		S	ITE INFO	PRMATION						
				Closure R	eport					
General Site In	formation: 🦃 🛴									
Site:		Loco Hills	Loco Hills SWD 33 #4 Tank Battery							
Company:			COG Operating LLC							
	ship and Range	Unit P	Sec 33	T 17S	R 30E					
Lease Number	<u> </u>	API-30-015-								
County:		Eddy Coun		0.81		400 000 100 111				
GPS:		Fadanal	32.78607	° N		103.97054° W				
Surface Owner Mineral Owner		Federal								
Directions:		Cutoff for 0.4		eft and travel So		and 82, travel South on Haggerman miles. Turn right onto least road and				
Release Data: Date Released:		12/5/2013	in the second second		*** **** ***** ***** ***** ***** ***** ****	NW OIL CONSERVATION ARTESIA DISTRICT				
Date Released: Type Release:		12/5/2013 Produced W	/ater			AUG 2 9 2014				
Date Released: Type Release: Source of Conta	amination:	12/5/2013 Produced W Steel Flowlin	/ater			ARTESIA-DISTRICT				
Date Released: Type Release: Source of Conta Fluid Released:	amination:	12/5/2013 Produced W Steel Flowlin 10 bbls	/ater			ARTESIA-DISTRICT				
Date Released: Type Release: Source of Conta Fluid Released: Fluids Recovere	amination: ed:	12/5/2013 Produced W Steel Flowlin 10 bbls 9 bbls	/ater			AUG 2 9 2014 RECEIVED				
Date Released: Type Release: Source of Conta Fluid Released: Fluids Recovere	amination:	12/5/2013 Produced W Steel Flowlin 10 bbls 9 bbls	/ater			AUG 2 9 2014 RECEIVED				
Date Released: Type Release: Source of Conta Fluid Released: Fluids Recovere Official Commu	amination: ed: unication:	12/5/2013 Produced W Steel Flowlin 10 bbls 9 bbls	/ater		1	ACCEIVED ez				
Date Released: Type Release: Source of Conta Fluid Released: Fluids Recovere Official Commu	amination: ed: unication: Robert McNeill	12/5/2013 Produced W Steel Flowlin 10 bbls 9 bbls	/ater		Ike Tavar Tetra Tec	ACCEIVED RECEIVED ez h				
Date Released: Type Release: Source of Conta Fluid Released: Fluids Recovere Official Communication Name: Company:	amination: ed: unication: Robert McNeill COG Operating, L	12/5/2013 Produced W Steel Flowlin 10 bbls 9 bbls	/ater		Ike Tavar Tetra Tec 4000 N. E	ACESIA DISTRICT AUG 2 9 2014 RECEIVED ez h Big Spring				
Date Released: Type Release: Source of Conta Fluid Released: Fluids Recovere Official Commu Name: Company: Address:	amination: ed: unication: Robert McNeill COG Operating, L One Concho Cent	12/5/2013 Produced W Steel Flowlin 10 bbls 9 bbls LC ter	/ater		Ike Tavar Tetra Tec 4000 N. E Suite 401	ACEIVED RECEIVED ez h Big Spring				
Date Released: Type Release: Source of Conta Fluid Released: Fluids Recovere Official Commu Name: Company: Address: City:	amination: ed: unication: Robert McNeill COG Operating, L One Concho Cent 600 W. Illinois Av. Midland Texas, 79	12/5/2013 Produced W Steel Flowlin 10 bbls 9 bbls LC ter	/ater		Ike Tavar Tetra Tec 4000 N. E Suite 401 Midland,	ACTESIA DISTRICT AUG 2 9 2014 RECEIVED ez h Big Spring				
Date Released: Type Release: Source of Conta Fluid Released: Fluids Recovere Official Commu Name: Company: Address:	amination: ed: unication: Robert McNeill COG Operating, L One Concho Cent 600 W. Illinois Av	12/5/2013 Produced W Steel Flowlin 10 bbls 9 bbls LC ter	/ater		Ike Tavar Tetra Tec 4000 N. E Suite 401	ACTESIA DISTRICT AUG 2 9 2014 RECEIVED ez h Big Spring				

Depth to Groundwater:	Ranking Score	Site Data
<50 ft	20	
50-99 ft	10	
>100 ft.	0	
WellHead Protection:	Ranking Score	Site Data
Water Source <1,000 ft., Private <200 ft.	20	
Water Source >1,000 ft., Private >200 ft.	0	0
Surface Body of Water:	Ranking Score	Site Data
<200 ft.	20	
200 ft - 1,000 ft.	10	
>1,000 ft.	0	0

Total BTEX

50

TPH

5,000

Benzene

10

August 18, 2014

Mr. Mike Bratcher Environmental Engineer Specialist Oil Conservation Division, District 2 811S. First Street Artesia, New Mexico 88210

Re: Closure Report for the COG Operating LLC., Loco Hills SWD 33 #4
Flow Line Leak, Unit P, Section 33, Township 17 South, Range 30 East,
Eddy County, New Mexico.

Mr. Bratcher:

Tetra Tech, Inc. (Tetra Tech) was contacted by COG Operating LLC. (COG) to assess a spill from the Loco Hills SWD 33 #4 Flow line Leak located in Unit P, Section 33, Township 17 South, Range 30 East, Eddy County, New Mexico (Site). The spill site coordinates are N 32.78607°, W 103.97054°. The site location is shown on Figures 1 and 2.

Background

According to the State of New Mexico C-141 Initial Report, the leak was discovered on December 05, 2013, and released approximately ten (10) barrels of produced fluid from a steel flow line. To alleviate the problem, COG personnel repaired the flow line. Nine (9) barrels of standing fluids were recovered. The spill initiated on the pad affecting an area approximately 20' X 15' and 20' X 10'. The initial C-141 form is enclosed in Appendix A.

Groundwater

No water wells were listed within Section 33. According to the NMOCD groundwater map, the average depth to groundwater in this area is greater than 250' below surface. The groundwater data is shown in Appendix B.

Regulatory

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the depth to groundwater, the proposed RRAL for TPH is 5,000 mg/kg.

Soil Assessment and Analytical Results

On January 06, 2014, Tetra Tech personnel inspected and sampled the spill area. Four (4) auger holes (AH-1 through AH-4) were installed using a stainless steel hand auger to assess the impacted soils. Selected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The results of the sampling are summarized in Table 1. The auger hole locations are shown on Figure 3.

Referring to Table 1, neither AH-1 nor AH-2 exceeded the TPH and BTEX RRAL, however, elevated chloride concentrations were detected in both of the auger holes. Auger hole (AH-1) showed chloride concentrations of 4,830 mg/kg at 1.0' below surface, but the concentrations declined with depth at 2.0' to 2.5' of 526 mg/kg. The area of AH-2 was not vertically defined due to a dense formation, but showed a chloride concentration of 9,240 mg/kg at 0-1' below surface.

Remedial Activities

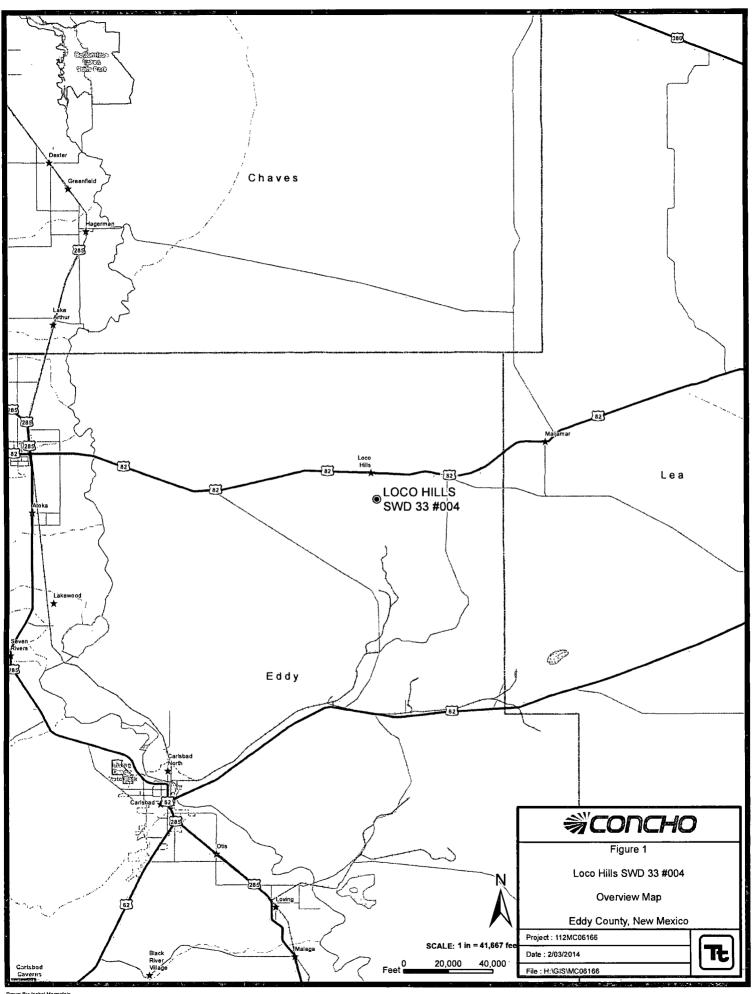
On March 31, 2014, Tetra Tech supervised the removal of impacted material as highlighted (green) in Table 1 and shown on Figure 4. The area of AH-1 was excavated 1.5' below surface to remove the elevated chloride concentrations. The area of AH-2 was trenched with a backhoe to vertically define the chloride concentrations. Based on the results, the area was excavated to approximately 1.5' below surface, with a bottom hole chloride concentration of 752 mg/kg.

