		SIT	E INFOR	MATION				
	stalitiga Biritalitiga Biritaliti	Report	Type: Cl	osure Re	port			
General Site Info	rmation:				S POS			
Site:		Willow A Sta	te #3					an a
Company:		COG Operati	ing LLC					· · · · · · · · · · · · · · · · · · ·
Section, Townsh	ip and Range	Unit J	Sec 3	T25S	R28E			
Lease Number:		API-30-015-3	3371					
County:		Eddy County	/		· ·			
GPS:			32.15771° N			10	4.07320)° W
Surface Owner:		State			-			
Mineral Owner:								
Directions:			the Texas, Never road and trave					for 11.1 miles. Turn f road.
								·····
	······································			1	1 Main Star - Mart	with the second second	THENES, M.Y.	Prof & Prove 1. Marthan Proc.
Release Data: 👔						Sec. 3.		tation of a second as
Date Released:		1/16/2013						
Type Release:			ter with skim o	oil		<u></u>		
Source of Contar	nination:	Flowline failu	re					
Fluid Released:		75 bbls						
Fluids Recovered		0 bbis	TON JOHNSON IN THE LASSING	S	PENDENSE AN INTEL 1997	an and a state of the second	N" THE NORMATING STREET	1791 Harter A. Access and Static Areas and a Contractor
Official Commun	iication:		ter				e- # 64.5 - 4	
Name:	Pat Ellis				lke Tavai	rez		
Company:	COG Operating, LL	C ·			Tetra Teo	ch		
Address:	One Concho Center	r			1910 N. I	Big Spring		
	600 W. Illinois Ave.	•						· · · · · · · · · · · · · · · · · · ·
City:	Midland Texas, 797	01			Midland,	Toyas		
Phone number:	(432) 686-3023							
					(432) 682	2-4009	·····	
Fax:	(432) 684-7137							
Email:	pellis@conchoresou	Irces.com			<u>ike.tavar</u>	rez@tetrat	tech.cor	<u>n</u>
				an River and Street and	Ador A			
Depth to Groundw <50 ft	ater:		Ranking Scol	e		<u>Site D</u> 20		<u></u>
<50 ft			<u>20</u>	<u>_</u>	·	20		
>100 ft.			0			<u></u>		
			·			•		
WellHead Protection	on:		Ranking Scor	e		Site D	ata	
	00 ft., Private <200 ft		20			·		
Water Source >1,0	00 ft., Private >200 ft		0			0		
Surface Body of W	ater:		Ranking Scol	·e .		Site D	ata	
<200 ft. 200 ft - 1,000 ft.	<u> </u>		10					
>1,000 ft.			0			0		
					nake bije na fals a ni, men der Komf			- Color and the second s
Tot	al Ranking Score:		20		; .	1	ECEI AN 24	
		Construction of the second	ble Soil RRA		<u>, 1</u>	1		l
		Benzene	Total BTE		_	ANARC))))	DTESIA
1		10	50	100				

September 13, 2013

Mr. Mike Bratcher Environmental Engineer Specialist Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210

Re: Closure Report for the COG Operating LLC., Willow A State #3 Flow Line Leak, Unit J, Section 3, Township 25 South, Range 28 East, Eddy County, New Mexico.

Mr. Bratcher:

Tetra Tech, Inc. (Tetra Tech) was contacted by COG Operating LLC. (COG) to assess a spill from the Willow A State #3 Flow Line Leak located in Unit J, Section 3, Township 25 South, Range 28 East, Eddy County, New Mexico (Site). The spill site coordinates are N 32.15771°, W 104.07320°. The site location is shown on Figures 1 and 2.

Background

According to the State of New Mexico C-141 Initial Report, the leak was discovered on January 16, 2013, and released approximately seventy five (75) barrels of produced fluid from a flow line. To alleviate the problem, COG personnel repaired the flow line. Zero (0) barrels of standing fluids were recovered. The spill initiated west of the lease road affecting an area approximately 15' X 40' in the pasture. The initial C-141 form is enclosed in Appendix A.

Groundwater

One water well was listed within Section 3, with an approximate depth to groundwater of 32' below surface. According to the NMOCD groundwater map, the average depth to groundwater in this area is less than 50' below surface. The groundwater data is shown in Figure B.

Regulatory

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the depth to groundwater, the proposed RRAL for TPH is 100 mg/kg.

Soil Assessment and Analytical Results

On January 8, 2013, Tetra Tech personnel inspected and sampled the spill area. Two (2) auger holes (AH-1 and AH-2) and a background auger hole were installed using a stainless steel hand auger to assess the impacted soils. Selected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The results of the sampling are summarized in Table 1. The auger hole locations are shown on Figure 3.

Referring to Table 1, AH-1 exceeded the TPH RRAL of 163 mg/kg, but declined at 1.5' below RRAL. None of the auger holes exceeded the RRAL for benzene or total BTEX. Elevated chloride concentrations were detected in both auger holes (AH-1 and AH-2). Auger holes (AH-1) showed declining chloride concentrations, but was not vertically defined. AH-1 detected a chloride high of 19,400 mg/kg at 0-1' and declined to 1,980 mg/kg at 9-9.5' below surface. The chloride impact in the area of AH-2 showed a shallow impact and vertically defined at approximately 3.0' below surface.

The background samples showed a chloride high of 76.5 mg/kg at 0-1' below surface.

Closure Activities

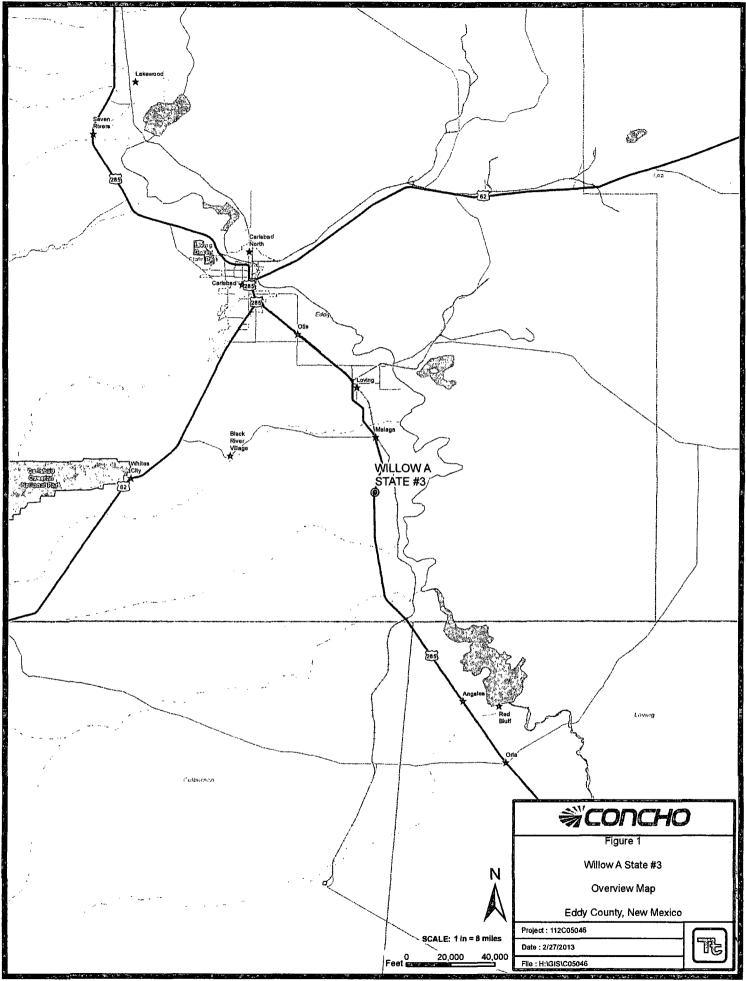
Prior to excavating the impacted areas, one (1) backhoe trench (T-1) was installed in the area of AH-1 to attempt to vertically define the chloride impact. The sampling results are shown in Table 1. Referring to Table 1, the area of AH-1 showed a significant chloride impact down to 12.0' below grade surface, with a chloride concentration of 4,450 mg/kg. Deeper samples were not collected due to the backhoe depth limitation. The excavation areas and depths are highlighted in Table 1 and shown on Figure 4.

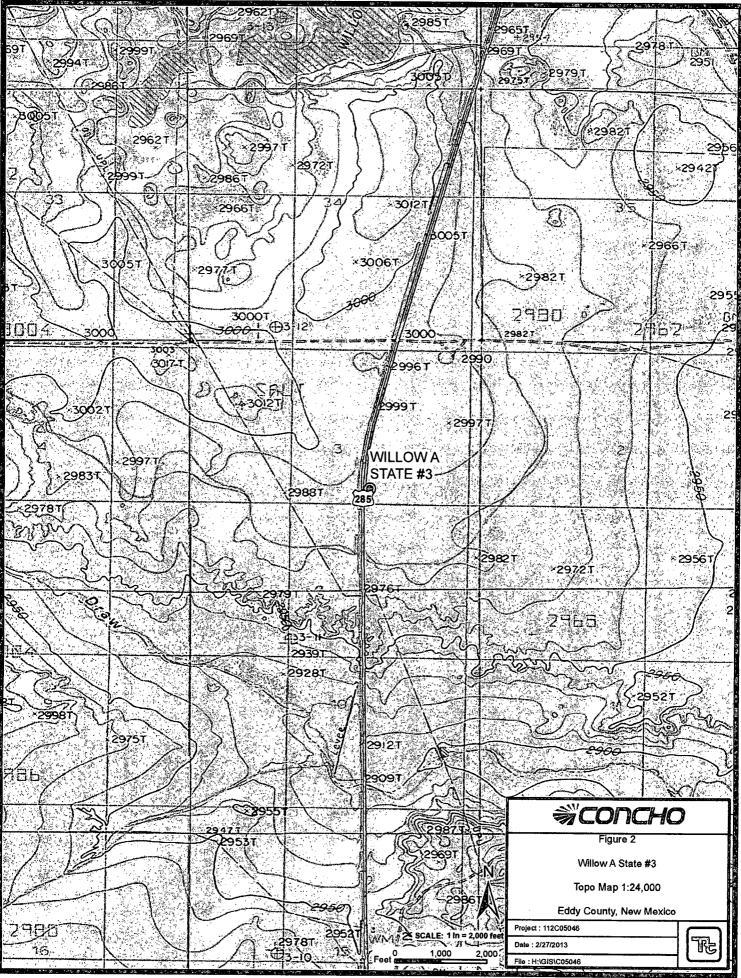
Based on the field data, the impacted areas (AH-1 and AH-2) were excavated to depth of 4.0' below surface. For safety concerns, deeper excavation could not be achieved due to the sandy subsurface formation and lines in the area of AH-1. As such, Tetra Tech excavated the soils to the maximum extent practicable. Due to deeper extent, the excavation bottom was lined with a 40 mil liner to cap the remaining impact. Approximately 110 cubic yards were transported offsite for proper disposal. The site was backfilled with clean material and brought to grade.

On July 23, 2013, Tetra Tech installed one (1) soil boring in the area of AH-1 to define chloride extents. The SB-1 results are shown in Table 2. Referring to Table 2, the soil sampling began at 4-5' below surface, where it showed a chloride high of 13,500 mg/kg. The chloride concentrations fluctuated with depth declining at 14-15' (511 mg/kg) and 24-25' (939 mg/kg). Overall, the chlorides declined with depth down to 1,470 mg/kg at 39-40' below surface, which was not vertically defined. However, the area is limited (15' x 20'), chlorides declined with depth and the area was capped with a liner to prevent vertical migration.

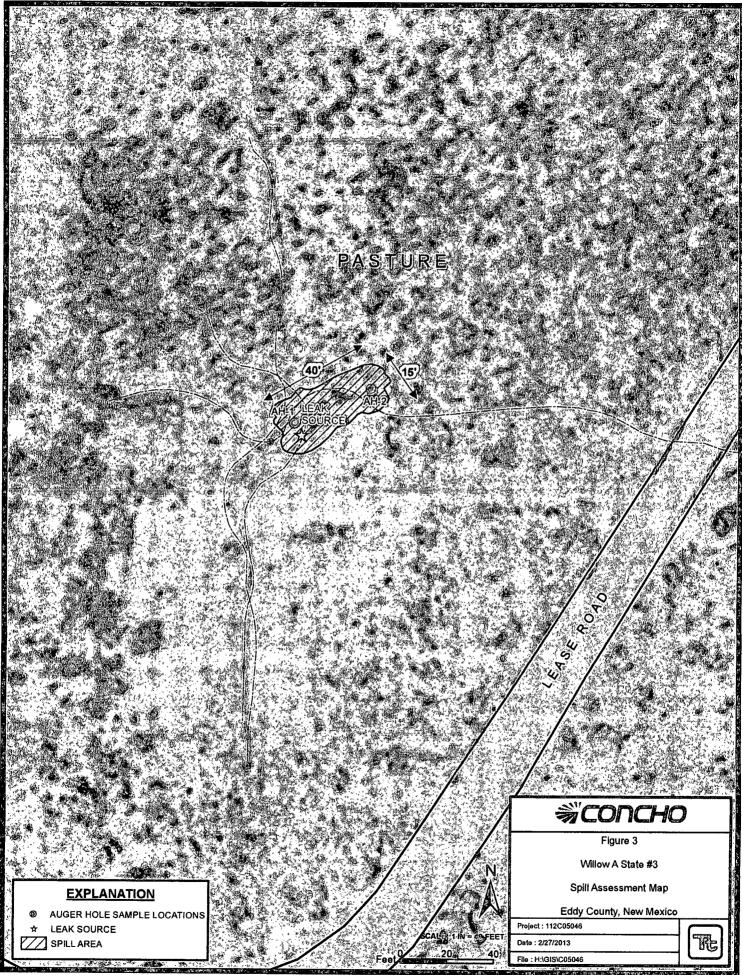
The fluctuating chloride concentrations may be possibly crosscontamination from the upper soil or from the natural gypsum formation encountered at 15' and deeper. A trend chart of the chloride concentrations (Figure 6) is included in the Figures section.

Based on the remedial activities performed, COG requests closure of the site. A copy of the C-141 (Final) is included in Appendix A. If you have any questions or comments concerning the remedial activities, please call at (432) 682-4559.

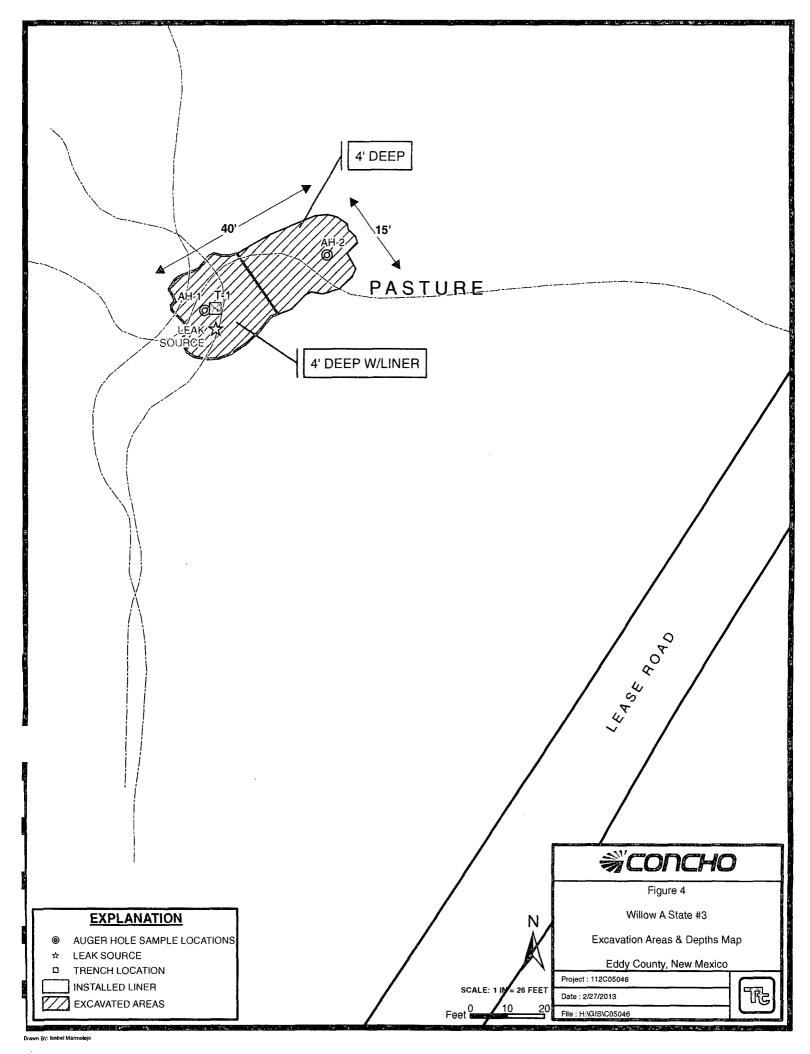

Respectfully submitted, TEPRA TECH

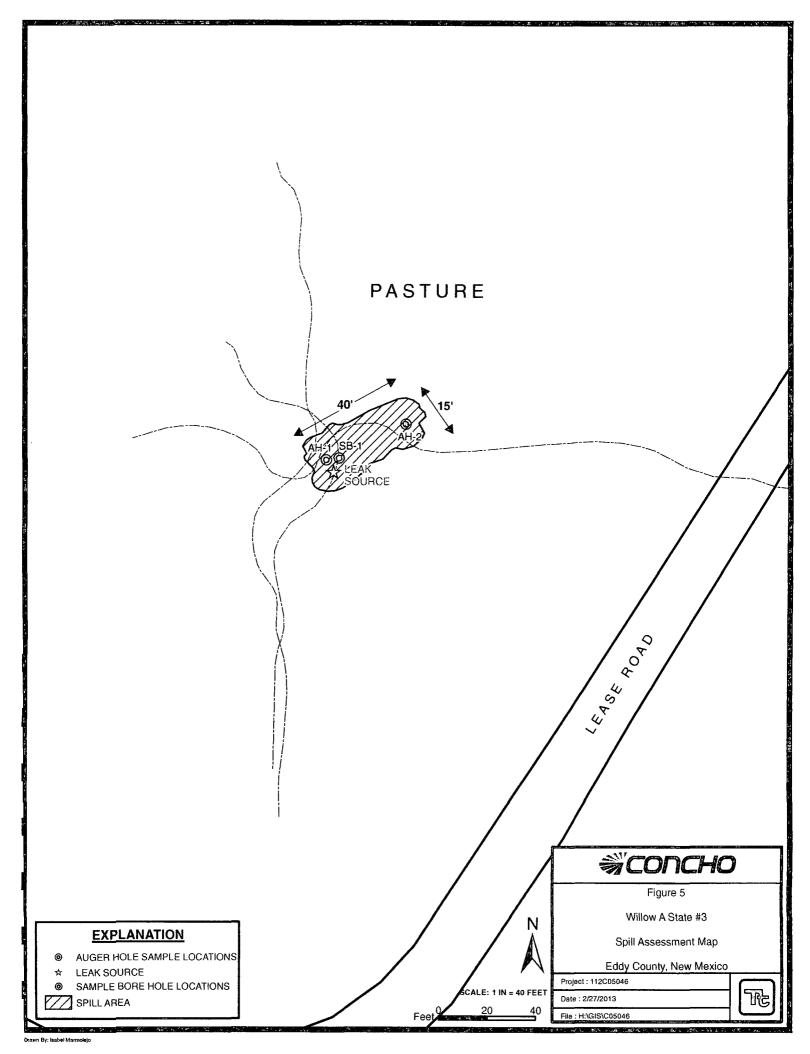

Ike Tavarez, PG Senior Project Manager

cc: Pat Ellis - COG

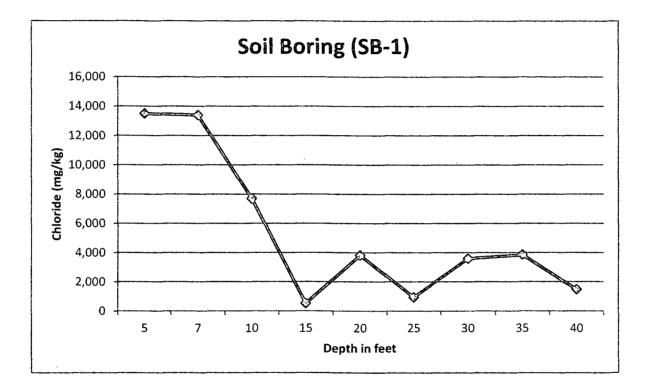

Figures

• .





