SITE INFORMATION Report Type: Closure Report General Site Information: West Artesia Grayburg Unit # 13 Site: Alamo Permian Resources, LLC Company: Section, Township and Range R₂8E Sec 7 T18S (API#) 30-015-00169 Lease Number: County: **Eddy County** GPS: 32.760350° N 104.206770° W Surface Owner: State Mineral Owner: From the intersection of Hwy 82 and Illinois Camp Road, travel sout on Illinois Camp Road for Directions: 2.25 miles to Buckaroo Road. At Buckaroo Road turn southeast and travel 0.50 miles and turn south into the battery. Release Data: Date Released: 3/15/2012 Produced Water Type Release: Source of Contamination: Injection Line Fluid Released: 40 bbls Fluids Recovered: 0 bbls Official Communication: Name: Steven Mastin Ike Tavarez Company: Alamo Permian Resources, LLC Tetra Tech Address: 415 W. Wall St. Suite 500 4000 N. Big Spring, Suite 401 City: Midland Texas, 79701 Midland, Texas Phone number: (432) 557-5847 (432) 682-4559 Fax: Email: ike.tavarez@tetratech.com

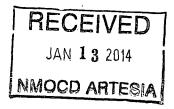
Depth to Groundwater:	Ranking Score	Site Data
<50 ft	20	
50-99 ft	10	10
>100 ft.	0	
WellHead Protection:	Ranking Score	Site Data
Water Source <1,000 ft., Private <200 ft.	20	
Water Source >1,000 ft., Private >200 ft.	0	0
Surface Body of Water:	Ranking Score	Site Data
<200 ft.	20	
200 ft - 1,000 ft.	10	
>1,000 ft.	0	0
The second popularies and the second		RECEIVED
Total Ranking Score:	22.2.2.10.32.3	
		JAN 1 3 2014

Acceptable Soil RRAL (mg/kg) Total BTEX

50

TPH

1,000


NMOCD ARTESIA

Benzene

10

November 5, 2013

Mr. Mike Bratcher
Environmental Engineer Specialist
Oil Conservation Division, District 2
801 South First Street
Artesia, New Mexico 88210

Re: Closure Report for the Alamo Permian Resources, LLC., West Artesia Grayburg Unit Tank Battery (#13), Unit I, Section 7, Township 18 South, Range 28 East, Eddy County, New Mexico (2RP 1070).

Mr. Bratcher:

Tetra Tech, Inc. (Tetra Tech) was contacted by Alamo Permian Resources, LLC., (Alamo) to assess spills from the West Artesia Grayburg Unit Tank Battery (WAGU #13), Unit I, Section 7, Township 18 South, Range 28 East, Eddy County, New Mexico (Site). The spill site coordinates are N 32.7603500°, W 104.2067700°. The site location is shown on Figures 1 and 2.

Background

According to the State of New Mexico C-141 Initial Report, the leak was discovered on March 15, 2012, and released approximately forty (40) barrels of produced water due to a flowline leak from the WAGU #13. The spill occurred in the pasture directly west of the tank battery along Buckaroo Rd and zero (0) barrels were recovered. Tetra Tech and the OCD met onsite on August 15, 2013 to discuss the site. The spill area was excavated and sampled by a previous consultant. Based on the data it was agreed upon that vertical delineation on the open excavation would be required prior to lining and backfilling the site. The WAGU #13 C-141 form is enclosed in Appendix A. In addition, an excavated area north of the spill was noted during the inspection. As recommended by the OCD, samples were to be collected from the north spill area.

Groundwater

The New Mexico State Engineer's Office data showed two wells located in Section 21 and 35, Township 18 South, Range 28 East, with depths to water ranging from 65' to 225' below surface. According to the NMOCD groundwater map, the closest wells are listed in Section 7 and 8, with reported depths to groundwater of 49' and 69', respectively. According to the topographic map, the site location shows a relative surface elevation of 3622'. Based on the water wells and the relative elevations (Section 7 - 3594' and Section 8 - 3599'), the groundwater depth at the site appears to range from 75' to 90' below surface. The groundwater data is shown in Appendix B.

Regulatory

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX. Based upon the depth to groundwater, the proposed RRAL for TPH is 1,000 mg/kg.

Assessment Work Plan

On September 5, 2013 Tetra Tech personnel inspected and sampled the WAGU TB (#13) spill area. The WAGU TB (#13) spill area had already been excavated and sampled by a previous consultant and results are attached in Table 1 – Soil Sample Analytical Data Summary.

In addition Tetra Tech collected samples from the north excavation (North Spill Area) for bottom hole (AH-1 and AH-2) and sidewall samples. Selected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B and chloride by EPA method 300.0. The sampling results are summarized in the WAGU TB – North Spill Table 3. The sample locations are shown on the WAGU Figure 3. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C.

TETRATECH

Referring to Table 1, bottom hole samples SS-8 and SS-9 were both elevated for chlorides at 2,560 mg/kg and 3,460 mg/kg, respectively and several sidewalls also showed elevated chlorides. Referring to Table 3, the area of the north spill AH-1 and AH-2 showed elevated chloride levels. In the area of AH-1 the chloride level was reported at 2,260 mg/kg and was undefined. In the area of AH-2 the chloride level was reported at 11,700 mg/kg and was also undefined. Several of the sidewall samples also showed elevated chloride readings.

On September 17, 2013, Tetra Tech personnel supervised the installation of boreholes (B-1, B-2 and B-3) utilizing an air rotary drilling rig to define the vertical extents. The soil borings were installed to a total depth of 51.0' for B-1 (between SS-8 and SS-9), 51.0' for B-2 (North Spill - AH-1) and 21.0' for B-3 (North Spill - AH-2). The sampling results are summarized in Table 2 and Table 3. Referring to Table 2, chloride concentrations decreased with depth and were vertically defined. Boreholes (B-1 and B-2) showed a deeper impact the subsurface soils; however B-1 decreased to 862 mg/kg at 40.0' and B-2 decreased to 675 mg/kg at 30.0' below surface. B-3 did not show a significant chloride impact to the subsurface soils and appears to have shallow concentrations of 1,160 mg/kg at 10.0' and declined to 380 mg/kg at 15.0' below surface. The borehole results are summarized in Table 2 and Table 3.

Remediation and Conclusion

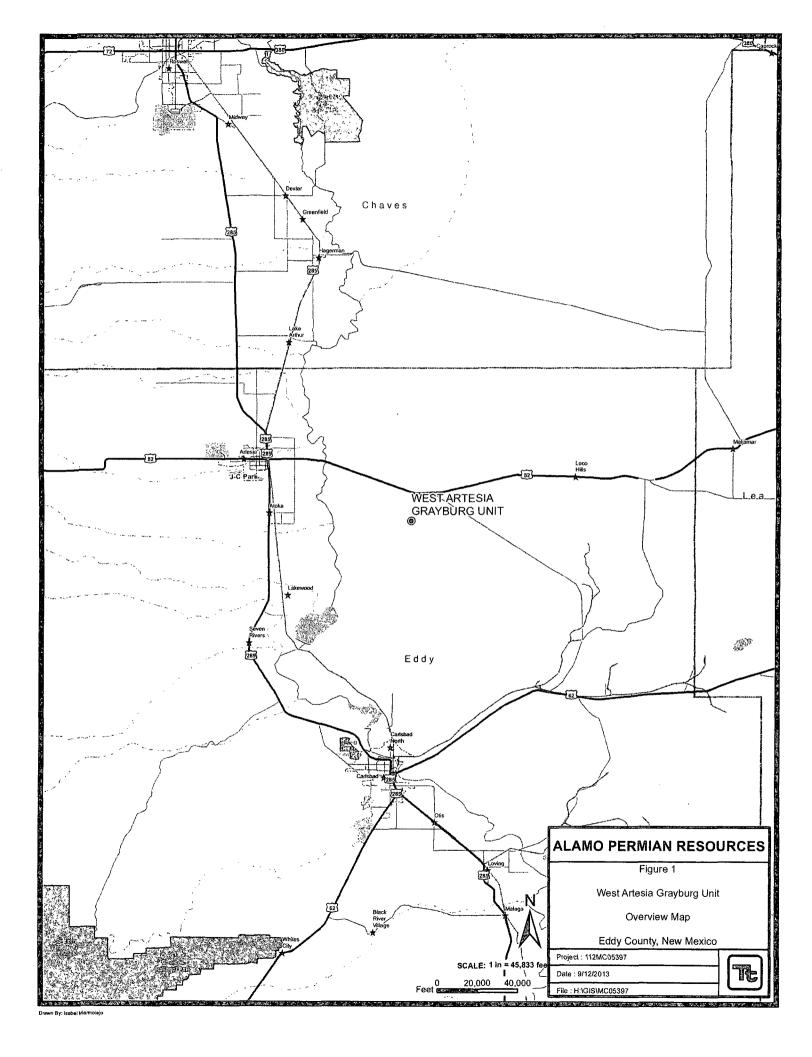
Based on the approved work plan, Tetra Tech personnel supervised the excavation of the site. The final excavation depths of the soil remediation were met as stated in the approved work plan. The excavated areas and depths are highlighted in Tables 2 and Table 3 and shown in Figures 4. The excavated areas of the WAGU TB and WAGU TB (North Spill) were capped at 4.0' below surface with 40 mil plastic liner and backfilled with clean soils to grade. Several of the sidewalls were over excavated to address the elevated chlorides and confirmation samples are included in Table 1.

