District 1 1625 N. French Dr., Hobbs, NM 88240 District II
1301 W. Grand Avenue, Artesia, NM 88210
District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Revised October 10, 2003

Form C-141

Submit 2 Copies to appropriate strict Office in accordance with Rule 116 on back side of form

P701922 632058

Release Notification and Corrective Action

					OPERA T	FOR	In	tial Report	\boxtimes	Final Repor	
Name of Co	mpany C	OG Operat	ing LLC			Contact Robert McNeil					
Address 60	0 West Ill	inois Avenu	e, Midla	nd, Texas 7970	1	Telephone No. (432) 230-0077					
Facility Nar	ne GC Fe	deral #44				Facility Typ	e Flowline				
Surface Ow	ner: Feder	al		Mineral O	wner	r Lease No. (API#) 30			30-02:	5-40237	
						N OF REI	LEASE		(3 3 3 7		
Unit Letter	Section	Township	Range	Feet from the		/South Line	Feet from the	East/West Lin	c County		
O	20	178	32E							Lea	
		<u></u>]	Latitude N 32.8		° Longitud		3°			
Type of Release: Oil and Produced water				Volume of	Release 2 bbls of bbls produced v		e Recovered 2 bbls prod				
Source of Rel	lease Steel	Flowline					our of Occurrence	e Date ar	d Hour of Dis	covery	vater
Was Immedia	ate Notice C		Van 🏻	No 🛛 Not Re	auirod	If YES, To		11-10-	2013 2:14p.n	1.	
By Whom?		<u></u>	165	NO M NOTKE	quired	Data and H					
Was a Watero	course Reac	ched?				Date and H	our lume Impacting th	ne Watercourse			
yytti a vyttore	out to I tout		Yes 🛚	No		N/A	rume impacting a	ne watercourse.			
If a Watercou	rse was Im	pacted, Descri	be Fully.*								
N/A											
Describe Cau	se of Proble	em and Remed	lial Action	Taken.*				····			
A steel flowli	ne failed du	e to corrosion	. Replace	d the steel flowlin	e.						
Describe Area	a Affected a	and Cleanup A	ction Tak	en.*	<u></u>						
produced water	er was reco at exceeded	vered with a vered was r	acuum tru emoved ai	or were released frock. All free fluids and hauled away for to NMOCD for re	s have i r prope	been removed. er disposal. Sit	Tetra Tech insp	ected site and co	illected sample	es to de	fine spills
regulations al public health should their o or the environ	l operators or the envir perations h nment. In a	are required to conment. The ave failed to a	report an acceptanc dequately CD accept	is true and comple d/or file certain re e of a C-141 repor investigate and re ance of a C-141 re	lease n t by the mediat	otifications an e NMOCD ma e contamination	d perform correct irked as "Final Re on that pose a thre	ive actions for r port" does not r at to ground wa	eleases which elieve the oper ter, surface wa	may en rator of iter, hui	ndanger Tliability man health
Signature:	M	1 Vi	7	A -				SERVATIO	N DIVISIO	<u>)N</u>	
Printed Name	: Ike Tavar	ez (Neg	sht =	L Cos	2	Approved by	Favire Supervisor				
Title: Project	Manager, F	P.G.				Approval Date	e: 8º 14./4	Expiration	n Date:		
E-mail Addre	ss: ike.tava	rez@tetratech.	com			Conditions of	Approval:		Attached		
Date:	7/27	7-14	Phone:	(432) 687-8110					IRP-3	240	
Attach Addit	fonal Shee	ets If Necessa	ıry				AHG	1 4 201	1 090	d 2	1918X

Appendix B

Water Well Data Average Depth to Groundwater (ft) COG - GC Federal #44 Well Lea County, New Mexico

	16 S	outh	3	1 East			16 S	outh	32	East	:		16 S	outh	3	3 East	t
	5	4	3	2 290	1	6	5	4	3	2	1	6	5 18) 4	3 13	0 2	1
					1. 1		ł	1 .	65	265	265	i	l	150		148	142
	В	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11	12
	1				288	j	1			İ	215	i	200		182	1	142
	17	16	15	14 113	13 299	18	17	16	15	14	13	18	17	16	15	14	13
	1			314				221	1		215		182	180	175	143	110
	20	21	22	23	24	19	20	21	22	23	24	19	20	21	22	23	24
			ı			220	ĺ	210		210	1 1	- 1				120	
	29	28	27	26	25	30	29	28	27	26	25	30	29	28	27	26	25
		İ						1	1	243	1 1	191	Ì	190	130	143	120
	32	33	34	35	36	31	32	33	34	35	36	31	32	33	34	35	36
0									1		260	190	168	1	160	1	
					المجيوسية	<u> </u>									7100		
		South		1 East				outh		East				outh		3 East	
	5	4	3	2	1	6	5	4 82		2 6	1 225	6 90	1	4	1	5 2 15	8 1
			1	 	10	<u></u>		Maljan						Maljar			↓_
	8	9	10	11	12	7	8	9	10 132	1	12	7 167		9	10	11	12
					ļJ	<u> </u>				88	120		173	161			
	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14	13
						<u> </u>	<u> </u>					188	180				165
	20	21	22	23	24	19	20	21	22	23	24	19	20	21	22	23	24
							SITE						190	<u> </u>		115	
	29	28	27	26	25	30 180	29	28	27	26	25	30 69	29 60	28	27	26	25
						dry 31								l			
	32	33	34	35	36	31	32	33	34	35	36	31	32	33	34	35	36
			271	1													
			12.						_L_					120		155	
	40.0			<u> </u>			10.0					<u> </u>	10.0				
		South	3	1 East	1	L		outh		East		6	_	outh		3 East	
	18 S	South 4		1 East	1	6	18 S		32 5 3	East		6	18 S		3		1
	5	4	3	2			5	4 6	5 3	2	1	<u> </u>	5	outh 4	3 60	3 East	1
			3		12	7 460						<u> </u>	_	outh 4	3 60 10	2 2 11	12 1
	5 8	9	3 3	11	12 400	7 460 82	5 8	9	10	11	12	7	5 8 10 0	outh 4	3 60 10 62	2 2 11 46	1 12 1 140
	5	4	3	11 14	12	7 460	5	9	5 3	2	1	7	5 8 100 17	outh 4	3 60 10	2 2 11 46 14	12 1 140 13
	8 17	9 16	3 3 10 15 98	11 14 317	12 400 13	7 460 82 18	5 8 17	9 16 84	10	11 14	12 13	7	5 8 100 17 85	9 16	3 60 10 62 15	2 2 11 46 14 36	12 1 140 13 60
	5 8	9	3 3	11 14	12 400	7 460 82	5 8 17 20	9	10 15 22	11	12	7 18	5 8 100 17	outh 4	3 60 10 62	2 2 11 46 14	1 12 1 140 13 60 24
	5 8 17 20	9 16 21	3 3 10 15 98 22	11 14 317 23	12 400 13	7 460 82 18	5 8 17 20 164	9 16 84 21	10 15 22 429	11 14 23	12 13 24	7 18 19 >140	5 8 10 0 17 85 20	outh 4 4 9 9 9 16 16 21	3 60 10 62 15	3 East 2 2 11 46 14 36 23	12 1 140 13 60 24 195
	8 17	9 16	3 3 10 15 98	11 14 317	12 400 13	7 460 82 18	5 8 17 20	9 16 84	10 15 22	11 14	12 13	7 18 19 >140 30	5 8 100 17 85	9 16	3 60 10 62 15	2 2 11 46 14 36	1 12 1 140 13 60 24
	5 8 17 20 29	9 16 21 28	3 3 10 15 98 22 27	11 14 317 23	12 400 13 24 25	7 460 82 18	5 8 17 20 164 29	9 16 84 21	10 15 15 22 429 27	11 14 23 26	1 12 13 24 25	7 18 19 >140 30 35	8 100 17 85 20	outh 4 9 9 16 21 28	3 60 10 82 15 22	3 East 2 11 46 14 36 23	1 12 1 140 13 60 24 195 25
	5 8 17 20	9 16 21	3 3 10 15 98 22	11 14 317 23 26	12 400 13	7 460 82 18	5 8 17 20 164	9 16 84 21	10 15 22 429 27	11 14 23	12 13 24	7 18 19 >140 30	5 8 10 0 17 85 20	outh 4 9 16 21 28 33	3 60 10 62 15	3 East 2 2 11 46 14 36 23	12 1 140 13 60 24 195
	5 8 17 20 29	9 16 21 28	3 3 10 15 98 22 27	11 14 317 23	12 400 13 24 25	7 460 82 18	5 8 17 20 164 29	9 16 84 21	10 15 15 22 429 27	11 14 23 26	1 12 13 24 25	7 18 19 >140 30 35	8 100 17 85 20	outh 4 9 9 16 21 28	3 60 10 82 15 22	3 East 2 11 46 14 36 23	1 12 1 140 13 60 24 195 25
	5 8 17 20 29	9 16 21 28	3 3 10 15 98 22 27	11 14 317 23 26	12 400 13 24 25	7 460 82 18	5 8 17 20 164 29	9 16 84 21	10 15 22 429 27	11 14 23 26	1 12 13 24 25	7 18 19 >140 30 35	8 100 17 85 20	outh 4 9 16 21 28 33	3 60 10 82 15 22	3 East 2 11 46 14 36 23	1 12 1 140 13 60 24 195 25
	5 8 17 20 29 32	9 16 21 28 33	3 3 10 15 98 22 27 34	11 14 317 23 26 35 261	12 400 13 24 25 36	7 460 82 18 19 30	5 8 17 20 164 29	9 16 84 21	10 15 22 429 27	11 14 23 26	1 12 13 24 25	7 18 19 >140 30 35	8 100 17 85 20	outh 4 9 16 21 28 33	3 60 10 82 15 22	3 East 2 11 46 14 36 23	1 12 1 140 13 60 24 195 25
	5 8 17 20 29 32	9 16 21 28 33 Mexico	3 3 10 15 98 22 27 34 State I	2 11 14 317 23 26 35 261	12 400 13 24 25	7 460 82 18 19 30	5 8 17 20 164 29	9 16 84 21	10 15 22 429 27	11 14 23 26	1 12 13 24 25	7 18 19 >140 30 35	8 100 17 85 20	outh 4 9 16 21 28 33	3 60 10 82 15 22	3 East 2 11 46 14 36 23	1 12 1 140 13 60 24 195 25
	5 8 17 20 29 32 New USG	9 16 21 28 33 Mexico S Well	3 3 10 15 98 22 27 34 State I	2 11 14 317 23 26 35 261 Enginee	12 400 13 24 25 36	7 460 82 18 19 30 31	5 8 17 20 164 29	9 16 84 21 28	10 15 22 429 27 34 117	11 14 23 26	1 12 13 24 25	7 18 19 >140 30 35	8 100 17 85 20	outh 4 9 16 21 28 33	3 60 10 82 15 22	3 East 2 11 46 14 36 23	1 12 1 140 13 60 24 195 25
	5 8 17 20 29 32 New USG	9 16 21 28 33 Mexico S Well	3 3 10 15 98 22 27 34 State I	2 11 14 317 23 26 35 261 Enginee	12 400 13 24 25 36	7 460 82 18 19 30	5 8 17 20 164 29	9 16 84 21 28	10 15 22 429 27 34 117	11 14 23 26	1 12 13 24 25	7 18 19 >140 30 35	8 100 17 85 20	outh 4 9 16 21 28 33	3 60 10 82 15 22	3 East 2 11 46 14 36 23	1 12 1 140 13 60 24 195 25
	5 8 17 20 29 32 New USG Geol	9 16 21 28 33 Mexico S Well ogy and	3 3 10 15 98 22 27 34 State I Reported Ground	2 11 14 317 23 26 35 261 Enginee	12 400 13 24 25 36 rs Well Re	7 460 82 18 19 30 31	5 8 17 20 164 29	9 16 84 21 28	10 15 22 429 27 34 117	11 14 23 26	1 12 13 24 25	7 18 19 >140 30 35	8 100 17 85 20	outh 4 9 16 21 28 33	3 60 10 82 15 22	3 East 2 11 46 14 36 23	1 12 1 140 13 60 24 195 25
	8 17 20 29 32 New USG Geol	9 16 21 28 33 Mexico S Well ogy and	3 3 10 15 98 22 27 34 State I Reported Grounds	2 11 14 317 23 26 35 261 Enginee	12 400 13 24 25 36 rs Well Re	7 460 82 18 19 30 31	5 8 17 20 164 29	9 16 84 21 28	10 15 22 429 27 34 117	11 14 23 26	1 12 13 24 25	7 18 19 >140 30 35	8 100 17 85 20	outh 4 9 16 21 28 33	3 60 10 82 15 22	3 East 2 11 46 14 36 23	1 12 1 140 13 60 24 195 25