Onewn By: Isabel Marmolejo



Drawn By: (sabel Marmolejo

Figure 6 COG Operating LLC. Willow State #3 Tank Battery Eddy County, New Mexico

Tables

.

Table 1 COG Operating LLC. Willow A State #3 Eddy County, New Mexico

0	Sample	Sample	Soil	Status	-	FPH (mg/k	g)	Benzene	Toluene	Ethlybenzene	Xylene BTEX		Chloride
Sample ID	Date	Depth (ft)	In-Situ	Removed	GRO	DRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
AH-1	2/8/2013	0-1		X -	51.7	这时间 通	163	-s<0.100¢	<0.100	<0.100	1.67	C 1.67	19,400
	0	1-1-5		X	4.89	<50.0	4.89				NO ANT		13,200
		2-2.5	Sec. Starten and										16,300
	1	3-3.5	S Same	× .	N 69 - 2 - 3			der der				法的情况	17,800-
		4-4.5	6	- X		11.0		an an an					18,300
	\$1	5-5.5	X		-	-	-	-	-	-	-	-	14,700
		6-6.5	X		-	-	-	-	-	-	-	-	14,000
	11	7-7.5	X		-	-	_	-	-	-	-	-	8,030
	11	8-8.5	X		-	-	-	-	-	-	-	-	3,820
	11	9-9.5	X		_	-	-	-	-	-	-	-	1,980
T-1	4/1/2013	0		X	28. 		Pris put tous		an a				10,400-
		2		X					in the second second				12,000
		4	and a start of the	X				radio producto da la composi a composito da la composito da a composito da la composito da					18,100
		6	X		-	-	-	~	-	-	-	-	16,800
	11	8	Х			-	-	-	-	-	-	-	15,800
	11	10	Х		-	-	-	-	-	-	-	-	3,330
	Ð	12	X		-	-	-	-	-	-	-	-	4,450

Table 1COG Operating LLC.Willow A State #3Eddy County, New Mexico

	Sample	Sample	Soil	Status	-	TPH (mg/k	<u>g)</u>	Benzene	Toluene	Ethlybenzene	Xylene	Total	Chloride
Sample ID	Date	Depth (ft)	In-Situ	Removed	GRO	DRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	BTEX (mg/kg)	(mg/kg)
AH-2	2/8/2013	0-1	17	X	_<4.00∽	<50.0	<50.0	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	≈1,030 -
		1-1.5	t silen y V. av i Vilence concelet south	X	الله بر الله الله الله الله الله الله الله الل								408
		2-2.5		X									946
	1	3-3.5		X						Contraction of the second in the			282
	i ze i u i i i i i i i i i i i i i i i i i		1			کور کی در در در در می از می وارد. اور کی در در می می می ورد در در اهر در می می می ورد بی می ورد در			22.5		7 CAMER		220
	11	5-5.5	Х		-	-	-	-	-	-	-	-	205
	υ	6-6.5	X		+	-	-	-	-	-	-	-	440
	U	7-7.5	Х		-	-	-	-	-	-	-	-	186
		8-8.5	Х			-	-	-	-	-	-	-	119
		9-9.5	Х		-	-	-	-	-	-	-	-	444
Background	2/8/2013	0-1	x		-	-	-	-	-	-	-	-	76.5
	11	1.5-2	X		-	-	-	-	-	-	-	-	<20.0
	u	3.5-4	Х		-	-	-	-	-	-	-	-	<20.0
	11	5.5-6	Х		-	-	-	-	-	-		-	<20.0

.

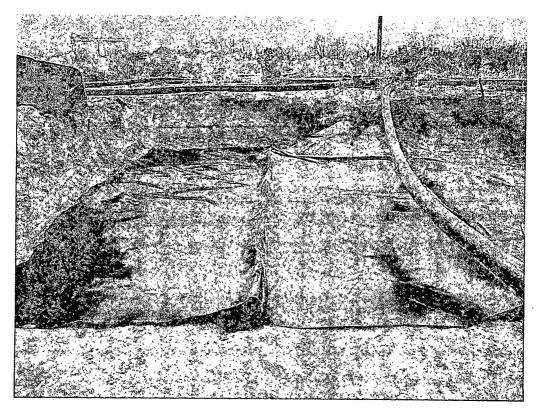
Not Analyzed

Excavated Depths Liner Installed

Table 2 COG Operating LLC. Willow State #3 Tank Battery Eddy County, New Mexico

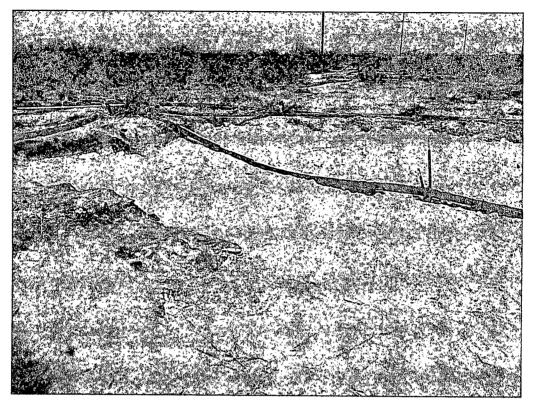
	Sample	Sample BEB Date Depth (ft)	Excavation	Soil	Status	-	TPH (mg/k	g)	Benzene	Toluene	Ethlybenzene	Xylene	Total	Chloride
Sample ID				In-Situ	Removed	GRO	DRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	BTEX (mg/kg)	(mg/kg)
BH-1	7/23/2013	4-5	0	Х		-	-	-	-	-	-	-	-	13,500
	u	6-7	n	Х		-	-	-	-	-	-	-	-	13,400
	n	9-10	u	Х		-	-	-	-	-	-	-	-	7,690
	n	14-15	μ	Х		-	-	-	-	-	-	-	-	511
	n	19-20	u	Х		-	-	-	-	-	-	-	-	3,820
	"	24-25	u	Х		-	-	-	-	-	-	-	-	939
	"	29-30	"	Х		-	-	-	-	-		-	-	3,590
	u	34-35	n	Х		-	-	-	-	-	-	-	-	3,850
	n	39-40	n	Х		-	-	-	-	-		-	-	1,470

(-) Not Analyzed

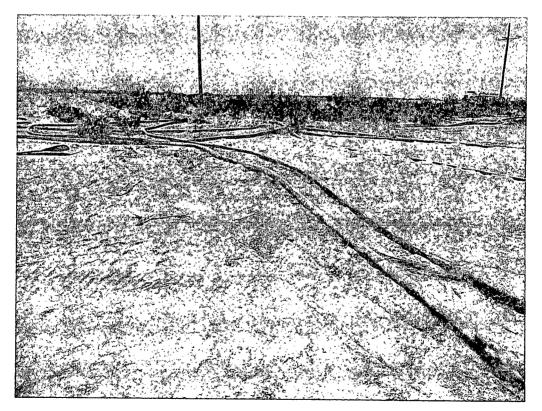

(BEB) Below Excavation Bottom

Photos

COG Operating LLC Willow A State #3 Eddy County, New Mexico



View North – Areas of AH-1 and AH-2



View West - Liner installed at AH-1

COG Operating LLC Willow A State #3 Eddy County, New Mexico

View North - Backfill

View West - Backfill

Appendix A

District I 1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

JAN **24** 2014

RECEIVED

Form C-141 Revised October 10, 2003

NMOCD ARTES In the 2 Copies to appropriate strict Office in accordance with Rule 116 on back side of form

Release Notification and Corrective Action

	· · · · · · · · · · · · · · · · · · ·	OPERATOR	🗌 Initial Report 🛛 🛛	Final Report
Name of Company	COG Operating LLC	Contact	Pat Ellis	
Address 600 W. I	llinois Ave. Midland, Texas 79701	Telephone No.	(432) 230-0077	
Facility Name Willow A State #3		Facility Type	3" Poly water line	
Surface Owner: Federal	Mineral Owner	•	Lease No. (API#) 300-0	15-33371

LOCATION OF RELEASE

Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County	
J	3	25S	28E						Eddy
			1						

Latitude N 32.15771° Longitude W 104.07320°

NATURE OF RELEASE

Type of Release: Produced water with skim oil	Volume of Release 75 bbls Volume Recovered 0 bbls						
Source of Release: 3" poly water line	Date and Hour of Occurrence	Date and H	Hour of Discovery				
	01/16/2013	01/16/201	3				
Was Immediate Notice Given?	If YES, To Whom?		······································				
🛛 Yes 🗌 No 🗋 Not Required	Mike	e Bratcher-OC	D				
By Whom? Michelle Mullins	Date and Hour 01/17/2013 3:49	p.m.					
Was a Watercourse Reached?	If YES, Volume Impacting the Wa	atercourse.					
🗌 Yes 🖾 No	N/A						
If a Watercourse was Impacted, Describe Fully.*	1						
Describe Cause of Problem and Remedial Action Taken.*							
3" poly water line was cracked during cold weather conditions and consta	ntly being driven over by power line	crews in large	e truck. The line has been				
repaired and returned to service.							
Describe Area Affected and Cleanup Action Taken.*							
Describe Area Arrected and Creanup Action Taxen.							
Tetra Tech personnel inspected the site and collected samples to define the	e spills extent. Soil that exceeded the	RRAL was re	emoved and hauled away for				
proper disposal. The site was then lined and brought up to surface grade w							
to NMOCD for review.							
I hereby certify that the information given above is true and complete to the							
regulations all operators are required to report and/or file certain release n							
public health or the environment. The acceptance of a C-141 report by the should their operations have failed to adequately investigate and remediate							
or the environment. In addition, NMOCD acceptance of a C-141 report d							
federal, state, or local laws and/or regulations.	bes not reneve the operator of respon	isionity for co	inpliance with any other				
	OIL CONSER	VATION	DIVISION				
	OIL CONSER	VATION	011131011				
Signature:							
	Approved by District Supervisor:						
Printed Name: Ike Tavarez							
Title: Project Manager	Approval Date:	Expiration D	ate:				
E-mail Address: Ike.Tavarez@TetraTech.com	Conditions of Approval:						
_	conditions of Approval.		Attached				
Date: $5 - 13 - 13$ Phone: (432) 682-4559							

* Attach Additional Sheets If Necessary

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised October 10, 2003

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Release Notification and Corrective Action

						OPERA	ſOR	Initia	al Report		Final Report
Name of Co	mpany	COG OP	ERATIN	GLLC		Contact	Pa	at Ellis			
Address	600 We			idland, TX 7970	1 '	Telephone 1	No. 432-	230-0077			
Facility Nan	ne	Willow	v A State	#3	1	Facility Typ	e <u>3" Pol</u>	y water line			
Surface Own	ner State			Mineral O	wner			Lease 1	lo. (API#) 3	0-01	5-33371
				LOCA	TIOP	N OF RE	LEASE				
Unit Letter J	Section 3	Township 25S	Range 28E	Feet from the		South Line	Feet from the	East/West Line	County E	ddy	<u> </u>
		<u></u>		Latitude 32 09	.840	Longi	t ude 104 04.319)	1		
						OF REL					
Type of Relea	ase Produc	ed water w/ sl	im oil				Release 75bbls	Volume I	Recovered Ob	bls	
Source of Re	lease 3" po	ly water line				Date and H 01/16/2013	lour of Occurrenc		Hour of Disc 3 3:00 p.m.		1
Was Immedia	ate Notice C		Yes 🗌	No 🗌 Not Re	quired	If YES, To	Whom?	Mike Bratcher-O			
By Whom?	Michelle M	lullins				Date and H	lour 01/17/2013	3:49 p.m.			
Was a Water	course Read	hed?	Yes 🛛	No		If YES, Vo	olume Impacting t	he Watercourse.			
If a Watercou	irse was Im	pacted, Descr	ibe Fully."	¢		1					
Describe Cau	se of Probl	em and Reme	dial Actio	n Taken.*				<u>,, ,, _</u> ,,, _,_,, _, _, _, _, _, _, _, _, _, _			
3" poly water repaired and			cold weat	her conditions and	l consta	ntly being dri	ven over by powe	er line crews in lar	ge trucks. The	: line	has been
Describe Are	a Affected	and Cleanup /	Action Tak	en.*							
area is located	d on ROW	adjacent to wl	nere the lin	ne was located and	l along r	nearby fence	line roughly 30' x	ased fluid due to h 10'. Tetra Tech w or approval prior to	ill sample the	e spill	site area to
regulations al public health should their c	l operators or the environmentions homent. In a	are required to ronment. The ave failed to a ddition, NMC	o report ar acceptanc idequately ICD accep	d/or file certain re e of a C-141 report investigate and re	elease no rt by the emediate	otifications a NMOCD m contamination	nd perform correc arked as "Final R on that pose a thr	nderstand that pur tive actions for rel eport" does not rel eat to ground wate responsibility for c	eases which r ieve the opera r, surface wat	may e ator o ter, hi	ndanger If liability uman health
		1.		~			OIL CON	SERVATION	DIVISIO	N	
Signature:			<u> </u>	<u> </u>		Annroved by	District Supervis	or			
Printed Name	: (Josh	Russo					·····			
Title:		Senior Enviro	nmental C	oordinator		Approval Da	te:	Expiration	Date:		
E-mail Addre	SS:	jrusso@c	concho.co	<u>n</u>	(Conditions o	f Approval:		Attached		

Date: 01/29/2013 Phone: 432-212-2399

* Attach Additional Sheets If Necessary

Appendix B

Water Well Data Average Depth to Groundwater (ft) COG - Willow A State #3 Flowline Eddy County, New Mexico

	24 S	outh		27 Eas	t
6	5	4	3	2	1
7	8 26	9 43	10	11	12 27
18 34	17	16	15	14	13 31
19	20	21	22 70	23	24
30	29	28	27	26	25
31	32	33	34	35	36

	25	South		t	
6	5	4	3	2	1
7	8	9	10	11	12 92
18	17	16	15	14	13
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

	26	South	South 27 East					
6	5 12	4	3	2	1			
7	8	9	10	11	12			
18	17	16	15	14	13 35			
19	20	21	22 50	23	24			
30	29	28	27	26	25			
31	32	33	34	35	36			

	2	24 S	outh					
6 70	5	30	4 30	3	2	65	1	60
7	8	50	9	10 17	11		12 73	
18	17 42		16 29	15 18	14 52		13 34	
19	20 48		21	22	23		24	
30	29		28	27	26		25	
31	32		33	34	35		36	

	25	South	2	8 Eas	t
6	5 59	4 35	3 32 SITE	2	1
7	8	9	10	11	12
18 67	17	16	15 48 49	14	13
19	20 96	21	22	23	24
30	29 1 5	28 90	27	26 30	25
31	32	33	34	35	36 40

	26	South		28 East	
6	5	4	3	2 1 20	1 ~
7	8	9	10	11	12 100
18	17	16	15	14 120	13 56
19	20	21	22 120	23	24
30	29	28	27	26	25
31	32	33	34	35	36

	24	South		29 Eas	t
6	5	4	3	2	1
7 160	8	9	10	11	12
78	17	16 18	15	14	13
19	20	(21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

		outh	29	9 East	
6 49	50	4	3	2	1
Ċ-	8	9	10 40	11	12
لر18	17	16	15 60	14	13
19	20	21	22	23	24
30 30	29	28	27	26	25
30 31	32	33	34	35	36

	26 \$	South	2	9 Eas	t
6	5	4	3	2	1
7	8	9	10	11	12
18	17	16	15	14	13
19	20	21	22 57	23	24
30 U	29	28	27	26	25
31	32	33	34	35	36

New Mexico State Engineers Well Reports

USGS Well Reports

Geology and Groundwater Conditions in Southern Eddy, County, NM

NMOCD - Groundwater Data

Field water level

New Mexico Water and Infrastructure Data System

Summary Report

Ike Tavarez Tetra Tech 1910 N. Big Spring Street Midland, TX 79705

Report Date: April 17, 2013

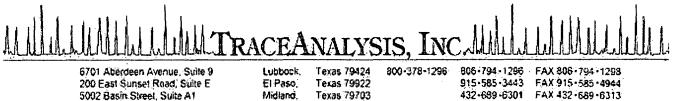
Work Order: 13041026

Project Location:Eddy Co., NMProject Name:COG/Willow A State #3Project Number:112C05046

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
325792	T-1 (AH-1) 0'	soil	2013-04-01	00:00	2013-04-10
325793	T-1 (AH-1) 2'	soil	2013-04-01	00:00	2013-04-10
325794	T-1 (AH-1) 4'	soil	2013-04-01	00:00	2013-04-10
325795	T-1 (AH-1) 6'	soil	2013-04-01	00:00	2013-04-10
325796	T-1 (AH-1) 8'	soil	2013-04-01	00:00	2013-04-10
325797	T-1 (AH-1) 10'	soil	2013-04-01	00:00	2013-04-10
325798	T-1 (AH-1) 12'	soil	2013-04-01	00:00	2013-04-10