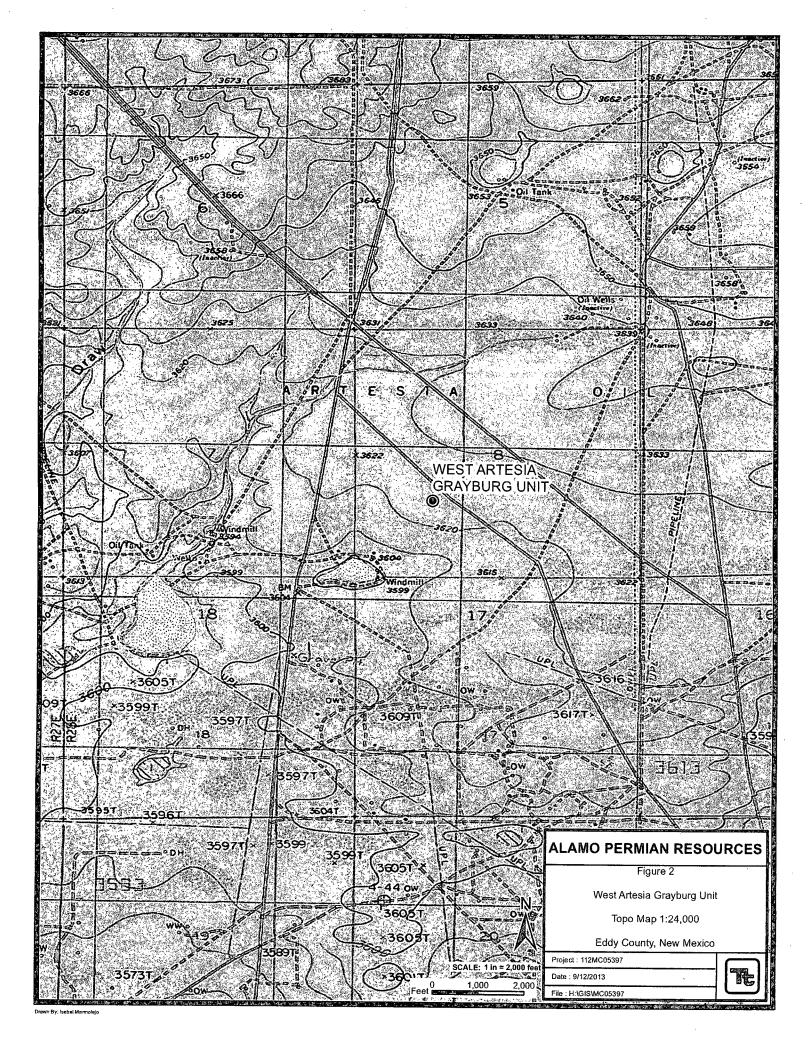
Prior to the lining, Tetra Tech contacted the OCD and discussed the drilling sampling results. The OCD approved lining and backfilling the areas of the WAGU TB and WAGU TB North Spill. Approximately 3,080 cubic yards of stockpiled and excavated soil were transported to the Lea Land facility for proper disposal.

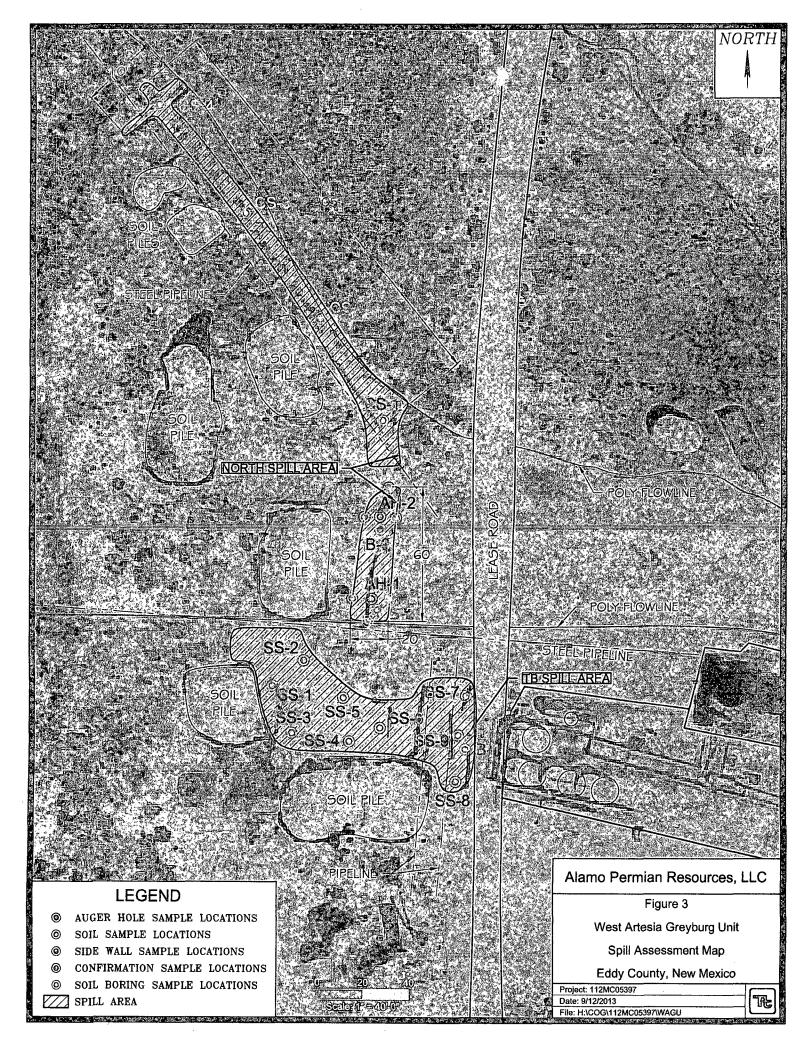
Based on the remedial activities performed, Alamo request closure of the site. A copy of the C-141 (Final) is included in Appendix A. If you have any questions or comments concerning the remedial activities, please call at (432) 682-4559.