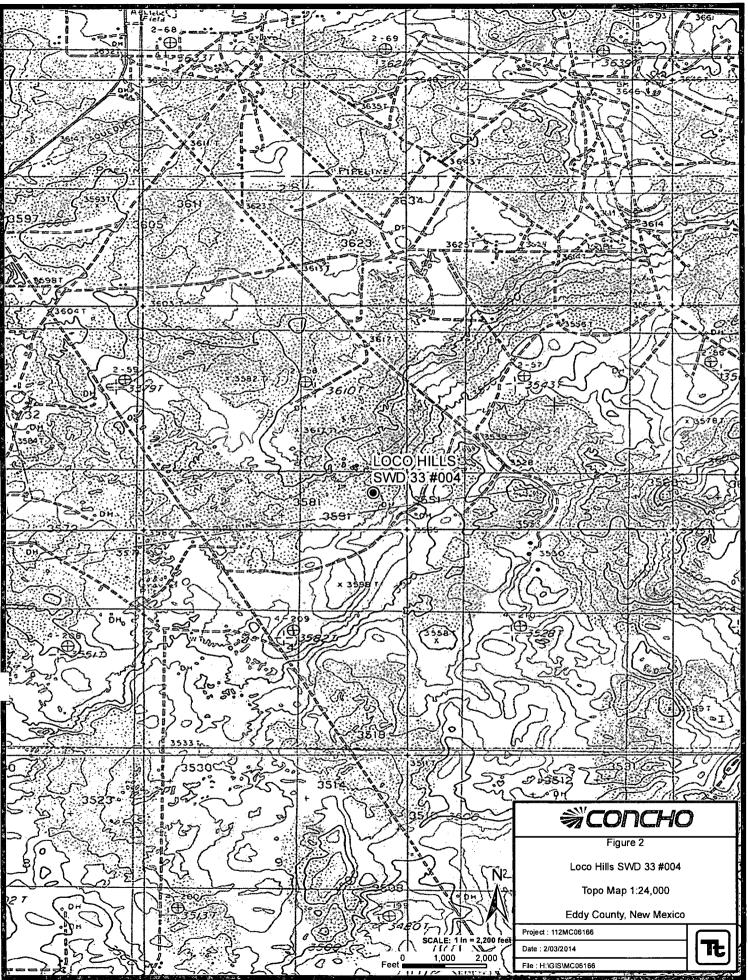
Once the areas were excavated to the appropriate depths, the excavation was backfilled with clean soil to grade. Approximately 276 cubic yards of material was transported to the proper disposal.

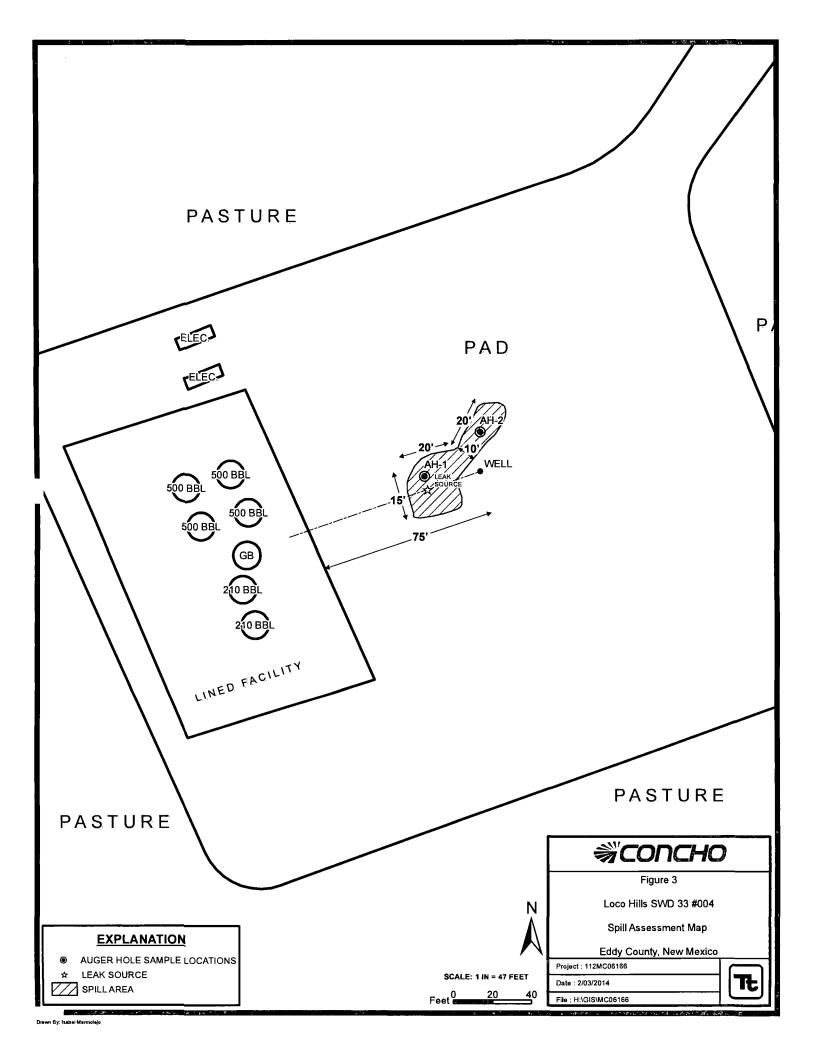
Conclusion

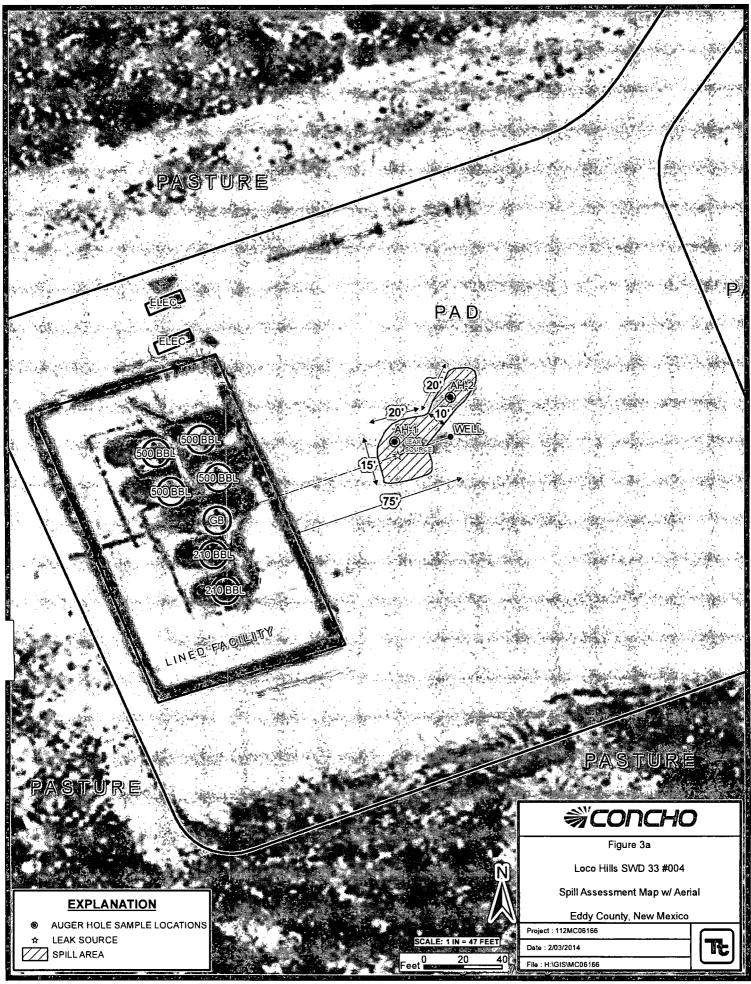
cc: Robert McNeill – COG cc: James Amos – BLM

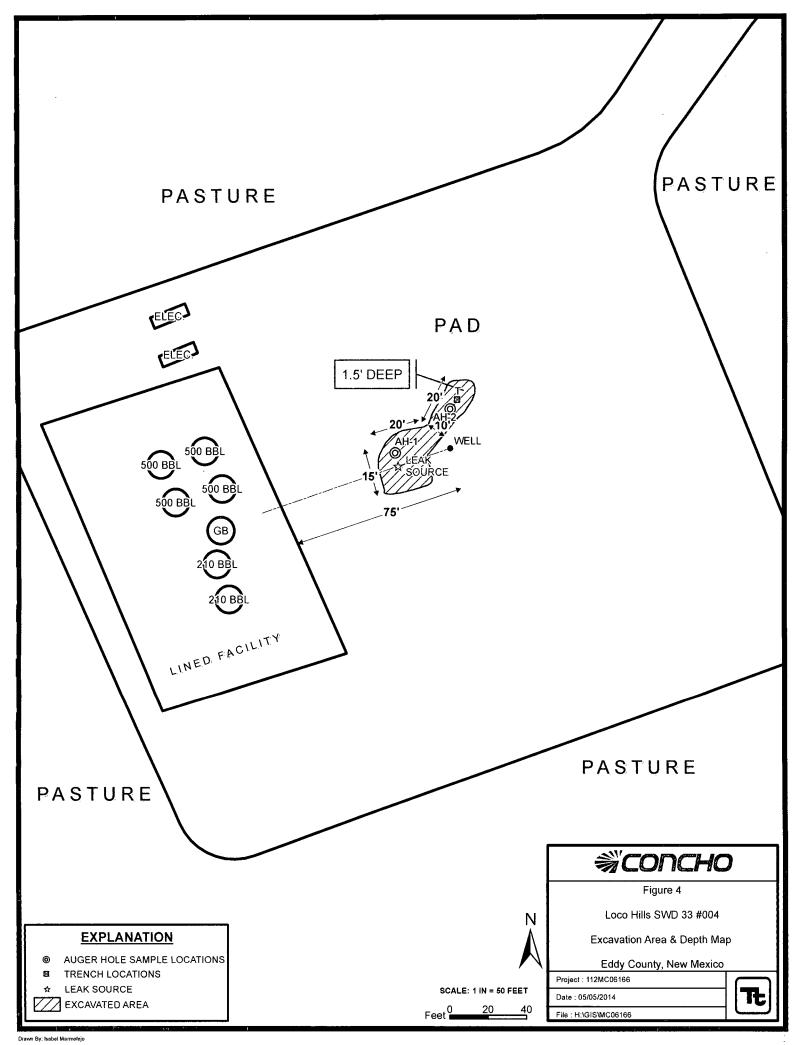
Based on the assessment and work performed at the site, COG requests closure of this spill issue. A Final C-141 is enclosed in Appendix A. If you have any questions or comments concerning the assessment or the remediation activities for this site, please call me at (432) 682-4559.


