X - OTHER		X= SAMPLING MATERIAL	OTHER (SPECIFY)
	PURGE TUBING	A - TEFLON B - TYGON C - ROPE	E - POLYETHYLENE	COMBINATION FEFLON/POLYPROPYLENE OTHER	X≃ PURGE TUBING OTHER X=	R (SPECIFY)
ł	FILTERING DEVICES 0.45	A - IN-LINE DISPOSAB	LE B - PRESSURE	C-VACUUM	SAMPLING TUBING OT	THER (SPECIFY)
			FIELD MEASUREME	INTS	00 -	
(DEPTH TO WATER WELL DEPTH	19 93		L ELEVATION	91 05	(feet) (feet)
	TEMPERATURE					VOLUME
	16.49 (c)	$\begin{array}{c c} \mathbf{b}_{\mathbf{r}} \mathbf{f}_{\mathbf{h}} \\ \mathbf{b}_{\mathbf{r}} \mathbf{f}_{\mathbf{r}} \\ \mathbf{b}_{\mathbf{r}} \mathbf{f}_{\mathbf{h}} \\ \mathbf{b}_{r$	<u>869 (g/L) 11</u>	γγ (μS/cm) . ζδ (μS/cm)	93,3 (mV)	$[4.3]_{(gal)}$
	16.38 (G) L	6.75 (std)	873 (g/L) U	<u>22</u> (μS/cm)	80.6 (mV)	[0.5] (gal)
	[(°C)	(std)	(g/L)	(μS/cm)	(mV)	(gal)
	(°C)	(std)	(g/L)	(μS/cm)	(mV)	(gal)
v	AMPLE APPEARANCE: C VEATHER CONDITIONS: T PECIFIC COMMENTS: P	emperature 0008. Be Volume 78.10	FIELD COMMENT	OR: light gray	_SHEEN Y/ C TATION Y/ C IF Y TYPE)	····· ···· ·····
	······································			·····	· · · · · · · · · · · · · · · · · · ·	
F			~			
	I CERTIFY THAT SAMPLING PRO	PRINT	TH APPLICABLE CRA PROTO			
			\bigcirc			
(

l i	LL SAMPLING	FIELD INFORM	IATION FC	NKM	
TE/PROJECT NAME:	Shepherd & K	olsy NO. IE	4930		
SAMPLE ID:	- Giv-07493	2-92911 CB.0CB	WELL#	MW-3	
PURGE DATE (MM DD YY)	SAMPLE DATE (MM DD YY)	ELL PURGING INFORMATI	WATER VOL. IN CA (GALLONS)	SING ACTUAL VC (GALL	
PURGING EQUIPMENTDEDICATI	Z. M	ING AND SAMPLING EQUI		G EQUIPMENTDEDIC	ATTOY N (CIRCLE ONE)
PURGING DEVICE		D - GAS LIFT PUMP G - BAILER		X=	
SAMPLING DEVICE		E - PURGE PUMP H - WATER F - DIPPER BOTTLE X - OTHER	(RA®)	PURGING DEVICE OTH	
	A - TEFLON	D - PVC		SAMPLING DEVICE OT	HER (SPECIFY)
SAMPLING MATERIAL	· · · · · · · · · · · · · · · · · · ·	e - POLYETHYLENE X - OTHER		PURGING MATERIAL C	
PURGE TUBING		D - POLYPROPYLENE G - COMBIN		SAMPLING MATERIAL	
SAMPLING TUBING	1	E - POLYETHYLENE TEFLON F - SILICONE X - OTHER	I/POLYPROPYLENE	PURGE TUBING OTHER	
FILTERING DEVICES 0.45	A - IN-LINE DISPOSABLE	B - PRESSURE C - VA	CUUM	SAMPLING TUBING OT	HER (SPECIFY)
		FIELD MEASUREMENTS			
DEPTH TO WATER	4.09	(feet) WELL ELEV	ATION	95 60	(feet)
WELL DEPTH	10.0	(feet) GROUNDWATER ELE	L	91.51	(feet)
TEMPERATURE	PH TDS 42 (std) 19,74	$3 _{(g/L)} 984$	VIIY (μS/cm)	84.7 (mV)	VOLUME
17.67 (0) 7.	30 (std) 0.74	44 (g/L) 985	(µS/cm)	80.8 (mV)	7.5 (gal)
17.64 (c) 2	37 (std) 0.74	17 (g/L) 986	(µS/cm)	78.2 (mV)	8.0 (gal)
(°C)	(std)	(g/L)	(µS/cm)	(mV)	(gal)
(°C)	(stđ)	(g/L)	(µS/cm)	(mV)	(gal)
1 11 1		FIELD COMMENTS	 	· · · · · · · · · · · · · · · · · · ·	<u> </u>
SAMPLE APPEARANCE:	ATURE	None color: WINDY M/Nbree		SHEEN Y/K) ATION Y/K)IF Y TYPE)	
SPECIFIC COMMENTS:	volume = 7.14	02 WINDY M/N bree	1		
1 0		· · · ·		• 	
	·····			· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·		~			
I CERTIFY THAT SAMPLING PROCEDU	RESWERE IN ACCORDANCE WITH	H APPLICABLE CRA PROTOCOLS			
DATE	NT	SIGNATURE	······································		

