SITE INFORMATION

		Report	Type: Clos	ure Rep	ort	
General Site Info	mation:	2018-10-54 (STA	Carry Carlos on the P	saita sad		
Site:		Showstoppe	r 7 Federal COM	#1H	· · · · · · · · · · ·	
Company:		COG Operat	ing LLC	•		
Section. Townshi	ip and Range	Unit A	Sec 7	T25S	R29E	
Lease Number:	<u>,</u>	API-30-015-3	6659			• • • • • • • • • • • • • • • • • • •
County:	· · · · · · · · · · · · · · · · · · ·	Eddy County	/	· ·		
GPS:		32.15077° N			104.01644° W	
Surface Owner:	· · · · · · · · · · · · · · · · · · ·	Federal				
Mineral Owner:						
Directions:		South of Malag for 4.2 miles, tr mile stay to the and travel for 2 left (south) and	ga at the intersection urn left (northeast) a e right and travel for 2.1 miles, turn left (v I travel 0.2 miles to	n of Hwy 285 and travel for 2 miles, sta vest) and tra- site.	5 and Longhorn R 1.8 miles, turn le y left and travel fo vel 0.3 miles, sta	Rd., travel east on Longhorn Rd. eft (northwest) and travel for 0.2 or 1.2 miles, turn left (northwest) y right and travel 0.9 miles, turn
Release Data			e na serie			
Date Released:	anna 🦗 Agina ann an Anna ann an Anna Anna Anna An	4/15/2013	neneran eta tu na era gan a fati da	ar annous a recently of	nny synth i'r an gysgry, 1996 yn 1997 - 1997 yn 1997 yn Yn yr yn	anna an annan Bada ann, an anna annan a' cuile a' Bailtea Thara. Ba an 1966 a' Chail a' N
Type Release:		Oil and Produ	ced Water		· · · · · · · · · · · · · · · · · · ·	
Source of Contam	ination:	Well Packing		·		
Fluid Released:		3 bbls oil 15	bbls water			
Fluids Recovered:		2 bbls oil 12	bbls water			
Official Commun	ication:					
Name:	Robert Mc Neill				ike Tavarez	
Company:	COG Operating, LL	С			Tetra Tech	
Address:	One Concho Cente				4000 N Big Spri	ing
, 1447000.	600 W Illinois Ave				Suite 401	
City:	Midland Toyas: 707	01			Midland Toyog	
Chy.		01				
	(432) 000-3023				(432) 682-4559	
Fax.	(432) 684-7137					tests the second
Email:		com	and the second		<u>like.tavarez@te</u>	etratech.com
Ranking Criteria						
Depth to Groundwa	ater:		Ranking Score		Si	te Data
<50 ft		<u></u>	20			
50-99 ft			10		an a	10
>100 ft.			0			
WellHead Protectio			Panking Sooro		04	to Data
Water Source <1.00	00 ft Private <200 ft		20		5/1	
Water Source >1,00	00 ft., Private >200 ft		0			0
	· · · · · · · · · · · · · · · · · · ·					
Surface Body of Wa	ater:		Ranking Score		Sit	te Data
<200 ft.			20			
200 ft - 1,000 ft. >1 000 ft			10			. 0
Tõta	I Ranking Score:		10		an a bhairean a bhile ann a bhile ann an an ann an Arraigh	
						BECEIVEN
		Accepta	ble Soil RRAL (n	ng/kg) 🤲		
		Benzene	Total BTEX	TPH		JAN 2 4 2014
, 		10	50	1,000		
: 	an a	a f de se antique de la companya de				NMOCD ARTERIA

October 24, 2013

Mr. Mike Bratcher Environmental Engineer Specialist Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210

Re: Closure Report for the COG Operating LLC., Showstopper 7 Federal COM #1H, Unit A, Section 7, Township 25 South, Range 29 East, Eddy County, New Mexico.

Mr. Bratcher:

Tetra Tech, Inc. (Tetra Tech) was contacted by COG Operating LLC. (COG) to assess a spill from the Showstopper 7 Federal COM #1H site located in Unit A, Section 7, Township 25 South, Range 29 East, Eddy County, New Mexico (Site). The spill site coordinates are N 32.15077°, W 104.01644°. The site location is shown on Figures 1 and 2.

Background

According to the State of New Mexico C-141 Initial Report, the leak was discovered on April 15, 2013, and released approximately three (3) barrels of oil and fifteen (15) barrels of produced water from the packing on the wellhead. To alleviate the problem, COG personnel replaced the packing. Two (2) barrels of standing oil and twelve barrels of standing produced water were recovered. The spill initiated on the well pad affecting an area approximately 35' x 50', 65' X 200' and 20' x 185'. The final C-141 form is enclosed in Appendix A.

Groundwater

According to the Geology and Groundwater Resources of Eddy County, New Mexico (Report 3), the Rustler and Castile formation (Ochoa Series) is present west and east of the Pecos River. The Salado formation overlies the Castile formation east of the Pecos River and was removed by solution west of the river. The Rustler and Castile formations consist of anhydrite, gypsum, interbedded sandy clay and beds of dolomite. Groundwater from the Castile and Rustler formations west of the Pecos River is historically high in chloride and sulfate concentrations which increase towards the river.

According to the USGS, no water wells are listed in Section 7. One water well is reported in Section 6, with a depth to groundwater of 40.0' bgs. According to the NMOCD groundwater map the reported depth to groundwater in this area is approximately between 50.0' and 75.0' below surface. The groundwater data is shown in Appendix B.

Regulatory

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the depth to groundwater, the proposed RRAL for TPH is 1,000 mg/kg.

Soil Assessment and Analytical Results

On May 30, 2013, Tetra Tech personnel inspected and sampled the spill area. Ten (10) auger holes (AH-1 through AH-10) were installed using a stainless steel hand auger to assess the impacted soils. Selected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The results of the sampling are summarized in Table 1. The auger hole locations are shown on Figure 3.

Referring to Table 1, AH-8 and AH-10 exceeded the TPH RRAL and was not vertically defined. None of the auger holes exceeded the regulatory limits for Benzene or Total BTEX. Elevated chloride concentrations were detected in auger holes (AH-1, AH-4, AH-7, AH-8, AH-9 and AH-10) with chloride highs of 4,240 mg/kg at 1.0', 3,600 mg/kg at 1.0', 5,710 mg/kg at 1.0', 2,300 mg/kg at 1.0', 17,900 mg/kg at 1.0' and 3,850 mg/kg at 1.0', respectively. None of the auger holes were vertically defined.

Site Remediation and Conclusion

From August 22 through 29, 2013, Tetra Tech personnel supervised the excavation of the impacted soils. In order to remove the chloride and TPH impacted soils, the area was excavated to a depth of 2.0' to 3.0' below grade. To define the extents, backhoe trenches were installed in some of the impacted area to define extents. In addition, a background trench was installed to evaluate the chlorides. Once excavated, Tetra Tech collected confirmation samples from the excavations. The confirmation sample results are shown in Table 1. The excavated areas are highlighted in Table 1 and shown on Figure 4.

Referring to Table 1, the east sidewalls showed elevated chlorides concentrations of 2,080 mg/kg (AH-1) and 5,850 mg/kg (AH-4) and additional excavation could not be completed due to the tank battery facility. In addition, the area of AH-4 (west sidewall) also showed a chloride of 2,480 mg/kg, however, a underground line was present in the west area. The areas of AH-4 and AH-7 did show a slight chloride concentrations in the bottom hole samples (approximately 2,000 mg/kg), as compared to the field chloride data.

Based on the background sampling data, a chloride high of 814 mg/kg was detected at 4.0' below surface. Deeper samples were not collected due to the dense formation. Some of the soils surrounding Malaga area have shown natural fluctuating chloride in the subsurface soils.

Based on the field data, BLM approved the backfilling of the excavations. The excavation was backfilled with clean material to surface grade. Approximately 860 cubic yards of soil were removed and transported to the R360 facility for proper disposal.

Based on the remediation activities performed at this location, COG requests closure for this site. The C-141 (Final) is included in Appendix A. If you have any questions or comments concerning the assessment or the remediation activities for this site, please call me at (432) 682-4559.

Respectfully submitted, TETRA TECH

Ike Tavarez, PG Senior Project Manager

CC:

Robert McNeill – COG Mike Burton – BLM Jennifer Van Curen - BLM . .

. .

. .

ſ

Figures

Drawn By: Isabel Marmolej

Jrawn By: Isabel Marmolejo

Tables

Sample ID	Sample	BEB E Sample	Excavation Bottom	Soil	Status	1	「PH (mg/k	g)	Benzene	Toluene	Ethlybenzene	Xylene	Total	Chloride
Sample ID	Date	Depth (ft)	Depth (ft)	In-Situ	Removed	GRO	DRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
AH-1	5/30/2013	0-1	0		X	<4.00	<50.0	<50.0	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	4,240
		1-1.5			X			20		Super-				≥2,360
		2-2.5			X									2,490
					6 104 1 104 1 10 10 10 10 10 10 10 10 10 10 10 10 10									
T-6	8/27/2013	0	0		X									7,870
		2	2		X									2,050 -
	"	4	n	Х		-	-	-	-	-	-	-	-	2,040
		6	U	Х		-	-	-	-	-	-	-	-	1,470
	н	8	11	Х		-	-	-	-	-	-	-	-	896
	n	10	11	Х		-	-	-	-	-	-	-	-	1,200
	8/27/2013	North SW	-	Х		-	-	-	-	-	-	-	-	2,400
	. H	South SW	-	Х		-	-	-	-	-	-	-	-	1,860
	91	East SW	-	Х		-	-	-	-	-	-	-	-	2,080
	99	West SW	-	Х		-	-	-	-	_	-	-	-	1,190
	n	Bottom hole	2	Х		-	-	-	-	-	-		-	1,060
AH-2	5/30/2013	0-1	0	Х		<4.00	<50.0	<50.0	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	667
AH-3	5/30/2013	0-1	0	X		<4.00	<50.0	<50.0	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	493

Samala ID	Sample	BEB	Excavation	Soil	Status	-	TPH (mg/k	g)	Benzene	Toluene	Ethlybenzene	Xylene	Total	Chloride
Sample ID	Date	Depth (ft)	Depth (ft)	In-Situ	Removed	GRO	DRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	.(mg/kg)
AH-4	\$/30/2013	0-1	0		X	<4.00	<50.0	<50.0 -	<0.0200	<0.0200	≥<0.0200	<0.0200	<0.0200	3,600
				and the second										
T-2	8/27/2013	0	. 0		X	5 5 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		and the second						1,960
		2	2		X									2,190
	11	4	11	Х		-	~	-	-	-	-	-	-	1,840
	"	6	11	Х		-	-	-	-	-	-	-	-	1,410
	U	8	"	Х		-	-	-	-	-	-	-	-	1,520
	11	10	"	X		-	-	-	-	-	-	-	-	1,830
	8/27/2013	North SW	-	x		_	-	_	-	-	-		-	1,850
	"	South SW	-	Х		-	-	-	-	-	· _	-	-	1,230
	"	East SW	-	Х	1	_	-	-	-	-	-	-	-	5,850
	"	West SW	-	Х		-	-	-	-		- -	-	-	2,480
AH-5	5/30/2013	0-1	0	Х		<4.00	<50.0	<50.0	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	599
AH-6	5/30/2013	0-1	0	X		<4.00	<50.0	<50.0	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	629

.

Sample ID	Sample	BEB	Excavation	Soil	Status	-	TPH (mg/k	g)	Benzene	Toluene	Ethlybenzene	Xylene	Total	Chloride
Sample ID	Date	Depth (ft)	Depth (ft)	In-Situ	Removed	GRO	DRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
AH-7	5/30/2013	-0-1	0 0		. ∀X	<8.00	63.8	63.8	<0.0200*	<0.0200	<0.0200	<0.0200	<0.0200	5,710-
T-1	8/27/2013		0		् X									7;800 🖇
		2	2		- X -									2-170
	8/27/2013	North SW	-		x	-	-	-	-	-	-	-	-	1,080
	11	South SW	-		X	-	-	-	-	-	-	-	-	2,260
	"	Bottom hole	2		X	-		-	-	-	-		-	2,270
AH-8	5/30/2013	0-1	0		: X	198	4,540	4,738	<0.0400	<0.0400	0.292	- 1.51	51 80	2,300
										1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /			and street by a second street by	
T-3	8/27/2013	2	3		Χ.				19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -			terester i		3,980
	"	4	11	X		-	-	-		-	-	-	_	729
	11	8	11	Х		-	-	-	-	-	-	-	-	803
												L		
	8/27/2013	East SW	-		X	-	-	-		-	-	-	-	1,470
	"	North SW	-		X	-	-	-	-	-	-	-	-	597
	n	West SW	-		X	-	-	-	-	-	-	-	-	604
	"	South SW	-		X	-	-	-	-	-	-	-	-	706
	"	Bottom hole	3		X	<10.0	<10.0	<10.0	-	-	-	-	-	624

Sample ID	Sample BEB Sample	Excavation	Soil	Status	-	TPH (mg/k	g)	Benzene	Toluene	Ethlybenzene	Xylene	Total	Chloride	
Sample ID	Date	Depth (ft)	Depth (ft)	,In-Situ	Removed	GRO	DRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
AH-9	5/30/2013	0-1	0	RE T	X	<4.00	99.7	99 7	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	17,900
T-4	8/27/2013	2	3	1997 - 1992 - 19	X				San de la					5,380
	"	4	н	Х		-	~	-	-	-	-	-	-	1,160
	11	6	11	Х		-	-	-	-	-	-	-	-	282
	11	8	,1	Х		-	-	-	-	-	-	-	-	215
												ļ		
	8/27/2013	Bottom hole	3		<u> </u>	-	-	-	<u> </u>		-	-	-	49.0
AH-10	5/30/2013	.0-1	0		X	91.7	1,560	1,652	<0.0400	<0.0400	<0.0400	<0.0400	<0.0400	3,850
				0	: Jos	م معنی ا							1	
T-5	8/27/2013	2	3		X									2,640
	"	4	"	Х		-	-	-	-	-	-	-	-	430
	"	6	31	Х		-	-	-	-	-	-	-	-	239
	"	8	"	X		-	-	-	-	-	-	-	-	23.9
													ļ	
	8/28/2013	Bottom hole	3	L	X	<10.0	<10.0	<10.0			-		-	1,500
T-7 (BG)	8/27/2013	0	0	X		-	-	-	-	-	_	-	-	<20.0
Background	ц	2	"	X		-	-	-	-	-	-	-	-	771
	11	4	"	X		-	-	-	-	-	-	-	-	814

(-) Not Analyzed

(BEB) Below Excavation Bottom

SW Sidewall

Excavation Depths

Photos

View Southwest - Excavation Area and Soil Stockpile

View East - Excavation Area of AH-1

View Northwest – Well and Excavation Area of AH-8, 9 and 10

View West - Excavation Area and Soil Stockpile

വ

View North - Well and Backfilled Excavation

View Northeast - Backfilled Excavation

Appendix A

.