Respectfully submitted,


TETRA TECH


Ike Tavarez, PG


Senior Project Manager


Figures

Tables

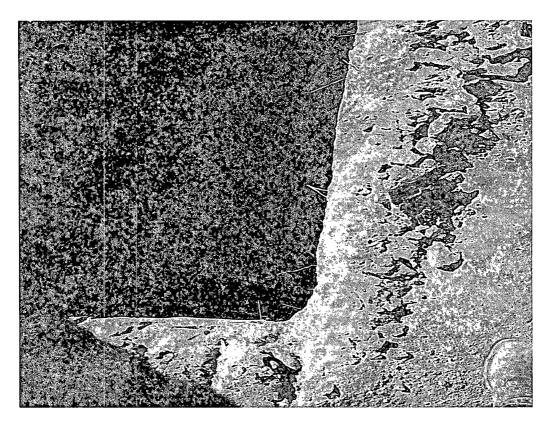
Table 1
COG Operating LLC.
Loco Hills SWD 33 #4
Eddy County, New Mexico

0	Sample	Sample	BEB	Soil	Status	•	ΓPH (mg/k	g)	Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	Depth (ft)	In-Situ	Removed	GRO	DRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
AH-1	1/6/2014	0-1	-		Х	<4.00	<50.0	<50.0	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	3,860
	(1	1-1.5	-, 3	: (Y)	X	33 - 2		as						≈4,830
	II II	2-2.5	-	Х		-	-	-	-	-	-	-	-	526
	n	3-3.5	-	Х		_	-	-	-	-	_	-	-	735
	11	4-4.5	-	X		-	-	-	-	-	-	-	-	616
	11	5-5.5	-	Х		-	-	-	-	-	-	-	-	487
	11	6-6.5	-	Х		-	-	-	-	-	_	-	-	382
	- 0	7-7.5	-	Х		-	-	-	-	-	-	-	-	134
	н	8-8.5	-	Х		-	-	-	-	_	-	-	-	86.0
	н	9-9.5	-	Х		-	-	-	-	_	-	-	-	52.5
AH-1 Bottom Hole	3/31/2014	1.5	-	Х		-	· •	-	-	-	_	_	-	256
AH-2	1/6/2014	0-1			Х	5.42	56.4	61.8	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	9,240
AH-2 Bottom Hole	3/31/2014	1.5			X		-	ar and	, Kristop	e.g. •. = % (2)		$\frac{g}{h} N^{2} g$	4-94	<16.0
T-1	3/31/2014	1	·		X	-		·	10 - 17	-		÷-		752
	11	2	-	X		-	•	-	-	-	-	-	-	288
	n	4	-	Х		-	-	-	-	-	-	-	-	32.0
	11	6	-	Х		-	-	-	-	-	-	-	-	48.0
	11	8	-	Х		-	-	-	-	-	-	-	-	32.0
	ıı .	10	-	Х		-	_	-	-	-	-	-	-	96.0

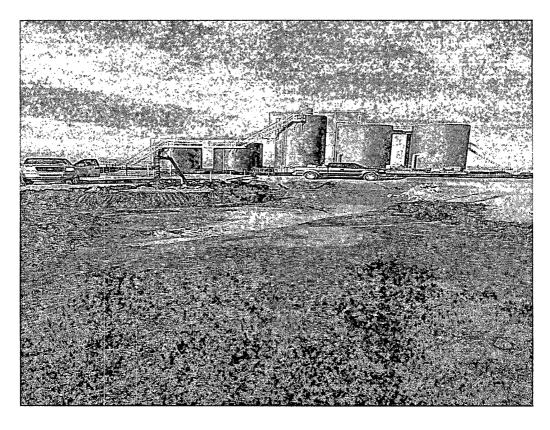
Excavated Depths

(-)

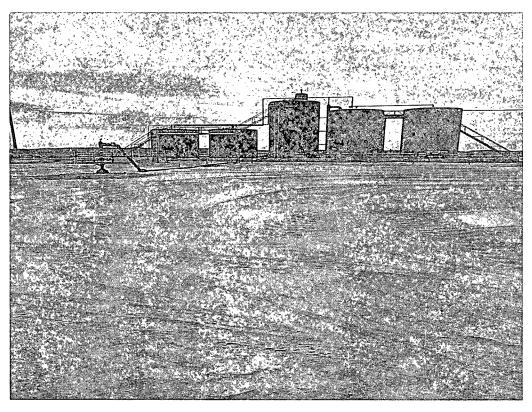
Not Analyzed


(BEB)

Below Excavation Bottom


Photos

COG Operating LLC Loco Hills SWD 33 #4 Eddy County, New Mexico


View West - T-1 in area of AH-2

View West – Areas of AH-1 and AH-2 at 1.5'

COG Operating LLC Loco Hills SWD 33 #4 Eddy County, New Mexico

View West - Excavation Backfilled

Appendix A

District I
1625 N. French Dr., Hobbs, NM 88240
District II
1301 W. Grand Avenue, Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised October 10, 2003

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Release Notification and Corrective Action

	OPERATOR			
Name of Company COG OPERATING LLC	Contact Robert	McNeill		
Address 600 West Illinois Avenue, Midland, TX 79701	Telephone No. 432-2	30-0077		
Facility Name Loco Hills SWD 33 #004	Facility Type Tank	Battery		
S. G. O. F. J. 1		T N- (ADM) 20 015 272(0		
Surface Owner Federal Mineral Owner	·	Lease No. (API#) 30-015-37269		
LOCATIO	ON OF RELEASE			
Unit Letter Section Township Range Feet from the Nort	h/South Line Feet from the East	/West Line County Eddy		
Latitude 32.78607	Longitude 103.97054			
NATURI NATURI	E OF RELEASE			
Type of Release Produced water	Volume of Release 10bbls	Volume Recovered 9bbls		
Source of Release Steel flowline	Date and Hour of Occurrence	Date and Hour of Discovery		
W. J. P. Maria Chang	12-05-2013	12-05-2013 08:00am		
Was Immediate Notice Given? ☐ Yes ☒ No ☐ Not Required	If YES, To Whom?			
By Whom?	Date and Hour			
Was a Watercourse Reached? ☐ Yes ☒ No	If YES, Volume Impacting the W	atercourse.		
If a Watercourse was Impacted, Describe Fully.*		***************************************		
Describe Cause of Problem and Remedial Action Taken.*				
Describe Cause of Problem and Remedial Action Taken.				
A steel flowline developed a hole due to corrosion. Replaced the steel li	ine,			
Describe Area Affected and Cleanup Action Taken.*	ang garang gaya at tanan masang salam ng salam na pangang pangang pangang maganah Mahababbabbabbabbabbabbabbab			
Initially 10bbls of produced water were released A hole developed in a s	steel flowline. We were able to recover	r 9bbls with a vacuum truck. All free fluids		
have been recovered. Concho will have the spill site sampled to delineat work plan to the NMOCD/BLM for approval prior to any significant rer		release and we will present a remediation		
I hereby certify that the information given above is true and complete to regulations all operators are required to report and/or file certain release public health or the environment. The acceptance of a C-141 report by t should their operations have failed to adequately investigate and remediately investigate.	notifications and perform corrective a he NMOCD marked as "Final Report" ate contamination that pose a threat to	ctions for releases which may endanger does not relieve the operator of liability ground water, surface water, human health		
or the environment. In addition, NMOCD acceptance of a C-141 report federal, state, or local laws and/or regulations.	does not relieve the operator of respon	nsibility for compliance with any other		
	OIL CONSER	VATION DIVISION		
Signature: Red Hers				
	Approved by District Supervisor:			
Printed Name: Robert Grubbs Jr.	Approved by District Supervisor:			
Title: Senior Environmental Coordinator	Approval Date:	Expiration Date:		
E-mail Address: rgrubbs@concho.com	Conditions of Approval:	Attached		
Date: 12-11-2013 Phone: 432-661-6601		, macrica C		
Attach Additional Sheets If Necessary				

District I 1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141

Revised October 10, 2003

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Release Notification and Corrective Action