1

(

	WELL SAMPLIN	NG FIELD INFOR	RMATION H	FORM	
⊥TE/PROJECT NAI SAMPLE		BKelss No. 1E 4930-92911.18:007	JOB#	074930 MW-4	
9 · 29 · 11 PURGE DATE (MM DD YY)	SAMPLE DATE (MM DD YY)	WELL PURGING INFORM SAMPLE TIME (24 HOUR)	WATER VOL. IN (GALLON		DIL PURGED LONS)
PURGING EQUIPMENT		URGING AND SAMPLING E		ING EQUIPMENTDEDK	CATED Y N (CIRCLE ONE)
PURGING DEVICE SAMPLING DEVICE	A - SUBMERSIBLE PUMP B - PERISTALITIC PUMP G C - BLADDER PUMP		ATERRA®	X= PURGING DEVICE OT X= SAMPLING DEVICE O	
PURGING MATERIAL SAMPLING MATERIAL	A - TEFLON B - STAINLESS STEEL C - POLYPROPYLENE	D - PVC E - POLYETHYLENE X - OTHER		X= PURGING MATERIAL X= SAMPLING MATERIAL	OTHER (SPECIFY)
PURGE TUBING SAMPLING TUBING	A - TEFLON B - TYGON C - ROPE	-	DMBINATION FLON/POLYPROPYLENE HER	X= PURGE TUBING OTHE X= 5AMPLING TUBING O	R (SPECIFY)
FILTERING DEVICES 0.45	A - IN-LINE DISPOS	SABLE B - PRESSURE C	C-VACUUM		
DEPTH TO WATH WELL DEPT TEMPERATURE (0, 47) (°C) (0, 47) (°C) (0, 47) (°C) (0, 47) (°C) (0, 60) (°C)		6 (feet) GROUNDWATER	ELEVATION	96.23 ORP 96.5 (mV) 68.8 (mV) 68.2 (mV) (mV) (mV)	(feet) (feet) VOLUME 7, 0 (gal) 7, 5 (gal) (gal) (gal)
SAMPLE APPEARANCE: WEATHER CONDITIONS: SPECIFIC COMMENTS:	<u>Clear Worange bugge</u> TEMPERATURE PUGE VOW ME= 7	FIELD COMMENTS	R: Mansela	C SHEEN Y/N A PITATION Y/N (IF Y TYPE)	6
1 CERTIFY THAT SAMPLING	PROCEDURES WIRE IN ACCORDANCE				