Appendix C

Work Order: 13121639

Page Number: 1 of 2

Summary Report

Ike Tavarez Tetra Tech

1910 N. Big Spring Street

Midland, TX 79705

Report Date: January 2, 2014

Work Order: 13121639

Project Location: Lea Co, NM

Project Name:

COG/GC Fed #44

Project Number: 112MC05819

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
349162	AH-1 0-1'	soil	2013-12-12	00:00	2013-12-16
349163	AH-1 1-1.5'	soil	2013-12-12	00:00	2013-12-16
349164	AH-1 2-2.5'	soil	2013-12-12	00:00	2013-12-16
349165	AH-2 0-1'	soil	2013-12-12	00:00	2013-12-16
349166	AH-2 1-1.5'	soil	2013-12-12	00:00	2013-12-16
349167	AH-2 2-2.5'	soil	2013-12-12	00:00	2013-12-16
349168	AH-2 3-3.5'	soil	2013-12-12	00:00	2013-12-16
349169	AH-2 4-4.5'	soil	2013-12-12	00:00	2013-12-16
349170	AH-2 5-5.5'	soil	2013-12-12	00:00	2013-12-16

			BTEX	TPH DRO - NEW	TPH GRO	
	Benzene	Toluene	Ethylbenzene	Xylene	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
349162 - AH-1 0-1'	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 50.0	< 4.00
349165 - AH-2 0-1'	< 0.0200	< 0.0200	< 0.0200	< 50.0	< 4.00	

Sample: 349162 - AH-1 0-1'

Param	Flag	Result	Units	RL
Chloride		4450	mg/Kg	4

Sample: 349163 - AH-1 1-1.5'

Param	Flag	Result	Units	RL
Chloride		<20.0	mg/Kg	4

Report Date: January 2, 2014		Work Order: 13121639	Page	Page Number: 2 of 2	
Sample: 349164	- AH-1 2-2.5'				
Param	Flag	Result	Units	RL	
Chloride		295	mg/Kg	4	
Sample: 349165	- AH-2 0-1'				
Param	Flag	Result	Units	RL	
Chloride		<20.0	mg/Kg	4	
Sample: 349166	- AH-2 1-1.5'				
Param	Flag	Result	Units	RL	
Chloride		<20.0	mg/Kg	4	
Danama	- AH-2 2-2.5'	Downle	IIi.	זמ	
Param	Flag	Result	Units		
Chloride	Flag	Result <20.0	Units mg/Kg		
Chloride	Flag				
Chloride Sample: 349168 Param	Flag	<20.0 Result	mg/Kg Units	RL 4 RL	
Param Chloride Sample: 349168 Param Chloride	Flag - AH-2 3-3.5'	<20.0	mg/Kg	4 RL	
Chloride Sample: 349168 Param	Flag - AH-2 3-3.5 ' Flag	<20.0 Result <20.0	mg/Kg Units	4	
Chloride Sample: 349168 Param Chloride Sample: 349169	Flag - AH-2 3-3.5 ' Flag	<20.0 Result <20.0	mg/Kg Units mg/Kg Units	4 RL	
Chloride Sample: 349168 Param Chloride	Flag - AH-2 3-3.5' Flag - AH-2 4-4.5'	<20.0 Result <20.0	mg/Kg Units mg/Kg	RL 4	
Chloride Sample: 349168 Param Chloride Sample: 349169 Param Chloride	Flag - AH-2 3-3.5' Flag - AH-2 4-4.5' Flag	<20.0 Result <20.0	mg/Kg Units mg/Kg Units	RL 4	
Chloride Sample: 349168 Param Chloride Sample: 349169 Param	Flag - AH-2 3-3.5' Flag - AH-2 4-4.5' Flag	<20.0 Result <20.0	mg/Kg Units mg/Kg Units	RL 4	

May 14, 2014

IKE TAVAREZ

TETRA TECH

1910 N. BIG SPRING STREET

MIDLAND, TX 79705

RE: MESA VERDE 15 FED #001

Enclosed are the results of analyses for samples received by the laboratory on 05/09/14 13:45.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-13-5. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2

Haloacetic Acids (HAA-5)

Method EPA 524.2

Total Trihalomethanes (TTHM)

Method EPA 524.4

Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celeg D. Keine

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

TETRA TECH IKE TAVAREZ

1910 N. BIG SPRING STREET

MIDLAND TX, 79705

Fax To:

(432) 682-3946

Received:

05/09/2014

Sampling Date:

05/06/2014

Reported:

05/14/2014

Sampling Type:

Soil

Project Name:

MESA VERDE 15 FED #001

Sampling Condition:

** (See Notes)

Project Number:

112MC06169

Sample Received By:

Jodi Henson

Project Location:

Analyte

Analyte

Analyte

Analyte

LEA CO., NM

Sample ID: NORTH SIDEWALL (H401416-01)

Chloride, SM4500Cl-B

Analyzed By: AP

BS

% Recovery 100

True Value QC

Qualifier

Chloride

Result 1440

16.0

Reporting Limit

Analyzed 05/14/2014 Method Blank ND

400

400

RPD

0.00

Sample ID: SOUTH SIDEWALL (H401416-02)

Chloride, SM4500Cl-B

Analyzed By: AP

BS

% Recovery

True Value QC

RPD

Qualifier

Chloride

1100

Result

16.0

Reporting Limit

Analyzed 05/14/2014 Method Blank ND

400

100

400

0.00

Sample ID: EAST SIDEWALL (H401416-03)

Chloride, SM4500CI-B

Analyzed By: AP

Chloride

Chloride

Result 4400 Reporting Limit

Analyzed

Method Blank

BS

% Recovery

True Value QC

RPD

Qualifier

Result

1640

16.0

Reporting Limit

16.0

05/14/2014

Analyzed

05/14/2014

ND

400

100

% Recovery

104

400

0.00

Sample ID: WEST SIDEWALL (H401416-04)

Chloride, SM4500Cl-B

Analyzed By: AP

Method Blank

ND

BS

416

True Value QC

400

RPD

0.00

Qualifier

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg & Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be labile for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reprodued except in full with written approval of Cardinal Laborationes.

Celey D. Keine

6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite At

Texas 79424 Lubbock. El Paso. Texas 79922 Texas 79703 Midland.

915-585-3443 432-689-6301 872-242-7750

FAX 915 - 585 - 4944 FAX 432 - 689 - 6313

(BloAquatic) 2501 Mayes Rd., Suite 100 Texas 75006 Carroliton, E-Mail: lab@traceanalysis.com WEB! www.traceanalysis.com

Certifications

WBE HUB NCTRCA DBE NELAP Dod LELAP Oklahoma ISO 17025 Kansas

Analytical and Quality Control Report

Ike Tavarez Tetra Tech 1910 N. Big Spring Street Midland, TX, 79705

Project Number:

Project Location: Lea Co, NM COG/GC Fed #44 Project Name: 112MC05819

Report Date: January 2, 2014

Work Order: 13121639

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
349162	AH-1 0-1'	soil	2013-12-12	00:00	2013-12-16
349163	AH-1 1-1.5'	soil	2013-12-12	00:00	2013-12-16
349164	AH-1 2-2.5'	soil	2013-12-12	00:00	2013-12-16
349165	AH-2 0-1'	soil	2013-12-12	00:00	2013-12-16
349166	AH-2 1-1.5'	soil	2013-12-12	00:00	2013-12-16
349167	AH-2 2-2.5'	soil	2013-12-12	00:00	2013-12-16
349168	AH-2 3-3.5°	soil	2013-12-12	00:00	2013-12-16
349169	AH-2 4-4.5'	soil	2013-12-12	00:00	2013-12-16
349170	AH-2 5-5.5'	soil	2013-12-12	00:00	2013-12-16

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 25 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Michael abel

Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

Report Contents

Case Narrative	Ę
Analytical Report	6
Sample 349162 (AH-1 0-1')	6
Sample 349163 (AH-1 1-1,5')	7
Sample 349164 (AH-1 2-2.5')	7
Sample 349165 (AH-2 0-1')	8
Sample 349166 (AH-2 1-1.5')	
Sample 349167 (AH-2 2-2.5')	
Sample 349168 (AH-2 3-3.5')	
Sample 349169 (AH-2 4-4.5')	
Sample 349170 (AH-2 5-5.5')	
Method Blanks	12
QC Batch 107646 - Method Blank (1)	
QC Batch 107650 - Method Blank (1)	
QC Batch 107711 - Method Blank (1)	
QC Batch 107810 - Method Blank (1)	
QC Batch 107966 - Method Blank (1)	13
Laboratory Control Spikes	14
QC Batch 107646 - LCS (1)	14
QC Batch 107650 - LCS (1)	14
QC Batch 107711 - LCS (1)	15
QC Batch 107810 - LCS (1)	
QC Batch 107966 - LCS (1)	
QC Batch 107646 - MS (1)	
QC Batch 107650 - MS (1)	
QC Batch 107711 - MS (1)	
QC Batch 107810 - MS (1)	
QC Batch 107966 - MS (1)	
Calibration Standards	20
QC Batch 107646 - CCV (1)	
QC Batch 107646 - CCV (2)	
QC Batch 107646 - CCV (3)	
QC Batch 107650 - CCV (1)	
QC Batch 107650 - CCV (2)	
QC Batch 107650 - CCV (3)	21
QC Batch 107711 - CCV (1)	
QC Batch 107711 - CCV (2)	21
QC Batch 107711 - CCV (3)	22
QC Batch 107810 - CCV (1)	22
QC Batch 107810 - CCV (2)	22
QC Batch 107810 - CCV (3)	22
OC Batch 107966 - CCV (1)	23

QC Batch 107966 - CCV (2)	
Appendix	
Report Definitions	
Laboratory Certifications	
Standard Flags	
Attachments	

Case Narrative

Samples for project COG/GC Fed #44 were received by TraceAnalysis, Inc. on 2013-12-16 and assigned to work order 13121639. Samples for work order 13121639 were received intact at a temperature of 4.1 C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	QC	Analysis
Test	Method	Batch	Date	Batch	Date
BTEX	S 8021B	91111	2013-12-17 at 10:57	107646	2013-12-18 at 03:00
BTEX	S 8021B	91224	2013-12-20 at 12:31	107810	2013-12-23 at 09:48
Chloride (Titration)	SM 4500-Cl B	91351	2013-12-31 at 08:40	107966	2014-01-02 at 14:24
TPH DRO - NEW	S 8015 D	91113	2013-12-17 at 11:15	107650	2013-12-18 at 09:12
TPH GRO	S 8015 D	91149	2013-12-18 at 13:01	107711	2013-12-19 at 01:40

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 13121639 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Report Date: January 2, 2014 112MC05819

Work Order: 13121639 COG/GC Fed #44 Page Number: 6 of 25 Lea Co, NM

Analytical Report

Sample: 349162 - AH-1 0-1'

Laboratory: Midland

Analysis: BTEX QC Batch: 107646 Prep Batch: 91111 Analytical Method: S 8021B Date Analyzed: 2013-12-18

Sample Preparation: 2013-12-17

Prep Method: S 5035 Analyzed By: AK Prepared By: AK

			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Benzene	U	1	< 0.0200	mg/Kg	1	0.0200
Toluene	υ	1	< 0.0200	mg/Kg	1	0.0200
Ethylbenzene	[1]	1	< 0.0200	mg/Kg	1	0.0200
Xylene	υ	ī	< 0.0200	mg/Kg	1	0.0200

						Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			1.56	mg/Kg	1	2.00	78	70 - 130
4-Bromofluorobenzene (4-BFB)			1.71	mg/Kg	1	2.00	86	70 - 130

Sample: 349162 - AH-1 0-1'

Laboratory: Midland

Prep Batch: 91351

Analysis: Chloride (Titration)
QC Batch: 107966

Analytical Method:
Date Analyzed:
Sample Preparation:

SM 4500-Cl B 2014-01-02 2013-12-31

Prep Method: N/A Analyzed By: AR Prepared By: AR

			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride			4450	mg/Kg	10	4.00

Sample: 349162 - AH-1 0-1'

Laboratory: Mid

Midland

Analysis: TPH DRO - NEW QC Batch: 107650
Prep Batch: 91113

Analytical Method: S & Date Analyzed: 20 Sample Preparation: 20

S 8015 D 2013-12-18 2013-12-17 Prep Method: N/A
Analyzed By: KC
Prepared By: KC

			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
DRO	U	1	<50.0	mg/Kg	1	50.0

112MC05819

Work Order: 13121639 COG/GC Fed #44 Page Number: 7 of 25

Lea Co, NM

						Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
n-Tricosane			108	mg/Kg	1	100	108	70 - 130

Sample: 349162 - AH-1 0-1'

Laboratory: Midland

Analysis: TPH GRO QC Batch: 107711 Prep Batch: 91149 Analytical Method: Date Analyzed:

: S 8015 D 2013-12-19 Prep Method: S 5035 Analyzed By: AK

•

Sample Preparation: 2013-12-18

Prepared By: AK

			KL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
GRO	U	1	< 4.00	mg/Kg	1	4.()()

						Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	${f Amount}$	Recovery	Limits
Trifluorotoluene (TFT)			2.02	mg/Kg	1	2.00	101	70 - 130
4-Bromofluorobenzene (4-BFB)			2.17	mg/Kg	1	2.00	108	70 - 130

Sample: 349163 - AH-1 1-1.5'

Laboratory: Midland

Analysis: Chloride (Titration) QC Batch: 107966 Prep Batch: 91351 Analytical Method: Date Analyzed:

Sample Preparation:

SM 4500-Cl B 2014-01-02 2013-12-31 Prep Method: N/A Analyzed By: AR Prepared By: AR

			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride	υ		< 20.0	mg/Kg	5	4.00

Sample: 349164 - AH-1 2-2.5'

Laboratory: Midland

Analysis: Chloride (Titration)
QC Batch: 107966
Prep Batch: 91351

Analytical Method: Date Analyzed:

Sample Preparation:

SM 4500-Cl B 2014-01-02 2013-12-31 Prep Method: N/A Analyzed By: AR Prepared By: AR

continued ...

Report Date: January 2, 2014 112MC05819

Work Order: 13121639 COG/GC Fed #44 Page Number: 8 of 25 Lea Co, NM

sample 349164 continued . . .

			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride			295	mg/Kg	5	4.00

Sample: 349165 - AH-2 0-1'

Laboratory: Midland

Analysis: BTEX Analytical Method: S 8021B Prep Method: S 5035 QC Batch: 107810 Date Analyzed: 2013-12-23 Analyzed By: AK Prep Batch: 91224 Sample Preparation: 2013-12-20 Prepared By: AK

		m RL							
Parameter	\mathbf{Flag}	Cert	Result	Units	Dilution	RL			
Benzene	17	1	< 0.0200	mg/Kg	1	0.0200			
Toluene	U	i	< 0.0200	mg/Kg	1	0.0200			
Ethylbenzene	U	1	< 0.0200	mg/Kg	1	0.0200			
Xylene	U	1	< 0.0200	mg/Kg	1	0.0200			

						Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			1.52	mg/Kg	1	2.00	76	70 - 130
4-Bromofluorobenzene (4-BFB)			1.64	mg/Kg	1	2.00	82	70 - 130

Sample: 349165 - AH-2 0-1'

Laboratory: Midland

Analytical Method: Analysis: Chloride (Titration) SM 4500-Cl B Prep Method: N/A QC Batch: 107966 Date Analyzed: 2014-01-02 Analyzed By: ARPrep Batch: 91351 Sample Preparation: 2013-12-31 Prepared By: AR

			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride	U		<20.0	mg/Kg	5	4.00

112MC05819

Work Order: 13121639 COG/GC Fed #44

Page Number: 9 of 25 Lea Co, NM

Sample: 349165 - AH-2 0-1'

Laboratory: Midland

TPH DRO - NEW Analysis:

QC Batch: 107650 Prep Batch: 91113

Analytical Method:

S 8015 D

Prep Method: N/A

Date Analyzed:

2013-12-18 Sample Preparation: 2013-12-17

Analyzed By: KCPrepared By: KC

RL

Parameter	Flag	Cert	Result	Units	Dilution	RL
DRO	U	1	< 50.0	mg/Kg	1	50.0

						Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
n-Tricosane			107	mg/Kg	1	100	107	70 - 130

Sample: 349165 - AH-2 0-1'

Laboratory:

Midland

TPH GRO Analysis: QC Batch: 107711 Prep Batch: 91149

Analytical Method: Date Analyzed:

S 8015 D

2013-12-19 Sample Preparation: 2013-12-18 Prep Method: S 5035

Analyzed By: AKPrepared By: AK

RL

Parameter	Flag	Cert	Result	Units	Dilution	RL
GRO	ย	1	<4.00	mg/Kg	1	4.00

						Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	${f Amount}$	Recovery	Limits
Triffuorotoluene (TFT)			2.01	mg/Kg	1	2.00	100	70 - 130
4-Bromofluorobenzene (4-BFB)			2.00	mg/Kg	1	2.00	100	70 - 130

Sample: 349166 - AH-2 1-1.5'

Laboratory:

Midland

Analysis: QC Batch: 107966

Chloride (Titration)

Analytical Method:

SM 4500-Cl B

Prep Method: N/A

Prep Batch:

91351

Date Analyzed: Sample Preparation:

2014-01-02 2013-12-31 Analyzed By: AR. Prepared By: AR

RL

Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride	υ		< 20.0	mg/Kg	5	4.00

Report Date: January 2, 2014 Work Order: 13121639 Page Number: 10 of 25 112MC05819 COG/GC Fed #44 Lea Co, NM Sample: 349167 - AH-2 2-2.5' Laboratory: Midland Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N/A QC Batch: 107966 Date Analyzed: 2014-01-02 Analyzed By: AR. Prep Batch: 91351 Sample Preparation: 2013-12-31 Prepared By: ARRLParameter Flag Cert Result Units Dilution RLChloride < 20.0mg/Kg 4.00 Ð Sample: 349168 - AH-2 3-3.5' Laboratory: Midland Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N/A QC Batch: 107966Date Analyzed: 2014-01-02 Analyzed By: ARPrep Batch: 91351Sample Preparation: 2013-12-31 Prepared By: ARRLFlag Parameter Cert Result Units Dilution RLChloride < 20.0 mg/Kg 4.00 Sample: 349169 - AH-2 4-4.5' Midland Laboratory: Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N/A QC Batch: 107966 2014-01-02 Analyzed By: Date Analyzed: ARPrep Batch: 91351 Sample Preparation: 2013-12-31 Prepared By: AR. RLFlag Parameter Cert Units Dilution RLResult Chloride <20.0 mg/Kg 4.00 5 \mathbf{u}

Analytical Method:

Sample Preparation:

Date Analyzed:

SM 4500-Cl B

2014-01-02

2013-12-31

Prep Method:

Analyzed By:

Prepared By:

N/A

AR

AR

Sample: 349170 - AH-2 5-5.5'

Midland

107966

91351

Chloride (Titration)

Laboratory:

Analysis:

QC Batch:

Prep Batch:

Report Date: January 2, 2014 112MC05819

Work Order: 13121639 COG/GC Fed #44

Page Number: 11 of 25 Lea Co, NM

			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride	U		<20.0	mg/Kg	5	4.00

112MC05819

Work Order: 13121639 COG/GC Fed #44

Method Blanks

Method Blank (1)

QC Batch: 107646

QC Batch: 107646 Prep Batch: 91111 Date Analyzed: 2013-12-18 QC Preparation: 2013-12-17 Analyzed By: AK Prepared By: AK

Page Number: 12 of 25

Lea Co, NM

	MDL						
Parameter	Flag	Cert	Result	Units	RL		
Benzene		I	< 0.00533	mg/Kg	0.02		
Toluene		1	< 0.00645	mg/Kg	0.02		
Ethylbenzene		ì	< 0.0116	mg/Kg	0.02		
Xylene		1	< 0.00874	mg/Kg	0.02		

						Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			1.71	mg/Kg	1	2.00	86	70 - 130
4-Bromofluorobenzene (4-BFB)			1.71	mg/Kg	1	2.00	86	70 - 130

Method Blank (1)

QC Batch: 107650

QC Batch: 107650 Prep Batch: 91113 Date Analyzed: 2013-12-18 QC Preparation: 2013-12-17 Analyzed By: KC Prepared By: KC

			MDL		
Parameter	Flag	Cert	Result	Units	RL
DR.O		1	<6.88	mg/Kg	50

						Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	${f Amount}$	Recovery	Limits
n-Tricosane			107	mg/Kg	1	100	107	88.3 - 126.1

Method Blank (1)

QC Batch: 107711

QC Batch: 107711 Prep Batch: 91149 Date Analyzed: 2013-12-19 QC Preparation: 2013-12-18 Analyzed By: AK Prepared By: AK

112MC05819

Work Order: 13121639 COG/GC Fed #44

Page Number: 13 of 25Lea Co, NM

Parameter	Flag	Cert		MDL Result		Units	RL
GRO		.1		<2.32		mg/Kg	4
Surrogate	Flag	Cert Result		Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)		2.19	mg/Kg	1	2.00	110	70 - 130
4-Bromofluorobenzene (4-BFB)		2.00	mg/Kg	1	2.00	100	70 - 130
Method Blank (1) QC Bate	dı: 107810						
QC Batch: 107810		Date Analyzed:	2013-12-23			Analyzed	By: AK
Prep Batch: 91224		QC Preparation	: 2013-12-20			Prepared	By: AK
				MDL			
Parameter	Flag	Cert		Result		Units	RL
TO .				-O COPOO		/T f	0.7

Parameter	Flag	Cert	$egin{array}{c} ext{MDL} \ ext{Result} \end{array}$	Units	RL
Benzene		1	< 0.00533	nıg/Kg	0.02
Toluene		1	< 0.00645	mg/Kg	0.02
Ethylbenzene		1	< 0.0116	mg/Kg	0.02
Xylene		3	< 0.00874	mg/Kg	0.02

						Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			1.45	mg/Kg	1	2.00	72	70 - 130
4-Bromofluorobenzene (4-BFB)			1.47	mg/Kg	1	2.00	74	70 - 130

Method Blank (1) QC Batch: 107966

QC Batch: 107966

2014-01-02 Date Analyzed: QC Preparation: Prep Batch: 91351 2013-12-31

Analyzed By: AR. Prepared By: AR.

			MDL		
Parameter	Flag	Cert	Result	Units	RL
Chloride			< 3.85	mg/Kg	4

Report Date: January 2, 2014 112MC05819

Work Order: 13121639 COG/GC Fed #44

Laboratory Control Spikes

Laboratory Control Spike (LCS-1)

QC Batch: 107646 Prep Batch: 91111 Date Analyzed: 2013-12-18 QC Preparation: 2013-12-17

Analyzed By: AK Prepared By: AK

Page Number: 14 of 25

Lea Co, NM

Param	F	C	LCS Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit
Benzene		1	1.55	mg/Kg	1	2.00	< 0.00533	78	70 - 130
Toluenc		1	1.57	mg/Kg	1	2.00	< 0.00645	78	70 - 130
Ethylbenzene		ł	1.62	mg/Kg	1	2.00	< 0.0116	81	70 - 130
Xylene		i	4.94	mg/Kg	1	6.00	< 0.00874	82	70 - 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	$^{\rm C}$	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene		1	1.56	mg/Kg	1	2.00	< 0.00533	78	70 - 130	1	20
Toluene		1	1.59	mg/Kg	1	2.00	< 0.00645	80	70 - 130	1	20
Ethylbenzene		1	1.63	mg/Kg	1	2.00	< 0.0116	82	70 - 130	1	20
Xylene		1	4.96	mg/Kg	1	6.00	< 0.00874	83	70 - 130	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	$_{ m Limit}$
Trifluorotoluene (TFT)	1.53	1.56	mg/Kg	1	2.00	76	78	70 - 130
4-Bromofluorobenzene (4-BFB)	1.70	1.56	mg/Kg	1	2.00	85	78	70 - 130

Laboratory Control Spike (LCS-1)

QC Batch: 107650 Prep Batch: 91113 Date Analyzed: 2013-12-18 QC Preparation: 2013-12-17 Analyzed By: KC Prepared By: KC

			LCS			$_{ m Spike}$	Matrix		Rec.
Param	\mathbf{F}	$^{\mathrm{C}}$	Result	Units	Dil.	Amount	Result	Rec.	Limit
DRO		1	264	mg/Kg	1	250	<6.88	106	79.4 - 120.1

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

continued ...

Report Date: January 2, 2014 Work Order: 13121639 Page Number: 15 of 25 112MC05819 COG/GC Fed #44 Lea Co, NM control spikes continued ... LCSD RPD Spike Matrix Rec. F \mathbf{C} Param Result Units Dil. Amount Result Rec. Limit RPD Limit LCSD RPD Spike Matrix Rec. \mathbf{F} \mathbf{C} Param Result Units Dil. Amount Result Rec. Limit **RPD** Limit $\overline{\text{DRO}}$ 265 mg/Kg 250 < 6.88 106 79.4 - 120.1 () 20 Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. LCS LCSD Spike LCS LCSD Rec. Result Surrogate Result Units Dil. Amount Limit Rec. Rec. n-Tricosane 115 113 mg/Kg 100 115 113 92.9 - 137.7 1

Laboratory Control Spike (LCS-1)

QC Batch: 107711 Date Analyzed: 2013-12-19 Analyzed By: AK Prepared By:

Prep Batch: 91149

QC Preparation: 2013-12-18

			LCS			Spike	Matrix		Rec.
Param	F	$^{\rm C}$	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit
GRO		1	16.2	mg/Kg	1	20.0	< 2.32	81	70 - 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			LCSD			$_{ m Spike}$	Matrix		Rec.		RPD
Param	F	$^{\rm C}$	Result	Units	Dil.	$\mathbf{A}\mathbf{mount}$	Result	Rec.	Limit	RPD	Limit
GRO		1	16.1	mg/Kg	1	20.0	< 2.32	80	70 - 130	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	$_{ m Units}$	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	2.24	2.15	mg/Kg	1	2.00	112	108	70 - 130
4-Bromofluorobenzene (4-BFB)	2.32	2.45	mg/Kg	1	2.00	116	122	70 - 130

Laboratory Control Spike (LCS-1)

QC Batch: 107810 Prep Batch: 91224

Date Analyzed: 2013-12-23 QC Preparation: 2013-12-20 Analyzed By: AK Prepared By: AK

			LCS			Spike	Matrix		Rec.
Param	\mathbf{F}	$^{\rm C}$	Result	Units	Dil.	Amount	Result	Rec.	Limit
Benzene		1	1.56	mg/Kg	1	2.00	< 0.00533	78	70 - 130

 $continued \dots$

Report Date: January 2, 2014 112MC05819 Work Order: 13121639 COG/GC Fed #44 Page Number: 16 of 25 Lea Co, NM

control spikes continued . . .