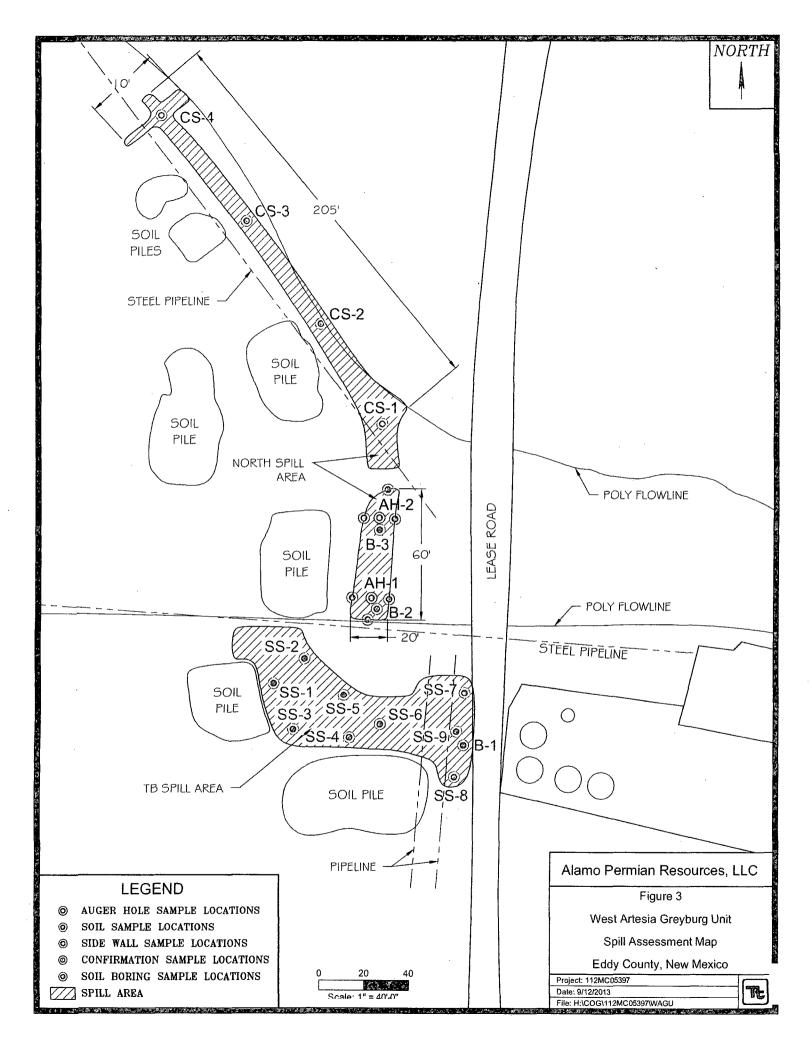
Respectfully submitted,

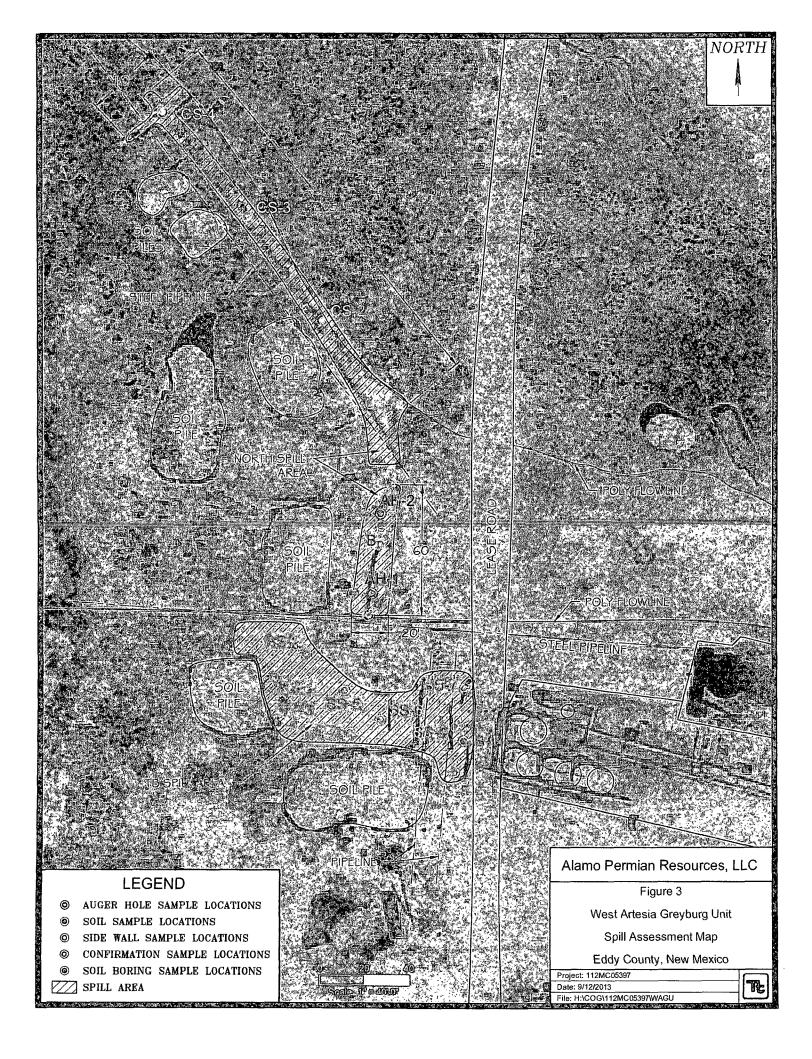
TETRA TECH

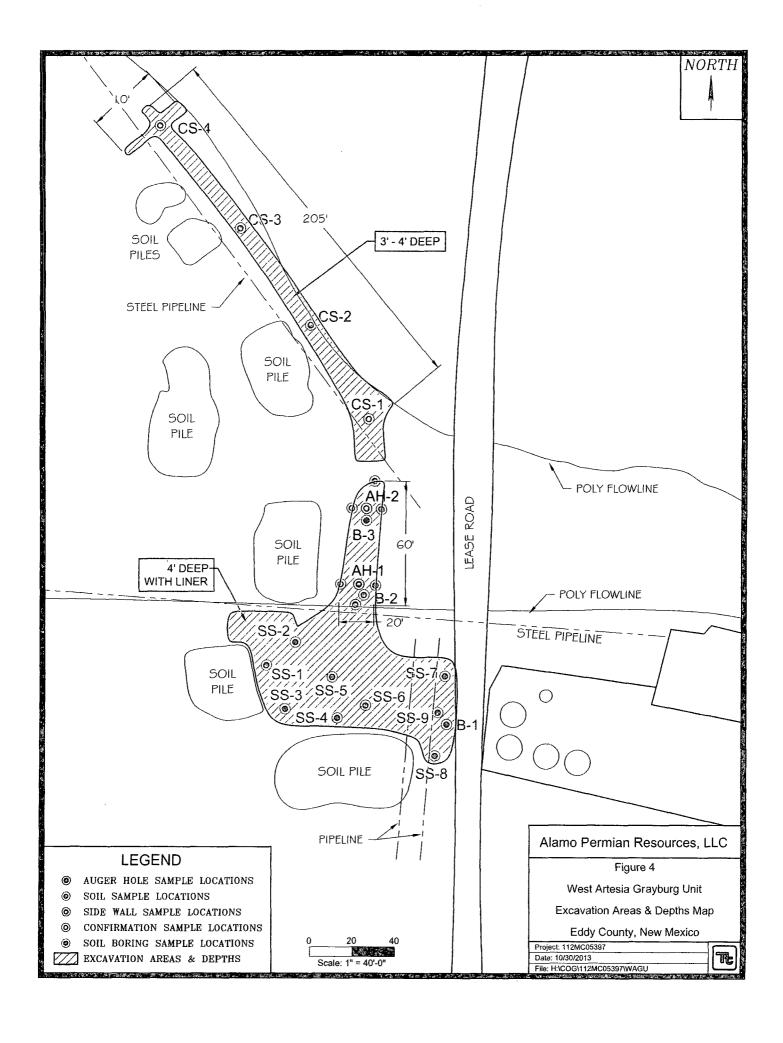

Tom Elliott

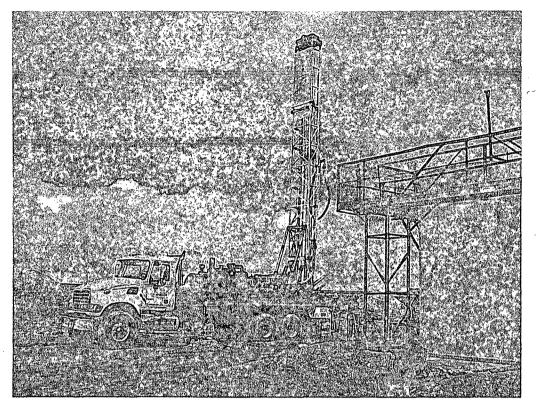

Project Manager

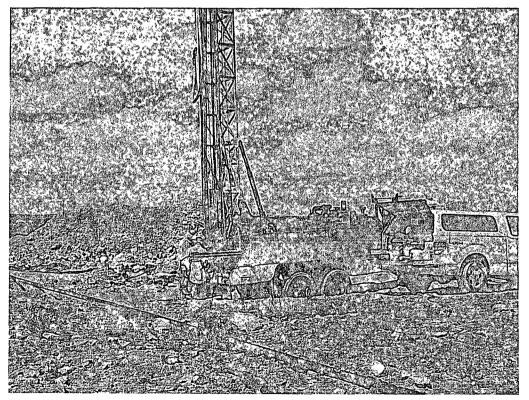

cc:


Helms Oil - Hollie Lamb

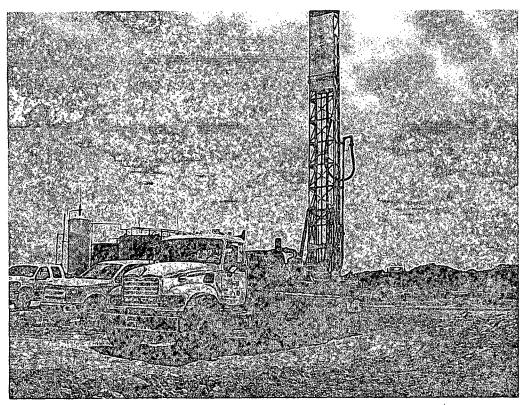

FIGURES

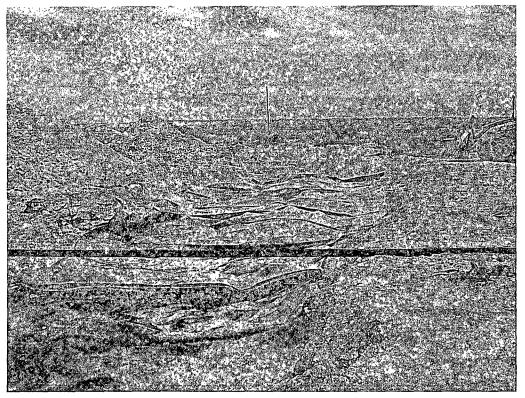




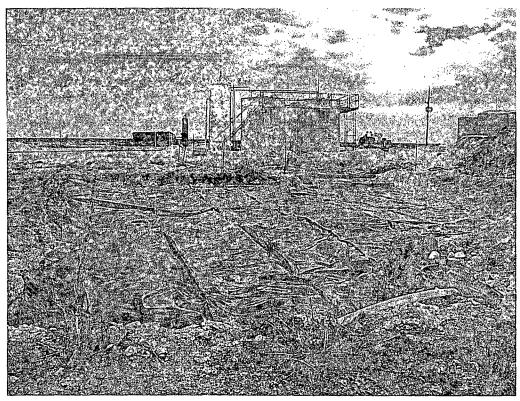

t :

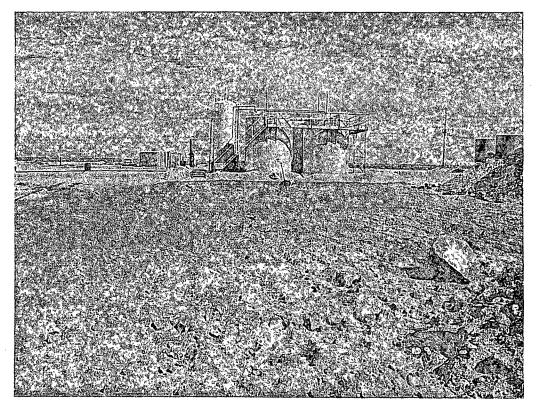
Alamo Permian Resources, LLC West Artesia Grayburg Unit 13 Eddy County, New Mexico


View Northwest – B-1 being installed in the area of SS-8 and SS-9.


View Northwest – B-2 being installed in the area of AH-1 and AH-2.

Alamo Permian Resources, LLC West Artesia Grayburg Unit 13 Eddy County, New Mexico


View Southeast – B-3 being installed in the area of AH-1 and AH-2.


View North - Liner installed in area of AH-1 and AH-2.

Alamo Permian Resources, LLC West Artesia Grayburg Unit 13 Eddy County, New Mexico

View East - Liner installed in the area of SS-1 thru SS-9.

View East - Backfill

SETABLES

Table 1
Soil Sample Analytical Data Summary
Alamo Permian Resources LLC
West Artesia Grayburg Tank Baltery Spill
11-0117-05

Location	Date	Depth.	Status :	Location	Field EC	Chloride	GRO	DRO	ORH	Total TPH/
+ 《(West) 》《		Feet BGS		Period 19	:_(mS/cm)	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
RRAL:			7.E019784379.	49.5005270725	The state of the s	THE STATE OF STATE OF STREET		A CONTRACTOR OF THE PROPERTY O		and the state of t
SS-1	8/4/2011	3	in-situ	Side	0.7	848	<19.5	96.8	<19.5	96.8
SS-2	8/4/2011	3	in-situ	Side	1.3	3,510	<17.9	24.4	<17.9	24.4
SS-3	8/3/2011	2	in-situ	Side	0.8	1,720	<15.5	569	<15.5	569
SS-4	8/3/2011	1	in-situ	Bottom	0.6	527	80.8	1,610	<77.7	1,690
SS-5	8/3/2011	5	in-situ	Side	0.8	2,340	<16.7	26.6	<16.7	26.6
SS-6	8/4/2011	2	in-situ	Bottom	0.4	527	127	838	<16.4	965
SS-7	8/4/2011	2	in-situ	Bottom	2.8		<16.7	60.6	<16.7	60.6
	8/4/2011	8	in-situ		8.0	567				
SS-8	8/4/2011	2	in-situ	Bottom	3.4		<16.3	<16.3	<16.3	<16.3
	8/5/2011	12	in-situ		1.3	2,560				
SS-9	8/4/2011	2	in-situ	Bottom	1.8		<16.2	22.7	<16.2	22.7
	8/4/2011	14	in-situ		1.6	3,460				

Notes: Analysis performed by Xenco Laboratories, Odessa, Texas

Bold indicates analyte was detected.

Bold and blue indicates analyte is above recommneded remediation action levels.

All results are reported in mg/Kg.

TPH was analyzed via Method SW8015 Mod.

Chloride was analyzed via Method EPA 300/300.1.

Symbol " - " indicates analyte was not sampled.

Table 2 Alamo Permian W. Artesia Grayburg (WAGU) Tank Battery Eddy County, New Mexico

0115				Soil	Status	
Sample ID	Sample Date	Sample Depth (ft)	BEB Depth (ft)	In-Situ	Removed	Chloride (mg/kg)
B-1	9/17/2013	0-1			X	210
	11	2-3			X	1,410
	н	5-6	-	Х		6,990
	11	7-8	-	Х		3,270
	"	10-11	-	Х		3,950
	н	15-16	-	Х		1,500
	ш	20-21	-	Х		1,150
	н	25-26	-	Х		2,110
	II	30-31	-	Х		1,610
	u	40-41	-	Х		862
	11	50-51		X		381
SS-2 Sidewall	9/27/2013	-	-	Х		108
SS-3 Sidewall	9/27/2013	-	-	Х		789
SS-5 Sidewall	9/27/2013	-	-	Х		793

(-) Not Analyzed

(BEB) Below Excavation Bottom

Excavation Depths
40 Mil Liner Installed

Table 3
Alamo
West Artesia Grayburg Unit TB - North Spill
Eddy County, New Mexico