(

•

APPENDIX B

SEPTEMBER 2011 QUARTERLY GROUNDWATER LABORATORY ANALYTICAL REPORT

ice Analytica www.pacelabs.com

October 13, 2011

Angela Bown COP Conestoga-Rovers & Associa 6121 Indian School Rd #200 Albuquerque, NM 87110

RE: Project: SHEPHERD AND KELSEY NO. 1 E Pace Project No.: 60107338

Dear Angela Bown:

Enclosed are the analytical results for sample(s) received by the laboratory on October 01, 2011. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

ANA CECUER

Anna Custer for Dianna Meier dianna.meier@pacelabs.com Project Manager

Enclosures

cc: Kelly Blanchard, COP Conestoga-Rovers & Associa Cassie Brown, COP Conestoga-Rovers & Associa

REPORT OF LABORATORY ANALYSIS

Page 1 of 15

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

e Analytical www.pacelabs.com

CERTIFICATIONS

Project: SHEPHERD AND KELSEY NO. 1 E Pace Project No.: 60107338

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 A2LA Certification #: 2456.01 Arkansas Certification #: 05-008-0 Illinois Certification #: 001191 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407-08-TX Utah Certification #: 9135995665

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 2 of 15

P Pace Analytical "

SAMPLE SUMMARY

Project: Pace Project No	SHEPHERD AND KELSEY NO. 1 E 60107338			
Lab ID	Sample ID	Matrix	Date Collected	Date Received
60107338001	GW-074930-092911-CB-006	Water	09/29/11 16:05	10/01/11 08:00
60107338002	GW-074930-092911-CB-007	Water	09/29/11 16:30	10/01/11 08:00
60107338003	GW-074930-092911-CB-008	Water	09/29/11 16:45	10/01/11 08:00
60107338004	GW-074930-092911-CB-009	Water	09/29/11 17:00	10/01/11 08:00

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 3 of 15

SAMPLE ANALYTE COUNT

Project: SHEPHERD AND KELSEY NO. 1 E Pace Project No.: 60107338

Lab ID	Sample ID	Method	Analysts	Analytes Reported
60107338001	GW-074930-092911-CB-006	EPA 6010	JDH	1 [.]
		SM 2540C	KLB	1
60107338002	GW-074930-092911-CB-007	EPA 6010	JDH	1
		SM 2540C	KLB	1
60107338003	GW-074930-092911-CB-008	EPA 6010	JDH	1
		SM 2540C	KLB	1
60107338004	GW-074930-092911-CB-009	EPA 6010	JDH	1
		SM 2540C	KLB	1

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 4 of 15

e Analvtic www.pacelabs.com

PROJECT NARRATIVE

Project: SHEPHERD AND KELSEY NO. 1 E Pace Project No.: 60107338

Method: EPA 6010

 Description:
 6010 MET ICP, Dissolved

 Client:
 COP Conestoga-Rovers & Associates, Inc. NM

 Date:
 October 13, 2011

General Information:

4 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Page 5 of 15

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

PROJECT NARRATIVE

Project: SHEPHERD AND KELSEY NO. 1 E Pace Project No.: 60107338

Method: SM 2540C

 Description:
 2540C Total Dissolved Solids

 Client:
 COP Conestoga-Rovers & Associates, Inc. NM

 Date:
 October 13, 2011

General Information:

4 samples were analyzed for SM 2540C. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

REPORT OF LABORATORY ANALYSIS

Page 6 of 15

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: SHEPHERD AND KELSEY NO. 1 E

Pace Project No.: 60107338

Sample: GW-074930-092911-CB-	006 Lab ID: 601	07338001 Co	llected: 09/29/1	1 16:05	Received: 10	/01/11 08:00 M	atrix: Water	
		Rep						
Parameters	Results l	Jnits Lim	it MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Met	hod: EPA 6010	Preparation Meth	nod: EPA	3010			
Manganese, Dissolved	218 ug/L		5.0 0.90	1	10/03/11 13:37	10/04/11 17:17	7439-96-5	
2540C Total Dissolved Solids	Analytical Met	hod: SM 2540C						
Total Dissolved Solids	1020 mg/L		5.0 5.0	1		10/04/11 10:33		

Date: 10/13/2011 02:24 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 7 of 15

Pace Pkg. Page 7 of 17

ice Analytical www.pacelabs.com

Project: SHEPHERD AND KELSEY NO. 1 E

. .

