

2009 AGWMR

Date 4/13/2010

April 13, 2010

Certified Mail: 7007 2560 0002 5890 7307 7007 2560 0002 5890 7314

Hope Monzeglio New Mexico Environmental Department Hazardous Waste Bureau 2905 Rodeo Park Drive East Bidg 1 Santa Fe, NM 87505 Carl Chavez New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Dr Santa Fe, NM 87505

1011213141

APR 2010

3456789

RE: Corrective Measures Study and Corrective Measures Implementation (Site Investigation and Abatement Plan) 2009 Groundwater Remediation and Monitoring Annual Report Western Refining Southwest, Inc. - Bloomfield Refinery EPA ID# NMD089416416 GW - 001

Dear Hope and Carl:

Western Refining Southwest Inc. - Bloomfield Refinery submits the 2009 Annual Groundwater Report as required by NMED and OCD directives. This report summarizes all groundwater monitoring activities that occurred in 2009.

If you have questions or would like to discuss any aspect of the report, please contact me at (505) 632-4171.

Sincerely James R. Schmaltz

Environmental Manager Western Refining Southwest, Inc. - Bloomfield Refinery

cc: Laurie King, EPA Region VI Brandon Powell, NM OCD Aztec District Office` Allen Hains, Western Refining – El Paso

Executive Summary

Bloomfield Refinery #50 Road 4990 Bloomfield, New Mexico 87413

US EPA ID: NMD089416416

This report provides a summary of site-wide groundwater monitoring that took place at Bloomfield Refinery throughout 2009. Sampling and analysis followed the guidelines from the *Facility-Wide Groundwater Monitoring Plan December 2007(Revised May 2008)*.

Groundwater Measurements

All facility monitoring wells, recovery wells, observation and collection wells were measured for groundwater elevation in February, April, August, and November. Water elevation measurements were collected in all wells while the recovery wells were in operation and again after the pumps were removed and water levels had stabilized.

Groundwater Monitoring

Semi-annual (April) and annual (August) groundwater sampling were performed to monitor potential impacts to groundwater quality associated with historic refinery operations. Both sampling events followed guidelines from the *Facility-wide Groundwater Monitoring Plan December 2007(Revised May 2008)*. Future sampling events will continue to follow the most updated Plan.

San Juan River

The San Juan River was sampled on a bi-annual basis in 2009. Analytical results indicate that impacted groundwater from the refinery has not impacted the river.

Tank #33 Effluent

Tank #33 effluent was sampled and analyzed for BTEX and MTBE (EPA Method 8260B) on a monthly basis throughout 2009. Benzene results did not surpass toxicity standards at Tk #33 effluent in 2009.

North Boundary Barrier Wall

Groundwater elevation maps indicate that the North Boundary Barrier Wall is performing as intended by capturing the water along the south side of the wall. Inspections of the draws north of the barrier wall indicate where seepage of fuel hydrocarbon impacted water was present has been eliminated. Visual inspection of Seeps 1-9 has shown groundwater discharge from the seeps along the river bluff has decreased significantly since installation of the slurry wall. It now appears that only seeps #1, #6, #7, #8, and #9 have any actual discharge of ground water as opposed to apparent periodic accumulation of stormwater in the other seep basins. Bi-weekly inspections continue to confirm that the vast majority of the fluids in the outfalls are from precipitation events.

Recommendations

Western Refining indefinitely suspended refining operations at the Bloomfield Refinery on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation. Future monitoring and remedial action will follow the *Facility-Wide Groundwater Monitoring Plan (Revised May 2008)* or the most updated plan.

CONTENTS

Section Title

Executive Summary

- 1.0 Introduction
- 2.0 Scope of Activities
- 3.0 Regulatory Criteria / Groundwater Cleanup Standards
- 4.0 Groundwater Monitoring Results
- 5.0 Groundwater Chemical Analytical Data
- 6.0 Remediation System Monitoring
- 7.0 Summary Conclusions and Recommendations
- 8.0 Tables
- 9.0 Figures
- 10.0 BTEX & MTBE Concentration vs Time
- 11.0 Field Methods
- 12.0 Waste Disposition
- 13.0 Below Grade Testing

Appendix A

North Boundary Barrier Wall

Appendix B

Chemical Analytical Program

Chemical Analytical Reports

INTRODUCTION

2009 Groundwater Remediation and Monitoring Annual Report

Owner:	Western Refining, Ind 123 W. Mills Ave., Su El Paso, TX 79901		(parent corporation)
Operator:	Western Refining So P.O. Box 159 Bloomfield, New Mex		(postal address)
	Western Refining So #50 Rd 4990 Bloomfield, New Mex		(physical address)
Facility Name:	Bloomfield Refinery #50 Rd 4990 Bloomfield, New Mex	kico 87413	(physical address)
Facility Status	Corrective Action/Co	mpliance	
US EPA ID	NMD089416416		
SIC Code	2911		
Submittal Date:	April 2010		
Purpose of Grour	ndwater Monitoring:	To evaluate p	resent contamination
Type of Groundw	ater Monitoring:	Semi-annual,	Annual, and Investigative

BACKGROUND INFORMATION

SITE LOCATION AND DESCRIPTION

The Bloomfield Refinery is a crude oil refining facility with a crude capacity of 18,000 barrels per day. It is located approximately 1 mile south of Bloomfield, New Mexico, in San Juan County, latitude N36 41' 87", longitude W107 58' 70". It is further located approximately ½ mile east of State Route 550 on County Road 4990 (a.k.a. Sullivan Road).

The refinery is located on a bluff 120 feet above the south side of the San Juan River. The top of the bluff is relatively flat and is at an elevation of 5,540 feet above sea level. The geological units that comprise the site include, in order of increasing depth, San Juan River Alluvium, Quaternary apron deposits, Aeolian sand and silt, Jackson Lake Terrace, and the Tertiary Nacimiento Formation. An unnamed arroyo flows toward the San Juan River on the southern and western edges of the site. East of the site, a welldefined arroyo cuts a small canyon from the bluff to the San Juan River. Hammond Ditch lies on the bluff between the limit of the Jackson Lake Terrace and the refinery.

Refinery offices are on the western end of the facility, along with warehouse space, maintenance areas, and a storage yard containing used material (e.g., pipes, valves). Petroleum processing units, located in the northwest portion of the refinery, include the crude unit, fluidized cracking unit, catalytic polymerization unit, and hydrodesulfurization unit. The API Separator and the aeration lagoons are located in the north central section of the refinery.

In the central portion of the site, aboveground storage tanks (AST's) occupy a large percentage of refinery property. South of the refinery and across Sullivan Road are terminals for loading product and off-loading crude, as well as gas storage and hazardous waste storage.

Western Refining merged with San Juan Refining Company (SJRC) May 31, 2007. The refinery was operated by Western Refining Southwest, Inc. The historical activities conducted at the refinery are petroleum processing, crude and product storage, crude unloading and product loading, waste management (closed and existing facilities), and offices and non-petroleum material storage. Western Refining indefinitely suspended refining operations at the Bloomfield Refinery on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation.

HISTORY OF FACILITY MODIFICATIONS AND IMPROVEMENTS

Previous Owner's Activities

Local entrepreneur, Kimball Campbell, constructed the crude topping unit that eventually became the Bloomfield Refinery facility in the late 1950s. O.L. Garretson bought the facility in the early 1960s, renamed it Plateau, Inc. and sold it in 1964 to Suburban Propane of New Jersey.

Operationally, the facility has steadily evolved through a series of improvements, modifications and expansions. Suburban upgraded the facility in 1966, increasing the Crude Unit throughput to 4,100 bpcd and adding 1,850 bpcd Reformer and Naphtha Hydrotreater. In 1975, the Crude Unit was expanded to 8,400 bpcd.

In 1979, the Crude Unit was expanded again to 16,800 bpcd (later demonstrated to have a hydraulic capacity in excess of 18,000 bpcd). A Fluidized Catalytic Cracker (FCC) with a nominal capacity of 6,000 bpcd, an Unsaturated Gas Plant and a Treater Unit were also added at that time. The capacity of the Reformer / Hydrotreater was increased to 2,250 bpcd. The FCC was upgraded in 1982 to conform to State and Federal air quality standards.

Bloomfield Refining Activities

Bloomfield Refining Company (BRC) acquired the facility from Suburban Propane (Plateau) on October 31, 1984. BRC made many improvements to facility operations and equipment. These improvements are summarized below.

1986

Relocated the spent caustic tank onto a concrete pad with retaining walls.

1987

Upgraded the Reformer and increased its capacity to 3,600 bpcd, modified the Laboratory and Treater Unit and increased tank storage capacity.

Cleaned up the North and South bone yards.

Decommissioned and dismantled old tanks 6 and 7.

Relocated the API recoverd oil tanks 8 & 9 to concrete pads with concrete retaining walls.

Established a systematic inspection, maintenance and repair program for tanks.

1988

Added a 2,000 bpcd Catalytic Polymerization Unit. Removed the facility's two underground storage tanks and replaced them with aboveground storage tanks.

Completed installation of cathodic protection system for the tank farm and underground piping.

Rebuilt the process area sewer system and added curbed, concrete paving to the unpaved process areas.

1989

Increased Reformer throughput to 4,000 bpcd.

Activated the groundwater hydrocarbon recovery system.

Constructed the first double-lined Evaporation Pond as part of discharge plan improvements.

1990

Constructed the second double-lined Evaporation Pond as part of discharge plan improvements.

Constructed a drum storage shed and converted to bulk chemical usage where possible in order to minimize the use of drummed chemicals.

1991

Revamped the burner fuel sales rack with concrete paving and curbing.

Submitted the permit application for a Class 1 disposal well.

Upgraded the groundwater hydrocarbon recovery system.

1992

Submitted an air quality permit application proposing the installation of a Diesel Hydrodesulferization (HDS) Unit and a Sulfur Recovery Unit (SRU) to comply with new EPA low-sulfur diesel regulations and to decrease air emissions.

1993

Began a program under a consent agreement with the US EPA to conduct interim measures (IM), a RCRA facility investigation (RFI) and a corrective measures study (CMS) addressing groundwater contamination.

Replaced portions of the underground cooling water piping.

Added concrete paving around the API Separator.

Added process units: HDS Unit (2,000 bpcd) and SRU...

1994

Completed the Class 1 injection well.

Retrofitted the Aeration Lagoons with two additional liners.

Installed a floating cover for the API Separator.

Closed the clay-lined evaporation ponds and spray evaporation area.

Giant Activities

In 1995, San Juan Refining Company, a wholly owned subsidiary of Giant Industries Arizona, Inc., purchased the Bloomfield Refinery from BRC.

1995

Improved the diking South of the Refinery to further reduce storm water runoff.

Began implementation of additional corrective measures for groundwater cleanup as determined from the CMS.

1998

Converted the former evaporation ponds on the East side of the Refinery to raw water storage ponds.

1999

Sheet pilings and a bentonite slurry wall were installed adjacent to the San Juan River, North of the process units, in order to intercept a small hydrocarbon seep that had been detected in the area.

2001

A program was initiated to inoculate the Aeration Lagoons with sludgeconsuming micro-organisms.

2002

A concrete liner was installed on the Hammond Ditch. At that time, Giant constructed the Hammond Ditch French Drain Recovery System to address contamination under the ditch.

2003

Several monitoring wells were converted into recovery wells to further enhance the continuing ground water remediation efforts. MW #45, #46 & #47 were installed to facilitate sample colection. East Outfall #1 Recovery System was set up to return impacted water back to the refinery.

2004

MW #48 & MW #49 and 8 temporary piezometers were installed to launch a River Terrace Investigation. Several temporary piezometers were drilled on the north side of Hammond Ditch to chart the Naciemento Formation. Design of a slurry wall to be constructed on the north side of Hammond Ditch was completed. Lined containments were constructed in the draws north of Hammond Ditch in order to collect potentially contaminated groundwater which discharged to the land surface.

Sewer lines were replaced in the Treater and FCC.

2005

The North Boundary Barrier Wall installation was completed March 2005. Fourteen observation wells were installed on the north side of the slurry wall and fifteen collection wells were installed on the south side of the slurry wall in April 2005.

As a matter of preventive maintenance, the lined containments in the draws north of the slurry wall were upgraded periodically.

In April, five more temporary piezometers were installed at the River Terrace. In August, Dewatering Wells #1 and #2 and thirteen bioventing wells were drilled and construction of the River Terrace Bioventing Project was initiated.

2006

The River Terrace Bioventing System was put on-line in January 2006. Monitoring data from that project is submitted in a separate report to the regulatory agencies.

During the week of February 13, 2006 seven sump wells were installed along the bluff north of the barrier wall. These wells were drilled in accordance with the North Barrier Wall Work Plan which was submitted to OCD February 7, 2006. Fluids extraction from the observation and collection wells, the north draws, and the sump wells continued throughout 2006.

As a matter of preventive maintenance, the lined containments in the draws north of the slurry wall were upgraded periodically.