	Sample	Sample	Soil 9	Status	T	PH (mg/kg)	Benzene	Toluene	Ethlybenzene	Xylene	Total	Chloride
Sample ID	Date	Depth (ft)	In-Situ	Removed	GRO	DRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	BTEX (mg/kg)	(mg/kg)
AH-1 (3' Bottom Hole)	9/5/2013	0-1 BEB			<50.0	<4.00	<50.0	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	389
	н	1-1.5 BEB											2,260
South Wall	9/5/2013	-	Х		<50.0	<20.0	<50.0	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	557
East Wall	9/5/2013	-	Х		<50.0	<20.0	<50.0	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	2,330
West Wall	9/5/2013		Х		122	<8.0	122	<0.0400	<0.0400	<0.0400	0.0797	0.0797	1,770
West Sidewall	9/27/2013	-	·X		-	-		-	-	-			44.4
B-2	9/17/2013	建设0.1 集。		*X:*				10.574	17. K. S.	V. F.			1650
	11	2-3		X		VE. 12.7	The Y		W.		KAZIWI	THE SE	2,410
	н	5-6	Х		-	-	-	-	-	-	-	-	2,950
	11	7-8	X.		-	-	-	-	-	-	_	-	3,600
	. "	10-11	Х		-	-	-	-	-	-	~	-	1,830
	11	15-16	Х		-	-	-	-	-	-	-	-	1,250
	11	20-21	Х		-	-	-	-	-	-	-	-	1,530
	11	25-26	Х		-	-	-	-	-	-	-	-	1,920
	11	30-31	Х		-	-	-	-	-	-	-	-	675
	"	40-41	Х		-	-	-	-	-	-	-	-	335
	"	50-51	Х		-	-	-	-	-		-	-	970
AH-2 (2' Botom Hole)	9/5/2013	0-1 BEB	X		64.7	<20.0	64.7	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	11,700
East Wall	9/5/2013		Х		52.7	<20.0	52.7	<0.100	<0.100	<0.100	0.148	0.148	533
West Wall	9/5/2013	-	X		165	<20.0	165	<0.0100	<0.0100	<0.0100	0.175	0.175	1,930
West Sidewall	9/27/2013	-	Х		-	-		-	-	-	-	-	<20.0
B-3	9/17/2013	r 0-1°€,		X.		G 64 - 54 E					374		温 205。
	н	7. 2.3 2.3		* X	1957.50		7 1 10 %	40.75				14174	1,850
	п	5-6	Х		-		-	-	-	-	-	-	960
	11	7-8	Х		-	-	-	-	-	-	-	-	2,150
	"	10-11	Х		-	-	-	-	-	-	-	-	1,160
	п	15-16	X			•	-	-	-	-	-	-	380
	н	20-21	Х		-	-		-	-		-		250

Table 3 Alamo

West Artesia Grayburg Unit TB - North Spill Eddy County, New Mexico

	Sample	Sample	Soil S	Status	ΤΤ	PH (mg/kg)	Benzene	Toluene	Ethlybenzene	Xvlene	Total	Chloride
Sample ID	Date	Depth (ft)	In-Situ	Removed	GRO -	DRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	BTEX (mg/kg)	(mg/kg)
CS-1 (2' Bottom Hole)	9/5/2013	-	X		<50.0	<20.0	<50.0	<0.100	<0.100	<0.100	0.150	0.150	102
CS-2 (3' Bottom Hole)	9/5/2013	-	X		<50.0	<4.0	<50.0	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<20.0
CS-3 (3' Bottom Hole)	9/5/2013		X		<50.0	<4.0	<50.0	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<20.0
CS-4 (2' Bottom Hole)	9/5/2013	-	X		<50.0	<4.0	<50.0	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	873

BEB - Below Excavation Bottom

District [
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Azlec, NM 87410
District IV.
1220 S. St. Francis Dr., Santa Fe, NM 87505

nMLB1208658510

State of New Mexico Energy Minerals and Natural Resources MAR 16 2012

RECEIVED

Form C-141 Revised August 8, 2011

☐ Final Report

NMOCDniARTESHA epriate District Office in accordance with 19,15,29 NMAC.

M Initial Report.

Santa Fe, NM 87505. Release Notification and Corrective Action

OPERATOR

274841

Oil Conservation Division 1220 South St. Francis Dr.

				ESOUCES, LL		Contact S7	EVEN MASTI	N					
Address, 4							No. 432 557 584	47					
Facility Nar	ne WES	F ARTESIA	GRAYE	SURG UNIT 13		Facility Typ	e INJECTION						
Surface Ow	ner STAT	Έ		Mineral C	wner	STATE			API No	. 30-015-02636			
						N OF RE	PACE						
Unit Letter	Section	Township	Range	Feet from the		South Line	Feet from the	Fast	West Line	County			
1	7	188	28E	2310		S	330	Casii	E	EDDY			
	l			L									
				Latitude 32.7	60350	0 Longitud	e -104.2067700						
Latitude 32.7603500 Longitude -104.2067700													
NATURE OF RELEASE													
Type of Release: BRINE WATER. Volume of Release: EST 40 bbls Volume Recovered: 0 bbls													
BRINE WATER													
Source of Release: FLOWLINE Date and Hour of Occurrence: Date and Hour of Disco													
3/15/12 3/15/12 3/15/12 Was Immediate Notice Given? If YES, To Whom?													
		Ø	Yes [No Not Re	quired	STEVEN	MASTIN			, , , , , , , , , , , , , , , , , , , ,			
By Whom? RICKY RODRIGUEZ Not Required STEVEN MASTIN Date and Hour 3/15/12 1:00 P.M.													
By Whom? RICKY RODRIGUEZ Date and Hour 3/15/12 1:00 P.M.													
10-111-6						<u> </u>							
If a Watercou	irse was imi	pacted, Descri	ое ғину.										

Describe Cau	se of Proble	em and Remed	lial Action	1 Taken.*									
Cause of prob	olem: LEAK	IN FLOWL	NE										
Remedial Act	ion Taken:	A BACKHOI	E WAS DI							SOIL TO REDUCE THE			
PENETRATI	ON OF CO	NTAMINAT	ES; CONT	raminated so	IL WII	LL BE HAUL	ED TO GANDY !	MARLI	EY FOR DI	SPOSAL.			
Describe Arc	Affected a	ind Cleanup A	ction Tak	cn. *									
		·											
I hereby certi	fy that the in	nformation ei	ven above	is true and compl	ete to t	he best of my	knowledge and un	derstan	nd that nurs	uant to NMOCD rules and			
regulations al	operators :	are required to	report an	Wor file certain re	iease n	otifications ar	d perform correct	ive acti	ons for rele	ases which may endanger			
										eve the operator of liability , surface water, human health			
										impliance with any other			
federal, state,	or local law	s and/or regu	lations.							- II II G (
	$\overline{}$. (~ · /	_	{		OIL CONS	ERV	ATION	DIVISION			
Signature:		May	27/09	200			Signed By	al	14 Br	Willes			
Printed Name	CARLEST	LUKEB		~ ~	- 1	Approved by	Environmental Sp	ecialist	:				
Filittett (Valite	CARLES	UNER				M	R 2 6 201	2					
Title: REGUI	ATORY C	OORDINAT	OR			Approval Date	JR 2 6 2012	2. F	expiration [Date:			
E-mail Addre	se estakeria	datamoresour	res com			Conditions of	Approval:						
C man Audit	a. caence	2014211101 C-11/12)	···········				nor Oi	CD Ru	iles &	Attached			
	3/16/2012			Phone: 432 664 70	559		- CHRMIII KE	IAIFF					
Attach Addit	ional Shee	is If Necessa	ıry			Guideline	L NOT LATER	THA	N:	JRP-1070			
						PROPOS/	126/20	2		YKI 1010			
						4	1001-0						

District I
1625 N. French Dr., Hobbs, NM 88240
District II
1301 W. Grand Avenue, Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV

1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141
Revised October 10, 2003

JAN 13 2014
Submit 2 Copies to appropriate
District Office in accordance
with Rule 116 on back
side of form