Pace Project No.: 60107338

Sample: GW-074930-092911-CB-0	07 Lab ID:	60107338002	Collected	: 09/29/1 1	16:30	Received: 10/	01/11 08:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	010 Prepar	ation Meth	od: EPA	3010			
Manganese, Dissolved	439 u	ıg/L	5.0	0.90	1	10/03/11 13:37	10/04/11 17:20	7439-96-5	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	1370 m	ng/L	5.0	5.0	1		10/04/11 10:33		

Date: 10/13/2011 02:24 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 8 of 15

Project: SHEPHERD AND KELSEY NO. 1 E

Pace Project No.: 60107338

Sample: GW-074930-092911-CB-0	008 Lab ID:	60107338003	Collected	d: 09/29/1 ⁻	16:45	Received: 10/	/01/11 08:00 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical	I Method: EPA 6	6010 Prepai	ration Meth	od: EPA	3010			
Manganese, Dissolved	137 u	ıg/L	5.0	0.90	1	10/03/11 13:37	10/04/11 17:22	7439-96-5	
2540C Total Dissolved Solids	Analytica	Method: SM 2	540C						
Total Dissolved Solids	868 r	ng/L	5.0	5.0	1		10/05/11 11:37		

Date: 10/13/2011 02:24 PM

REPORT OF LABORATORY ANALYSIS

Page 9 of 15

.

-

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Pace Pkg. Page 9 of 17

Project: SHEPHERD AND KELSEY NO. 1 E 7338

)7

Sample: GW-074930-092911-CB-	009 Lab ID:	60107338004	Collected	1: 09/29/11	17:00	Received: 10/	01/11 08:00 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	010 Prepar	ation Meth	od: EPA	3010			
Manganese, Dissolved	102 ug	g/L	5.0	0.90	1	10/03/11 13:37	10/04/11 17:24	7439-96-5	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	724 m	ig/L	5.0	5.0	1		10/05/11 11:38		

Date: 10/13/2011 02:24 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 10 of 15

.

.

Pace Pkg. Page 10 of 17

QUALITY CONTROL DATA

Project: SHEPH	IERD AND KELSEY NO. 1	E									
Pace Project No.: 601073	38										
QC Batch: MPRF	2/15526	Analys	Analysis Method:								_
QC Batch Method: EPA 3010		Analys	sis Descripti	on: 6	6010 MET Dissolved						
Associated Lab Samples:	60107338001, 60107338	002, 60107338	8003, 60107	338004							
METHOD BLANK: 885398		1	Matrix: Wate	er							. <u>.</u>
Associated Lab Samples:	60107338001, 60107338	002, 60107338	003, 60107	338004							
		Blani	k Re	eporting							
Parameter	Units	Resu	lt	Limit	Analyzed		Qualifiers				
Manganese, Dissolved	ug/L		ND	5.0	10/04/11	16:56					
LABORATORY CONTROL S	AMPLE: 885399										
LABORATORY CONTROL S	AMPLE: 885399	Spike	LCS		LCS	% Rec	;				
LABORATORY CONTROL S	AMPLE: 885399 Units	Spike Conc.	LCS Result	t	LCS % Rec	% Rec Limits		alifiers			
		•	Result	t 969		Limits		Qualifiers	-		
Parameter Manganese, Dissolved	Units ug/L	Conc. 1000	Result	969	% Rec	Limits	Q	alifiers	-		
Parameter	Units ug/L	Conc. 1000	Result	·	% Rec	Limits	Q	Qualifiers	-		
Parameter Manganese, Dissolved	Units ug/L	Conc. 1000 5400 MS	MSD	969 885401	% Rec	Limits	Q		-	Max	
Parameter Manganese, Dissolved	Units ug/L SPIKE DUPLICATE: 888	Conc. 1000 5400 MS 01 Spike	Result	969	% Rec 97	Limits 80	Q	Qualifiers % Rec Limits	RPD	Max RPD	Qual

