1R - 277

AGWMR

01/30/2013

USPS DELIVERY CONFIRMATION # 420 87505 9101 9690 0094 0558 4796 79

January 30, 2013

Mr. Glenn Von Gonten New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division – Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505

SUBJECT: 2012 ANNUAL GROUNDWATER MONITORING REPORT

FORMER UNOCAL SOUTH VACUUM UNIT

NMOCD CASE No. 1R-277

SECTION 36, TOWNSHIP 18 SOUTH, RANGE 35 EAST

LEA COUNTY, NEW MEXICO

Dear Mr. Von Gonten:

Enclosed is the 2012 Annual Groundwater Monitoring Report for the Former Unocal South Vacuum Unit site located in Lea County, New Mexico (hard copy and compact disk). Chevron Environmental Management Company has been managing the groundwater monitoring activities for the site since their acquisition of Unocal Corporation in 2005.

Please contact me at 432-638-8740, Mr. John MacLeod (Chevron EMC) at 925-842 2477, or Dana Koschel (Arcadis) at 714-508-2664 if you have any questions or comments.

Sincerely,

Gilbert J. Van Deventer, REM, PG Trident Environmental – Odessa, TX

Attachments

xc: John MacLeod, Chevron EMC (San Ramon CA)

Dana Koschel, Arcadis U.S., Inc. (Irvine CA) Geoffrey Leking, NMOCD District 1 (Hobbs NM) 2012 ANNUAL GROUNDWATER MONITORING REPORT FORMER UNOCAL SOUTH VACUUM UNIT NMOCD CASE No. 1R-277 SECTION 36, TOWNSHIP 18 SOUTH, RANGE 35 EAST LEA COUNTY, NEW MEXICO

JANUARY 30, 2013

Prepared For:

Chevron Environmental Management Company 6101 Bollinger Canyon Rd. San Ramon, CA 94583

Prepared By:

P. O. Box 12177 Odessa, Texas 79768

2012 Annual Groundwater Monitoring Report Former Unocal South Vacuum Unit NMOCD Case NO. 1R-277 Section 36, Township 18 South, Range 35 East Lea County, New Mexico

Prepared for:

Chevron Environmental Management Company

6101 Bollinger Canyon Road San Ramon, CA 94583

Prepared by:

Trident Environmental

P. O. Box 12177 Odessa, Texas 79768 (432) 638-8740 FAX (413) 403-9968

SUBMITTED BY:

Gilbert J. Van Deventer, PG, REM

Project Manager

DATE:

01/30/2013

TABLE OF CONTENTS

1.0	Executi	ive Summary	1
2.0	Ground	lwater Sampling Procedures	3
3.0	Ground	water Elevations, Hydraulic Gradient and Flow Direction	3
4.0	Ground	water Quality Conditions	8
5.0	Fate an	d Transport Modeling Results	12
6.0	Conclu	sions	13
7.0	Recom	mendations	14
Table 1		TABLES Summary of Groundwater Elevations and Chloride and TDS Concentrations	5
rable 1		FIGURES	.,,
Figure	1	Groundwater Elevation Map	4
Figure 2	2	Groundwater Elevation Versus Time Graph	7
Figure 3	3	Chloride Concentration Map (2012)	9
Figure 4	4	TDS Concentration Map (2012)	10
Figure 5	5	Chloride Concentrations Versus Time (MW-1 through MW-6)	11
Figure (6	TDS Concentrations Versus Time (MW-1 through MW-6)	11
		APPENDICES	
Append	lix A	Laboratory Analytical Reports and Chain-of-Custody Documentation	
Append	lix B	Monitoring Well Sampling Data Forms	
Append	lix C	Chloride and TDS Plume Simulations	
Append	lix D	Description of Fate and Transport Modeling	

1.0 Executive Summary

Trident Environmental (Trident) was retained by ARCADIS U. S., Inc. (ARCADIS), on behalf of Chevron Environmental Management Company (Chevron EMC), to perform the 2012 annual groundwater sampling and monitoring operations at the Former Unocal South Vacuum Unit (site), which is located at township 18 south, range 35 east, section 36 in Lea County, New Mexico. Chevron EMC is managing Unocal's environmental liability at the site. This report documents the 2012 annual sampling event performed by Trident on August 2, 2012. This report contains the historical groundwater elevation and analytical data from monitoring wells MW-1 through MW-6. The sampling event was conducted in accordance with the November 2, 2000 Groundwater Remediation Plan submitted by Unocal and the requirements specified in the New Mexico Oil and Conservation Division (OCD) letter dated February 8, 2001.

Based on the sampling and monitoring data to date, the following conclusions relevant to groundwater conditions at the Former Unocal South Vacuum Unit are evident:

- Chloride and total dissolved solids (TDS) concentrations in MW-1 (near the source area) have generally decreased since 1996, with the exception of some fluctuations since the 2004 sampling event. Similarly, chloride and TDS levels have decreased significantly in the closest downgradient well, MW-4, since 1999 when that well was installed and have remained relatively stable since 2007. Chloride and TDS concentrations in upgradient well MW-3 have shown slight but steadily increasing trends since 2000 indicating a possible offsite, upgradient contributing source of these constituents. Chloride and TDS concentrations in the remaining wells (MW-2, MW-5, and MW-6) have remained relatively consistent with previous levels.
- The fate and transport modeling results continue to support the conclusion that the chloride and TDS plume is not likely to impact existing sources of water supply, the closest of which, a livestock (windmill) well located over one-half mile south of the source. The windmill has been dismantled and is no longer in operation due to declining water levels in the area.
- According to conservative model simulations, the chloride plume will travel a maximum of 3,200 feet southeast of the source in approximately 145 years before concentrations return to levels below the New Mexico Water Quality Control Commission (WQCC) standard of 250

milligrams per liter (mg/L). The same analysis indicates that the TDS plume will travel only 2,200 feet in approximately 82 years before concentrations return to levels below the WQCC standard of 1,000 mg/L.

- Based on the modeling results and predicted natural attenuation processes (advection and dispersion), there will be no adverse impact to human health and the environment nor will the livestock well exceed WQCC standards for chlorides or TDS due to the plume originating and traveling southeast, versus south, from the former saltwater disposal pit.
- Groundwater elevations have steadily decreased at a rate of approximately 0.3 feet per year since the initial sampling event of monitoring well MW-1 in January 1995; with the exception of the 2005 sampling event due to higher than normal rainfall during 2004 and 2005. The decreasing groundwater elevation trend has resumed since 2005.

Effective remedial actions of the source area were performed by Unocal, which include plugging of the SWD well in 1971 and encapsulating the former saltwater disposal pit with solidification material in 1995, thus preventing any continued release from the source. Based on the identified potential receptor and fate and transport modeling results, the chloride/TDS plume at the site presents low risk to human health and the environment; therefore Trident recommends the following actions:

- Continue the annual groundwater monitoring program with groundwater sampling and analysis of chloride and TDS concentrations for each of the six monitoring wells.
- Update flow and transport model to confirm the plume is naturally attenuating as described.
- Submit the 2013 annual groundwater monitoring report to OCD in January 2014 to document natural attenuation conditions.

2.0 Groundwater Sampling Procedures

On August 2, 2012, each of the six monitoring wells, MW-1 through MW-6, was gauged for depth to groundwater using a Solinst Model 101 electronic water indicator immediately prior to purging operations. A total of 33 gallons of groundwater was purged from the site monitoring wells (4 to 10 gallons per well) using a 3-stage submersible pump which was decontaminated using an Alconox solution and a distilled water rinse between sampling points. Groundwater parameters (pH, temperature, and conductivity) were measured using a Hanna Model #98130 multimeter until a minimum of three wells volumes was purged from each well. Water samples from each monitoring well were transferred into 1,000 milliliter (ml) plastic containers for laboratory analysis of chloride using EPA Method SM-4500-Cl-C and TDS using EPA Method SM-2540-C. For each set of samples, chain of custody forms documenting sample identification numbers, collection times, and delivery times to the laboratory were completed. All water samples were placed in an ice-filled cooler immediately after collection and transported to Eurofins Lancaster Laboratories (Lancaster, PA) for analysis.

3.0 Groundwater Elevations, Hydraulic Gradient and Flow Direction

Depth to groundwater varies from 51.89 feet (ft) below top of casing (btoc) at MW-2 to 72.72 ft at MW-6 below ground surface. Groundwater elevations are summarized in Table 1, and a groundwater gradient map depicting the direction of groundwater flow is illustrated in Figure 1. A historical groundwater elevation graph is shown in Figure 2. The groundwater gradient direction is to the southeast with a hydraulic gradient of approximately 0.004 ft/ft. According to published reports (*Ground-Water Conditions in Northern Lea County, New Mexico*, Ash, 1963 and *Geology and Ground-Water Conditions in Southern Lea County, New Mexico*, Nicholson and Clebsch, 1961) the groundwater encountered at the site is that of the Tertiary-aged Ogallala Formation. The Ogallala Formation unconformably overlies the impermeable red-beds of the Triassic Chinle Formation at an elevation of approximately 3,700 ft above mean sea level (AMSL). Based on the current groundwater elevations measured on site and published data referenced, the saturated thickness of the Ogallala Formation at the site ranges from approximately 86 to 95 feet.

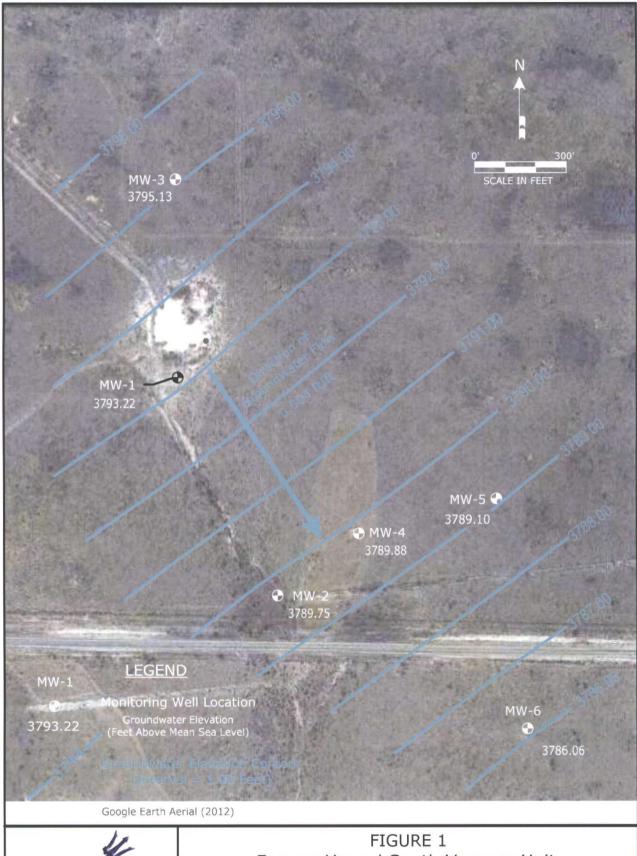


FIGURE 1
Former Unocal South Vacuum Unit
Groundwater Gradient Map
August 2, 2012

Table 1
Summary of Groundwater Sampling Results

Summary of Groundwater Sampling Results									
Maniferentin	Camer 11	Ch.l!	TDC	Depth to	Top of Casing	Groundwater			
Monitoring	Sampling	Chloride	TDS	Groundwater	Elevation	Elevation			
Well	Date	(mg/L)	(mg/L)	(feet BTOC)	(feet AMSL)	(feet AMSL)			
	01/27/1995	1174	2250	59.57	3858.37	3798.80			
	05/18/1995	983	2251	61.30	3858.37	3797.07			
	08/28/1996	1420	2730	61.57	3858.37	3796.80			
1	08/13/1997	1400	2800	61.75	3858.37	3796.62			
	09/30/1999	1094	2318	62.51	3858.37	3795.86			
	06/14/2000	927	2040	62.85	3858.37	3795.52			
	06/18/2001	813	1790	63.07	3858.37	3795.30			
	07/11/2002	784	1680	63.28	3858.37	3795.09			
N07 1	07/02/2003	715	2090	63.66	3858.37	3794.71			
MW-1	08/12/2004	628	2050	63.83	3858.37	3794.54			
	08/10/2005	774	1830	62.62	3858.37	3795.75			
	07/31/2006	860	2010	62.90	3858.37	3795.47			
	07/27/2007	732	1790	63.43	3858.37	3794.94			
	08/26/2008	895	1960	63.95	3858.37	3794.42			
	07/15/2009	852	2300	64.25	3858.37	3794.12			
	07/13/2010	934	2590	64.51	3858.37	3793.86			
	07/14/2011	824	2370	64.74	3858.37	3793.63			
	08/02/2012	854	2740	65.15	3858.37	3793.22			
	09/30/1999	298	922	49.51	3841.64	3792.13			
	06/14/2000	317	852	49.81	3841.64	3791.83			
	06/18/2001	288	878	50.06	3841.64	3791.58			
	07/11/2002	284	808	50.29	3841.64	3791.35			
1	07/02/2003	268	859	50.63	3841.64	3791.01			
	08/12/2004	451	931	50.81	3841.64	3790.83			
MW-2	08/10/2005	355	844	49.58	3841.64	3792.06			
14144 2	07/31/2006	401	922	49.83	3841.64	3791.81			
	07/27/2007	430	984	50.33	3841.64	3791.31			
	08/26/2008	354	980	50.80	3841.64	3790.84			
ļ	07/15/2009	482	1060	51.04	3841.64	3790.60			
	07/13/2010	494	1070	51.37	3841.64	3790.27			
	07/14/2011	486	974	51.53	3841.64	3790.11			
	08/02/2012	531	1110	51.89	3841.64	3789.75			
	09/30/1999	73.6	427	66.74	3864.73	3797.99			
	06/14/2000	75.5	433	67.01	3864.73	3797.72 3797.44			
	06/18/2001	86.4	495	67.29	3864.73 3864.73	3797.44 3797.14			
	07/11/2002	103	509	67.59 67.04		3797.14 3796.79			
	07/02/2003	98.3	588	67.94 68.07	3864.73	3796.79 3796.66			
1	08/12/2004 08/10/2005	111 122	605 533	66.81	3864.73 3864.73	3797.92			
MW-3	08/10/2003	141	619	67.21	3864.73	3797.52			
	07/31/2006	164	705	67.21	3864.73	3796.94			
1	08/26/2008	185	703 592	68.30	3864.73	3796.43			
	08/26/2008	199	766	68.50	3864.73	3796.23			
	07/13/2009	207	859	68.52	3864.73	3796.23			
	07/13/2010	207	839 816	69.19	3864.73	3790.21			
1	08/02/2012	203		69.19	3864.73	3795.13			
<u> </u>	U8/U2/2012		1010	עס.עט ן	3004./3	3/93.13			

Continued on next page

Former Unocal South Vacuum Unit (1R0277)

Table 1
Summary of Groundwater Sampling Results

Summary of Groundwater Sampling Results									
Monitoring	Sampling	Chloride	TDS	Depth to	Top of Casing	Groundwater			
Well	Date	(mg/L)	(mg/L)	Groundwater	Elevation	Elevation			
W C	Date	(mg/L)	(IIIg/L)	(feet BTOC)	(feet AMSL)	(feet AMSL)			
	09/30/1999	1576	2981	60.18	3852.51	3792.33			
1	06/14/2000	1500	2910	60.55	3852.51	3791.96			
	06/18/2001	1530	3180	60.78	3852.51	3791.73			
	07/11/2002	1290	2660	60.98	3852.51	3791.53			
	07/02/2003	1250	2610	61.34	3852.51	3791.17			
	08/12/2004	1130	2480	61.50	3852.51	3791.01			
MW-4	08/10/2005	1050	2230	60.25	3852.51	3792.26			
101 00 -4	07/31/2006	926	2030	60.51	3852.51	3792.00			
	07/27/2007	758	1940	61.04	3852.51	3791.47			
	08/26/2008	720	1790	61.55	3852.51	3790.96			
	07/15/2009	632	1780	61.83	3852.51	3790.68			
	07/13/2010	687	1750	62.11	3852.51	3790.40			
	07/14/2011	707	1600	62.29	3852.51	3790.22			
	08/02/2012	804	1760	62.63	3852.51	3789.88			
	06/14/2000	13.7	274	68.57	3859.84	3791.27			
	06/18/2001	13.6	322	68.80	3859.84	3791.04			
	07/11/2002	15.5	308	68.98	3859.84	3790.86			
	07/02/2003	12.5	359	69.32	3859.84	3790.52			
	08/12/2004	15.3	375	69.46	3859.84	3790.38			
	08/10/2005	14.9	309	68.15	3859.84	3791.69			
MW-5	07/31/2006	13.3	290	68.52	3859.84	3791.32			
	07/27/2007	14.9	296	69.07	3859.84	3790.77			
	08/26/2008	13.6	296	69.61	3859.84	3790.23			
	07/15/2009	13.4	291	69.91	3859.84	3789.93			
	07/13/2010	12.6	291	70.19	3859.84	3789.65			
	07/14/2011	13.8	265	70.35	3859.84	3789.49			
	08/02/2012	13.8	290	70.74	3859.84	3789.10			
	06/14/2000	48.0	382	70.79	3858.78	3787.99			
	06/18/2001	50.8	431	70.98	3858.78	3787.80			
	07/11/2002	50.0	422	71.26	3858.78	3787.52			
	07/02/2003	46.5	471	71.52	3858.78	3787.26			
	08/12/2004	55.1	410	71.62	3858.78	3787.16			
1000	08/10/2005	55.0	391	70.33	3858.78	3788.45			
MW-6	07/31/2006	52.4	412	70.64	3858.78	3788.14			
	07/27/2007	75.3	516	71.15	3858.78	3787.63			
	08/26/2008	88.5	548	71.61	3858.78	3787.17			
	07/15/2009	81.4	532	71.90	3858.78	3786.88			
	07/13/2010	84.1	545	72.20	3858.78	3786.58			
1	07/14/2011	89.2	531	72.37	3858.78	3786.41			
W	08/02/2012	93.8	550	72.72	3858.78	3786.06			
WQCC	Standards	250	1000	J					

Total Dissolved Soilds (TDS) and chloride concentrations listed in milligrams per liter (mg/L)

Analyses performed by Trace Analysis Inc. (1995-1998), SPL, Inc. (1999-2005), and Lancaster Laboratories (2006-2011).