Release Notification and Corrective Action

						OPERA T	TOR		☐ Initia	al Report	\boxtimes	Final Report	
Name of Co				n Resources, LL	\mathbf{C}	Contact	Ste	even M	Lastin				
Address		W. Wall St.				Telephone N							
Facility Nan	ne '	West Artesia	ı Graybı	ırg Unit 13	F	acility Typ	e Inject	ion Li	ne				
Surface Ow	ner: State			Mineral Ov	vner				Lease N	lo. (API#)	30-015	-02636	
				LOCAT	ΓΙΟΝ	OF RE	LEASE						
Unit Letter I	Section 7	Township 18S	Range 28E	Feet from the 2310	North/	South Line S	Feet from the 330	East/\	West Line E	County	Eddy		
Latitude N 32.7603500° Longitude W 104.2067700° NATURE OF RELEASE													
Type of Release: Brine Water Volume of Release: Est 40 bbls Volume Recovered 0 bbls													
Source of Release: Flowline Date and Hour of Occurrence 03/15/2012 Date and Hour of Discovery 03/15/2012													
Was Immediate Notice Given? Yes No Not Required If YES, To Whom?													
By Whom? Ricky Rodriguez Date and Hour 03/315/2012 1:00 p.m.													
Was a Watercourse Reached? ☐ Yes ☑ No If YES, Volume Impacting the Watercourse. N/A													
If a Watercou	rse was Imp	pacted, Descri	be Fully.*	5									
Describe Cau	se of Proble	em and Remed	lial Action	Taken.*									
The leak in the				e was put back into en.*	service	e. Alamo scr	aped the area usin	ig a bac	khoe.				
Tetra Tech pe	rsonnel inspal. The site	pected the site	and colle	cted samples to def ght up to surface gr	ine the	spills extent th clean back	. Soil that exceede	ed the F ra Tech	RAL was r prepared a	removed and closure repo	hauled ort and s	away for submitted it	
regulations al public health should their o	l operators a or the envir perations ha ment. In ac	are required to onment. The ave failed to a ddition, NMO	report an acceptanc dequately CD accept	is true and complet d/or file certain rele e of a C-141 report investigate and ren tance of a C-141 rep	ease no by the nediate	tifications ar NMOCD ma contamination	nd perform correct arked as "Final Re on that pose a thre	tive acti eport" deat to gr	ions for rele oes not reli ound water	eases which a eve the oper s, surface wa	may en ator of ter, hur	danger liability nan health	
							OIL CONS	SERV	ATION	DIVISIO	N		
Signature:					}			1					
Printed Name	: Ike Tavare	ez			A	approved by	District Superviso	or:					
Title: Project	Manager				A	approval Dat	e:		Expiration I	Date:			
E-mail Addre	ss: Ike.Tava	urez@TetraTe	ch.com		c	Conditions of	Approval:			Attached			
Date:			Phone:	(432) 682-4559							•		

^{*} Attach Additional Sheets If Necessary

APPENDIX B

Water Well Data Average Depth to Groundwater (ft) West Artesia Grayburg Unit #13 Injection Eddy County, New Mexico

	1	7 Sc	uth	2	7 East			17 5	South	;	28 East		_		17 S	outh	2	9 East	
6	5 30		4	3	2	1	6	5	4	3	2	1		6	5	4	3	2	1
7 14	8		9	10	11 .54 50	12	7	8	9	10	11	12	1	7	8	9	10	11	12
18	17		16	15	14	13	18	17	16	15	14	13		18	17	16	15	14	13
111 19	90 20		175 21	22	23	24	19	20	21	22	23	24		19	20	21	22	23	24
	<u>Ļ</u>		<u></u>	<u> </u>	40				<u> </u>	79			1	<u></u>			60		
30	29		28	27	26	25	30	29	28	27	26	25		30	29 210 208'	28	27	26	25
31	32 140		33	34	35	36	31	32	33	34	35	36		31	32	33	34	35 153	36
		والمستحددة	outh	· · · · ·	7 East	استسيبار	L	401	South	ك	28 East		j	L	40.0				<u> </u>
		8 50	outn 14			7.	i c	والأناب والمراجع	30uth	3			3	10	18 S			9 East	72
0	5		4	3	2	1	6	5	108		2	1		6	5	4	3	2	<u> </u>
7	8		9	10 50	11	12	7 Site 49	Ž.	9	10	11	12		7	8	9	10	11	12
18	17		16	15	14	13	18	17	16	15	14	13		18	17	16	15	14	13
19	20		21	22	23	24	19	20	21	22	23	24		19	20	21	22	23	24
30	29		28	27	26	25	49	29	225 28	27	26	25		30	29	28	27	26	25
31 65	32		100 33	34	35	36	31	32	33	34	35	36		31	32	33	34	35	36
	L	***************************************		1						<u> </u>	65							<u> </u>	
	1	9 Sc	outh	2	7 East			19 9	South	:	28 East				19 50	outh	2	9 East	
6	5	20	4	3	2	1	6	5	4	3	2	1		6	5	4	3	2	1
7	8	50	9	10	11	12	7	8	9 246 265	10	11	12		7	8	9	10	11	12
18	17		16	15	1482.4	13	18	17	16	15	14	13		18	17	16	15	14	13 123
	1		18		107.7	60.7	91	 	1	<u> </u>			1					1	101
19	20		21	22	23	24	19	20	21	22	23	24		19	20 62.9	21	22	23	24
30	29		28	27	26	25	30	29	28	27	26	25		30		28	27	26	25
31	32		33	34	35	36	31	32	33	34	35	36		31	32	33	34 62	35 121	38
							L				}	1 1	ļ.	1	1	1	60	110	115

- 88 New Mexico State Engineers Well Reports
- 105 USGS Well Reports
- 90 Geology and Groundwater Conditions in Southern Lea, County, NM (Report 6) Geology and Groundwater Resources of Eddy County, NM (Report 3)
- 34 NMOCD Groundwater Data
- 123 Tetra Tech installed temporary wells and field water level
- 143 NMOCD Groundwater map well location

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)

(R=POD has been replaced, O=orphaned,

C=the file is closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (NAD83 UTM in meters)

(in feet)

•			.,					J	., .						
		POD		Q	Q (2					ı	Depth De	epth Wat	er	
POD Number	Code	Subbasin	County	64	16	a Se	c Tw	ıs f	Rng	Х	Y	Well W	aterColu	mn	
CP 00361			ED		1 (3 09	19	s a	28E	576195	3615347*	365	265	100	
CP 00361 EXPL			ED	3	1 :	3 09	19	S	28E	576094	3615246*	365	265	100	
CP 00502			ED		1 1	1 18	3 19	s a	28E	573001	3614478*	100	91	9	
CP 00836			ED		1 1	1 18	19	s :	28E	573001	3614478*	110			
CP 00837			ED		1 1	1 18	19	s a	28E	573001	3614478	110			
CP 00838			ED		1 1	1 18	19	s a	28E	573001	3614478*	. 195-4	007 for m		

Average Depth to Water: 207 feet

Minimum Depth:

91 feet

Maximum Depth: 265 feet

Record Count: 6

PLSS Search:

Township: 19S

Range: 28E

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warrantes, expressed or implied, concerning the accuracy, completeness, reliability, usability, or sultability for any particular purpose of the data.

4/16/12 8:43 AM

WATER COLUMN/ AVERAGE DEPTH TO WATER

(quarters are 1=NW 2=NE 3=SW 4=SE)
(quarters are smallest to largest) (NAD83 UTM in meters)
No records found.

PLSS Search:

Township: 17S Range: 28E

The data is lumished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data

4/16/12 8:43 AM

WATER COLUMN/ AVERAGE DEPTH TO WATER

(A CLW##### In the POD suffix indicates the POD has been replaced & no longer serves a water right file.)