Sample: 325792 - T-1 (AH-1) 0'

Param	Flag	Result	Units	\mathbf{RL}
Chloride		10400	mg/Kg	4


Sample: 325793 - T-1 (AH-1) 2'

Param	Flag	Result	Units	\mathbf{RL}
Chloride		12000	mg/Kg	4

Sample: 325794 - T-1 (AH-1) 4'

Param	\mathbf{Flag}	Result	Units	\mathbf{RL}
Chloride		18100	mg/Kg	4

Report Date: April 17, 2013		Work Order: 13041026		Page Number: 2 of 2
Sample: 325795	5 - T-1 (AH-1) 6'			
Param	Flag	Result	Units	RL
Chloride		16800	mg/Kg	4
Sample: 325796	6 - T-1 (AH-1) 8'			
Param	Flag	Result	Units	RL
Chloride		15800	mg/Kg	4
Sample: 325797	7 - T-1 (AH-1) 10'			
Param	Flag	\mathbf{Result}	Units	RL
Chloride		3330	mg/Kg	4
Sample: 325798	8 - T-1 (AH-1) 12'			
Param	Flag	Result	Units	RL
Chloride		4450	mg/Kg	4

(BioAquatic) 2501 Mayes Rd., Suite 100 E-Mail: lat El Paso, Texas 79922 Midland, Texas 79703 Carroliton, Texas 75006 @traceanalysis.com WE

E-Mail: lab@traceanalysis.com WE8: www.traceanalysis.com

Certifications

WBE HUB NCTRCA DBE NELAP DoD LELAP Kansas Oklahoma ISO 17025

Analytical and Quality Control Report

Ike Tavarez Tetra Tech 1910 N. Big Spring Street Midland, TX, 79705

Report Date: April 17, 2013

Work Order: 13041026

972-242-7750

Project Location:Eddy Co., NMProject Name:COG/Willow A State #3Project Number:112C05046

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
325792	T-1 (AH-1) 0'	soil	2013-04-01	00:00	2013-04-10
325793	T-1 (AH-1) 2'	soil	2013-04-01	00:00	2013-04-10
325794	T-1 (AH-1) 4'	soil	2013-04-01	00:00	2013-04-10
325795	T-1 (AH-1) 6'	soil	2013-04-01	00:00	2013-04-10
325796	T-1 (AH-1) 8'	soil	2013-04-01	00:00	2013-04-10
325797	T-1 (AH-1) 10'	soil	2013-04-01	00:00	2013-04-10
325798	T-1 (AH-1) 12'	soil	2013-04-01	00:00	2013-04-10

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 12 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Michael april

Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

Report Contents

Case Narrative

,

nalytical Report 5
Sample 325792 (T-1 (AH-1) 0')
Sample 325793 (T-1 (AH-1) 2')
Sample 325794 (T-1 (AH-1) 4')
Sample 325795 (T-1 (AH-1) 6')
Sample 325796 (T-1 (AH-1) 8')
Sample 325797 (T-1 (AH-1) 10')
Sample 325798 (T-1 (AH-1) 12')
fethod Blanks 8
QC Batch 100556 - Method Blank (1)
aboratory Control Spikes
QC Batch 100556 - LCS (1)
QC Batch 100556 - MS (1)
alibration Standards
QC Batch 100556 - CCV (1)
QC Batch 100556 - CCV (2)
ppendix 11
Report Definitions
Laboratory Certifications
Standard Flags
Attachments

4

Case Narrative

Samples for project COG/Willow A State #3 were received by TraceAnalysis, Inc. on 2013-04-10 and assigned to work order 13041026. Samples for work order 13041026 were received intact at a temperature of 4.0 C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	\mathbf{QC}	Analysis
Test	Method	Batch	Date	Batch	Date
Chloride (Titration)	SM 4500-Cl B	85158	2013-04-15 at 11:25	100556	2013-04-17 at 13:52

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 13041026 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Work Order: 13041026 COG/Willow A State #3 Page Number: 5 of 12 Eddy Co., NM

Analytical Report

Sample: 325792 - T-1 (AH-1) 0'

Laboratory:MidlandAnalysis:Chloride (Titration)QC Batch:100556Prep Batch:85158		Date A	cal Method: nalyzed: Preparation:	SM 4500-Cl B 2013-04-17 2013-04-15	Prep Method: Analyzed By: Prepared By:	AR
		-	RL			
Parameter	Flag	Cert	Result	Units	Dilution	\mathbf{RL}
Chloride			10400	mg/Kg	10	4.00

Sample: 325793 - T-1 (AH-1) 2'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 100556 85158	Date An	al Method: alyzed: Preparation:	SM 4500-Cl B 2013-04-17 2013-04-15	Prep Method: Analyzed By: Prepared By:	AR
			\mathbf{RL}			
Parameter	Flag	Cert	Result	Units	Dilution	\mathbf{RL}
Chloride			12000	mg/Kg	10	4.00

Sample: 325794 - T-1 (AH-1) 4'

Laboratory: Analysis: QC Batch: Prep Batch:	Analysis: Chloride (Titration)		rtical Method: Analyzed: le Preparation:	SM 4500-Cl B 2013-04-17 2013-04-15	Prep Method Analyzed By: Prepared By:	AR
Parameter	Flag	Cert	RL Result	Units	Dilution	\mathbf{RL}
Chloride			18100	mg/Kg	10	4.00

Report Date: April 17, 2013 112C05046			Work Orde COG/Willow		Page Number: 6 Eddy Co		
Sample: 32	5795 - T-1 (AH-1) 6	5'					
Laboratory:MidlandAnalysis:Chloride (Titration)QC Batch:100556Prep Batch:85158			Analytical Met Date Analyzed Sample Prepar	:	SM 4500-Cl B 2013-04-17 2013-04-15	Prep Method: Analyzed By: Prepared By:	'
Parameter	FL	а <i>р</i> (Cert I	RL Result	Units	Dilution	\mathbf{RL}
Chloride		o ``		6800	mg/Kg	10	4.00

Sample: 325796 - T-1 (AH-1) 8'

Laboratory: Analysis: QC Batch: Prep Batch:	Analysis: Chloride (Titration) QC Batch: 100556		al Method: alyzed: Preparation:	SM 4500-Cl B 2013-04-17 2013-04-15	Prep Method: Analyzed By: Prepared By:	ÁR
			RL			
Parameter	Flag	\mathbf{Cert}	Result	Units	Dilution	RL
Chloride			15800	mg/Kg	10	4.00

Sample: 325797 - T-1 (AH-1) 10'

Chloride			3330	mg/Kg	10	4.00
Parameter	Flag	Cert	RL Result	Units	Dilution	\mathbf{RL}
Prep Batch:	85158	Sample I	Preparation:	2013-04-15	Prepared By:	AR
QC Batch:	100556	Date An	alyzed:	2013-04-17	Analyzed By:	AR
Analysis:	Chloride (Titration)	Analytic	al Method:	SM 4500-Cl B	Prep Method:	N/A
Laboratory:	Midland					

Sample: 325798 - T-1 (AH-1) 12'

Midland				
Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
100556	Date Analyzed:	2013-04-17	Analyzed By:	AR
85158	Sample Preparation:	2013-04-15	Prepared By:	\mathbf{AR}
	Chloride (Titration) 100556	Chloride (Titration)Analytical Method:100556Date Analyzed:	Chloride (Titration)Analytical Method:SM 4500-Cl B100556Date Analyzed:2013-04-17	Chloride (Titration)Analytical Method:SM 4500-Cl BPrep Method:100556Date Analyzed:2013-04-17Analyzed By:

Report Date: April 17, 201 112C05046		Gorder: 1304102 Willow A State 7	Page Number: 7 of 12 Eddy Co., NM			
			RL			
Parameter	\mathbf{Flag}	Cert	\mathbf{Result}	Units	Dilution	RL
Chloride			4450	mg/Kg	10	4.00

Work Order: 13041026 COG/Willow A State #3

•

Page Number: 8 of 12 Eddy Co., NM

Method Blanks

Chloride			<3.85	mg/Kg	4
Parameter	Flag	Cert	MDL Result	Units	RL
QC Batch: 100556 Prep Batch: 85158		Date Analyzed: QC Preparation:	2013-04-17 2013-04-15	Analyzed By: Prepared By:	
Method Blank (1)	QC Batch: 100556				

Work Order: 13041026 COG/Willow A State #3 Page Number: 9 of 12 Eddy Co., NM

Laboratory Control Spikes

Laboratory Control Spike (LCS-1)

QC Batch: 100556 Prep Batch: 85158			e Analyzed: Preparation		3-04-17 3-04-15				yzed By ared By	
			LCS			Spike	Ma	atrix		Rec.
Param	F	C		Units	Dil.	Amount			ec	Limit
Chloride			2630 n	ng/Kg	1	2500	<:	3.85 1	05 8	5 - 115
Percent recovery is based on the spik	e resu	lt. RPD) is based on	the sp	ike and sj	pike duplic	ate resu	ılt.		
		LCSD	I		Spike	Matrix		Rec.		RPD
Param F	С	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride		2770	mg/Kg	1	2500	<3.85	111	85 - 115	5	20
Percent recovery is based on the spik	e resu	lt. RPD) is based on	the sp	ike and s	oike duplic	ate resu	ılt.		
Matrix Spike (MS-1) Spiked Sa	mple:	325801								
QC Batch: 100556		Dat	e Analyzed:	201	3-04-17			Anal	yzed By	AR
Prep Batch: 85158		QC	Preparation	: 201	3-04-15			Prepa	ared By	AR
			MS			Spike	Mat	rix		Rec.
Param	F	C I	Result U	nits	Dil.	Amount	Rest	ult Rec	. I	limit
Chloride			2440 m	g/Kg	5	2500	119	9 93	78.	9 - 121
Percent recovery is based on the spike	e resu	lt. RPD	is based on	the sp	ike and sp	oike duplic	ate resu	ılt.		
		MSD			Spike	Matrix		Rec.		RPD
Param F	С	Result	Units]	Dil. 1	Amount	\mathbf{Result}	Rec.	Limit	RPD	Limit
Chloride		2570	mg/Kg	5	2500	119	98	78.9 - 121	5	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Work Order: 13041026 COG/Willow A State #3 Page Number: 10 of 12 Eddy Co., NM

Calibration Standards

Standard (CCV-1)

QC Batch: 100556				Date Analyzed:				Analy	Analyzed By: AR		
					CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date		
Param		Flag	Cert	\mathbf{Units}	Conc.	Conc.	Recovery	Limits	Analyzed		
Chloride				mg/Kg	100	101	101	85 - 115	2013-04-17		

Standard (CCV-2)

QC Batch:	100556			Date Analyzed:		2013-04-17		Analyzed By: AR	
					CCVs True	CCVs Found	CCVs	Percent Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride				mg/Kg	100	99.3	99	85 - 115	2013-04-17

Work Order: 13041026 COG/Willow A State #3 Page Number: 11 of 12 Eddy Co., NM

Appendix

Report Definitions

Name	Definition
MDL	Method Detection Limit
MQL	Minimum Quantitation Limit
SDL	Sample Detection Limit

Laboratory Certifications

С	Certifying Authority	Certification Number	Laboratory Location
-	NCTRCA	WFWB384444Y0909	TraceAnalysis
-	DBE	VN 20657	TraceAnalysis
-	HUB	1752439743100-86536	TraceAnalysis
-	WBE	237019	TraceAnalysis

Standard Flags

- F Description
- B Analyte detected in the corresponding method blank above the method detection limit
- H Analyzed out of hold time
- J Estimated concentration
- Jb The analyte is positively identified and the value is approximated between the SDL and MQL. Sample contains less then ten times the concentration found in the method blank. The result should be considered non-detect to the SDL.
- Je Estimated concentration exceeding calibration range.
- MI1 Split peak or shoulder peak
- MI2 Instrument software did not integrate
- MI3 Instrument software misidentified the peak
- MI4 Instrument software integrated improperly
- MI5 Baseline correction
- Qc Calibration check outside of laboratory limits.
- Qr RPD outside of laboratory limits
- Qs Spike recovery outside of laboratory limits.
- Qsr Surrogate recovery outside of laboratory limits.
- U The analyte is not detected above the SDL

Attachments

Report Date: April 17, 2013 112C05046 Work Order: 13041026 COG/Willow A State #3 Page Number: 12 of 12 Eddy Co., NM

The scanned attachments will follow this page.

Please note, each attachment may consist of more than one page.

13041026

Ar	alva	sis F	20	0		est of Cha	ain of Custo	dv F	26	`		rr	4									PAG	iE:				OF:			
	icai y o		<u> </u>			7		<u> </u>						-					(Cire	-				QUE leth		lo.)				
					R	Midland, Tex	Spring St.								5 (Ext. to C35)		ล 2									-	TDS			
CLIENT NA	ME: CO	 د				SITE MANAGE	R: Taywer	VERS	Π	P		ERV	ATIVE	1	TX1005		Ba	8			60/624	1/0/625					Ξ			
PROJECT	10.:					NAME:		ONTAIL	9	7				1	MOD.		Ag As		latiles		40/82					E	o, Cations,			
<u>/11.Cosc</u> LAB I.D. NUMBER	DATE	TIME	MATRIX	COMP: N	GRAB	SAMPL	د المرابع الم A DENTIFICATION	NUMBER OF CONTAINERS	FILTERED (Y/N)	HCL	HN03	ICE	NONE	BTEX 8021B	TPH 8015 N	PAH 8270	RCRA Metals	TCLP Volatiles	TCLP Semi Volatiles	RCI	GC.MS Vol. 82	GC.MS Semi. PCB's 8080/60	Pest. 808/608	Chloride	Gamma Spec.	Alpha Beta (Air) Pl M (Achostoc)	Major Anions/C			
325792	4/1		5		×	T-1 (AH-1) O'		1					X	T			1							X					\square	
793			$\left[\right]$			T-1 (AH-1) 2'							X											X						
794						T-1 (AH-1) 4'		1					X											X						
195						T-1 (AH-1) 6'		١					X		Τ			T						Х						
796						T-1 (AH-1) 8'		1					Х					T				Γ		X						
797						T-1 (AH-1) 10'		1					X		Τ		Τ	T						X					\square	
798			ľ		Ŀ	T-1 (AH-1) 12'		,					X					T	Π		Τ	T		X		T			T	
												_																		
RELINQUISHED	BY: Signati	1 ⁽¹⁾ -	-	_		Date:	RECEIVED BY: (Signature)	L	7	77	ate: me:	4	11.71	5		SAD Ma	APLEI	J BY:	Rint	& Init دربع	ial) SKi	<u>/ </u>	K			Date Time				_
RELINGUIGHED	BY: (Signatu	Jre)				Date: <u>1/11/15</u> Time: <u>1/35</u>	RECEIVED BY: (Signature)				ate: me:	4	D 12			FI	DEX		EDB	ં વ	3US					RBIL				-
RELINCUISHED						Date:	RECEIVED BY: (Signature)				ate: me:								ONTA		JPS ERS	ON:				THER	esults i	by:		-
RECEIVING LAE ADDRESS: CITY: MIDL CONTACT:		TRAC STATE:			HONE	ZIP:	RECEIVED BY: (Signature)	 IT	ME:							I	he	10	~ 2V6	re	r					RI Al	USH C uthoriz Yes	harge ed:	25 No	_
SAMPLE COND	ITION WHEN	RECEIVED:				REMARKS: MUHANI																						2	12	

Please fill out all copies - Laboratory retains Yellow copy - Return Orginal copy to Tetra Tech - Project Manager retains Pink copy - Accounting receives Gold copy.

. • •

Summary Report

Ike Tavarez Tetra Tech 1910 N. Big Spring Street Midland, TX 79705

Report Date: February 15, 2013

Work Order: 13021102

Project Location:Eddy Co., NMProject Name:COG/Willow A State #3Project Number:112C05046

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
320672	AH-1 0-1'	soil	2013-02-08	00:00	2013-02-08
320673	AH-1 1-1.5'	soil	2013-02-08	00:00	2013-02-08
320674	AH-1 2-2.5'	soil	2013-02-08	00:00	2013-02-08
320675	AH-1 3-3.5'	soil	2013-02-08	00:00	2013-02-08
320676	AH-1 4-4.5'	soil	2013-02-08	00:00	2013-02-08
320677	AH-1 5-5.5'	soil	2013-02-08	00:00	2013-02-08
320678	AH-1 6-6.5'	soil	2013-02-08	00:00	2013-02-08
320679	AH-1 7-7.5'	soil	2013-02-08	00:00	2013-02-08
320680	AH-1 8-8.5'	soil	2013-02-08	00:00	2013-02-08
320681	AH-1 9-9.5'	soil	2013-02-08	00:00	2013-02-08
320682	AH-2 0-1'	soil	2013-02-08	00:00	2013-02-08
320683	AH-2 1-1.5'	soil	2013-02-08	00:00	2013-02-08
320684	AH-2 2-2.5'	soil	2013-02-08	00:00	2013-02-08
320685	AH-2 3-3.5'	soil	2013-02-08	00:00	2013-02-08
320686	AH-2 4-4.5'	soil	2013-02-08	00:00	2013-02-08
320687	AH-2 5-5.5'	soil	2013-02-08	00:00	2013-02-08
320688	AH-2 6-6.5'	soil	2013-02-08	00:00	2013-02-08
320689	AH-2 7-7.5'	soil	2013-02-08	00:00	2013-02-08
320690	AH-2 8-8.5'	soil	2013-02-08	00:00	2013-02-08
320691	AH-2 9-9.5'	soil	2013-02-08	00:00	2013-02-08
320692	Background 0-1'	soil	2013-02-08	00:00	2013-02-08
320693	Background 1.5-2'	soil	2013-02-08	00:00	2013-02-08
320694	Background 3.5-4'	soil	2013-02-08	00:00	2013-02-08
320695	Background 5.5-6'	soil	2013-02-08	00:00	2013-02-08

Report Date: February 15, 2013

Work Order: 13021102

	I	BTEX		TPH DRO - NEW	TPH GRO
Benzene	Toluene	Ethylbenzene	Xylene	DRO	GRO
(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
<0.100 1	<0.100	<0.100	1.67	111	51.7
					4.89
<0.0200	< 0.0200	<0.0200	<0.0200	<50.0	<4.00 ²
-1 0-1'					
Flag		Result		Units	RI
		19400		mg/Kg	
-1 1-1.5' Flag		Result		Units mg/Kg	RI
-1 2-2.5'					
Flag		Result		Units	RJ
		16300		mg/Kg	
-1 3-3.5'					
Flag		Result		Units	RI
		17800		mg/Kg	4
-1 4-4.5'					
Flag		Result		Units	RI
		18300		mg/Kg	4
1 5-5.5'					
	(mg/Kg) <0.100 ¹ <0.0200 •1 0-1' Flag •1 1-1.5' Flag •1 2-2.5' Flag •1 3-3.5' Flag •1 4-4.5' Flag	Benzene Toluene (mg/Kg) (mg/Kg) <0.100 ¹ <0.100	Benzene Toluene Ethylbenzene (mg/Kg) (mg/Kg) (mg/Kg) <0.100 ¹ <0.100	Benzene Toluene Ethylbenzene Xylene (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) $<0.100^{-1}$ <0.100 <0.100 1.67 <0.0200 <0.0200 <0.0200 <0.0200 $<10-1'$ Flag Result 19400 $<11-1.5'$ Flag Result 13200 $<112-2.5'$ Flag Result 13200 $<12-2.5'$ Flag Result 13200 $<12-2.5'$ Flag Result 13200 $<12-2.5'$ Flag Result 16300 $<13-3.5'$ Flag Result 16300 $<13-3.5'$ Flag Result 17800	Benzene Toluene Ethylbenzene Xylene DRO (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) <0.100 ⁻¹ <0.100

Sample: 320678 - AH-1 6-6.5'

¹Dilution due to surfactant. ²Dilution due to surfactant.