2007

On May 31, 2007, Giant Industries, Inc. became a wholly-owned subsidiary of Western Refining, Inc. of El Paso, Texas.

Construction of the Ammonia Refrigeration Unit (ARU) was completed and the system put on line by March 2007. This unit is used to recover propane from hydrogen streams.

Construction of the Benzene Stripper was completed and the system put in service by October 2007. This unit is used to strip benzene from process waste water.

Discharge piping was installed at RW #1 to increase the recovery capacity of he well.

As a matter of preventive maintenance, the lined containments in the draws north of the slurry wall (seeps 1-9) were upgraded periodically.

2008

The Facility-Wide Groundwater Monitoring Plan (Revised May 2008) was approved and implemented in the latter half of 2008.

Group #2 RCRA site investigation activities began in September 2008. Group #2 includes SWMU #2, SWMU #8, SWMU #9, SWMU #11, and SWMU #18. As part of the *Closure Plan North and South Aeration Lagoons* the ponds were drained, cleaned out, inspected, repaired, and put back in service. This process started in October 2008 and was completed in February 2009.

2009

In March monitoring wells were installed around the Aeration Lagoons to satisfy Group #1 RCRA site investigation requirements. Group #3 site investigation activities began in April. This group includes SWMU #4, SWMU #5, AOC #22, AOC, #23, AOC #24, AOC #25, and AOC #26.

Western Refining indefinitely suspended refining operations at the Bloomfield Refinery on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation. Guidelines from the *Facility-Wide Groundwater Monitoring Plan December 2007(Revised May 2008)* will continue to be followed.

Section 2.0 Scope of Activities

Scope of Activities

Western Refining indefinitely suspended refining operations at the Bloomfield Refinery on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation. Guidelines from the *Facility-Wide Groundwater Monitoring Plan December 2007(Revised May 2008)* will continue to be followed.

The following is a summary of the activities conducted in 2009.

Below-grade Testing

Throughout 2009, pursuant to conditions of approval stated in Discharge Permit GW-001 (regulated by the Oil Conservation Division), Bloomfield Refinery personnel conducted annual below-grade sump testing and underground process/wastewater line testing.

In June 2009, All water-draw sumps located in the Tank Farm were cleaned out with a vacuum truck, visually inspected, and hydrostatically tested to insure integrity. All sumps passed the hydrostatic test, and double-walled steel (DW Steel) sumps were also inspected through the leak detection port. No evidence of moisture was seen.

Visual inspection of Sump #37 – a DW steel sump – at Tank #35 indicated pitting and metal loss. Even though the sump passed the hydrostatic test and continued to pass the leak detection port inspection, Bloomfield Refinery management (with OCD approval) opted to replace the sump (in kind) at the recommendation of the Plant Inspector before metal failure could occur.

Beginning the week of April 28, 2009, all sewer boxes within the facility were cleaned out with a vacuum truck and inspected.

From June 2009 to October 2009, 4668 feet of underground piping was hydrostatically tested at Bloomfield Refinery. The piping was located in the Poly Unit, the Fluid Catalytic Cracking Unit (FCCU), the Treater unit, and effluent transfer to the Injection Well.

Below-grade testing spreadsheets are located in Section 13.0

North Boundary Barrier Wall

Installation of the North Boundary Barrier Wall and Collection System was completed by late April 2005. A biweekly fluid measurement plan was established in August 2005 and continued throughout 2009. This plan requires monitoring of all observation and collection wells as well as MW #11, MW #12. MW #20, MW #21, MW #39, MW#45, MW #46, and MW #47. From April 2005 to March 31, 2008, a vacuum truck was used to remove fluids from the collection and observation wells on a 3 times per week basis. Since April 2008, fluid removal from the observation and collection wells along Hammond Ditch has consisted of using a hand bailer to periodically pull separate phase hydrocarbon from OW 0 +60, OW 1+50, OW 3+85, OW 11+15, MW #45, and MW #47. All purged water was collected in a 55-gallon drum and disposed of through the refinery wastewater system.

Semi-Annual sample collection began during the week of April 6, 2009. Samples were collected from observation wells and analyzed for benzene, toluene, ethylbenzene, xylene (BTEX), and MTBE using EPA Method 8260B as well as Diesel Range Organics (DRO) and Gasoline Range Organics (GRO) using EPA Method 8015B. Collection well samples were analyzed for BTEX, MTBE (EPA Method 8260B) and DRO (8015B). Field measurements of pH, temperature, electrical conductivity (E.C.) and total dissolved solids (TDS) were also collected.

Annual sampling occurred the week of August 17, 2009. Observation well samples were analyzed for BTEX, MTBE (EPA Method 8260B), and DRO/GRO(8015B). Collection well samples were analyzed for BTEX, MTBE (EPA Method 8260) and DRO (8015B). Field measurements of pH, temperature, E.C., and TDS were also recorded.

During both sampling events, groundwater samples were collected from all observation wells and two collection wells (CW 0+60 and CW25+95) with the exception of wells that contain separate phase hydrocarbon or wells that were dry or did not contain enough water to collect a sample.

Measured depth-to-groundwater tables, analytical results, and field measurements are summarized in Appendix A – Tabs 1-16.

Seeps/Sump Wells

A bi-weekly visual inspection of Seeps 1-9 and the San Juan River Bluff occurred throughout 2009.

During the week of April 6, 2009 semi-annual samples were collected from Seeps 1, 3, 6, 8, and 9 and analyzed for BTEX (EPA 8260B), SVOCs (EPA 8270), Alkalinity/Caron Dioxide (SM2320B), and general chemistry (EPA 300.0). The analytical laboratory analyzed for combined Nitrate (as N) + Nitrite (as N) to meet holdtime in Seeps 6, 8, and 9. Field measurements of pH, temperature, E.C., and TDS were also recorded.

During the week of August 17, 2009, samples were collected from Seeps 1, 3, and 6 and analyzed for BTEX and MTBE (EPA 8260B), SVOCs (EPA 8270), Alkalinity/Caron Dioxide (SM2320B), and general chemistry (EPA 300.0). Field measurements of pH, temperature, E.C., and TDS were also collected.

2

Analytical results can be found in Section 8.0 - Tab 8.0. Field measurements can be found in Section 8.0 - Tab 3.0.

A bi-weekly fluid measurement program was utilized throughout 2009 to monitor the sump wells. Measured depth to groundwater tables can be found in Section 8.0 - Tab 2.0.

Groundwater Monitoring

Tank #33 effluent was sampled and analyzed for BTEX and MTBE (EPA Method 8260B) on a monthly basis throughout 2009. Analytical results are in Section 8.0 - Tab 9.0.

The facility-wide semi-annual monitoring event occurred during the week of April 6, 2009. Guidelines from the *Facility-Wide Groundwater Monitoring Plan (revised December 2007)* were followed. East Outfall #2 and East Outfall #3 were sampled and analyzed for BTEX/MTBE (EPA 8260B), Dissolved Metals (EPA 6010B), Total Metals (EPA 6010B & 7470), Anions (EPA 300.0), and Alkalinity/Caron Dioxide (SM 2320B). Field measurements of E.C., pH, and temperature were also collected. The analytical laboratory analyzed for combined Nitrate (as N) + Nitrite (as N) to meet holdtime for both outfalls. Analytical results are in Section 8.0 - Tab 8.0 and field measurements are located in Section 8.0 - Tab 3.0.

Samples were collected from MW #1, MW #8, MW #12, MW #13, MW #30, MW #33, MW #35, MW #37, and MW #38 and analyzed for BTEX/MTBE (EPA 8260B) and GRO/DRO (EPA 8015B). Analytical results are summarized in Section 8.0 Tabs 4.0 – 7.0. Field measurements are located in Section 8.0 – Tab 3.0.

MW #6 was dry and not sampled and MW #20 contained separate phase hydrocarbon and was not sampled. Field measurements of Dissolved Oxygen (D.O.), Oxidation Reduction Potential (O.R.P.) were inadvertently not collected during the semi-annual monitoring event.

Annual sampling started the week of August 17, 2009. The *Facility-Wide Groundwater Monitoring Plan (Revised December 2007)* was followed. The following wells were sampled; MW #1, MW #4, MW #8, MW #11, MW #12, MW #13, MW #26, MW #27, MW #29, MW #30, MW #31, MW #32, MW #33, MW #34, MW #35, MW #37, MW #38, MW #40, MW #44, RW #1, RW #9, RW #15, RW #23, O/F #2, and O/F #3. The samples were analyzed for VOCs by using EPA Method 8260B, SVOCs by EPA Method 8270, TPH through EPA Method 8015B, Total RCRA 8 Metals using EPA Methods 6010B/7470, WQCC Dissolved Metals using EPA Method 6010B, Anions using EPA Methods 300.0, and Alkalinity/Carbon Dioxide by SM 2320B. Field measurements of D.O., O.R.P., E.C., pH, TDS, and temperature were also collected. East Outfall #2 and East Outfall #3 were sampled and analyzed for BTEX/MTBE (EPA 8260B), Dissolved Metals (EPA 6010B), Total Metals (EPA 6010B & 7470), Anions (EPA 300.0), and Alkalinity/Caron Dioxide (SM 2320B). Field measurements of E.C., pH, and temperature were also collected.

The analytical laboratory analyzed for combined Nitrate (as N) + Nitrite (as N) to meet holdtime for MW #30, MW #37, MW #38, and MW #40. Due to matrix interferences, the total selenium reporting level on MW #13, MW #37, MW #38, MW #40, RW #1, RW #9, and RW#23 is above the regulatory level of 0.05 mg/L. Hall Environmental Analytical Laboratory felt it was necessary to dilute the sample in order to accurately report selenium.

Comment 9 of the NMED letter Approval with Direction 2008 Groundwater Remediation and Monitoring Annual Report dated September 1, 2009 states "In Section 9.0 (Tables), Western applied NMED's Total Petroleum Hydrocarbon Screening Guidelines, diesel #2/crankcase oil (1.72 mg/kg) for diesel range organics (DO). Western must apply the "unknown oil" screening guidelines of 0.2 mg/L to future annual groundwater monitoring reports." The semi-annual and annual sampling events had already occurred when Western received this letter. Therefore, the previous reporting limit of 1.0 mg/L for DRO is used throughout the 2009 Annual Groundwater Report. Future reports will apply the 0.2 mg/L screening guideline.

MW #3, MW #5, and MW #6 were dry and no samples were collected. MW #20, MW#21, RW #18, RW #28, RW #42, and RW #43 contained separate phase hydrocarbon and were not sampled.

Analytical results are summarized in Section 8.0 -Tabs 4.0 -8.0. Field measurements are located in Section 8.0 – Tab 3.0.

San Juan River

The San Juan River was sampled on a semi-annual basis in 2009. Samples were collected in April and August and analyzed for BTEX/MTBE (EPA Method 8260B), TPH (EPA Method 8015B), Total RCRA 8 Metals (EPA Methods 6010B/7470), WQCC Dissolved Metals (EPA Method 6010B), Cations, Anions (EPA Method 300.0), and Alkalinity/Carbon Dioxide using SM 2320B.

Analysis is summarized in Section 8.0 - Tab 10.0.

Field Data Collection

All facility monitoring wells, recovery wells, observation and collection wells were measured for groundwater elevation in February, April, August, and November. Water elevation measurements were collected in all wells while the recovery wells were in operation and again after the pumps were removed and water levels had stabilized.

4

All water/product levels were measured to an accuracy of 0.01 foot using a Geotech Interface Probe. After determining water levels, initial well volumes are calculated. Total purge volume is determined by monitoring electrical conductance, pH, temperature, O.R.P., and T.D.S. after every two gallons or each well volume, whichever is less, has been purged from the well. The wells were considered satisfactorily purged when the field parameter values did not vary by more than 10 percent for at least three measurements. Field parameters are measured using an Ultrameter 6P.

All purged water was collected in a 55-gallon drum and disposed of through the refinery wastewater system.

Field data and well elevations can be found in Section 8.0, Tabs 1.0 - 3.0 and in Appendix A – Tabs 1.0 - 15.0.