Date: 10/13/2011 02:24 PM

REPORT OF LABORATORY ANALYSIS

Page 11 of 15

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

Project: Pace Project No.:	SHEPHERD AND 60107338	KELSEY NO. 1 E						
QC Batch: QC Batch Method:			Analysis Met Analysis Des		M 2540C 540C Total Dissolve	ed Solids		
Associated Lab Sar		8001, 60107338002						
METHOD BLANK:	885645		Matrix:	Water				
Associated Lab Sar	nples: 60107338	8001, 60107338002						
Parar	neter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers		
Total Dissolved Soli	ds	mg/L	ND	5.0	10/04/11 10:30			
SAMPLE DUPLICA	TE: 885646							
			60107201002	Dup		Max		
Parar	neter	Units	Result	Result	RPD	RPD	Qualifiers	
Total Dissolved Soli	ds	mg/L	1540	1550	0	17		

Date: 10/13/2011 02:24 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 12 of 15

ce Analytical www.pacelabs.com

QUALITY CONTROL DATA

 \wedge

Project:	SHEPHERD AN	D KELSEY NO. 1 E										
Pace Project No.:	60107338		·									
QC Batch:	Batch: WET/31340			hod: SI	SM 2540C							
QC Batch Method:	C Batch Method: SM 2540C		Analysis Des	cription: 25	640C Total Dissolv	ed Solids						
Associated Lab Sam	nples: 6010733	38003, 60107338004										
METHOD BLANK:	886301		Matrix:	Water								
Associated Lab Sam	ples: 601073	38003, 60107338004										
			Blank	Reporting								
Parameter Ur		Units	Result	Limit	Analyzed	Qualifiers	_					
Total Dissolved Solid	is .	mg/L	ND	5.0	10/05/11 11:35							
SAMPLE DUPLICAT	E: 886302											
			60107419001	Dup		Max						
Param	ieter	Units	Result	Result	RPD	RPD `	Qualifiers					
Total Dissolved Solid	ls	mg/L	1010	1030	· 1	17						
SAMPLE DUPLICAT	E: 886303											
			60107344002	Dup		Max						
Param	leter	Units	Result	Result	RPD	RPD	Qualifiers					

26000

29200

11

17

mg/L

Date: 10/13/2011 02:24 PM

Total Dissolved Solids

REPORT OF LABORATORY ANALYSIS

Page 13 of 15

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

e Analytica

QUALIFIERS

Project: SHEPHERD AND KELSEY NO. 1 E Pace Project No.: 60107338

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

Date: 10/13/2011 02:24 PM

REPORT OF LABORATORY ANALYSIS

Page 14 of 15

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

e Analytical [•] www.pacelabs.com

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: SHEPHERD AND KELSEY NO. 1 E Pace Project No.: 60107338

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch		
60107338001	GW-074930-092911-CB-006	EPA 3010	MPRP/15526	EPA 6010	ICP/13479		
60107338002	GW-074930-092911-CB-007	EPA 3010	MPRP/15526	EPA 6010	ICP/13479		
60107338003	GW-074930-092911-CB-008	EPA 3010	MPRP/15526	EPA 6010	ICP/13479		
60107338004	GW-074930-092911-CB-009	EPA 3010	MPRP/15526	EPA 6010	ICP/13479		
60107338001	GW-074930-092911-CB-006	SM 2540C	WET/31312				
60107338002	GW-074930-092911-CB-007	SM 2540C	WET/31312				
60107338003	GW-074930-092911-CB-008	SM 2540C	WET/31340				
60107338004	GW-074930-092911-CB-009	SM 2540C	WET/31340				

Date: 10/13/2011 02:24 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 15 of 15

.