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296 This is only a summary. Please, refer to the complete report package for quality control data.

Report Date: Februa	ary 15, 2013	Work Order: 13021102	Page 1	Number: 3 of 5
Param	Flag	Result	Units	RL
Chloride	······································	14000	mg/Kg	4
Sample: 320679 -	AH-1 7-7.5'			
Param	Flag	Result	Units	\mathbf{RL}
Chloride		8030	mg/Kg	. 4
Sample: 320680 -	AH-1 8-8.5'			
Param	Flag	Result	Units	RL
Chloride		3820	mg/Kg	4
Sample: 320681 -	AH-1 9-9.5'			
Param	$\mathbf{F}\mathbf{lag}$	Result	Units	RL
Chloride		1980	mg/Kg	4
Sample: 320682 -	AH-2 0-1'			
Param	Flag	Result	Units	RL
Chloride		1030	mg/Kg	4
Sample: 320683 -	AH-2 1-1.5'			
Param	Flag	Result	Units	\mathbf{RL}
Chloride		408	mg/Kg	4
Sample: 320684 -	AH-2 2-2.5'			
Param	\mathbf{F} lag	Result	Units	RL
Chloride		946	mg/Kg	4
Sample: 320685 -	AH-2 3-3.5'			
Param	Flag	Result	Units	\mathbf{RL}
Chloride		282	mg/Kg	4

Report Date: February 15, 2013	Work Order: 13021102	Pag	e Number: 4 of 5
Sample: 320686 - AH-2 4-4.5'			
Param Flag	Result	Units	RL
Chloride	220	mg/Kg	4
Sample: 320687 - AH-2 5-5.5'			
Param Flag	Result	Units	RL
Chloride	205	mg/Kg	4
Sample: 320688 - AH-2 6-6.5'			
Param Flag	Result	Units	RL
Chloride	440	mg/Kg	4
Sample: 320689 - AH-2 7-7.5'			
Param Flag	Result	Units	RL
Chloride	186	mg/Kg	4
Sample: 320690 - AH-2 8-8.5'			
Param Flag	Result	Units	RL
Chloride	119	mg/Kg	4
Sample: 320691 - AH-2 9-9.5'			
Param Flag	Result	Units	\mathbf{RL}
Chloride	444	mg/Kg	4
Sample: 320692 - Background 0-1'			
Param Flag	Result	Units	\mathbf{RL}
Chloride	76.5	mg/Kg	4
Sample: 320693 - Background 1.5-2'			
Param Flag	Result	Units	RL
Chloride	<20.0	mg/Kg	• 4

Report Date: Febru	uary 15, 2013	Work Order: 13021102	Page	Number: 5 of 5
Sample: 320694	- Background 3.5-4'			
Param	$\mathbf{F}\mathbf{lag}$	Result	Units	\mathbf{RL}
Chloride		<20.0	mg/Kg	4
Sample: 320695	- Background 5.5-6'			
Param	Flag	Result	Units	RL
Chloride		<20.0	mg/Kg	4

6701 Aberdeen Avenue: Suite 9 200 East Sünset Road, Suite E 5002 Basin Street, Suite A1 (BioAquatic) 2501 Mayes Rd., Suite 100.

Lubbock. Texas 79424 800-378-1296 El Paso; Texas 79922 Texas 79703 Midland, Carroliton Texas 75006

432-689-6301 972-242-7750 E-Mail: lab@traceanalysis.com WEB: www.traceanalysis.com

915-585-3443.

Certifications

WBE HUB NCTRCA DBE NELAP DoD LELAP Kansas Oklahoma ISO 17025

Analytical and Quality Control Report

Ike Tavarez Tetra Tech 1910 N. Big Spring Street Midland, TX, 79705

Report Date: February 15, 2013

FAX:806-794-1298

FAX 915-585-4944

FAX 432-689-6313

Work Order: 13021102

Project Location: Eddy Co., NM **Project Name:** COG/Willow A State #3 Project Number: 112C05046

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

	and sharp of the s		Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
320672	AH-1 0-1'	soil	2013-02-08	00:00	2013-02-08
320673	AH-1 1-1.5'	soil	2013-02-08	00:00	2013-02-08
320674	AH-1 2-2.5'	soil	2013-02-08	00:00	2013-02-08
320675	AH-1 3-3.5'	soil	2013-02-08	00:00	2013-02-08
320676	AH-1 4-4.5'	soil	2013-02-08	00:00	2013-02-08
320677	AH-1 5-5.5'	soil	2013-02-08	00:00	2013-02-08
320678	AH-1 6-6.5'	soil	2013-02-08	00:00	2013-02-08
320679	AH-1 7-7.5'	soil	2013-02-08	00:00	2013-02-08
320680	AH-1 8-8.5'	soil	2013-02-08	00:00	2013-02-08
320681	AH-1 9-9.5'	soil	2013-02-08	00:00	2013-02-08
320682	AH-2 0-1'	soil	2013-02-08	00:00	2013-02-08
320683	AH-2 1-1.5'	soil	2013-02-08	00:00	2013-02-08
320684	AH-2 2-2.5'	soil	2013-02-08	00:00	2013-02-08
320685	AH-2 3-3.5'	soil	2013-02-08	00:00	2013-02-08
320686	AH-2 4-4.5'	soil	2013-02-08	00:00	2013-02-08
320687	AH-2 5-5.5'	soil	2013-02-08	00:00	2013-02-08
320688	AH-2 6-6.5'	soil	2013-02-08	00:00	2013-02-08
320689	AH-2 7-7.5'	soil	2013-02-08	00:00	2013-02-08

			Date	Time	, Date
Sample	Description	Matrix	Taken	Taken	Received
320690	AH-2 8-8.5'	soil	2013-02-08	00:00	2013-02-08
320691	AH-2 9-9.5'	soil	2013-02-08	00:00	2013-02-08
320692	Background 0-1'	soil	2013-02-08	00:00	2013-02-08
320693	Background 1.5-2'	soil	2013-02-08	00:00	2013-02-08
320694	Background 3.5-4'	soil	2013-02-08	00:00	2013-02-08
320695	Background 5.5-6'	soil	2013-02-08	00:00	2013-02-08

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 36 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Michael Q

Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

QC Batch 98919 - LCS (1)	
QC Batch 98958 - LCS (1)	
QC Batch 98965 - LCS (1)	
QC Batch 98827 - MS (1)	
\overrightarrow{QC} Batch 98841 - MS (1)	
QC Batch 98887 - MS (1)	
QC Batch 98888 - MS (1)	
QC Batch 98917 - MS (1)	
QC Batch 98918 - MS (1)	
QC Batch 98919 - MS (1)	
QC Batch 98958 - MS (1)	
QC Batch 98965 - $MS(1)$	
Calibration Standards	2
QC Batch 98827 - CCV (1)	
QC Batch 98841 - CCV (1)	
•	
•	
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
- ()	
	· · · · · · · · · · · · · · · · · · ·
QC Batch 98965 - CCV (1)	
QC Batch 98965 - CCV (2)	
Appendix	3
Report Definitions	-
Laboratory Certifications	
Standard Flags	
Result Comments	
Attachments	

.

Case Narrative

Samples for project COG/Willow A State #3 were received by TraceAnalysis, Inc. on 2013-02-08 and assigned to work order 13021102. Samples for work order 13021102 were received intact at a temperature of 2.2 C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	\mathbf{QC}	Analysis
Test	Method	Batch	Date	Batch	Date
BTEX	S 8021B	83781	2013-02-12 at 15:00	98888	2013-02-12 at 15:00
Chloride (Titration)	SM 4500-Cl B	83717	2013-02-11 at 08:44	98827	2013-02-11 at 15:36
Chloride (Titration)	SM 4500-Cl B	83717	2013-02-11 at 08:44	98917	2013-02-13 at 14:44
Chloride (Titration)	SM 4500-Cl B	83717	2013-02-11 at 08:44	98918	2013-02-13 at 14:45
Chloride (Titration)	SM 4500-Cl B	83717	2013-02-11 at 08:44	98919	2013-02-13 at 14:46
TPH DRO - NEW	S 8015 D	83748	2013-02-11 at 10:00	98841	2013-02-12 at 09:47
TPH DRO - NEW	S 8015 D	83844	2013-02-15 at 11:00	98965	2013-02-15 at 13:34
TPH GRO	S 8015 D	83781	2013-02-12 at 15:00	98887	2013-02-12 at 15:00
TPH GRO	S 8015 D	83839	2013-02-15 at 08:00	98958	2013-02-15 at 08:00

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 13021102 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Report Date: February 15, 2013 112C05046

Work Order: 13021102 COG/Willow A State #3

Analytical Report

Sample: 320672 - AH-1 0-1'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland BTEX 98888 83781		Ď	ate Anal	Method: yzed: eparation	2013-02	-12		Prep Metho Analyzed B Prepared By	y: YG
						\mathbf{RL}				
Parameter		Flag		Cert		Result	Unit	s	Dilution	\mathbf{RL}
Benzene	1	υ		1		<0.100	mg/K	g	5	0.0200
Toluene		υ		1		< 0.100	mg/K	g	5	0.0200
Ethylbenzene	2	υ		1		<0.100	mg/K	g	5	0.0200
Xylene				1		1.67	mg/K	g	5	0.0200
Surrogate			Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotolue	ene (TFT)	Qar	Qsr		11.8	mg/Kg	5	10.0	118	79.5 - 108
	obenzene (4-BFB)	•			10.8	mg/Kg	5	10.0	108	71.4 - 108

Sample: 320672 - AH-1 0-1'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 98827 83717	Date An	al Method: alyzed: Preparation:	SM 4500-Cl B 2013-02-11 2013-02-11	Prep Method: Analyzed By: Prepared By:	ÁR	
			\mathbf{RL}				
Parameter	Flag	Cert	Result	Units	Dilution	RL	
Chloride			19400	mg/Kg	10	4.00	

Sample: 320672 - AH-1 0-1'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO - NEW 98841 83748	Date A	cal Method: nalyzed: Preparation:	S 8015 D 2013-02-12 2013-02-11	Prep Method: Analyzed By: Prepared By:	N/A CW CW
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
DRO		1	111	mg/Kg	1	50.0

Report Date: February 15, 2013 112C05046			Work Order: 13021102 COG/Willow A State #3				Page Number: 7 of 36 Eddy Co., NM		
Surrogate	Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits	
n-Tricosane			111	mg/Kg	1	100	111	70 - 130	

Sample: 320672 - AH-1 0-1'

Laboratory: Midland Analysis: TPH GRO QC Batch: 98887 Prep Batch: 83781			Date An	al Method alyzed: Preparation	2013-0	2-12		Prep Metho Analyzed B Prepared B	y: YG
					\mathbf{RL}				
Parameter	Flag		Cert	F	Result	Uni	ts	Dilution	\mathbf{RL}
GRO			1		51.7	mg/k	g	5	4.00
							Spike	Percent	Recovery
Surrogate		Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)				9.00	mg/Kg	5	10.0	90	70 - 130
4-Bromofluorobenzene (4-BFB)				11.4	mg/Kg	5	10.0	114	70 - 130

Sample: 320673 - AH-1 1-1.5'

Chloride			13200	mg/Kg	10	4.00
Parameter	Flag	Cert	Result	Units	Dilution	RL
			\mathbf{RL}			
Prep Batch:	83717	Sample 1	Preparation:	2013-02-11	Prepared By:	AR
QC Batch:	98827	Date An	alyzed:	2013-02-11	Analyzed By:	AR
Analysis:	Chloride (Titration)	Analytic	al Method:	SM 4500-Cl B	Prep Method:	N/A
Laboratory:	Midland					

Sample: 320673 - AH-1 1-1.5'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO - NEV 98965 83844	V	Date A	cal Method: nalyzed: Preparation:	S 8015 D 2013-02-15 2013-02-15	Prep Method: Analyzed By: Prepared By:	'
				\mathbf{RL}			
Parameter		Flag	Cert	Result	Units	Dilution	RL
DRO		ЈЪ	1	<50.0	mg/Kg	1	50.0

Report Date: February 15, 2013 112C05046			~~~	Work Order: 13021102 COG/Willow A State #3				Page Number: 8 of 36 Eddy Co., NM		
Surrogate	Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits		
n-Tricosane			127	mg/Kg	1	100	127	55.1 - 135.7		

Sample: 320673 - AH-1 1-1.5'

-									
Laboratory: Midland Analysis: TPH GRO			Analytic	al Method	: S 8015	5 D		Prep Metho	od: S 5035
QC Batch: 98958			Date An	alyzed:	2013-0)2-15		Analyzed B	y: YG
Prep Batch: 83839			Sample	Preparation	n: 2013-0)2-15		Prepared B	y: YG
					\mathbf{RL}				
Parameter	Flag		Cert	F	Result	Uni	ts	Dilution	RL
GRO			1		4.89	mg/K	g	1	4.00
							Spike	Percent	Recovery
Surrogate		Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)				1.70	mg/Kg	1	2.00	85	70 - 130
4-Bromofluorobenzene (4-BFB)				2.22	mg/Kg	1	2.00	111	70 - 130

Sample: 320674 - AH-1 2-2.5'

Parameter	Flag	Cert	Result	Units	Dilution	RL
			\mathbf{RL}			
Prep Batch:	83717	Sample 1	Preparation:	2013-02-11	Prepared By:	AR
QC Batch:	98917	Date An	alyzed:	2013-02-13	Analyzed By:	AR
Analysis:	Chloride (Titration)	Analytic	al Method:	SM 4500-Cl B	Prep Method:	N/A
Laboratory:						

Sample: 320675 - AH-1 3-3.5'

Laboratory:	Midland				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	98917	Date Analyzed:	2013-02-13	Analyzed By:	AR
Prep Batch:	83717	Sample Preparation:	2013-02-11	Prepared By:	AR

continued ...

Report Date 112C05046	e: February 15, 2013		ork Order: 13 G/Willow A \$	Page Number: 9 of 30 Eddy Co., NM		
sample 3206	75 continued					
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
Chloride			17800	mg/Kg	10	4.00
Sample: 32	20676 - AH-1 4-4.5'					
Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 98917 83717	Date An	cal Method: aalyzed: Preparation:	SM 4500-Cl B 2013-02-13 2013-02-11	Prep Method: Analyzed By: Prepared By:	N/A AR AR
Parameter	Flag	Cert	${ m RL}$ Result	Units	Dilution	RL
Chloride			18300	mg/Kg	10	4.00
Sample: 32	20677 - AH-1 5-5.5'					
Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 98917 83717	Date An	al Method: alyzed: Preparation:	SM 4500-Cl B 2013-02-13 2013-02-11	Prep Method: Analyzed By: Prepared By:	N/A AR AR
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
Chloride	riag		14700	mg/Kg	10	4.00

Sample: 320678 - AH-1 6-6.5'

Laboratory:					/
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	98917	Date Analyzed:	2013-02-13	Analyzed By:	AR
Prep Batch:	83717	Sample Preparation:	2013-02-11	Prepared By:	AR

Report Date: February 15, 2013 112C05046			rk Order: 130211 G/Willow A State	Page Number: 10 of 36 Eddy Co., NM		
Denometer	Ele -	Cont	RL Dorwlt	TIn:4a	Dilution	DI
Parameter	Flag	Cert	Result	Units	Dilution	\mathbf{RL}
Chloride			14000	mg/Kg	10	4.00

Sample: 320679 - AH-1 7-7.5'

,

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 98917 83717	Date An	al Method: alyzed: Preparation:	SM 4500-Cl B 2013-02-13 2013-02-11	Prep Method: Analyzed By: Prepared By:	ÁR
			\mathbf{RL}'			
Parameter	Flag	Cert	Result	\mathbf{Units}	Dilution	\mathbf{RL}
Chloride	······		8030	mg/Kg	10	4.00

Sample: 320680 - AH-1 8-8.5'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 98917 83717	v .		SM 4500-Cl B 2013-02-13 2013-02-11	Prep Method: Analyzed By: Prepared By:	AR
			\mathbf{RL}			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride			3820	mg/Kg	10	4.00

Sample: 320681 - AH-1 9-9.5'

Chloride			1980	mg/Kg	10	4.00
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
Prep Batch:	83717	Sample Preparation:		2013-02-11	Prepared By:	AR
QC Batch:	98917	Date Analyzed:		2013-02-13	Analyzed By:	AR
Analysis:	Chloride (Titration)	Analytic	al Method:	SM 4500-Cl B	Prep Method:	N/A
Laboratory:	Midland					

Report Date: February 15, 2013	Work Order: 13021102	Page Number: 11 of 36
112C05046	COG/Willow A State #3	Eddy Co., NM

Sample: 320682 - AH-2 0-1'