Values in boldface type indicate concentrations exceed New Mexico Water Quality Commission (WQCC) standards.

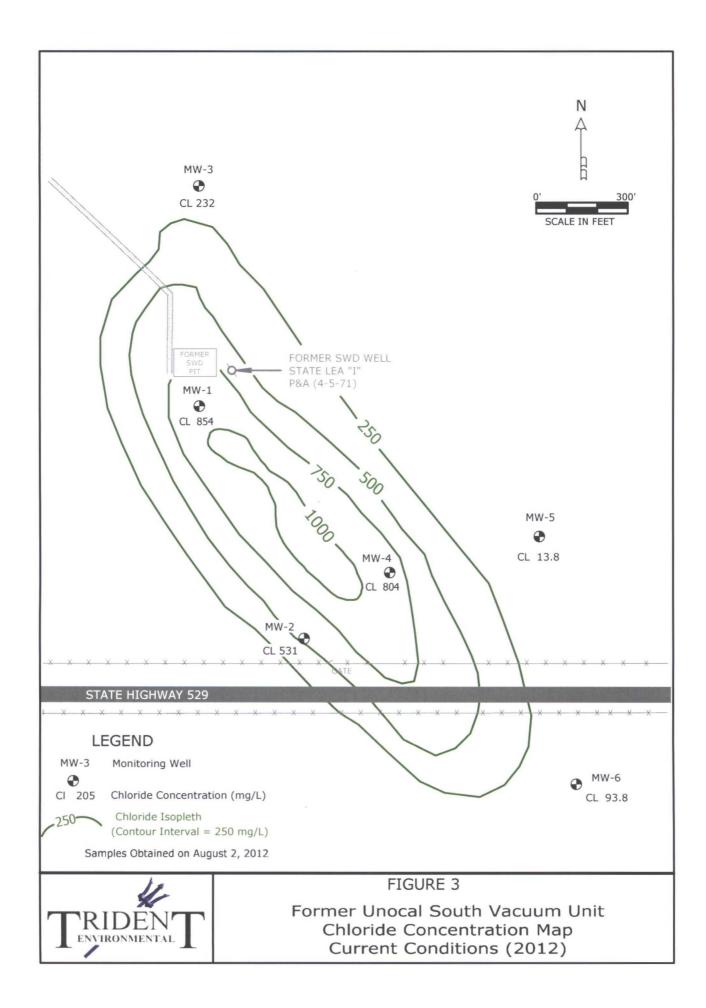
AMSL - Above Mean Sea Level; BTOC - Below Top of Casing

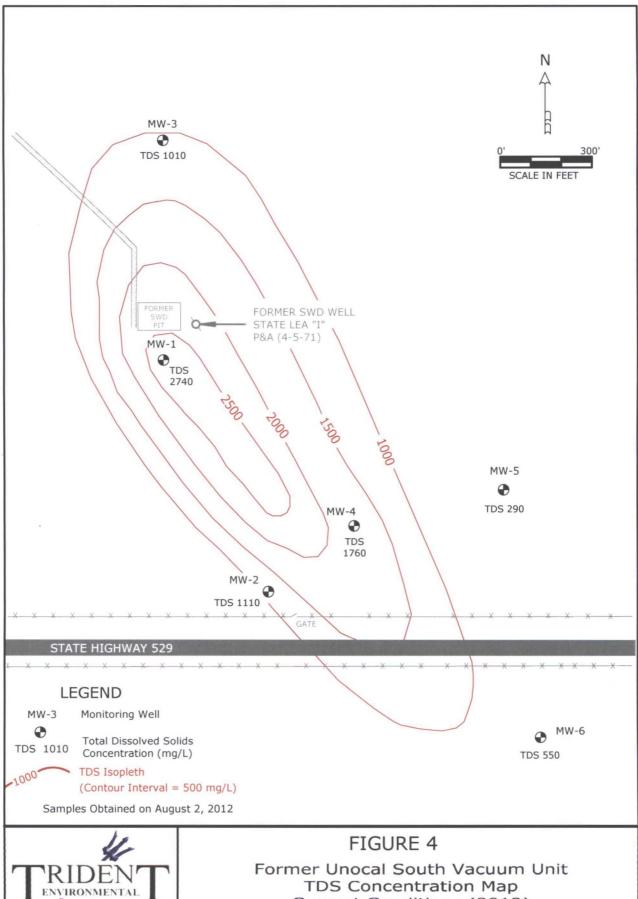
Groundwater flow direction is to the southeast with a gradient of approx. $0.004\ ft/ft$.

Elevations and state plane coordinates surveyed by Basin Surveys, Hobbs, NM.

3800 3799 3798 3797 Groundwater Elevation (feet AMSL) 3796 **─**MW-1 3795 **─**MW-2 3794 MW-3 3793 3792 **-x-** MW-4 3791 **→** MW-5 3790 3789 3788 3787 3786 3785 Jan-95 Jan-06 Jan-96 Jan-97 Jan-98 Jan-99 Jan-00 Jan-02 Jan-03 Jan-04 Jan-05 Jan-07 Jan-08 Jan-12 Jan-13 Jan-09 Jan-10 Jan-01 Jan-11 Year

Figure 2
Historical Groundwater Elevations

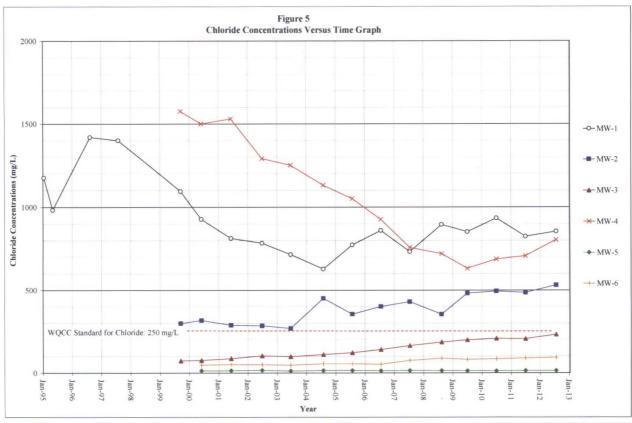

4.0 Groundwater Quality Conditions

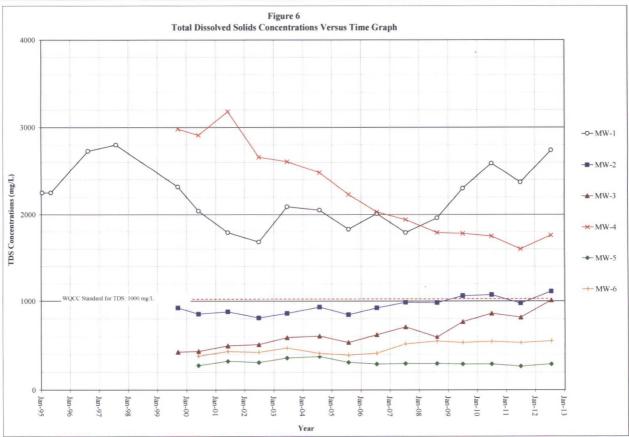

Groundwater sample analytical results are presented in Table 1 with the WQCC standards shown for comparison. Those constituents that indicate concentrations above the WQCC standards are highlighted in boldface type. The WQCC standard of 250 mg/L for chloride was exceeded in MW-1 (854 mg/L), MW-2 (531 mg/L), and MW-4 (804 mg/L). The WQCC standard of 1,000 mg/L for TDS was exceeded in MW-1 (2,740 mg/L), MW-2 (1,110 mg/L), MW-3 (1,010 mg/L), and MW-4 (1,760 mg/L). The groundwater samples obtained from downgradient wells MW-5 and MW-6 had chloride and TDS concentrations below WQCC standards.

The most recent chloride and TDS concentrations, and estimated isopleths are depicted graphically as Figures 3 and 4, respectively. Graphs depicting historical chloride and TDS concentrations in monitoring wells MW-1 through MW-6 are shown in Figures 5 and 6.

Chloride and TDS concentrations in MW-1, near the source area, have generally decreased since 1996 with the exception of some fluctuations since the 2004 sampling event. Similarly, chloride and TDS levels have steadily decreased in the closest downgradient well, MW-4, since 1999 when that well was installed. This indicates that encapsulating the former saltwater disposal pit with solidification material in 1995, has significantly reduced the threat of any continued release from the source.

Monitoring well MW-3 has exhibited steady increases in chloride and TDS concentrations since 2000, which suggests a possible offsite source of chlorides and TDS located upgradient (northwest) from the site. The chloride (232 mg/L) and TDS (1,010 mg/L) detected in MW-3 during the 2012 monitoring event are the two highest since 1999. Chloride and TDS levels in MW-2, MW-5, and MW-6 have remained relatively consistent with previous years.





Current Conditions (2012)

5.0 Fate and Transport Modeling Results

Fate and transport modeling was performed by Trident to simulate the movement of the chloride and TDS groundwater plume over time. Simulations were conducted using the two-dimensional groundwater flow and contaminant transport model WinTran, version 1.03 (1995) designed and distributed by Environmental Simulations, Inc. (ESI) of Herndon, Virginia. WinTran is built around a steady-state analytical element flow model, linked to a finite element contaminant transport model. A more detailed discussion of the flow and transport parameters used, assumptions, model calibrations, and simulation results are described in Appendix D.

Figures displaying modeled simulations of the chloride and TDS plumes over various time increments are included in Appendix C. Advective flow moves the center of plume mass downgradient as depicted in the simulations. The simulations also demonstrate how hydrodynamic dispersion serves to broaden the dimensions of the plume while reducing the concentrations in the middle of the plume.

Continued attenuation by dilution and dispersion of the plume, after the maximum chloride and TDS concentrations decrease to levels below WQCC standards, are shown in the final simulation for each constituent of concern (year 2157 for chloride and year 2094 for TDS). In the year 2157, the center of the chloride plume is approximately 3,200 ft away from the pit and well source. The center of the TDS plume is approximately 2,200 ft away from the pit and well source in the year 2094.

The portions of the chloride and TDS plumes that are above WQCC standards do not reach any of the identified potential receptors at any time during their attenuation, the closest of which is a livestock (windmill) well (NM File No. L05339) located over one-half mile south of the source. The windmill has been dismantled and is no longer in operation due to declining water levels in the area. The results of the updated fate and transport model are consistent with those determined in previous annual reports.

6.0 Conclusions

Conclusions relevant to groundwater conditions and the remediation performance at the Former Unocal South Vacuum Unit are presented below.

- Chloride and TDS concentrations in MW-1 (near the source area) have generally decreased since 1996, with the exception of some fluctuations since the 2004 sampling event. Similarly, chloride and TDS levels have significantly decreased in the closest downgradient well, MW-4, since 1999 when that well was installed and have remained relatively stable since 2007. Chloride and TDS concentrations in upgradient well MW-3 have shown slight but steadily increasing trends indicating a possible offsite, upgradient contributing source of these constituents. Chloride and TDS concentrations in the remaining wells (MW-2, MW-5, and MW-6) have remained relatively consistent with previous levels.
- The fate and transport modeling results continue to demonstrate that the chloride and TDS plume is not likely to impact existing sources of water supply, the closest of which, a livestock (windmill) well located over one-half mile south of the source. The windmill has been dismantled and is no longer in operation due to declining water levels in the area and the shallow depth of the well.
- According to conservative model simulations, the chloride plume will travel a maximum of 3,200 ft southeast of the source in approximately 145 years before concentrations return to levels below the WQCC standard of 250 mg/L. The same analysis indicates that the TDS plume will travel only 2,200 ft in approximately 82 years before concentrations return to levels below the WQCC standard of 1,000 mg/L.
- Based on the modeling results and predicted natural attenuation processes (advection and dispersion), there will be no adverse impact to human health and the environment nor will the livestock well exceed WQCC standards for chlorides or TDS due to the plume originating and traveling southeast, versus south, from the former saltwater disposal pit.
- Groundwater elevations have steadily decreased at a rate of approximately 0.3 feet per year
 since the initial sampling event of monitoring well MW-1 in January 1995; with the
 exception of the 2005 sampling event. The recent rise may be attributed to higher than
 normal rainfall during 2004 and 2005. The decreasing groundwater elevation trend has
 resumed since 2005.

7.0 Recommendations

Effective remedial actions of the source area were performed by Unocal, which include plugging of the SWD well in 1971 and encapsulating the former saltwater disposal pit with solidification material in 1995, thus preventing any continued release from the source. Based on the identified potential receptor and fate and transport modeling results, the chloride/TDS plume at the site presents low risk to human health and the environment; therefore Trident recommends the following actions:

- Continue the annual groundwater monitoring program with groundwater sampling and analysis of chloride and TDS concentrations for each of the six monitoring wells.
- Update flow and transport model to confirm the plume is naturally attenuating as described.
- Submit the 2013 annual groundwater monitoring report to OCD in January 2014 to document natural attenuation conditions.

APPENDIX A

Laboratory Analytical Report
And
Chain-of-Custody Documentation

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 Chevron Environmental Mgmt Co 6101 Bollinger Canyon Road San Ramon CA 94583

August 10, 2012

Project: Former Unocal South Vacuum Unit, Lea County, NM

Submittal Date: 08/04/2012 Group Number: 1326609 PO Number: 0015097476 Release Number: MACLEOD State of Sample Origin: NM

Client Sample Description	Lancaster Labs (LLI) #
MW-1 Grab Water Sample	6744300
MW-2 Grab Water Sample	6744301
MW-3 Grab Water Sample	6744302
MW-4 Grab Water Sample	6744303
MW-5 Grab Water Sample	6744304
MW-6 Grab Water Sample	6744305

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC	ARCADIS	Attn: Mark M. Miller
COPY TO		
ELECTRONIC	ARCADIS	Attn: Allen Just
COPY TO	·	
ELECTRONIC	Trident Environmental	Attn: Gilbert Van Deventer
COPY TO		
ELECTRONIC	ARCADIS	Attn: Dana Koschel
COPY TO		•
ELECTRONIC	ARCADIS	Attn: Sarah Huff
COPY TO		
ELECTRONIC	ARCADIS	Attn: Robin Simon
COPY TO		

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax:717-656-2681 * www.lancasterlabs.com

Respectfully Submitted,

Katherine A. Klinefelter Principal Specialist

Katherine a. Klinefelter

(717) 556-7256

Lancaster Laboratories

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-1 Grab Water Sample

Former Unocal South Vacuum Unit

Lea County, NM

LLI Sample # WW 6744300

LLI Group # 1326609 Account # 11969

Project Name: Former Unocal South Vacuum Unit, Lea County, NM

Collected: 08/02/2012 12:00

by GV

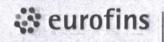
Chevron Environmental Mgmt Co

6101 Bollinger Canyon Road

San Ramon CA 94583

Submitted: 08/04/2012 09:15

Reported: 08/10/2012 10:58


CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
Wet C	hemistry SM20	2540	С	mg/l	mg/l	mg/l	
00212	Total Dissolved Solids		n.a.	2,740	77.6	240	. 1
	SM20	4500	Cl C	mg/l	mg/l	mg/l	
01124	Chloride (titrimetric)		16887-00-6	854	20.0	100	50

General Sample Comments

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
00212	Total Dissolved Solids	SM20 2540 C	1	12221021202A	08/08/2012 09:53	Susan A Engle	1
01124	Chloride (titrimetric)	SM20 4500 C1 C	1	12220112401A	08/07/2012 15:15	Susan A Engle	50

All QC is compliant unless otherwise noted. Please refer to the Quality ntrol Summary for overall QC performance data and associated samples.

Lancaster Laboratories

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-2 Grab Water Sample

Former Unocal South Vacuum Unit

Lea County, NM

LLI Sample # WW 6744301 LLI Group # 1326609

11969 Account

Project Name: Former Unocal South Vacuum Unit, Lea County, NM

Collected: 08/02/2012 11:00

by GV

Chevron Environmental Mgmt Co

6101 Bollinger Canyon Road San Ramon CA 94583

Submitted: 08/04/2012 09:15 Reported: 08/10/2012 10:58

CAT No. Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
Wet Chemistry SM20 2540 00212 Total Dissolved Solids	C n.a.	mg/1 1,110	mg/1 77.6	mg/1 240	1
SM20 4500 01124 Chloride (titrimetric)	C1 C 16887-00-6	mg/1 531	mg/1 20.0	mg/1 100	50

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory	Sample	Anal	vsis	Record
Labor acor y	Jumpic	AMMERIA	7313	MCCOI U

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
	Total Dissolved Solids Chloride (titrimetric)	SM20 2540 C SM20 4500 C1 C	1	12221021202A 12220112401A	08/08/2012 09:53 08/07/2012 15:15		1 50

Lancaster Laboratories

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-3 Grab Water Sample

Former Unocal South Vacuum Unit

Lea County, NM

LLI Sample # WW 6744302

LLI Group # 1326609 Account # 11969

Project Name: Former Unocal South Vacuum Unit, Lea County, NM

Collected: 08/02/2012 10:00

by GV

Chevron Environmental Mgmt Co

6101 Bollinger Canyon Road

San Ramon CA 94583

Submitted: 08/04/2012 09:15

Reported: 08/10/2012 10:58

CAT No.	['] Analysis Name	•	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
Wet CI 00212	hemistry SM20 Total Dissolved Solids	2540	C n.a.	mg/l 1.010	mg/1 38.8	mg/1 120	. 1
01124	SM20 Chloride (titrimetric)	4500	C1 C 16887-00-6	mg/1 232	mg/1 8.0	mg/1 40.0	20

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality outrol Summary for overall QC performance data and associated samples.