Section 3.0 Regulatory Criteria / Groundwater Cleanup Standards

Metals	(mg/l)
Antimony	0.006 2
Arsenic	0.01 2
Barium	1.0
Beryllium	0.004 2
Cadmium	0.005 2
Chromium	0.05
Cobalt	0.05
Copper	1.0
Cyanide	0.2
Lead	0.015 ²
Mercury	0.002
Nickel	0.200
Selenium	0.05
Silver	0.05
Uranium	0.03
Vanadium	0.26 ³
Zinc	10.0

Groundwater Standards are WQCC 20NMAC 6.2.3103 unless otherwise indicated

2 - Federal Maximum Contaminant Level

3 - USEPA Regional Screening Levels (April 2009)

Semivolatiles	(ug/l)
1,2,4-Trichlorobenzene	70 ²
1,2-Dichlorobenzene	600²
1,3-Dichlorobenzene	Ne
1,4-Dichlorobenzene	75²
2,4,5-Trichlorophenol	3,700 ³
2,4,6-Trichlorophenol	6.1 ³
2,4-Dichlorophenol	110 ³
2,4-Dimethylphenol	730 ³
2,4-Dinitrophenol	73 ³
2,4-Dinitrotoluene	0.22 ³
2,6-Dinitrotoluene	37 ³
2-Chloronaphthalene	2900 ³
2-Chlorophenol	180 ³
2-Methylnaphthalene	150 ³
2-Methylphenol	1,800
2-Nitroaniline	110 ³
2-Nitrophenol	Ne
3,3'-Dichlorobenzidine	0.15 ³
3+4-Methylphenol	180 ³
3-Nitroaniline	Ne
4,6-Dinitro-2-methylphenol	Ne
4-Bromophenyl phenyl ether	Ne
4-Chloro-3-methylphenol	Ne
4-Chloroaniline	0.34 ³
4-Chlorophenyl phenyl ether	Ne
4-Nitroaniline	3.4 ³
4-Nitrophenol	Ne
Acenaphthene	2200 ³
Acenaphthylene	Ne

Groundwater Standards are WQCC 20NMAC 6.2.3103 unless otherwise indicated

2 - Federal Maximum Contaminant Level

3 - USEPA Regional Screening Levels (April 2009)

Semivolatiles	(ug/l)
Aniline	12 ³
Anthracene	1100 ³
Azobenzene	0.12 ³
Benz(a)anthracene	0.029 ³
Benzo(a)pyrene	0.2 2
Benzo(b)fluoranthene	0.029 ³
Benzo(g,h,i)perylene	Ne
Benzo(k)fluoranthene	0.29 ³
Benzoic acid	150,000 ³
Benzyl alcohol	1800 ³
Bis(2-chloroethoxy)methane	110 ³
Bis(2-chloroethyl)ether	0.012 ³
Bis(2-chloroisopropyl)ether	Ne
Bis(2-ethylhexyl)phthalate	6²
Butyl benzyl phthalate	35 ³
Carbazole	Ne
Chrysene	2.9 ³
Dibenz(a,h)anthracene	0.00293
Dibenzofuran	Ne
Diethyl phthalate	29,000 ³
Dimethyl phthalate	Ne
Di-n-butyl phthalate	Ne
Di-n-octyl phthalate	Ne
Fluoranthene	1,500 ³
Fluorene	1500 ³
Hexachlorobenzene	1.0 ²
Hexachlorobutadiene	0.86 ³
Hexachlorocyclopentadiene	50 ²
Hexachloroethane	4.8 ³

Groundwater Standards are WQCC 20NMAC 6.2.3103 unless otherwise indicated

2 - Federal Maximum Contaminant Level

3 - USEPA Regional Screening Levels (April 2009)

Semivolatiles	(ug/l)
Indeno(1,2,3-cd)pyrene	0.029 3
Isophorone	71 ³
Naphthalene	0.14 ³
Nitrobenzene	0.12 ³
N-Nitrosodimethylamine	0.00042 3
N-Nitrosodi-n-propylamine	0.0096 3
N-Nitrosodiphenylamine	14 ³
Pentachlorophenol	1 ²
Phenanthrene	Ne
Phenol	5³
Pyrene	1100 ³
Pyridine	37 ³

Groundwater Standards are WQCC 20NMAC 6.2.3103 unless otherwise indicated

2 - Federal Maximum Contaminant Level

3 - USEPA Regional Screening Levels (April 2009)

Volatiles	(ug/l)
1,1,1,2-Tetrachloroethane	0.52 ³
1,1,1-Trichloroethane	60
1,1,2,2-Tetrachloroethane	10
1,1,2-Trichloroethane	5²
1,1-Dichloroethane	25
1,1-Dichloroethene	5
1,1-Dichloropropene	Ne
1,2,3-Trichlorobenzene	Ne
1,2,3-Trichloropropane	0.0096 ³
1,2,4-Trichlorobenzene	70.0 ²
1,2,4-Trimethylbenzene	15.0 ³
1,2-Dibromo-3-chloropropane	0.2 2
1,2-Dibromoethane (EDB)	0.05²
1,2-Dichlorobenzene	600.0 ²
1,2-Dichloroethane (EDC)	5²
1,2-Dichloropropane	5.0 ²
1,3,5-Trimethylbenzene	12³
1,3-Dichlorobenzene	Ne
1,3-Dichloropropane	730 ³
1,4-Dichlorobenzene	75.0 ²
1-Methylnaphthalene	2.3 ³
2,2-Dichloropropane	Ne
2-Butanone	710.0 ³
2-Chlorotoluene	730.0 ³
2-Hexanone	Ne
2-Methylnaphthalene	150 ³
4-Chlorotoluene	2600 ³
4-Isopropyltoluene	Ne
4-Methyl-2-pentanone	Ne

Groundwater Standards are WQCC 20NMAC 6.2.3103 unless otherwise indicated

2 - Federal Maximum Contaminant Level

3 - USEPA Regional Screening Levels (April 2009)

Volatiles	(ug/l)
Acetone	22000 ³
Benzene	5 ²
Bromobenzene	20 ³
Bromodichloromethane	0.12 ³
Bromoform	8.5 ³
Bromomethane	8.7 ³
Carbon disulfide	1,000 ³
Carbon Tetrachloride	5²
Chlorobenzene	100.0 2
Chloroethane	Ne
Chloroform	100
Chloromethane	190 ³
cis-1,2-DCE	70 ²
cis-1,3-Dichloropropene	0.4 3
Dibromochloromethane	0.15 ³
Dibromomethane	370 ³
Dichlorodifluoromethane	390 ³
Ethylbenzene	700 ²
Hexachlorobutadiene	0.86 ³
Isopropylbenzene	680³
Methyl tert-butyl ether (MTBE)	12³
Methylene Chloride	5²
Naphthalene	0.14 ³
n-Butylbenzene	Ne
n-Propylbenzene	Ne
sec-Butylbenzene	Ne
Styrene	100 ²
tert-Butylbenzene	Ne
Tetrachloroethene (PCE)	5 ²

Groundwater Standards are WQCC 20NMAC 6.2.3103 unless otherwise indicated

2 - Federal Maximum Contaminant Level

3 - USEPA Regional Screening Levels (April 2009)

Volatiles	(ug/l)
Toluene	750
trans-1,2-DCE	100 ²
trans-1,3-Dichloropropene	0.4 3
Trichloroethene (TCE)	5 ²
Trichlorofluoromethane	1,300 ³
Vinyl chloride	1
Xylenes, Total	620

Groundwater Standards are WQCC 20NMAC 6.2.3103 unless otherwise indicated

2 - Federal Maximum Contaminant Level

3 - USEPA Regional Screening Levels (April 2009)

General Chemistry	(mg/l)
Alkalinity, Total (As CaCO3)	Ne
Bicarbonate	Ne
Calcium	Ne
Carbonate	Ne
Chloride	250
Fluoride	1.6
Iron	1
Magnesium	Ne
Manganese	0.2
Nitrogen, Nitrate (As N)	10
Nitrogen, Nitrite (As N)	12
Nitrate (As N)+Nitrite (As N)	10
Potassium	Ne
Sodium	Ne
Sulfate	600

Groundwater Standards are WQCC 20NMAC 6.2.3103 unless otherwise indicated

2 - Federal Maximum Contaminant Level

3 - USEPA Regional Screening Levels (April 2009)

20.6.2.3103 STANDARDS FOR GROUND WATER OF 10.000 mg/l TDS CONCENTRATION OR LESS: The following standards are the allowable pH range and the maximum allowable concentration in ground water for the contaminants specified unless the existing condition exceeds the standard or unless otherwise provided in Subsection D of Section 20.6.2.3109 NMAC. Regardless of whether there is one contaminant or more than one contaminant present in ground water, when an existing pH or concentration of any water contaminant exceeds the standard specified in Subsection A, B, or C of this section, the existing pH or concentration shall be the allowable limit, provided that the discharge at such concentrations will not result in concentrations at any place of withdrawal for present or reasonably foreseeable future use in excess of the standards of this section. These standards shall apply to the dissolved portion of the contaminants specified with a definition of dissolved being that given in the publication "methods for chemical analysis of water and waste of the U.S. environmental protection agency," with the exception that standards for mercury, organic compounds and non-aqueous phase liquids shall apply to the total unfiltered concentrations of the contaminants.

A. Human Health Standards-Ground water shall meet the standards of Subsection A and B of this section unless otherwise provided. If more than one water contaminant affecting human health is present, the toxic pollutant criteria as set forth in the definition of toxic pollutant in Section 20.6.2.1101 NMAC for the combination of contaminants, or the Human Health Standard of Subsection A of Section 20.6.2.3103 NMAC for each contaminant shall apply, whichever is more stringent. Non-aqueous phase liquid shall not be present floating atop of or immersed within ground water, as can be reasonably measured.

(1)	Arsenic (As)	0.1 mg/l	
(2)	Barium (Ba)		
(3)	Cadmium (Cd).		
(4)	Chromium (Cr)		
(5)	Cyanide (CN).		
(6)	Fluoride (F)	1.6 mg/l	
(7)	Lead (Pb)		
(8)	Total Mercury (Hg)		
(9)	Nitrate (NO ₃ as N)		
$(10)^{-1}$			
(11)	Silver (Ag)		
(12)	Uranium (U)		
(13)	Radioactivity: Combined Radium-226 & Radium-228		
(14)	Benzene		
(15)	Polychlorinated biphenyls (PCB's)		
(16)	Toluene		
(17)	Carbon Tetrachloride	0.01 mg/l	
(18)	1,2-dichloroethane (EDC)	0.01 mg/l	
(19)	1,1-dichloroethylene (1,1-DCE)	0.005 mg/l	
(20)	1,1,2,2-tetrachloroethylene (PCE)		
(21)	1,1,2-trichloroethylene (TCE)		
(22)	ethylbenzene		
(23)	total xylenes		
(24)	methylene chloride		
(25)	chloroform		
(26)	1,1-dichloroethane	0.025 mg/l	
(27)	ethylene dibromide (EDB)	0.0001 mg/l	
(28)	1,1,1-trichloroethane	0.06 mg/l	
(29)	1,1,2-trichloroethane	0.01 mg/l	
(30)	1,1,2,2-tetrachloroethane	0.01 mg/l	
(31)	vinyl chloride	0.001 mg/1	
(32)	PAHs: total naphthalene plus monomethylnaphthalenes		
(33)	benzo-a-pyrene	0.0007 mg/l	
B .	Other Standards for Domestic Water Supply		
(1)	Chloride (Cl)		
(2)	Copper (Cu)	1.0 mg/l	
(3)	Iron (Fe)	1.0 mg/l	
(4)	Manganese (Mn)	0.2 mg/l	
(6)	Phenols	0.005 mg/l	
(7)	Sulfate (SO ₄)		
(8)	Total Dissolved Solids (TDS)		
(9)	Zinc (Zn)		
(10)	pH		
C. ()	Standards for Irrigation Use - Ground water shall meet		d C of
	Build of Storing have Shart meet	the standards of Subsection ray by an	

mhtml:file:///blmfile01/environmental/Annual Report 2008/20 6 2 NMAC.mht

this section unless otherwise provided.

(1)	Aluminum (Al)	5.0 mg/l
	Boron (B)	
(3)		0.05 mg/l
(4)		1.0 mg/l
(5)	Nickel (Ni)	0.2 mg/l
20 0	22 11 17 82 2 2 86 12 1 05 20 6 2 2102 NIMAC B. 201	MAC 62 III 2102 1 15

[2-18-77, 1-29-82, 11-17-83, 3-3-86, 12-1-95; 20.6.2.3103 NMAC - Rn, 20 NMAC 6.2.III.3103, 1-15-01; A, 9-26-04] [Note: For purposes of application of the amended numeric uranium standard to past and current water discharges (as of 9-26-04), the new standard will not become effective until June 1, 2007. For any new water discharges, the uranium standard is effective 9-26-04

1/14/2009

NEW MEXICO ENVIRONMENT DEPARTMENT TPH SCREENING GUIDELINES October 2006

In some instances, it may be practical to assess areas of soil contamination that are the result of releases of petroleum products such as jet fuel and diesel, using total petroleum hydrocarbon (TPH) analyses. TPH results may be used to delineate the extent of petroleum-related contamination at these sites and ascertain if the residual level of petroleum products in soil represents an unacceptable risk to future users of the site. Petroleum hydrocarbons represent complex mixtures of compounds, some of which are regulated constituents and some compounds that are not regulated. In addition, the amount and types of the constituent compounds in a petroleum hydrocarbon release differ widely depending on what type of product was spilled and how the spill has weathered. This variability makes it difficult to determine the toxicity of weathered petroleum products in soil solely from TPH results; however, these results can be used to approximate risk in some cases, depending upon the nature of the petroleum product, the release scenario, how well the site has been characterized, and anticipated potential future land uses. In some cases, site clean up cannot be based solely on results of TPH sampling. The New Mexico Environment Department (NMED) will make these determinations on a case by case basis. If NMED determines that additional data are necessary, these TPH guidelines must be used in conjunction with the screening guidelines for individual petroleum-related contaminants in Table 3 and other contaminants, as applicable.