Laboratory: Midland									
Analysis: BTEX		A	nalytical	Method:	S 8021E	3		Prep Metho	d: S 5035
QC Batch: 98888		D	ate Anal	yzed:	2013-02	-12		Analyzed B	y: YG
Prep Batch: 83781		Sa	ample Pr	eparation:	2013-02	-12		Prepared B	y: YG
					RL				
Parameter	Flag		\mathbf{Cert}	Ι	Result	Units	5	Dilution	\mathbf{RL}
Benzene	U		1	<(0.0200	mg/Kg	<u> </u>	1	0.0200
Toluene	υ		1	<().0200	mg/Kg	S	1	0.0200
Ethylbenzene	U		1	<(0.0200	mg/Kg	5	1	0.0200
Xylene	U		1	<().0200	mg/Kg	5	1	0.0200
							Spike	Percent	Recovery
Surrogate		Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)	Qsr	Qar		2.35	mg/Kg	1	2.00	118	79.5 - 108
4-Bromofluorobenzene (4-BFB)				2.15	mg/Kg	1	2.00	108	71.4 - 108

Sample: 320682 - AH-2 0-1'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 98917 83717	Date An	al Method: alyzed: Preparation:	SM 4500-Cl B 2013-02-13 2013-02-11	Prep Method: Analyzed By: Prepared By:	AR
			\mathbf{RL}			
Parameter	Flag	Cert	Result	Units	Dilution	\mathbf{RL}
Chloride			1030	mg/Kg	10	4.00

Sample: 320682 - AH-2 0-1'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO - N 98841 83748	EW	Dat	lytical Meth e Analyzed: ple Preparat	2013-0	2-12	Prep Me Analyzee Preparec	By: CW
Parameter		Flag	Cert		\mathbf{RL}	Units	Dilution	RL
DRO		Jb	1	<5	0.0	mg/Kg	1	50.0
Surrogate n-Tricosane	Flag	Cert	Result 86.0	Units mg/Kg	Dilution 1	Spike Amount 100	Percent Recovery 86	Recovery Limits 70 - 130

Report Date: February 15, 2013 112C05046	3	Work Order: 13021102 COG/Willow A State #3					Page Number: 12 of 36 Eddy Co., NM	
Sample: 320682 - AH-2 0-1'								
Laboratory:MidlandAnalysis:TPH GROQC Batch:98887Prep Batch:83781		Analytic Date An Sample I	•	2013-0)2-12		Prep Metho Analyzed B Prepared B	y: YG
				\mathbf{RL}				
Parameter	Flag	Cert		\mathbf{Result}	Uni	ts	Dilution	RL
GRO 2	U	1		<4.00	mg/k	ίg	1	4.00
Surrogate	Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)			2.03	mg/Kg	1	2.00	102	70 - 130
4-Bromofluorobenzene (4-BFB)			2.16	mg/Kg	1	2.00	108	70 - 130

Sample: 320683 - AH-2 1-1.5'

Chloride	1.000		408	mg/Kg	5	4.00
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
Prep Batch:	83717	Sample Preparation:		2013-02-11	Prepared By:	AR
Analysis: QC Batch:	Chloride (Titration) 98917	Date Analyzed:		SM 4500-Cl B 2013-02-13	Prep Method: Analyzed By:	,
Laboratory:	Midland					

Sample: 320684 - AH-2 2-2.5'

Laboratory: Analysis: QC Batch: Prep Batch:	alysis: Chloride (Titration)		al Method: alyzed: Preparation:	SM 4500-Cl B 2013-02-13 2013-02-11	Prep Method: Analyzed By: Prepared By:	AR
			\mathbf{RL}			
Parameter	Flag	Cert	\mathbf{Result}	Units	Dilution	\mathbf{RL}
Chloride			946	mg/Kg	5	4.00

Report Date 112C05046	: February 15, 2013		ork Order: 136 G/Willow A S		Page Number: 13 of 36 Eddy Co., NM	
Sample: 32	0685 - AH-2 3-3.5'					
Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 98918 83717	Date A	cal Method: nalyzed: Preparation:	SM 4500-Cl B 2013-02-13 2013-02-11	Prep Method: Analyzed By: Prepared By:	N/A AR AR
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride			282	mg/Kg	5	4.00
Sample: 32	0686 - AH-2 4-4.5'					
Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 98918 83717	Date A	cal Method: nalyzed: Preparation:	SM 4500-Cl B 2013-02-13 2013-02-11	Prep Method: Analyzed By: Prepared By:	N/A AR AR
			\mathbf{RL}			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride		······································	220	mg/Kg	5	4.00
Sample: 32	0687 - AH-2 5-5.5'					
Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 98918 83717	Date A	cal Method: nalyzed: Preparation:	SM 4500-Cl B 2013-02-13 2013-02-11	Prep Method: Analyzed By: Prepared By:	N/A AR AR
•	~~~	a .	RL			
Parameter Chloride	Flag	Cert	Result 205	Units	Dilution 5	$\frac{\text{RL}}{4.00}$
Chloride		• • • • • • • • • • • • • • • • • • • •	4 00	mg/Kg	0	4.00

Sample: 320688 - AH-2 6-6.5'

Laboratory:	Midland				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	98918	Date Analyzed:	2013-02-13	Analyzed By:	AR
Prep Batch:	83717	Sample Preparation:	2013-02-11	Prepared By:	AR

Report Date: February 15, 2013 112C05046			ork Order: 130211 G/Willow A State	Page Number: 14 of 3 Eddy Co., NM		
Parameter	Flag	Cert	RL Result	Units	Dilution	\mathbf{RL}
Chloride	¥		440	mg/Kg	5	4.00

Sample: 320689 - AH-2 7-7.5'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 98918 83717	Date An	al Method: alyzed: Preparation:	SM 4500-Cl B 2013-02-13 2013-02-11	Prep Method: Analyzed By: Prepared By:	AR
Parameter	Flag	Cert	RL Result	Units	Dilution	\mathbf{RL}
Chloride			186	mg/Kg	5	4.00

Sample: 320690 - AH-2 8-8.5'

Flag	Cert	RL Result	Units	Dilution	RL
7	Sample I	Preparation:	2013-02-11	Prepared By:	AR
ride (Titration)			SM 4500-Cl B 2013-02-13	•	
,	and oride (Titration) 8 7	ride (Titration) Analytic 8 Date An	oride (Titration)Analytical Method:8Date Analyzed:	oride (Titration)Analytical Method:SM 4500-Cl B8Date Analyzed:2013-02-13	oride (Titration)Analytical Method:SM 4500-Cl BPrep Method:8Date Analyzed:2013-02-13Analyzed By:

Sample: 320691 - AH-2 9-9.5'

Laboratory:	Midland					
Analysis:	Chloride (Titration)	Analytic	al Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	98918	Date An	alyzed:	2013-02-13	Analyzed By:	AR
Prep Batch:	83717	Sample I	Preparation:	2013-02-11	Prepared By:	AR
			\mathbf{RL}			
Parameter	Flag	Cert	\mathbf{Result}	Units	Dilution	\mathbf{RL}
Chloride			444	mg/Kg	5	4.00

Report Date 112C05046	: February 15, 2013		ork Order: 130 G/Willow A S		Page Number: 15 of Eddy Co., N	
Sample: 32	0692 - Background 0-1'					
Laboratory:	Midland					
Analysis:	Chloride (Titration)	Analyti	cal Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	98918	Date A	nalyzed:	2013-02-13	Analyzed By:	AR
Prep Batch:	83717	Sample	Preparation:	2013-02-11	Prepared By:	AR
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride			76.5	mg/Kg	5	4.00
Sample: 320693 - Background 1.5-2' Laboratory: Midland Analysis: Chloride (Titration) QC Batch: 98918 Prep Batch: 83717 Parameter Flag Chloride u		Date A	cal Method: nalyzed: Preparation: RL Result <20.0	SM 4500-Cl B 2013-02-13 2013-02-11 Units mg/Kg	Prep Method: 1 Analyzed By: 2 Prepared By: 2 Dilution 5	
Sample: 32	0694 - Background 3.5-4'					
Laboratory:	Midland					
Analysis:	Chloride (Titration)	Analyti	cal Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	98919	Date A		2013-02-13	Analyzed By:	AR
Prep Batch:	83717		Preparation:	2013-02-11	Prepared By:	AR
			RL		•	
Parameter	\mathbf{Flag}	Cert	Result	Units	Dilution	RL
<u>al 1 - 1 - 1</u>	· · · · · · · · · · · · · · · · · · ·		.00.0	177		1 00

Sample: 320695 - Background 5.5-6'

Chloride

Laboratory:	Midland				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	98919	Date Analyzed:	2013-02-13	Analyzed By:	AR
Prep Batch:	83717	Sample Preparation:	2013-02-11	Prepared By:	AR

<20.0

mg/Kg

4.00

5

Report Date: February 15, 2013 112C05046			ork Order: 130211 G/Willow A State		Page Numbe Edd	r: 16 of 36 y Co., NM
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
Chloride	U		<20.0	mg/Kg	5	4.00

.

.

.

Report Date: February 15, 2013 112C05046 Work Order: 13021102 COG/Willow A State #3 Page Number: 17 of 36 Eddy Co., NM

Method Blanks

Method Blank (1)	QC B	atch: 98827							
QC Batch: 98827				nalyzed:	2013-02-11			Analyzed	
Prep Batch: 83717			QU Pr	eparation:	2013-02-11			Prepared	l By: AR
						MDL			
Parameter		Flag		Cert		Result		Units	RL
Chloride						<3.85		mg/Kg	4
Method Blank (1)	QC B	atch: 98841							
QC Batch: 98841				nalyzed:	2013-02-12			Analyzed	
Prep Batch: 83748			QC Pre	eparation:	2013-02-11			Prepared	By: CW
						MDI			
Parameter		Flag		Cert		MDL Result		Units	\mathbf{RL}
DRO				1		8.97		mg/Kg	50
							Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilutio		mount	Recovery	Limits
n-Tricosane			108	mg/Kg	<u> </u>		100	108	70 - 130
Method Blank (1)	QC B	atch: 98887	_						
QC Batch: 98887 Prep Batch: 83781				nalyzed: eparation:	2013-02-12 2013-02-12			Analyzed Prepared	
			4011	opuration.	2010 02 12			11000100	. Dj. 10
Parameter		Flag		Cert		MDL Result		Units	RL
GRO				1		<2.32		mg/Kg	4
							Spike	Percent	Recovery
Surrogate									
		Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT 4-Bromofluorobenzene		Flag	Cert	Result 1.94 1.75	Units mg/Kg mg/Kg	Dilution 1 1	Amount 2.00 2.00	Recovery 97 88	•

Report Date: February 15, 2013 112C05046			Work Order: 13021102 COG/Willow A State #3					Page Number: 18 of 36 Eddy Co., NM		
Method Blank (1)	QC Ba	tch: 9	8888							
QC Batch: 98888				Date Ar	nalyzed:	2013-02-1	2		Analyze	d By: YG
Prep Batch: 83781				QC Prej	paration:	2013-02-1	.2		Prepare	d By: YG
							MDL			
Parameter			Flag		Cert		Result		Units	\mathbf{RL}
Benzene					1		< 0.00810		mg/Kg	0.02
Toluene					1		< 0.00750		mg/Kg	0.02
Ethylbenzene					1		<0.00730		mg/Kg	0.02
Xylene					1		< 0.00700		mg/Kg	0.02
								Spike	Percent	Recovery
Surrogate			Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		Qsr	Qar		2.31	mg/Kg	1	2.00	116	79.5 - 108
4-Bromofluorobenzene (4	-BFB)				2.01	mg/Kg	1	2.00	100	71.4 - 108

Method Blank (1)	QC Batch: 98917

QC Batch: Prep Batch:	98917 83717		Date Analyzed: QC Preparation:		Analyzed By: Prepared By:	
				MDL		
Parameter		Flag	Cert	Result	Units	\mathbf{RL}
Chloride				<3.85	mg/Kg	4
		_				

Method Blank (1)	QC Batch: 98918

QC Batch: Prep Batch:	98918 83717		Date Analyzed: QC Preparation:		Analyzed By: Prepared By:	
				MDL		
Parameter		Flag	Cert	Result	Units	RL
Chloride				\$3.85	mg/Kg	4

Method Blank (1) QC	Batch: 98919
---------------------	--------------

QC Batch:	98919	Date Analyzed:	2013-02-13	Analyzed By:	AR
Prep Batch:	83717	QC Preparation:	2013-02-11	Prepared By:	\mathbf{AR}

Report Date: February 15, 2013 112C05046		Work Order: 1 COG/Willow A	Page Number: 19 of 36 Eddy Co., NM		
Parameter	Flag	Cert	MDL Result	Units	\mathbf{RL}
	1.166				
Chloride			<3.85	mg/Kg	4

QC Batch: 98958 Prep Batch: 83839			nalyzed: paration:	2013-02-15 2013-02-15		Analyzed By: YG Prepared By: YG			
Parameter	Flag		Cert		MDL Result		Units	RL	
GRO			1		<2.32]	mg/Kg	4	
Surrogate	Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits	
Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB)			1.73 1.89	mg/Kg mg/Kg	1 1	$\begin{array}{c} 2.00\\ 2.00\end{array}$	86 94	70 - 130 70 - 130	

Method Blank (1) QC Batch: 98965

QC Batch: Prep Batch:				nalyzed: paration:	2013-02-15 2013-02-15		Analyzed By Prepared By		
Parameter			Fla	g	Cert		MDL Result	Units	\mathbf{RL}
DRO					1		23.2	mg/Kg	50
Surrogate		Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Tricosane	Qsr	Qur		144	mg/Kg	1 ·	100	144	55.1 - 135.7

Laboratory Control Spikes

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch:	Date Analyzed: QC Preparation:		Analyzed By: Prepared By:	
	T CO	a	 -	_

			LCS			Spike	Matrix		Rec.
Param	\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride			2770	mg/Kg	1	2500	<3.85	111	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride			2570	mg/Kg	1	2500	<3.85	103	85 - 115	8	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch:	Date Analyzed: QC Preparation:		Analyzed By Prepared By	,
	LCS	Spike	Matrix	Rec.

			LOS			эріке	Wattix		nec.	
Param	\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Limit	
DRO		1	292	mg/Kg	1	250	8.97	113	70 - 130	

Param	F	С	$\begin{array}{c} \mathrm{LCSD} \\ \mathrm{Result} \end{array}$	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	RPD	RPD Limit
DRO	.	1	272	mg/Kg	1	250	8.97	105	70 - 130	7	20
Percent recovery is bas	ed on the spike	resu	lt. RPD	is based or	n the s	pike and sp	ike duplic	ate res	ult.		
			τC	an .			G 11	10	10 T CC	רוי	Dee

			LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate			Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
n-Tricosane	Qør	Qor	144	112	mg/Kg	1	100	144	112	70 - 130