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
	Total Dissolved Solids	SM20 2540 C	1	12221021202A	08/08/2012 09:53	Susan A Engle	. 1				
01124	Chloride (titrimetric)	SM20 4500 C1 C	!	12220112401A	08/07/2012 15:15	Susan A Engle	20				

Lancaster Laboratories

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-658-2300 Fax: 717-656-2681 * www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-4 Grab Water Sample

Former Unocal South Vacuum Unit

Lea County, NM

LLI Sample # WW 6744303

LLI Group # 1326609 # 11969 Account

Project Name: Former Unocal South Vacuum Unit, Lea County, NM

Collected: 08/02/2012 13:00

by GV

Chevron Environmental Mgmt Co

6101 Bollinger Canyon Road

San Ramon CA 94583

Submitted: 08/04/2012 09:15 Reported: 08/10/2012 10:58

CAT No. Analysis Name	CAS	As Received Number Result	As Received Method Detection Limit	As Received Limit of Quantitation	Dilution Factor
Wet Chemistry SM20 2 00212 Total Dissolved Solids	2540 C n.a	mg/1 1,760	mg/1 77.6	mg/1 240	1
SM20 4	4500 C1 (mg/1 87-00-6 804	mg/1 20.0	mg/1 100	50

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

T - L	C 1	A 1		D 1
Laboratory	Sample	Analys	15	Kecord

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
	Total Dissolved Solids Chloride (titrimetric)	SM20 2540 C SM20 4500 C1 C	1	12221021202A 12220112401A	08/08/2012 09:53 08/07/2012 15:15	Susan A Engle Susan A Engle	1 50

Lancaster Laboratories

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-656-2681 * www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-5 Grab Water Sample

Former Unocal South Vacuum Unit

Lea County, NM

LLI Sample # WW 6744304 LLI Group # 1326609

Account # 1326609

Project Name: Former Unocal South Vacuum Unit, Lea County, NM

Collected: 08/02/2012 09:00

by GV

Chevron Environmental Mgmt Co

6101 Bollinger Canyon Road

San Ramon CA 94583

Submitted: 08/04/2012 09:15 Reported: 08/10/2012 10:58

CAT No. Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
Wet Chemistry O0212 Total Dissolved Soli	SM20 25	40 C n.a.	mg/1 290	mg/1 9.7	mg/1 30.0	1
01124 Chloride (titrimetri	SM20 450	00 C1 C 16887-00-6	mg/l 13.8	mg/1 0.40	mg/1 2.0	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality ontrol Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
	Total Dissolved Solids	SM20 2540 C	1	12221021202A	08/08/2012 09:53	Susan A Engle	1
	Chloride (titrimetric)	SM20 4500 C1 C	1	12220112401A	08/07/2012 15:15	Susan A Engle	1

Lancaster Laboratories

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-658-2300 Fax; 717-658-2681 * www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-6 Grab Water Sample

Former Unocal South Vacuum Unit

Lea County, NM

LLI Sample # WW 6744305

LLI Group # 1326609 # 11969 Account

Project Name: Former Unocal South Vacuum Unit, Lea County, NM

Collected: 08/02/2012 08:10

by GV

Chevron Environmental Mgmt Co

6101 Bollinger Canyon Road San Ramon CA 94583

Submitted: 08/04/2012 09:15 Reported: 08/10/2012 10:58

CAT No. Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
Wet Chemistry SM20 2540 00212 Total Dissolved Solids	C n.a.	mg/1 550	mg/1 19.4	mg/1 60.0	1
SM20 4500 01124 Chloride (titrimetric)	C1 C 16887-00-6	mg/1 93.8	mg/1 4.0	mg/1 20.0	10

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory	Sample	Analysis	Record
Laboratory	Jampie	miarysis	MCCOI U

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
	Total Dissolved Solids Chloride (titrimetric)	SM20 2540 C SM20 4500 C1 C	1	12221021202A 12220112401A	08/08/2012 09:53 08/07/2012 15:15	Susan A Engle Susan A Engle	1 10

Lancaster Laboratories

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-658-2300 Fax: 717-658-2681 • www.lancasterlabs.com

Page 1 of 1

Quality Control Summary

Client Name: Chevron Environmental Mgmt Co

Reported: 08/10/12 at 10:58 AM

Group Number: 1326609

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank MDL**	Blank LOQ	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 12220112401A Chloride (titrimetric)	Sample num	nber(s): 6	744300-674	4305	98		95-103		
Batch number: 12221021202A Total Dissolved Solids	Sample num N.D.	nber(s): 6 9.7	744300-674 30.0	4305 mg/l	101		80-120		

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD <u>%rec</u>	MS/MSD Limits	RPD	RPD MAX	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD Max
Batch number: 12220112401A · Chloride (titrimetric)	Sample 94	number(s) 95	: 6744300 85-110		D5 UNSP 3	K: P738936 665	BKG: P738936 655	2	5
Batch number: 12221021202A Total Dissolved Solids	Sample 101	number(s)	: 6744300 51-144		05 UNSP	K: 6744300 2,740	BKG: 6744300 2,700	1	9

- *- Outside of specification
- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Environmental Analysis Request/Chain of Custody

🗱 eurofins |

For Lancaster Laboratories use only

Acct. # 11969 Group # 1326609 Sample # 6744300-05 COC # 311976

Laboratories	P	lease print. In:	structio	ons on	revers	e side	e cor	respor	nd with	circle	d numb	ers.		Foot at the Oak		
				\top			П		(5) An	alyse	s Requ	ested	FSC: / S		
Client: Chevron Environmental Man	. Co Acct. #:	11969		.	Matri	-	4)			Pres	ervati	on Coo	les	SCR#: 250/		
Project Name/#: Former Unocal S. Vacuum Unit PWSID #: John Mac Lead (Chevron EMC) Project Manager: Dana Koschel (Arcadis) P.O.#: 125811 Sampler: Gil Van Deventer (Trident Env.) Quote #:				- 1	Ground		of Containers							Preservation Codes H=HCI T=Thiosu N=HNO ₃ B=NaOH S=H ₂ SO ₄ O=Other		samples (9)
	Name of state where samples were collected: NM				able		f Con	de								e of sam t (if requ
Sample Identification	Date Collected	Time Collected	Grab (w	Composite	4	Other:		Chloride	TDS					Remarks		Temperatur upon receip
Mw-1	8-2-12	1200	1		V			/	/					0.6°C	Kmz	
MW-2	8-2-12	1100	1		1			/	1							
Mw-3	8-2-12	1000	1		1			/	1							
MW-4	8-2-12	1300	1		1			1	/							
MW-5	8-2-12	0900	1		1			1	1							
MW-6	8-2-12	0810	/	-	1			/	/					1		
Turnaround Time Requested (TAT) (please of Rush TAT is subject to Lancaster Laboratories appropriate results are needed:			£		Dished	100		2		7	Øate	Tipa	Received by	Rus	Date Vy/12	Time (9 β:ω) ρω
Rush results requested by (please circle): Phone #: 432-638-6740				WI	uished	le	X	4			Date 8/3/1	16:00			Date	Time
E-mail address: g, letndent-environmental, com 8 Data Package Options (please circle if required) EDD Required?			Relinq	uished	by:					Date	Time	Received by		Date	Time	
Type I (Validation/non-CLP) Type III (Reduced non-CLP) MA MCP CT RCP Yes No			Relinq	uished	by.	\	_			Date	Time	Received by	:	Date	Time	
Type IV (CLP SOW) Type VI (Raw Data Only) TX TRP [©] 13 Site-specific QC (if yes, indicate QC sample volume)	C sample and so		F		uished	_		_			Date	Time	Received by	1, 16	Date	Time

The white copy should accompany samples to Lancaster Laboratories. The yellow copy should be retained by the client.

eurofins | Lancaster Laboratories

Environmental Sample Administration Receipt Documentation Log

Client/	Project:	Chevr	on Environ	mental shipping	g Contain	er Sealed: YES	S) NO
Date of	f Receipt:	8.	4-12		Seal Pres	sent * : YES	s) NO
Time o	f Receipt:		115	* Custody	seal was inta	act unless otherwise	
Source	Code:		50-1	di Package	iscrepancy se	ection Chilled	Not Chilled
·	·	·	Temperature of	Shipping Contai	ners		
Cooler #	Thermometer ID	Temperature (*C)	Temp Bottle (TB) or Surface Temp (ST)	Wet Ice (WI) or Dry Ice (DI) or Ice Packs (IP)	Ice Present? Y/N	Loose (L) Bagged Ice (B) or NA	Comments
1	2737	0.0	TB	WI	Y	BRL	
2							
3						,	
4		,	·				
5			;				
6							
		•	OT listed on chain	of custody:)		
		·.	i				
		·					
	· · · · · · · · · · · · · · · · · · ·						
Unpaci	cer Signature	/Emp#:	my l	Mul 22	≬∳ Date/Tir	ne: <u>8-4-1</u>	2 1036

Issued by Dept. 6042 Management

Lancaster Laboratories

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mL	milliliter(s)	Ĺ	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Dry weight basis

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

Data Qualifiers:

C – result confirmed by reanalysis.

J - estimated value - The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).

U.S. EPA CLP Data Qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	E	Estimated due to interference
C	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
E	Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
	the instrument		for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
P	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENT DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHL SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