The screening levels for each petroleum carbon range from the Massachusetts Department of Environmental Protection (MADEP) Volatile Petroleum Hydrocarbons/Extractable Petroleum Hydrocarbons (VPH/EPH) approach and the percent composition table below were used to generate screening levels corresponding to total TPH. Except for waste oil, the information in the compositional assumptions table was obtained from the Massachusetts Department of Environmental Protection guidance document *Implementation of the MADEP VPH/EPH Approach* (October 31, 2002). TPH toxicity was based only on the weighted sum of the toxicity of the hydrocarbon fractions listed in Table 1.

Petroleum Product	C11-C22 Aromatics	C9-C18 Aliphatics	C19-C36 Aliphatics
Diesel #2/ new crankcase oil	60%	40%	0%
#3 and #6 Fuel Oil	70%	30%	0%
Kerosene and jet fuel	30%	70%	0%
Mineral oil dielectric fluid	20%	40%	40%
Unknown oil ^a	100%	0%	0%
Waste Oil ^b	0%	0%	100%

Table 1. TPH Compositional Assumptions in Soil

Sites with oil from unknown sources must be tested for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), metals, and polychlorinated biphenyls (PCBs) to determine if other potentially toxic constituents are present. The TPH guidelines in Table 2 are not designed to be protective of exposure to these constituents therefore they must be tested for, and compared to, their individual NMED soil screening guidelines.

Compositional assumption for waste oil developed by NMED is based on review of chromatographs of several types of waste oil. Sites with waste oil must be tested for VOCs, SVOCs, metals, and PCBs to determine if other potentially toxic constituents are present. The TPH guidelines in Table 2 are not designed to be protective of exposure to these constituents therefore they must be tested for, and compared to, their individual NMED soil screening guidelines.

October 2006 Page 1 of 5 A TPH screening guideline was calculated for each of the types of petroleum product based on the assumed composition from Table 1 for petroleum products and the direct soil standards incorporating ceiling concentrations given in the MADEP VPH/EPH Excel spreadsheet for each of the carbon fractions. Groundwater concentrations are based on the weighted sum of the noncarcinogenic toxicity of the petroleum fractions.

Method 1 from the MADEP VPH/EPH document was applied, which represents generic cleanup standards for soil and groundwater. Method 1 applies if contamination exists in only soil and groundwater. The MADEP VPH/EPH further divides groundwater into standards. Standard GW-1 applies when groundwater may be used for drinking water purposes. GW-1 standards are based upon ingestion and use of groundwater as a potable water supply. The TPH screening guidelines for sites with potable groundwater are presented in Table 2a.

TPH				
Petroleum Product	Residential Direct Exposure (mg/kg)	Industrial Direct Exposure (mg/kg)	Concentration in Groundwater (mg/L)	
Diesel #2/crankcase oil	520	1120	1.72	
#3 and #6 Fuel Oil	440	890	1.34	
Kerosene and jet fuel	760	1810	2.86	
Mineral oil dielectric fluid	1440	3040	3.64	
Unknown oil	200	200	0.2	
Waste Oil	2500	5000	Petroleum-Related Contaminants	
Gasoline	Not applicable	Not applicable	Petroleum-Related Contaminants	

Table 2a. TPH Screening Guidelines for Potable Groundwater (GW-1)

Sites with oil from unknown sources must be tested for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), metals, and polychlorinated biphenyls (PCBs) to determine if other potentially toxic constituents are present. The TPH guidelines in Table 2 are not designed to be protective of exposure to these constituents therefore they must be tested for, and compared to, their individual NMED soil screening guidelines.

Compositional assumption for waste oil developed by NMED is based on review of chromatographs of several types of waste oil. Sites with waste oil must be tested for VOCs, SVOCs, metals, and PCBs to determine if other potentially toxic constituents are present. The TPH guidelines in Table 2 are not designed to be protective of exposure to these constituents therefore they must be tested for, and compared to, their individual NMED soil screening guidelines.

The second standard is GW-2, which is applicable for sites where the depth to groundwater is less than 15 feet from the ground surface and within 30 feet of an occupied structure. The structure may be either residential or industrial. GW-2 standards are based upon "inhalation exposures that could occur to occupants of the building impacted by volatile compounds, which partition from the groundwater" (MADEP 2001). The GW-2 screening guidelines ONLY apply for the evaluation of inhalation exposures. If potential ingestion or contact with contaminated soil and/or

October 2006 Page 2 of 5 groundwater could occur, then the screening guidelines provided in Table 2.a should be applied. Table 2.b lists the TPH screening guidelines for the inhalation scenario.

TPH				
Petroleum Product	Residential Direct Exposure (mg/kg)	Industrial Direct Exposure (mg/kg)	Concentration in Groundwater (mg/L)	
Diesel #2/crankcase oil	880	2200	30.4	
#3 and #6 Fuel Oil	860	2150	35.3	
Kerosene and jet fuel	940	2350	15.7	
Mineral oil dielectric fluid	1560	3400	10.4	
Unknown oil	800	2000	50.0	
Waste Oil	2500	5000	Petroleum-Related Contaminants	
Gasoline	Not applicable	Not applicable	Petroleum-Related Contaminants	

Table 2b. TPH Screening Guidelines - Vapor Migration and Inhalation of Groundwater (GW-2)

Sites with oil from unknown sources must be tested for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), metals, and polychlorinated biphenyls (PCBs) to determine if other potentially toxic constituents are present. The TPH guidelines in Table 2 are not designed to be protective of exposure to these constituents therefore they must be tested for, and compared to, their individual NMED soil screening guidelines.

Compositional assumption for waste oil developed by NMED is based on review of chromatographs of several types of waste oil. Sites with waste oil must be tested for VOCs, SVOCs, metals, and PCBs to determine if other potentially toxic constituents are present. The TPH guidelines in Table 2 are not designed to be protective of exposure to these constituents therefore they must be tested for, and compared to, their individual NMED soil screening guidelines.

Mineral oil based hydraulic fluids can be evaluated for petroleum fraction toxicity using the screening guidelines from Tables 2a and 2b specified for waste oil, because this type of hydraulic fluid is composed of approximately the same range of carbon fractions as waste oil. However, these hydraulic fluids often contain proprietary additives that may be significantly more toxic than the oil itself; these additives must be considered on a site- and product-specific basis (see ATSDR hydraulic fluids profile reference). Use of alternate screening guideline values requires prior written approval from the New Mexico Environment Department. TPH screening guidelines in Tables 2a and 2b must be used in conjunction with the screening levels for petroleum-related contaminants given in Table 3 because the TPH screening levels are NOT designed to be protective of exposure to these individual petroleum-related contaminants. Table 3 petroleum-related contaminants screening levels are based on the NMED Technical Background Document for Development of Soil Screening Levels, Rev 4.0 (June 2006).

The list of petroleum-related contaminants does not include polyaromatic hydrocarbons (PAHs) with individual screening levels that would exceed the total TPH screening levels (acenaphthene, anthracene, flouranthene, flourene, and pyrene). In addition, these TPH screening guidelines are based solely on human health, not ecological risk considerations, protection of surface water, or

October 2006 Page 3 of 5 potential indoor air impacts from soil vapors. Potential soil vapor impacts to structures or utilities are not addressed by these guidelines. Site-specific investigations for potential soil vapor impacts to structures or utilities must be done to assure that screenings are consistently protective of human health, welfare or use of the property. NMED believes that use of these screening guidelines will allow more efficient screenings of petroleum release sites at sites while protecting human health and the environment. Copies of the references cited below are available on the MADEP website at http://www.state.ma.us/dep/bwsc/vph_eph.htm and the NMED website at http://www.nmenv.state.nm.us/HWB/guidance.html.

	Values for Direct Exposure to Soil		NMED DAF ^a 20 GW		
Petroleum-Related Contaminants	NMED NMED Residential Industrial SSL (mg/kg) SSL (mg/kg)		Protection (mg/kg in soll)	NMED DAF ^b 1 GW Protection (mg/kg in soil)	
Benzene	1.03E+01	2.58E+01	2.01E-02	1.00E-03	
Toluene	2.52E+02	2.52E+02	2.17E+01	1.08E+00	
Ethylbenzene	1.28E+02	1.28E+02	2.02E+01	1.01E+00	
Xylenes [°]	8.20E+01	8.20E+01	2.06E+00	1.03E-01	
Naphthalene	7.95E+01	3.00E+02	3.94E-01	1.97E-02	
2-Methyl naphthalene	5.00E+02	1.00E+03	e	e	
Benzo(a)anthracene	6.21E+00	2.34E+01	1.09E+01	5.43E-01	
Benzo(b)fluoranthene	6.21E+00	2.34E+01	3.35E+01	1.68E+00	
Benzo(k)fluoranthene	6.21E+01	2.34E+02	3.35E+02	1.68E+01	
Benzo(a)pyrene	6.21E-01	2.34E+00	2.78E+00	1.39E-01	
Chrysene	6.15E+02	2.31E+03	3.48E+02	1.74E+01	
Dibenz(a,h)anthracene	6.21E-01	2.34E+00	1.04E+01	5.18E-01	
Indeno(1.2.3-c.d)pyrene	6.21E+00	2.34E+01	9.46E+01	4.73E+00	

Revised Table 3. Petroleum	-Related Contaminants	Screening	Guidelines
-----------------------------------	-----------------------	-----------	------------

* DAF - Dilution Attenuation Factor

^b For contaminated soil in contact with groundwater.

° Based upon total xylenes

^d No NMED value available, value taken from Massachusetts Contingency Plan, 310 CMR 40.0985, 4/3/06.

* No NMED value available and leachability-based value for DAF =1 or 20 not established in the Massachusetts Contingency Plan, 310 CMR 40.0985, 4/3/06.

References

Agency for Toxic Substances and Disease Registry (ATSDR). 1997. Toxicological Profile for Hydraulic fluids.

Massachusetts Department of Environmental Protection, Bureau of Waste Site Cleanup and Office of Research and Standards. 1994. "Background Documentation for the Development of the MCP Numerical Standards."

Massachusetts Department of Environmental Protection, Bureau of Waste Site Cleanup and Office of Research and Standards. 2002. "Characterizing Risks Posed by Petroleum

October 2006 Page 4 of 5 Contaminated Sites: Implementation of the MADEP VPH/EPH Approach," Policy, October 31, 2002.

Massachusetts Department of Environmental Protection, Bureau of Waste Site Cleanup and Office of Research and Standards. 2003. "Updated Petroleum Hydrocarbon Fraction Toxicity Values for the VPH/EPH/APH Methodology." November 2003.

New Mexico Environment Department, Hazardous Waste Bureau and Groundwater Quality Bureau Voluntary Remediation Program. 2006. "Technical Background Document for Development of Soil Screening Levels." June 2006. Revision 4.0.

October 2006 Page 5 of 5

Section 4.0 Groundwater Monitoring Results

Title	Tab/Figure	Section
Measured Depth to Groundwater	Tab 1& 2	8.0
Groundwater Elevation and Flow Direction	Figures 4 – 11	9.0
Product Thickness Map	Figures 12 - 15	9.0
BTEX & MTBE Concentration Map	Tabs 11-14	10.0
Field Water Quality Measurements	Tab 3	8.0
Comparison to Previous Monitoring	Tabs 3, 4, 5, 6, 7, 8, 10	8.0
Measured Depth to Groundwater North Barrier Wall	Tabs 1 – 12	Appendix A
North Barrier Wall Analytical Data	Tabs 13, 14, 15	Appendix A
North Barrier Wall BTEX & MTBE Concentration Map	Tab 16	Appendix A

Section 5.0 Chemical Analytical Data

Title	Tab	Section
Background Wells	Tab 4	8.0
Refinery Wells	Tab 5	8.0
Cross-gradient Wells	Tab 6	8.0
Downgradient Wells	Tab 7	8.0
San Juan River Bluff	Tab 8	8.0
Tank #33	Tab 9	8.0
San Juan River	Tab 10	8.0
North Barrier Wall	Tabs 13, 14, 15	Appendix A

Section 6.0 Remediation System Monitoring

Remediation System Monitoring

Total Fluids Pumping

The total fluids pumping system is used to bring SPH and hydrocarbon impacted groundwater to the surface for treatment or disposal. This is accomplished by pumping wells within the SPH plume and adjacent areas. The recovery wells pump SPH and hydrocarbon impacted groundwater to the refinery API separator and through the refinery process wastewater treatment system. Pumping is most effective in saturated zones with high hydraulic conductivities such as those measured at the refinery. In 2009 total fluids pumping was accomplished through the use of fourteen recovery wells: RW# 1, 2, 9, 14, 15, 16, 17, 18, 19, 22, 23, 28, 42 and 43.