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised October 10, 2003

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Dalagso Notification and Corrective Action										
Kelease Ivollicatio	on and Corrective Act									
	OPERATOR Contact	Initial Report Final Report								
Address 600 West Illinois Avenue Midland TX 79701	Contact Pare Telephone No 432-230	-0077								
Facility Name SHOWSTOPPER 7 FEDERAL COM #001H	Facility Type WELL	PAD								
Surface Owner FEDERAL Mineral Owner		Lease No. (API#) 30-015-36659								
LOCATI	ON OF RELEASE									
Unit LetterSectionTownshipRangeFeet from theNorA0725S29E29E	th/South Line Feet from the Ea	st/West Line County EDDY								
Latitude 32.15112	Longitude 104.01676									
NATUR	E OF RELEASE									
Type of Release Oil and Produced water	Volume of Release 3bbls of 15bbls produced wate	il Volume Recovered 2bbls oil er 12bbls produced water								
Source of Release Well packing	Date and Hour of Occurrence 04-15-2013	Date and Hour of Discovery 04-15-2013 6:45am								
Was Immediate Notice Given?	If YES, To Whom?									
By Whom?	Date and Hour									
Was a Watercourse Reached?	If YES, Volume Impacting the V	Vatercourse.								
If a Watercourse was Impacted, Describe Fully.*										
Describe Cause of Problem and Remedial Action Taken.*										
Well packing failed due to high flowline pressure caused by a compress	sor shutting down. We have replaced	the well packing.								
Describe Area Affected and Cleanup Action Taken.*										
Initially 3bbls of oil and 15bbls of produced water were released due to of oil and 12bbls produced water with a vacuum truck. The spill was co sample the spill site area to delineate any possible contamination from to to any significant remediation work.	high pressure in flowline causing the impletely contained on location. All fi the release and we will present a work	packing to fail. We were able to recover 2bbls ree fluid has been recovered. Tetra Tech will plan to the NMOCD/BLM for approval prior								
I hereby certify that the information given above is true and complete to regulations all operators are required to report and/or file certain release public health or the environment. The acceptance of a C-141 report by should their operations have failed to adequately investigate and remed or the environment. In addition, NMOCD acceptance of a C-141 report federal, state, or local laws and/or regulations.	the best of my knowledge and under e notifications and perform corrective the NMOCD marked as "Final Repor iate contamination that pose a threat t t does not relieve the operator of resp	stand that pursuant to NMOCD rules and actions for releases which may endanger t" does not relieve the operator of liability o ground water, surface water, human health onsibility for compliance with any other								
	OIL CONSE	RVATION DIVISION								
Signature: Kalut Idee /										
Printed Name: Robert Grubbs Jr.	Approved by District Supervisor:									
Title: Senior Environmental Coordinator	Approval Date:	Expiration Date:								
E-mail Address: rgrubbs@concho.com	Conditions of Approval:	Attached								
Date: 04-29-2013 Phone: 432-661-6601										

Attach Additional Sheets If Necessary

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised October 10, 2003

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Release Notification and Corrective Action

		OPERATOR		Initial Report	\square	Final Report
Name of Company COG Oper	ating LLC	Contact	Pat Ellis			
Address 600 West Illinois Avenue,	Midland, Texas 79701	Telephone No.	(432) 230-0077			
Facility Name Showstopper 7 Fede	eral COM #001H	Facility Type	Well Pad			
Surface Ouman Ecdarol	Minaral Owner	•		and No. (ADI#)	20.01	5 26650

Surface Owner: Federal Mineral Owner Lease No. (API#) 30-015-36659

LOCATION OF RELEASE

Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County	
A	07	258	29E						Eddy

Latitude 32.15112 Longitude 104.01676

NATURE OF RELEASE									
Type of Release: Oil and Produced Water	Volume of Release 3 bbls oil 15 bbls produced water	Volume Recovered 2 bbls oil 12 bbls produced water							
Source of Release: Well Packing	Date and Hour of Occurrence 04-15-2013	Date and Hour of Discovery 04-15-2013 6:45 a.m.							
Was Immediate Notice Given?	If YES, To Whom?								
By Whom?	Date and Hour								
Was a Watercourse Reached?	If YES, Volume Impacting the Wa	tercourse.							
If a Watercourse was Impacted, Describe Fully.*									
Describe Cause of Problem and Remedial Action Taken.*									
Well packing failed due to high flowline pressure caused by a compressor	shutting down. The well packing wa	s replaced.							
Describe Area Affected and Cleanup Action Taken.*									
Tetra Tech personnel inspected the site and collected samples to define th proper disposal. The site was then brought up to surface grade with clean NMOCD for review.	e extent of the spill. Soil that exceede backfill material. Tetra Tech prepare	ed RRAL was removed and hauled away for ed a closure report and submitted it to							
I hereby certify that the information given above is true and complete to tregulations all operators are required to report and/or file certain release n public health or the environment. The acceptance of a C-141 report by th should their operations have failed to adequately investigate and remediat or the environment. In addition, NMOCD acceptance of a C-141 report d federal, state, or local laws and/or regulations.	he best of my knowledge and understa otifications and perform corrective ac e NMOCD marked as "Final Report" e contamination that pose a threat to g oes not relieve the operator of respons	and that pursuant to NMOCD rules and tions for releases which may endanger does not relieve the operator of liability ground water, surface water, human health sibility for compliance with any other							
Signature:	OIL CONSERV	ATION DIVISION							
Printed Name: Ike Tavarez (agent fort COG)	Approved by District Supervisor:								
Title: Project Manager	Approval Date:	Expiration Date:							
E-mail Address: Ike.Tavarez@TetraTech.com	Conditions of Approval:	Attached							

Date: 10-24-13 Phone: (432) 682-4559 * Attach Additional Sheets If Necessary

Appendix B

Water Well Data Average Depth to Groundwater (ft) COG-Showstopper 7 Federal COM #1H Eddy County, New Mexico

		24	So	uth		28	Ea	st			
6	70	5	30	4	30	3		2	55	1	60
7		8	50	9		10 17		11 20		12 73	
18		17 42		16 29		15 18		14 52		13 34	
19		20 48		21		22		23		24	
30		29		28		27		26		25	
31		32		33		34		35		36	

	24 So	uth	29	East	
6	5	4	3	2	1
7 160	8	9	10	11	12
¢	17	16 18	15	14	13
19	20	21	22	23	24
30	29	89 2	27	26	25
31	32	33	34	35	36

	24 S	outh	30	East	
6	5	4	3	2	1
7	8 186	9	10	11	12
18	17	16	15	14	13
19 231 150	20	21	22	23 400	24
30	29	28	27	26	25
31	32	33	34	35	36

	25 \$	South	2	8 Eas	t
6	5	4 3	5 3	2	1
	59		32		
7	8	9	10	11	12
18	17	16	15 48	14	13
67			49		16
19	20	21	22	23	24
	96	1			1)
30	29	28	27	26	25
	15	90		30	
31	32	33	34	35	36
					40 (

	25 So	uth	29	East	
ہ سر49	50	4	3	2	1
SITE (8	9	10 40	11	12
لر 18	17	16	15 60	14	13
19	20	21	22	23	24
30 30	29	28	27	26	25
31	32 115	33	34	35	36

	25 South			30 East		
6	5	4	3	2 295	1	
7 264	8	9 295	10	11	12 390	
18	17	16	15	14	13	
19	20	21 285 268	22	23	24	
30	29	28	27	26	25	
31	32	33	34	35	36	

26 South			2		
6	5	4	3	2 120	1 2
				21	
7	8	9	10	11	12
					100
18	17	16	15	14	13
				120	56
19	20	21	22	23	24
		I	120		
30	29	28	27	26	25
		1			
31	32	33	34	35	36
					1

	26 Sc	uth	29	East	
6	5	4	3	2	1
	\Box				
7	8	9	10	11	12
	<u></u>				
¹⁸ (17	16	15	14	13
1		125			
19 7	20	21	22 57	23	24
(\sim	<u> </u>	69		
30 🗸	29	28	27	26	25
31	32	33	34	35	36
			1)		

	26 S	outh	:	30 Eas	t
6	5 179 180	4	3	2	1
7	8 172	9	10	11	12
18	17	16	15	14	13
19	20	21	22	23	24 180
30	29	28	27	26	25
31	32	33	34	35	36

New Mexico State Engineers Well Reports

USGS Well Reports

Geology and Groundwater Conditions in Southern Eddy, County, NM

NMOCD - Groundwater Data

Field water level

New Mexico Water and Infrastructure Data System

Appendix C

۰,

2

Summary Report

Ike Tavarez Tetra Tech 1910 N. Big Spring Street Midland, TX 79705

Report	Date:	June	11,	2013
--------	-------	------	-----	------

Work Order: 13060318

Project Location:	Eddy Co., NM	
Project Name:	COG/Showstopper 7 Fed. $\#$	-1
Project Number:	112MC05408	

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
330830	AH-1 0-1'	soil	2013-05-30	00:00	2013-05-31
330831	AH-1 1-1.5'	soil	2013-05-30	00:00	2013-05-31
330832	AH-1 2-2.5'	soil	2013-05-30	00:00	2013-05-31
330833	AH-2 0-1'	soil	2013-05-30	00:00	2013-05-31
330834	AH-3 0-1'	soil	2013-05-30	00:00	2013-05-31
330835	AH-4 0-1'	soil	2013-05-30	00:00	2013-05-31
330836	AH-5 0-1'	soil	2013-05-30	00:00	2013-05-31
330837	AH-6 0-1'	soil	2013-05-30	00:00	2013-05-31
330838	AH-7 0-1'	soil	2013-05-30	00:00	2013-05-31
330839	AH-8 0-1'	soil	2013-05-30	00:00	2013 - 05 - 31
330840	AH-9 0-1'	soil	2013-05-30	00:00	2013-05-31
330841	AH-10 0-1'	soil	2013-05-30	00:00	2013-05-31

		BTEX			TPH DRO - NEW	TPH GRO
	Benzene	Toluene	Ethylbenzene	Xylene	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(ing/Kg)
330830 - AH-1 0-1'	< 0.0200	< 0.0200	< 0.0200	< 0.0200	<50.0	<4.00
330833 - AH-2 0-1'	< 0.0200	< 0.0200	< 0.0200	< 0.0200	<50.0	<4.00
330834 - AH-3 0-1'	< 0.0200	< 0.0200	< 0.0200	< 0.0200	<50.0	$<\!4.00$
330835 - AH-4 0-1'	< 0.0200	< 0.0200	< 0.0200	< 0.0200	<50.0	<4.00
330836 - AH-5 0-1'	< 0.0200	< 0.0200	< 0.0200	< 0.0200	<50.0	<4.00
330837 - AH-6 0-1'	< 0.0200	< 0.0200	< 0.0200	< 0.0200	$<\!50.0$	<4.00
330838 - AH-7 0-1'	< 0.0200	< 0.0200	< 0.0200	< 0.0200	63.8	<8.00
330839 - AH-8 0-1'	$< 0.0400^{-1}$	$<\!0.0400$	0.292	1.51	4540	198
330840 - AH-9 0-1'	< 0.0200	< 0.0200	< 0.0200	< 0.0200	99.7	<4.00
330841 - AH-10 0-1'	$< 0.0400^{-2}$	< 0.0400	< 0.0400	< 0.0400	1560	91.7

¹Dilution due to hydrocarbons.

²Dilution due to hydrocarbons.

Report Date: June	11, 2013	Work Order: 13060318	Page	Number: 2 of 3
Sample: 330830 -	AH-1 0-1'			
Param	Flag	Result	Units	\mathbf{RL}
Chloride		4240	ung/Kg	4
Sample: 330831 -	AH-1 1-1.5'			
Param	Flag	Result	Units	RL
Chloride		2360	mg/Kg	4
Sample: 330832 -	AH-1 2-2.5'			
Param	Flag	Result	Units	\mathbf{RL}
Chloride		2490	mg/Kg	4
Sample: 330833 -	AH-2 0-1'			
Param	Flag	Result	Units	RL
Chloride		667	ıng/Kg	4
Sample: 330834 -	AH-3 0-1'			
Param	Flag	Result	Units	RL
Chloride		493	mg/Kg	4
Sample: 330835 -	AH-4 0-1'			
Param	Flag	Result	Units	RL
Chloride		3600	mg/Kg	4
Sample: 330836 -	AH-5 0-1'			
Param	Flag	Result	Units	RL
Chloride		599	mg/Kg	4
Sample: 330837 -	AH-6 0-1'			
Param	Flag	Result	Units	RL
Chloride		629	mg/Kg	4

.