			LCS			Spike	Matrix		${ m Rec.}$
Param	\mathbf{F}	$^{\rm C}$	Result	Units	Dil.	${f Amount}$	Result	Rec.	$_{ m Limit}$
Toluene		1	1.74	mg/Kg	1	2.00	< 0.00645	87	70 - 130
Ethylbenzene		1	1.66	mg/Kg	1	2.00	< 0.0116	83	70 - 130
Xylene		1	5.14	mg/Kg	1	6.00	< 0.00874	86	70 - 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

D	F	a	LCSD	T T : 4	וירו	Spike	Matrix	D.	Rec.	מממ	RPD
Param	Г	C	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene		1	1.60	mg/Kg	1	2.00	< 0.00533	80	70 - 130	3	20
Toluene		1	1.60	mg/Kg	1	2.00	< 0.00645	80	70 - 130	8	20
Ethylbenzene		1	1.64	mg/Kg	1	2.00	< 0.0116	82	70 - 130	1	20
Xylene		1	4.98	mg/Kg	1	6.00	< 0.00874	83	70 - 130	3	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	1.83	1.46	mg/Kg	1	2.00	92	73	70 - 130
4-Bromofluorobenzene (4-BFB)	1.94	1.59	$_{ m mg/Kg}$	1	2.00	97	80	70 - 130

Laboratory Control Spike (LCS-1)

QC Batch: 107966 Prep Batch: 91351 Date Analyzed: 2014-01-02 QC Preparation: 2013-12-31

Analyzed By: AR Prepared By: AR

			LCS			Spike	Matrix		Rec.
Param	F	$^{\rm C}$	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride			2580	mg/Kg	1	2500	< 3.85	103	89.7 - 115.9

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	$^{\rm C}$	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride			2400	mg/Kg	1	2500	< 3.85	96	89.7 - 115.9	7	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 349082

QC Batch: 107646 Date Analyzed: 2013-12-18 Analyzed By: AK Prep Batch: 91111 QC Preparation: 2013-12-17 Prepared By: AK

112MC05819

Work Order: 13121639 COG/GC Fed #44 Page Number: 17 of 25 Lea Co, NM

Param	F	С	MS Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit
Benzene		1	1.57	mg/Kg	1	2.00	< 0.00533	78	70 - 130
Toluene		1	1.64	mg/Kg	1	2.00	< 0.00645	82	70 - 130
Ethylbenzene		1	1.67	mg/Kg	1	2.00	< 0.0116	84	70 - 130
Xylene		ı	5.04	mg/Kg	1	6.00	< 0.00874	84	70 - 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			MSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene		1	1.56	mg/Kg	1	2.00	< 0.00533	78	70 - 130	ĺ	20
Toluene		1	1.63	mg/Kg	1	2.00	< 0.00645	82	70 - 130	1	20
Ethylbenzene		1	1.69	mg/Kg	1	2.00	< 0.0116	84	70 - 130	1	20
Xylene		1	5.11	mg/Kg	1	6.00	< 0.00874	85	70 - 130	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	1.56	1.54	mg/Kg	1	2	78	77	70 - 130
4-Bromofluorobenzene (4-BFB)	1.60	1.62	mg/Kg	1	2	80	81	70 - 130

Matrix Spike (MS-1) Spiked Sample: 349055

QC Batch: 107650 Prep Batch: 91113 Date Analyzed: 2013-12-18 QC Preparation: 2013-12-17 Analyzed By: KC Prepared By: KC

			MS			Spike	Matrix		Rec.
Param	\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Limit
DRO		1	256	mg/Kg	1	250	12.6	97	64.8 - 149.9

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			MSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	$^{\rm C}$	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO		1	251	mg/Kg	1	250	12.6	95	64.8 - 149.9	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	$_{ m MS}$	MSD			Spike	MS	MSD	${ m Rec.}$
Surrogate	Result	Result	Units	Dil.	${f Amount}$	Rec.	Rec.	Limit
n-Tricosane	111	110	mg/Kg	1	100	111	110	85.4 - 147.7

112MC05819

Work Order: 13121639 COG/GC Fed #44

Page Number: 18 of 25 Lea Co, NM

Matrix Spike (MS-1) Spiked Sample:

QC Batch: 107711 Prep Batch: 91149

Date Analyzed: QC Preparation: 2013-12-18

2013-12-19

Analyzed By: AK Prepared By: AK

			MS			Spike	Matrix		Rec.
Param	F	$^{\rm C}$	Result	Units	Dil.	Amount	Result	Rec.	$_{ m Limit}$
GRO		1	14.2	mg/Kg	1	20.0	< 2.32	71	70 - 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			MSD			Spike	Matrix		Rec.		RPD
Param	F	$^{\rm C}$	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
GRO		1	14.8	mg/Kg	1	20.0	< 2.32	74	70 - 130	4	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	2.06	1.92	mg/Kg	1	2	103	96	70 - 130
4-Bromofluorobenzene (4-BFB)	2.14	2.21	mg/Kg	1	2	107	110	70 - 130

Matrix Spike (MS-1) Spiked Sample: 349344

QC Batch: 107810 Prep Batch: 91224

Date Analyzed: 2013-12-23 QC Preparation: 2013-12-20

Analyzed By: AK Prepared By: AK

			MS			Spike	Matrix		Rec.
Param	F	$^{\rm C}$	Result	Units	Dil.	Amount	Result	Rec.	$_{ m Limit}$
Benzene		1	1.52	mg/Kg	1	2.00	< 0.00533	76	70 - 130
Toluene		1	1.54	mg/Kg	1	2.00	< 0.00645	77	70 - 130
Ethylbenzene		1	1.57	mg/Kg	1	2.00	< 0.0116	78	70 - 130
Xylene		1	4.72	mg/Kg	1	6.00	< 0.00874	79	70 - 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			MSD			Spike	Matrix		Rec.		RPD
Param	F	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene		1	1.47	mg/Kg	1	2.00	< 0.00533	74	70 - 130	3	20
Toluene		1	1.50	mg/Kg	1	2.00	< 0.00645	75	70 - 130	3	20
Ethylbenzene		1	1.50	mg/Kg	1	2.00	< 0.0116	75	70 - 130	5	20
Xylene		1	4.57	mg/Kg	1	6.00	< 0.00874	76	70 - 130	3	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

 $continued \dots$

112MC05819

Work Order: 13121639 COG/GC Fed #44

Page Number: 19 of 25

Lea Co, NM

matrix spikes continued . . .

Surrogate			MS Result	MSD Result	Units	Dil.	Spike Amount	MS Rec.	MSD Rec.	Rec. Limit
Surrogate			MS Result	MSD Result	Units	Dil.	Spike Amount	MS Rec.	MSD Rec.	Rec. Limit
Trifluorotoluene (TFT)	Qar	Qsr	1.33	1.28	mg/Kg	1	2	66	64	70 - 130
4-Bromofluorobenzene (4-BFB)			1.55	1.49	${ m mg/Kg}$	1	2	78	74	70 - 130

Matrix Spike (MS-1)

Spiked Sample: 349170

QC Batch:

107966

Date Analyzed:

2014-01-02

Analyzed By: AR.

Prepared By: AR.

Prep Batch: 91351

QC Preparation: 2013-12-31

			MS			Spike	Matrix		Rec.
Param	\mathbf{F}	$^{\rm C}$	Result	Units	Dil.	${f Amount}$	Result	${ m Rec.}$	Limit
Chloride			2600	mg/Kg	5	2500	<19.2	104	78.9 - 121

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			MSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	$^{\rm C}$	Result	Units	Dil.	Amount	Result	Rec.	$_{ m Limit}$	RPD	Limit
Chloride			2510	mg/Kg	5	2500	<19.2	100	78.9 - 121	4	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

112MC05819

Work Order: 13121639 COG/GC Fed #44 Page Number: 20 of 25 Lea Co, NM

Calibration Standards

Standard (CCV-1)

QC Batch: 107646

Date Analyzed: 2013-12-18

Analyzed By: AK

				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		1	mg/kg	0.100	0.0908	91	80 - 120	2013-12-18
Toluene		3	mg/kg	0.100	0.0891	89	80 - 120	2013-12-18
Ethylbenzene		1	mg/kg	0.100	0.0883	88	80 - 120	2013-12-18
Xylene		1	mg/kg	0.300	0.264	88	80 - 120	2013-12-18

Standard (CCV-2)

QC Batch: 107646

Date Analyzed: 2013-12-18

Analyzed By: AK

Param	Flag	Cert	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Benzene		l	mg/kg	0.100	0.0909	91	80 - 120	2013-12-18
Toluene		1	mg/kg	0.100	0.0877	88	80 - 120	2013-12-18
Ethylbenzene		1	mg/kg	0.100	0.0860	86	80 - 120	2013-12-18
Xylene		1	mg/kg	0.300	0.262	87	80 - 120	2013-12-18

Standard (CCV-3)

QC Batch: 107646

Date Analyzed: 2013-12-18

Analyzed By: AK

Param	Flag	Cert	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Benzene		1	mg/kg	0.100	0.0889	89	80 - 120	2013-12-18
Toluene		1	mg/kg	0.100	0.0882	88	80 - 120	2013-12-18
Ethylbenzene		1	mg/kg	0.100	0.0853	85	80 - 120	2013-12-18
Xylene		1	$\mathrm{mg/kg}$	0.300	0.257	86	80 - 120	2013-12-18

112MC05819	: January 2, 20)	014		Work Ord COG/C	Page Number: 21 of Lea Co, l			
Standard (C	CCV-1)							
QC Batch:	107650		Date	Analyzed:	2013-12-18		Analy	zed By: KC
Param DRO	Flag	Cert	Units mg/Kg	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits 80 - 120	Date Analyzed 2013-12-18
)			1116/115	2,00	201	104	60 - 120	2013-12-16
Standard (C	CCV-2)							
QC Batch:	107650		Date	Analyzed:	2013-12-18		Analy	zed By: KC
ī.	171 - ···	Cert	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
r'aram	riag							
	Flag	1	mg/Kg	250	254	102	80 - 120	2013-12-18
DRO				250	254	102	80 - 120	2013-12-18
DRO Standard (C	CCV-3)		mg/Kg	250 Analyzed:	254 2013-12-18	102		2013-12-18
Param DRO Standard (C QC Batch:	CCV-3)		mg/Kg			CCVs Percent Recovery		2013-12-18 zed By: KC Date Analyzed

Standard (CCV-2)

Param

GR.O

 Cert

Flag

Units

mg/Kg

QC Batch: 107711 Date Analyzed: 2013-12-19 Analyzed By: AK

 CCVs

True

Conc.

1.00

 ${\rm CCVs}$

Found

Conc.