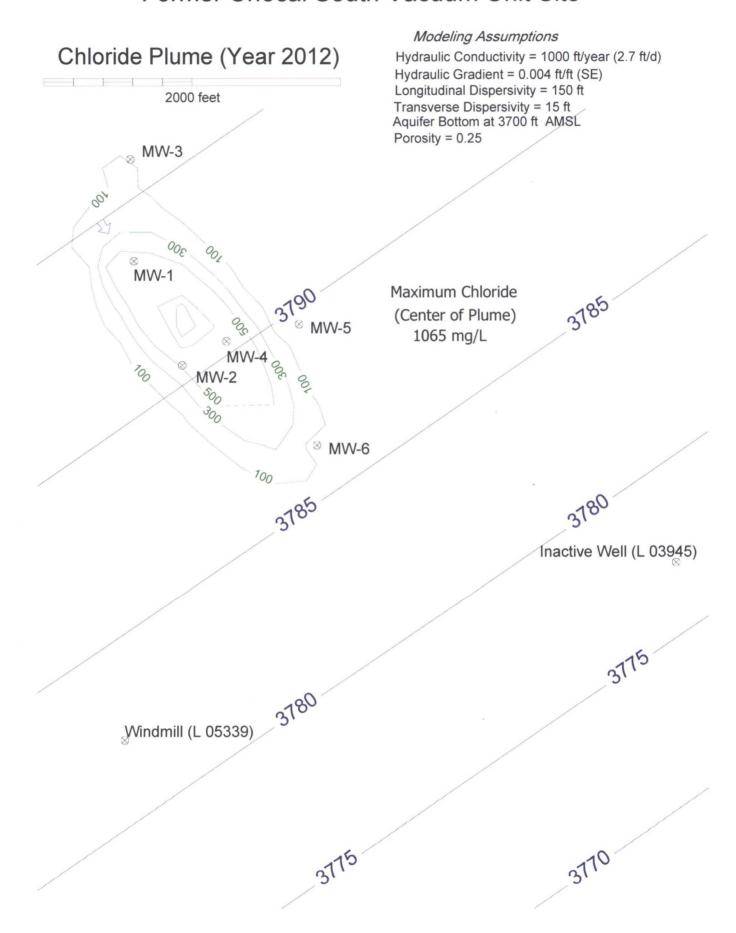
3768.08

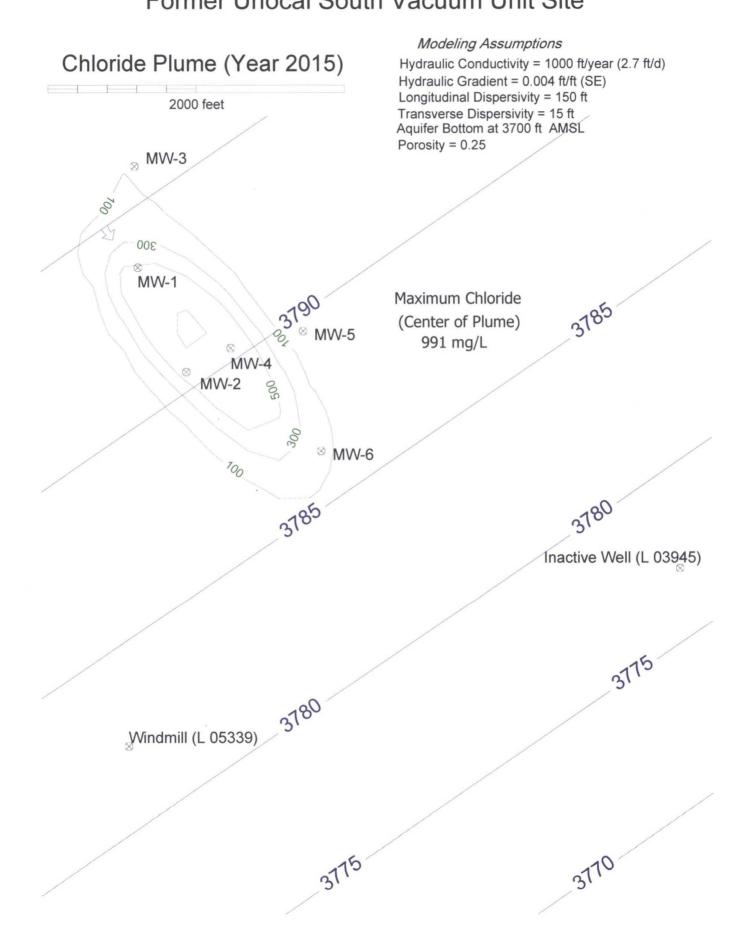
APPENDIX B

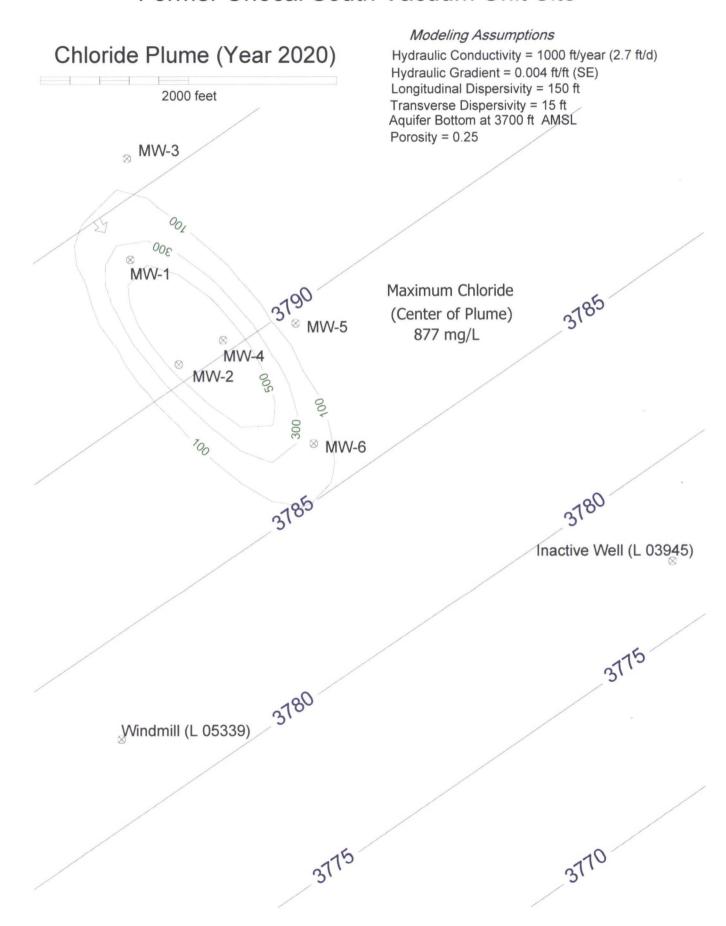
Monitoring Well Sampling Data Form

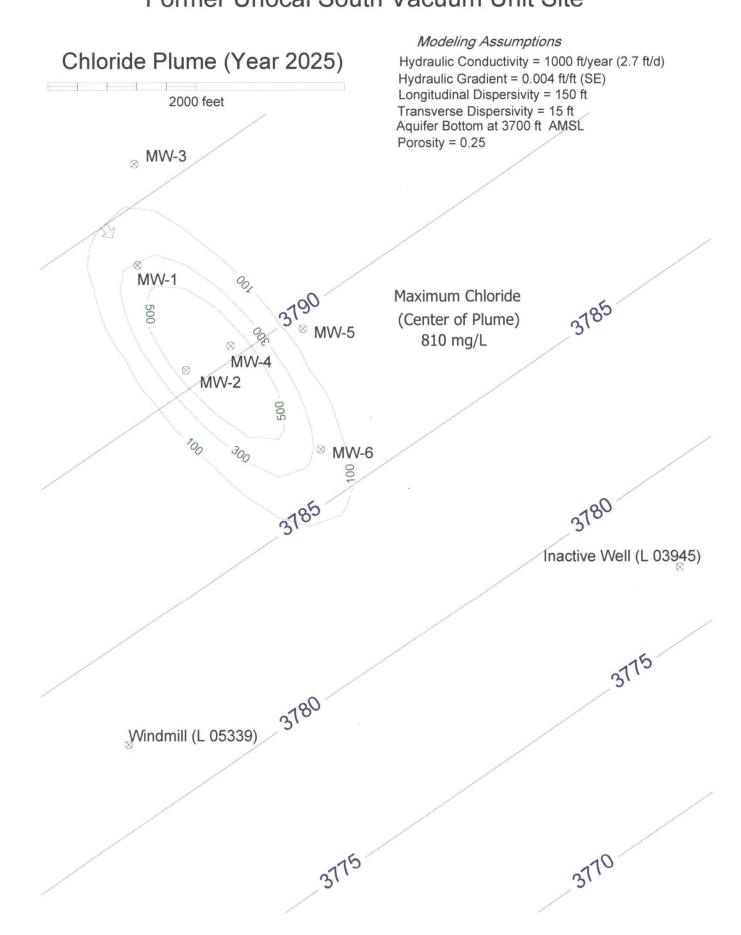
WELL SAMPLING DATA FORM

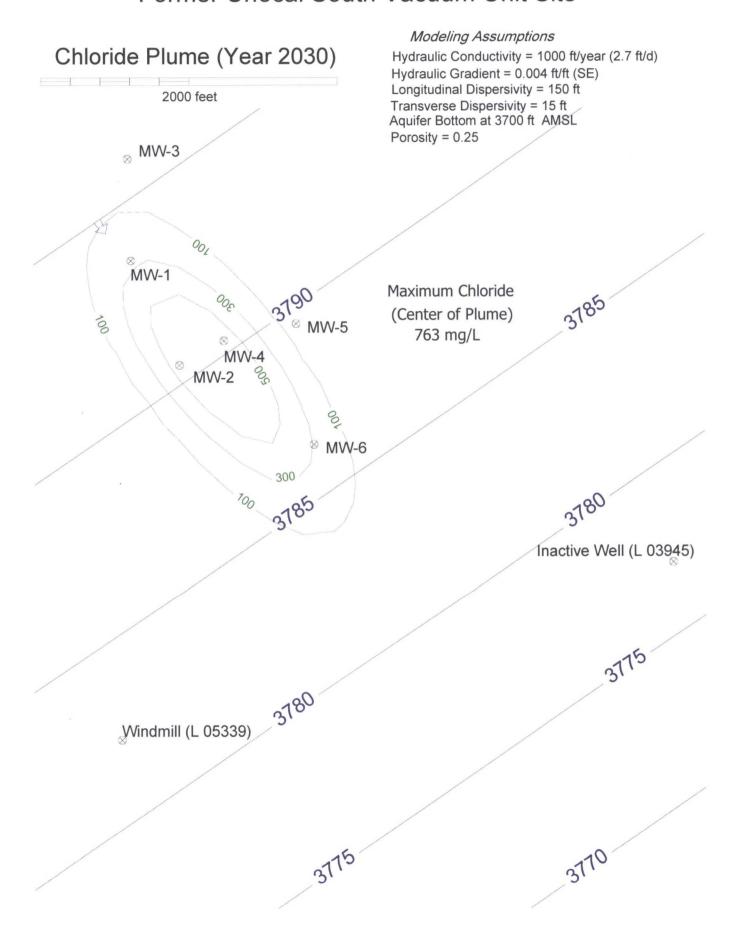
CLIENT: Chevron Environmental Management Corp.								-					
SITE NAME: Former Unocal South Vacuum Unit (1R-277)								-				TRIDENT	
SITE LOCATION: T18S - R35E - Sec 35, Lea County, NM SAMPLER: Gil Van Deventer							IVI	<u>-</u>				ENVIRONMENTAL	
0/11	m LLIX.	Oii vaii L	oc vente										
	F	PURGING M	IETHOD:		Hand Ba	iled	☑ Pu	тр, Туре:	Proac	tive Supe	er Twiste	r 3-Stag	e Pump
SAMPLING METHOD: Disposable Bailer Direct fro						om Discha	rge Hose	e 🗆	Other:				
3POSAL MI	3POSAL METHOD OF PURGE WATER: ☐ On-site Drum ☐ Drums					☑ SWD	Disposal	Facility					
Date	Time	Monitoring Well No.	Depth to Water (ft btoc)	Total Depth (ft)	Water Column Height (ft)	Well Factor 2"=.16 4"=.65		Volume Purged (gal)	No. of Well Volumes Purged	Temp.	Cond. mS/cm	рН	PHYSICAL APPEARANCE AND REMARKS
08/02/12	12:00	MW-1	65.15	70.00	4.85	0.16	0.8	4	5.2	22.5	3.09	7.09	Cloudy but clearing moderately quickly
08/02/12	11:00	MW-2	51.89	71.00	19.11	0.16	3.1	10	3.3	21.7	1.94	. 8.30	Cloudy but cleared quickly
08/02/12	10:00	MW-3	69.60	77.00	7.40	0.16	1.2	5	4.2	21.7	1.06	7.17	Clear
08/02/12	13:00	MW-4	62.63	71.00	8.37	0.16	1.3	5	3.7	22.3	3.12	7.82	Cloudy but cleared quickly
08/02/12	9:00	MW-5	70.74	79.00	8.26	0.16	1.3	5	3.8	22.0	0.42	7.34	Clear
08/02/12	8:10	MW-6	72.72	77.20	4.48	0.16	0.7	4	5.6	21.3	0.77	6.61	Clear with reddish sediment building up
										_			
COMMENTS: Equipment decontamination consists of gloves, Alconox, and Distilled Water Rinse. Hanna Model 98130 instrument used to obtain pH, conductivity, and temperature measurements.													

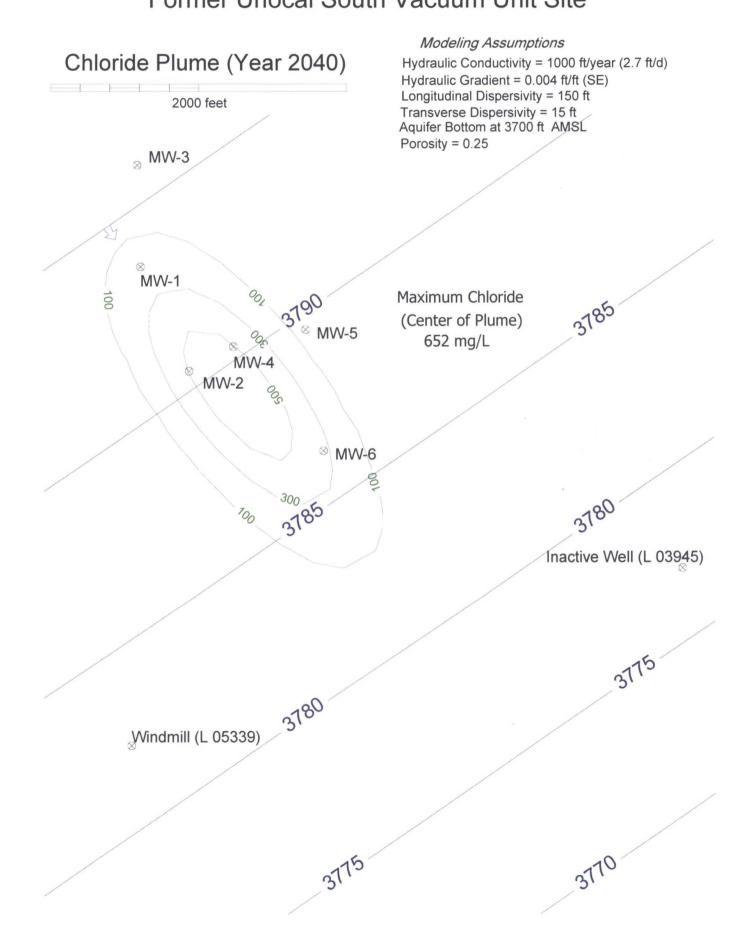

Shipped samples via FedEx to Lancaster Laboratories for chloride and TDS analysis.