(R=POD has been replaced, O=orphaned,

C=the file is closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (NAD83 UTM in meters)

(in feet)

2.,	vio vou,		(dog.co.		Ų,	•••	10311	o large	,31,	(11/10/00/01/11	i in motoraj		fui ices)	
		POD		Q	Q	Q					,	Depth C	Depth Wat	ter
POD Number	Code	Subbasin	County	64	16	4	Sec	Tws	Ang	X			Nater Colu	
L 01142 POD1		ι	LE		2	4	15	185	28E	578921	3623453*	80		
L 01150 POD1		t.	LE		1	1	35	185	28E	579344	3619433*	135	65	70
FIA 09588			EO		1	2	3 3	185	28E	576976	3619384*	300		
										Avera	age Depth to) Water:	65 feet	

Minimum Depth:

65 feet

Maximum Depth:

65 feet

Record Count: 3

PLS\$ Search:

Township: 18S

Range: 28E

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warrantes, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

4/16/12 8:39 AM

WATER COLUMN/ AVERAGE DEPTH TO WATER

(A CLW#### in the POD suffix indicates the POD has been replaced & no longer serves a water right

(R=POD has been replaced, O=orphaned,

C=the file is (quarters are 1=NW 2=NE 3=SW 4=SE) (autodoro pro amplicat to largest) (ALADRO LITA) in materal

/1- fa -11

me.)	closed)		(quarter	rs aı	e s	ma	Dest t	o largi	est)	(NAD83 UTA	/in meters)		(in teet)	
POD Number	Code	POD Subbasin	County		Q 16	-	Sec	Tws	Rng	, X			epth W	
BA 03714			СН	4	4	2	08	185	27E	566212	3625253°	381		
FIA 03917			LE	4	1	2	10	185	27E	569019	3625660*	130	50	- 80
RA 04048			LE	1	4	4	14	185	27E	570841	3623030*	2096		
PA 04211			CH		3	1	28	185	27E	566512	3620562*	120	100	50
BA 04298			ED		1	2	19	188	27E	564082	3622523*	92		
RA 05524			ED		2	4	33	185	27E	567721	3618532*	80	49	41
PA 05660			ED		3	4	31	185	27E	564094	3618090*	305	6 5	240
RA 05664			ED		4	1	33	185	27E	566914	3618936*		145	
BA 08091			ED	1	2	3	29	185	27E		3620222*	90	17	73
										Aven	age Depth to	Water:	71 fee	ıt
											Minimun	n Depth:	17 fee	t
											Maximun	Depth:	145 fee	it

Record Count: 9

PLSS Search:

Township: 18S

Range: 27E

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

4/16/12 8:40 AM

WATER COLUMN AVERAGE DEPTH TO WATER

(A CLW#### in the POD suffix Indicates the POD has been replaced & no longer serves a water right

(R=POD has been replaced, O=orphaned, C=the file is

(quarters are 1=NW 2=NE 3=SW 4=SE)

uarters are smallest to largest) (NAD83 UTM in meters)

(in fact)

(ile.)	closed)	- · - ·	(quarters are smallest to			o large	est)	(NAD83 UTA	A in meters)		(In feet)	ı		
		POD			Q						1	Depth D	epth V	later
POD Number	Code	Subbasin	County	64	16	4	Sec	Tws	Rng	, X	Y	Well V	VaterCo	olumn
FIA 01493			ED		2	1	27	175	27E	568468	3630529*	876		
BA 01716 (D)	0		ED	4	4	3	16	175	27E	566953	3632420*	1220	175 /	1045
RA 01716 S			ED	4	4	3	16	17\$	27E	566953	3632420*	1200		
BA 02966			€D	4	4	4	05	178	27E	566117	3635707*	80	30	50
FIA 03279			ED		3	2	07	175	27E	564020	3635011*	250	14	236
BA 03661			ED	3	2	3	32	175	27E	565186	3628038*	330	140	190
RA 03664			CH	3	2	3	32	175	27E	565186	3628038*	400	100	300
BA 03694			ED			4	17	17\$	27E	565854	3632721*	300	90	210
<u>HA 03816</u>			CH			4	17	178	27E	565854	3632721*	945	931	14
BA 04114			LE	4	4	3	16	178	27E	586953	3632420*	1042	260	782
HA 04153			СН	4	4	3	16	178	27E	566953	36324201	1220	175	1045
FA 04320			ED			3	17	178	27E	565053	3632719*	120	50	70
RA 04554			ED			1	23	178	27E	569859	3631947	220	40	180
RA 04581			ED		4	2	26	175	27E	570871	3630142*	250		
BA 04786			ED	4	3	2	18	175	27E	564133	3633277*	138	111	27
RA 06531			ED	4	1	4	17	175	27E	565747	36328211	200		
RA 06560			СН	2	1	2	20	178	27E	565757	3632217*	133	80	53
FA 06635			ED	2	2	2	18	178	27E	564531	3633852*	325	60	265
BA 07774			ED	3	2	1	11	175	27E	569933	3635251*	100	50	50
BA 07844			ED	3	4	3	16	175	27E	566753	3632420*	1300	180	1120
HA 07844 EXPL			ED		4	3	16	178	27E	566854	3632521*	1300	180	1120
FIA 08823			ED	1	1	3	17	178	27E	564745	3633019*	348	60	288
RA 11591 POD1			ED	2	1	4	17	178	27E	565800 Aver	3633029 age Depth to	150	0 143 fe	150
										- AGU	o niqeu egi Minimum		0 fe	
											Maximum	•	931 fe	

Record Count: 23

PLSS Search:

Township: 17S Range: 27E

*UTM location was derived from PLSS - see Help

The data is lumished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

4/16/12 8:42 AM

WATER COLUMN AVERAGE DEPTH TO WATER

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

ussa water Respuises

Groundwater

Geographic Area:
New Mexico

M GO

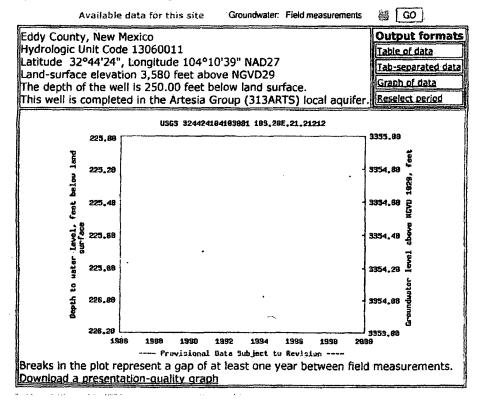
News updated March, 2012

Groundwater levels for New Mexico

NM

Search Results -- 1 sites found

Search Criteria


site_no list =

• 324424104103901

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

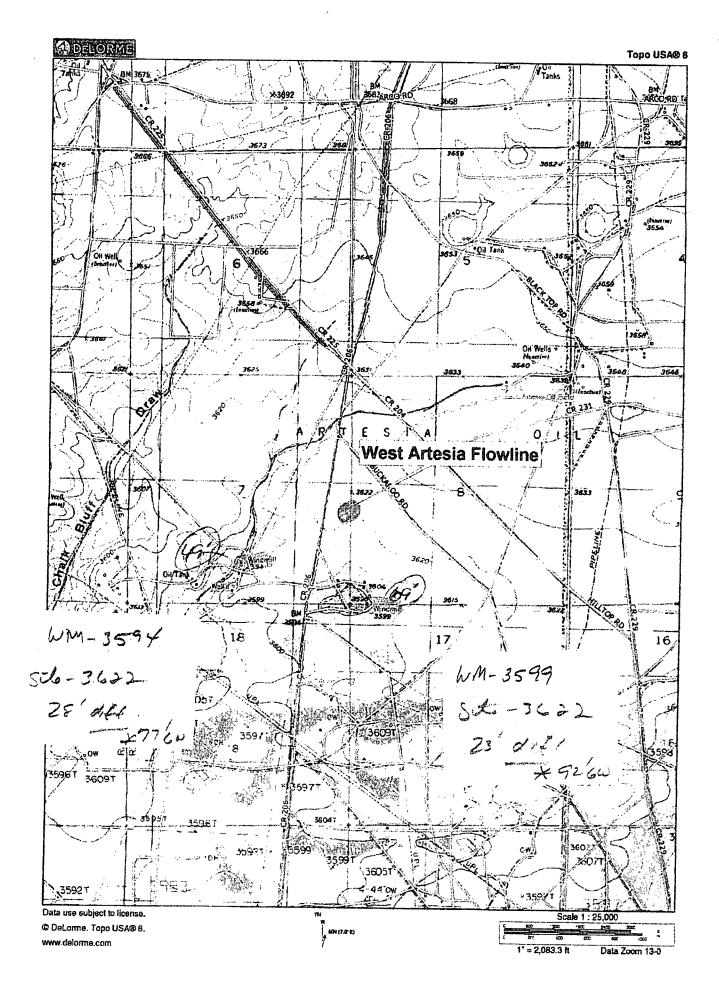
USGS 324424104103901 185.28E.21.21212

Questions about sites/data? Feedback on this web site Automated retrievals Help

Date Tips
Explanation of terms
Subscribe for system changes
News

4.5858,0465

Plug-line


FQIA Privacy

Polities and Notice-

U.S. Department of the Interior | U.S. Geological Survey
Title: Groundwater for New Mexico: Water Levels
URL: http://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