0.933

 ${\rm CCVs}$

Percent

Recovery

93

Percent

Recovery

Limits

80 - 120

 ${\bf Date}$

Analyzed

2013-12-19

Report Date: January 2, 2014 112MC05819 Work Order: 13121639 COG/GC Fed #44 Page Number: 22 of 25 Lea Co, NM

				CCVs	CCVs	CCVs	Percent	ID .
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		ı	mg/Kg	1.00	0.851	85	80 - 120	2013-12-19

Standard (CCV-3)

QC Batch: 107711

Date Analyzed: 2013-12-19

Analyzed By: AK

				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		1	mg/Kg	1.00	0.851	85	80 - 120	2013-12-19

Standard (CCV-1)

QC Batch: 107810

Date Analyzed: 2013-12-23

Analyzed By: AK

				CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		1	mg/kg	0.100	0.0860	86	80 - 120	2013-12-23
Toluene		1	mg/kg	0.100	0.0847	85	80 - 120	2013-12-23
Ethylbenzene		1	mg/kg	0.100	0.0814	81	80 - 120	2013-12-23
Xylene		1	$\mathrm{mg/kg}$	0.300	0.246	82	80 - 120	2013-12-23

Standard (CCV-2)

QC Batch: 107810

Date Analyzed: 2013-12-23

Analyzed By: AK

				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		1	mg/kg	0.100	0.0852	85	80 - 120	2013-12-23
Toluene		1	mg/kg	0.100	0.0832	83	80 - 120	2013-12-23
Ethylbenzene		1	mg/kg	0.100	0.0797	80	80 - 120	2013-12-23
Xylene		1	mg/kg	0.300	0.240	80	80 - 120	2013-12-23

Page Number: 23 of 25 Work Order: 13121639 Report Date: January 2, 2014 COG/GC Fed #44 112MC05819 Lea Co, NM Standard (CCV-3)

QC Batch: 107810 Date Analyzed: 2013-12-23 Analyzed By: AK

Param	Flag	Cert	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Benzene		1	mg/kg	0.100	0.0864	86	80 - 120	2013-12-23
Toluene		1	mg/kg	0.100	0.0842	84	80 - 120	2013-12-23
Ethylbenzene		1	mg/kg	0.100	0.0796	80	80 - 120	2013-12-23
Xylene		1	mg/kg	0.300	0.240	80	80 - 120	2013-12-23

Standard (CCV-1)

QC Batch: 107966 Date Analyzed: 2014-01-02 Analyzed By: AR

				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride			mg/Kg	100	99.8	100	85 - 115	2014-01-02

Standard (CCV-2)

QC Batch: 107966 Date Analyzed: 2014-01-02 Analyzed By: AR

CCVs CCVs CCVs Percent True Found Percent Recovery ${\bf Date}$ Flag Param Cert Units Conc. Conc. Recovery Limits Analyzed 85 - 115 Chloride mg/Kg 100 100 100 2014-01-02 Report Date: January 2, 2014 112MC05819 Work Order: 13121639 COG/GC Fed #44 Page Number: 24 of 25 Lea Co, NM

Appendix

Report Definitions

Name	Definition
MDL	Method Detection Limit
MQL	Minimum Quantitation Limit
SDL	Sample Detection Limit

Laboratory Certifications

	Certifying	Certification	Laboratory
\mathbf{C}	Authority	Number	Location
-	NCTRCA	WFWB384444Y0909	TraceAnalysis
-	DBE	VN 20657	TraceAnalysis
-	HUB	1752439743100-86536	TraceAnalysis
-	WBE	237019	TraceAnalysis
1	NELAP	T104704392-13-7	Midland

Standard Flags

- F Description
- B Analyte detected in the corresponding method blank above the method detection limit
- H Analyzed out of hold time
- J Estimated concentration
- Jb The analyte is positively identified and the value is approximated between the SDL and MQL. Sample contains less then ten times the concentration found in the method blank. The result should be considered non-detect to the SDL.
- Je Estimated concentration exceeding calibration range.
- MI1 Split peak or shoulder peak
- MI2 Instrument software did not integrate
- MI3 Instrument software misidentified the peak
- MI4 Instrument software integrated improperly
- MI5 Baseline correction
- Qc Calibration check outside of laboratory limits.
- Qr RPD outside of laboratory limits
- Qs Spike recovery outside of laboratory limits.
- Qsr Surrogate recovery outside of laboratory limits.
- U The analyte is not detected above the SDL

Attachments

Report Date: January 2, 2014 112MC05819

Work Order: 13121639 COG/GC Fed #44 Page Number: 25 of 25 Lea Co, NM

The scanned attachments will follow this page.

Please note, each attachment may consist of more than one page.

Analysis Request of Ch	ain of Custody I	Re	C	or	d								PAG	3E:	1		OF:	1	
					<u> </u>	\dashv				+	p (Circle)			REQ					
1910 N. Big Midland, Te (432) 682-4559	Spring St.)5 (Ext. to C35)		Cd Cr Pb Hg Se	2							TDS		
CLIENT NAME: SITE MANAG	Tuy Tavaer SHA			ESEF MET	VATIVI	•	TX1005		8 8 8			50/624	8270/625				is, pH, TDS		
PROJECT NO.: PROJECT NAME: 1/2/1058/9 /06/ 6/ Fe	d # 44	(N)	T	T		£	MOD.		als Ag As	s s	Volatiles	8240/82		909	gc.	(Air)	stos) ns/Cation		
LAB I.D. DATE TIME XXIII SAMP	Les (e, NM Les IDENTIFICATION	FILTERED (Y/N)	HOL	SCE	NONE	8TEX 8021B	(ТРН 8015	PAH 8270	HCRA Metals	TCLP Volatiles	TCLP Semi \	GC.MS Vol. 8240/8260/624	GC.MS Sen	Pest. 808/608	Chloride So	Alpha Beta (Air)	PLM (Asbestos) Major Anions/Cations,		
319162 12/12 5 1/14/10-1	()			义		+	7								1				
163 , 5 x (14.5	·')			×											+				
164	.5')			1											7				
165 S AAH 2 (0-1	′)			<		¥	4								1				
166 / 5 1 11-1.5	·) /			<											X				
147 / 5 x (2-2.	5')			<											4				
168 / 5 X (3.3.5	()			X											1				
169 \$ \$ 14.4.	·)			K											+				
1-i0 A4-25.5	.5'			X											X		$oldsymbol{\perp}$		
RELINQUISHED BY: (Signature) Date: 12/16/13 Time: 023	HECETVED BY (Signature)		Date Time		5	3		SAM	PLED	BY	rint & I	nitial)				Dat 11m	e: <u>/</u> s e: <i>/</i> 2	7/1 32)	
RELINQUISHED BY: (Signature) Date: Time:	RECÉIVED BY: (Signature)		Date Time				- 1	SAM	PLE S	HIPPE	Ď BY:	(Circle) BUS				AIRBII	L #:		
RELINQUISHED BY: (Signature) Date:	RECEIVED BY: (Signature)		Date	-			=	Hg	MO 01	E VE	RED	UPS	ONI			OTHE	R: Results		
Time:	RECEIVED BY: (Signature)		Time	<u></u>			\dashv				MIMUI	rene	-OH:			L	iesuns IUSH (
ADDRESS: CITY: CONTACT: 7 PHONE: ZIP: PHONE:	DATE:TIM	ME:					_	_	ZK	٧							luthori. Yes	marge zed:	ns No
SAMPLE CONDITION WHEN RECEIVED: REMARKS: Run phesper S Please fill out all copies - Laboratory retains Yellov	amples if TPH exceeds	1,0	00	mg/	<u>K9</u>	or;	f_	to	fal	1	37 cx	. e,	८२२	4 5	50 ,	19/	<u>K</u> y	<i>∞</i>	

MCLICAL DONALD AH 2 4-4.5' Days for AH-2 3-3.5' - PURK -AH 2 3-3.5 6 pat clay AH-2 4-4.8' has more clay - Ric AH-2 5-5.5' not listed benzare exceed to Minkly and ded 12/16

SOUTH SIDENTIFICATION NOTE: 1029 SEC. 1946 SOUTH SIDENTIFICATION NOTE: 1029 SEC. 1946 SOUTH SIDENTIFICATION NOTE: 1029 SEC. 1946 SOUTH SIDENTIFICATION NOTE: 1029 SEC. 1946 SOUTH SIDENTIFICATION NOTE: 1029 SEC. 1946 SOUTH SIDENTIFICATION NOTE: 1029 SEC. 1946 NOTE: 1029 SEC.	Please fill out all o	CONTACT: NAME OF CONTACT: PI		, as		RELINQUISHED BY: (Signatura)				3)3/6	`		IME	112mc06169	P	PHIPIOPH				
NONE NONE NONE NONE NONE BTEX 8021B TPH 8015 MOD. TX1005 (Ext. to C35) PAH 8270 RCRA Metals Ag As Ba Cd Cr Pb Hg Se RCRA Metals Ag As Ba Cd Vr Pd Hg Se TCLP Metals Ag As Ba Cd Vr Pd Hg Se TCLP Volatiles TCLP Semi Volatiles TCLP Semi Volatiles RCI GC.MS Vol. 8240/8260/624 GC.MS Semi. Vol. 8270/625 PCB's 8080/608 Pest. 808/608 Pest. 808/608 Pest. 808/608 Pest. 808/608 ABB CD CONTROL PERSON. ABB CD ABB CD ABB CD ABB CD ANALYSIS REQUEST ANALYSIS REQUE	copies - Laboratory retains Yellow copy - Return C	ONE: ZIP:	Sabi	Tame:	RIÇEVED BY	2011/2/2 ShE11/0/5			e	11 11 East side will	1 South sidewell	×	COMP GRAB	- Mesa Verde: 15	SITE MANAGER:	(432) 062-4339 • Fax (432) 062-3	Midland, Texas 79705	TETRA TECH		りとうなったっていていて
ANALYSIS REQUEST ONTIACT PERSON: ANALYSIS REQUEST GC.MS Vol. 8240/8260/624 GC.MS Semi. Vol. 8270/625 PCB's 8080/608 Pest. 808/608 Ontiact Person: Alaga Alaga Beta (Air)	rginal copy to Tetra Tech - Project Manager	TIME:	re)	76)		M) DY Tome:			<u></u>			~	NUMBER C FILTERED HCL HNO3 ICE NONE	F CONTA	INERS	346			accay i loocia	こうさく
	•	garcie tell alcon	lavare e			A •						~	PAH 801 PAH 8270 RCRA Met TCLP Met TCLP Sem RCI GC.MS Vo GC.MS Se PCB's 808 Pest. 808/ Chloride PLM (Asbe	als Ag Atlas	As Ba (As	Cd Cr F	Pb Hg S	Se Se	ANALYSIS REQUEST (Circle or Specify Method No.)	PAGE: / OF:

SITE INFORMATION **Report Type: Closure Report** General Site Information: Cavia Asia Cavia Asia Site: GC Federal #44 Well Company: **COG Operating LLC** AUG E 3 2014 Section, Township and Range Sec 20 T17S R32E Lease Number: API-30-025-40237 HOBBE OCD County: Lea County GPS: 32.822267° N 104.069467° W Surface Owner: Federal Mineral Owner: From the intersection of HWY 82 and HWY 529 east of Loco Hills, travel Southeast on Hwy 529 Directions: for approximately 6.0 miles; turn North onto 126-A and continue for approximatley 1.8 miles, turn West onto lease road and continue for approximately 1.2 miles, turn Southwest and continue for approximately 500 yards to the location. Release Data: Date Released: 11/10/2013 Type Release: Oil and produced water Source of Contamination: Flowline failure Fluid Released: 6bbls Fluids Recovered: 3 bbls Official Communication: Name: Robert McNeil lke Tavarez Company: COG Operating, LLC Tetra Tech Address: One Concho Center 4000 N. Big Spring 600 W. Illinois Ave. Ste 401 City: Midland Texas, 79701 Midland, Texas Phone number: (432) 686-3023 (432) 687-8110 Fax: (432) 684-7137 Email: rmcneil@conchoresources.com Ike.Tavarez@tetratech.com

Depth to Groundwater:	Ranking Score	Site Data
<50 ft	20	
50-99 ft	10	
>100 ft.	0	
WellHead Protection:	Ranking Score	Site Data
Water Source <1,000 ft., Private <200 ft.	20	
Water Source >1,000 ft., Private >200 ft.	0	0
Surface Body of Water:	Ranking Score	Site Data
<200 ft.	20	
200 ft - 1,000 ft.	10	
>1,000 ft.	0	0

Acceptable Soil RRAL (mg/kg)									
Benzene	Total BTEX	TPH							
10	50	5,000							

July 23, 2014

Mr. Geoffrey Leking Environmental Engineer Specialist Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Closure Report for the COG Operating LLC., GC Federal #44 Well, Unit O, Section 20, Township 17 South, Range 32 East, Lea County, New Mexico.

Mr. Leking:

Tetra Tech, Inc. (Tetra Tech) was contacted by COG Operating LLC. (COG) to assess a spill from the GC Federal #44 Well, Unit O, Section 20, Township 17 South, Range 32 East, Lea County, New Mexico (Site). The spill site coordinates are N 32.81492°, W 103.78728°. The site location is shown on Figures 1 and 2.

Background

According to the State of New Mexico C-141 Initial Report, the leak was discovered on November 10, 2013, and released approximately two (2) barrels of oil and four (4) barrels of produced water from a corroded steel flow line with one (1) barrels of oil and two (2) barrels of produced water recovered. The spill is initiated on the pad and measured approximately 50' x 50', then flowed south of the pad into the pasture and measured approximately 20' x 50'. The initial C-141 form is enclosed in Appendix A.

Groundwater

No water wells were listed within Section 20. According to the NMOCD groundwater map, the average depth to groundwater in this area is greater than 100' below surface. The average depth to groundwater map is shown in Appendix B.

Regulatory

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the depth to groundwater, the proposed RRAL for TPH is 5,000 mg/kg.

Soil Assessment and Analytical Results

On December 12, 2013, Tetra Tech personnel inspected and sampled the spill area. Two (2) auger holes (AH-1 and AH-2) were installed using a stainless steel hand auger to assess the impacted soils. Select soil samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The results of the sampling are summarized in Table 1. The auger hole locations are shown on Figure 3.

Referring to Table 1, none of the samples exceeded the TPH or BTEX RRAL. Elevated chloride concentrations were detected in auger hole (AH-1) with a chloride concentration of 4,450 mg/kg at 0'-1' below surface, but declined to <20.0 mg/kg at 1'-1.5' below surface. The area of auger hole (AH-2) did not show any chloride impact to the soils.

Remediation Activities

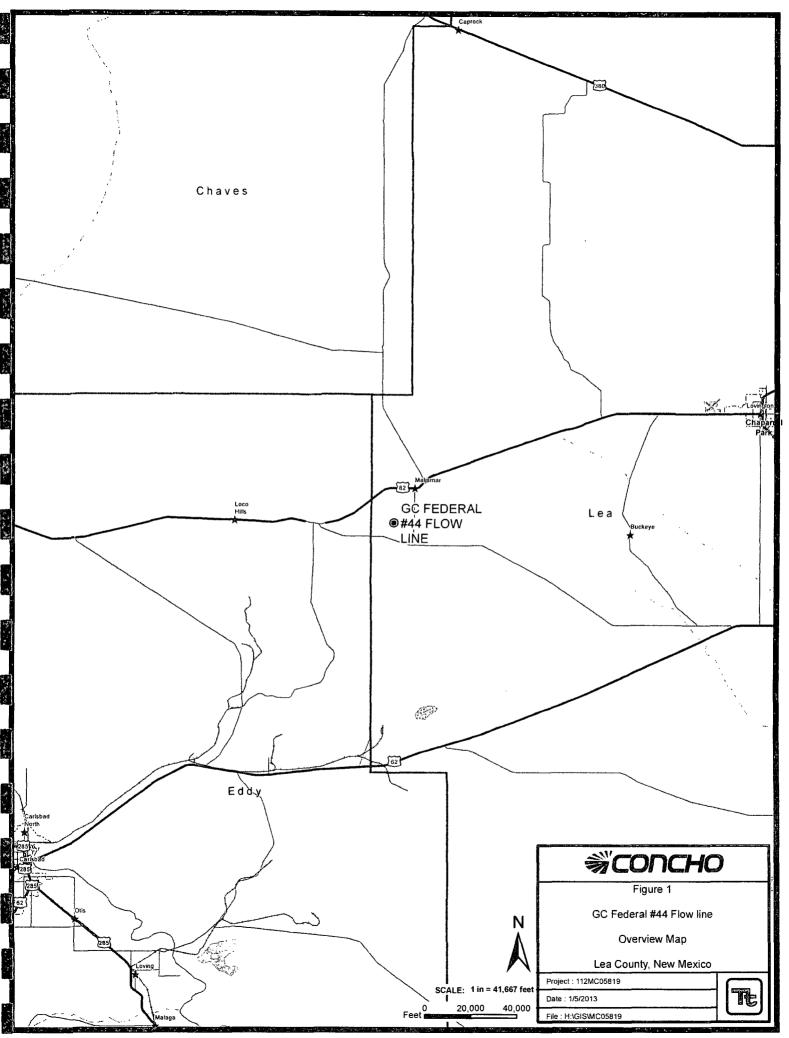
On May 7, 2014, Tetra Tech supervised the removal impacted material as highlighted (green) in Table 1 and shown on Figure 4. The area of auger hole (AH-1) was excavated to depths of approximately 1.0' below surface. Once excavated, confirmation samples were taken at the West, East, and South sidewalls as well as a bottom hole sample. The North wall was excavated to an area with a lower surface elevation; therefore no confirmation sample was taken for this area. The bottom hole sample showed a chloride concentration of 128 mg/kg, the West Sidewall showed 64.0 mg/kg, the East Sidewall showed a 48.0 mg/kg, and the South Side wall showed 128 mg/kg.

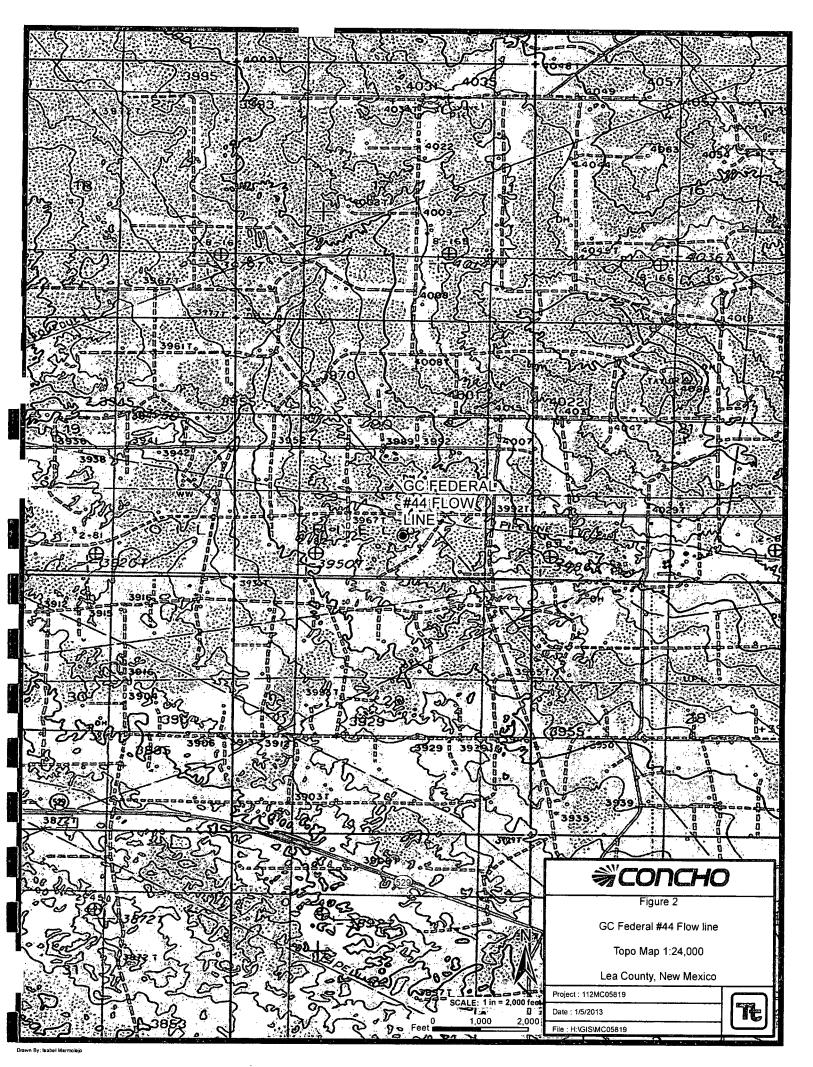
Once the area was excavated to the appropriate depth, the excavations were backfilled with clean soil to grade and approximately 140 cubic yards of excavated material was hauled to proper disposal.