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGA: DOCUMENT. All relevant fields must be completed accurately.

any: CRA 6121 Indian School Rd NE, Ste 200 Albequerque, NM 87110 To: cmathews@craworld.com	Report To: C		Mathews				Section C Invoice Information:					_						- All and a second s						
Albequerque, NM 87110 To: cmathews@craworld.com	Copy To: K					•	^	ttention:	EN	IFOS														
To: cmathews@craworld.com							c	Company N	ame:							RE	GULA	TOR	Y AG	ENC	1		en angen en se desette in tra-	
							-	Adoress:							T NPDES CROUND WATER T DRINKING WATER									
* (EDE)004 0070 Eex: (EDE)004 4000	Purchase Ord	ler No.:												UST	-	Г. F				OTHER				
e: (505)884-0672 Fax: (505)884-4932	Project Name	She	pherd and	Kelsey No	.1			Pace Project Colleen Koporc						s	ite Loc	ation		~ 644						
ested Due Date/TAT: standard	Project Numb	er. O	749	130			P	ace Profile #	* 53	41, 4							ST	ATE:		ŇM				
													1	Req	ueste	d Ana	ilysis	Filter	ed (Y	′/N)				
Section D Valid Matrix (Required Client Information <u>MATRIX</u> ORINKING WATER WATER	CODE DW WT	codes to left) C=COMP)		COLLEC			NO		Pre	serva	atives		¥1 N 1	_										
WASTE WASTE PRODUCT SOU/SOLD OIL OIL OIL WIPE AR		(see valid (G=GRAB	COMPO: STAR		ENDER		T COLLECTION	ERS					est l	d Mn							ine (V/M)			
(A-Z, 0-97,-) OTHER Sample IDs MUST BE UNIQUE TISSUE	OT TS	MATRIX CODE SAMPLE TYPE					APLE TEMP A	# OF CONTAINERS Unpreserved	H ₂ SO4 HNO3	₹	NaUT Na2S203	Methanol Other	lysis T	0 Dissolved Mn	0 BTEX						Basidual Chlorina (V/M)	6	000	7330
			DATE	TIME	DATE	TIME	_		HNO ₃	되			4	60		<u> </u>							e Project	No./ Lab I.C
1-0749 30-092911-C						1605		<u>5X</u>	X	X	3	069	$H \mid$	K	X	41	BP	34	1E	323	\mathcal{N}^{h}	1		01
GW-074430-092911-CB.	007 1	ΠG			.29.11			<u>5 x</u>	X	X		\prod		_X	[X] ₂	4								DOL
Qw-074930-092911-CI Gw-074930-092911-CI	-008 h	ΠG				1645		<u>SIX</u>	_ X́	X	\square			_ <u> X</u>	X)			_						23
<u><u><u></u><u></u><u><u></u><u></u><u></u><u><u></u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u></u>	5-009 M	ng			·24·4			<u>5</u> X	X					_ <u> X</u>	X2	<u>× </u>		4						04
<u>GW-074930-092911-C</u> TR-092911-001						1705		3		X X		D09 D39			X X	+	┝╌┠╸	+	\square		┝╌┠╸			200
		∕⊈			<u>.24.11</u>	1715			+	4	-4	X79	17				┟╌╌┠╌╸	+	┝──┼		$\left \right $	+	· · · · · · · · · · · · · · · · · · ·	
·····								-++	+-							+	\vdash	+	\vdash					
· · · · · · · · · · · · · · · · · · ·								-++			+		1				┝┈┼╴	+	\vdash		┝─╂─			
							-						1 1		┾╾┼╴	+		+	\vdash	-		1		
							╋						1 t								┝╌╂╌			
· · · · · · · · · · · · · · · · · · ·							╋	— i — t								+			+			-		
ADDITIONAL COMMENTS	F	ELINQUIS	SHED BY /	FFILIATION		DATE		TIME		11	AC	CEPTE	DBYI	AFFILI/	TION		DA	TE		ME	····	SAM	PLE CONDI	TIONS
le MDLs on report, - J-flag	-	XX				9.30.1	10	5730	-	D	on	1/0	m				0-1-		300	200	40	TY		X
Metals were filtered	$\overline{\mathbf{S}}$	- 74		·		1.0011		0100	7		- 9							-4	-0-	<u> </u>	1.0	<u> </u>	-/	
																	1					-	1	1
in tield									+											۰.		+	 .	
<u> </u>			T	SAMPLER I	NAME A	ND SIGNAT	URE			~						· · · .	:			4	0	5	Sealed (Y/N)	fact
			ľ	PRI	NT Nam	of SAMPLE	R:	Jasi	<u>sn</u>	Й.	55			·······							Temp in °C	pevie V/V)	er Ste	(N/V)
				SIG	NATURE	of SAMPLE	IR:)/-		_			DATE (MM/0	Signed DD/YY):	9	30.	11			Tem	Received on Ice (Y/N)	Custody Cooler	Samples Intact (Y/N)
*important Note: By signing this form you are accepting	Pace's NET 30 c	lay paymen	t terms and ag	preeing to late c	harges of	1.5% per mont	h for a	Invievoices	not paid	within	30 days										F-ALL	-Q-020rev.	08, 12-Oct-	