ı.

Report Date: June 11, 2013		Work Order: 13060318		Page Number: 3 of 3				
Sample: 330838 - AH-7 0-1'								
Param	\mathbf{Flag}	Result	Units	RL				
Chloride	· · · · · · · · · · · · · · · · · · ·	5710	mg/Kg	4				
Sample: 330839	- AH-8 0-1'							
Param	Flag	Result	Units	RL				
Chloride		2300	mg/Kg	4				
Sample: 330840	- AH-9 0-1'							
Param	Flag	Result	Units	RL				
Chloride		17900	mg/Kg	4				
Sample: 330841	- AH-10 0-1'							
Param	Flag	Result	Units	RL				
Chloride	· · · · · · · · · · · · · · · · · · ·	3850	mg/Kg	4				

.

*

Summary Report

Report Date: September 20, 2013

Work Order: 13090631

Ike Tavarez Tetra Tech 1910 N. Big Spring Street Midland, TX 79705

Project Location:	Eddy Co., NM
Project Name:	COG/Showstopper 7 Fed. #1
Project Number:	112MC05408

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
341356	T-1 (AH-7) 0'	soil	2013-08-27	00:00	2013-09-06
341357	T-1 (AH-7) 2'	soil	2013-08-27	00:00	2013-09-06
341358	T-2 (AH-4) 0'	soil	2013-08-27	00:00	2013-09-06
341359	T-2 (AH-4) 2'	soil	2013-08-27	00:00	2013-09-06
341360	T-2 (AH-4) 4'	soil	2013-08-27	00:00	2013-09-06
341361	T-2 (AH-4) 6'	soil	2013-08-27	00:00	2013-09-06
341362	T-2 (AH-4) 8'	soil	2013-08-27	00:00	2013-09-06
341363	T-2 (AH-4) 10'	soil	2013-08-27	00:00	2013-09-06
341364	T-3 (AH-8) 2'	soil	2013-08-27	00:00	2013-09-06
341365	T-3 (AH-8) 4'	soil	2013-08-27	00:00	2013-09-06
341366	T-3 (AH-8) 8'	soil	2013-08-27	00:00	2013-09-06
341367	T-4 (AH-9) 2'	soil	2013-08-27	00:00	2013-09-06
341368	T-4 (AH-9) 4'	soil	2013-08-27	00:00	2013-09-06
341369	T-4 (AH-9) 6'	soil	2013-08-27	00:00	2013-09-06
341370	T-4 (AH-9) 8'	soil	2013-08-27	00:00	2013-09-06
341371	T-5 (AH-10) 2'	soil	2013-08-27	00:00	2013-09-06
341372	T-5 (AH-10) 4'	soil	2013-08-27	00:00	2013-09-06
341373	T-5 (AH-10) 6'	soil	2013-08-27	00:00	2013-09-06
341374	T-5 (AH-10) 8'	soil	2013-08-27	00:00	2013-09-06
341375	T-6 (AH-1) 0'	soil	2013-08-27	00:00	2013-09-06
341376	T-6 (AH-1) 2'	soil	2013-08-27	00:00	2013-09-06
341377	T-6 (AH-1) 4'	soil	2013-08-27	00:00	2013-09-06
341378	T-6 (AH-1) 6'	soil	2013-08-27	00:00	2013-09-06
341379	T-6 (AH-1) 8'	soil	2013-08-27	00:00	2013-09-06
341380	T-6 (AH-1) 10'	soil	2013-08-27	00:00	2013-09-06
341381	T-7 (BG) 0'	soil	2013-08-27	00:00	2013-09-06
341382	T-7 (BG) 2'	soil	2013-08-27	00:00	2013-09-06
341383	T-7 (BG) 4'	soil	2013-08-27	00:00	2013-09-06
341384	AH-8 ESW	soil	2013-08-27	00:00	2013-09-06
341385	AH-8 NSW	soil	2013-08-27	00:00	2013-09-06

Report Date: September 20, 2013		Work Order: 13090631		Page Number: 2 of 8	
Sample	Description	Matrix	Date Taken	Time Taken	Date Beceived
341386	AH-8 WSW	soil	2013-08-27	00:00	2013-09-06
341387	AH-8 SSW	soil	2013-08-27	00:00	2013-09-06
341388	AH-4 NSW	soil	2013-08-27	00:00	2013-09-06
341389	AH-4 SSW	soil	2013-08-27	00:00	2013-09-06
341390	AH-4 ESW	soil	2013-08-27	00:00	2013-09-06
341391	AH-4 WSW	soil	2013-08-27	00:00	2013-09-06
341392	AH-1 NSW	soil	2013-08-27	00:00	2013-09-06
341393	AH-1 SSW	soil	2013-08-27	00:00	2013-09-06
341394	AH-1 ESW	soil	2013-08-27	00:00	2013-09-06
341395	AH-1 WSW	soil	2013-08-27	00:00	2013-09-06
341396	AH-1 BH 2'	soil	2013-08-27	00:00	2013-09-06
341397	AH-7 NSW	soil	2013-08-27	00:00	2013-09-06
341398	AH-7 SSW	soil	2013-08-27	00:00	2013-09-06
341399	AH-7 BH	soil	2013-08-27	00:00	2013-09-06
341400	AH-9 BH 3'	soil	2013-08-27	00:00	2013-09-06

Sample: 341356 - T-1 (AH-7) 0'

Param	Flag	Result	Units	\mathbf{RL}
Chloride		7800	mg/Kg	4

Sample: 341357 - T-1 (AH-7) 2'

Param	Flag	Result	Units	RL
Chloride		2170	mg/Kg	4

Sample: 341358 - T-2 (AH-4) 0'

Param	Flag	Result	Units	RL
Chloride		1960	mg/Kg	4

Sample: 341359 - T-2 (AH-4) 2'

Param	Flag	Result	Units	\mathbf{RL}
Chloride		2190	mg/Kg	4

Sample: 341360 - T-2 (AH-4) 4'

continued ...

Report Date: September 20, 2013		Work Order: 13090631	Page Number: 3 of 8	
sample 341360 con	tinued			
Param	Flag	Result	Units	RL
Param	Flag	Result	Units	RL
Chloride		1840	mg/Kg	4
Sample: 341361	- T-2 (AH-4) 6'			
Param	Flag	Result	Units	RL
Chloride		1410	mg/Kg	4
Sample: 341362	- T-2 (AH-4) 8'			
Param	Flag	Result	Units	RL
Chloride	·····	1520	mg/Kg	4
Sample: 341363	- T-2 (AH-4) 10'			
Param	Flag	Result	Units	RL
Chloride		1830	mg/Kg	4
Sample: 341364	- T-3 (AH-8) 2'			
Param	Flag	Result	Units	RL
Chloride		3980	mg/Kg	4
Sample: 341365 -	• T-3 (AH-8) 4'			
Param	Flag	Result	Units	RL
Chloride	<u></u>	729	mg/Kg	4
Sample: 341366 -	· T-3 (AH-8) 8'			
Param	Flag	Result	Units	RL

Sample: 341367 - T-4 (AH-9) 2'

٦

Report Date: September 20, 2013		Work Order: 13090631	Page Number: 4 of 8	
Param	Flag	Result	Units	RL
Chloride		5380	mg/Kg	4
Sample: 341368	- T-4 (AH-9) 4'			
Param	Flag	Result	Units	\mathbf{RL}
Chloride		1160	mg/Kg	4
Sample: 341369	- T-4 (AH-9) 6'			
Parani	Flag	Besult	Units	BL
Chloride	1 1005	282	mg/Kg	4
Sample: 341370	- T-4 (AH-9) 8'			
Param	Flag	Result	Units	RL
Chloride		215	mg/Kg	4
Sample: 341371	- T-5 (AH-10) 2'			
Param	Flag	Result	Units	\mathbf{RL}
Chloride		2640	mg/Kg	4
Sample: 341372	- T-5 (AH-10) 4'			
Param	Flag	Result	Units	RL
Chloride		430	mg/Kg	4
Sample: 341373	- T-5 (AH-10) 6'			
Param	Flag	Result	Units	RL
Chloride		239	mg/Kg	4
Sample: 341374	- T-5 (AH-10) 8'			
Param	Flag	Result	Units	RL
Chloride		23.9	mg/Kg	4

Report Date: September 20, 2013		Work Order: 13090631	Page Number: 5 of 8	
Sample: 341375 -	- T-6 (AH-1) 0'			
Param	Flag	Result.	Units	\mathbf{RL}
Chloride		7870	mg/Kg	4
Sample: 341376 ·	- T-6 (AH-1) 2'			
Param	Flag	Result	Units	RL
Chloride		2050	mg/Kg	4
Sample: 341377	- T-6 (AH-1) 4'			
Param	Flag	Result	Units	RL
Chloride		2040	mg/Kg	4
Sample: 341378	- T-6 (AH-1) 6'			
Param	Flag	Result	Units	RL
Chloride		1470	mg/Kg	4
Sample: 341379 -	- T-6 (AH-1) 8'			
Param	Flag	Result	Units	RL
Chloride		896	mg/Kg	4
Sample: 341380	- T-6 (AH-1) 10'			
Param	Flag	Result	Units	RL
Chloride		1200	mg/Kg	4
Sample: 341381 -	- T-7 (BG) 0'			
Param	Flag	Result	Units	RL
Chloride		<20.0	mg/Kg	4
Sample: 341382 -	- T-7 (BG) 2'			
Param	Flag	Result	Units	RL
Chloride		771	mg/Kg	4

Report Date: September 20, 2013		Work Order: 13090631	Page Number: 6 of 8	
Sample: 341383	- T-7 (BG) 4'			
Param	Flag	Result	Units	RL
Chloride		814	mg/Kg	4
Sample: 341384	- AH-8 ESW			
Param	Flag	Result	Units	RL
Chloride		1470	mg/Kg	4
Sample: 341385	- AH-8 NSW			
Param	Flag	Result	Units	RL
Chloride		597	mg/Kg	4
Sample: 341386	- AH-8 WSW			
Param	Flag	Result	Units	RL
Chloride		604	mg/Kg	4
Sample: 341387	- AH-8 SSW			
Param	Flag	Result	Units	RL
Chloride		706	mg/Kg	4
Sample: 341388 -	- AH-4 NSW			
Param	Flag	Result	Units	RL
Chloride		1850	mg/Kg	4
Sample: 341389 -	· AH-4 SSW			
Param	Flag	Result	Units	RL
Chloride		1230	mg/Kg	4
Sample: 341390 -	· AH-4 ESW			
Param	Flag	Result	Units	\mathbf{RL}
Chloride	0	5850	mg/Kg	4

Report Date: September 20, 2013		Work Order: 13090631	Page Number: 7 of 8	
Sample: 341391 - A	H-4 WSW			
Param	Flag	Result	Units	RL
Chloride	······································	2480	nıg/Kg	4
Sample: 341392 - A	H-1 NSW			
Param	Flag	Result	Units	RL
Chloride		2400	mg/Kg	4
Sample: 341393 - A	H-1 SSW			
Param	Flag	Result	Units	RL
Chloride		1860	mg/Kg	4
Sample: 341394 - A	H-1 ESW			
Param	Flag	Result	Units	RL
Chloride		2080	mg/Kg	4
Sample: 341395 - A	H-1 WSW			
Param	Flag	Result	Units	RL
Chloride	· · · · · · · · · · · · · · · · · · ·	1190	mg/Kg	4
Sample: 341396 - A	H-1 BH 2'			
Param	Flag	Result	Units	RL
Chloride		1060	mg/Kg	4
Sample: 341397 - A	H-7 NSW			
Param	Flag	Result	Units	RL
Chloride		1080	mg/Kg	4
Sample: 341398 - A	.H-7 SSW			
Param	Flag	Result	Units	RL
Chloride	······································	2260	mg/Kg	4

Report Date: September 20, 2013		Work Order: 13090631		Page Number: 8 of 8	
Sample: 341399	- AH-7 BH				
Param	Flag	Result	Units	RL	
Chloride		2270	mg/Kg	4	
Sample: 341400	- AH-9 BH 3'				
Param	Flag	Result	Units	RL	
Chloride		49.0	mg/Kg	4	

Ĵ

6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1 (BioAquatic) 2501 Mayes Rd., Suite 100-

Lubbock. Texas 79424 800-378-1296 Texas 79922 El Paso Texas 79703 Midland,

Suite 100 Carrolizon. Texas 75006 972-E-Mail: lab@traceanalysis.com WEB: www.traceanalysis.com

915-585-3443 FAX 915-585-4944 432-689-6301 FAX 432-689-6313 972-242-7750

806-794-1296

Certifications

WBE HUB NCTRCA DBE NELAP DoD LELAP Kansas Oklahoma ISO 17025

Analytical and Quality Control Report

Ike Tavarez Tetra Tech 1910 N. Big Spring Street Midland, TX, 79705

Report Date: September 20, 2013

FAX 806 • 794 • 1298

Work Order: 13090631

Project Location: Eddy Co., NM Project Name: COG/Showstopper 7 Fed. #1 Project Number: 112MC05408

Enclosed are the Analytical Report and Qu	uality Control Report	for the following sa	ample(s) submitted to	TraceAnalysis, Inc
		Data	Time	Data