In 2009 the estimated total gallons pumped (SPH and water) from the recovery wells was 1,973,012 gallons.

North Boundary Barrier Wall

The North Boundary Barrier Wall and Collection System were completed in April of 2005. The primary purpose of the wall is to prevent the flow of hydrocarbonimpacted groundwater to reach the San Juan River. Water that reaches the Barrier Wall is consequently backed up into the French drain underneath Hammond Ditch. Liquid in the French drain deposits into Tank #37 and is then pumped to the API Separator. Collection wells are placed on the refinery side of the barrier wall in the depressions or troughs of the Naciemento Formation. Observation wells are situated on the river side of the barrier wall.

From April 2005 to March 31, 2008, a vacuum truck was used to remove fluids from the collection and observation wells on a 3 times per week basis. Since April 2008, fluid removal from the observation and collection wells along Hammond Ditch has consisted of using a hand bailer to periodically pull separate phase hydrocarbon from OW 0 +60, OW 1+50, OW 3+85, OW 11+15, MW #45, and MW #47. All purged water was collected in a 55-gallon drum and disposed of through the refinery wastewater system.

Bloomfield Refinery personnel continued to monitor fluid levels on both sides of the barrier wall by measuring the depth to water and depth to product every other week throughout 2009. Measured depth to groundwater data from January 2009 through December 2009 is located in Appendix A, Tabs 1 -12.

Hammond Ditch Recovery System

The Hammond Ditch Recovery System consists of recovery Tank #37, which collects groundwater from two 8-inch influent lines connected to the perforated sub-drain (the French Drain) beneath the Hammond Irrigation Canal. The Tk #37 liquid level has a float control system and automatically pumps through a flow meter to the API Separator. The total volume pumped through the flow meter in 2009 was 23,034 barrels (967,415 gallons).

North Outfalls/Draws

A bi-weekly visual inspection of Seeps 1-9 and the San Juan River Bluff occurred throughout 2009.

The vast majority of the fluids in the outfalls are from precipitation events. Water recovery at the seeps is dependant on whether the analytical results exceed any regulatory standards. If an exceedance occurs, that water will be pumped for recovery.

Inspections of the draws north of the barrier wall and analysis of samples of water collected in the seeps indicate that the barrier wall is preventing migration of contaminated groundwater toward the San Juan River. Since installation of the barrier wall, all previous areas where seepage of fuel hydrocarbon impacted water was present have been eliminated.

River Terrace

The River Terrace Bioventing Project was put on-line in January 2006. Monitoring and remedial actions are following the Voluntary Measures Bioventing Monitoring Plan that has been approved by NMED and are submitted in a separate report to the agencies.

East Outfall

The east outfall is collected into a pipe, which flows to Tank #38 and then is pumped to Tank #33 located just south of the western fresh water pond. Hydrocarbons are skimmed off the top of the tank into a secondary tank, which is emptied with a vacuum truck and taken to the API separator. The remaining water from Tank #33 is then piped to the fresh water pond. The total gallons pumped in 2009 were 20,097,360 gallons.

Tank #33 effluent analytical summary can be found in Section 8, Tab 9.0.

Overall System Capabilities

Recovery volumes have remained consistent over the last couple of years. The remediation system has been effective while Bloomfield Refinery was in operation and should continue to be effective with the refinery in idle status.

Section 7.0 Summary – Conclusions and Recommendations

Summary

Compliance Monitoring

Measured depth to groundwater tables and analytical summaries are located in Section 8.0 of this report.

Groundwater Measurements

All facility monitoring wells, recovery wells, observation and collection wells were measured for groundwater elevation in February, April, August, and November of 2009. Water elevation measurements were collected in all wells while the recovery wells were in operation and again after the pumps were removed and water levels had stabilized (typically after four or more days).

Wells have been segregated into four separate groups within the Refinery Complex. The background well group consists of MW #3, MW #5, and MW #6. The cross-gradient well list includes MW #1, MW #13, MW #26, MW #27, MW #32, and MW #33. The refinery area well group contains RW #1, MW #4, MW #8, RW #9, RW #15, RW #18, MW #20, MW #21, RW #23, RW #28, MW #29, MW #30, MW #31, RW #42, RW #43, and MW #44. The down-gradient well list consists of MW #11, MW #12.MW #34, MW #35, MW #37, and MW #38.

Background Wells

MW #5 and MW #6 were dry in February, April, August, and November. MW #3 was practically dry with fluid thickness levels of 0.31 feet to 0.56 feet throughout the year.

Refinery Wells

MW #4, MW #8, MW #29, MW #30, MW #31, MW #40, MW #44, and RW #15 did not contain separate phase hydrocarbon (SPH) during any of the four measuring events. RW #9 and RW #42 were SPH-free for three measuring events but RW #9 had a SPH reading of 0.17 feet in February and RW #42 had a SPH reading of 0.05 feet in August. RW #23 contained SPH in February and November but was SPH-free in April and August. RW #1 contained SPH in every quarter except for April.

MW #20, MW #21, RW #18, RW #28, and RW #43 contained SPH in all four quarters with quantities varying from a low of 0.01 feet (RW #28 – February) to a high of 0.70 feet (MW #20 – November).

Cross-Gradient Wells

MW #1, MW #13, MW #26, MW #27, MW #32, and MW #33 did not contain SPH during all four measuring events.

7.0

Down-Gradient Wells

There was no SPH present in MW #11, MW #12, MW #34, MW #35, MW #37, and MW #38 throughout 2009.

Figures 4 -11 in Section 9.0 present groundwater elevation and contour maps that were developed using the data gathered in the quarterly measurement program. Measured depth to groundwater tables used to determine Figures 4 – 15 can be found in Section 8.0, Tab 1.0.

Groundwater Monitoring

The facility-wide semi-annual monitoring event occurred during the week of April 6, 2009. Annual sampling started the week of August 17, 2009. Guidelines from the *Facility-Wide Groundwater Monitoring Plan (revised December 2007)* were followed during both events.

Background Wells

MW #5 and MW #6 were dry throughout 2009. MW #3 was practically dry with fluid thickness levels of 0.31 feet to 0.56 feet throughout the year and consequently, no analytical samples were taken from these wells in 2009.

BTEX - TPH

Comment 9 of the NMED letter Approval with Direction 2008 Groundwater Remediation and Monitoring Annual Report dated September 1, 2009 states "In Section 9.0 (Tables), Western applied NMED's Total Petroleum Hydrocarbon Screening Guidelines, diesel #2/crankcase oil (1.72 mg/kg) for diesel range organics (DO). Western must apply the "unknown oil" screening guidelines of 0.2 mg/L to future annual groundwater monitoring reports." The semi-annual and annual sampling events had already occurred when Western received this letter. Therefore, the previous reporting limit of 1.0 mg/L for DRO is used throughout the 2009 Annual Groundwater Report. Future reports will apply the 0.2 mg/L screening guideline.

Refinery Wells

MW #29 and MW #44 analytical results did not exceed regulatory standards for BTEX (Benzene, Toluene, Ethylbenzene, Xylene) and DRO (Diesel Range Organics) in 2009. MW #40 and RW #1 were over the benzene and DRO standards in August. Also, in August, MW #31 and RW #23 topped the benzene, ethylbenzene, xylene, and DRO regulatory values. MW #4 surpassed limits on benzene, xylene, and DRO and RW #9 and RW #15 surpassed the BTEX and DRO standards in August. MW #30 exceeded BTEX and DRO regulatory standards in April and August. MW #8 was over the benzene standard in August. MW #20, MW #21, RW #18, RW #28, and RW #43 were not sampled since the wells contained separate phase hydrocarbon.

2

Cross-Gradient Wells

Analytical results from MW #26 exceeded the benzene and DRO regulatory standards in August. MW #27 also surpassed the DRO screening guidelines. The analytical results from the other four wells (MW #1, MW #13, MW #32, and MW #33) in the Cross-Gradient list were either non-detect or did not surpass regulatory limits for BTEX and DRO.

Down-Gradient Wells

Analytical results from four wells (MW #12, MW 35, MW #37, and MW #38) in the Down-Gradient list were either non-detect or did not surpass regulatory limits for BTEX. April and August analytical results for MW #35 and MW #37 exceeded the DRO regulatory limit. MW #11 and MW #34 surpassed benzene and DRO standards in August.

San Juan River Bluff – Bluff Seeps

Outfalls #2 and #3 analytical results did not exceed regulatory standards for BTEX. Samples collected from Seeps #1, #3, #6, #7, 8 and #9 in either April or August (dependent upon fluids present) did not exceed BTEX regulatory standards.

General Chemistry

General chemistry parameters were analyzed during the annual sampling event in August and not in April 2009.

Refinery Wells

WQCC TDS standard (1000 mg/L) was exceeded by MW #4, MW #30, MW #40, MW #44, RW #1, RW #9, RW #15, and RW #23. The results ranged from a low of 1239 mg/L in RW #23 to a high of 3807 mg/L in MW #44. The sulfate standard (600 mg/L) was surpassed by MW #44 (2900 mg/L). The chloride standard (250 mg/L) was met or exceeded by MW #31, MW #40, RW #1, and RW #15 with a low of 310 mg/L in MW #40 to a high of 720 mg/L in MW #31.

Cross-Gradient Wells

MW #13, MW #26, MW #27, MW #32, and MW #33 exceeded the TDS standard with results that ranged from a low of 1975 mg/L at MW #27 to a high of 4218 mg/L at MW #32. The sulfate regulatory limit was surpassed by MW #13, MW #27, MW #32, and MW #33. Chloride standard was topped by results from MW #26, MW #32, and MW #33. The nitrogen standard (10 mg/L) was exceeded by MW #32 (37 mg/L) and MW #33 (23 mg/L).

Down-Gradient Wells

The TDS standard was exceeded by MW #11, MW #12, MW #34, MW #35, and MW #37 with a range of 1079 mg/L (MW #35) to 1929 mg/L (MW #11). The sulfate regulatory limit (600 mg/L) was matched by MW #12 (600 mg/L). MW #11 (330 mg/L) and MW #37 (280 mg/L) topped the chloride standard.

San Juan River Bluff – Bluff Seeps

Outfalls #2 and #3 analytical results did not exceed regulatory standards for general chemistry standards. Seeps #1, #3, and #6 exceeded TDS, sulfate, and chloride regulatory limits.

Total Metals (RCRA 8)

Total Metals (RCRA 8) were analyzed only during the annual sampling event in August 2009 but not required during the April 2009 sampling event. Due to matrix interferences, the selenium reporting level on several samples is above the regulatory level of 0.05 mg/L. Hall Environmental Analytical Laboratory felt it was necessary to dilute the sample in order to accurately report selenium.

Refinery Wells

All total metal constituents other than barium were either non-detect or below regulatory levels for the refinery wells. The barium standard of 1.0 mg/L was exceeded by MW #4 (2.0 mg/L), MW #40 (2.8 mg/L), RW #1 (2.1 mg/L), RW #15 (1.7 mg/L), and MW #23 (1.7 mg/L).

Cross-Gradient Wells

MW #26 surpassed the barium standard with a result of 2.4 mg/L. Total metals results from all other Cross-Gradient wells were either non-detect or below regulatory levels.

Down-Gradient Wells

MW #12 exceeded the total chromium standard (0.05 mg/l) with a result of 0.69 mg/L and the total lead standard (00.015 mg/L) with a result of 0.081 mg/L. The remaining down-gradient wells (MW #11, MW #34, MW #35, MW #37, and MW #38) analytical results did not exceed regulatory standards for total metals.

San Juan River Bluff – Bluff Seeps

Outfalls #2 and #3 analytical results did not exceed regulatory standards for total metals. Total metals analysis was not required for any Seeps.

Dissolved Metals

Samples collected in August 2009 were analyzed for WQCC dissolved metals. Dissolved metals analysis was not required for the April 2009 sampling event.

Refinery Wells

MW #4, MW #40, RW #1, RW #15, and RW #23 exceeded barium (1.0 mg/L), iron (1.0 mg/L), and manganese (0.2 mg/L) regulatory limits. Barium exceedances ranged from a low of 1.3 mg/L (RW #23) to a high of 1.9 mg/L (RW #1). Iron varied from a low of 1.1 mg/L (RW #23) to a high of 12.0 mg/L (MW #4). Manganese results ranged from 0.51 mg/L to 4.6 mg/L. MW #29 (0.87 mg/L), MW #30 (1.7 mg/L), MW #31 (0.51 mg/L), and MW #44 (1.7 mg/L) surpassed manganese standards.

4

Cross-Gradient Wells

MW #13 topped manganese standards (0.2 mg/L) with a result of 1.3 mg/L. MW #26 exceeded barium, iron, and manganese regulatory levels with results of 2.2 mg/L, 7.2 mg/L, and 2.9 mg/L respectively. MW #27 surpassed manganese standards with results of 2.1 mg/L.