. •

. . .

. • ..•

Sample Cond	ition	Upon Receipt			
Pace Analytical [®] Client Name: <u>CR</u>	A	P	Project #	(2010-73	.28
Courier: AFed Ex UPS USPS Client Comme Tracking #! State 46738 Pace Shipping Labe Custody Seal on Cooler/Box Present: Yes No			No Proj. I Proj. Mo	Due Date: 1012	111
Packing Material: Bubble Wrap Bubble Bags	bam	None Dther	ZPIC		
Thermometer Used: (1-191)/ 1-194 Type of Ice:	Wet	Blue None	Samples on ice, c	coling process has	begun
Cooler Temperature: 4.0 Temperature should be above freezing to 6°C			Date and Initials contents:	of person examini 	ing
Chain of Custody present:	□n/a	1.			
Chain of Custody filled out:		2.	·	-	
Chain of Custody relinquished:		3			
Sampler name & signature on COC:		4			
Samples arrived within holding time:	□n/a	5			
Short Hold Time analyses (<72hr):		6			
Rush Turn Around Time requested:		7			
Sufficient volume:		8.			
Correct containers used:	⊡n/A	9.			
-Pace containers used:	⊡n/a		·		
Containers intact: //Yes DNo		10.			
Unpreserved 5035A soils frozen w/in 48hrs?	ØN/A	11.			
Filtered volume received for dissolved tests	ZIN/A	12.			
Sample labels match COC:	⊡n/A	13.			
-Includes date/time/ID/analyses Matrix:					
All containers needing preservation have been checked.	⊡n/A	14.			
All containers needing preservation are found to be in Compliance with EPA recommendation.	⊡n/a				
Exception: VOA coliform, TOC, O&G, WI-DRO (water), Phenolics			Lot # of added preservative		
Trip Blank present:	⊡n/A	15.			
Pace Trip Blank lot # (if purchased): 0922/1-3		4.0	·		
Headspace in VOA vials (>6mm):		16.			1
Project sampled in USDA Regulated Area:		17. List State:		· · · · · · · · · · · · · · · · · · ·	B.
Client Notification/ Resolution: Copy COC to Client?	Y	· I GP	Field Data Requir	ed? Y /	N Allha
Person Contacted:	Date/T	ime:			Jun
Comments/ Resolution:					
				· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·					
Project Manager Review:			Date:	013/11	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)