			Date	1 me	Date
Sample	Description	Matrix	Taken	Taken	Received
341356	T-1 (AH-7) 0'	soil	2013-08-27	00:00	2013-09-06
341357	T-1 (AH-7) 2'	soil	2013-08-27	00:00	2013-09-06
341358	T-2 (AH-4) 0'	soil	2013-08-27	00:00	2013-09-06
341359	T-2 (AH-4) 2'	soil	2013-08-27	00:00	2013-09-06
341360	T-2 (AH-4) 4'	soil	2013-08-27	00:00	2013-09-06
341361	T-2 (AH-4) 6'	soil	2013-08-27	00:00	2013-09-06
341362	T-2 (AH-4) 8'	soil	2013-08-27	00:00	2013-09-06
341363	T-2 (AH-4) 10'	soil	2013-08-27	00:00	2013-09-06
341364	T-3 (AH-8) 2'	soil	2013-08-27	00:00	2013-09-06
341365	T-3 (AH-8) 4'	soil	2013-08-27	00:00	2013-09-06
341366	T-3 (AH-8) 8'	soil	2013-08-27	00:00	2013-09-06
341367	T-4 (AH-9) 2'	soil	2013-08-27	00:00	2013-09-06
341368	T-4 (AH-9) 4'	soil	2013-08-27	00:00	2013-09-06
341369	T-4 (AH-9) 6'	soil	2013-08-27	00:00	2013-09-06
341370	T-4 (AH-9) 8'	soil	2013-08-27	00:00	2013-09-06
341371	T-5 (AH-10) 2'	soil	2013-08-27	00:00	2013-09-06
341372	T-5 (AH-10) 4'	soil	2013-08-27	00:00	2013-09-06
341373	T-5 (AH-10) 6'	soil	2013-08-27	00:00	2013-09-06

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
341374	T-5 (AH-10) 8'	soil	2013-08-27	00:00	2013-09-06
341375	T-6 (AH-1) 0'	soil	2013-08-27	00:00	2013-09-06
341376	T-6 (AH-1) 2'	soil	2013-08-27	00:00	2013-09-06
341377	T-6 (AH-1) 4'	soil	2013-08-27	00:00	2013-09-06
341378	T-6 (AH-1) 6'	soil	2013-08-27	00:00	2013-09-06
341379	T-6 (AH-1) 8'	soil	2013-08-27	00:00	2013-09-06
341380	T-6 (AH-1) 10'	soil	2013-08-27	00:00	2013-09-06
341381	T-7 (BG) 0'	soil	2013-08-27	00:00	2013-09-06
341382	T-7 (BG) 2'	soil	2013-08-27	00:00	2013-09-06
341383	T-7 (BG) 4'	soil	2013-08-27	00:00	2013-09-06
341384	AH-8 ESW	soil	2013-08-27	00:00	2013-09-06
341385	AH-8 NSW	soil	2013-08-27	00:00	2013-09-06
341386	AH-8 WSW	soil	2013-08-27	00:00	2013-09-06
341387	AH-8 SSW	soil	2013-08-27	00:00	2013-09-06
341388	AH-4 NSW	soil	2013-08-27	00:00	2013-09-06
341389	AH-4 SSW	soil	2013-08-27	00:00	2013-09-06
341390	AH-4 ESW	soil	2013-08-27	00:00	2013-09-06
341391	AH-4 WSW	soil	2013-08-27	00:00	2013-09-06
341392	AH-1 NSW	soil	2013-08-27	00:00	2013-09-06
341393	AH-1 SSW	soil	2013-08-27	00:00	2013-09-06
341394	AH-1 ESW	soil	2013-08-27	00:00	2013-09-06
341395	AH-1 WSW	soil	2013-08-27	00:00	2013-09-06
341396	AH-1 BH 2'	soil	2013-08-27	00:00	2013-09-06
341397	AH-7 NSW	soil	2013-08-27	00:00	2013-09-06
341398	AH-7 SSW	soil	2013-08-27	00:00	2013-09-06
341399	AH-7 BH	soil	2013-08-27	00:00	2013-09-06
341400	AH-9 BH 3'	soil	2013-08-27	00:00	2013-09-06

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 29 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Mieber april

Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

Report Contents

Case Narrative

Analytical Report	6
Sample 341356 (T-1 (AH-7) 0')	. 6
Sample 341357 (T-1 (AH-7) 2')	. 6
Sample 341358 (T-2 (AH-4) 0')	. 6
Sample 341359 (T-2 (AH-4) 2')	. 6
Sample 341360 (T-2 (AH-4) 4')	. 7
Sample 341361 (T-2 (AH-4) 6')	. 7
Sample 341362 (T-2 (AH-4) 8')	. 7
Sample 341363 (T-2 (AH-4) 10')	. 8
Sample 341364 (T-3 (AH-8) 2')	. 8
Sample 341365 (T-3 (AH-8) 4')	8
Sample 341366 (T-3 (AH-8) 8')	. 8
Sample 341367 (T-4 (AH-9) 2')	. 9
Sample 341368 (T-4 (AH-9) 4')	. 9
Sample 341369 (T-4 (AH-9) 6')	. 9
Sample 341370 (T-4 (AH-9) 8')	. 10
Sample 341371 (T-5 (AH-10) 2')	. 10
Sample 341372 (T-5 (AH-10) 4')	. 10
Sample 341373 (T-5 (AH-10) 6')	. 10
Sample 341374 (T-5 (AH-10) 8')	. 11
Sample 341375 (T-6 (AH-1) 0')	. 11
Sample 341376 (T-6 (AH-1) 2')	. 11
Sample 341377 (T-6 (AH-1) 4')	. 12
Sample 341378 (T-6 (AH-1) 6')	. 12
Sample 341379 (T-6 (AH-1) 8')	. 12
Sample 341380 (T-6 (AH-1) 10')	. 12
Sample 341381 (T-7 (BG) 0')	. 13
Sample 341382 (T-7 (BG) 2^{2})	. 13
Sample 341383 (T-7 (BG) $4'$)	. 13
Sample 341384 (AH-8 ESW)	. 14
Sample 341385 (AH-8 NSW)	. 14
Sample 341386 (AH-8 WSW) \ldots	. 14
$Sample 341387 (AH-8 SSW) \dots \dots$. 14
Sample 341388 (AH-4 N5 W) \ldots	. 10
Sample 341309 (AH 4 \mathbb{F}^{GW})	. 10
Sample 341390 (AH-4 \mathbb{L} Sw)	. 10
Sample 341391 (AH $+$ WSW)	. 10
Sample 341392 (AH-1 NSW)	. 10
Sample 341393 (AH-1 55 W) \ldots	. 10
Sample 341394 (AII-1 ESW) \ldots Sample 341395 (AII-1 ESW)	. 10
Sample 341306 (AH-1 $\mathbb{R}H 2^{\circ}$)	· 17
Sample 3/1307 (Δ H_7 NSW)	. 17
Sample 341308 (AH 7 SSW)	. 1(10
$\operatorname{pomp}_{\mathcal{O}}$ $\operatorname{pom}_{\mathcal{O}}$ pom_{O	. 10

 $\mathbf{5}$

Sample 341399 (AH-7 BH)	
Sample 341400 (AH-9 BH 3')	18
Method Blanks	19
QC Batch 105200 - Method Blank (1)	19
QC Batch 105205 - Method Blank (1)	
QC Batch 105207 - Method Blank (1)	
QC Batch 105266 - Method Blank (1)	19
QC Batch 105267 - Method Blank (1)	20
Laboratory Control Spikes	21
QC Batch 105200 - LCS (1)	21
QC Batch $105205 - LCS(1)$	21
QC Batch $105207 - LCS(1)$	21
QC Batch $105266 - LCS(1)$	
QC Batch $105267 - LCS(1)$	22
QC Batch $105200 - MS(1)$	22
QC Batch 105205 - MS (1)	
QC Batch $105207 - MS(1)$	
QC Batch 105266 - MS (1)	24
QC Batch 105267 - MS (1) $\dots \dots \dots$	
Calibration Standards	25
OC Batch $105200 - CCV (1)$	25
OC Batch $105200 - CCV$ (2)	25
OC Batch $105205 - CCV (1)$	25
QC Batch 105205 - CCV (2)	
QC Batch 105207 - CCV (1)	
OC Batch 105207 - CCV (2)	
$OC Batch 105266 - CCV (1) \dots \dots$	
QC Batch 105266 - CCV (2)	
QC Batch 105267 - CCV (1)	
QC Batch 105267 - CCV (2)	27
Appendix	28
Report Definitions	
Standard Flags	
Attachments	

Case Narrative

Samples for project COG/Showstopper 7 Fed. #1 were received by TraceAnalysis, Inc. on 2013-09-06 and assigned to work order 13090631. Samples for work order 13090631 were received intact at a temperature of 26.4 C. Samples were not on ice.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	$\rm QC$	Analysis
Test	Method	Batch	Date	Batch	Date
Chloride (Titration)	SM 4500-Cl B	89070	2013-09-17 at 14:11	105200	2013-09-18 at 15:23
Chloride (Titration)	SM 4500-Cl B	89070	2013-09-17 at 14:11	105205	2013-09-18 at 15:51
Chloride (Titration)	SM 4500-Cl B	89070	2013-09-17 at 14:11	105207	2013-09-18 at 15:56
Chloride (Titration)	SM 4500-Cl B	89070	2013-09-17 at 14:11	105266	2013-09-20 at 10:22
Chloride (Titration)	SM 4500-Cl B $$	89070	2013-09-17 at 14:11	105267	2013-09-20 at 10:33

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 13090631 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Report Date: September 20, 2013 112MC05408

Work Order: 13090631 COG/Showstopper 7 Fed. #1 Page Number: 6 of 29 Eddy Co., NM

Analytical Report

Sample: 341356 - T-1 (AH-7) 0'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 105200 89070	Analytic Date An Sample I	al Method: alyzed: Preparation:	SM 4500-Cl B 2013-09-18 2013-09-17	Prep Method: Analyzed By: Prepared By:	N/A AR AR
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride			7800	mg/Kg	10	4.00

Sample: 341357 - T-1 (AH-7) 2'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 105200 89070	Analytic Date An Sample I	al Method: alyzed: Preparation:	SM 4500-Cl B 2013-09-18 2013-09-17	Prep Method: Analyzed By: Prepared By:	N/A AR. AR.
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride			2170	mg/Kg	10	4.00

Sample: 341358 - T-2 (AH-4) 0'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 105200 89070	Analytic Date An Sample I	al Method: alyzed: Preparation:	SM 4500-Cl B 2013-09-18 2013-09-17	Prep Method: Analyzed By: Prepared By:	N/A AR AR
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	\mathbf{RL}
Chloride			1960	mg/Kg	10	4.00

112MC05408	Date: September 20, 2013 Work Orde 205408 COG/Showstop		ork Order: 1 /Showstopper	3090631 r 7 Fed. #1	Page Number: Eddy Co	7 of 29 5., NM	
Sample: 34	1359 - T-2 (AH-4) 2'						
Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 105200 89070	Analytic Date An Sample	al Method: alyzed: Preparation:	SM 4500-Cl B 2013-09-18 2013-09-17	Prep Method: Analyzed By: Prepared By:	N/A AR AR	
			RL				
Deremotor	Flag	Cert	Result	Units	Dilution	RL	
				•••• •• /TZ	10	1 00	
Chloride			2190	mg/Kg	10	4.00	
Chloride Sample: 34	1360 - T-2 (AH-4) 4'		2190	mg/ Kg	10	4.00	
Sample: 34	1360 - T-2 (AH-4) 4' Midland		2190	mg/ Kg	10	4.00	
Sample: 34 Laboratory: Analysis:	1360 - T-2 (AH-4) 4' Midland Chloride (Titration)	Analytic	2190 al Method:	mg/Kg SM 4500-Cl B	Prep Method:	4.00 N/A	
Sample: 34 Laboratory: Analysis: QC Batch:	1360 - T-2 (AH-4) 4' Midland Chloride (Titration) 105200	Analytic Date An	2190 al Method: alyzed:	Mg/Kg SM 4500-Cl B 2013-09-18	Prep Method: Analyzed By:	N/A AR	
Sample: 34 Laboratory: Analysis: QC Batch: Prep Batch:	1360 - T-2 (AH-4) 4' Midland Chloride (Titration) 105200 89070	Analytic Date An Sample I	2190 al Method: alyzed: Preparation:	Mg/Kg SM 4500-Cl B 2013-09-18 2013-09-17	Prep Method: Analyzed By: Prepared By:	N/A AR AR	
Sample: 34 Laboratory: Analysis: QC Batch: Prep Batch:	1360 - T-2 (AH-4) 4' Midland Chloride (Titration) 105200 89070	Analytic Date An Sample I	2190 al Method: alyzed: Preparation: RL	Mg/ Kg SM 4500-Cl B 2013-09-18 2013-09-17	Prep Method: Analyzed By: Prepared By:	N/A AR AR	
Sample: 34 Laboratory: Analysis: QC Batch: Prep Batch: Parameter	1360 - T-2 (AH-4) 4' Midland Chloride (Titration) 105200 89070 Flag	Analytic Date An Sample I Cert	al Method: alyzed: Preparation: RL Result	mg/Kg SM 4500-Cl B 2013-09-18 2013-09-17 Units	Prep Method: Analyzed By: Prepared By: Dilution	N/A AR AR RL	

Sample: 341361 - T-2 (AH-4) 6'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 105200 89070	Analytic Date An Sample 1	al Method: alyzed: Preparation:	SM 4500-Cl B 2013-09-18 2013-09-17	Prep Method: Analyzed By: Prepared By:	N/A AR AR
_			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride			1410	mg/Kg	10	4.00

Sample: 341362 - T-2 (AH-4) 8'

Laboratory:	Midland				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	105200	Date Analyzed:	2013-09-18	Analyzed By:	AR
Prep Batch:	89070	Sample Preparation:	2013-09-17	Prepared By:	\mathbf{AR}

Report Date: September 20, 2013 112MC05408		W COG	Work Order: 13090631 COG/Showstopper 7 Fed. #1			er: 8 of 29 y Co., NM
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
Chloride	<u>********************************</u>		1520	mg/Kg	10	4.00