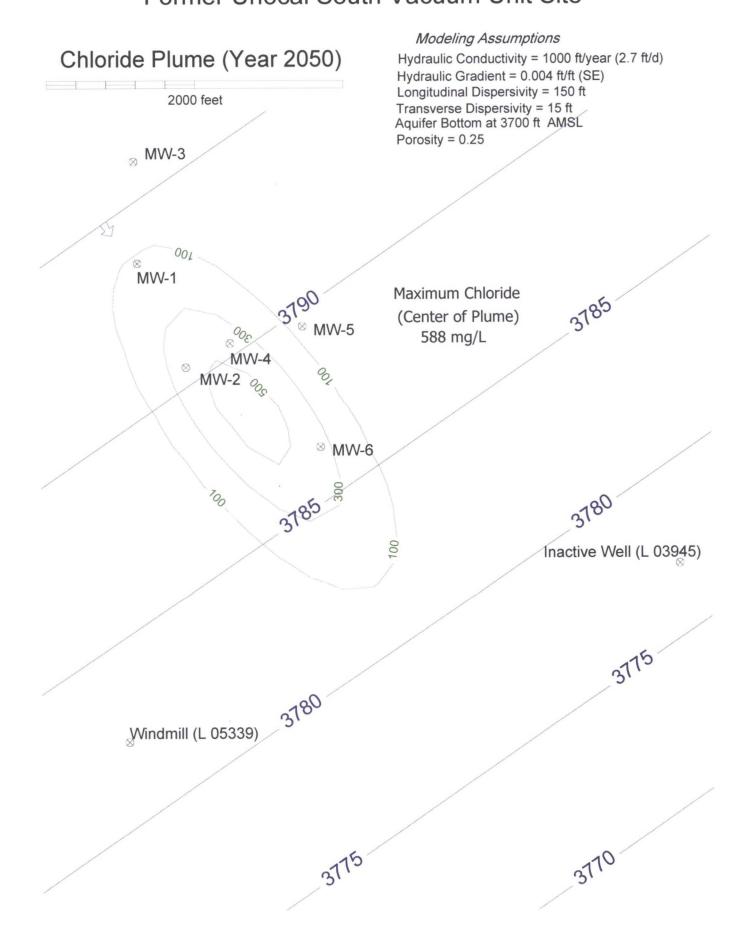

APPENDIX C

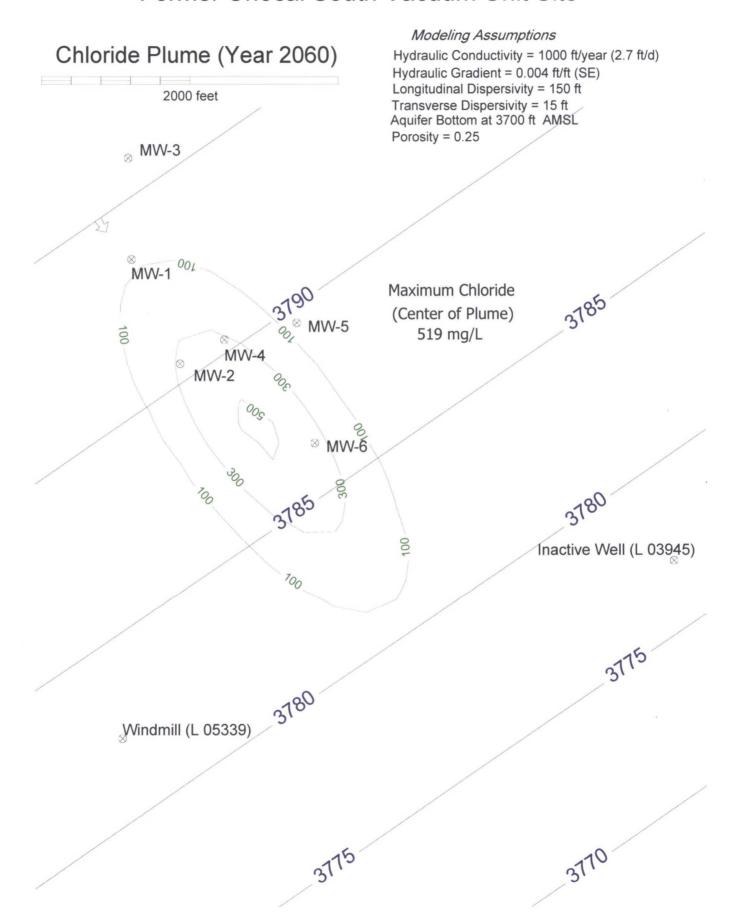

Chloride and TDS Plume Simulations

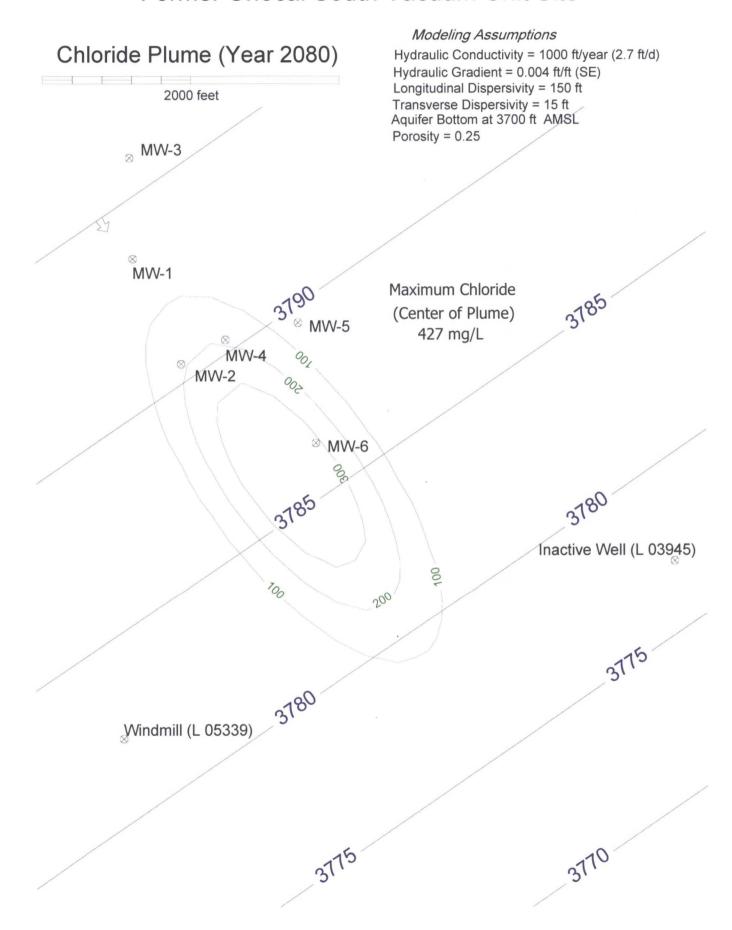

WinTran Fate & Transport Modeling Results

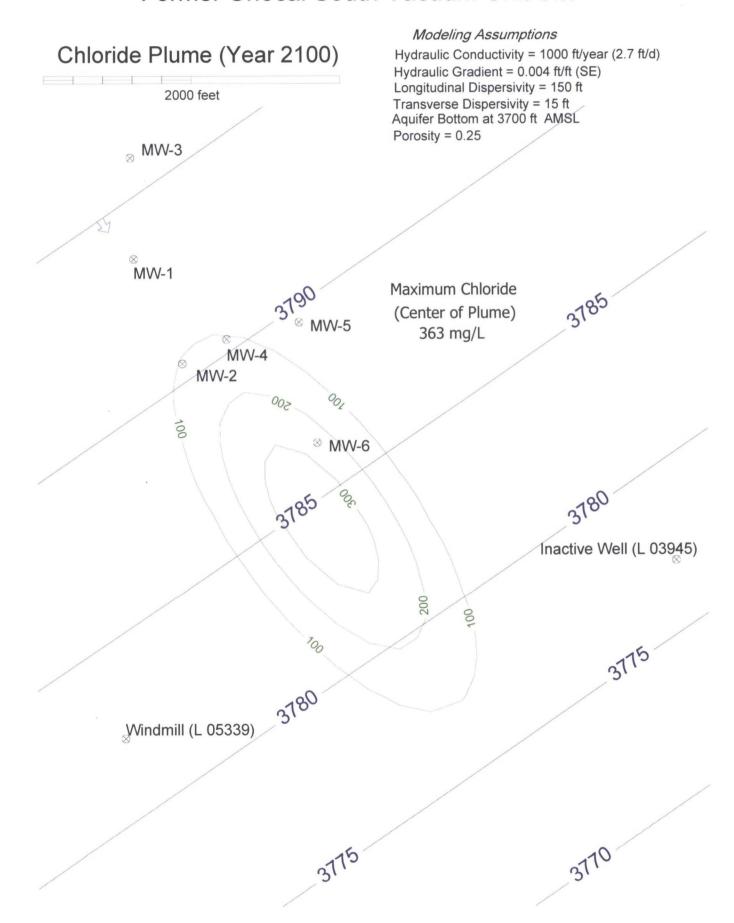

Former Unocal South Vacuum Unit Site

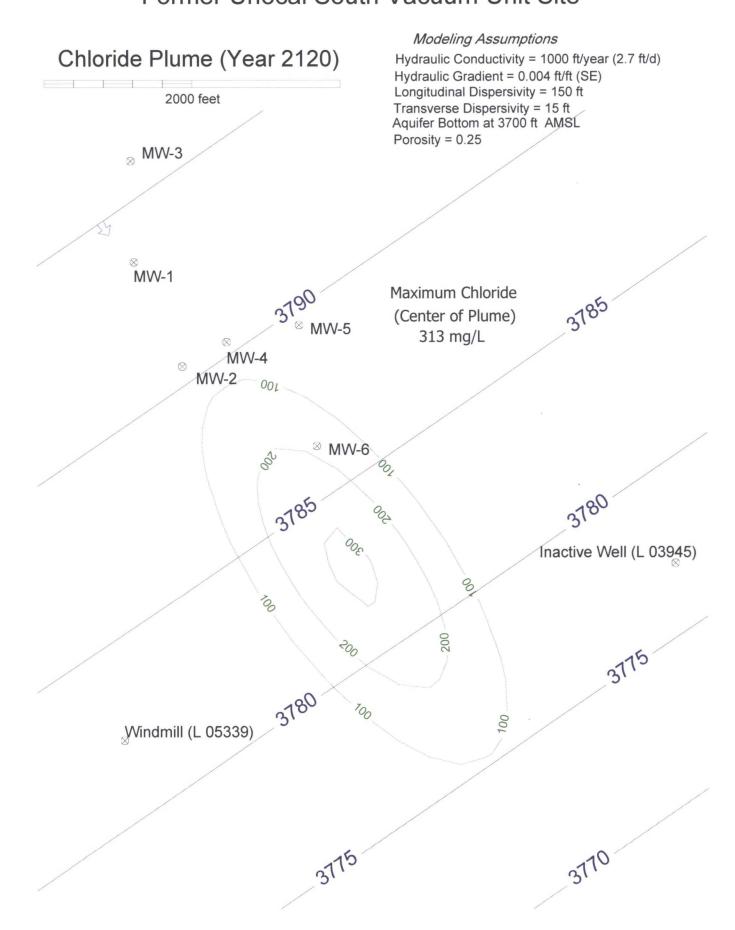


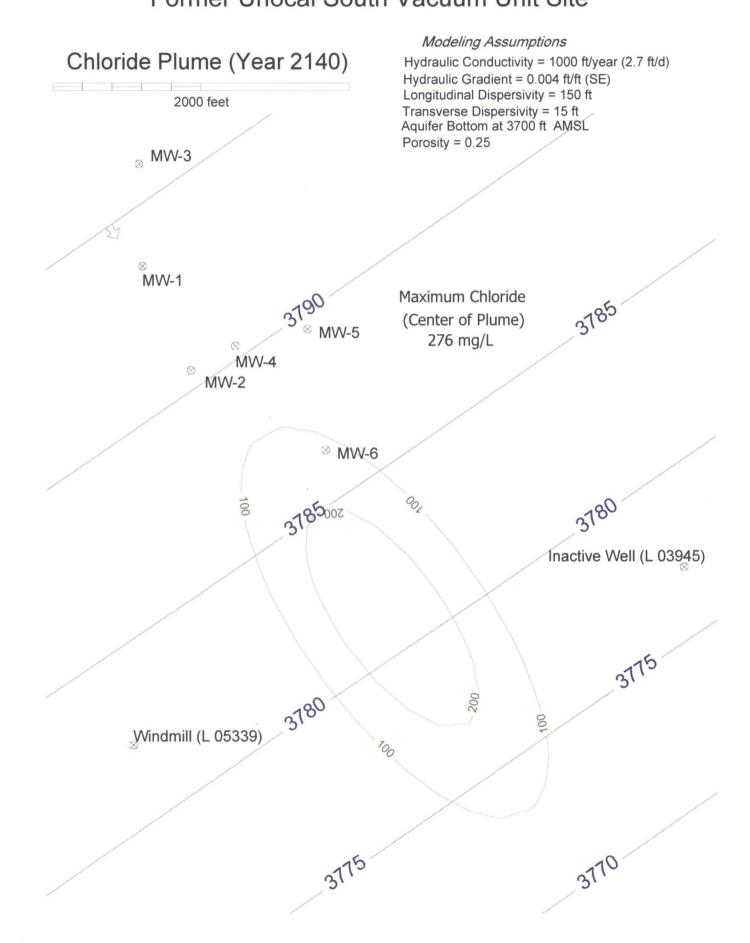


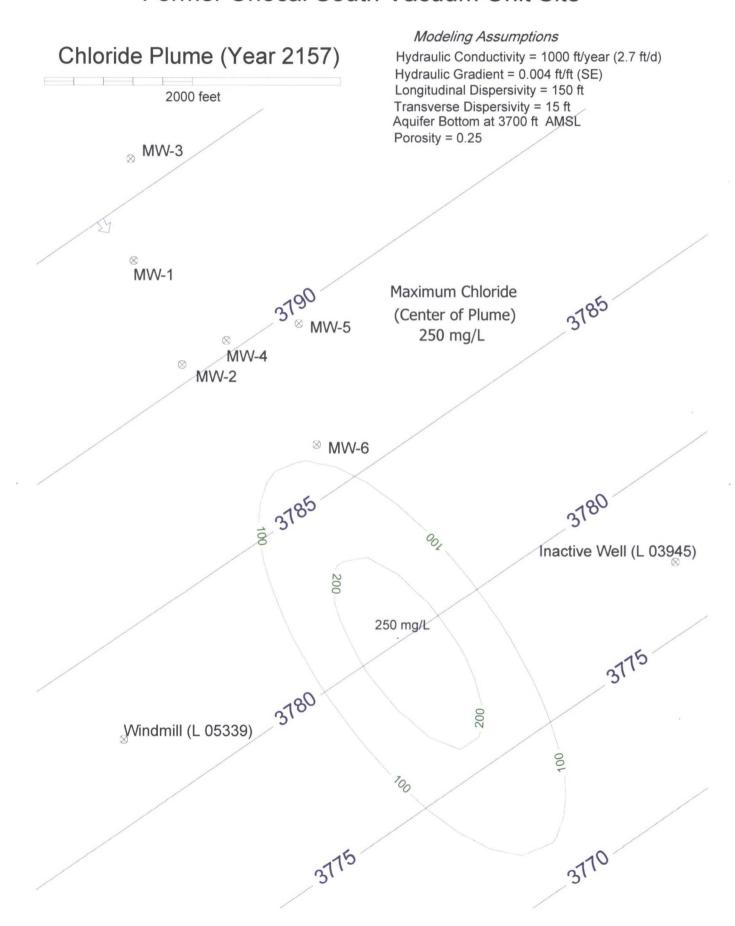


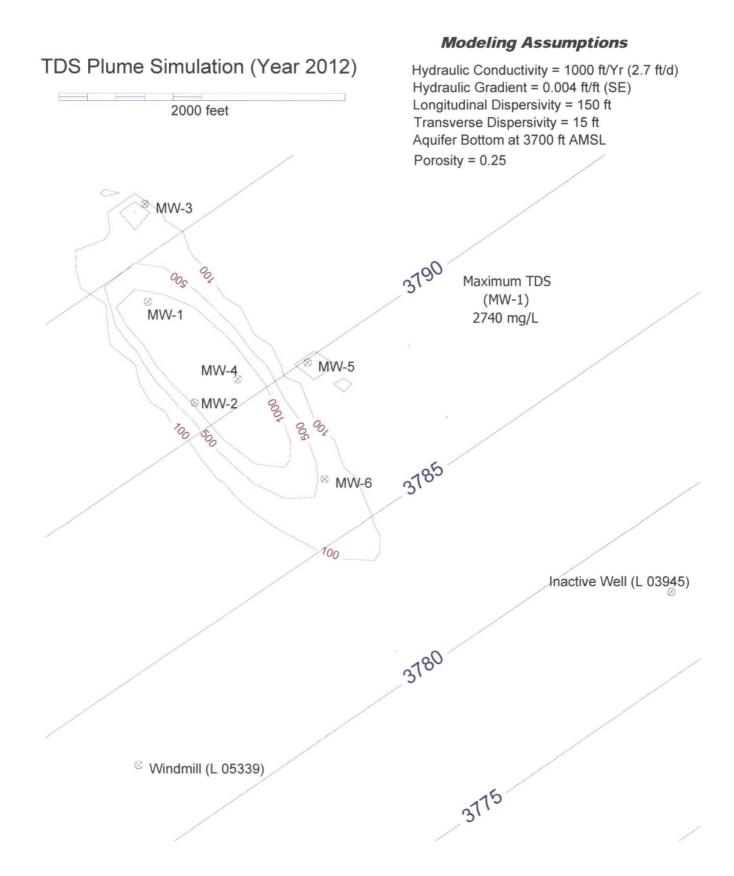


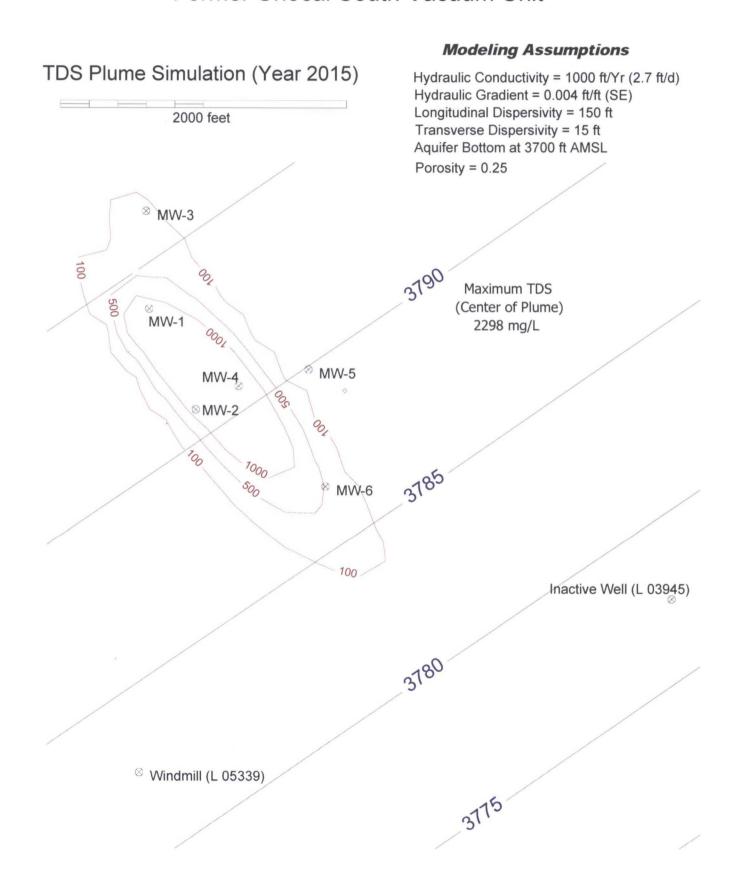


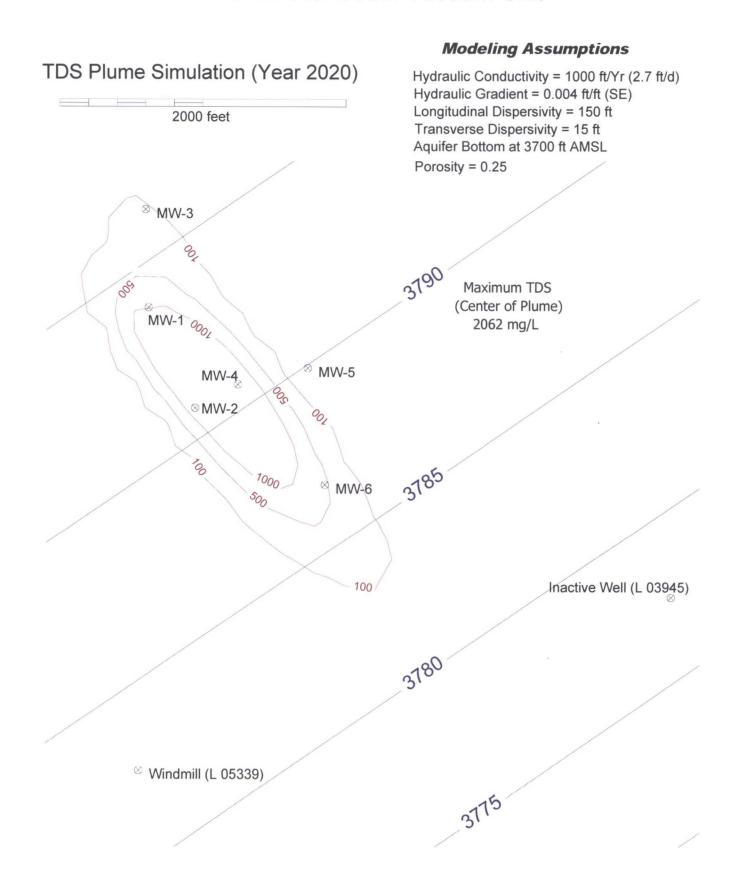


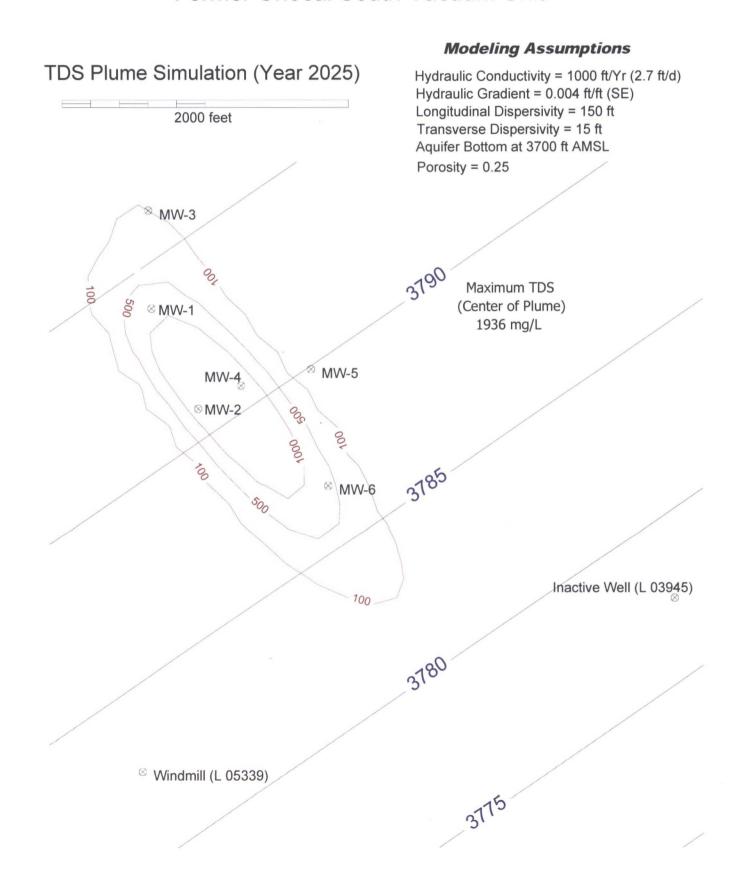


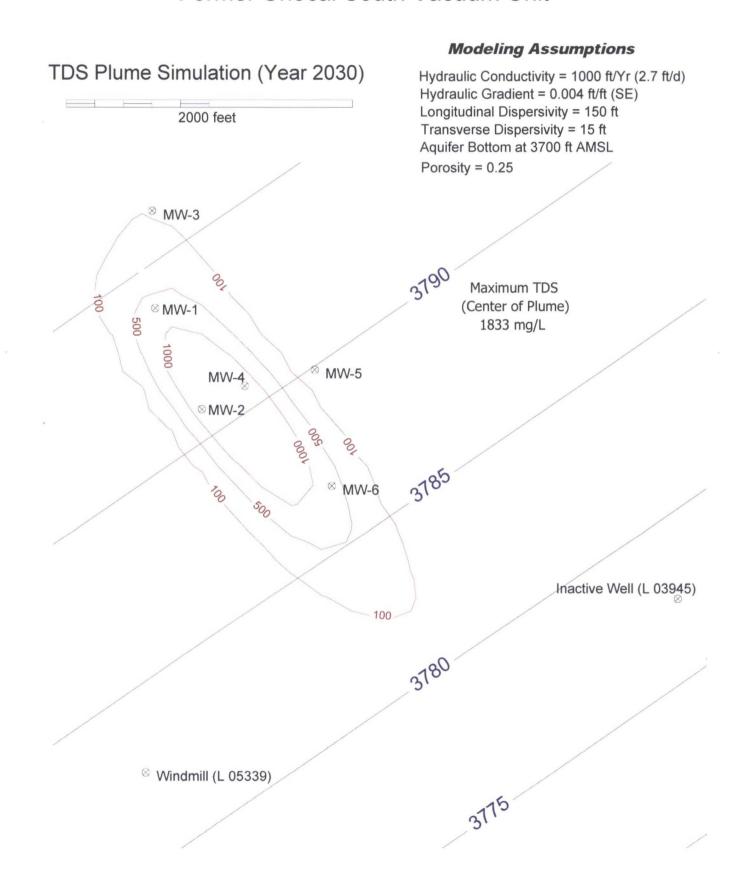


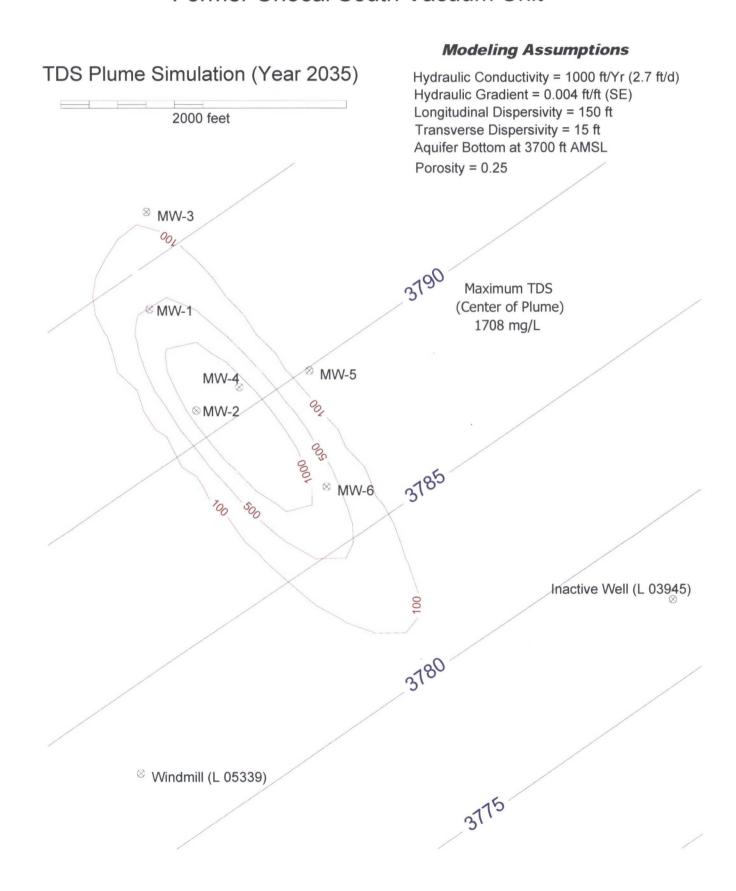


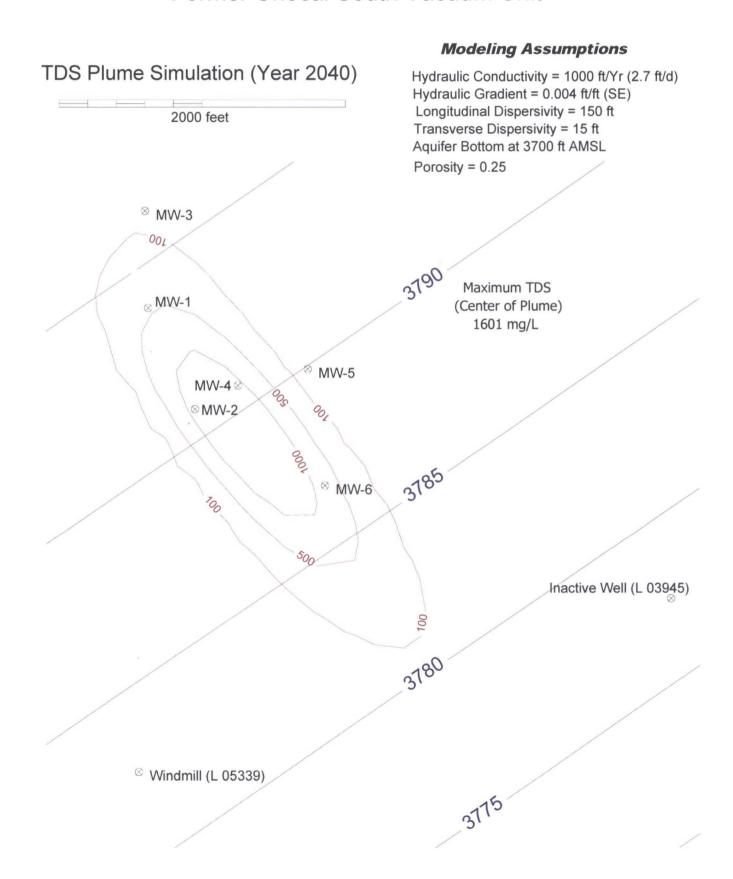


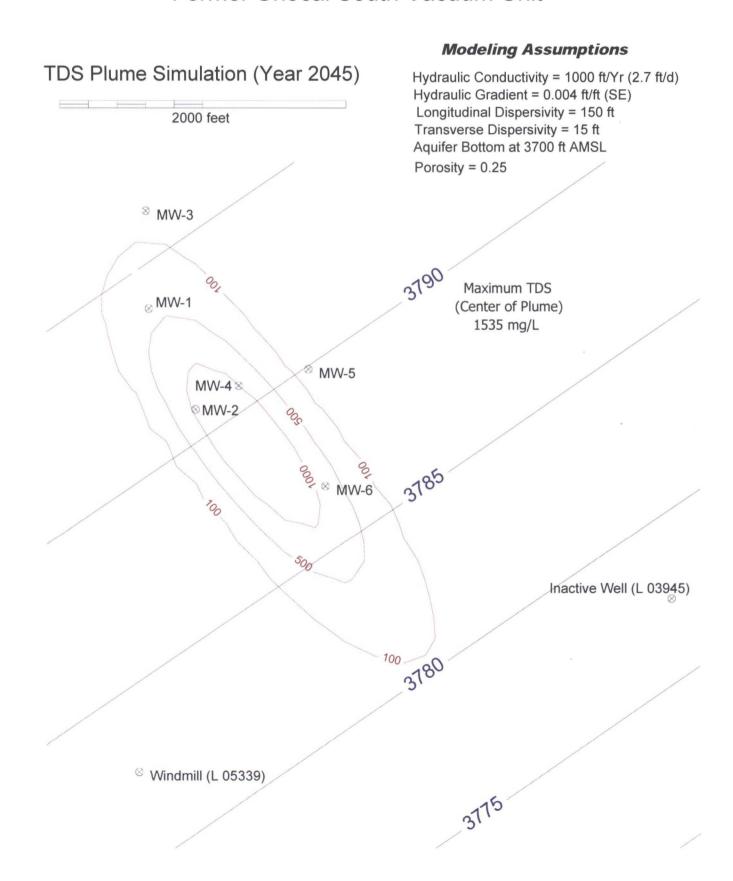


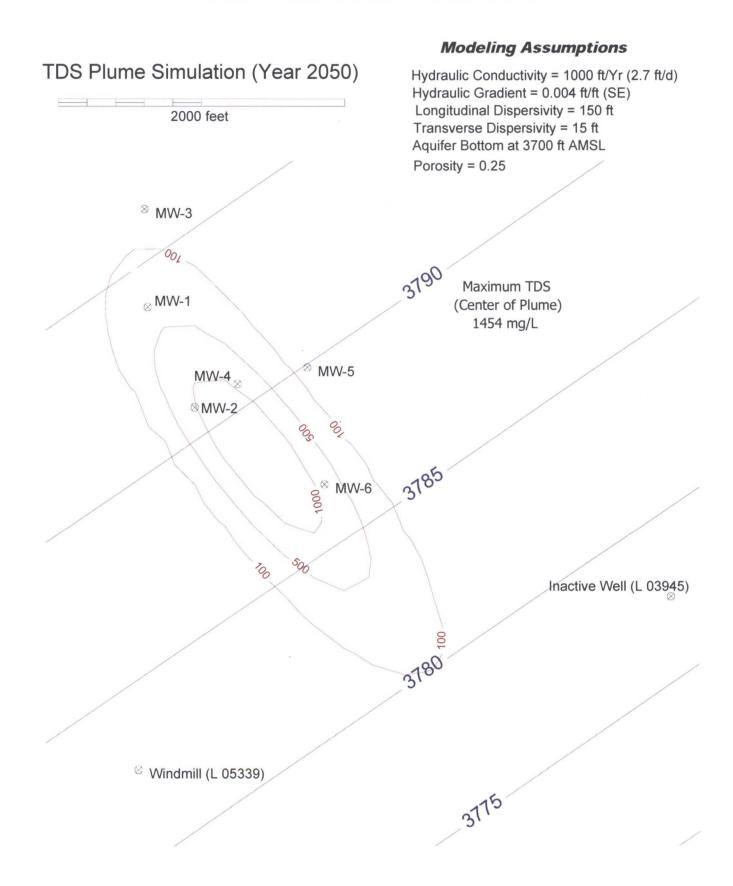


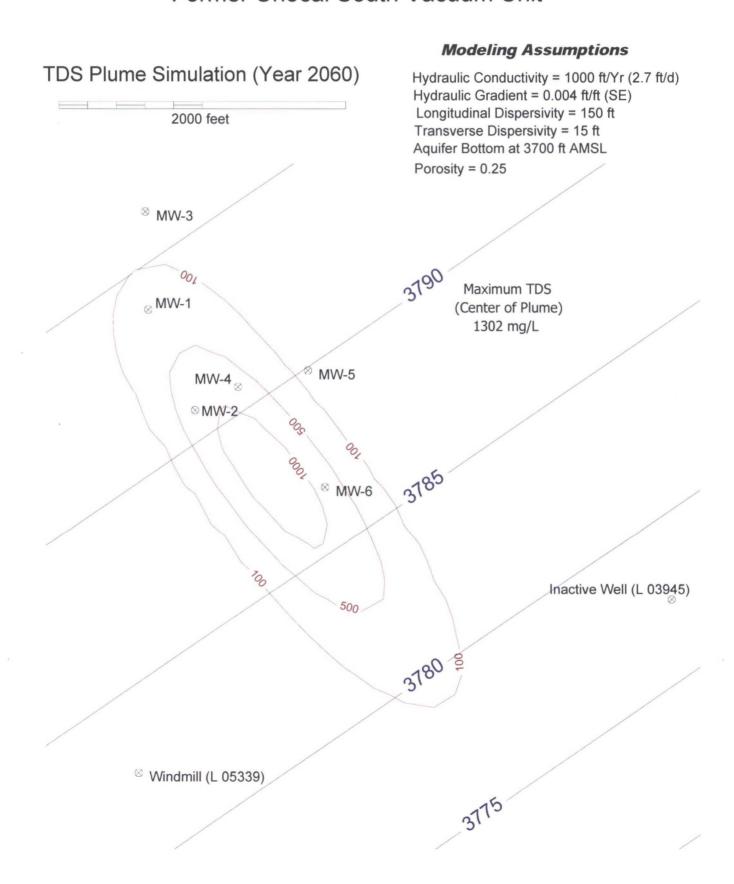


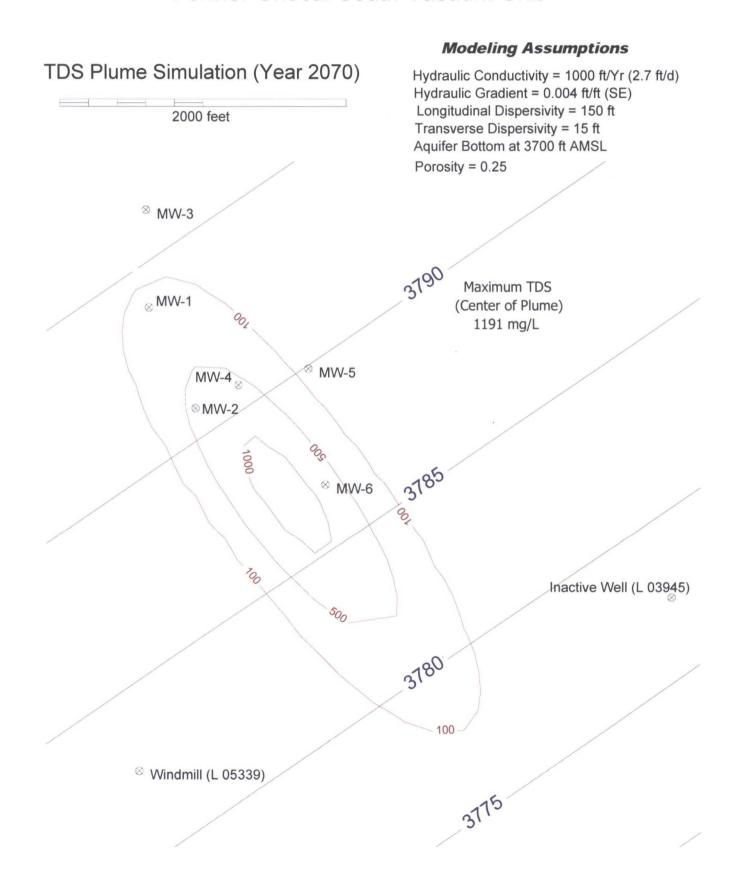


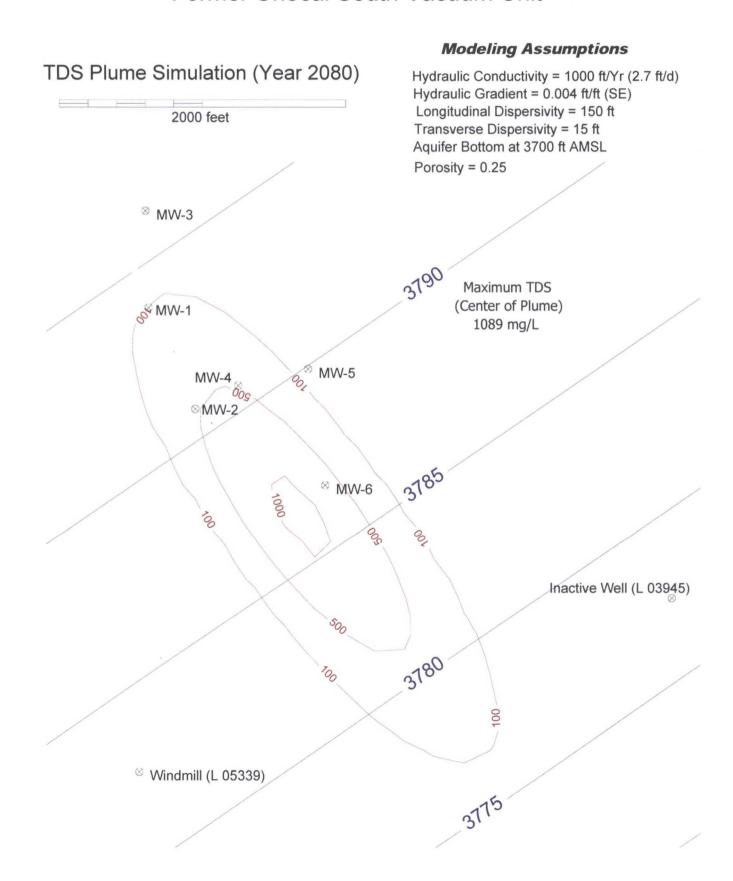


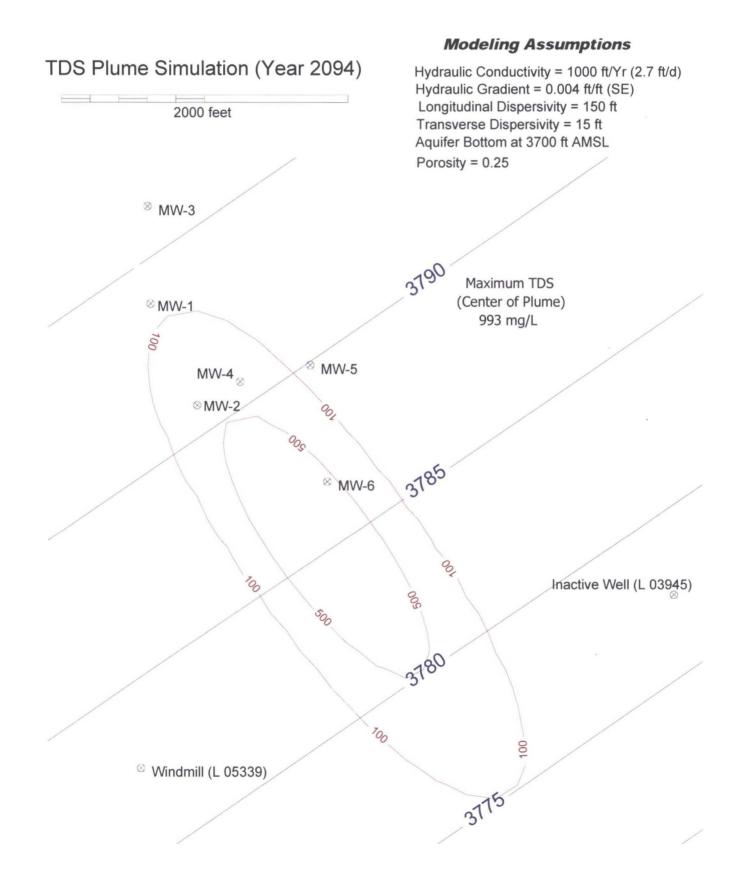












APPENDIX D

Description of Fate and Transport Modeling

And

Input/Output Data

Description of Fate and Transport Modeling

Conceptual Model

Produced water containing high concentrations of chloride, and resultant high levels of total dissolved solids (TDS), was reportedly discharged into a surface pit for a period of about 10 years. A dry hole (State Lea "I" No. 1), adjacent to the former pit, was approved for injection of produced water in 1962, however it was not used for that purpose since it was determined to be impractical; therefore it was later plugged in 1971. A chloride and TDS plume in groundwater continued to migrate southeastwards for the next approximately 29 years after the source input was stopped by encapsulation of the pit in 2000, producing the configuration and constituent concentration distribution observed currently. Extrapolating from current conditions for decades into the future, taking account of both advective flow and attenuation by hydrodynamic dispersion, enables prediction of the probable distance that the residual plume will travel as well as the gradually declining concentrations in the plume.

Basic Site Data

Information about site conditions was obtained from data in a TRW Inc. "Report of Additional Groundwater Investigation, Former Unocal South Vacuum Unit, Lea County, New Mexico" (July 18, 2000). This included lithologic records from well installations, water level data, and water quality analytical results.