Down-Gradient Wells

MW #11, MW #34, MW #35, MW #37, and MW #38 exceeded iron and manganese standards. Iron exceedances ranged from a low of 1.1 mg/L at MW #37 to a high of 12.0 mg/L at MW #11. Manganese varied from a low of 1.4 mg/L at MW #37 to a high of 3.6 at MW #34. MW #12 surpassed manganese with a result of 0.34 mg/L.

San Juan River Bluff – Bluff Seeps

Outfalls #2 and #3 analytical results did not exceed regulatory standards for total metals. Dissolved metals analysis was not required for any Seeps.

Semi-Volatile Organic Compounds

Samples were analyzed for SVOCs by EPA Method 8270 during the annual sampling event in August 2009.

Refinery Wells

MW #4, MW #30, MW #31, MW #40, RW #1, RW #9, RW #15, and RW #23 exceeded the naphthalene standard of 0.0014 mg/L with range of 0.048 mg/L at MW #4 to a high of 0.53 mg/L at RW #23. RW #1 also surpassed the Bis(2-ethylexyl)phthalate standard of 0.006 mg/L with a result of 0.031 mg/L.

Cross-Gradient Wells

MW #26 exceeded the naphthalene standard of 0.0014 mg/L with a result of 0.075 mg/L.

Down-Gradient Wells

MW #11 exceeded the naphthalene standard of 0.0014 mg/L with a result of 0.051 mg/L. MW #12 surpassed Bis(2-ethylexyl)phthalate standard of 0.006 mg/L with a result of 0.013 mg/L.

San Juan River Bluff – Bluff Seeps

SVOC analysis was not required for Outfalls #2 and #3. The Seeps analysis did not exceed laboratory reporting limit of any SVOC analyte.

North Boundary Barrier Wall

Seeps

A bi-weekly visual inspection of Seeps 1-9 and the San Juan River Bluff occurred throughout 2009. Visual inspection continues to confirm that the vast majority of the fluids in the outfalls are from precipitation events.

During the week of April 6, 2009 semi-annual samples were collected from Seeps 1, 3, 6, 8, and 9. Guidelines from the *Facility-Wide Groundwater Monitoring Plan December 2007(Revised May 2008)* were followed. During the week of August 17, 2009, samples were collected from Seeps 1, 3, and 6 with the same guidelines being followed as the semi-annual event. Analyses of these water samples indicate that BTEX volatile organic constituents are non-detect.

Analytical results can be found in Section 8.0, Tab 8.0.

Groundwater Measurements

In August 2005 Bloomfield Refinery personnel established a bi-weekly fluid measurement scheme requiring monitoring of all observation and collection wells along Hammond Ditch as well as MW #11, MW #12. MW #20, MW #21, MW #39, MW #45, MW #46, and MW #47. This measurement program continued throughout 2009.

In conjunction with the biweekly measurement program, all facility monitoring wells, recovery wells, observation and collection wells were measured for groundwater elevation on a quarterly basis throughout 2009. Groundwater elevation maps were developed using the data gathered in the quarterly measurement program. Data from that program will be discussed in this report.

Separate phase hydrocarbon (SPH) was detected in OW 1+50 in February (0.23 feet), April (0.50 feet), August (0.60 feet), and November (0.32 feet). OW 3+85 had SPH present in November (0.04 feet) as did OW 11+15 (0.04 feet). CW 8+45 had SPH present in February (0.02 feet), and April (0.01 feet). OW 19+10 was dry in August and November. OW 6+70, OW 8+1, and OW 14+10 were dry in all four quarters.

Quarterly measured depth to groundwater tables can be found in Section 8.0, Tab 1.0. Biweekly measurement tables are located in Appendix A – Tabs 1.0 - 12.0.

Groundwater Monitoring

Semi-Annual sample collection began during the week of April 6, 2009. Annual sampling occurred the week of August 17, 2009. During both sampling events, groundwater samples were collected from all observation wells and two collection wells (CW-0+60 and CW25+95) with the exception of wells that contain separate phase hydrocarbon or wells that were dry or did not contain enough water to collect a sample.

April and August analytical data for CW 0+60 exceeded the benzene regulatory standard of 0.005 mg/L with results of 0.034 mg/L (April) and 0.045 mg/L (August). CW 0+60 also surpassed the DRO regulatory limit of 0.20 mg/L in April and August with a result of 5.6 mg/L and 4.1 mg/L respectively. CW 25+95

6

60

sampling data did not exceed regulatory standards except in April for benzene with a result of 0.34 mg/L.

Every observation well that was sampled exceeded the TDS standard of 1000 mg/L except for OW 25+70 in August (837 mg/L) and OW 23+90 in April (989 mg/L). Results ranged from a low of 1025 mg/L at OW 25+70 (April) to a high of 2742 mg/L at OW 22+00 (August). The regulatory limits of benzene (0.005 mg/L), and xylene (0.62 mg/L) were surpassed in April and August for OW 3+85. Benzene results were 0.0078 mg/L and 0.009 mg/L respectively and xylene results were 0.86 mg/L and 0.67 mg/L respectively. OW 11+15, OW 16+60, and OW 25+70 also exceeded benzene standards. Results ranged from a low of 0.23 mg/L at OW 11+15 (April) to a high of 0.75 mg/L at OW 16+60 (August). The DRO regulatory standard of 0.2 mg/L was exceeded by OW 0+60, OW 3+85, OW 11+15, OW 16+60, OW 22+00, and OW 23+10. Results ranged from a low of 1.5 mg/L at OW 22+00 (August) to a high of 62 mg/L at OW 16+60(August).

Remedial Action and Conclusions

North Boundary Barrier Wall

Visual inspection of Seeps 1-9 has shown ground water discharge from the seeps along the river bluff has decreased significantly since installation of the slurry wall. Bi-weekly inspections continue to confirm that the vast majority of the fluids in the outfalls are from precipitation events.

Groundwater elevation maps indicate that the wall is performing as intended by capturing the water along the south side of the wall. Inspections of the draws north of the barrier wall and analysis of fluids collected at the seeps indicate that seepage of fuel hydrocarbon impacted water has been eliminated.

Facility-Wide Monitoring and Remedial Actions

Western Refining indefinitely suspended refining operations at the Bloomfield Refinery on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation. Guidelines from the *Facility-Wide Groundwater Monitoring Plan December 2007(Revised May 2008)* will continue to be followed.

Section 8.0 Tables

Title		Tab
Measure	ed Depth to Groundwater	
	Quarterly Measurements Sump Wells	
Water Q	uality Field Measurements	3
Summar	y of Groundwater Chemical Analytical Data	
	Background Wells	4
	Refinery Wells	
	Cross-gradient Wells Downgradient Wells	
	San Juan River Bluff/Seeps	8
	Tank #33	9
San Jua	n River Analytical Data	

Well	Monitoring Event	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Section 8.0 - Ta Corrected Groundwater Elevation	Separate Phase Hydrocarbor Thickness
	Ath Quarter	11/2/2009	5519.21	21.56	NPP	17.00	5502.21	NPP
	4th Quarter	11/9/2009	5519.21	21.56	NPP	17.03	5502.18	NPP
6	3rd Quarter	8/13/2009	5519.21	21.56	NPP	16.69	5502.52	NPP
MW-01	Sid Quarter	8/17/2009	5519.21	21.56	NPP	16.72	5502.49	NPP
Š	and Quester	4/2/2009	5519.21	21.56	NPP	17.27	5501.94	NPP
2	2nd Quarter	4/6/2009	5519.21	21.56	NPP	17.28	5501.93	NPP
	1st Quarter 4th Quarter	2/19/2009	5519.21	21.56	NPP	17.39	5501.82	NPP
	1st Quarter -	2/23/2009	5519.21	21.56	NPP	17.39	5501.82	NPP
	446 0	11/2/2009	5539.27	36.75	NPP	36.23	5503.04	NPP
	4th Quarter -	11/9/2009	5539.27	36.75	NPP	36.19	5503.08	NPP
		8/13/2009	5539.27	36.75	NPP	36.18	5503.09	NPP
MW-03	3rd Quarter	8/17/2009	5539.27	36.75	NPP	36.18	5503.09	NPP
N		4/2/2009	5539.27	36.75	NPP	36.41	5502.86	NPP
2	2nd Quarter	4/6/2009	5539.27	36.75	NPP	36.43	5502.84	NPP
		2/19/2009	5539.27	36.75	NPP	36.44	5502.83	NPP
	1st Quarter	2/23/2009	5539.27	36.75	NPP	36.44	5502.83	NPP
		11/2/2009	5527.78	30.48	NPP	27.28	5500.50	NPP
	4th Quarter	11/9/2009	5527.78	30.48	NPP	27.18	5500.60	NPP
	2.10	8/13/2009	5527.78	30.48	NPP	27.19	5500.59	NPP
N-04	3rd Quarter	8/17/2009	5527.78	30.48	NPP	27.16	5500.62	NPP
MM		4/2/2009	5527.78	30.48	NPP	26.99	5500.79	NPP
2	2nd Quarter	4/6/2009	5527.78	30.48	NPP	27.00	5500.78	NPP
	1.10	2/19/2009	5527.78	30.48	NPP	26.97	5500.81	NPP
	1st Quarter	2/23/2009	5527.78	30.48	NPP	26.74	5501.04	NPP
	411 0	11/2/2009	5548.56	37.20	NPP	NWP	A CARA	NPP
	4th Quarter	11/9/2009	5548.56	37.20	NPP	NWP		NPP
	2nd Quarter	8/13/2009	5548.56	37.20	NPP	NWP	111754	NPP
-0	3rd Quarter	8/17/2009	5548.56	37.20	NPP	NWP	the second	NPP
MW-05	and Outstan	4/2/2009	5548.56	37.20	NPP	NWP	Prom.	NPP
-	2nd Quarter	4/6/2009	5548.56	37.20	NPP	NWP		NPP
	1et Ouerter	2/19/2009	5548.56	37.20	NPP	NWP		NPP
1	1st Quarter	2/23/2009	5548.56	37.20	NPP	NWP		NPP

NPP = No Product Present

Section 8.0 - Tab 1.0

_		and includes	and marked		the state of the		Section 8.0 - Ta	
Well ID	Monitoring Event	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
	Ath Quarter	11/2/2009	5554.61	48.00	NPP	NWP		NPP
	4th Quarter	11/9/2009	5554.61	48.00	NPP	NWP		NPP
	3rd Quarter	8/13/2009	5554.61	48.00	NPP	NWP		NPP
-06	Sid Quarter	8/17/2009	5554.61	48.00	NPP	NWP		NPP
MW-06	2nd Quarter	4/2/2009	5554.61	48.00	NPP	NWP		NPP
-	Znu Quarter -	4/6/2009	5554.61	48.00	NPP	NWP		NPP
	1 of Quarter	2/19/2009	5554.61	48.00	NPP	NWP		NPP
	1st Quarter	2/23/2009	5554.61	48.00	NPP	NWP	19	NPP
1.1	Ath Ouerter	11/2/2009	5527.66	62.61	NPP	27.39	5500.27	NPP
	4th Quarter	11/9/2009	5527.66	62.61	NPP	27.45	5500.21	NPP
	and Outertan	8/13/2009	5527.66	62.61	NPP	27.40	5500.26	NPP
70-WW	3rd Quarter	8/17/2009	5527.66	62.61	NPP	27.34	5500.32	NPP
N<		4/2/2009	5527.66	62.61	NPP	26.87	5500.79	NPP
2	2nd Quarter	4/6/2009	5527.66	62.61	NPP	26.95	5500.71	NPP
	1.10	2/19/2009	5527.66	62.61	NPP	27.01	5500.65	NPP
	1st Quarter	2/23/2009	5527.66	62.61	NPP	27.07	5500.59	NPP
	4th Quarter	11/2/2009	5534.58	35.93	NPP	31.49	5503.09	NPP
		11/9/2009	5534.58	35.93	NPP	31.43	5503.15	NPP
-	2nd Queston	8/13/2009	5534.58	35.93	NPP	31.36	5503.22	NPP
W-08	3rd Quarter	8/17/2009	5534.58	35.93	NPP	31.35	5503.23	NPP
MM	2nd Quarter	4/2/2009	5534.58	35.93	NPP	31.9	5502.68	NPP
5	2nu Quarter -	4/6/2009	5534.58	35.93	NPP	31.97 [.]	5502.61	NPP
	1st Quarter	2/19/2009	5534.58	35.93	NPP	31.99	5502.59	NPP
	ist Quarter	2/23/2009	5534.58	35.93	NPP	31.95	5502.63	NPP
	4th Quarter	11/2/2009	5510.31	22.94	NPP	11.43	5498.88	NPP
	HII QUALER -	11/9/2009	5510.31	22.94	NPP	11.48	5498.83	NPP
_	3rd Quarter	8/13/2009	5510.31	22.94	NPP	11.48	5498.83	NPP
-	3rd Quarter	8/17/2009	5510.31	22.94	NPP	11.49	5498.82	NPP
MW-11	and Quarter	4/2/2009	5510.31	22.94	NPP	11.53	5498.78	NPP
2	2nd Quarter	4/6/2009	5510.31	22.94	NPP	11.57	5498.74	NPP
	1et Quarter	2/19/2009	5510.31	22.94	NPP	11.48	5498.83	NPP
	1st Quarter	2/23/2009	5510.31	22.94	NPP	11.48	5498.83	NPP