Sample: 341363 - T-2 (AH-4) 10'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 105200 89070	Analytic Date An Sample 1	al Method: alyzed: Preparation:	SM 4500-Cl B 2013-09-18 2013-09-17	Prep Method: Analyzed By: Prepared By:	N/A AR AR
			\mathbf{RL}			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride			1830	mg/Kg	10	4.00

Sample: 341364 - T-3 (AH-8) 2'

Chloride			3980	mg/Kg	10	4.00
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
Prep Batch:	89070	Sample Preparation: 2		2013-09-17	Prepared By:	AR
QC Batch:	105200	Date Analyzed:		2013-09-18	Analyzed By:	\mathbf{AR}
Analysis:	Chloride (Titration)	Analytic	al Method:	SM 4500-Cl B	Prep Method:	N/A
Laboratory:	Midland					

Sample: 341365 - T-3 (AH-8) 4'

Chloride			729	mg/Kg	5	4.00
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
Prep Batch:	89070	Sample Preparation:		2013-09-17	Prepared By:	AR
QC Batch:	105200	Date Analyzed:		2013-09-18	Analyzed By:	AR.
Analysis:	Chloride (Titration)	Analytic	al Method:	SM 4500-Cl B	Prep Method:	N/A
Laboratory:	Midland					

Report Date: September 20, 2013 112MC05408		Work Order: 13090631 COG/Showstopper 7 Fed. #1			Page Number: 9 of 29 Eddy Co., NM	
Sample: 34	1366 - T-3 (AH-8) 8'					
Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 105205 89070	Analytical Method: Date Analyzed: Sample Preparation:		SM 4500-Cl B 2013-09-18 2013-09-17	Prep Method: Analyzed By: Prepared By:	N/A AR AR
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride	······································		803	mg/Kg	5	4.00

Sample: 341367 - T-4 (AH-9) 2'

Laboratory:	Midland					
Analysis:	Chloride (Titration)	Analytic	al Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	105205	Date Analyzed:		2013-09-18	Analyzed By:	AR
Prep Batch:	89070	Sample 1	Sample Preparation:		Prepared By:	AR
			\mathbf{RL}			
Parameter	Flag	Cert	Result	Units	Dilution	\mathbf{RL}
Chloride			5380	mg/Kg	10	4.00

Sample: 341368 - T-4 (AH-9) 4'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 105205 89070	Analytical Metho Date Analyzed: Sample Preparat		SM 4500-Cl B 2013-09-18 2013-09-17	Prep Method: Analyzed By: Prepared By:	N/A AR AR
			\mathbf{RL}			
Parameter	\mathbf{Flag}	Cert	Result	Units	Dilution	RL
Chloride			1160	mg/Kg	10	4.00

Sample: 341369 - T-4 (AH-9) 6'

Laboratory:	Midland				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	105205	Date Analyzed:	2013-09-18	Analyzed By:	ÁR
Prep Batch:	89070	Sample Preparation:	2013-09-17	Prepared By:	AR

Report Date: September 20, 2013 112MC05408		Work Order: 13090631 COG/Showstopper 7 Fed. #1			Page Number: 10 of 29 Eddy Co., NM	
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
Chloride	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		282	mg/Kg	5	4.00

Sample: 341370 - T-4 (AH-9) 8'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 105205 89070	Analytic Date An Sample I	al Method: alyzed: Preparation:	SM 4500-Cl B 2013-09-18 2013-09-17	Prep Method: Analyzed By: Prepared By:	N/A AR AR
			\mathbf{RL}			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride			215	mg/Kg	5	4.00

Sample: 341371 - T-5 (AH-10) 2'

Chloride			2640	mg/Kg	10	4.00
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
Prep Batch:	89070	Sample Preparation:		2013-09-17	Prepared By:	AR
QC Batch:	105205	Date Analyzed:		2013-09-18	Analyzed By:	\mathbf{AR}
Analysis:	Chloride (Titration)	Analytic	al Method:	SM 4500-Cl B	Prep Method:	N/A
Laboratory:	Midland					

Sample: 341372 - T-5 (AH-10) 4'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 105205 89070	Analytic Date An Sample 1	al Method: alyzed: Preparation:	SM 4500-Cl B 2013-09-18 2013-09-17	Prep Method: Analyzed By: Prepared By:	N/A AR AR
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride			430	mg/Kg	5	4.00

112MC05408	September 20, 2013	Work Order: 13090631 COG/Showstopper 7 Fed. #1			Page Number: 11 of 29 Eddy Co., NM		
Sample: 341	.373 - T-5 (AH-10) 6'						
Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 105205 89070	Analytic Date An Sample I	al Method: alyzed: Preparation:	SM 4500-Cl B 2013-09-18 2013-09-17	Prep Method: Analyzed By: Prepared By:	N/A AR AR	
			RL				
Parameter	Flag	Cert	Result	Units	Dilution	RL	
Chloride	an de la caracteristica de la característica de la característica de la característica de la característica de		239	mg/Kg	5	4.00	

Sample: 341374 - T-5 (AH-10) 8'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 105205 89070	Analy Date Samp	rtical Method: Analyzed: le Preparation:	SM 4500-Cl B 2013-09-18 2013-09-17	Prep Method: Analyzed By: Prepared By:	N/A AR AR
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
Chloride			23.9	mg/Kg	5	4.00

Sample: 341375 - T-6 (AH-1) 0'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 105205 89070	Analytic Date An Sample l	al Method: alyzed: Preparation:	SM 4500-Cl B 2013-09-18 2013-09-17	Prep Method: Analyzed By: Prepared By:	N/A AR AR
Danamatan	Flag	Cont	RL	Linito	Dilution	DI
Parameter	Flag	Cert	nesun	Units	Diffusion	<u>n</u> L
Chloride			7870	mg/Kg	10	4.00

Sample: 341376 - T-6 (AH-1) 2'

Laboratory:	Midland				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	105207	Date Analyzed:	2013-09-18	Analyzed By:	AR
Prep Batch:	89070	Sample Preparation:	2013-09-17	Prepared By:	AR

Report Date: September 20, 2013 112MC05408		ork Order: 130900 /Showstopper 7 Fo	531 ed. #1	Page Number: 12 Eddy Co.		
Flag	Cert	RL Besult	Units	Dilution	BL	
1 165	COLO	2050	mg/Kg	10	4.00	
-	- 20, 2013 Flag	- 20, 2013 W COG/ Flag Cert	20, 2013 Work Order: 130900 COG/Showstopper 7 Fo RL Flag Cert Result 2050	20, 2013 Work Order: 13090631 COG/Showstopper 7 Fed. #1 RL Flag Cert Result Units 2050 mg/Kg	20, 2013 Work Order: 13090631 Page Number COG/Showstopper 7 Fed. #1 Eddy RL Flag Cert Result Units Dilution 2050 mg/Kg 10	

Sample: 341377 - T-6 (AH-1) 4'

_	· ·					
Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 105207 89070	Analytic Date An Sample 1	al Method: alyzed: Preparation:	SM 4500-Cl B 2013-09-18 2013-09-17	Prep Method: Analyzed By: Prepared By:	N/A AR AR
		~	RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride			2040	mg/Kg	10	4.00

Sample: 341378 - T-6 (AH-1) 6'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 105207 89070	Analytic Date An Sample I	al Method: alyzed: Preparation:	SM 4500-Cl B 2013-09-18 2013-09-17	Prep Method: Analyzed By: Prepared By:	N/A AR AR
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride			1470	mg/Kg	10	4.00

Sample: 341379 - T-6 (AH-1) 8'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 105207 89070	Analytic Date An Sample I	al Method: alyzed: Preparation:	SM 4500-Cl B 2013-09-18 2013-09-17	Prep Method: Analyzed By: Prepared By:	N/A AR AR
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride			896	mg/Kg	5	4.00

Report Date: September 20, 2013 112MC05408		W COG	ork Order: 13 /Showstopper	090631 7 Fed. #1	Page Number: 13 of 29 Eddy Co., NM		
Sample: 34	1380 - T-6 (AH-1) 10'						
Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 105207 89070	Analyti Date An Sample	cal Method: nalyzed: Preparation:	SM 4500-Cl B 2013-09-18 2013-09-17	Prep Method: Analyzed By: Prepared By:	N/A AR AR	
			\mathbf{RL}				
Parameter	Flag	Cert	Result	Units	Dilution	RL	
Chloride			1200	mg/Kg	5	4.00	
Sample: 34	1381 - T-7 (BG) 0'						
Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 105207 89070	Analytic Date An Sample	cal Method: 1alyzed: Preparation:	SM 4500-Cl B 2013-09-18 2013-09-17	Prep Method: Analyzed By: Prepared By:	N/A AR AR	
			RL				
Parameter	Flag	Cert	Result	Units	Dilution	\mathbf{RL}	
Chloride	U		<20.0	mg/Kg	5	4.00	
Sample: 34	1382 - T-7 (BG) 2'						
Laboratory:	Midland						
Analysis:	Chloride (Titration)	Analyti	cal Method:	SM 4500-Cl B	Prep Method:	N/A	
QC Batch:	105207	Date A	nalyzed:	2013-09-18	Analyzed By:	AR	
Prep Batch:	89070	Sample	Preparation:	2013-09-17	Prepared By:	AR.	
			\mathbf{RL}				
Parameter	Flag	Cert	Result	Units	Dilution	\mathbf{RL}	
Chloride			771	mg/Kg	5	4.00	

Sample: 341383 - T-7 (BG) 4'

Laboratory:	Midland				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	105207	Date Analyzed:	2013-09-18	Analyzed By:	AR
Prep Batch:	89070	Sample Preparation:	2013-09-17	Prepared By:	AR

Report Date: September 20, 2013 112MC05408		We COG/	ork Order: 130900 /Showstopper 7 Fo	631 ed. #1	Page Number: 14 of Eddy Co., N	
Parameter	Flag	Cert	RL Result	Units	Dilution	\mathbf{RL}
Chloride			814	mg/Kg	5	4.00

Sample: 341384 - AH-8 ESW

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 105207 89070	Analytic Date An Sample I	al Method: alyzed: Preparation:	SM 4500-Cl B 2013-09-18 2013-09-17	Prep Method: Analyzed By: Prepared By:	N/A AR AR
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	\mathbf{RL}
Chloride			1470	mg/Kg	10	4.00

Sample: 341385 - AH-8 NSW

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 105207 89070	Anal Date Samp	ytical Method: Analyzed: le Preparation:	SM 4500-Cl B 2013-09-18 2013-09-17	Prep Method: Analyzed By: Prepared By:	N/A AR AR
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride	, , , , , , , , , , , , , , , , , , , ,		597	mg/Kg	5	4.00

Sample: 341386 - AH-8 WSW

Chloride			604	mg/Kg	5	4.00
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
Prep Batch:	89070	Sample I	Preparation:	2013-09-17	Prepared By:	AR
QC Batch:	105266	Date Ana	alyzed:	2013-09-20	Analyzed By:	AR.
Analysis:	Chloride (Titration)	Analytic	al Method:	SM 4500-Cl B	Prep Method:	N/A
Laboratory:	Midland					

Report Date 112MC05408	: September 20, 2013 3	Work Order: 13090631Page Number:COG/Showstopper 7 Fed. #1Eddy		Page Number: 1 Eddy Co	15 of 29 Co., NM	
Sample: 34	1387 - AH-8 SSW					
Laboratory:	Midland	A A A				
Analysis:	Chloride (Titration)	Analytic	al Method:	SM 4500-CI B	Prep Method:	N/
QC Batch: Prep Batch:	105200 89070	Sample	aryzea: Preparation:	2013-09-20 2013-09-17	Prepared By:	AI
× • • p = 200010		I	of		1 10[/w/04 2.//	
Parameter	Flag	Cert	RL Result	Units	Dilution	F
Chloride			706	mg/Kg	5	4.
Analysis:	Chloride (Titration)	Analytic	al Method:	SM 4500-Cl B	Prep Method:	N,
QC Batch:	105266	Date An	alyzed:	2013-09-20	Analyzed By:	AI
Prep Batch:	89070	Sample .	Preparation:	2013-09-17	Prepared By:	AI
D .		A 1	RL			
Parameter	Flag	Cert	Result	Units	Dilution	H
Sample: 34						
I O DOFOTOTIV	1389 - AH-4 SSW					
Analysis:	1389 - AH-4 SSW Midland Chloride (Titration)	Analytic	al Method:	SM 4500-Cl B	Prep Method:	N
Analysis: QC Batch:	1389 - AH-4 SSW Midland Chloride (Titration) 105266	Analytic Date An	al Method: alyzed:	SM 4500-Cl B 2013-09-20	Prep Method: Analyzed By:	N/ AI

			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride			1230	mg/Kg	10	4.00

Sample: 341390 - AH-4 ESW

Laboratory:	Midland				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	105266	Date Analyzed:	2013-09-20	Analyzed By:	ÁR
Prep Batch:	89070	Sample Preparation:	2013-09-17	Prepared By:	\mathbf{AR}

Report Date: Septem 112MC05408	ber 20, 2013	Wo COG/	Work Order: 13090631 COG/Showstopper 7 Fed. #1			Page Number: 16 of 29 Eddy Co., NM	
Parameter	Flag	Cert	RL Result	Units	Dilution	RL	
Chloride	6		5850	mg/Kg	10	4.00	

Sample: 341391 - AH-4 WSW

Chloride			2480	mg/Kg	10	4.00
Parameter	Fla	g Cert	RL Result	Units	Dilution	RL
Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 105266 89070	Ana Dat San	alytical Method: ze Analyzed: nple Preparation:	SM 4500-Cl B 2013-09-20 2013-09-17	Prep Method: Analyzed By: Prepared By:	N/A AR AR