Simulation Model

Simulations were conducted with the two-dimensional groundwater flow and contaminant transport model WinTran, version 1.03 (1995) designed and distributed by Environmental Simulations, Inc. (ESI) of Herndon, Virginia. WinTran is built around a steady-state analytical element flow model, linked to a finite element contaminant transport model. The Windows interface allows for rapid data input, processing, parameter manipulation and optimization, and output in multiple formats. The fundamental mathematics of the model solutions, model verification (benchmarked against MODFLOW), and use of WinTran is documented in the "Guide to Using WinTran" published by ESI.

Base Map

A simplified site base map was created using the New Mexico State Plane Coordinates for each monitoring well which were determined by a registered surveyor after installation.

Flow Parameters

Input requirements for the steady-state groundwater flow simulation include: hydraulic gradient and direction of flow, hydraulic conductivity, aquifer top and bottom elevations, and reference head. The values used were based on the following sources:

• Hydraulic gradient – measured gradient of 0.004 feet/foot from based on all site measurements reported by Trident.

- Direction of flow measured direction of approximately 40° east of due south from 1961until 2009, and 34° east of due south from 2010 to 2012 based on site measurements reported by Trident.
- Hydraulic conductivity no site measurements were available; therefore, a literature value based on the saturated zone lithology was selected. Typical lithology is described as silty sand and very fine sand. Fetter (1988, Table 4.5, p. 80) cites an average range of 10⁻⁵ to 10⁻³ cm/sec for hydraulic conductivity of silty sands and fine sands. A conservative upper limit was selected, and converted from S.I. unit to 1000 ft/yr, or approximately 2.7 ft/day.
- Aquifer top and bottom elevations bottom elevation of Ogallala Formation at 3700 feet according to Nicholson & Clebsch (Groundwater Report 6, 1961). The top elevation for an unconfined aquifer must be greater than the reference head so an elevation of 4,000 feet was assumed.
- Reference head measured unconfined head of 3,793 feet adjacent to the former pit and upgradient well MW-1 from August 2, 2012 measurements reported by Trident.

Transport Parameters

Input requirements for the contaminant transport numerical simulation include: longitudinal and transverse dispersivity, porosity, diffusion coefficient, contaminant half-life, and retardation coefficient. The values used were based on the following sources:

- Longitudinal and transverse dispersivity no site measurements were available; therefore, a literature value based on the plume length was selected. Fetter (1993, Section 2.11, pp. 71-77) notes the apparent scale-dependency of longitudinal dispersivity, which typically may be about 0.1 times the flow length. For the current site scale and plume length of approximately 1,500 feet, a value of 150 feet was selected for longitudinal dispersivity. Based on professional judgment, hydrologists commonly assume the longitudinal dispersivity is about one-tenth the length of the plume and 5 to 10 times higher than transverse dispersivity; therefore, a value of 30 feet (i.e., one-fifth of the longitudinal value) was selected for transverse dispersivity.
- Porosity no site measurements were available; therefore a literature value based on saturated zone lithology was selected. Typical lithology is described as silty sand and very fine sand. A range of 0.25 to 0.50 is typically given for unconsolidated "sand" (e.g., Freeze & Cherry, 1979, Table 2.4, p. 37); however, the Ogallala Formation is predominantly very fine grained, compacted and partly cemented, and may also fit within the range of 0.05 to 0.30 for sandstone. Fetter (1988, Table 4.3 and Figure 4.10, pp. 74-75) cites an average value of 0.20 for the specific yield of very fine sands. Specific retention of silty fine sand is approximately 0.05, for a total porosity of 0.25, which is the value selected for the transport modeling. WinTran uses the porosity term to estimate groundwater velocity, and actually requires an effective porosity value. Fetter (1988, Section 4.4, pp. 84-85) notes that pores of most sediments down to clay size are interconnected and that the effective porosity is virtually equal to the total porosity.
- Diffusion coefficient this parameter is normally only relevant for very slow fluid movement, and is commonly assumed to be zero for advective-dominated transport, as in the present case.

- Contaminant half-life this parameter accounts for chemical decay (e.g., radioisotopes, biological transformation of organic molecules); however, the species of interest in the present case are inorganic ions and are not expected to decay to any appreciable extent. A conservative value of 1000 years was used, which produces a negligible decay coefficient of less than 0.001 yr⁻¹.
- Retardation coefficient this parameter accounts for sorption processes that slow the movement of contaminants relative to the groundwater velocity. Inorganic ions such as chloride are commonly taken as conservative tracers in groundwater and are not considered to be retarded; therefore, a value of 1.0 was selected for the retardation coefficient.

Flow Model Calibration

The vicinity of the site where water level measurements were recorded in August 2, 2012 is simulated closely by the flow model. It is known that groundwater levels in the Ogallala Formation are decreasing slowly (approximately 0.3 ft/yr), but this effect cannot be reproduced in the steady-state flow model. Water levels were probably somewhat higher than the present day during the period of brine disposal and initial transport. Even if the declining trend continues into the future, it does not affect the transport model solution for long extrapolation times, since sufficient saturated thickness remains (i.e., above the assumed aquifer base elevation of 3,700 feet) for a valid flow and transport solution.

The average groundwater velocity may be estimated using the Darcy expression: v = (k.i)/n where k is the hydraulic conductivity (1,000 ft/yr), i is the hydraulic gradient (0.004 ft/foot), and n is the effective porosity (0.25). The resultant average velocity is 16 ft/yr.

Transport Model Calibration

The objective of the transport modeling was to first obtain a plume configuration with concentration values that closely match current observed values. This was done by simulating an initial contaminant release to groundwater for a period of 11 years (c. 1960 to 1971) with a constant source concentration located at the pit and injection well, then simulating a 28-year transport period (c. 1971 to 1999) with no further contaminant input but restarting the model from the end of Year 11 by retaining the mass of contaminant from the initial plume. An iterative approach was needed to optimize the initial source concentration so that the plume at Year 39 resembled the actual plume conditions in 1999. An initial value of 14,000 mg/L for chloride and 30,000 mg/L for TDS were found to produce the best match. The initial chloride value was also chosen because it is typical of chloride concentrations within the producing formation (Devonian) in the South Vacuum Oil Field according to chemists at Martin Water Laboratories (verbal communication, 12-05-01). Actual disposal concentrations during the 1960s are unknown, and may have been higher than these values, but it is presumed that some attenuation and dilution may have occurred in the vadose zone, which is currently 48 to 68 feet thick. WinTran cannot account for the much more complex vadose zone transport algorithms, so the source input was treated as an injection well with instantaneous transfer of contaminant mass to groundwater.

After calibrating the model such that it corresponded to actual 1999 conditions, the model was again run for 13 years (1999 to 2012) at one-year increments while matching the known concentrations at each monitoring well.

Simulation of Fate and Transport

Estimation of chloride and TDS fate and transport was achieved by restarting the transport model in 2012. Figures displaying modeled simulations of the chloride and TDS plumes over various time increments are included in Appendix C. Advective flow moves the center of plume mass downgradient as depicted in the simulations. The simulations also demonstrate how hydrodynamic dispersion serves to broaden the dimensions of the plume while reducing the concentrations in the middle of the plume.

Running the model for 145 years in the future (Year 2157) produces a chloride plume center concentration of 250 mg/L (WQCC standard). The center of the chloride plume is approximately 3,200 ft away from the former pit and well source at that time.

Running the model for 82 years in the future (Year 2094) produces a TDS plume center concentration of 1,000 mg/L (WQCC standard). The center of the TDS plume is approximately 2,200 ft away from the pit and well source at that time.

These results support the conclusion that the chloride and TDS plume is not likely to impact any existing sources of water supply, the closest of which is a windmill (NM File No. L05339) located over one-half mile south of the source. The windmill has been dismantled and is no longer in operation due to declining water levels in the area.

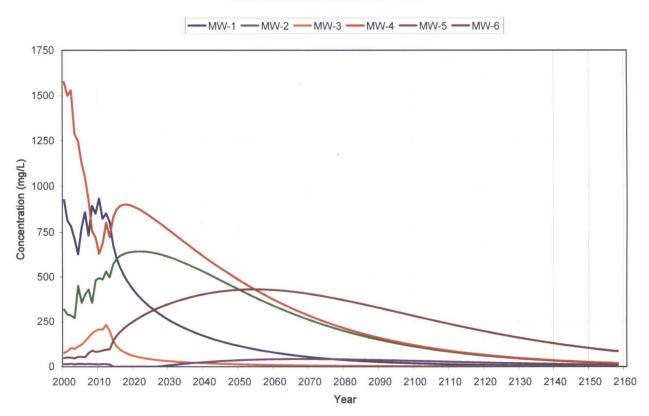
The trend of decreasing concentration is not linear (exponential e^{-kt} function). Interestingly, the center of the plume moves at a greater rate (22 feet/year) over successive time intervals than would be assumed from the groundwater velocity alone (16 feet/year), due to the added effect of dispersion.

WinTran

Analytical Model of 2D Ground-Water Flow and Finite-Element Contaminant Transport Model

Developed by James O. Rumbaugh, III Douglas B. Rumbaugh

(c) 1995 Environmental Simulations, Inc.



Chloride Fate & Transport Simulation run by: Gilbert Van Deventer (Trident Environmental)

Date: 11/09/2012

Input File: 2012 CL.WTR

Chloride Concentration Vs. Time

Model Entities

Number of Wells = 8

Well #1 Center of Well -- x: 716.000000 y: 5281.000000 Radius = 1.000000 Pumping Rate = 0.000000 Concentration of Injected Water = 824.000000 Head at Well Radius = 3793.599394 Well #2 Center of Well -- x: 1041.670000 y: 4585.770000 Radius = 1.000000Pumping Rate = 0.000000 Concentration of Injected Water = 486.000000 Head at Well Radius = 3790.537237 Well #3 Center of Well -- x: 694.000000 y: 5954.000000 Radius = 1.000000 Pumping Rate = 0.000000 Concentration of Injected Water = 205.000000 Head at Well Radius = 3795.725707 Well #4 Center of Well -- x: 1341.000000 y: 4747.000000 Radius = 1.000000 Pumping Rate = 0.000000 Concentration of Injected Water = 707.000000 Head at Well Radius = 3790.247606 Well #5 Center of Well -- x: 1829.000000 y: 4861.000000 Radius = 1.000000 Pumping Rate = 0.000000 Concentration of Injected Water = 13.800000 = 3789.289438 Head at Well Radius Well#6 Center of Well -- x: 1948.000000 y: 4058.000000 Radius = 1.000000 Pumping Rate = 0.000000 Concentration of Injected Water = 89.200000 Head at Well Radius = 3786.295815 Well #7 Center of Well -- x: 650.000000 y: 2081.000000 Radius = 1.000000 Pumping Rate = 10.000000 Concentration of Injected Water = 0.000000 Head at Well Radius = 3783.246885 Well #8 Center of Well -- x: 4375.000000 y: 3275.550000 Radius = 1.000000 Pumping Rate = 0.000000 Concentration of Injected Water = 0.000000 = 3776.195782 Head at Well Radius

Reference Head = 3795.000000 Defined at -- x: 490.030000 y: 5545.270000

Aquifer Properties

.... Steady-State Flow Model Permeability.....= 1000.000000 [L/T] Porosity..... = 0.250000 Elevation of Aquifer Top....= 4000.000000 Elevation of Aguifer Bottom.= 3700.000000 Uniform Regional Gradient...= 0.004000 Angle of Uniform Gradient...= 304.000000 Recharge..... = 0.000000 Transient Transport Model Longitudinal Dispersivity...= 150.000000 [L] Transverse Dispersivity....= 30.000000 [L] Diffusion Coefficient.....= 0.000000 [L2/T] Contaminant half-life..... = 1000.000000 [T] Retardation Coefficient....= 1.000000 Upstream Weighting in X....= 0.000000 Upstream Weighting in Y..... = 0.000000 Time Stepping Information Number of time steps.....= 1450 Starting time value..... = 2012.000000 Initial time step size.....= 0.100000 Time step multiplier..... = 1.000000 Maximum time step size.....= 0.100000 Time stepping scheme...... = Central Differencing Simulation Summary Starting time..... = 2012.000000 Ending time..... = 2157.000000 Number of time steps.....= 1450 (NOTE: following mass balance errors expressed as percent) Transport Mass Balance Error= 0.056133 Peclet Criterion..... = 1.388889 Courant Number..... = 0.004595 Flow Model Type..... = Analytic Element Head Contour Matrix Number of nodes in the X-direction = 49 Number of nodes in the Y-direction = 49 Minimum X Coordinate = 0.000000 Minimum Y Coordinate = 0.000000 Maximum X Coordinate = 10000.000000 Maximum Y Coordinate = 6289.062500

Minimum Head = 3738.597428 Maximum Head = 3798.498580

Page 3 of 7

Direct Chloride Concentration (mg/L) Output from WinTran Simulation

					•		Windmill	Inactive Well	End
Year	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	(L 05339)	(L 03945)	Point
2000	927	317	75.5	1576	13.7	48.0	0	0	0.0
2001	813	288	86.4	1500	13.6	50.8	0	0	0.0
2002	784	284	103	1530	15.5	50.0	0	0	0.0
2003	715	268	98.3	1290	12.5	46.5	0	0	0.0
2004	628	451	111	1250	15.3	55.1	0	0	0.0
2005	774	355	122	1130	14.9	55	0	0	0.0
2006	860	401	141	1050	13.3	52.4	0	0	0.0
2007	732	430	164	926	14.9	75.3	0	0	0.0
2008	895	354	185	758	13.6	88.5	0	0	0.0
2009	852	482	199	720	13.4	81.4	0	0	0.0
2010	934	494	207	632	12.6	84.1	. 0	0	0.0
2011	824	486	205	687	13.8	89.2	0	0	0.0
2012	854	531	232	804	13.8	93.8	0	0	0.0
2013	807	498	197	724	11.6	95.6	0	0	0.0
2014	681	572	142	831	0	143	0	0	0.0
2015	606	604	112	876	0	172	0	0	0.0
2016	553	620	93.7	895	0	193	0	0	0.0
2017	511	630	81.2	901	0	211	0	0	0.0
2018	477	637	71.9	901	0	227	0	0 .	0.0
2019	448	641	64.6	897	0_{t}	241	0	0	0.1
2020	422	643	58.8	890	0	254	0	0	0.1
2021	399	645	54.0	880	0	267	0	0	0.2
2022	378	645	49.9	870	0	278	0	0	0.2
2023	359	644	46.4	858	0	289	0	0	0.3
2024	341	642	43.3	845	0	299	0	0	0.4
2025	325	639	40.6	832	0	309	0	0	0.5
2026	309	635	38.2	818	0	318	0	0	0.7
2027	295	631	36.0	804	1.0	327	0	0	0.9
2028	282	626	34.1	790	3.2	335	0	0	1.1
2029	269	620	32.3	775	5.3	343	0	0	1.4
2030	258	614	30.6	761	7.3	350	0	0	1.7
2031	247	607	29.1	746	9.3	357	0	0	2.1
2032	236	599	27.7	731	11.3	364	0	0	2.5
2033	226	591	26.4	716	13.2	370	0	0	3.0
2034	217	583	25.2	701	15.1	376	0	0	3.6
2035	208	574	24.0	687	16.9	381	0	0	4.2
2036	199	565	22.9	672	18.6	387	0	0	4.9
2037	191	556	21.9	657	20.2	392	0	0	5.7
2038	183	547	20.9	643	21.8	396	0	0	6.5
2039	176	537	20.0	628	23.3	400	0	0	7.4
2040	169	527	19.2	614	24.8	404	0	0	8.5
2041	162	517	18.4	600	26.2	408	0	0	9.6
2042	156	507	17.6	586	27.5	411	0	0	10.8
2043	150	497	16.9	572	28.7	415	0	0	12.1

Direct Chloride Concentration (mg/L) Output from WinTran Simulation

							Windmill	Inactive Well	End
Year	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	(L 05339)	(L 03945)	Point
2044	144	487	16.2	558	29.9	417	0	0	13.5
2045	138	477	15.5	545	31.0	420	0	0	15.0
2046	133	467	14.9	532	32.1	422	0	0	16.7
2047	128	457	14.3	519	33.1	424	0	0	18.4
2048	123	447	13.7	506	34.0	426	0	0	20.3
2049	118	437	13.1	493	34.9	427	0	0	22.3
2050	113	428	12.6	481	35.7	429	0	0	24.4
2051	109	418	12.1	469	36.5	430	0	0	26.6
2052	105	408	11.6	457	37.2	430	0	0	28.9
2053	101	399	11.2	445	37.9	431	0	0	31.4
2054	97.0	389	10.7	434	38.5	431	0	0	33.9
2055	93.4	380	10.3	423	39.0	431	0	0	36.6
2056	89.8	371	9.9	412	39.5	430	0	0	39.4
2057	86.4	362	9.5	401	40.0	430	0	0	42.3
2058	83.2	353	9.2	390	40.4	429	0	0	45.3
2059	80.1	344	8.8	380	40.7	428	0	0	48.4
2060	77.1	336	8.5	370	41.0	427	0	0	51.6
2061	74.2	327	8.1	360	41.3	426	0	0	55.0
2062	71.5	319	7.8	351	41.5	424	0	0	58.4
2063	68.8	311	7.5	341	41.7	422	0	0	61.9
2064	66.2	303	7.2	332	41.9	420	0	0	65.5
2065	63.8	295	7.0	323	42.0	418	0	0	69.2
2066	61.4	287	6.7	314	42.1	416	0	0	72.9
2067	59.2	280	6.4	306	42.1	413	0	0	76.8
2068	57.0	272	6.2	297	42.1	411	0	0	80.7
2069	54.9	265	6.0	289	42.1	408	0	0	84.6
2070	52.9	258	5.7	281	42.0	405	0	0	88.7
2071	50.9	251	5.5	273	42.0	402	0	0	92.8
2072	49.1	245	5.3	266	41.9	399	0	0	96.9
2073	47.3	238	5.1	258	41.7	395	0	0	101
2074	45.5	232	4.9	251	41.6	392	0	0	105
2075	43.9	225	4.7	244	41.4	388	0	0	110
2076	42.3	219	4.6	237	41.2	385	0	0	114
2077	40.7	213	4.4	231	40.9	381	0	0	118
2078	39.3	207	4.2	224	40.7	377	0	0	123
2079	37.8	202	4.1	218	40.4	373	0	0	127
2080	36.5	196	3.9	212	40.1	369	0	0	131
2081	35.2	191	3.8	206	39.8	365	0	0	136
2082	33.9	185	3.6	200	39.5	361	0	0	140
2083	32.7	180	3.5	194	39.2	356	0	0	144
2084	31.5	175	3.4	188	38.8	352	0	0	149
2085	30.3	170	3.2	183	38.4	348	0	0	153
2086	29.2	165	3.1	178	38.1	343	0	0	158
2087	28.2	161	3.0	173	37.7	339	0	0	162