						OPERA	ГOR	[Initi	al Report	\boxtimes	Final Repor
Name of Co	mpany (COG Opera	ting LLC	,		Contact Ro	bert McNeill					
		ois Ave, Mi		exas 79701			No. (432) 685-4					
Facility Nar	ne Loco l	Hills SWD 3	33 #4	·····		Facility Typ	e Tank Batte	ry				
Surface Ow	ner: Feder	al		Mineral O	wner				Lease N	No. (API#)	30-01:	5-37269
				LOCA	TIO	N OF REI	LEASE					
Unit Letter	Section	Township	Range	Feet from the		h/South Line	Feet from the	East/W	est Line	County		
Р	33	178	30E								Edd	ly
,	<u> </u>		I	Latitude 32.786	507° N	N Longitue	le 103.97054° \	W				
				NAT	URE	OF RELI	EASE					
Type of Rele	ase: Produc	ed Water				Volume of	Release 10 bbls			Recovered 9		
Source of Re	lease: Steel	Flowline				I	lour of Occurrence			Hour of Dis	covery	/
Was Immedia	ata Nastas C	7:	· · · · · · · · · · · · · · · · · · ·			12/05/2013			12/05/20	13 8:00am		
was immedia	ate Notice (Yes 🗵	No ☐ Not Re	quired	If YES, To	wnom?					
By Whom?						Date and F	lour					
Was a Watero	course Read		·		_		olume Impacting	the Water	course.			
			Yes 🛚] No		N/A						
If a Watercou	ırse was Im	pacted, Descr	ibe Fully.	k					NM	OIL CON	SER	VATION
N/A									14171	ARTESIA I		
										AUG 2	9 20	14
Describe Cau	se of Probl	em and Reme	dial Actio	n Taken.*							, . .	
A steel flowli	ine develop	ed a hole due	to corrosi	on. Replaced the st	teel lir	ne.				RECE	IVE)
	-			•								
Describe Are	a Affected	and Cleanup A	Action Tal	ken.*								
Initially 10hh	de of medu		a rolonood	from a hala that d	lavala-	and in a stant fl	lawlina COC wa	a abla ta i	raaayan Ol	hhla with a r		a tenals and all
				from a hole that d site and collected								
				surface grade with								
for review.				-								
I hereby certi	fy that the i	information gi	ven above	is true and compl	ete to	the best of my	knowledge and u	ınderstand	that pur	suant to NM	OCD r	rules and
regulations al	loperators	are required to	o report ai	nd/or file certain re	elease	notifications a	nd perform correc	ctive actio	ns for rel	eases which	may e	ndanger
				ce of a C-141 repor								
				investigate and re tance of a C-141 r								
federal, state,				nance of a C-141 I	ероп	uoes not renev	e the operator of	responsio	inty for c	omphance v	viui aii	y other
	///	12	1				OIL CON	SERVA	ATION	DIVISIO)N	
Signature:	! ///	#/										
Signature.	W	-/-				Annroyed by	District Supervis					
Printed Name	: Ike Tavar	ez				Approved by	——————————————————————————————————————					
Title: Project	Manager (a	agent for COC	i)			Approval Dat	e:	E	xpiration	Date:		
E-mail Addre	ss: Ike.Tav	arez@TetraTe	ech.com			Conditions of	Approval:					
1	18-									Attached		
				one: (432) 682-45.	59					1		
Attach Addit	nonai She	ets it Necess	sary									

Appendix B

Water Well Data Average Depth to Groundwater (ft) COG - Loco Hills SWD 33 #4 **Eddy County, New Mexico**

	16 Sc	outh		29 Eas	t		16 Sc	outh	3	0 East			16 5	South	31	East	
6	5	4	3	2	1	6	5	4	3	2	1	6	5	4	3	2 290	1
,	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11	12
8	17	16	15	14 22	0 13	18	17	16	15	14	13	18	17	16	15		288 13 2
9	20	21	22	dry 23	24	19	20	21	22	23	24	19	20	21	22	314 23	24
10 0	29	28	27	26	25	30	29	28	27	26	25	30	29	28	27	26	25
11	32	33	34	35	36	31	32	33	34	35	36	31 290	32	33	34	35	36
i	17 Sc	outh 14	3	29 Eas		6	17 Sc		3	0 East	1	6		South 4	31	East	11
	٦	*		ľ	1	ľ	5	4	ľ	2		6	5	*	3		'
	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11	12
8	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14	13
9	20	21		76 23	24	19	20 80	21	22	23	24	19	20	21	22	23	24
0		28	80 27	26	25	30	29	28	27	26	25	30	29	28	27	26	25
31	208 32	33	34	35 153	36	31	32	33 S ite	34	35	36	31	32	33	34 271	35	36
			<u> </u>								·						<u> </u>
3	18 Sc			29 Eas			18 Sc			0 East	14	<u> </u>		South		l East	14
	5	4	3	2	1	6	5	4	3	2	1	6	5	4	3	2	1
	8	9	10	95 11	12	7	8	9	10	111	12	7	8	9	10	11	12 400
8	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15 98	14 317	13
9	20	21	22	23	24 158	19	20	21	22	23 44	24	19	20	21	22	23	24
0	29	28	27	26	25	30	29	28	27	26	25	30	29	28	27	26	25
1	32	33	34	35	36	31	32	33	34	35	36	31	32	33	34	35	36
								L		1						261	Ш

USGS Well Reports

Geology and Groundwater Conditions in Southern Eddy, County, NM

NMOCD - Groundwater Data

Field water level

New Mexico Water and Infrastructure Data System

Appendix C

Report Date: January 17, 2014 Work Order: 14011002 Page Number: 1 of 3

Summary Report

Ike Tavarez
Tetra Tech
1010 N. Big Spring Str

1910 N. Big Spring Street Midland, TX 79705 Report Date: January 17, 2014

Work Order: 14011002

Project Location: Eddy Co, NM

Project Name: COG/Loco Hills SWD 33 #4

Project Number: TBD

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
351100	AH-1 0-1'	soil	2014-01-06	00:00	2014-01-09
351101	AH-1 1-1.5'	soil	2014-01-06	00:00	2014-01-09
351102	AH-1 2-2.5'	soil	2014-01-06	00:00	2014-01-09
351103	AH-1 3-3.5'	soil	2014-01-06	00:00	2014-01-09
351104	AH-1 4-4.5'	soil	2014-01-06	00:00	2014-01-09
351105	AH-1 5-5.5'	soil	2014-01-06	00:00	2014-01-09
351106	AH-1 6-6.5'	soil	2014-01-06	00:00	2014-01-09
351107	AH-1 7-7.5'	soil	2014-01-06	00:00	2014-01-09
351108	AH-1 8-8.5'	soil	2014-01-06	00:00	2014-01-09
351109	AH-1 9-9.5'	soil	2014-01-06	00:00	2014-01-09
351110	AH-2 0-1'	soil	2014-01-06	00:00	2014-01-09

]	BTEX	TPH DRO - NEW	TPH GRO	
	Benzene	Toluene	Ethylbenzene	Xylene	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
351100 - AH-1 0-1'	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 50.0	<4.00
351110 - AH-2 0-1'	< 0.0200	< 0.0200	< 0.0200	< 0.0200	56.4	$\bf 5.42$

Sample: 351100 - AH-1 0-1'

Param	Flag	Result	Units	RL
Chloride		3860	mg/Kg	4

Sample: 351101 - AH-1 1-1.5'

continued ...

Report Date: Janua	ary 17, 2014	Work Order: 14011002	Pag	e Number: 2 of 3
sample 351101 con	tinued			
Param	Flag	Result	Units	RL
Param	Flag	Result	Units	RL
Chloride		4830	mg/Kg	4
Sample: 351102	- AH-1 2-2.5'			
Param	Flag	\mathbf{Result}	Units	RL
Chloride		526	mg/Kg	4
Sample: 351103	- AH-1 3-3.5'			
Param	Flag	Result	Units	RL
Chloride		735	${ m mg/Kg}$	4
Sample: 351104	- AH-1 4-4.5'			
Param	Flag	Result	\mathbf{Units}	RL
Chloride		616	mg/Kg	4
Sample: 351105	- AH-1 5-5.5'			
Param	Flag	Result	Units	RL
Chloride		487	mg/Kg	4
Sample: 351106	- AH-1 6-6.5'			
Param	Flag	Result	Units	RL
Chloride		382	mg/Kg	4
Sample: 351107	- AH-1 7-7.5'			
Param	Flag	Result	Units	RL
Chloride		134	mg/Kg	4

Sample: 351108 - AH-1 8-8.5'

Report Date: January 17, 2014		Work Order: 14011002	I	Page Number: 3 of 3
Param	Flag	Result	Units	RL
Chloride	riag	86.0	mg/Kg	4
Sample: 351109	- AH-1 9-9.5'			
Param	Flag	Result	Units	RL
Chloride		52.5	mg/Kg	4
Sample: 351110	- AH-2 0-1'			
Param	Flag	Result	Units	RL
Chloride		9240	mg/Kg	4

6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1 (BioAquatic) 2501 Mayes Rd., Suite 100 Lubbock. El Paso. Texas 79922 Midland. Texas 79703 800-378-1296

915-585-3443 FAX 915:585 4944 FAX 432 689 6313

432 689 6301 972 242 7750 Suite 100 Carrollton, Texas 75006 972-E-Mail: lab@traceanalysis.com WEB: vww.traceanalysis.com

Certifications

HUB NCTRCA DBE NELAP DoD LELAP Kansas Oklahoma ISO 17025

Analytical and Quality Control Report

(Corrected Report)

Ike Tavarez

Tetra Tech

1910 N. Big Spring Street Midland, TX, 79705

Report Date: January 28, 2014

Work Order: 14011002

Project Location: Eddy Co, NM

COG/Loco Hills SWD 33 #4 Project Name:

112MC06166 Project Number:

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
351100	AH-1 0-1'	soil	2014-01-06	00:00	2014-01-09
351101	AH-1 1-1.5'	soil	2014-01-06	00:00	2014-01-09
351102	AH-1 2-2.5'	soil	2014-01-06	00:00	2014-01-09
351103	AH-1 3-3.5'	soil	2014-01-06	00:00	2014-01-09
351104	AH-1 4-4.5'	soil	2014-01-06	00:00	2014-01-09
351105	AH-1 5-5.5'	soil	2014-01-06	00:00	2014-01-09
351106	AH-1 6-6.5'	soil	2014-01-06	00:00	2014-01-09
351107	AH-1 7-7.5'	soil	2014-01-06	00:00	2014-01-09
351108	AH-1 8-8.5'	soil	2014-01-06	00:00	2014-01-09
351109	AH-1 9-9.5'	soil	2014-01-06	00:00	2014-01-09
351110	AH-2 0-1'	soil.	2014-01-06	00:00	2014-01-09

Report Corrections (Work Order 14011002)

• 1/28/14: Corrected Project Number and added second page of Chain of Custody.