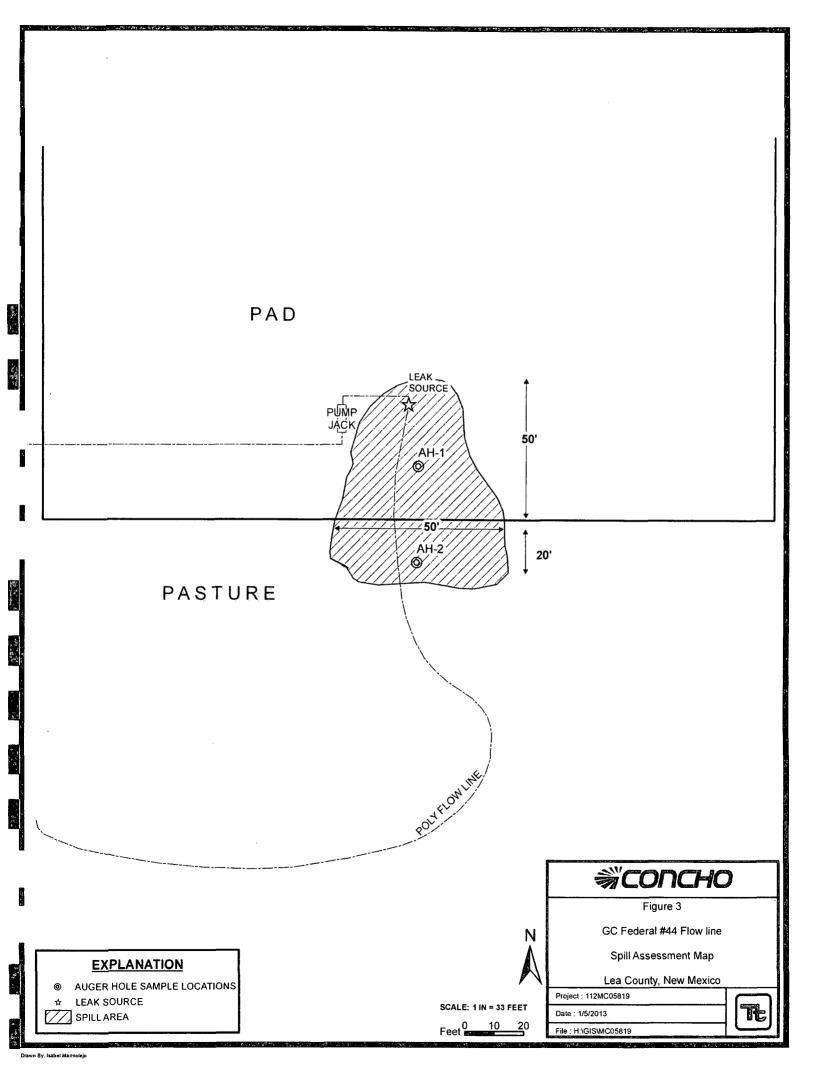
Conclusion

cc: Robert McNeil – COG Jeffrey Robertson - BLM Jim Amos – BLM

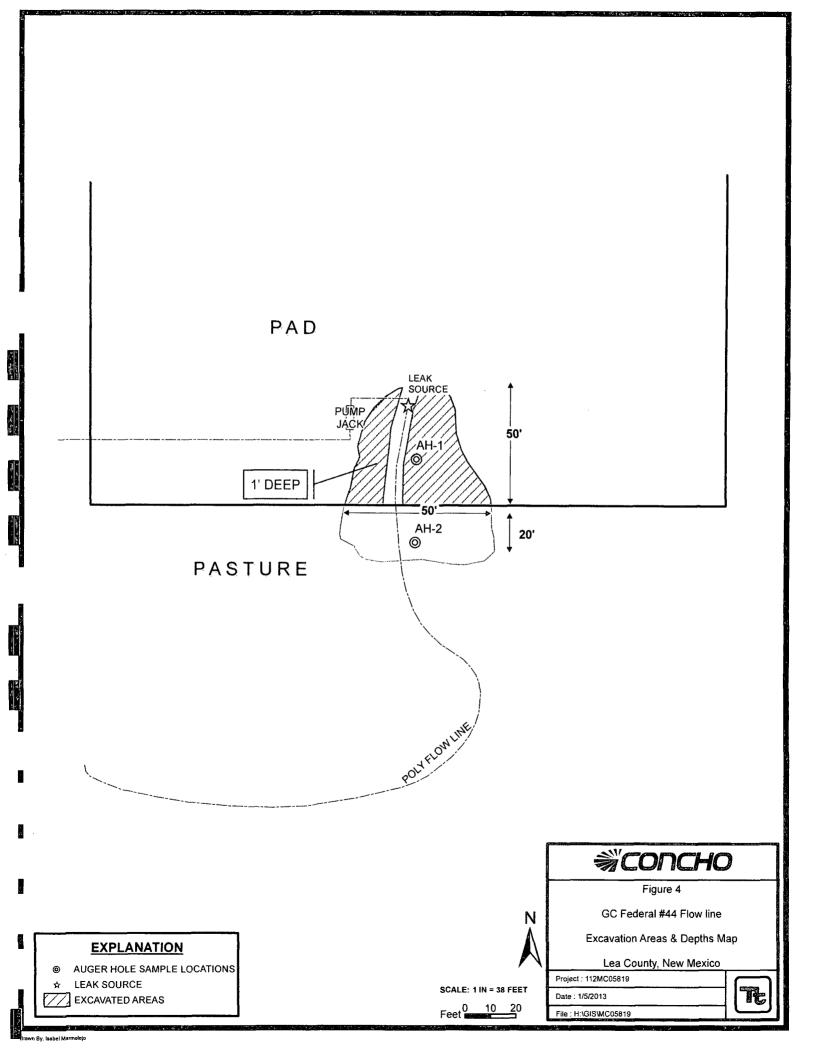
Based on the assessment and work performed at this site, COG requests closure of this spill issue. A final C-141 is enclosed in Appendix A. If you have any questions or comments concerning the assessment or the remediation activities for this site, please call me at (432) 682-4559.


Respectfully submitted,


TETRA TEÉH


Clair Gonzales Geologist


0.00


Figures

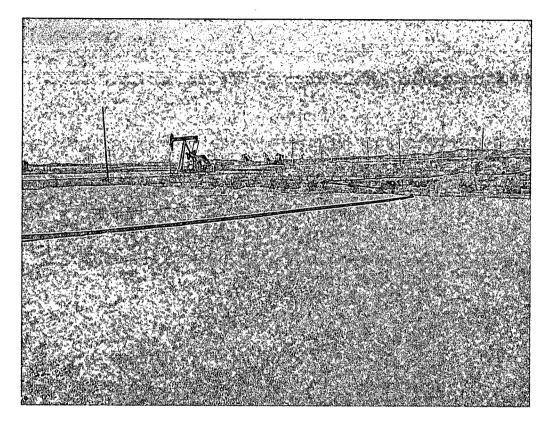
Tables

Table 1 COG Operating LLC. GC Federal #44 Lea County, New Mexico

Sample ID Sa	Sample	Sample		Soil Status		TPH (mg/kg)			Benzene	Toluene	Ethlybenzene	Xylene	Total	Chloride
	Sample Date	Depth (ft)		In-Situ	Removed	GRO	DRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	BTEX (mg/kg)	(mg/kg)
AH-1	12/12/2013	0.1		2 4 2	X	<4.00	<50.0 ⁽²⁾	ं<50.0	<0:0200	<0.0200	<0.0200	<0.0200	<0.0200	4,450
	н	1-1.5	-	Х		-	-	-	-	-	-	-	-	<20.0
	п	2-2.5	-	Х		-	-	-	-	-	-	-		295
AH-1 Bottom Hole	5/9/2014	1	-	Х		-	-	_	_	-	-		- 1	128
AH-1 West Sidewall	11	-	-	Х		-	-	-	-	-	-	-	-	64.0
AH-1 East Sidewall	11	-	-	Х		-	-	-	-	-	-	-	-	48.0
AH-1 South Sidewall	П	-	-	Х		-	-	-	-	-	-	-	-	128
AH-2	12/12/2013	0-1	-	X		<4.00	<50.0	<50.0	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<20.0
	11	1-1.5	-	Χ		-	-	-	-	-	-	-	-	<20.0
		2-2.5	-	Х		-	-	-	-	-	-	-	-	<20.0
	11	3-3.5	-	Х		-	-	-	-	-	-	-	-	<20.0
	"	4-4.5	-	Х		-	-	-	-	-	-	-	-	<20.0
	11	5-5.5	-	Х		-	-	-		-	-	-	-	<20.0

(-) Not Analyzed

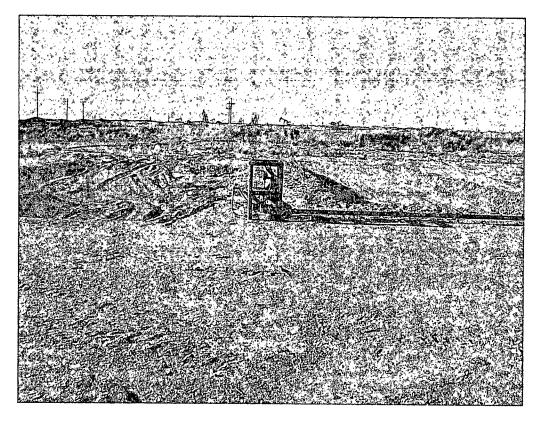
(BEB)

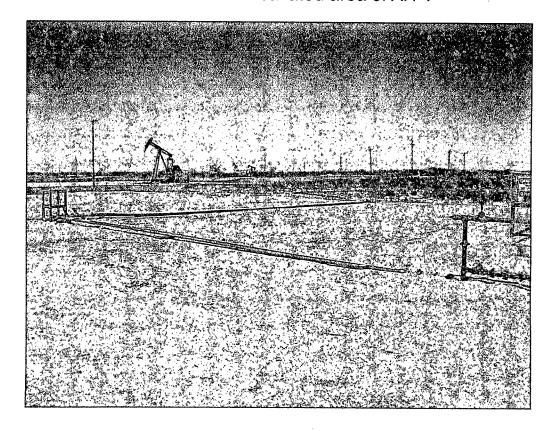

Below Excavation Bottom

Excavated Depths

Photos

COG Operating LLC CG Federal #4 Well Lea County, New Mexico


View Northwest - Area of AH-1


View North - Area of AH-2

COG Operating LLC CG Federal #4 Well Lea County, New Mexico

View North – Excavated area of AH-1

View Northwest - Backfilled area of AH-1

Appendix A