Sample: 341392 - AH-1 NSW

Chloride			2400	mg/Kg	10	4.00
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
Prep Batch:	89070	Sample I	Preparation:	2013-09-17	Prepared By:	AR
QC Batch:	105266	Date Analyzed:		2013-09-20	Analyzed By:	\mathbf{AR}
Analysis:	Chloride (Titration)	Analytic	al Method:	SM 4500-Cl B	Prep Method:	N/A
Laboratory:	Midland					

Sample: 341393 - AH-1 SSW

Chloride			1860	mg/Kg	10	4.00
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
Prep Batch:	89070	Samp	ole Preparation:	2013-09-17	Prepared By:	AR.
QC Batch:	105266	Date	Date Analyzed:		Analyzed By:	AR.
Analysis:	Chloride (Titration)	Anal	ytical Method:	SM 4500-Cl B	Prep Method:	N/A
Laboratory:	Midland					

Report Date 112MC05408	: September 20, 2013 3	W COG	ork Order: 13 /Showstopper	090631 7 Fed. #1	Page Number: 1 Eddy Co	ber: 17 of 29 ddy Co., NM	
Sample: 34	1394 - AH-1 ESW						
Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 105266 89070	Analytic Date Ar Sample	al Method: alyzed: Preparation:	SM 4500-Cl B 2013-09-20 2013-09-17	Prep Method: Analyzed By: Prepared By:	N/A AR. AR	
			\mathbf{RL}				
Parameter	Flag	Cert	Result	Units	Dilution	RL	
Chloride		<u></u>	2080	mg/Kg	10	4.00	
Sample: 34	1395 - AH-1 WSW						
Laboratory:	Midland						
Analysis:	Chloride (Titration)	Analytic	al Method:	SM 4500-Cl B	Prep Method:	N/A	
QC Batch: Prep Batch:	105266 89070	Date Ar Sample	alyzed: Preparation:	2013-09-20 2013-09-17	Analyzed By: Prepared By:	AR AR	
			BL				
Parameter	Flag	Cert	Result	Units	Dilution	\mathbf{RL}	
Chloride			1190	mg/Kg	10	4.00	
Sample: 34	1396 - AH-1 BH 2'						
Laboratory	Midland						
Analysis:	Chloride (Titration)	Analytic	al Method:	SM 4500-Cl B	Prep Method:	N/A	
QC Batch:	105267	Date Ar	alvzed:	2013-09-20	Analyzed By:	AR	
Prep Batch:	89070	Sample	Preparation:	2013-09-17	Prepared By:	AR.	
			\mathbf{RL}				
Parameter	Flag	Cert	Result	Units	Dilution	\mathbf{RL}	
Chloride			1060	mg/Kg	5	4.00	

Sample: 341397 - AH-7 NSW

Laboratory:	Midland				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	105267	Date Analyzed:	2013-09-20	Analyzed By:	AR
Prep Batch:	89070	Sample Preparation:	2013-09-17	Prepared By:	\mathbf{AR}

Report Date: Septem 112MC05408	ber 20, 2013	W COG/	ork Order: 130906 /Showstopper 7 Fo	Page Number Eddy	Page Number: 18 of 29 Eddy Co., NM		
Parameter	Flag	Cert	RL Result	Units	Dilution	RL	
Chloride			1080	mg/Kg	10	4.00	

Sample: 341398 - AH-7 SSW

Laboratory: Analysis: QC Batch: Prep Batch;	aboratory: Midland Analysis: Chloride (Titration) QC Batch: 105267 Prep Batch: 89070		al Method: alyzed: Preparation:	SM 4500-Cl B 2013-09-20 2013-09-17	Prep Method: Analyzed By: Prepared By:	N/A AR AR
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	\mathbf{RL}
Chloride			2260	mg/Kg	10	4.00

Sample: 341399 - AH-7 BH

Chloride			2270	mg/Kg	10	4.00
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
Prep Batch:	89070	Sample 1	Preparation:	2013-09-17	Prepared By:	AR
QC Batch:	105267	Date An	alyzed:	2013-09-20	Analyzed By:	\mathbf{AR}
Analysis:	Chloride (Titration)	Analytic	al Method:	SM 4500-Cl B	Prep Method:	N/A
Laboratory:	Midland					

Sample: 341400 - AH-9 BH 3'

Laboratory: Analysis: QC Batch: Prep Batch:	aboratory: Midland nalysis: Chloride (Titration) C Batch: 105267 rep Batch: 89070		al Method: alyzed: Preparation:	SM 4500-Cl B 2013-09-20 2013-09-17	Prep Method: Analyzed By: Prepared By:	N/A AR AR
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride			49.0	mg/Kg	5	4.00

Report Date: September 20, 2013 112MC05408

Work Order: 13090631 COG/Showstopper 7 Fed. #1

Method Blanks

QC Batch: 105200				
	Date Analyzed: QC Preparation:	2013-09-18 2013-09-17	Analyzed By: Prepared By:	AR AR
Flag	Cert	MDL Result <3.85	Units mg/Kg	RL 4
QC Batch: 105205				
	Date Analyzed: QC Preparation:	2013-09-18 2013-09-17	Analyzed By: Prepared By:	AR AR
Flor	Cort	MDL Bornlt	Unite	DI
r lag	Cert	<3.85	mg/Kg	4
QC Batch: 105207				
	Date Analyzed: QC Preparation:	2013-09-18 2013-09-17	Analyzed By: Prepared By:	AR AR
Flag	Cert	MDL Result <3.85	Units mg/Kg	RL 4
	QC Batch: 105200 Flag QC Batch: 105205 Flag QC Batch: 105207 Flag	QC Batch: 105200 Flag Cert QC Batch: 105205 QC Batch: 105205 Flag Cert QC Preparation: Date Analyzed: QC Preparation: Flag Cert Analyzed: QC Preparation: Cert	QC Batch: 105200 Date Analyzed: 2013-09-18 QC Preparation: 2013-09-17 MDL Flag Cert Result QC Batch: 105205 Date Analyzed: 2013-09-18 QC Preparation: 2013-09-17 Date Analyzed: 2013-09-18 MDL Result 2013-09-17 MDL QC Batch: 105205 Date Analyzed: 2013-09-18 MDL QC Batch: 105207 Cert MDL QC Batch: 105207 Date Analyzed: 2013-09-18 QC Preparation: 2013-09-18 Cert MDL Flag Cert Result QC Preparation: 2013-09-18 MDL QC Preparation: 2013-09-18 MDL QC Preparation: 2013-09-18 Actional Act	QC Batch: 105200 Date Analyzed: 2013-09-18 QC Preparation: 2013-09-17 Analyzed By: Prepared By: Prepared By: Prepared By: Cert Flag Cert Result Units QC Batch: 105205 Jate Analyzed: 2013-09-18 QC Preparation: 2013-09-18 QC Preparation: 2013-09-17 Analyzed By: Prepared By: Prepared By: Prepared By: QC Preparation: 2013-09-17 QC Batch: 105207 Date Analyzed: 2013-09-18 Result Units QC Batch: 105207 Date Analyzed: 2013-09-18 Prepared By: QC Preparation: 2013-09-17 Analyzed By: Prepared By: Prepared By: Prepared By: QC Preparation: 2013-09-18 Prepared By: QC Preparation: 2013-09-18 Prepared By: QC Preparation: 2013-09-18 Prepared By: Prepared By

Method Blank (1)	QC Batch: 105266
------------------	------------------

QC Batch:	105266	Date Analyzed:	2013-09-20	Analyzed By:	\mathbf{AR}
Prep Batch:	89070	QC Preparation:	2013-09-17	Prepared By:	AR

Report Date: Septembe 112MC05408	er 20, 2013	Work Or COG/Shows	der: 13090631 topper 7 Fed. #1	Page Number: 20 of 29 Eddy Co., NM		
Parameter	Flag	Cert	MDL Result	Units	RL	
Method Blank (1)	OC Batch: 105267					
QC Batch: 105267 Prep Batch: 89070	QC Da((II. 105207	Date Analyzed: QC Preparation:	2013-09-20 2013-09-17	Analyzed By: Prepared By:	AR AR	
Parameter Chlorida	Flag	Cert	MDL Result	Units mg/Kg	RL	

.

Report Date: September 20, 2013 112MC05408

Work Order: 13090631 COG/Showstopper 7 Fed. #1

Laboratory Control Spikes

Laboratory Control Spike (LCS-1)

QC Batch: 1 Prep Batch: 8	05200 9070			Da QC	te Analyz ? Prepara	ed: 2 tion: 2	013-09-18 013-09-17			Analy Prepa	yzed By ared By:	: AR : AR
Param			F	C	LCS Result	Units	Dil.	Spike Amount	Ma Re	atrix esult Rec.	F L	Rec. imit
Chloride					2380	mg/Kg	1	2500	<	3.85 95	89.7	- 115.9
Percent recover	y is based on the	spiko	e resi	ult. RPI	D is based	on the	spike and	spike dup	licate 1	result.		
				LCSD			Spike	Matrix		Rec.		RPD
Param		F	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride				2450	mg/Kg	1	2500	<3.85	98	89.7 - 115.9	3	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 105205 Prep Batch: 89070				Date Analyzed: 2013-09-18 QC Preparation: 2013-09-17						zed By: AR red By: AR
Param		F	С	LCS Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit
Chloride				2500	mg/Kg	1	2500	<3.85	100	89.7 - 115.9
Percent recov	very is based on the sp	pike res	ult. F	RPD is base	ed on the sp	oike and	spike duplic	ate result.		

			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	\mathbf{Limit}	RPD	Limit
Chloride			2600	mg/Kg	1	2500	<3.85	104	89.7 - 115.9	4	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch:	105207	Date Analyzed:	2013-09-18	Analyzed By:	AR.
Prep Batch:	89070	QC Preparation:	2013-09-17	Prepared By:	AR