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 23 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Dr. Blair Leftwich, Director

Michael abel

Dr. Michael Abel, Project Manager

Report Contents

Case Narrative	5
Analytical Report	6
Sample 351100 (AH-1 0-1')	6
Sample 351101 (AH-1 1-1.5')	7
Sample 351102 (AH-1 2-2.5')	7
Sample 351103 (AH-1 3-3.5')	8
Sample 351104 (AH-1 4-4.5')	8
Sample 351105 (AH-1 5-5.5')	8
Sample 351106 (AH-1 6-6.5')	9
Sample 351107 (AH-1 7-7.5')	9
Sample 351108 (AH-1 8-8.5')	9
Sample 351109 (AH-1 9-9.5')	9
Sample 351110 (AH-2 0-1')	10
Method Blanks	12
QC Batch 108256 - Method Blank (1)	
QC Batch 108257 - Method Blank (1)	
QC Batch 108273 - Method Blank (1)	
QC Batch 108308 - Method Blank (1)	
QC Batch 108314 - Method Blank (1)	13
T. J. and the Control College	14
Laboratory Control Spikes QC Batch 108256 - LCS (1)	
QC Batch 108257 - LCS (1)	
QC Batch 108273 - LCS (1)	
QC Batch 108308 - LCS (1)	
QC Batch 108314 - LCS (1)	
QC Batch 108256 - MS (1)	
QC Batch 108257 - MS (1)	
QC Batch 108273 - MS (1)	
QC Batch 108308 - MS (1)	
QC Datch 100314 - M3 (1)	10
Calibration Standards	19
QC Batch 108256 - CCV (1)	
QC Batch 108256 - CCV (2)	
QC Batch 108257 - CCV (1)	
QC Batch 108257 - CCV (2)	
QC Batch 108273 - CCV (1)	
QC Batch 108273 - CCV (2)	-
QC Batch 108308 - CCV (1)	
QC Batch 108308 - CCV (2)	
QC Batch 108308 - CCV (2)	
OC Batch 108314 - CCV (2)	21

Appendix	
Report Definitions	
Laboratory Certifications	
Standard Flags	
Attachments	

Case Narrative

Samples for project COG/Loco Hills SWD 33 #4 were received by TraceAnalysis, Inc. on 2014-01-09 and assigned to work order 14011002. Samples for work order 14011002 were received intact at a temperature of 4.0 C.

Samples were analyzed for the following tests using their respective methods.

		\mathbf{Prep}	Prep	QC	Analysis
Test	Method	Batch	Date	Batch	\mathbf{Date}
BTEX	S 8021B	91601	2014-01-14 at 09:45	108308	2014-01-15 at 09:21
Chloride (Titration)	SM 4500-Cl B	91532	2014-01-10 at 10:14	108256	2014-01-13 at 14:49
Chloride (Titration)	SM 4500-Cl B	91532	2014-01-10 at 10:14	108257	2014-01-13 at 14:56
TPH DRO - NEW	S 8015 D	91617	2014-01-14 at 14:00	108314	2014-01-15 at 09:55
TPH GRO	S 8015 D	91548	2014-01-10 at 14:30	108273	2014-01-13 at 16:35

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 14011002 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

 Report Date: January 28, 2014
 Work Order: 14011002
 Page Number: 6 of 23

 112MC06166
 COG/Loco Hills SWD 33 #4
 Eddy Co, NM

Analytical Report

Sample: 351100 - AH-1 0-1'

Laboratory: Midland

S 5035 Analytical Method: S 8021B Prep Method: Analysis: **BTEX** QC Batch: 108308 Date Analyzed: 2014-01-15 Analyzed By: AK Sample Preparation: 2014-01-14 Prepared By: AK Prep Batch: 91601

RLFlag Dilution RLParameter Cert Result Units 0.0200 Benzene < 0.0200 mg/Kg 1 U 1 Toluene < 0.0200 mg/Kg 1 0.0200U 1 Ethylbenzene < 0.0200 mg/Kg 1 0.0200 U < 0.0200 mg/Kg 0.0200 Xylene

						Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			2.19	mg/Kg	1	2.00	110	70 - 130
4-Bromofluorobenzene (4-BFB)			2.07	mg/Kg	1	2.00	104	70 - 130

Sample: 351100 - AH-1 0-1'

Laboratory: Midland

Prep Method: N/A Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B 108256 2014-01-13 Analyzed By: ARQC Batch: Date Analyzed: Sample Preparation: 2014-01-10 Prepared By: AR Prep Batch: 91532

Sample: 351100 - AH-1 0-1'

Laboratory: Midland

Analysis: TPH DRO - NEW Analytical Method: S 8015 D Prep Method: N/A QC Batch: 108314 Date Analyzed: 2014-01-15 Analyzed By: KC Prep Batch: 91617 Sample Preparation: 2014-01-14 Prepared By: KC

Report Date: January 28, 2014

112MC06166

Work Order: 14011002 COG/Loco Hills SWD 33 #4 Page Number: 7 of 23 Eddy Co, NM

Surrogate	Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Tricosane			111	mg/Kg	1	100	111	70 - 130

Sample: 351100 - AH-1 0-1'

Laboratory:

GRO

Midland

Analysis: TPH GRO QC Batch: 108273 Prep Batch: 91548

Analytical Method: S 8015 D Date Analyzed: Sample Preparation:

2014-01-13 2014-01-10 Prep Method: S 5035 Analyzed By: AK

AK

Prepared By:

RLParameter Cert Result Flag

U

Units Dilution RLmg/Kg 4.00

						$_{ m Spike}$	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			1.92	mg/Kg	1	2.00	96	70 - 130
4-Bromofluorobenzene (4-BFB)			1.98	${ m mg/Kg}$	1	2.00	99	70 - 130

< 4.00

Sample: 351101 - AH-1 1-1.5'

Laboratory:

Midland

Analysis: Chloride (Titration) QC Batch: 108256Prep Batch: 91532

Analytical Method: Date Analyzed:

Sample Preparation:

SM 4500-Cl B 2014-01-13 2014-01-10

Prep Method: N/A Analyzed By: ARPrepared By: AR

RLParameter Flag Cert Result Units Dilution RLChloride 4830 mg/Kg 10 4.00

Sample: 351102 - AH-1 2-2.5'

Laboratory:

Midland

Analysis: Chloride (Titration) QC Batch: 108256 Prep Batch: 91532

Analytical Method: Date Analyzed:

Sample Preparation:

SM 4500-Cl B 2014-01-13 2014-01-10

Prep Method: N/A Analyzed By: AR Prepared By: AR

continued ...

Report Date:	January	28,	2014
112MC06166			

Work Order: 14011002 COG/Loco Hills SWD 33 #4 Page Number: 8 of 23 Eddy Co, NM

eamnle	25110	2 continued	i
Summe	OOLIO	z conunacu	

			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
			m RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride			526	mg/Kg	5	4.00

Sample: 351103 - AH-1 3-3.5'

Laboratory: Midland

Chloride (Titration)

Analysis: QC Batch:

108256

Analytical Method:

SM 4500-Cl B 2014-01-13

Prep Method: N/A

Date Analyzed:

Analyzed By: AR.

Prep Batch:

91532

Sample Preparation: 2014-01-10 Prepared By: AR

RL

Dilution RLParameter Flag Cert Result Units 4.00 Chloride 735 mg/Kg 10

Sample: 351104 - AH-1 4-4.5'

Laboratory:

Midland

Analysis: QC Batch: Chloride (Titration)

Analytical Method: 108256 Date Analyzed:

Cert

Flag

SM 4500-Cl B 2014-01-13

Units

mg/Kg

Prep Method: N/A Analyzed By: AR Prepared By: AR

Prep Batch:

Parameter

Chloride

91532

Sample Preparation: 2014-01-10

> RLResult

> > 616

Dilution RL4.00

Sample: 351105 - AH-1 5-5.5'

Laboratory:

Midland

Analysis: QC Batch: 108256 Prep Batch: 91532

Chloride (Titration)

Analytical Method: Date Analyzed: Sample Preparation:

SM 4500-Cl B 2014-01-13 2014-01-10

Prep Method: N/A Analyzed By: AR Prepared By: AR

Report Date: January 28, 2014 112MC06166

Work Order: 14011002 COG/Loco Hills SWD 33 #4

Page Number: 9 of 23 Eddy Co, NM

			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride		-	487	${ m mg/Kg}$	5	4.00

Sample: 351106 - AH-1 6-6.5'

Laboratory: Midland

Analysis: Chloride (Titration) QC Batch: 108256 Prep Batch: 91532 Analytical Method: SM 4500-Cl Date Analyzed: 2014-01-13 Sample Preparation: 2014-01-10

Sample: 351107 - AH-1 7-7.5'