NPP = No Product Present

Quarterly Groundwater Elevation - 2009

(Pre and Post Recovery Well Operation)

							Section 8.0 - T	10,10
Well	Monitoring Event	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbor Thickness
	Ath Quarter	11/2/2009	5501.61	14.98	NPP	10.45	5491.16	NPP
	4th Quarter	11/9/2009	5501.61	14.98	NPP	10.38	5491.23	NPP
	2-10-1-1	8/13/2009	5501.61	14.98	NPP	11.20	5490.41	NPP
-12	3rd Quarter	8/17/2009	5501.61	14.98	NPP	11.20	5490.41	NPP
MW-1		4/2/2009	5501.61	14.98	NPP	10.24	5491.37	NPP
~	2nd Quarter	4/6/2009	5501.61	14.98	NPP	10.27	5491.34	NPP
		2/19/2009	5501.61	14.98	NPP	10.13	5491.48	NPP
	1st Quarter	2/23/2009	5501.61	14.98	NPP	10.14	5491.47	NPP
		11/2/2009	5542.04	52.89	NPP	40.45	5501.59	NPP
	4th Quarter	11/9/2009	5542.04	52.89	NPP	40.40	5501.64	NPP
	111111	8/13/2009	5542.04	52.89	NPP	40.41	5501.63	NPP
MW-13	3rd Quarter	8/17/2009	5542.04	52.89	NPP	40.42	5501.62	NPP
M		4/2/2009	5542.04	52.89	NPP	40.31	5501.73	NPP
2	2nd Quarter	4/6/2009	5542.04	52.89	NPP	40.33	5501.71	NPP
		2/19/2009	5542.04	52.89	NPP	40.27	5501.77	NPP
	1st Quarter	2/23/2009	5542.04	52.89	NPP	40.28	5501.76	NPP
		11/2/2009	5519.9	27.13	20.63	21.32	5499.13	0.69
	4th Quarter	11/9/2009	5519.9	27.13	20.62	21.32	5499.14	0.70
		8/13/2009	5519.90	27.13	20.62	21.24	5499.16	0.62
N-20	3rd Quarter	8/17/2009	5519.90	27.13	20.62	21.23	5499.16	0.61
MW		4/2/2009	5519.9	27.13	20.55	20.84	5499.29	0.29
2	2nd Quarter	4/6/2009	5519.9	27.13	20.60	20.96	5499.23	0.36
	1-1-0	2/19/2009	5519.9	27.13	20.58	20.85	5499.27	0.27
	1st Quarter	2/23/2009	5519.9	27.13	20.56	20.82	5499.29	0.26
1	44h Que day	11/2/2009	5521.99	30.38	21.7	21.84	5500.26	0.14
	4th Quarter	11/9/2009	5521.99	30.38	21.71	21.83	5500.26	0.12
	2nd Outputer	8/13/2009	5521.99	30.38	21.70	21.79	5500.27	0.09
-21	3rd Quarter	8/17/2009	5521.99	30.38	21.70	21.80	5500.27	0.10
MW-21	and Question	4/2/2009	5521.99	30.38	21.74	21.82	5500.23	0.08
-	2nd Quarter	4/6/2009	5521.99	30.38	21.77	21.87	5500.20	0.10
	1et Ouertes	2/19/2009	5521.99	30.38	21.78	21.85	5500.20	0.07
1	1st Quarter	2/23/2009	5521.99	30.38	21.76	21.85	5500.21	0.09

NPP = No Product Present

NWP = No Water Present

Page 3 of 20

Quarterly Groundwater Elevation - 2009

(Pre and Post Recovery Well Operation)

Section 8.0 - Tab 1.0 Separate Measuring **Depth To** Corrected Well Phase Monitoring Depth To Total Well Date Point Product Groundwater Hydrocarbon, ID Event Depth Water (DTW) Elevation (DTP) Elevation Thickness 11/2/2009 5533.99 41.20 32.75 5501.19 0.27 33.02 4th Quarter 11/9/2009 5533.99 41.20 32.78 33.03 5501.16 0.25 8/13/2009 5533.99 41.20 32.70 32.95 5501.24 0.25 **3rd Quarter** WW-25 8/17/2009 32.72 0.25 5533.99 41.20 32.97 5501.22 4/2/2009 5533.99 41.20 32.62 32.82 5501.33 0.20 2nd Quarter 0.20 4/6/2009 5533.99 41.20 32.64 32.84 5501.31 0.17 2/19/2009 5533.99 41.20 32.55 32.72 5501.41 **1st Quarter** 2/23/2009 5533.99 41.20 32.55 32.72 5501.41 0.17 NPP NPP 11/2/2009 5517.88 25.11 17.42 5500.46 4th Quarter 11/9/2009 5517.88 25.11 NPP 17.41 5500.47 NPP 5517.88 25.11 NPP 17.38 NPP 8/13/2009 5500.50 **3rd Quarter** WW-26 17.39 NPP 8/17/2009 5517.88 25.11 NPP 5500.49 NPP 4/2/2009 5517.88 25.11 NPP 17.30 5500.58 2nd Quarter 4/6/2009 NPP 17.32 5500.56 NPP 5517.88 25.11 17.24 NPP 2/19/2009 5517.88 25.11 NPP 5500.64 **1st Quarter** NPP 2/23/2009 5517.88 25.11 NPP 17.23 5500.65 NPP 11/2/2009 5518.67 24.42 NPP 18.69 5499.98 4th Quarter 5499.99 NPP NPP 11/9/2009 5518.67 24.42 18.68 NPP 8/13/2009 5518.67 24.42 NPP 18.75 5499.92 **3rd Quarter WW-27** 8/17/2009 5518.67 24.42 NPP 18.75 5499.92 NPP NPP 4/2/2009 5518.67 24.42 NPP 18.67 5500.00 2nd Quarter NPP 4/6/2009 5518.67 24.42 NPP 18.70 5499.97 2/19/2009 5518.67 24.42 NPP 18.63 5500.04 NPP **1st Quarter** 2/23/2009 5518.67 24.42 NPP 18.64 5500.03 NPP 11/2/2009 5524.97 28.62 NPP 22.89 5502.08 NPP 4th Quarter NPP 11/9/2009 5524.97 28.62 NPP 22.87 5502.10 5524.97 28.62 NPP 22.72 5502.25 NPP 8/13/2009 **3rd Quarter WW-29** 22.74 NPP 8/17/2009 5524.97 28.62 NPP 5502.23 23.12 4/2/2009 5524.97 28.62 NPP 5501.85 NPP 2nd Quarter 5524.97 28.62 NPP 23.12 NPP 4/6/2009 5501.85 2/19/2009 5524.97 28.62 NPP 23.22 NPP 5501.75 1st Quarter 2/23/2009 5524.97 28.62 NPP 23.20 5501.77 NPP

NPP = No Product Present

NWP = No Water Present

Page 4 of 20

Section 8.0 - Tab 1.0 Separate Measuring Depth To Corrected Well Monitoring Phase Total Well Depth To Point Date Product Groundwater Hydrocarbon D Event Depth Water (DTW) Elevation (DTP) Elevation Thickness 11/2/2009 5536.83 40.13 NPP 33.81 5503.02 NPP 4th Quarter 11/9/2009 5536.83 40.13 NPP 33.75 NPP 5503.08 8/13/2009 5536 83 40.13 NPP 33.75 5503.08 NPP **3rd Quarter** WW-30 8/17/2009 5536.83 40.13 NPP 33.75 5503.08 NPP 4/2/2009 5536 83 NPP NPP 40.13 33.9 5502.93 2nd Quarter NPP 4/6/2009 NPP 5536.83 40.13 34.02 5502.81 2/19/2009 5536.83 NPP NPP 40.13 34.04 5502.79 1st Quarter NPP NPP 2/23/2009 5536.83 40.13 34.02 5502.81 NPP 11/2/2009 5536.24 NPP 5502.12 39.16 34.12 4th Quarter 11/9/2009 5536.24 39.16 NPP 34.14 5502.10 NPP 8/13/2009 5536.24 39.16 NPP 34.09 5502.15 NPP 3rd Quarter WW-31 8/17/2009 NPP NPP 5536.24 39.16 34.10 5502.14 5536 24 NPP 5502 20 NPP 4/2/2009 39.16 34.04 2nd Quarter NPP 4/6/2009 5536.24 39.16 NPP 34.05 5502.19 NPP 2/19/2009 5536.24 39.16 NPP 33.99 5502.25 **1st Quarter** NPP NPP 2/23/2009 5536.24 39.16 33.99 5502.25 NPP 5525.64 NPP 24.97 5500.67 11/2/2009 27.51 4th Quarter NPP NPP 11/9/2009 5525.64 27.51 24.94 5500.70 8/13/2009 5525.64 27.51 NPP 25.05 5500.59 NPP **MW-32 3rd Quarter** NPP NPP 8/17/2009 5525.64 27.51 25.03 5500.61 NPP 4/2/2009 5525.64 27.51 NPP 25.03 5500.61 2nd Quarter NPP 4/6/2009 5525.64 27.51 NPP 25.05 5500.59 NPP 2/19/2009 5525.64 27.51 NPP 24.98 5500.66 **1st Quarter** NPP 2/23/2009 5525.64 27.51 NPP 24.99 5500.65 11/2/2009 5521.79 25.51 NPP 22.21 5499.58 NPP 4th Quarter 11/9/2009 5521.79 25.51 NPP 22.21 5499.58 NPP 8/13/2009 5521.79 25.51 NPP 22.35 5499.44 NPP **3rd Quarter** WW-33 8/17/2009 5521.79 25.51 NPP 22.36 5499.43 NPP 4/2/2009 5521.79 25.51 NPP 22.35 5499.44 NPP 2nd Quarter 4/6/2009 5521.79 25.51 NPP 22.36 5499.43 NPP 2/19/2009 5521.79 25.51 NPP 22.32 5499.47 NPP **1st Quarter** 2/23/2009 5521.79 NPP NPP 25.51 22.32 5499.47

NPP = No Product Present

NWP = No Water Present

io Product Present

Section 8.0 - Tab 1.0 Separate Measuring Corrected Depth To Well Monitoring Phase **Total Well** Depth To Date Point Product Groundwater Hydrocarbon ID Event Depth Water (DTW) Elevation (DTP) Elevation Thickness 11/2/2009 5511.63 NPP NPP 20.96 13.62 5498.01 4th Quarter 11/9/2009 5511.63 20.96 NPP 13.71 5497.92 NPP 8/13/2009 5511.63 20.96 NPP NPP 14.17 5497.46 **3rd Quarter** WW-34 8/17/2009 5511.63 20.96 NPP 14.18 5497.45 NPP 4/2/2009 5511.63 20.96 NPP 14.33 5497.30 NPP 2nd Quarter 5511.63 NPP 14.35 NPP 4/6/2009 20.96 5497.28 NPP NPP 2/19/2009 5511.63 20.96 14.25 5497.38 **1st Quarter** 2/23/2009 20.96 NPP 14.27 NPP 5511.63 5497.36 NPP NPP 11/2/2009 5518.95 26.45 21.78 5497.17 4th Quarter 11/9/2009 5518.95 26.45 NPP 21.79 5497.16 NPP 8/13/2009 5518.95 26.45 NPP 22.05 5496.90 NPP MW-35 **3rd Quarter** NPP 22.09 5496.86 NPP 8/17/2009 5518.95 26.45 5496.63 NPP 22.32 NPP 4/2/2009 5518.95 26.45 2nd Quarter NPP 4/6/2009 5518.95 26.45 NPP 22.32 5496.63 2/19/2009 5518.95 26.45 NPP 22.23 5496.72 NPP **1st Quarter** NPP NPP 22.24 5496.71 2/23/2009 5518.95 26.45 NPP NPP 5496.40 11/2/2009 5516.95 23.26 20.55 4th Quarter NPP 23.26 NPP 20.53 5496.42 11/9/2009 5516.95 NPP NPP 20.92 5496.03 8/13/2009 5516.95 23.26 **3rd Quarter** WW-36 NPP 8/17/2009 5516.95 23.26 NPP 20.87 5496.08 NPP 4/2/2009 5516.95 23.26 NPP 20.96 5495.99 2nd Quarter 5495.99 NPP NPP 20.96 4/6/2009 5516.95 23.26 NPP 2/19/2009 5516.95 23.26 NPP 20.89 5496.06 **1st Quarter** NPP 2/23/2009 5516.95 23.26 NPP 20.88 5496.07 NPP 11/2/2009 5519.62 27.58 NPP 23.27 5496.35 4th Quarter 5519.62 27.58 NPP 23.24 5496.38 NPP 11/9/2009 NPP 8/13/2009 5519.62 27.58 NPP 23.22 5496.40 **3rd Quarter WW-37** NPP 23.22 5496.40 NPP 8/17/2009 5519.62 27.58 NPP 23.55 NPP 4/2/2009 5519.62 27.58 5496.07 2nd Quarter 5519.62 27.58 NPP 23.61 5496.01 NPP 4/6/2009 NPP 5519.62 27.58 NPP 23.52 2/19/2009 5496.10 1st Quarter NPP 2/23/2009 5519.62 27.58 NPP 23.56 5496.06