Report Date: February 15, 2013 112C05046						: 13021102 A State #			P			21 of 36 Co., NM
Laboratory Control Spike (L	CS-	1)										
QC Batch: 98887			Da	te Analyz	zed: 2	013-02-12				Analy	zed By	r: YG
Prep Batch: 83781				C Prepara		013-02-12				-	red By	
				LCS			Spil	ce N	Aatrix			Rec.
Param		F	С	Result	Uni				Result	Re		Limit
GRO			1	20.1	mg/l	Kg 1	20.	0 •	<2.32	10)0 '	70 - 130
Percent recovery is based on the	spik	e res	ult. RP	D is base	d on the	spike and	spike dup	olicate re	sult.			
		_	LCS			Spike				lec.		RPD
Param	F	C	Resu							mit	RPD	Limit
GRO		1	19.6	3 mg/l	Kg 1	20.0	<2.3	2 98	70	- 130	2	20
Percent recovery is based on the	spik	e res	ult. RP	'D is base	d on the	spike and	spike dup	olicate re	sult.			
				LCS I	LCSD			Spike	LCS	LC	\mathbf{SD}	Rec.
Surrogate			R	lesult F	Result	Units	Dil. A	mount	Rec.	Re	ec.	Limit
Trifluorotoluene (TFT)				2.37	2.36	mg/Kg	1	2.00	118	11	8 1	70 - 130
Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB)				2.37 2.10	2.36 2.12	mg/Kg mg/Kg	1 1	2.00 2.00	118 105	11		70 - 130 70 - 130
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (L QC Batch: 98888	cs-	1)	Da	2.10 .te Analyz C Prepara	2.12 zed: 2		1	2.00	105	1(26 Zed By red By	70 - 130 : YG : YG
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (L QC Batch: 98888 Prep Batch: 83781	CS-		Da QC	2.10 .te Analyz C Prepara LCS	2.12 ed: 24 tion: 24	mg/Kg 013-02-12 013-02-12	1 Spike	2.00 Ma	105 trix	1(Analy Prepa	26 y zed By red By	70 - 130 : YG : YG Rec.
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (L QC Batch: 98888 Prep Batch: 83781 Param	CS-	1) F	Da QC C	2.10 .te Analyz C Prepara LCS Result	2.12 ed: 24 tion: 24 Units	mg/Kg 013-02-12 013-02-12 Dil.	1 Spike Amount	2.00 Ma Res	105 trix sult	1(Analy Prepa Rec.	26 y zed By red By	70 - 130 : YG : YG Rec. Limit
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (L QC Batch: 98888 Prep Batch: 83781 Param Benzene	CS-		Da QC C	2.10 te Analyz C Prepara LCS <u>Result</u> 1.81	2.12 zed: 2 tion: 2 Units mg/Kg	mg/Kg 013-02-12 013-02-12 Dil. 1	1 Spike Amount 2.00	2.00 Ma Res <0.0	105 trix sult 0810	1(Analy Prepa Rec. 90	2ed By red By . 1 72.	70 - 130 : YG : YG Rec. Limit 4 - 120
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (L QC Batch: 98888 Prep Batch: 83781 Param Benzene Toluene	CS-		Da QC C	2.10 te Analyz C Prepara LCS <u>Result</u> 1.81 1.89	2.12 ed: 2 tion: 2 Units mg/Kg mg/Kg	mg/Kg 013-02-12 013-02-12 Dil. 1 1	1 Spike Amount 2.00 2.00	2.00 Ma Res <0.0 <0.0	105 trix sult 0810 0750	Analy Prepa Rec. 90 94	2ed By red By . 1 72. 77	 YG YG YG Rec. Limit 4 - 120 7 - 120
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (L QC Batch: 98888 Prep Batch: 83781 Param Benzene Toluene Ethylbenzene	CS-		Da QC <u>C</u> 1 1	2.10 te Analyz C Prepara LCS Result 1.81 1.89 2.06	2.12 ed: 2 tion: 2 Units mg/Kg mg/Kg mg/Kg	mg/Kg 013-02-12 013-02-12 Dil. 1 1 1	1 Spike <u>Amount</u> 2.00 2.00 2.00	2.00 Mai Res <0.0 <0.0 <0.0	105 trix sult 0810 0750 0730	Analy Prepa Rec. 90 94 103	2ed By red By . 1 72 77 71.	 YG YG YG Rec. Limit 4 - 120 7 - 120 8 - 120
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (L QC Batch: 98888 Prep Batch: 83781 Param Benzene Toluene Ethylbenzene Xylene		F		2.10 te Analyz C Prepara LCS Result 1.81 1.89 2.06 6.42	2.12 eed: 2 tion: 2 <u>Units</u> mg/Kg mg/Kg mg/Kg	mg/Kg 013-02-12 013-02-12 Dil. 1 1 1 1 1	1 Spike <u>Amount</u> 2.00 2.00 2.00 6.00	2.00 Mai Res <0.0 <0.0 <0.0 <0.0 <0.0	105 trix sult 0810 0750 0730 0700	Analy Prepa Rec. 90 94	2ed By red By . 1 72 77 71.	 YG YG YG Rec. Limit 4 - 120 7 - 120
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (L QC Batch: 98888 Prep Batch: 83781 Param Benzene Toluene Ethylbenzene Xylene		F		2.10 te Analyz Prepara LCS Result 1.81 1.89 2.06 6.42 D is based	2.12 eed: 2 tion: 2 <u>Units</u> mg/Kg mg/Kg mg/Kg	mg/Kg 013-02-12 013-02-12 Dil. 1 1 1 1 1 1 spike and	1 Spike <u>Amount</u> 2.00 2.00 2.00 6.00	2.00 Mai Res <0.0 <0.0 <0.0 <0.0 <0.0	105 trix sult 0810 0750 0730 0730 0700 sult.	Analy Prepa Rec. 90 94 103	2ed By red By . 1 72 77 71.	 YG YG YG Rec. Limit 4 - 120 7 - 120 8 - 120
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (L QC Batch: 98888 Prep Batch: 83781 Param Benzene Toluene Ethylbenzene Xylene Percent recovery is based on the		F	Da QC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.10 te Analyz C Prepara LCS Result 1.81 1.89 2.06 6.42 D is based	2.12 eed: 2 tion: 2 <u>Units</u> mg/Kg mg/Kg mg/Kg	mg/Kg 013-02-12 013-02-12 Dil. 1 1 1 1 1	1 Spike Amount 2.00 2.00 2.00 6.00 spike dup	2.00 Mai Res <0.0 <0.0 <0.0 <0.0 <0.0	105 trix sult 0810 0750 0730 0700 sult.	1(Analy Prepa Rec. 90 94 103 107	2ed By red By . 1 72 77 71.	 YG YG YG Rec. Limit 4 - 120 7 - 120 8 - 120 3 - 120
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (L QC Batch: 98888 Prep Batch: 83781 Param Benzene Toluene Ethylbenzene Xylene Percent recovery is based on the Param	spike	F e res	Da QC 1 1 1 1 1 1 LCSD	2.10 te Analyz C Prepara LCS Result 1.81 1.89 2.06 6.42 D is based	2.12 eed: 2 tion: 2 <u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg d on the Dil.	mg/Kg 013-02-12 013-02-12 Dil. 1 1 1 spike and Spike	1 Spike Amount 2.00 2.00 6.00 spike dup Matrix	2.00 Mat Res <0.0 <0.0 <0.0 <0.0 licate res Rec.	105 trix sult 0810 0750 0730 0700 sult. Ra Lin	1(Analy Prepa Rec. 90 94 103 107 ec.	2ed By red By 72. 77. 71. 78.	 YG YG YG Rec. Limit 4 - 120 7 - 120 8 - 120 3 - 120 RPD
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (L QC Batch: 98888 Prep Batch: 83781 Param Benzene Toluene Ethylbenzene Xylene Percent recovery is based on the Param Benzene	spike	F e rest	Da QC 1 1 1 1 1 1 LCSD Result	2.10 te Analyz C Prepara LCS Result 1.81 1.89 2.06 6.42 D is based Units	2.12 eed: 2 tion: 2 <u>Units</u> mg/Kg mg/Kg mg/Kg mg/Kg d on the <u>Dil.</u> 5 1	mg/Kg 013-02-12 013-02-12 Dil. 1 1 1 1 spike and Spike Amount	1 Spike Amount 2.00 2.00 6.00 spike dup Matrix Result	2.00 Mat Res <0.0 <0.0 <0.0 <0.0 licate res Rec. 0 96	105 trix sult 0810 0750 0730 0700 sult. Ra Lin 72.4	1(Analy Prepa Rec. 90 94 103 107 ec. mit	2ed By red By 72. 77. 71. 78. RPD	 YG YG YG Rec. Limit 4 - 120 7 - 120 8 - 120 3 - 120 RPD Limit
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (L QC Batch: 98888	spike	F C 1	Da QC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.10 te Analyz C Prepara LCS Result 1.81 1.89 2.06 6.42 D is based Units mg/Kg	2.12 2.12	mg/Kg 013-02-12 013-02-12 Dil. 1 1 1 1 spike and Spike Amount 2.00	1 Spike Amount 2.00 2.00 6.00 spike dup Matrix Result <0.00810	2.00 Mat Res <0.0 <0.0 <0.0 <0.0 licate res Rec.) 96) 98	105 trix sult 0810 0750 0730 0700 sult. Ra Lin 72.4 77 -	10 Analy Prepa Rec. 90 94 103 107 ec. mit - 120	2ed By red By 72. 77. 71. 78. <u>RPD</u> 5	 YG YG YG Rec. Limit 4 - 120 7 - 120 8 - 120 3 - 120 RPD Limit 20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. continued ...

.

112C05046						13021102 A State ≠				Pa			22 of 36 Co., NM
control spikes continued													
Guun and a			LC		SD	TT:4-	Dil	Spik			LCS		Rec.
Surrogate			Res	uit Re	sult	Units	Dil.	Amou	nt I	Rec.	Rec	·	Limit
			LC		SD			Spik		LCS	LCS		Rec.
Surrogate			Res		sult	Units	Dil.	Amou		Rec.	Rec		Limit
Trifluorotoluene (TFT)	Qar	Qsr	2.3			mg/Kg	1	2.00		118	119		9.5 - 108
4-Bromofluorobenzene (4-BFB)	Qør	Qar	2.1	19 2.	15	mg/Kg	1	2.00		110	108	71	.4 - 108
Laboratory Control Spike (I QC Batch: 98917 Prep Batch: 83717	CCS-1	.)		Analyzed		.3-02-13 .3-02-11					-	vzed By ared By	y: AR 7: AR
Param		F		LCS esult	Units	Dil.		Spike mount		atrix esult	Re	c.	Rec. Limit
Chloride				2700	mg/Kg			2500		3.85	10		85 - 115
Percent recovery is based on the	spike	resu	IL RED IS	s pased o	n the s	ріке апо	spike	dupnea	te rest				
Percent recovery is based on the Param	spike F	C	LCSD Result	Units	Dil.	Spike Amour	M nt R	latrix esult	Rec.	Re Lin	nit	RPD	RPD Limit
Param Chloride	F	C	LCSD Result 2510	Units mg/Kg	Dil.	Spike Amour 2500	M nt R	latrix esult (3.85	Rec. 100	Re Lin 85 -	nit	RPD 7	
Param	F spike	C resu	LCSD Result 2510 lt. RPD is Date A	Units mg/Kg	Dil. 1 n the s : 201	Spike Amour 2500	M nt R	latrix esult (3.85	Rec. 100	Re Lin 85 - ılt.	nit 115 Analy		Limit 20
Param Chloride Percent recovery is based on the Laboratory Control Spike (I QC Batch: 98918 Prep Batch: 83717	F spike	C resu	LCSD Result 2510 lt. RPD is Date A QC Pr	Units mg/Kg s based o Analyzed reparation	Dil. 1 n the s 201 n: 201	Spike <u>Amour</u> 2500 pike and 3-02-13 3-02-11	M at R < spike	latrix esult 3.85 duplicat	Rec. 100 te resu	Re Lin 85 - ılt.	nit 115 Analy Prepa	7 rzed By red By	Limit 20 7: AR 7: AR Rec.
Param Chloride Percent recovery is based on the Laboratory Control Spike (I QC Batch: 98918 Prep Batch: 83717 Param	F spike	C resu	LCSD Result 2510 lt. RPD is Date A QC Pr L C Re	Units mg/Kg s based o Analyzed reparation LCS esult	Dil. 1 n the s 201 n: 201 Units	Spike <u>Amour</u> 2500 pike and 3-02-13 3-02-11 Dil.	M at R < spike	latrix esult 3.85 duplicat Spike mount	Rec. 100 te resu Ma Re	Re Lin 85 - ılt.	nit 115 Analy Prepa Re	7 rzed By red By	Limit 20 7: AR 7: AR Rec. Limit
Param Chloride Percent recovery is based on the Laboratory Control Spike (I QC Batch: 98918 Prep Batch: 83717 Param Chloride	F spike	C resu)	LCSD Result 2510 lt. RPD is Date A QC Pr L C Re 2	Units mg/Kg s based o Analyzed eparation LCS esult 780	Dil. 1 n the s 201 n: 201 Units mg/Kg	Spike Amour 2500 pike and 3-02-13 3-02-11 Dil. 5 1	M nt R < spike	latrix esult 3.85 duplicat Spike mount 2500	Rec. 100 te resu Ma Re <3	Re Lin 85 - ılt.	nit 115 Analy Prepa	7 rzed By red By	Limit 20 7: AR 7: AR Rec.
Param Chloride Percent recovery is based on the Laboratory Control Spike (I QC Batch: 98918 Prep Batch: 83717 Param	F spike	C resu)	LCSD Result 2510 It. RPD is Date A QC Pr L C Re 2 It. RPD is	Units mg/Kg s based o Analyzed eparation LCS esult 780	Dil. 1 n the s 201 n: 201 Units mg/Kg	Spike <u>Amour</u> 2500 pike and 3-02-13 3-02-11 Dil. <u>1</u> pike and	M at R < spike	latrix esult 3.85 duplicat Spike mount 2500 duplicat	Rec. 100 te resu Ma Re <3	Re Lin 85 - ılt. atrix esult 3.85 ılt.	nit 115 Analy Prepa <u>Re</u> 11	7 rzed By red By	Limit 20 7: AR 7: AR 8: AR 85 - 115
Param Chloride Percent recovery is based on the Laboratory Control Spike (I QC Batch: 98918 Prep Batch: 83717 Param Chloride	F spike	C resu)	LCSD Result 2510 lt. RPD is Date A QC Pr L C Re 2	Units mg/Kg s based o Analyzed eparation LCS esult 780	Dil. 1 n the s 201 n: 201 Units mg/Kg	Spike Amour 2500 pike and 3-02-13 3-02-11 Dil. 5 1	M nt R < spike	latrix esult 3.85 duplicat Spike mount 2500 duplicat	Rec. 100 te resu Ma Re <3	Re Lin 85 - ılt.	nit 115 Analy Prepa <u>Re</u> 11	7 rzed By red By	Limit 20 7: AR 7: AR Rec. Limit

Report Date: February 15, 2013 112C05046				Work Order: 13021102 COG/Willow A State #3					Page N	umber: Eddy (23 of 36 Co., NM
Laboratory Control Spike (LC	CS-1))									
QC Batch: 98919			Dat	e Analyze	d: 2013	3-02-13			Ana	lyzed By	: AR
Prep Batch: 83717			QC	Preparati	on: 2013	3-02-11			Prep	bared By	: AR
				LCS			Spike	Ma	atrix		Rec.
Param]	F	С	\mathbf{Result}	Units	Dil.	Amount	Re	esult F	lec.	Limit
Chloride				2510	mg/Kg	1	2500	<	3.85 1	.00 E	35 - 115
Percent recovery is based on the s	pike 1	resu	lt. RPI) is based	on the sp	ike and sp	oike duplica	ate resi	ult.		
			LCSE)		Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	С	Resul	t Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride			2690	mg/Kg	g 1	2500	<3.85	108	85 - 115	7	20
Percent recovery is based on the sp Laboratory Control Spike (LC					on one sp	ine and sp					
QC Batch: 98958			Dat	e Analyze	d · 2019	3-02-15			۸na	lyzed By	: YG
Prep Batch: 83839				Preparati		-02-15				ared By	
				LCS			Spike	Ma	atrix		Rec.
Param	I	F	С	Result	Units	Dil.	Amount	Re	esult R	lec.	Limit
GRO			1	21.6	mg/Kg	1	20.0	<:	2.32 1	08 7	0 - 130
Percent recovery is based on the sp	pike r	resul	lt. RPI) is based	on the sp	ike and sp	ike duplica	te resi	ılt.		
			LCSD)		Spike	Matrix		Rec.		RPD
	m	~			D .1		D 1/	n	T • • •	DDD	T • • •

Param	\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
GRO		ı	21.1	mg/Kg	1	20.0	<2.32	106	70 - 130	2	20
Percent recovery is based on the s	spike	resu	lt. RPD	is based or	n the s	pike and sp	ike duplic	ate res	ult.		

Surrogate	LCS Result	$\begin{array}{c} \mathrm{LCSD} \\ \mathrm{Result} \end{array}$	Units	Dil.	Spike Amount	LCS Rec.	LCSD Rec.	Rec. Limit
Trifluorotoluene (TFT)	2.03	2.03	mg/Kg	1	2.00	102	102	70 - 130
4-Bromofluorobenzene (4-BFB)	2.02	2.01	mg/Kg	1	2.00	101	100	70 - 130

Laboratory Control Spike (LCS-1)

QC Batch:	98965	Date Analyzed:	2013-02-15	Analyzed By:	CW
Prep Batch:	83844	QC Preparation:	2013-02-15	Prepared By:	CW

Param DRO Percent recovery is based on th Param DRO Percent recovery is based on th Burrogate -Tricosane Matrix Spike (MS-1) Spill QC Batch: 98827	F e spik L(C i. i. i. i. i. i. i. i. i. i.	LCSI Resul 216) t Unit mg/F PD is base SD ult	s Dil. g 1	spike and Spike Amount 250	Matrix Result 23.2	Res 23 icate re Rec. 77	R. Lin 66.9 - esult.	Rec. 76 ec. mit - 119.9 LCSD Rec.	L: 66.9 RPD 1	Rec. imit - 119.9 RPD Limit 20 Rec. imit
Percent recovery is based on th Param DRO Percent recovery is based on th Surrogate -Tricosane Matrix Spike (MS-1) Spil	F e spik L(Res 12	C i. i. i. i. i. i. i. i. i. i.	ult. RF LCSI Resul 216 ult. RF LC Res	PD is base t Unit mg/F PD is base SD ult	ed on the s Dil. g 1 ed on the Units	spike and Spike Amount 250 spike and Dil.	spike dupl Matrix Result 23.2 spike dupl Spike Amount	icate re Rec. 77 icate re LCS Rec.	esult. R Lin 66.9 - esult.	ec. mit - 119.9 LCSD	RPD 1	RPI Limi 20 Rec.
Param DRO Percent recovery is based on th Surrogate Tricosane Matrix Spike (MS-1) Spil	F e spik L(Res 12	C i. i. i. i. i. i. i. i. i. i.	LCSI Resul 216 ult. RF LC Res) t Unit mg/F PD is base SD ult	s Dil. g 1 ed on the Units	Spike Amount 250 spike and Dil.	Matrix Result 23.2 spike dupl Spike Amount	Rec. 77 icate re LCS Rec.	R. Lin 66.9 - esult.	mit - 119.9 LCSD	1 F	Limi 20 Rec.
DRO Percent recovery is based on th Surrogate -Tricosane Matrix Spike (MS-1) Spil	e spik L(Res 12	ı. ce res CS sult 21	Resul 216 ult. RF LC Res	t Unit mg/F PD is base SD ult	g 1 ed on the Units	Amount 250 spike and Dil.	Result 23.2 spike dupl Spike Amount	77 icate re LCS Rec.	Lin 66.9 - esult. I	mit - 119.9 LCSD	1 F	Limi 20 Rec.
DRO Percent recovery is based on th Surrogate -Tricosane Matrix Spike (MS-1) Spil	e spik L(Res 12	ı. ce res CS sult 21	216 ult. RF LC Res	mg/F 'D is base SD ult	g 1 ed on the Units	Amount 250 spike and Dil.	23.2 spike dupl Spike Amount	77 icate re LCS Rec.	66.9 - esult. I	- 119.9 LCSD	1 F	20 Rec.
Percent recovery is based on th Surrogate -Tricosane Matrix Spike (MS-1) Spil	L(Res	ce res CS sult 21	ult. RF LC Res	PD is base SD ult	ed on the Units	spike and Dil.	spike dupl Spike Amount	icate re LCS Rec.	esult.	LCSD	F	lec.
Jurrogate -Tricosane Matrix Spike (MS-1) Spil	L(Res	CS sult 21	LC Res	SD ult	Units	Dil.	Spike Amount	LCS Rec.	I			
-Tricosane Matrix Spike (MS-1) Spil	Res 12	sult 21	Res	ult			Amount	Rec.				
-Tricosane Matrix Spike (MS-1) Spil	Res 12	sult 21	Res	ult			Amount	Rec.				
-Tricosane Matrix Spike (MS-1) Spil	12	21									1.1	
Matrix Spike (MS-1) Spil	ked Sa				<u> </u>		100	121		134		- 140.
Param		F	C	MS Result	Units	Dil.	Spike Amount	R	atrix esult	Rec.	L	Rec. Limit
Chloride				15500	mg/Kg	g <u>1</u> 0	2500	1	3200	92	78.	9 - 12
Percent recovery is based on the	e spik	e res	ult. RF	D is base	ed on the	spike and	spike dupli	icate re	esult.			
			MSI)		Spike	Matrix		R	lec.		RPI
Param	\mathbf{F}	С	Resu		s Dil.	Amount		Rec.		mit	RPD	Limi
Chloride			1580) mg/H	(g 10	2500	13200	104	78.9	- 121	2	20
	-		e: 3206'	72		-	spike dupl	icate re	esult.			
2C Batch: 98841 Prep Batch: 83748				te Analy C Prepara		13-02-12 13-02-11	G _1:1 -		A	Prepar	zed By: red By:	CW CW
aram		F	С	MS Result	Units	a Dil.	Spike Amour		Matrix Result			Rec. Limit
DRO		т.	1	338	mg/K		250	10	$\frac{111}{111}$	<u></u>	· · · · · · · · · · · · · · · · · · ·	$\frac{1100}{0} - 130$