Laboratory: Midland

Analysis: Chloride (Titration) QC Batch: 108256 Prep Batch: 91532 Analytical Method: SM 4500-Cl B Date Analyzed: 2014-01-13 Sample Preparation: 2014-01-10 Prep Method: N/A
Analyzed By: AR
Prepared By: AR

Sample: 351108 - AH-1 8-8.5'

Laboratory: Midland

Analysis: Chloride (Titration)
QC Batch: 108256
Prep Batch: 91532

Analytical Method: SM 4500-Cl B
Date Analyzed: 2014-01-13
Sample Preparation: 2014-01-10

Prep Method: N/A
Analyzed By: AR
Prepared By: AR

Report Date: January 28, 2014 112MC06166

Work Order: 14011002 COG/Loco Hills SWD 33 #4 Page Number: 10 of 23 Eddy Co, NM

Sample: 351109 - AH-1 9-9.5'

Laboratory:

Midland

Analysis: Chloride (Titration) Analytical Method:

SM 4500-Cl B

Prep Method: N/A Analyzed By: AR

AR

QC Batch: 108256 Prep Batch:

91532

2014-01-13 Date Analyzed: Sample Preparation: 2014-01-10

Prepared By:

RL

RLCert Result Units Dilution Parameter Flag Chloride 52.5 mg/Kg 4.00

Sample: 351110 - AH-2 0-1'

Laboratory:

Midland

Analysis: QC Batch: **BTEX** 108308 Analytical Method:

S 8021B

Prep Method: S 5035

Prep Batch: 91601 Date Analyzed: Sample Preparation:

2014-01-15 2014-01-14 Analyzed By: AK Prepared By: AK

RLDilution RLResult Units Parameter Flag Cert 0.0200 Benzene U < 0.0200 mg/Kg 1 0.0200Toluene U < 0.0200 mg/Kg 1 < 0.0200 mg/Kg 1 0.0200 Ethylbenzene U 0.0200 < 0.0200 mg/Kg 1 Xylene

						Spike	Percent	Recovery
Surrogate	\mathbf{Flag}	Cert	Result	Units	Dilution	${f Amount}$	Recovery	Limits
Trifluorotoluene (TFT)			2.18	mg/Kg	1	2.00	109	70 - 130
4-Bromofluorobenzene (4-BFB)			2.14	mg/Kg	1	2.00	107	70 - 130

Sample: 351110 - AH-2 0-1'

Laboratory:

Prep Batch:

Midland

91532

Analysis: Chloride (Titration) QC Batch: 108257

Analytical Method: Date Analyzed: Sample Preparation: SM 4500-Cl B 2014-01-13

2014-01-10

Prep Method: N/A Analyzed By: AR Prepared By: AR

RLParameter Flag Cert Result Units Dilution RL4.00 Chloride 9240 mg/Kg 10

Report Date: January 28, 2014

Work Order: 14011002 ${
m COG/Loco~Hills~SWD~33~\#4}$ Page Number: 11 of 23 Eddy Co, NM

Sample: 351110 - AH-2 0-1'

Laboratory:

Prep Batch:

112MC06166

Midland

91617

Analysis: QC Batch: 108314

TPH DRO - NEW

Analytical Method: Date Analyzed:

S 8015 D 2014-01-15 Prep Method: N/A KC

Sample Preparation: 2014-01-14 Analyzed By: Prepared By: KC

RL

Result Units Dilution RLParameter Flag Cert DRO в 56.4 mg/Kg 50.0 1

						Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
n-Tricosane			104	mg/Kg	1	100	104	70 - 130

Sample: 351110 - AH-2 0-1'

Laboratory:

Midland

Analysis: TPH GRO QC Batch: 108273 Prep Batch: 91548

Analytical Method: Date Analyzed:

S 8015 D 2014-01-13 Sample Preparation: 2014-01-10

Prep Method: S 5035 Analyzed By: AK

ΑK

Prepared By:

RL

Parameter	\mathbf{Flag}	Cert	Result	Units	Dilution	RL
GRO		1	5.42	mg/Kg	1	4.00

Surrogate	Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)	_		2.22	mg/Kg	1	2.00	111	70 - 130
4-Bromofluorobenzene (4-BFB)			2.52	mg/Kg	1	2.00	126	70 - 130

Report Date: January 28, 2014 112MC06166

Work Order: 14011002 COG/Loco Hills SWD 33 #4 Page Number: 12 of 23 Eddy Co, NM

Method Blanks

Method Blank (1)

QC Batch: 108256

QC Batch: 108256

Date Analyzed: QC Preparation:

2014-01-13

Analyzed By: AR

Prep Batch: 91532

2014-01-10

Prepared By: AR

MDL

Flag Parameter Cert Result

Units < 3.85 Chloride mg/Kg

Method Blank (1)

QC Batch: 108257

QC Batch:

Chloride

108257

Date Analyzed:

2014-01-13

Analyzed By: AR

RL

4

Prep Batch: 91532

QC Preparation:

2014-01-10

Prepared By: AR

MDL Cert Parameter Flag

Units RLResult < 3.85 4 mg/Kg

Method Blank (1)

QC Batch: 108273

QC Batch:

Date Analyzed:

2014-01-13

Analyzed By: AK

108273 Prep Batch: 91548

QC Preparation:

2014-01-10

Prepared By: AK

MDL

RLCert Result Units Parameter Flag <2.32 GRO mg/Kg 4

						Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	${f Amount}$	Recovery	Limits
Trifluorotoluene (TFT)			2.01	mg/Kg	1	2.00	100	70 - 130
4-Bromofluorobenzene (4-BFB)			2.06	${ m mg/Kg}$	1	2.00	103	70 - 130

Work Order: 14011002 COG/Loco Hills SWD 33 #4 Page Number: 13 of 23 Eddy Co, NM

Method Blank (1)

QC Batch: 108308

QC Batch: 108308 Prep Batch: 91601

Date Analyzed: 2014-01-15 2014-01-14 QC Preparation:

Analyzed By: AK Prepared By: AK

MDL Flag Parameter Cert Result

Units RL< 0.00354 mg/Kg 0.02 Benzene mg/Kg < 0.00966 0.02Toluene mg/Kg 0.02Ethylbenzene < 0.00790 < 0.00667 mg/Kg 0.02Xylene

						$_{ m Spike}$	Percent	$\operatorname{Recovery}$
Surrogate	Flag	Cert	Result	\mathbf{Units}	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			2.19	mg/Kg	1	2.00	110	70 - 130
4-Bromofluorobenzene (4-BFB)			1.70	mg/Kg	1	2.00	85	70 - 130

Method Blank (1)

QC Batch: 108314

QC Batch:

108314

Date Analyzed: 2014-01-15 Analyzed By: KC

Prep Batch: 91617 QC Preparation: 2014-01-14

Prepared By: KC

MDL Units RLParameter Flag Cert Result $\overline{\text{DRO}}$ < 6.88 mg/Kg 50

						$_{ m Spike}$	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
n-Tricosane			102	mg/Kg	1	100	102	70 - 130

Report Date: January 28, 2014

112MC06166

Work Order: 14011002 COG/Loco Hills SWD 33 #4 Page Number: 14 of 23 Eddy Co, NM

Laboratory Control Spikes

Laboratory Control Spike (LCS-1)

QC Batch:

108256

Date Analyzed:

2014-01-13

Analyzed By: AR

Prep Batch: 91532

QC Preparation: 2014-01-10

Prepared By: AR

			LCS			Spike	Matrix		Rec.
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride	-		2520	mg/Kg	1	2500	< 3.85	101	89.7 - 115.9

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			LCSD			Spike	Matrix		Rec .		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec .	Limit	RPD	Limit
Chloride			2400	mg/Kg	1	2500	< 3.85	96	89.7 - 115.9	5	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch:

108257

Date Analyzed:

2014-01-13

Analyzed By: AR

Prep Batch: 91532

QC Preparation: 2014-01-10

Prepared By: AR

			LCS			Spike	Matrix		Rec.
Param	F	C	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride			2370	mg/Kg	1	2500	<3.85	95	89.7 - 115.9

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	${\operatorname{Rec}}.$	Limit	RPD	Limit
Chloride			2420	mg/Kg	1	2500	< 3.85	97	89.7 - 115.9	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch:

Prep Batch: 91548

108273

Date Analyzed:

2014-01-13

Analyzed By: AK

QC Preparation: 2014-01-10

Prepared By: AK

Work Order: 14011002 COG/Loco Hills SWD 33 #4

Page Number: 15 of 23

Eddy Co, NM

			LCS			Spike	Matrix		Rec.
Param	F	\mathbf{C}	Result	Units	Dil.	${\bf Amount}$	Result	Rec.	\mathbf{Limit}
GRO		1	16.5	mg/Kg	1	20.0	< 2.32	82	70 - 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			LCSD			Spike	Matrix		Rec.		RPD
Param	F	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	\mathbf{Limit}	RPD	Limit
GRO		1	17.3	mg/Kg	1	20.0	< 2.32	86	70 - 130	5	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			$_{ m Spike}$	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	1.83	1.96	mg/Kg	1	2.00	92	98	70 - 130
4-Bromofluorobenzene (4-BFB)	2.17	2.23	mg/Kg	1	2.00	108	112	70 - 130

Laboratory Control Spike (LCS-1)

QC Batch: 108308 Date Analyzed: Analyzed By: AK 2014-01-15 Prep Batch: 91601 QC Preparation: 2014-01-14 Prepared By: AK