Direct Chloride Concentration (mg/L) Output from WinTran Simulation

	•						Windmill	Inactive Well	End
Year	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	(L 05339)	(L 03945)	Point
2088	27.2	156	2.9	168	37.3	335	0	0	166
2089	26.2	152	2.8	163	36.9	330	0	0 .	170
2090	25.3	147	2.7	158	36.4	326	0	0	174
2091	24.4	143	2.6	154	36.0	321	0	.0	179
2092	23.5	139	2.5	149	35.6	317	0	0	183
2093	22.6	135	2.4	145	35.1	312	0	0	187
2094	21.8	131	2.3	141	34.7	307	0	0	191
2095	21.1	127	2.2	- 136	34.2	303	0	0	195
2096	20.3	124	2.2	132	33.8	298	0	0	199
2097	19.6	120	2.1	129	33.3	294	0	0	202
2098	18.9	117	2.0	125	32.8	289	0	0	206
2099	18.2	113	1.9	121	32.4	285	0	0	210
2100	17.6	110	1.9	118	31.9	280	0	0 ·	213
2101	16.9	107	1.8	114	31.4	275	0	0	217
2102	16.3	104	1.7	111	30.9	271	0	0	220
2103	15.8	101	1.7	108	30.5	266	0	0	223
2104	15.2	97.8	1.6	104	30.0	262	0	0	227
2105	14.7	95.0	1.5	101	29.5	258	0	. 0	230
2106	14.1	92.2	1.5	98.3	29.0	253	0	0	233
2107 s	13.6	89.5	1.4	95.3	28.6	249	0	0	236
2108	13.2	86.8	1.4	92.5	28.1	244	0	0	239
2109	12.7	84.3	1.3	89.8	27.6	240	0	0	241
2110	12.2	81.8	1.3	87.1	27.1	236	0	0	244
2111	11.8	79.4	1.2	84.5	26.7	231	0	0	246
2112	11.4	77.0	1.2	82.0	26.2	227	0	0	249
2113	11.0	74.8	1.1	79.5	25.7	223	0	0	251
2114	10.6	72.6	1.1	77.2	25.3	219	0	0	253
2115	10.2	70.4	1.1	74.9	24.8	215	0	0	255
2116	9.9	68.3	1.0	72.6	24.4	211	0	0	257
2117	9.5	66.3	1.0	70.4	23.9	207	0	0	259
2118	9.2	64.3	1.0	68.3	23.5	203	0	0	261
2119	8.9	62.4	0.9	66.3	23.0	199	0	0	263
2120	8.6	60.5	0.9	64.3	22.6	195	0	0	264
2121	8.3	58.7	0.9	62.4	22.2	191	0	0	266
2122	8.0	57.0	0.8	60.5	21.7	187	0	0	267
2123	7.7	55.3	0.8	58.7	21.3	184	0	0	268
2124	7.4	53.6	0.8	56.9	20.9	180	0	0	269
2125	7.2	52.0	0.7	55.2	20.5	176	0	0	270
2126	6.9	50.5	0.7	53.5	20.1	173	0	0	271
2127	6.7	48.9	0.7	51.9	19.7	169	0	0	272
2128	6.4	47.5	0.7	50.3	19.3	166	0	0	273
2129	6.2	46.0	0.6	48.8	18.9	162	0 .	0	273
2130	6.0	44.7	0.6	47.3	18.5	159	0	0	274
2131	5.8	43.3	0.6	45.9	18.1	156	0	0	274

Direct Chloride Concentration (mg/L) Output from WinTran Simulation

							Windmill	Inactive Well	End
Year	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	(L 05339)	(L 03945)	Point
2132	5.6	42.0	0.6	44.5	17.7	152	0	0	274
2133	5.4	40.7	0.6	43.2	17.3	149	0	0	274
2134	5.2	39.5	0.5	41.9	17.0	146	0	0	274
2135	5.0	38.3	0.5	40.6	16.6	143	0	0	274
2136	4.8	37.2	0.5	39.4	16.3	140	0	0	274
2137	4.7	36.0	0.5	38.2	15.9	137	0	0	274
2138	4.5	34.9	0.5	37.0	15.6	134	0	0	274
2139	4.4	33.9	0.4	35.9	15.2	131	0	0	273
2140	4.2	32.9	0.4	34.8	14.9	128	0	0	273
2141	4.1	31.9	0.4	33.7	14.6	125	0	0	272
2142	3.9	30.9	0.4	32.7	14.2	122	0	0	272
2143	3.8	29.9	0.4	31.7	13.9	120	0	0	271
2144	3.7	29.0	0.4	30.7	13.6	117	0	0	270
2145	3.5	28.2	0.4	29.8	13.3	114	0	0	269
2146	3.4	27.3	0.3	28.9	13.0	112	0	0	268
2147	3.3	26.5	0.3	28.0	12.7	109	0	0	267
2148	3.2	25.7	0.3	27.1	12.4	107	0	0	266
2149	3.1	24.9	0.3	26.3	12.1	104	0	0	265
2150	3.0	24.1	0.3	25.5	11.9	102	0	0	263
2151	2.9	23.4	0.3	24.7	11.6	100	0	0	262
2152	2.8	22.7	0.3	24.0	11.3	97.3	0	0	261
2153	2.7	22.0	0.3	23.2	11.0	95.1	0	0	259
2154	2.6	21.3	0.3	22.5	10.8	92.8	0	0	256
2155	2.5	20.6	0.3	21.8	10.5	90.7	0	0	254
2156	2.4	20.0	0.2	21.2	10.3	88.6	0	0	252
2157	2.3	19.4	0.2	20.5	10.0	86.5	0	0	250

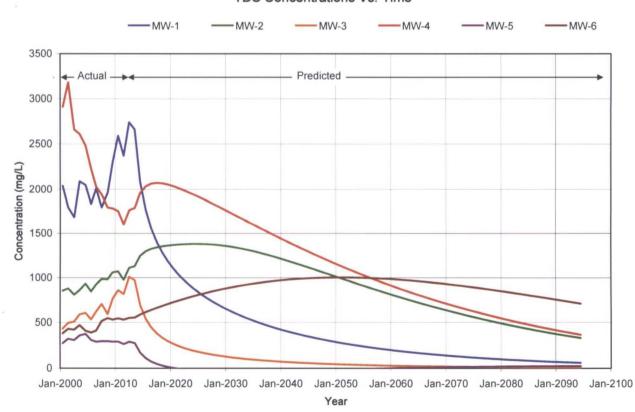
WinTran Analytical Model of 2D Ground-Water Flow and Finite-Element Contaminant Transport Model

Developed by

James O. Rumbaugh, III

Douglas B. Rumbaugh

(c) 1995 Environmental Simulations, Inc.


TDS Fate & Transport Simulation run by: Gilbert Van Deventer (Trident Environmental)

Date: 11/09/2012

Input File: TDS 2012.WTR

Actual

TDS Concentrations Vs. Time

Model Entities

Number of Wells = 8 Well #1 Center of Well -- x: 716.000000 y: 5281.000000 Radius = 1.000000 Pumping Rate = 0.000000 Concentration of Injected Water = 2370.000000 Head at Well Radius = 3793.961643 Well #2 Center of Well -- x: 1041.670000 y: 4585.770000 Radius = 1.000000**Pumping Rate = 0.000000** Concentration of Injected Water = 974.000000 = 3790.911689 Head at Well Radius Well #3 Center of Well -- x: 694.000000 y: 5954.000000 Radius = 1.000000 **Pumping Rate = 0.000000** Concentration of Injected Water = 816.000000 = 3796.079940 Head at Well Radius Well #4 Center of Well -- x: 1341.000000 y: 4747.000000 Radius = 1.000000 Pumping Rate = 0.000000 Concentration of Injected Water = 1600.000000 Head at Well Radius = 3790.623255 Well #5 Center of Well -- x: 1829.000000 y: 4861.000000 Radius = 1.000000 Pumping Rate = 0.000000 Concentration of Injected Water = 265.000000 Head at Well Radius = 3789.669101 Well #6 Center of Well -- x: 1948.000000 y: 4058.000000 Radius = 1.000000 Pumping Rate = 0.000000 Concentration of Injected Water = 531.000000 **Head at Well Radius** = 3786.688589 Well #7 Center of Well -- x: 650.000000 y: 2081.000000 Radius = 1.000000 Pumping Rate = 10.000000 Concentration of Injected Water = 400.000000 Head at Well Radius = 3783.653976 Well #8 Center of Well -- x: 4375.000000 y: 3275.550000 Radius = 1.000000

Reference Head = 3795.000000 Defined at -- x: 619.470000 y: 5537.180000

= 3776.640336

Pumping Rate = 0.000000

Head at Well Radius

Concentration of Injected Water = 0.000000

Aquifer Properties

```
.... Steady-State Flow Model ....
   Permeability.....= 1000.000000 [L/T]
   Porosity..... = 0.250000
   Elevation of Aquifer Top....= 4000.000000
   Elevation of Aguifer Bottom.= 3700.000000
   Uniform Regional Gradient...= 0.004000
   Angle of Uniform Gradient...= 304.000000
   Recharge..... = 0.000000
  .... Transient Transport Model ....
  Longitudinal Dispersivity...= 150.000000 [L]
  Transverse Dispersivity..... = 15.000000 [L]
  Diffusion Coefficient.....= 0.000000 [L2/T]
  Contaminant half-life..... = 1000.000000 [T]
  Retardation Coefficient....= 1.000000
  Upstream Weighting in X..... = 0.000000
  Upstream Weighting in Y..... = 0.000000
  .... Time Stepping Information ....
  Number of time steps.....= 820
  Starting time value..... = 2012.000000
  Initial time step size.....= 0.100000
  Time step multiplier..... = 1.000000
  Maximum time step size.....= 0.100000
  Time stepping scheme...... = Central Differencing
  .... Simulation Summary ....
  Starting time..... = 2012.000000
  Ending time..... = 2094.000000
  Number of time steps.....= 820
  (NOTE: following mass balance errors expressed as percent)
  Transport Mass Balance Error= 1.744046
  Peclet Criterion..... = 1.388889
  Courant Number..... = 0.004718
  Flow Model Type..... = Analytic Element
.... Head Contour Matrix
Number of nodes in the X-direction = 49
Number of nodes in the Y-direction = 49
Minimum X Coordinate = 0.000000
Minimum Y Coordinate = 0.000000
Maximum X Coordinate = 10000.000000
Maximum Y Coordinate = 6289.062500
```

Minimum Head = 3738.597428 Maximum Head = 3798.498580

Page 3 of 5

Direct TDS Concentration (mg/L) Output from WinTran Simulation

							•	Inactive Well (L	End
Year	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	05339)	03945)	Point
2000	2040	852	433	2910	274	382	0	0	0
2001	1790	878	495	3180	322	431	0	0	0
2002	1680	808	509	2660	308	422	0	0	0
2003	2090	859	588	2610	359	471	0	0	0
2004	2050	931	605	2480	375	410	. 0	0	0
2005	1830	844	533	2230	309	391	0	. 0	0
2006	2010	922							
			619	2030	290	412	0	0	0 .
2007	1790	984	705	1940	296	516	0	. 0	20
2008	1960	980	592	1790	296	548	0	0	40
2009	2300	1060	766	1780	291	532	0	0	40
2010	2590	1070	859	1750	291	545	0	. 0	60
2011	2370	974	816	1600	265	531	0	0	80
2012	2740	1110	1010	1760	290	550	0	0	109
2013	2660	1128	971	1786	275	554	0	0	183
2014	2084	1245	691	1961	169	587	0	0	202
2015	1765	1297	540	2036	110	614	0	0	222
2016	1557	1324	447	2066	73	638	Ö	0	242
2017	1405	1341	382	2074	47	660	0	0	263
2018	1285	1353	334	2069	28	682	0	0	284
2019	1187	1361	297	2056	14	704	0	0	306
2020	1104	1368	267	2037	3	724	0	0	328
2021	1032	1373	242	2014	0	744	0	0	351
2022	968	1377	221	1988	-0	762	0	0	374
2023	912	1380	202	1960	0	780	0	0	398
2024 2025	861 815	1381 1380	187 173	1931	0	798	0	0	422
2025	773	1378	161	1901 1870	0 0	814 830	0 0	0 0	445 469
2027	773 735	1374	150	1839	0	845	0	0	493
2028	699	1369	140	1807	0	859	0	0	517
2029	666	1362	131	1775	0	872	0	. 0	540
2030	635	1353	123	1743	0	885	0	Ö	564
2031	607	1343	116	1710	Ö	897	Ö	Ö	587
2032	580	1332	109	1678	Ö	908	Ö	Ö	609
2033	555	1320	103	1646	Ō	919	Ö	Ö	632
2034	531	1306	97	1614	0	928	0	0	654
2035	509	1291	92	1582	. 0	938	0	0	675
2036	488	1275	87	1551	0	946	0	0	696
2037	468	1259	82	1519	0	954	0	0	717
2038	449	1241	78	1488	0	962	0	0	737
2039	431	1223	74	1457	0	968	0	0	757
2040	414	1204	70	1427	0	974	0	0	776
2041	398	1185	67	1397	0	980	. 0	0	795
2042	382	1166	63	1367	0	985	0	0	813
2043	367	1146	60	1337	0	989	0	0	831
2044	353	1125	58	1308	0	993	0	0	848
2045 2046	340 227	1105	55 52	1279	0	996	0	0	865
2046 2047	327 315	1084 1063	52 50	1251 1223	0 0	999 1001	0	. 0	881
2047	303	1063	47	1196	0	1001 1002	0 0	0 √0	897 912
2048	292	1043	47 45	1169	0	1002	0	0	926
2073	232	1022	73	1100	J	1000	5	J	320

Direct TDS Concentration (mg/L) Output from WinTran Simulation

							Windmill (L	Inactive Well (L	End
Year	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	05339)	03945)	Point
2050	281	1001	43	1142	0	1004	0	0	940
2051	271	980	41	1116	0	1004	0	0	953
2052	261	960	39	1090	0	1003	0	0	966
2053	251	939	38	1065	0	1002	0	0	978
2054	242	919	36	1040	0	1001	0	0	989
2055	233	898	35	1015	0	999	0	0	1000
2056	225	878	33	991	0	996	0	0	1011
2057	217	859	32	968	0	994	0	0	1020
2058	209	839	30	944	0	990	0	0	1029
2059	202	820	29	922	0	987	0	0	1038
2060	195	801	28	899	0	983	0	0	1046
2061	188	782	27	877	1	979	0	0	1053
2062 2063	181 175	763	25	856	2	974	0	0	1060
2063	169	745 727	24 23	835 814	4	969	0	0	1066
2064	163	710	22	794	5 6	964 958	0	0	1071
2066	157	692	22	774	7	952	0	0	1076 1080
2067	151	675	21	755	8	946	0	0	1084
2068	146	659	20	736	9	939	0	0	1084
2069	141	642	19	717	10	932	0	0	1087
2070	136	626	18	699	11	925	0	0	1091
2071	131	611	18	681	12	918	0	0	1093
2072	127	595	17	664	13	911	0	0	1094
2073	123	580	16	647	14	903	0	0	1094
2074	118	565	16	630	14	895	0	0	1094
2075	114	551	15	614	15	887	0	0	1093
2076	110	537	14	598	16	878	0	0	1092
2077	106	523	14	582	17	870	0	0	1090
2078	103	509	13	567	17	861	0	0	1088
2079	99	496	13	552	18	853	0	0	1085
2080	96	483	12	538	18	844	0	0	1082
2081	93	470	12	523	19	835	0	0	1079
2082	89	458	11	510	20	826	0	0	1075
2083	86	446	11	496	20	816	0	0	1070
2084	83	434	10	483	21	807	0	0	1066
2085	81	423	10	470	21	798	0	0	1060
2086	78	411	10	457	21	788	0	0	1055
2087	75	400	9	445	22	778	0	0	1049
2088	73	390	9	433	22	769	0	0	1043
2089	70	379	9	421	23	759	0	0	1036
2090	68	369	8	410	23	749	0	0	1029
2091	65	359	8	399	23	740	0	0	1022
2092	63	349	8	388	23	730	0	0	1015
2093	61	340	7	377	24	720	0	0	1007
2094	59	330	7	367	24	710	0	0	999