Report Date: February 15, 2013 112C05046						: 13021102 A State #			Pag		:: 25 of 36 7 Co., NM
			MSD			Spike	Matrix	¢	Rec		RPD
Param	\mathbf{F}	\mathbf{C}	\mathbf{Result}	Un	its Dil	. Amount	t Result	t Rec.	Lim	it RPI) Limit
DRO		1	331	mg,	/Kg 1	250	111	- 88	70 - 1	30 2	20
Percent recovery is based on the	spike	e resu	lt. RPD	is bas	sed on the	spike and	spike dup	licate res	ult.		
	1	MS	MS	D			Spike	M	IS	MSD	Rec.
Surrogate		esult	Res		Units	Dil.	Amour			Rec.	Limit
n-Tricosane		17	11		mg/Kg	1	100		17	118	70 - 130
Matrix Spike (MS-1) Spike	4 50	mplo	: 320696								
	u ba	mpie									
QC Batch: 98887				Analy		013-02-12				nalyzed l	
Prep Batch: 83781			QC I	Prepar	ration: 2	013-02-12			F	repared I	3y: YG
				MS			Spik	e M	atrix		Rec.
Param		\mathbf{F}	C	Result	Unit	s Dil.	Amou		esult	Rec.	Limit
GRO			1	23.2	mg/l		20.0		2.32	116	70 - 130
Percent recovery is based on the	mike		If RPD								
release recovery is based on the	pine	, 169a		10 000	eu on me	spike and	spike uup	licate les	uit.		
			MSD			Spike	Matrix	¢	Rec		RPD
Param	F	C	Result	Un					Lim		
GRO		1	24.3	mg/	<u>/Kg 1</u>	20.0	<2.32	122	70 - 1	30 5	20
Percent recovery is based on the s	spike	e resu	lt. RPD	is bas	ed on the	spike and	spike dup	licate res	ult.		
			M	IS	MSD			Spike	MS	MSD	Rec.
Surrogate			Res		Result	Units		mount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	·····	···		40	2.40	mg/Kg	1	2	120	120	70 - 130
4-Bromofluorobenzene (4-BFB)			2.		2.09	mg/Kg	1	$\overline{2}$	106	104	70 - 130
Matrix Spike (MS-1) Spike											
QC Batch: 98888 Prep Batch: 83781	d Sa	mple:		Analy Prepar)13-02-12)13-02-12				nalyzed H repared H	
QC Batch: 98888	d Sa	mple:	Date								
QC Batch: 98888		-	Date QC I	Prepar MS			Spike	Mat	Р		
QC Batch: 98888 Prep Batch: 83781 Param		-	Date QC I C Re	Prepar MS esult	ation: 20		Amount	Mat	P rix	repared H Rec.	By: YG Rec. Limit
QC Batch: 98888 Prep Batch: 83781 Param Benzene		-	Date QC I $\frac{C}{1}$	Prepar MS esult	ation: 20 Units mg/Kg)13-02-12	Amount 2.00	Rest <0.00	P rix 1lt 1810	Rec.	By: YG Rec. Limit 36.3 - 138
QC Batch: 98888 Prep Batch: 83781 Param Benzene Toluene		-	Date QC H C Re 1 2 1 2	Prepar MS esult .02 .12	ation: 20 Units mg/Kg mg/Kg	D13-02-12 Dil.	Amount 2.00 2.00	Rest <0.00 <0.00	P 11t 1810 1750	Rec. 101 0 106 0	By: YG Rec. Limit 36.3 - 138 54.8 - 142
QC Batch: 98888 Prep Batch: 83781 Param Benzene		-	Date QC I $\frac{C}{1}$	Prepar MS esult	ation: 20 Units mg/Kg	Di3-02-12 Dil. 1	Amount 2.00	Rest <0.00	P 11t 1810 1750 1730	Rec. 101 (106 (116	By: YG Rec. Limit 36.3 - 138

Report Date: February 15, 2013 112C05046	3					13021102 A State #			Pa	0		26 of 36 6., NM
			MSD			Spike	Matrix	:	Re	ec.		RPD
Param	F	С	Result	Units	Dil.	Amount	Result	Rec.		nit	RPD	Limit
Benzene		1	2.08	mg/Kg		2.00	<0.0081			- 138	3	20
Toluene		1	2.19	mg/Kg		2.00	< 0.0075			- 142	3	20
Ethylbenzene		1	$2.40 \\ 7.47$	mg/Kg		2.00	<0.0073		72 - 60.8	132	3 3	$\frac{20}{20}$
Xylene Percent recovery is based on the	spik	e res		mg/Kg D is base		6.00 spike and	<0.0070 spike du			- 140	<u> </u>	20
·				MS	MSD	•	-	Spike	MS	MSI)	Rec.
Surrogate				Result	Result	Units	Dil.	Amount	Rec.	Rec		limit
Trifluorotoluene (TFT)	Qar	Qs	т	2.34	2.34	mg/Kg	1	2	117	117	79.	5 - 108
4-Bromofluorobenzene (4-BFB)				2.13	2.12	mg/Kg	1	2	106	106	71.	4 - 108
QC Batch: 98917 Prep Batch: 83717				te Analyz 2 Prepara MS)13-02-13)13-02-11	Spik	- N	atrix	•	zed By red By:	
Param		F	C	Result	Units	Dil.	Amou		esult	Rec.		imit
Chloride				2580	mg/Kg		2500		408	87		9 - 121
Percent recovery is based on the	spike	e res	ult. RP	D is based			spike du	plicate re	sult.			· . · · · · · · · · · · · · · · · · · ·
			MSD			Spike	Matrix	2	Re	c.		RPD
Param	F	C	Result			Amount			Lin		RPD	Limit
Chloride			2780	mg/K	g 5	2500	408	95	78.9 -	121	8	20
QC Batch: 98918	_		e: 32069		ed: 2()13-02-13	spike duj	plicate re		Analyz		
Prep Batch: 83717			QC	Prepara	tion: 2()13-02-11				Prepar	еа Бу:	An
		F		MS			Spike		atrix	-	1	Rec.
Param		F	QC C	MS Result	Units	Dil.	Amou	nt Re	atrix esult	Rec.	l L	Rec. imit
Prep Batch: 83717 Param Chloride Percent recovery is based on the	spike		C	MS Result 2650	Units mg/K	Dil. g 5	Amou 2500	nt Ro	atrix esult 19.2	-	l L	Rec.
Param Chloride	spike		C	MS Result 2650 D is based	Units mg/K	Dil. g 5 spike and	Amou 2500	nt Ro colicate re	atrix esult 19.2	Rec.	l L	Rec. imit
Param Chloride	e spike F		C ult. RP	MS Result 2650 D is based	Units mg/K d on the	Dil. g 5	Amou 2500 spike duy Matrix	nt Ro colicate re	atrix esult 19.2 esult.	Rec. 106 c.	l L	Rec. imit 9 - 121

Report Date: February 15, 2013	Work Order: 13021102	Page Number: 27 of 36
112C05046	COG/Willow A State #3	Eddy Co., NM

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spik	e (MS-1)	Spiked Sample: 320695	
QC Batch: Prep Batch:		Date Analyzed: QC Preparation:	

			MS			Spike	Matrix		Rec.
Param	F	С	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride			2560	mg/Kg	5	2500	<19.2	102	78.9 - 121

Analyzed By: AR Prepared By: AR

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			MSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride			2440	mg/Kg	5	2500	<19.2	98	78.9 - 121	5	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 321013

.

QC Batch:	98958	Date Analyzed:	2013-02-15	Analyzed By:	$\mathbf{Y}\mathbf{G}$
Prep Batch:	83839	QC Preparation:	2013-02-15	Prepared By:	YG

			MS			Spike	Matrix		Rec.
Param	\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Limit
GRO		1	19.8	mg/Kg	1	20.0	<2.32	99	70 - 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			MSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
GRO		1	20.9	mg/Kg	1	20.0	<2.32	104	70 - 130	5	20

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	\mathbf{Result}	\mathbf{Result}	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	2.21	2.01	mg/Kg	1	2	110	100	70 - 130
4-Bromofluorobenzene (4-BFB)	2.00	1.99	mg/Kg	1	2	100	100	70 - 130

Report Date: February 15, 201 112C05046		Work Order: 13021102 COG/Willow A State #3						Page Number: 28 of 36 Eddy Co., NM		
Matrix Spike (MS-1) Spi	ked San	nple: 320	573							
QC Batch: 98965 Prep Batch: 83844		zed By: red By:								
			MS			Spike	Ma	trix	I	Rec.
Param	I	F C	Result	Units	Dil.	Amount	Re	sult Rec.	L	imit
DRO		1	233	mg/Kg	g 1	250	2	5.4 83	36.1	- 147.2
Percent recovery is based on th	e spike	result. R	PD is ba	used on the	spike and	spike dup	licate r	esult.	-	
		MS)		Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	C Resu	lt Un	its Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO		1 231	mg/	Kg 1	250	25.4	82	36.1 - 147.2	1	20
Percent recovery is based on th	e spike	result. R	PD is ba	used on the	spike and	spike dup	licate r	esult.		
	MS	5 N	ISD			Spike	M	S MSD	1	Rec.
Surrogate	Resu	lt R	esult	Units	Dil.	Amount	Ree	c. Rec.	\mathbf{L}	imit
n-Tricosane	130	<u> </u>	130	mg/Kg	1	100	13	0 130	70 9	- 131.6

Report Date: February 15, 2013 112C05046

Calibration Standards

Standard (CCV-1)

QC Batch: 98	827		Date A	nalyzed: 2	Analyzed By: AR			
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	\mathbf{Flag}	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride			mg/Kg	100	103	103	85 - 115	2013-02-11

Standard (CCV-2)

QC Batch:	98827			Date A	Analyzed: 2		Analyzed By: AR			
					CCVs	CCVs	CCVs	Percent		
					True	Found	Percent	Recovery	Date	
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
Chloride				mg/Kg	100	97.2	97	85 - 115	2013-02-11	

Standard (CCV-1)

QC Batch:	QC Batch: 98841				2013-02-12	Analyzed By: C			
				CCVs	CCVs	CCVs	Percent		
				True	Found	Percent	Recovery	Date	
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
DRO		1	mg/Kg	250	263	105	80 - 120	2013-02-12	

Standard (CCV-2)

QC Batch:	98841	08841 Date Analyz				2013-02-12		Analyzed By: CW			
					CCVs	CCVs	CCVs	Percent			
					True	Found	Percent	Recovery	Date		
Param	Fl	ag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed		
DRO			1	mg/Kg	250	275	110	80 - 120	2013-02-12		

Report Date: 112C05046	February 15,	2013		Work O COG/Wi	Page Number: 30 of 36 Eddy Co., NM			
Standard (C	CV-1)							
QC Batch: 98887		Date	Date Analyzed: 2013-02-12			Analyzed By: YG		
				CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		1	mg/Kg	1.00	0.965	96	80 - 120	2013-02-12

Standard (CCV-2)

QC Batch:	98887		Date Analyzed:				Analyzed By: YG		
				CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date	
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
GRO		1	mg/Kg	1.00	1.01	101	80 - 120	2013-02-12	

Standard (CCV-3)

QC Batch:	98887	887 Date Analyzed:					Analyzed By: YG		
				CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date	
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
GRO		1	mg/Kg	1.00	0.993	99	80 - 120	2013-02-12	

Standard (CCV-1)

QC Batch: 98888			Analyzed By: YG					
D		<i>a i</i>	T T 14	CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		1	mg/kg	0.100	0.104	104	80 - 120	2013-02-12
Toluene		1	mg/kg	0.100	0.106	106	80 - 120	2013-02-12
Ethylbenzene		1	mg/kg	0.100	0.111	111	80 - 120	2013-02-12
Xylene		1	mg/kg	0.300	0.345	115	80 - 120	2013-02-12

Report Date: February 112C05046	/ 15, 2013			Work Order OG/Willow		Page Number: 31 of 36 Eddy Co., NM		
Standard (CCV-2)								
QC Batch: 98888			Date Ana	alyzed: 201	Analyzed By: YG			
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		1	mg/kg	0.100	0.0993	99	80 - 120	2013-02-12
Toluene		1	mg/kg	0.100	0.105	105	80 - 120	2013-02-12
Ethylbenzene		1	mg/kg	0.100	0.112	112	80 - 120	2013-02-12
Xylene		1	mg/kg	0.300	0.349	116	80 - 120	2013-02-12

Standard (CCV-3)

QC Batch: 98888			Analyzed By: YG					
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	\mathbf{Flag}	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		1	mg/kg	0.100	0.103	103	80 - 120	2013-02-12
Toluene		1	mg/kg	0.100	0.107	107	80 - 120	2013-02-12
Ethylbenzene		1	mg/kg	0.100	0.113	113	80 - 120	2013-02-12
Xylene		1	mg/kg	0.300	0.351	117	80 - 120	2013-02-12

Standard (CCV-1)

QC Batch:	98917			Date A	nalyzed: 2		Analyzed By: AR			
					CCVs	CCVs	CCVs	Percent		
					True	Found	Percent	Recovery	Date	
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
Chloride				mg/Kg	100	103	103	85 - 115	2013-02-13	

Standard (CCV-2)

QC Batch:	98917			Date A	nalyzed: 2	013-02-13		Analy	Analyzed By: AR	
					CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date	
D		7 731	a .	**				U U		
Param		\mathbf{Flag}	Cert	\mathbf{Units}	Conc.	Conc.	Recovery	Limits	Analyzed	
Chloride				mg/Kg	100	97.4	97	85 - 115	2013-02-13	

Report Date: February 15, 2013 112C05046				Work Or COG/Wil	Page Number: 32 of 36 Eddy Co., NM			
Standard (C	CV-1)							
QC Batch: 98918			Date A	nalyzed:	2013-02-13		Analy	vzed By: AR
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride			mg/Kg	100	100	100	85 - 115	2013-02-13
Standard (C	CV-2)							
QC Batch: 98	8918		Date A	analyzed:	2013-02-13		Analy	zed By: AR
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride			mg/Kg	100	99.6	100	85 - 115	2013-02-13
Standard (C	CV-1)							
QC Batch: 98	8919		Date A	nalyzed:	2013-02-13		Analy	zed By: AR
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		······································	mg/Kg	100	98.7	99	85 - 115	2013-02-13

.

Standard (CCV-2)

QC Batch:	C Batch: 98919				nalyzed:	2013-02-13	Analyzed By: AR			
					CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date	
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
Chloride				mg/Kg	100	101	101	85 - 115	2013-02-13	

Standard (CCV-1)

QC Batch: 98958

Date Analyzed: 2013-02-15

Analyzed By: YG

Report Date: February 15, 2013 112C05046					ler: 13021102 ow A State #	Page Number: 33 of 36 Eddy Co., NM		
Param	Flag	Cert	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
GRO	1 1005	1	mg/Kg	1.00	0.935	94	80 - 120	2013-02-15

Standard (CCV-2)

QC Batch:	98958		Date	Analyzed:	2013-02-15		Analyzed By: YG		
				CCVs	CCVs	CCVs	Percent		
				True	Found	Percent	Recovery	Date	
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
GRO		1	mg/Kg	1.00	1.05	105	80 - 120	2013-02-15	

Standard (CCV-3)

QC Batch:	98958		Date	Analyzed:	2013-02-15		Analy	zed By: YG
				CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		1	mg/Kg	1.00	1.05	105	80 - 120	2013-02-15

Standard (CCV-1)

1

QC Batch:	98965		Date	Analyzed:	2013-02-15		Analy	zed By: CW
				CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		1	mg/Kg	250	248	99	80 - 120	2013-02-15

Standard (CCV-2)

QC Batch: 98965

Date Analyzed: 2013-02-15

Analyzed By: CW

Report Date: 112C05046	February 15,	2013			ler: 13021102 ow A State #	Page Number: 34 of Eddy Co., N							
D		a .		CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date					
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed					
DRO		1	mg/Kg	250	229	92	80 - 120	2013-02-15					

Report Date: February 15, 2013 112C05046 Work Order: 13021102 COG/Willow A State #3 Page Number: 35 of 36 Eddy Co., NM

Appendix

Report Definitions

NameDefinitionMDLMethod Detection LimitMQLMinimum Quantitation LimitSDLSample Detection Limit

Laboratory Certifications

	Certifying	Certification	Laboratory
\mathbf{C}	Authority	Number	Location
-	NCTRCA	WFWB384444Y0909	TraceAnalysis
-	DBE	VN 20657	TraceAnalysis
-	HUB	1752439743100-86536	TraceAnalysis
-	WBE	237019	TraceAnalysis
1	NELAP	T104704392-12-4	Midland

Standard Flags

- F Description
- B Analyte detected in the corresponding method blank above the method detection limit
- H Analyzed out of hold time
- J Estimated concentration
- Jb The analyte is positively identified and the value is approximated between the SDL and MQL. Sample contains less then ten times the concentration found in the method blank. The result should be considered non-detect to the SDL.
- Je Estimated concentration exceeding calibration range.
- MI1 Split peak or shoulder peak
- MI2 Instrument software did not integrate
- MI3 Instrument software misidentified the peak
- MI4 Instrument software integrated improperly
- MI5 Baseline correction
- Qc Calibration check outside of laboratory limits.
- Qr RPD outside of laboratory limits
- Qs Spike recovery outside of laboratory limits.
- Qsr Surrogate recovery outside of laboratory limits.
- U The analyte is not detected above the SDL

Result Comments

Report Date: February 15, 2013 112C05046 Work Order: 13021102 COG/Willow A State #3 Page Number: 36 of 36 Eddy Co., NM

1 Dilution due to surfactant.

2 Dilution due to surfactant.

Attachments

The scanned attachments will follow this page. Please note, each attachment may consist of more than one page.