			LCS			\mathbf{Spike}	Matrix		Rec .
Param	\mathbf{F}	C	Result	\mathbf{Units}	Dil.	Amount	Result	Rec.	Limit
Benzene		1	2.13	mg/Kg	1	2.00	< 0.00354	106	70 - 130
Toluene		1	2.19	mg/Kg	1	2.00	< 0.00966	110	70 - 130
Ethylbenzene		1	2.18	mg/Kg	1	2.00	< 0.00790	109	70 - 130
Xylene		1	6.75	mg/Kg	1	6.00	< 0.00667	112	70 - 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			LCSD			\mathbf{Spike}	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene		1	2.07	mg/Kg	1	2.00	< 0.00354	104	70 - 130	3	20
Toluene		1	2.11	mg/Kg	1	2.00	< 0.00966	106	70 - 130	4	20
Ethylbenzene		1	2.14	mg/Kg	1	2.00	< 0.00790	107	70 - 130	2	20
Xylene		1	6.57	mg/Kg	1	6.00	< 0.00667	110	70 - 130	3	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			$_{ m Spike}$	LCS	LCSD	$\mathrm{Rec}.$
Surrogate	Result	Result	\mathbf{Units}	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	2.35	2.28	mg/Kg	1	2.00	118	114	70 - 130
4-Bromofluorobenzene (4-BFB)	2.30	2.20	mg/Kg	1	2.00	115	110	70 - 130

Work Order: 14011002 COG/Loco Hills SWD 33 #4 Page Number: 16 of 23 Eddy Co, NM

Laboratory Control Spike (LCS-1)

QC Batch: 108314 Prep Batch: 91617 Date Analyzed: 20 QC Preparation: 20

2014-01-15 2014-01-14 Analyzed By: KC Prepared By: KC

LCS Spike Matrix Rec. F \mathbf{C} Dil. Rec. Param Result Units Amount Result Limit DRO 266 mg/Kg 250 9.43 103 70 - 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

LCSD Rec. RPD Spike Matrix Dil. Limit **RPD** Param C Result Units Amount Result Rec. Limit DRO 271 mg/Kg 1 250 9.43 105 70 - 130 2 20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			$_{ m Spike}$	LCS	LCSD	${ m Rec.}$
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
n-Tricosane	113	113	mg/Kg	1	100	113	113	70 - 130

Matrix Spike (MS-1) Spiked Sample: 351109

QC Batch: 108256 Prep Batch: 91532 Date Analyzed: QC Preparation:

2014-01-13 2014-01-10 Analyzed By: AR Prepared By: AR

Spike MS Matrix Rec. \mathbf{F} \mathbf{C} Dil. Param Result Units Amount Result Rec. Limit Chloride 2560 mg/Kg 2500 52.5 100 78.9 - 121

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			MSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride			2440	mg/Kg	5	2500	52.5	96	78.9 - 121	5	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 351118

QC Batch: 108257 Prep Batch: 91532 Date Analyzed: 2014-01-13 QC Preparation: 2014-01-10 Analyzed By: AR Prepared By: AR

Work Order: 14011002 COG/Loco Hills SWD 33 #4 Page Number: 17 of 23 Eddy Co, NM

			MS			Spike	Ме	ıtrix	-	Rec.
Param	F		lesult	Units	Dil.	Amount			lec.	Limit
Chloride				ng/Kg		2500				8.9 - 121
Percent recovery is based on the spik	e rest	ılt. RPD				spike dupli	cate re	sult.		
		MSD			Spike	Matrix		Rec.		RPD
Param F	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPI	
Chloride		3490	mg/Kg	10	2500	1160	93	78.9 - 12	1 8	20
Percent recovery is based on the spik	e resi	ılt. RPD	is based o	n the	spike and s	spike duplic	cate re	sult.		
Matrix Spike (MS-1) Spiked Sa	1	251100								
Matrix Spike (MS-1) Spiked Sa	unpie	5: 351100								
QC Batch: 108273		Date	Analyzec	l: 20	14-01-13			Ar	alyzed E	By: AK
Prep Batch: 91548		QC	Preparation	on: 20	14-01-10			Pr	epared B	sy: AK
			MS			Spike	Ν	I atrix		Rec.
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amoun	t F	Result	Rec.	Limit
GRO		1	15.3	mg/K	g 1	20.0		<2.32	76	70 - 130
Percent recovery is based on the spik	e resi	ult. RPD	is based o	n the	spike and s	spike dupli	cate re	sult.		
		MSD			Spike	Matrix		Rec.		RPD
Param F	\mathbf{C}	Result	Units	Dil.	Amount		Rec.	Limit	RPD	
GRO	1	16.2	mg/Kg	1	20.0	< 2.32	81	70 - 13	0 6	20
Percent recovery is based on the spik	e res	ult. RPD	is based o	n the	spike and s	spike dupli	cate re	sult.		
		\mathbf{M}	IS M	SD		S	pike	MS	MSD	Rec.
Surrogate		Res			Units		nount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)		1.		86	mg/Kg	1	2	86	93	70 - 130
4-Bromofluorobenzene (4-BFB)		2.0	03 2.	12	mg/Kg	1	2	102	106	70 - 130
Matrix Spike (MS-1) Spiked S	ample	e: 351100								
QC Batch: 108308		Date	Analyzec	1: 20	014-01-15			Ar	nalyzed E	By: AK
Prep Batch: 91601			Preparation of the state of the		14-01-14				epared E	•
			MC			Cnile	3.4	atmire		Doo

			MS			\mathbf{Spike}	Matrix		Rec.
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit
Benzene	•	1	1.41	mg/Kg	1	2.00	< 0.00354	70	70 - 130
Toluene		1	1.47	mg/Kg	1	2.00	< 0.00966	74	70 - 130
Ethylbenzene		1	1.55	mg/Kg	1	2.00	< 0.00790	78	70 - 130
Xylene		1	4.71	mg/Kg	1	6.00	< 0.00667	78	70 - 130

Work Order: 14011002 COG/Loco Hills SWD 33 #4

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.												
			MSD			Spike	Matrix		Rec.		RPD	
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit	
Benzene		1	1.49	mg/Kg	1	2.00	< 0.00354	74	70 - 130	6	20	
Toluene		1	1.57	mg/Kg	1	2.00	< 0.00966	78	70 - 130	7	20	
Ethylbenzene		1	1.66	mg/Kg	1	2.00	< 0.00790	83	70 - 130	7	20	
Xylene		1	5.08	mg/Kg	1	6.00	< 0.00667	85	70 - 130	8	20	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	2.18	2.18	mg/Kg	1	2	109	109	70 - 130
4-Bromofluorobenzene (4-BFB)	2.20	2.21	mg/Kg	1	2	110	110	70 - 130

Matrix Spike (MS-1) Spiked Sample: 351100

QC Batch: 108314 Prep Batch: 91617 Date Analyzed: 2014-01-15 QC Preparation: 2014-01-14 Analyzed By: KC Prepared By: KC

Page Number: 18 of 23

Eddy Co, NM

			MS			Spike	Matrix		Rec.
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit
DRO		1	243	mg/Kg	1	250	< 6.88	97	70 - 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			MSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO		1	227	mg/Kg	1	250	< 6.88	91	70 - 130	7	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			$_{ m Spike}$	MS	MSD	Rec.
Surrogate	Result	Result	$_{ m Units}$	Dil.	Amount	Rec.	Rec.	Limit
n-Tricosane	103	98.8	mg/Kg	1	100	103	99	70 - 130

Work Order: 14011002 COG/Loco Hills SWD 33~#4

Page Number: 19 of 23 Eddy Co, NM

Calibration Standards

Standard (CCV-1)

QC Batch: 108256

Date Analyzed: 2014-01-13

Analyzed By: AR

				CCVs True	${ m CCVs} \ { m Found}$	$\begin{array}{c} { m CCVs} \\ { m Percent} \end{array}$	Percent Recovery	Date
Param	Flag	Cert	\mathbf{Units}	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride			mg/Kg	100	98.3	98	85 - 115	2014-01-13

Standard (CCV-2)

QC Batch: 108256

Date Analyzed: 2014-01-13

Analyzed By: AR

				CCVs	CCVs	CCVs	Percent	
				${f True}$	Found	$\mathbf{Percent}$	$\operatorname{Recovery}$	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride			mg/Kg	100	102	102	85 - 115	2014-01-13

Standard (CCV-1)

QC Batch: 108257

Date Analyzed: 2014-01-13

Analyzed By: AR

				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	\mathbf{Flag}	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride	<u> </u>		mg/Kg	100	103	103	85 - 115	2014-01-13

Standard (CCV-2)

QC Batch: 108257

Date Analyzed: 2014-01-13

Analyzed By: AR

				$rac{ ext{CCVs}}{ ext{True}}$	${ m CCVs} \ { m Found}$	$\begin{array}{c} { m CCVs} \\ { m Percent} \end{array}$	Percent	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	$egin{array}{c} ext{Recovery} \ ext{Limits} \end{array}$	Analyzed
Chloride			mg/Kg	100	96.9	97	85 - 115	2014-01-13

Report Date: January 28, 2014

Work Order: 14011002 COG/Loco Hills SWD 33 #4 Page Number: 20 of 23 Eddy Co, NM

Standard (CCV-1)

112MC06166

QC Batch: 108273

Date Analyzed: 2014-01-13

Analyzed By: AK

				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		1	mg/Kg	1.00	1.03	103	80 - 120	2014-01-13

Standard (CCV-2)

QC Batch: 108273

Date Analyzed: 2014-01-13

Analyzed By: AK

				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		1	mg/Kg	1.00	1.08	108	80 - 120	2014-01-13

Standard (CCV-1)