ParamFCResultUnitsDil.AmountResultRec.LimitChloride2620mg/Kg12500<3.8510580.7 - 115.9Percent recovery is based on the spike result.RPDis based on the spike and spike duplicate result.ParamFCResultUnitsDil.AmountResultRec.RPDParamFCResultUnitsDil.AmountResultRec.LimitRPDChloride2530mg/Kg12500<3.8510189.7 - 115.9420Percent recovery is based on the spike result.RPDis based on the spike result.RPDLimitChloride02Date Analyzed:2013-09-20Analyzed By:ARPrep Batch:89070QC Preparation:2013-09-17Prepared By:AParamFCResultUnitsDil.AmountResultRec.ParamFCResultUnitsDil.AmountResultRec.LimitChloride2560mg/Kg12500<3.8510289.7 - 115.920ParamFCResultUnitsDil.AmountResultRec.Rec.ParamFCResultUnitsDil.AmountResultRec.Ref.ParamFCResultUnitsDil.AmountResultRec.Limit	Report Date: September 20, 112MC05408	ber 20, 2013 Work Order: 13090631 Page Number: 22 of 29 COG/Showstopper 7 Fed. #1 Eddy Co., NM											
Percent recovery is based on the spike result. LCSD Spike Matrix Rec. LPT LOSD Spike Matrix Rec. LPT Param F C Result Units Dia Spike Matrix Rec. Limit Choride 2530 mg/Kg 1 2500 Rec. Limit Laboratory Control Spike (LCS-1) QC Batch: 105266 Date Analyzed: 2013-09-20 Analyzed By: AR Param F C Result Units Dil. Amount Result Rec. Limit Choride 2600 mg/Kg 1 2500 <3.85 102 89.7 - 115.9 4 20 Percent recovery is based on the spike result. Rec. RPD LCS 1 <th< th=""><th>Param Chloride</th><th></th><th>F</th><th>C</th><th>LCS Result 2620</th><th>Units mg/Kg</th><th>Dil.</th><th>Spike Amount 2500</th><th>M R <</th><th>atrix esult 3.85</th><th>Rec. 105</th><th>I L </th><th>lec. imit - 115.9</th></th<>	Param Chloride		F	C	LCS Result 2620	Units mg/Kg	Dil.	Spike Amount 2500	M R <	atrix esult 3.85	Rec. 105	I L 	lec. imit - 115.9
ParamFCResultUnitsDilAmountResultRec.InitRPDLimitChloride2530mg/Kg12500<3.8510189.7 - 115.9420Percent recovery is based on the spike result.RPD is based on the spike and spike duplicate result.89.7 - 115.9420Laboratory Control Spike (LCS-1)QC Batch:105266Date Analyzed:2013-09-20Analyzed By:ARPrep Batch:89070QC Preparation:2013-09-17Prepared By:ARChloride2560mg/Kg12500<3.8510289.7 - 115.9ParamFCResultUnitsDil.AmountResultRec.LimitChloride2560mg/Kg12500<3.8510289.7 - 115.9420Percent recovery is based on the spike result.RPD is based on the spike and spike duplicate result.Rec.RPDLimitChloride2450mg/Kg12500<3.8598.97.115.9420Percent recovery is based on the spike result.RPD is based on the spike and spike duplicate result.RPDLimitChloride2450mg/Kg12500<3.859895420Percent recovery is based on the spike result.RPD is based on the spike and spike duplicate result.RPDLimitChloride2450KR2500<3.859589.7 - 115.9420Percent recovery is ba	Percent recovery is based on	the spik	e res	ult. RP	D is based	l on the	spike and	spike dup	licate	result.			
LCSDSpikeMatrixRec.RPD Limit Chloride2530mg/Kg12500RPD Limit ChlorideCResult Result Rec.Limit RPD LimitCResult Result Rec.Limit Colspan="4">RPD Limit Colspan="4">CLaboratory Control Spike (LCS-1)QC Batch:105266Date Analyzed:2013-09-20Analyzed By: ARPrep Batch:89070QC Preparation:2013-09-20Analyzed By: ARPrep Batch:89070QC Preparation:2013-09-20Analyzed By: ARPrep Batch:89070QC Preparation:2013-09-20Analyzed By: ARPrep areaFCResult mitsDilCOSSpikeMatrixRec.LCSSpikeMatrixRec.ParamFCResult mitsLCSDSpikeMatrixRec.LimitCResult		one opin	0 101		D 10 00000					-			_
ParamFCResultOnitsDitAnnouncResultDittRPDLimitPercent recovery is based on the spike result.RPD is based on the spike and spike duplicate result.Laboratory Control Spike (LCS-1)QC Batch:105266Date Analyzed:2013-09-20Analyzed By:ARPrep Batch:89070QC Preparation:2013-09-17Prepared By:ARParamFCResultUnitsDil.AmountResultRec.LimitChoride2560mg/Kg12500<3.85	Danama	-T	a	LCSD	Thatta	1):1	Spike	Matrix	Daa		.ec.	מסס	RPD
Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. Laboratory Control Spike (LCS-1) QC Batch: 105266 Date Analyzed: 2013-09-20 Analyzed By: AR Prep Batch: 89070 QC Preparation: 2013-09-17 Prepared By: AR Param F C Result Units Dil. Amount Result Rec. Limit Chloride 2560 mg/Kg 1 2500 <3.85 102 89.7 - 115.9 4 20 Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. Laboratory Control Spike (LCS-1) QC Batch: 105267 Date Analyzed: 2013-09-20 Analyzed By: AR Prep Batch: 105267 Date Analyzed: 2013-09-20 Analyzed By: AR Prep Batch: 105267 Date Analyzed: 2013-09-20 Analyzed By: AR Prep Batch: 105267 Date Analyzed: 2013-09-17 Prepared By: AR Prep Batch: 89070 QC Preparation: 2013-09-17 Prepared By: AR Prep Batch: 105267 Date Analyzed: 2013-09-17 Prepared By: AR Prep Anam F C Result Units Dil Amount Result Rec. Limit Chloride 2370 mg/Kg 1 2500 <3.85 95 89.7 - 115.9 4 20 Percent recovery is based on the spike result. RPD is based on the spike duplicate result. LCSD Spike Matrix Rec. Limit Chloride Prepared By: AR Param F C Result Units Dil Amount Result Rec. Limit Chloride 2300 so 89.89.7 - 115.9 4 20 Percent recovery is based on the spike result. RPD is based on the spike duplicate result.	Chloride		0	2530	mg/Kg	· 1	2500	< 3.85	101	89.7	- 115 9	4	20
Laboratory Control Spike (LCS-1) QC Batch: 105266 Date Analyzed: 2013-09-20 Analyzed By: AR Prep Batch: 89070 QC Preparation: 2013-09-17 Prepared By: AR Param F C Result Units Dil. Amount Result Rec. Limit Chloride 2560 mg/Kg 1 2500 <3.85 102 89.7 - 115.9 Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. Rec. Reput Param F C Result Units Dil. Amount Result Rec. RPD Param F C Result Units Dil. Amount Result Rec. RPD Limit Rec. Rec. Rec. Rec. Rec. Rec. Rec. Rec.	Percent recovery is based on	the spik	e res	ult. RPI	D is based	l on the	spike and	spike dup	licate	result.			
QC Batch: 105266 Date Analyzed: 2013-09-20 Analyzed By: AR Prep Batch: 89070 QC Preparation: 2013-09-17 Prepared By: AR Param F C Result Units Dil. Amount Result Rec. Limit Chloride 2560 mg/Kg 1 2500 <3.85 102 89.7 - 115.9 Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. Rec. RPD Param F C Result Units Dil. Amount Result Rec. RPD Param F C Result Units Dil. Amount Result Rec. RPD Param F C Result Units Dil. Amount Result Rec. RPD Param F C Result RPD is based on the spike and spike duplicate result. Laboratory Control Spike (LCS-1) QC Preparation: 2013-09-20 Analyzed By: AR Param F C	Laboratory Control Spike	e (LCS-	1)										
Prep Batch:89070QC Preparation:2013-09-17Prepared By:ARParamFCResultUnitsDil.AmountResultRec.LimitChloride2560mg/Kg12500<3.85	QC Batch: 105266			Da	te Analyz	zed: 2	013-09-20				Analy	yzed By	: AR
LCSSpikeMatrixRec.ParamFCResultUnitsDil.AmountResultRec.LimitChloride2560mg/Kg12500<3.85	Prep Batch: 89070			\mathbf{Q}	C Prepara	tion: 2	013-09-17				Prepa	ared By	AR
ParamFCResultUnitsDil.AmountResultRec.LimitChoride2560 ng/Kg 12500 < 3.85 10289.7 - 115.9Percent recovery is based on the spike result.RPD is based on the spike and spike duplicate result.ParamFCResultUnitsDil.AmountResultRec.RPDParamFCResultUnitsDil.AmountResultRec.RPDChloride2450 ng/Kg 12500 < 3.85 9889.7 - 115.9420Percent recovery is based on the spike result.RPD is based on the spike and spike duplicate result.RPDLimitLaboratory Control Spike (LCS-1)QC Preparation:2013-09-20Analyzed By:ARPrep Batch:105267Date Analyzed:2013-09-17Prepared By:ARParamFCResultUnitsDil.AmountResultRec.LimitChloride2370mg/Kg12500 < 3.85 9589.7 - 115.9420ParamFCResultUnitsDil.AmountResultRec.LimitChloride2370mg/Kg12500 < 3.85 9589.7 - 115.9Percent recovery is based on the spike result.RPDis based on the spike and spike duplicate result.ParamFCResultUnitsDil.AmountResultRec.Lim													
ParamFCResultUnitsDil.AmountResultRec.LimitChloride2560 ng/Kg 12500<3.85					LCS			Spike	М	atrix		F	lec.
Chloride 2560 mg/Kg 1 2500 < 3.85 102 89.7 - 115.9 Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. Rec. RPD Param F C Result Units Dil. Amount Result Rec. RPD Limit Chloride 2450 mg/Kg 1 2500 < 3.85 98 89.7 - 115.9 4 20 Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. Imit RPD Limit Laboratory Control Spike (LCS-1) QC Batch: 105267 Date Analyzed: 2013-09-20 Analyzed By: AR Prep Batch: 89070 QC Preparation: 2013-09-17 Prepared By: AR Param F C Result Units Dil. Amount Result Rec. Param F C Result Units Dil. Amount Result Rec. Limit Chloride 2370 mg/Kg 1 2500 < 3.85 95 89.	Param		F	С	Result	Units	Dil.	Amount	R	esult	Rec.	\mathbf{L}	imit
Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. RPD Param F C Result Units Dil. Amount Result Rec. RPD Limit RPD LCS C Analyzed By: AR Analyzed By: AR Rec. Rec. Limit Rec. Rec. Rec. Limit Rec. Rec. Rec. Limit Rec. Limit RPD	Chloride				2560	mg/Kg	; 1	2500	<	3.85	102	89.7	- 115.9
ParamFCResultUnitsDil.AmountResultRec.RPDLimitChloride2450mg/Kg12500 < 3.85 9889.7 - 115.9420Percent recovery is based on the spike result.RPD is based on the spike and spike duplicate result.Laboratory Control Spike (LCS-1)QC Batch:105267Date Analyzed:2013-09-20Analyzed By:ARPrep Batch:89070QC Preparation:2013-09-17Prepared By:ARParamFCResultUnitsDil.AmountResultRec.LimitChloride2370mg/Kg12500 < 3.85 9589.7 - 115.9420ParamFCResultUnitsDil.AmountResultRec.LimitChloride2370mg/Kg12500 < 3.85 9589.7 - 115.94ParamFCResultUnitsDil.AmountResultRec.LimitChloride2370mg/Kg12500 < 3.85 9589.7 - 115.9420ParamFCResultUnitsDil.AmountResultRec.RPDLimitChloride2460mg/Kg12500 < 3.85 9889.7 - 115.9420ParamFCResultUnitsDil.AmountResultRec.LimitRPDLimit <t< td=""><td>Percent recovery is based on</td><td>the spik</td><td>e res</td><td>ult. RPI</td><td>D is based</td><td>l on the</td><td>spike and</td><td>spike dupi</td><td>licate</td><td>result.</td><td></td><td></td><td></td></t<>	Percent recovery is based on	the spik	e res	ult. RPI	D is based	l on the	spike and	spike dupi	licate	result.			
ParamFCResultUnitsDil.AmountResultRec.LimitRPDLimitChloride2450mg/Kg12500 <3.85 9889.7 - 115.9420Percent recovery is based on the spike result.RPD is based on the spike and spike duplicate result.Laboratory Control Spike (LCS-1)QC Batch:105267Date Analyzed:2013-09-20Analyzed By:ARPrep Batch:89070QC Preparation:2013-09-17Prepared By:ARParamFCResultUnitsDil.AmountResultRec.LimitChloride2370mg/Kg12500 <3.85 9589.7 - 115.9420Percent recovery is based on the spike result.RPD is based on the spike and spike duplicate result.ParamFCResultUnitsDil.AmountResultRec.LimitChloride2370mg/Kg12500 <3.85 9589.7 - 115.9420ParamFCResultUnitsDil.AmountResultRec.RPDLimitChloride2460mg/Kg12500 <3.85 9889.7 - 115.9420ParamFCResultUnitsDil.AmountResultRec.RPDLimitChloride2460mg/Kg12500 <3.85 9889.7 - 115.9420Percent				LCRD			Spiko	Motrix		g	00		חסס
Chloride 2450 mg/Kg 1 2500 <3.85 98 89.7 - 115.9 4 20 Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. Laboratory Control Spike (LCS-1) QC Batch: 105267 Date Analyzed: 2013-09-20 Analyzed By: AR Prep Batch: 89070 QC Preparation: 2013-09-17 Prepared By: AR Param F C Result Units Dil. Amount Result Rec. Limit Chloride 2370 mg/Kg 1 2500 <3.85	Param	F	\mathbf{C}	Result	Units	Dil	Amount	Result	Rec	Li	nit.	RPD	Limit
Or 0 Or 0 Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. Laboratory Control Spike (LCS-1) QC Batch: 105267 Date Analyzed: 2013-09-20 Analyzed By: AR Prep Batch: 89070 QC Preparation: 2013-09-17 Prepared By: AR Param F C Result Units Dil. Amount Result Rec. Limit Chloride 2370 mg/Kg 1 2500 <3.85 95 89.7 - 115.9 Param F C Result Units Dil. Amount Result Rec. RPD Param F C Result Units Dil. Amount Result Rec. RPD Param F C Result Units Dil. Amount Result Rec. RPD Chloride 2460 ng/Kg 1 2500 <3.85 98 89.7 - 115.9 4 20 Spike Matrix <td>Chloride</td> <td></td> <td></td> <td>2450</td> <td>nig/Kg</td> <td>1</td> <td>2500</td> <td><3.85</td> <td>98</td> <td>89.7</td> <td>115.9</td> <td>4</td> <td>20</td>	Chloride			2450	nig/Kg	1	2500	<3.85	98	89.7	115.9	4	20
Laboratory Control Spike (LCS-1)QC Batch:105267Date Analyzed:2013-09-20Analyzed By:ARPrep Batch:89070QC Preparation:2013-09-17Prepared By:ARParamFCResultUnitsDil.AmountResultRec.Chloride2370mg/Kg12500<3.85	Percent recovery is based on	the snik	o ros	ult RP	n ie baeor	l on the	snike and	snike dun	licato	rogult			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Laboratory Control Spike QC Batch: 105267 Prep Batch: 89070	e (LCS-	1)	Da Q(te Analyz C Prepara	zed: 2 tion: 2	013-09-20 013-09-17				Analy Prepa	vzed By wred By:	: AR. AR.
LCSSpikeMatrixRec.ParamFCResultUnitsDil.AmountResultRec.LimitChloride2370mg/Kg12500 <3.85 9589.7 - 115.9Percent recovery is based on the spike result.RPD is based on the spike and spike duplicate result.ParamFCResultUnitsDil.AmountResultRec.RPDParamFCResultUnitsDil.AmountResultRPDLimitChloride2460mg/Kg12500 <3.85 9889.7 - 115.9420Percent recovery is based on the spike resultRPD is based on the spike and spike duplicate result20													
Param F C Result Units Dil. Amount Result Rec. Limit Chloride 2370 mg/Kg 1 2500 <3.85					LCS			Spike	Μ	atrix		F	lec.
Chloride 2370 mg/Kg 1 2500 <3.85 95 89.7 - 115.9 Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. LCSD Spike Matrix Rec. RPD Param F C Result Units Dil. Amount Result Rec. RPD Chloride 2460 mg/Kg 1 2500 <3.85	Param		F	С	Result	Units	Dil.	Amount	R	esult	Rec.	L	mit
Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result. LCSD Spike Matrix Rec. RPD Param F C Result Units Dil. Amount Result Rec. Limit RPD Limit Chloride 2460 mg/Kg 1 2500 <3.85	Chloride				2370	mg/Kg	1	2500	<	3.85	95	89.7	- 115.9
LCSDSpikeMatrixRec.RPDParamFCResultUnitsDil.AmountResultRec.LimitRPDLimitChloride2460mg/Kg12500<3.85	Percent recovery is based on	the spike	e res	ult. RPI	D is based	l on the	spike and	spike dup	licate	result.			
Param F C Result Units Dil. Amount Result Rec. Limit RPD Limit Chloride 2460 mg/Kg 1 2500 <3.85				LCSD			Spike	Matrix		R	ec.		RPD
Chloride 2460 ng/Kg 1 2500 <3.85 98 89.7 - 115.9 4 20 Percent recovery is based on the spike result BPD is based on the spike and spike duplicate result	Param	\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Li	mit	RPD	Limit
Percent recovery is based on the snike result BPD is based on the snike and snike dunlicate result	Chloride			2460	ng/Ke	1	2500	<3.85	98	89.7 -	115.9	4	20
CONTRACT AND A RECOVERY AND A DREAM REPORTED AND A DREAM AND A	Porcent recovery is based on	the enily	o roc		\square is based	l on the	enike and	eniko dun	icato	rocult			

.