MAILENT SIGN REQUEST OF CHAINE OF COSTOLOGY RECORD. MAILENS REQUEST OF CHAINE OF COSTOLOGY RECORD. TETRATECH 1910 N. Big Spring St. Middland, Texas 79705 (452) 682-4556 + Fax (452) 682-3546 COC TETRATECH 1910 N. Big Spring St. Middland, Texas 79705 (452) 682-4556 + Fax (452) 682-3546 COC TETRATECH 1910 N. Big Spring St. Middland, Texas 79705 (452) 682-4556 + Fax (452) 682-3546 COC TETRATECH 1910 N. Big Spring St. Middland, Texas 79705 (452) 682-4556 + Fax (452) 682-3546 COC MEMOLECT NO.: (12 C O 50 4/L PROJECT NO.: (12 C O 50 4/L NUMMER 20 50 4/L PROJECT NO.: (12 C O 50 4/L NUMMER 20 50 4/L PROJECT NO.: (12 C O 50 4/L NUMMER 20 50 4/L PROJECT NO.: (12 C O 50 4/L NUMMER 20 50 4/L SA Alt-1 0-1 LAB DD 20 CIT 2 S Alt 10 -1 Alt 10 -	A -									2 11		. A	میں						T	-			-1		د د د و د د	P	AGE				O	F: (3	والمعالية
TETRATECH 1910 N. Big Spring St. Milling, Texas 79105 (432) 682-4569 * Fax (432) 682-3946 Dillent NAME COG STE NAMAGET: (432) 682-4569 * Fax (432) 682-3946 Dillent NAME COG STE NAMAGET: (432) 682-4569 * Fax (432) 682-3946 Dillent NAME COG State Nama (432) 682-4569 * Fax (432) 682-3946 Dillent NAME COG State Nama (432) 682-4569 * Fax (432) 682-3946 Dillent NAME COG State Nama (432) 682-4569 * Fax (432) 682-3946 Dillent NAME (432) 682-4569 * Fax (432) 682-3946 State Nama (432) 682-4569 * Fax (432) 682-3946 Dillent NAME (432) 682-4569 * Fax (432) 682-3946 State Nama (432) 682-4569 * Fax (432) 682-3946 Dillent No. (432) 682-4569 * Fax (432) 682-3946 State Nama (432) 682-459 * Fax (432) 682-3946 Dillent No. (432) 682-459 * Fax (432) 682-3946 State Nama (432) 682-659 * Fax (432) 682-3946 Dillent No. (432) 682-459 * Fax (432) 682-3946 State Nama (432) 682-669 * Fax (432) 682-3946 Dillent No. (432) 682-459 * Fax (432) 682-3946 State Nama (432) 682-669 * Fax (432) 682-469 *	An	Analysis Request of Unain of Custody Record												┢							LYS	IS F	REQU				<u> </u>							
1/2 C 0 50 446 (a. with a Astuck "3 (b) with a Astuck "3 (b) with a Astuck "3 1/2 C 0 50 446 (c) a with a Astuck "3 (c) a with a Astuck "3 (c) a with a Astuck "3 1/2 C 0 50 446 (c) a with a Astuck "3 (c) a with a Astuck "3 (c) a with a Astuck "3 1/2 C 0 50 446 (c) a with a Astuck "3 (c) a with a Astuck "3 (c) a with a With a Astuck "3 1/2 C 0 (c) a with a With a Astuck "3 (c) a with a With a Astuck "3 (c) a with a							1910 Midla (432) 6	N. Big and, To 82-4559	g Sprin exas 79 9 • Fax (4	ig St. 9705											d d	Vr Pd Ha	,	(Circ				y Me	thod	No.,		I, TDS		
1/2 C 0 50 446 Concentration Concentration <t< td=""><td>CLIENT NAN</td><td>^{ne:}Coo</td><td>ĸ</td><td></td><td></td><td></td><td></td><td></td><td></td><td>n</td><td></td><td></td><td>NERS</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Ř</td><td></td><td>8 8</td><td></td><td></td><td>60/62</td><td>270/6</td><td></td><td></td><td></td><td></td><td></td><td>e E</td><td></td><td></td></t<>	CLIENT NAN	^{ne:} Coo	ĸ							n			NERS							Ř		8 8			60/62	270/6						e E		
320672 5 × AI+1 0-1 1 × X X X 675 I AI+1 1-1.5 I I I X X X 674 I AI+1 1-1.5 I I I X X I 674 I AI+1 2-2.5 I I I I I 675 I AI+1 3-3.5 I I I I 676 I AI+1 5-5.5 I I I 678 I AI+1 5-5.5 I I I 678 I AI+1 5-5.5 I I I 678 I AI+1 5-5.5 I I I 680 I AI+1 5-5.5 I I I 681 I I AI+1 5-5.5 I I I 680 I AI+1 5-7.5 I I I I 10000 ELINDURINED BY (Bijnature) Date I I IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	11200	0.:	46					state E	# 3 Lales	Cn' I	1m		I OF CONTAI	(N/N) C				Τ	248	OTS MOR.	0	etals Ag A etals Ag A	latiles	mi Volatiles	P 240/82	Semi. Vol. 8	080/608	8/608	Spec.	eta (Air)	bestos)			
673 AP+) 1-1.5 674 AP-) 2:2.5 675 AP-) 2:2.5 675 AP-) 3:3.5 676 AP-) 4.4.3 677 AP-) 5:5.5 678 AP-) 7:7.5 680 AP-) 7:7.5 Bunc 1.6.00 PCCENCO BY: (Signature) 7mm: PCCENCO BY: (Signature) PCENCO BY: (Signature) <	LAB I.D. NUMBER	•	TIME	MATRIX	COMP.			SAM		ITIFICATI	'ON		NUMBER	FILTERE	ΨŪ		NONE		BTEX BO	8 Ha	PAH 827	TCLP M	TCLP Vo	TCLP Se	RCI GC MS	GC.MS	PCB's 8	Pest. 80	Camma	Alpha B	PLM (As	Major A		
674 др.) 2.2.5 675 др.) 3.3.5 676 др.) 4.4.3.5.5 676 др.) 4.4.3.5.5 677 др.) 4.4.3.5.5 678 др.) 4.4.3.5.5 678 др.) 4.4.3.5.5 678 др.) 4.4.3.5.5 678 др.) 4.4.1.7.5.5 678 др.) 4.4.1.7.5.5 678 др.) 4.4.1.7.5.5 680 др.) 4.4.1.7.5.5 680 др.) 4.4.1.7.5.5 680 др.) 4.4.1.7.5.5 680 др.) 7.5.5 675 др.) 7.5.5 680 др.) 7.5.5 680 др.) 7.5.5 680 др., 7.5.5 680 др., 7.5.5 680 др., 7.5.5 680 др., 7.5.5	320672	1-8-		5	×	A17-1	0	-)					1			×			X	X									[
674 Apr.1 2:2.5 675 Apr.1 3:3.5 676 Apr.1 3:3.5 676 Apr.1 4.4.5 678 Apr.1 5:5.5 678 Apr.1 5:4.5 679 Apr.1 5:4.5 681 Apr.1 5:4.5 681 Apr.1 5:4.5 681 Apr.1 5:4.5 679 Apr.1 5:4.5 681 Apr.1 5:4.5 692 Apr.1 5:4.5 <td< td=""><td>673</td><td>i</td><td></td><td></td><td></td><td>AH-1</td><td>j.</td><td>-1.5</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>C</td><td></td><td></td><td></td><td></td><td></td></td<>	673	i				AH-1	j.	-1.5					1				4												C					
675 A+1 3-3.5 676 A+1 4-4.5 676 A+1 5-5.5 677 A+1 5-5.5 678 A+1 5-5.5 678 A+1 5-5.5 678 A+1 7-5.5 678 A+1 7-5.5 680 A+1 8-9.5 680 A+1 9-9.5 681 A+1 9-9.5 Cuputored BY, Bignaturel The: 1.1.0 RECEIVED BY, Bignaturel 70000 Date: 1.1.1.0 RECEIVED BY, Bignaturel 700000 Date:<	674				Π									Π	T	Τ		Τ			Τ	Τ	Γ	Π		Τ	Π	T,	Ø					
67% A+1 M-4.5 67% A+1 S5.5 67% A+1 S7.5 680 A+1 S7.5 680 A+1 S7.5 681	675					· ·					<u></u>		1		1			\uparrow											A	Π			Π	٦
67 Apt 1 555 678 Apt 1 555 678 Apt 1 645 678 Apt 1 645 678 Apt 1 745 680 Apt 1 755 680 Apt 1 755 680 Apt 1 755 680 Apt 1 885 691 Apt 1 885 692 Apt 1 885 693 Apt 1 885 694 Apt 1 885 695 Apt 1 885 696 Bate 1220 70000000 Bate 1220 70000000000000 Bate 70000000000	6-76															1	\uparrow	\uparrow			╈	T	T			1	Π		1	\square		T	\square	1
678 AH+1 6.6.5 678 AH+1 6.6.5 678 AH+1 7.7.5 680 AH+1 7.7.5 680 AH+1 8.8.5 681 AH+1 9.9.5 ELINGUISHED BY: (Signature) Date: 1.2.2.1.3 Time: Time: 1.1.2.0 ELINGUISHED BY: (Signature) Date: 1.2.2.1.3 Time: Time: 1.1.2.0 FECENED BY: (Signature) Date: 1.2.2.0 SAMPLED BY: (Signature) Date: Time: Time: RECEIVED BY: (Signature) Date: Time: ELINGUISHED BY: (Signature) Date: Time: FEDEX Date: Time: RECEIVED BY: (Signature) Date: Time: Time: RECEIVED BY: (Signature) Date: Time: Time: Time: RECEIVED BY: (Signature) Date: Time: Tim	- 677				╢	1									╈	-†-	╢	\uparrow			+	╋	╞╴		+	┢		Y	?	\uparrow	1	╈		1
673 April 7.5.5 680 April 7.5.5 690 Date: 700 Date:				╟╫╫	╢											+	$\ $	1			+	╋	1-		╈	╀		T	Ā	\dagger	-†	+		1
680 AH-1 895 7000 Date: 7000					-#	1			,						+	+-	\parallel	\dagger			\dagger	╈	╎─	┝╌┼		╀			1		-†	+-	┝─┼	1
68 AH 9-9.5 Image: 1-2-13 PECENED BF: (Ignature) Date: 218/15 SAMPLED BY: (Print & Initial) Date:					╢	1					<u> </u>			┝─╁	╈	+1	4-	+	┢╴		┽	╋		┠─┼	╋	┨	$\left \right $	f	7-	┟╴┦	╡	+-	$ \uparrow$	1
ELINQUISHED BY: (Signature) Date: 1-2-13 PECENED BI: (Signature) Date: 218/13 SAMPLED BY: (Print & Initial) Date: Date: Max		11		1	┢	1.									+-	t	,	+			╉	╋	╞─╴	$\left \right $	+	╀╴				$\uparrow \uparrow$	+	╉	$\uparrow \uparrow$	+
Time: Time: FEDEX BUS ieliNOUISHED BY: (Signature) Date: Date: HAND DELIVERED UPS OTHER: Time: Time: Time: Time: TETRA TECH CONTACT PERSON: Results by: DORESS: Time: Time: Time: TETRA TECH CONTACT PERSON: Results by: DORESS: TY: Middlesd STATE: TAL ZIP: DATE: TIME: ONTACT: PHONE: DATE: DATE: TIME: Att thorized: Yes AMPLE CONDITION WHEN RECEIVED: BUS ADDRAME TATE! TIME: No J. J. C. MAND delygen paysle Att duithedL	ELINQUISHED					Date:	7-8-1	3			en	au	Ď	5			181 16	13	<u>}</u>								اا چون	R		Tir	ne: _			
Time: Time: Terra TECH CONTACT PERSON: Results by: DDRESS: If indicad STATE: If indicad If indicad If indicad ONTACT: PHONE: DATE: DATE: TIME: If indicad: AMPLE CONDITION WHEN RECEIVED: BEMARKS: DATE: TIME: If indicad: J. J. C. If indicad: PHONE: DATE: TIME:						Time:			_					-	Tim	e:					FE	DEX			B	US						·		
AMPLE CONDITION WHEN RECEIVED: 2.2°C My depen payle of THH proceed 100 mg/lig Hiddelich.	DORESS:					ZIP	2:			D BY: (Signa	iture)									=-{ -		1						A۴	5		RŲSi	HChar	ges	
		BON WHEN	RECEIVED:	٥N	PHO		MARKS	An	DATE:	00		1		ле: Ъ	11						11			in.		10		4.,	∇	He	Å	arei	đ	10 - 6
		Please f	L. L	copi	es -	<u>///</u> Laborato	UM iry reta	ins Yell	W CODY	- Return	Orginal Ci	opy to Ter	tra Te	ich i	7 · Pr	y	C -			ains	Pin	K CO	Py	- Ac	7/	nying	g rec	ceive	s G	old c	ору			7

				.		130	21/02																						
An	alys	sis F	le	qı	lest of	Cha	in of Custoc	lv F	R	ec	:0	rd									PA			2	(OF:	3		
			Ē	8	<u> </u>				_				- u	ł				(0					QUE: Aetho		lo.)				
					1910 I Midlai	N. Big S nd, Tex	TECH Spring St. as 79705 Fax (432) 682-3946)5 (Ext. to C35)	d Cr Pb Hg Se	TCLP Metals Ag As Ba Cd Vr Pd Hg Se									TDS			
CLIENT NAM	ME: COO				SITE	MANAGER	i: Javerz	ERS	Γ	P	RESE	ERVA			TX1005	Ba C	Ba			0/624	70/625					s, pH,			
PROJECT N		<u>n</u>			T NAME:			CONTAINERS		h					Mod.	g As	g As		tilles	0/826	ol. 82					ations			
112000	246	r	<mark>↓ ¢</mark>	06	· Willing A S	tarte "	<u> </u>	ß	NN NN					₽	15 N	tals A	tals A	tites		1.824	žmi. V	30/605 (608		bec.	a (Air) estos	O/suo			
LAB I.D. NUMBER		TIME	MATRIX	COMP. GRAB		SAMPLI	E IDENTIFICATION	NUMBER OF	FILTERED (Y/N)	Ę	HNO3				TeH 8015	PAH 82/U RCRA Me	TCLP Me	TCLP Volatiles	RCI Sen	GC.MS Vo	GC.MS Se	PCB's 806 Pest. 808/	(Chloride)	Gaittime	Alpha Beta (Air) PLM (Asbestos)	Major Anions/Cations, pH, TDS			
682	KE		s	×	AH-2 0-1			1			;	x	Γ	Ń	X	Τ		T	T	Γ			X						
683	($\left[\right]$	1	AZ 1-1.	5		1				1											У						
684					AH-2 2-2	5																	V						
685					AH2 3.3.	٢																	X						
CSb					AH-2 4.4	1.5																	X						
687					AH-Z S-	5.5											\square						X						
688					Atz 6-	(5	······································																M						
689				1	AH-2 7.	1.5		_									Ш						У						
690					A11-2 8-	8.5																	N						
697	BY: (Signature	Pl .	4		AH-2 5-	- 9.5	Derseillen Byl (Signatura)	L					Ļ										L)	,					
	King BY: Signature	<u>L-</u>			Time: 162-		RECEIVED BY (Signature)				ne: _	2781	ゐ	aine Li			EDB					Ry	<u>4</u>		Date: Time:				
					Time:		RECEIVED BY: (Signature)				ne:				- *	FEDE	le Shi Ex D Dell			BUS	5				RBILL THER:				-
ELINQUISHED					Date: Time:		RECEIVED BY: (Signature)				te:				ī		TECH									suits i	by:		-
CECEIVING LAB	-	STATE:	12	PHON	ZIP:		ECEIVED BY: (Signature)	BY: (Signature)							-	I	ka	10	:./e9	ær		st	HH RUSH Charges Authorized: Yes Ni					No	_
SAMPLE CONDI	TION WHEN	RECEIVED:)		REMARKS:										<u> </u>														

.

Please fill out all copies - Laboratory retains Yellow copy - Return Orginal copy to Tetra Tech - Project Manager retains Pink copy - Accounting receives Gold copy.

13021102

Analysis	Analysis Request of Chain of Custody Record											PAGE: 3 OF: 3 ANALYSIS REQUEST												
						<u></u>			ANALYSIS REQUEST (Circle or Specify Method No.)															
		TETRA TEC 1910 N. Big Spring St Midland, Texas 79705 (432) 682-4559 • Fax (432) 6	t. 5 682-3946						_	05 (Ext. to C35)	Ba Cd Cr Ph Ha Se	Cd Vr Pd Hg Se				2					pH, TDS			
CLIENT NAME:		SITE MANAGER:	Tauerer	NERS			SER\	VATIVE OD		TX1005	s Ba	s Ba			60/62	270/62					ns, pH			
PROJECT NO.: //2005046	PROJECT NAN	E: or A Steh "S	······································	F CONTAL	(N/X)	Ţ			8	5 MOD.	als Ag As	als Ag As	tiles	i Volatiles	1. 8240/82	mi. Vol. 8	0/6U8		00C.	stos)	ons/Catio			
LAB I.D. NUMBER	AATRIX GRAB GRAB	SAMPLE IDENTIFIC	CATION	NUMBER OF CONTAINERS	FILTERED	HNO3	ICE	NONE	BTEX 8021B	TPH 8015 MOD.	PAH 8270 RCRA Metals Ag As E	TCLP Metals Ag	TCLP Volatiles	TCLP Semi Volatiles RCI	GC.MS Vol. 8240/8260/624	GC.MS Semi. Vol. 8270/625	PCE 3 808	Chloride	Gamma S ₁	PLM (Asbestos)	Major Anions/Cations,			
672 1-8	5 × Bac	hyround 0-1		1			X				Ť							M		T	T		\square	
693	1 Bee	Lecond 1.5-2					1		T			Π		1			T	7			Π			
69.4	Be	Leroual 3.5-4		\prod						Π				T	Π		Τ	N					Π	
695	V V Ba	Lyroud 5.5-6		Y			Ψ			Π								N					\square	
			<u></u>																					
		·														_								
																_								
					1				<u> </u>														 	
		· · · · · · · · · · · · · · · · · · ·			_	\downarrow		_	\downarrow					\downarrow								┝		
RELINQUISHED BY: (Signature)	L Date:	1.9-17 RECEIVED BY	(Signature)			Date: Time:		/13			SAMP		BY: (Pri	int & li	nitiat	6		-	4	Date: Time:				
RELINQUISHED BY: (Signature) RELINQUISHED BY: (Signature)	Date: Time: Date:	RECEIVED BY:				Date: Time: Date:				_	FED	EX	lippel		(Circle BUS UPS	;			AIF	RBILL HER:	#:			
	Time:	RECEIVED BY: (Si				Time:				-	TETRA	TECI	H CON	TACT	PERS	SON:	er	A	H.		sults by SH Cha			
ADDRESS: CITY: And Control States Sta	PHONE:	ZIP: DATE:		TIM	£:					_			م ہو۔ 		'4 			. 1	`	Aut	SH Cha horized Yes	1:	No	
L.2°	C																							

•..

Please fill out all copies - Laboratory retains Yellow copy - Return Orginal copy to Tetra Tech - Project Manager retains Pink copy - Accounting receives Gold copy.