QC Batch: 108308

Date Analyzed: 2014-01-15

Analyzed By: AK

				$rac{ ext{CCVs}}{ ext{True}}$	$\begin{array}{c} { m CCVs} \\ { m Found} \end{array}$	$\begin{array}{c} { m CCVs} \\ { m Percent} \end{array}$	Percent Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		1	mg/kg	0.100	0.108	108	80 - 120	2014-01-15
Toluene		1	mg/kg	0.100	0.111	111	80 - 120	2014-01-15
Ethylbenzene		1	mg/kg	0.100	0.110	110	80 - 120	2014-01-15
Xylene		1	mg/kg	0.300	0.341	114	80 - 120	2014-01-15

Standard (CCV-2)

QC Batch: 108308

Date Analyzed: 2014-01-15

Analyzed By: AK

				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	\mathbf{Flag}	Cert	$_{ m Units}$	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		1	mg/kg	0.100	0.0982	98	80 - 120	2014-01-15
Toluene		1	mg/kg	0.100	0.0989	99	80 - 120	2014-01-15
Ethylbenzene		1	mg/kg	0.100	0.0999	100	80 - 120	2014-01-15
Xylene		1	mg/kg	0.300	0.306	102	80 - 120	2014-01-15

Report Date: January 28, 2014

Work Order: 14011002 COG/Loco Hills SWD 33 #4112MC06166

Page Number: 21 of 23

Eddy Co, NM

Standard (CCV-1)

QC Batch: 108314

Date Analyzed: 2014-01-15

Analyzed By: KC

				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		1	mg/Kg	250	256	102	80 - 120	2014-01-15

Standard (CCV-2)

QC Batch: 108314

Date Analyzed: 2014-01-15

Analyzed By: KC

				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		1	mg/Kg	250	251	100	80 - 120	2014-01-15

Report Date: January 28, 2014 Work Order: 14011002 Page Number: 22 of 23 112MC06166 COG/Loco Hills SWD 33 #4 Eddy Co, NM

Appendix

Report Definitions

Name	Definition
$\overline{ ext{MDL}}$	Method Detection Limit
MQL	Minimum Quantitation Limit
SDL	Sample Detection Limit

Laboratory Certifications

	Certifying	Certification	Laboratory
C	Authority	Number	Location
-	NCTRCA	WFWB384444Y0909	TraceAnalysis
-	DBE	VN 20657	TraceAnalysis
-	HUB	1752439743100-86536	TraceAnalysis
-	WBE	237019	TraceAnalysis
1	NELAP	T104704392-13-7	Midland

Standard Flags

*	T	
F	Description	

- B Analyte detected in the corresponding method blank above the method detection limit
- H Analyzed out of hold time
- J Estimated concentration
- Jb The analyte is positively identified and the value is approximated between the SDL and MQL. Sample contains less then ten times the concentration found in the method blank. The result should be considered non-detect to the SDL.
- Je Estimated concentration exceeding calibration range.
- MI1 Split peak or shoulder peak
- $MI2\quad Instrument\ software\ did\ not\ integrate$
- MI3 Instrument software misidentified the peak
- MI4 Instrument software integrated improperly
- MI5 Baseline correction
- Qc Calibration check outside of laboratory limits.
- Qr RPD outside of laboratory limits
- Qs Spike recovery outside of laboratory limits.
- Qsr Surrogate recovery outside of laboratory limits.
 - U The analyte is not detected above the SDL

Attachments

Work Order: 14011002 COG/Loco Hills SWD 33 #4 Page Number: 23 of 23 Eddy Co, NM

The scanned attachments will follow this page. Please note, each attachment may consist of more than one page.

An	Analysis Request of Chain of Custody Reco									rc	1									PA	GE:	$oldsymbol{\mathbb{T}}$			OF		2_	:. <i>"</i>			
	TETRATECH 1910 N. Big Spring St.												긤					(0				S RE			No.)						
							Midland, Te	Spring St.								- 1	5 (Ext. to C35)	Cr Pb	Vr Pd Hg										2		
CLIENT NAI	7						SITE MANAGE	Taxarez		VINERS			SER\ ETH	/ATIV OD	Æ.	- A	TX1000	As Ba Cd	As Ba Cd		2	260/624	8270/625						ons, pH, 1DS		
PROJECT N	0.:			PRO		CT CQ	HILLS SWD	33 #4		F CONT					A		MOD.		9	iles	A Clarific	8240/8	ni. Vol.	809/	3	90.	(Air)	stos)	US/Catin		
LAB I.D. NUMBER		ate 014	TIME	MATRIX	COMP	GRAB	SAMPL Eddu	E IDENTIFICATION		NUMBER OF CONTAINERS	돧	HNO3	ICE	NONE		31 I	PAH 8270	RCRA Metals Ag	TCLP Metals Ag	TCLP Volatiles	RCI	GC.MS Vol. 8240/8260/624	GC.MS Ser	PCB's 8080/608	Chloride	Gamma Spec.	Alpha Beta (Air)	PLM (Asbe	Major Anions/Cations,		
Ĵ51100	\/	1 Q		5	ŀ	X	1-HA)-1					X			ノ <u> </u>	1								X						
101	1			5		N	<u>"</u> \	-1:5					X												X						
102				5		1	11	2-2.5					X												X	·					
103			•	5		X	4 3	3-3.5					X												X						
104				5		(1, 2	-4.5					X												X						
105				5	Ì		11 5	5 -5.5					X												<u> </u> X						
106				5	<u>\</u>	4	11	P-10.5					X												X				\perp		
107				5	Ţ,	M	11 7	-7.5					X												X				\perp		
108				5	ŀ	乜	. 9	7 -8.5					X						\perp						K						
109	1			5		X	1/0/11	1-9.5			L		区	$ \bot $											K			\perp			,,,,,,
RELINQUISHED	BY: (S	Signatur	mal	4			Date: 10,34	RECEIVED BY: (Signature)		-	7	Date: Time:	16	:30	7_						12"						Tim		T/	W I	-
RELINGUISHED				Date: RECEIVED'BY: (Signature) Date: Time: Time:												_ !	EDE	(BY: (BUS					NRBI OTHE				—	
RELINQUISHED	NOUISHED BY: (Signature) Date: RECEIVED BY: (Signature) Date: Time: . Time:												_	TRA			TACT	PERS							ts by:						
RECEIVING LAB ADDRESS: CITY:	ORAT	ORY: _	STATE: _				ZIP:	RECEIVED BY: (Signature)																				RUSH Autho	Chare		
SAMPLE CONDI	TION	WHEN I	RECEIVED:		PHO	NE:	REMARKS: Run	DATE: DELPER DOME	المار مون	TIME:		Se 1×	nze	· Le	, ,	ex	cee	els	/	0_	to	ta	L	- <i>l</i> :	37	EX	راح	Y6	is COO		Vo
	Ple	ease f	ill out all c	opie	s -	La	boratory retains Yellow Mudlu	copy - Return Orginal copy L.d : .CLf	to Tetra	Tech	-	Proje	ect M	lana	geri	reta	ns P	ink d	ору	-	Acco	ount	ing	rece	ives	Go	ld co	ру.			

14011002 -

Analy	Analysis Request of Chain of Custody Recor) [C	\ \	L								PAGI	Ξ: ΄	7			-4: 2	2_		
					7				-			<u></u>						(Cir			SIS I pecil				o.)				
					Midland, Tex	Spring St.								6 (Ext. to C35)		ပ်	Vr Pd Hg									TDS			
CLIENT NAME:			٠		SITE MANAGE	er: IOXOLEZ		ERS			SER\	/ATIVI OD	E	TX1005		<u>.</u>	8 8 8			0/624	70/623					s, pH,			
PROJECT NO.:		PP	COJE	ECT CC	NAME:	0 33 #4		CONTAIN	(N)				_	8015 MOD.)		uls Ag As	ils Ag As	Volatiles		8240/826	M. Vol. 82 /608	80		. GC.	(Alir)	ns/Cation		,	-
LAB I.D. DATE	1 ·-	MATRIX	COMP	GRÁB	Eddy	LE IDENTIFICATION		NUMBER OF CONTAINERS	FILTERED (Y/N)	HNO3	ICE	NONE		E	PAH 8270	RCRA Metals Ag As E	TCLP Metals A	TCLP Semi Volatiles	RCI	GC.MS Vol.	GC.MS Sem. Vol. 82/0/625 PCB's 8080/608	Pest. 808/6	Chloride	Gamma Sp	Aipha Beta (Air) PLM (Asbestos)	Major Anions/Cations, pH, TDS			
1101/4		5		X	AH-2 '	0-1					X			46									X						
										•																			
																.													
																						П							
																											T		
],												
											·																		
									T			1															\int		
REMINOUISHED BY: (Sign RECINQUISHED BY: (Sign	eture) MZCL	RECEIVED BY: (Signature)				Date: Time:		111 6:3	ÿ					(P#2							Time:		Ġ	114					
					Date:	RECEIVED BY: (Signature)				Date: Time:					FI	EDEX	:	PED E	1	BUS					RBILL THER:	-			
RELINQUISHED BY: (Sign	ature)		•		Date:	RECEIVED BY: (Signature)				Date: Time:				_				CONT		UPS PERSO	ON:	_				sults b	y:		\dashv
RECEIVING LABORATOR ADDRESS: CITY:	:STATE				ZIP;	RECEIVED BY: (Signature)																			RU Au	JSH CI	harge ed:	es	
CONTACT:			_ PH	ONE:		DATE:		TIME	Ŀ_																	Yes		No	
SAMPLE CONDITION WH				Mary Mary and								,	····					·	·										
Pleas	e fill out a	I copi	ies	- La	aboratory retains Yellov	copy - Return Orgina	al copy to Tetra	a Tec	h -	Proi	ect N	/lanac	er re	etain	s Pi	nk c	ору	- A	cco	untii	ng re	ceiv	res (Gold	COF	νy.			