APPENDIX C

Work Order: 13090615 Report Date: September 11, 2013 Page Number: 1 of 3

Summary Report

Tom Elliott Tetra Tech 1910 N. Big Spring Street Midland, TX 79705

Report Date: September 11, 2013

Work Order: 13090615

Project Location: Eddy Co, NM

Alamo/West Artesia Grayburg TB-North Spill Project Name:

Project Number: 112MC05397

			Date	$_{ m Time}$	Date
Sample	Description	Matrix	Taken	Taken	Received
341317	AH-1 0-1' (3'BEB)	soil	2013-09-05	00:00	2013-09-06
341318	AH-1 1-1.5'	soil	2013-09-05	00:00	2013-09-06
341319	AH-1 South Wall	soil	2013-09-05	00:00	2013-09-06
341320	AH-1 East Wall	soil	2013-09-05	00:00	2013-09-06
341321	AH-1 West Wall	soil	2013-09-05	00:00	2013-09-06
341322	AH-2 0-1' (2' BEB)	soil	2013-09-05	00:00	2013-09-06
341323	AH-2 East Wall	soil	2013-09-05	00:00	2013-09-06
341324	AH-2 West Wall	soil	2013-09-05	00:00	2013-09-06
341325	CS-1 Botton Hole (2' BEB)	soil	2013-09-05	00:00	2013-09-06
341326	CS-2 Bottom Hole (3' BEB)	soil	2013-09-05	00:00	2013-09-06
341327	CS-3 Botton Hole (3' BEB)	soil	2013-09-05	00:00	2013-09-06
341328	CS-4 Bottom Hole (2' BEB)	soil	2013-09-05	00:00	2013-09-06

		BTEX			TPH DRO - NEW	TPH GRO
	Benzene	Toluene	Ethylbenzene	Xylene	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
341317 - AH-1 0-1' (3'BEB)	< 0.0200	< 0.0200	< 0.0200	< 0.0200	<50.0 Qr,Qs	<4.00 Qs
341319 - AH-1 South Wall	< 0.100 1	< 0.100	< 0.100	< 0.100	<50.0 Qr,Qs	<20.0 ² Qs
341320 - AH-1 East Wall	$< 0.100^{-3}$	< 0.100	< 0.100	< 0.100	<50.0 Qr,Qs	<20.0 ⁴ Qs
341321 - AH-1 West Wall	< 0.0400 5	< 0.0400	< 0.0400	0.0797	122 Qr,Qs	<8.00 ⁶ Qs
341322 - AH-2 0-1' (2' BEB)	<0.100 7	< 0.100	< 0.100	< 0.100	64.7 Qr,Qs	$< 20.0^{-8} Qs$

 $continued \dots$

¹Dilution due to surfactants.

²Dilution due to surfactants.

³Dilution due to surfactants.

⁴Dilution due to surfactants. ⁵Dilution due to surfactants.

⁶Dilution due to surfactants. ⁷Dilution due to surfactants.

⁸Dilution due to surfactants.

Report Date: September 11, 2013 Work Order: 13090615 Page Number: 2 of 3

$\dots continued$

	BTEX			TPH DRO - NEW	TPH GRO	
	Benzene	Toluene	Ethylbenzene	Xylene	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
341323 - AH-2 East Wall	$< 0.100^{-9}$	< 0.100	< 0.100	0.148	52.7 Qr,Qs	$< 20.0^{-10} Qs$
341324 - AH-2 West Wall	< 0.100 11	< 0.100	< 0.100	0.175	$165_{\rm \ Qr,Qs}$	$< 20.0^{-12} Q_s$
341325 - CS-1 Botton Hole (2' BEB)	$< 0.100^{-13}$	< 0.100	< 0.100	0.150	<50.0 Qr,Qs	$< 20.0^{-14} Qs$
341326 - CS-2 Bottom Hole (3' BEB)	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 50.0	$< 4.00 \mathrm{Qs}$
341327 - CS-3 Botton Hole (3' BEB)	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 50.0	$< 4.00 \mathrm{Qs}$
341328 - CS-4 Bottom Hole (2' BEB)	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 50.0	$< 4.00 \mathrm{Qs}$

Sample: 341317 - AH-1 0-1' (3'BEB)

Param	Flag	Result	Units	RL
Chloride		389	mg/Kg	4

Sample: 341318 - AH-1 1-1.5'

Param	Flag	Result	Units	RL
Chloride		2260	mg/Kg	4

Sample: 341319 - AH-1 South Wall

Param	Flag	Result	Units	RL
Chloride		557	mg/Kg	4

Sample: 341320 - AH-1 East Wall

Param	Flag	Result	Units	RL
Chloride		2330	mg/Kg	4

Sample: 341321 - AH-1 West Wall

Param	Flag	Result	Units	RL
Chloride		1770	mg/Kg	4

⁹Dilution due to surfactants.

¹⁰Dilution due to surfactants.

¹¹Dilution due to surfactants.

 $^{^{12}\}mathrm{Dilution}$ due to surfactants.

¹³Dilution due to surfactants.¹⁴Dilution due to surfactants.

Report Date: September 11, 2013		Work Order: 13090615	Page I	Page Number: 3 of 3	
Sample: 341322	- AH-2 0-1' (2' BEB)				
Param	Flag	Result	Units	RL	
Chloride		11700	mg/Kg	4	
Sample: 341323	- AH-2 East Wall				
Param	Flag	Result	Units	RL	
Chloride		533	mg/Kg	4	
Sample: 341324	- AH-2 West Wall				
Param	Flag	Result	Units	RL	
Chloride		1930	mg/Kg	4	
Param Chloride	- CS-1 Botton Hole (2 Flag	Result	Units mg/Kg	RL 4	
Sample: 341326	- CS-2 Bottom Hole (3	B' BEB)			
Param	Flag	Result	Units	RL	
Chloride		<20.0	mg/Kg	4	
Sample: 341327	- CS-3 Botton Hole (3	' BEB)			
Param	Flag	Result	Units	RL	
Chloride	71.00	<20.0	mg/Kg	4	
Sample: 341328	- CS-4 Bottom Hole (2	2' BEB)			
Param	Flag	Result	Units	RL	
		873	mg/Kg		

Report Date: October 7, 2013

Work Order: 13092724

Page Number: 1 of 2

Summary Report

Tom Elliott Tetra Tech

1910 N. Big Spring Street Midland, TX 79705

Report Date: October 7, 2013

Work Order: 13092724

Project Location: Eddy Co., NM

Project Name:

Alamo Permian/W. Artesia Grayburg (WAGU) #4

Project Number: 112MC05397

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
342928	SS-2 SW	soil	2013-09-24	00:00	2013-09-27
342929	SS-3 SW	soil	2013-09-24	00:00	2013-09-27
342930	SS-5 SW	soil	2013-09-24	00:00	2013-09-27
342931 `	AH-1 West Sidewall	soil	2013-09-24	00:00	2013-09-27
342932	AH-2 West Sidewall	soil	2013-09-24	00:00	2013-09-27

Sample: 342928 - SS-2 SW

Param	Flag	Result	Units	RL
Chloride		108	mg/Kg	4

Sample: 342929 - SS-3 SW

Param	Flag	Result	$\mathbf{U}\mathbf{nits}$	RL
Chloride		789	mg/Kg	4

Sample: 342930 - SS-5 SW

Param	Flag	Result	 Units	RL
Chloride		793	 mg/Kg	4

Sample: 342931 - AH-1 West Sidewall

Report Date: October 7, 2013		Work Order: 13092724	Page 1	Page Number: 2 of 2	
Param	Flag	Result	Units	RL	
Chloride		44.4	mg/Kg	4	
Sample: 342932	- AH-2 West Sidewal				
Param	Flag	Result	${ m Units}$	RL	
Chloride		<20.0	mg/Kg	4	