Report Date: September 20, 2013Work Order: 13090631Page Number: 23112MC05408COG/Showstopper 7 Fed. #1Eddy Co.											23 of 29 o., NM				
Matrix Spil	ke (MS-1)	Spiked	Saı	mple	: 341365										
QC Batch: Prep Batch:	105200 89070				Dat QC	e Analyz Preparat	ed: sion:	201 201	3-09-18 3-09-17				Analy Prepa	vzed By ared By	AR AR
Param				F	C	MS Result	Uni	its	Dil.	Spike Amount	M R	atrix esult	Rec	. 1	Rec. Jimit
Chloride						3310	mg/	Kg	5	2500	, 	728	103	78.	9 - 121
Percent recov	very is based	on the sp	oike	resu	ılt. RPE) is based	on tł	ne sp	ike and s	spike dupli	cate re	sult.			
Param			F	С	MSD Result	Units	Di	1	Spike Amount	Matrix Result	Rec.	R Lit	ec. mit	RPD	RPD Limit
Chloride					3180	mg/Kg	5 5		2500	728	98	78.9	- 121	4	20
Matrix Spil QC Batch: Prep Batch:	ke (MS-1) 105205 89070	Spiked	Sa	mple	: 341375 Dat QC	e Analyz Preparat MS	ed: ion:	201 201	3-09-18 3-09-17	Spike	М	atrix	Analy Prepa	vzed By ured By:	AR AR Rec.
Param				F	C I	Result	Uni	ts	Dil.	Amount	Re	esult	Rec.	. I	imit
Chloride						10400	mg/I	Kg	10	2500	7	870	101	78.	9 - 121
Percent recov	very is based	on the sp	oike	resu	lt. RPD) is based	on th	ie sp	ike and s	pike dupli	cate re	sult.			
Param			F	С	MSD Result	Units	Di	1	Spike Amount	Matrix Result	Rec.	Re Lii	ec. nit	RPD	RPD Limit
Chloride					10300	mg/Kg	; 10)	2500	7870	97	78.9	- 121	1	20
Percent recov Matrix Spil	very is based (ke (MS-1)	on the sp Spiked	oike Sai	resu mple	lt. RPD : 341385) is based	on th	ne sp	ike and s	pike duplid	cate re	sult.			
QC Batch: Prep Batch:	105207 89070				Dat QC	e Analyz Preparat	ed: ion:	2013 2013	3-09-18 3-09-17				Analy Prepa	zed By: red By:	AR AR

			\mathbf{MS}			Spike	Matrix		Rec.
Param	\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride			3110	mg/Kg	5	2500	597	100	78.9 - 121

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Report Date: September 20, 2013 112MC05408				Work COG/Sh	Page Number: 24 of 29 Eddy Co., NM						
Param	F	С	MSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	RPD	RPD Limit
Chloride			2990	mg/Kg	5	2500	597	96	78.9 - 121	4	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 341395

QC Batch:	105266	Date Analyzed:	2013-09-20	Analyzed By:	AR.
Prep Batch:	89070	QC Preparation:	2013-09-17	Prepared By:	\mathbf{AR}

			MS			Spike	Matrix		Rec.
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride			3340	mg/Kg	10	2500	1190	86	78.9 - 121
Percent recovery is based on the spi	ke res	ult. R	PD is base	d on the sp	ike and	spike duplica	te result.		

			MSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride			3700	mg/Kg	10	2500	1190	100	78.9 - 121	10	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 341400

QC Batch: Prep Batch:	105267 89070		Date Analyzed: 2013-09-20 QC Preparation: 2013-09-17						Analyze Prepare	d By: AR d By: AR
Param		\mathbf{F}	С	MS Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit
Chloride				2560	mg/Kg	5	2500	49	100	78.9 - 121
Percent recov	very is based on t	he spike res	ult. R	PD is base	d on the sp	ike and a	spike duplica	te result.		

			MSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride			2420	mg/Kg	5	2500	49	95	78.9 - 121	6	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Report Date: September 20, 2013 112MC05408

Calibration Standards

Standard (CCV-1)

QC Batch:	105200			Date A	Analyzed:	2013-09-18		Analy	zed By: AR
					CCVs	CCVs	CCVs	Percent	
					True	Found	Percent	Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		•		mg/Kg	100	99.7	100	85 - 115	2013-09-18

Standard (CCV-2)

QC Batch:	105200			Date 1	Analyzed:	2013-09-18		Analy	zed By: AR
					CCVs	CCVs Found	CCVs	Percent	Data
-		-	<i>a</i> .	TT 1 .	True	round	rercent	Recovery	
Parani		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride				mg/Kg	100	100	100	85 - 115	2013-09-18

Standard (CCV-1)

QC Batch:	105205			Date A	Analyzed:	2013-09-18		Analy	zed By: AR
					CCVs	CCVs	CCVs	Percent	
					True	Found	Percent	Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride				mg/Kg	100	99.6	100	85 - 115	2013-09-18

Standard (CCV-2)

QC Batch:	105205			Date A	Analyzed:	2013-09-18		Analy	Analyzed By: AR		
					CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date		
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed		
Chloride				mg/Kg	100	100	100	85 - 115	2013-09-18		

Report Date: September 20, 2013 112MC05408			(Work O COG/Show	Page Number: 26 of 29 Eddy Co., NM			
Standard (C	CV-1)							
QC Batch: 105207		Date Analyzed:		2013-09-18		Analyzed By: AR		
				CCVs	\mathbf{CCVs}	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride			$\mathrm{mg/Kg}$	100	101	101	85 - 115	2013-09-18

Standard (CCV-2)

QC Batch:	105207	105207			Date Analyzed:			Analy	Analyzed By: AR		
					CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date		
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed		
Chloride				mg/Kg	100	99.5	100	85 - 115	2013-09-18		

Standard (CCV-1)

QC Batch:	105266			Date A	Analyzed:	2013-09-20		Analyzed By: AR		
					CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date	
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
Chloride				mg/Kg	100	99.7	100	85 - 115	2013-09-20	

Standard (CCV-2)

QC Batch:	105266	Date Analyzed:			2013-09-20		Analy	Analyzed By: AR		
					CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date	
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
Chloride				mg/Kg	100	100	100	85 - 115	2013-09-20	

Standard (CCV-1)

QC Batch: 105267

Date Analyzed: 2013-09-20

Analyzed By: AR

Report Date: September 20, 2013 112MC05408			C	Work Ord OG/Showst	Page Number: 27 of 29 Eddy Co., NM			
Param	Flag	Cert	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Chloride			mg/Kg	100	101	101	85 - 115	2013-09-20
Standard (CC	CV-2)							

QC Batch:	105267		.05267 Date Analyzed:			2013-09-20		Analy	Analyzed By: AR		
		·			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date		
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed		
Chloride				mg/Kg	100	99.0	99	85 - 115	2013-09-20		

Report Date: September 20, 2013 112MC05408

Work Order: 13090631 COG/Showstopper 7 Fed. #1 Page Number: 28 of 29 Eddy Co., NM

Appendix

Report Definitions

NameDefinitionMDLMethod Detection LimitMQLMinimum Quantitation LimitSDLSample Detection Limit

Laboratory Certifications

	Certifying	Certification	Laboratory
С	Authority	Number	Location
-	NCTRCA	WFWB384444Y0909	TraceAnalysis
-	DBE	VN 20657	TraceAnalysis
-	HUB	1752439743100-86536	TraceAnalysis
-	WBE	237019	TraceAnalysis

Standard Flags

- F Description
- B Analyte detected in the corresponding method blank above the method detection limit
- H Analyzed out of hold time
- J Estimated concentration
- Jb The analyte is positively identified and the value is approximated between the SDL and MQL. Sample contains less then ten times the concentration found in the method blank. The result should be considered non-detect to the SDL.
- Je Estimated concentration exceeding calibration range.
- MI1 Split peak or shoulder peak
- MI2 Instrument software did not integrate
- MI3 Instrument software misidentified the peak
- MI4 Instrument software integrated improperly
- MI5 Baseline correction
- Qc Calibration check outside of laboratory limits.
- Qr RPD outside of laboratory limits
- Qs Spike recovery outside of laboratory limits.
- Qsr Surrogate recovery outside of laboratory limits.
- U The analyte is not detected above the SDL

Attachments

Report Date: September 20, 2013 112MC05408 Work Order: 13090631 COG/Showstopper 7 Fed. #1 Page Number: 29 of 29 Eddy Co., NM

The scanned attachments will follow this page.

Please note, each attachment may consist of more than one page.

August 28, 2013

IKE TAVAREZ TETRA TECH 1910 N. BOG SPRING STREET MIDLAND, TX 79705

RE: SHOWSTOPPER 7 FED COM #1H

Enclosed are the results of analyses for samples received by the laboratory on 08/27/13 16:00.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-11-3. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celez D. Keine

Celey D. Keene Lab Director/Quality Manager

Analytical Results For:

TETRA TECH IKE TAVAREZ 1910 N. BOG SPRING STREET MIDLAND TX, 79705 Fax To: (432) 682-3946

Received:	08/27/2013	Sampling Date:	08/27/2013
Reported:	08/28/2013	Sampling Type:	Soil
Project Name:	SHOWSTOPPER 7 FED COM #1H	Sampling Condition:	** (See Notes)
Project Number:	112MC05194	Sample Received By:	Jodi Henson
Project Location:	EDDY COUNTY, NM		

Sample ID: AH 8 (BH) 3' (H302068-01)

Chloride, SM4500CI-B	mg/kg		Analyze	Analyzed By: DW					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	624	16.0	08/28/2013	ND	416	104	400	3.92	
ТРН 8015М	mg/kg		Analyze	Analyzed By: CK/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	08/28/2013	ND	182	90.8	200	1.55	
DRO >C10-C28	<10.0	10.0	08/28/2013	ND	168	83.8	200	0.0292	
Surrogate: 1-Chlorooctane	84.6	% 65.2-14	0						
Surrogate: 1-Chlorooctadecane	86.5	% 63.6-15	4						

Sample ID: AH 10 (BH) 3' (H302068-02)

Chloride, SM4500CI-B	mg	/kg	Analyze	d By: DW					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1500	16.0	08/28/2013	ND	416	104	400	3.92	
TPH 8015M	mg/kg		Analyze	Analyzed By: CK/		·			
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	08/28/2013	ND	182	90.8	200	1.55	
DRO >C10-C28	<10.0	10.0	08/28/2013	ND	168	83.8	200	0.0292	
Surrogate: 1-Chlorooctane	90.9	% 65.2-14	10						
Surrogate: 1-Chlorooctadecane	94.3	% 63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatboever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons on otherwise. Results relate only to the samples identified above. This report shall not be reproduced to Cardinal libonariontes.

Celuz D. Kune

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
•	Chloride by SM4500CI-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deened waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims based upon any of the above stated reasons or otherwise. Results relate roly to the samples identified above. This report shall not be reprodued except in full with written approval of Cardinal classors.

Celey D. Kuna

Celey D. Keene, Lab Director/Quality Manager

Page 3 of 4

Allalysis	request	or chain of C	usioay	necc		101	ANALYSIS REQUEST	
430201-8		TETRA TECH 1910 N. Big Spring St. Midland, Texas 79705 (432) 682-4559 • Fax (432) 682-394	16	•		(Ext. to C35) Cr Pb Hg Se Vr Pd Hg Se	e or Specify Method N	ο.)
CLIENT NAME:		SITE MANAGER:	LERS.	PRE	SERVATIVE ETHOD	TX1005 Ba Cd Ba Cd	50/624 70/625	s, pH, TC
PROJECT NO .: 112M(05/94	PROJECT NAME	owstopper'7 Fed con	× #1 H			s MOD. Is Ag As its Ag As les Volatiles	8240/82 11. Vol. 82 /608 08	(Air) stos) ts/Cation
LAB I.D. NUMBER DATE TIME	MATRIX COMP GRAB	Eddy (%, SAMPLE IDENTIFICATION	Nm Immedia	HOL HNO3	ICE: NONE BTEX 80211	APH 801 PAH 8270 RCRA Meta TCLP Meta TCLP Volati TCLP Semi	GC.MS Vol. GC.MS Sen PCB's 8080 Pest. 808/6 Chloride Gamma Sp	Alpha Beta PLM (Asbee Major Anior
1 8/27	5 X AL	1 8 (BH)3	e e		X			
2 4	SXA	HIO (BH) 3'	1		~	1	1	
	┟┨┨┧			+				
	┝┝┝			┹┹	┝╴╎╶╎╸╎	┥┽┟┟┟╽╽	┽┼┽┽╎╷	
					╏╌╏╶┨╴┨╴	<u> </u>	┼┼┽┼┼┽╎	╶┨┽╿┝╿╴
				┼╎┼╴		╇┽╋╇		
ELINQUISHED BY: (Signature)	Date:	FACEA/ED/BY: (Signatu	to M A CH	Date:	811711-3	SAMPLED BY: (Print &	Initial)	Date:
ELINQUISHED BY: (Signature)	Time: Date: Time:	PECEIVED BY: (Signatur	re)	Tîme: Date: Tîme:	<u><u><u> </u></u></u>	SAMPLE SHIPPED BY	Circle) A BUS	Time: Messo IRBILL #:
	Date: Time:	RECEIVED BY: (Signatu	re)	Date: Time:		HAND DELIVERED	UPS C	Results by:
DDRESS:STATE:	ZI	P: DATE:		ГIME:		- 1/ke /a	- 3878	RUSH Charges Authorized: Yes No
AMPLE CONDITION WHEN RECEIVED:	F	EMARKS: + Straight for field #	· · · · ·			ike tar	arezotetra	itech.com