NPP = No Product Present

Section 8.0 - Tab 1.0

							Section 8.0 - Ta	
Well	Monitoring Event	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbo Thickness
	Ath Quarter	11/2/2009	5519.19	26.82	NPP	23.48	5495.71	NPP
	4th Quarter	11/9/2009	5519.19	26.82	NPP	23.48	5495.71	NPP
~	2nd Outerter	8/13/2009	5519.19	26.82	NPP	23.83	5495.36	NPP
MW-38	3rd Quarter	8/17/2009	5519.19	26.82	NPP	23.86	5495.33	NPP
N N	2nd Quarter	4/2/2009	5519.19	26.82	NPP	23.81	5495.38	NPP
2	2nd Quarter	4/6/2009	5519.19	26.82	NPP	23.79	5495.40	NPP
	1at Quarter	2/19/2009	5519.19	26.82	NPP	23.65	5495.54	NPP
	1st Quarter	2/23/2009	5519.19	26.82	NPP	23.69	5495.50	NPP
	446 0	11/2/2009	5520.83	38.34	NPP	25.75	5495.08	NPP
	4th Quarter	11/9/2009	5520.83	38.34	NPP	25.7	5495.13	NPP
	2-10	8/13/2009	5520.83	38.34	NPP	25.78	5495.05	NPP
-39	3rd Quarter	8/17/2009	5520.83	38.34	NPP	25.82	5495.01	NPP
MW-39		4/2/2009	5520.83	38.34	NPP	25.57	5495.26	NPP
2	2nd Quarter	4/6/2009	5520.83	38.34	NPP	25.62	5495.21	NPP
		2/19/2009	5520.83	38.34	NPP	25.62	5495.21	NPP
	1st Quarter	2/23/2009	5520.83	38.34	NPP	25.60	5495.23	NPP
	4th Quarter	11/2/2009	5527.31	30.07	NPP	28.15	5499.16	NPP
		11/9/2009	5527.31	30.07	NPP	28.09	5499.22	NPP
		8/13/2009	5527.31	30.07	NPP	28.17	5499.14	NPP
W-40	3rd Quarter	8/17/2009	5527.31	30.07	NPP	28.17	5499.14	NPP
Ň		4/2/2009	5527.31	30.07	NPP	28.01	5499.30	NPP
Σ	2nd Quarter	4/6/2009	5527.31	30.07	NPP	28.02	5499.29	NPP
		2/19/2009	5527.31	30.07	NPP	27.97	5499.34	NPP
	1st Quarter	2/23/2009	5527.31	30.07	NPP	27.87	5499.44	NPP
- 11	Ath Ourseter	11/2/2009	5526.41	31.62	26.55	27.05	5499.76	0.50
	4th Quarter	11/9/2009	5526.41	31.62	26.55	26.9	5499.79	0.35
	and Quarter	8/13/2009	5526.41	31.62	26.55	27.10	5499.75	0.55
4	3rd Quarter	8/17/2009	5526.41	31.62	26.57	27.10	5499.73	0.53
MW-41	and Quarter	4/2/2009	5526.41	31.62	26.4	26.71	5499.95	0.31
2	2nd Quarter	4/6/2009	5526.41	31.62	26.47	26.83	5499.87	0.36
	1et Quester	2/19/2009	5526.41	31.62	26.41	26.47	5499.99	0.06
	1st Quarter	2/23/2009	5526.41	31.62	26.34	26.39	5500.06	0.05

NPP = No Product Present

NWP = No Water Present

Page 7 of 20

Section 80 - Tab 10

_		A States	Land and the				Section 8.0 - Ta	
Well ID	Monitoring Event	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
3.1	Ath Queston	11/2/2009	5535.44	50.91	NPP	34.48	5500.96	NPP
	4th Quarter	11/9/2009	5535.44	50.91	NPP	34.54	5500.90	NPP
-	2 rd Ouerter	8/13/2009	5535.44	50.91	NPP	34.09	5501.35	NPP
MW-44	3rd Quarter	8/17/2009	5535.44	50.91	NPP	34.04	5501.40	NPP
ş	and Output	4/2/2009	5535.44	50.91	NPP	33.67	5501.77	NPP
2	2nd Quarter	4/6/2009	5535.44	50.91	NPP	33.86	5501.58	NPP
	Ant Owneday	2/19/2009	5535.44	50.91	NPP	33.92	5501.52	NPP
	1st Quarter	2/23/2009	5535.44	50.91	NPP	33.99	5501.45	NPP
	Ath Outerter	11/2/2009	5506.36	16.92	NPP	11.75	5494.61	NPP
	4th Quarter	11/9/2009	5506.36	16.92	NPP	11.77	5494.59	NPP
	2nd Outerter	8/13/2009	5506.36	16.92	NPP	11.67	5494.69	NPP
-45	3rd Quarter	8/17/2009	5506.36	16.92	NPP	11.68	5494.68	NPP
MW-45	0.10	4/2/2009	5506.36	16.92	NPP	11.61	5494.75	NPP
2	2nd Quarter	4/6/2009	5506.36	16.92	NPP	11.81	5494.55	NPP
		2/19/2009	5506.36	16.92	NPP	11.81	5494.55	NPP
	1st Quarter	2/23/2009	5506.36	16.92	NPP	11.77	5494.59	NPP
	4th Quarter	11/2/2009	5504.65	10.39	NPP	NWP		NPP
		11/9/2009	5504.65	10.39	NPP	NWP		NPP
	2nd Outerter	8/13/2009	5504.65	10.39	NPP	NWP		NPP
W-46	3rd Quarter	8/17/2009	5504.65	10.39	NPP	NWP		NPP
N N	and Quarter	4/2/2009	5504.65	10.39	NPP	NWP		NPP
2	2nd Quarter	4/6/2009	5504.65	10.39	NPP	NWP		NPP
	1st Quarter	2/19/2009	5504.65	10.39	NPP	NWP		NPP
	ist quarter	2/23/2009	5504.65	10.39	NPP	NWP		NPP
	4th Quarter	11/2/2009	5506.77	14.28	12.78	13.45	5493.86	0.67
	Hill Qualter	11/9/2009	5506.77	14.28	12.76	13.44	5493.87	0.68
	3rd Quarter	8/13/2009	5506.77	14.28	12.68	12.78	5494.07	0.10
MW-47	Ju Quarter -	8/17/2009	5506.77	14.28	NPP	12.80	5493.97	NPP
N N	2nd Quarter	4/2/2009	5506.77	14.28	NPP	12.47	5494.30	NPP
-	znu Quarter -	4/6/2009	5506.77	14.28	NPP	12.50	5494.27	NPP
	1st Quarter	2/19/2009	5506.77	14.28	NPP	12.37	5494.40	NPP
	ist quarter	2/23/2009	5506.77	14.28	NPP	12.38	5494.39	NPP

NPP = No Product Present

Section 8.0 - Tab 1.0 Separate Measuring Depth To Corrected Well Phase Monitoring Total Well Depth To Date Point Product Groundwater D Hydrocarbon Event Water (DTW) Depth Elevation (DTP) Elevation Thickness 11/2/2009 5510.77 22 73 NPP 11.20 5499.57 NPP 4th Quarter 11/9/2009 5510.77 22.73 NPP 11.25 5499.52 NPP 8/13/2009 5510.77 22.73 NPP 11.17 5499.60 NPP **3rd Quarter** P-03 8/17/2009 5510.77 22.73 NPP 11.18 5499.59 NPP NPP 5510.77 22.73 NPP 4/2/2009 11.13 5499.64 2nd Quarter 4/6/2009 5510.77 22.73 NPP 5499.59 NPP 11.18 2/19/2009 5510.77 22.73 NPP 10.86 5499.91 NPP **1st Quarter** 2/23/2009 5510.77 22.73 NPP 10.88 5499.89 NPP 11/2/2009 5529.34 40.80 32.25 32.81 5496.98 0.56 4th Quarter 11/9/2009 5529.34 40.80 30.81 30.93 5498.51 0.12 8/13/2009 5529 34 40 80 32 50 32 70 5496 80 0.20 **3rd Quarter** RW-01 8/17/2009 5529.34 40.80 NPP 30.90 5498.44 NPP 4/2/2009 5529.34 40.80 NPP 33.30 5496.04 NPP 2nd Quarter 4/6/2009 5529.34 40.80 NPP 30.88 5498.46 NPP 2/19/2009 5529.34 40.80 32.5 32.55 5496.83 0.05 **1st Quarter** 2/23/2009 5529.34 40.80 30.75 30.81 5498.58 0.06 11/2/2009 5526.94 35.86 27.94 31.1 5498.37 3.16 4th Quarter 11/9/2009 5526.94 35.86 26.33 26.79 5500.52 0.46 8/13/2009 5526.94 35.86 28.00 29.90 5498.56 1.90 **3rd Quarter RW-02** 8/17/2009 5526.94 35.86 26.30 26.80 5500.54 0.50 2.87 4/2/2009 5526.94 35.86 28.03 30.90 5498.34 2nd Quarter 4/6/2009 5526.94 35.86 27.05 27.45 5499.81 0.40 2/19/2009 5526.94 35.86 NPP 27.17 5499.77 NPP **1st Quarter** 2/23/2009 5526.94 35.86 NPP 25.95 5500.99 NPP 11/2/2009 5520.35 34.57 NPP 22.04 5498.31 NPP 4th Quarter 11/9/2009 5520.35 34.57 NPP 21.83 5498.52 NPP 8/13/2009 5520.35 34.57 NPP 21.91 5498.44 NPP **3rd Quarter** RW-03 8/17/2009 5520.35 34.57 NPP 21.79 5498.56 NPP 5520.35 34.57 NPP 5498.34 NPP 4/2/2009 22.01 2nd Quarter 4/6/2009 5520.35 34.57 NPP 21.88 5498.47 NPP NPP 2/19/2009 5520.35 34.57 21.89 5498.46 NPP **1st Quarter** 2/23/2009 NPP 5520.35 34.57 NPP 21.74 5498.61

NPP = No Product Present

NWP = No Water Present

Page 9 of 20

Section 8.0 - Tab 1.0 Separate Measuring Depth To Corrected Phase Well Monitoring Total Well Depth To Date Point Product Groundwater Hydrocarbon ID Event Depth Water (DTW) Elevation (DTP) Elevation Thickness 11/2/2009 5523.21 34.04 NPP 28.05 5495.16 NPP 4th Quarter NPP 11/9/2009 5523.21 34.04 NPP 24.83 5498.38 NPP 8/13/2009 5523.21 34.04 NPP 28.92 5494.29 **3rd Quarter RW-09** NPP NPP 8/17/2009 5523.21 34.04 24.80 5498.41 4/2/2009 5523.21 34.04 NPP 28.30 5494.91 NPP 2nd Quarter 4/6/2009 5523.21 34.04 NPP 24.46 5498.75 NPP 2/19/2009 5523.21 34.04 26.02 0.17 25.85 5497.33 **1st Quarter** 5523.21 2/23/2009 34.04 24.72 24.85 5498.46 0.13 5537.5 41.94 NPP 35.1 5502.40 NPP 11/2/2009 4th Quarter 0.08 11/9/2009 5537.5 41.94 34.93 5502.63 34.85 0.39 5537.50 41.94 35.64 36.03 5501.78 8/13/2009 **3rd Quarter** RW-14 0.74 34.71 35.45 8/17/2009 5537.50 41.94 5502.64 35.55 1.10 4/2/2009 5537.5 41.94 36.65 5501.73 2nd Quarter 1.15 4/6/2009 5537.5 41.94 34.96 36.11 5502.31 2/19/2009 5537.5 41.94 35.90 37.55 5501.27 1.65 **1st Quarter** 1.48 2/23/2009 5537.5 41.94 34.92 36.40 5502.28 NPP 5501.03 NPP 5536.83 43.43 35.8 11/2/2009 4th Quarter 34.63 5502.20 NPP 11/9/2009 5536.83 43.43 NPP NPP 5499.92 NPP 5536.83 43.43 36.91 8/13/2009 **3rd Quarter** RW-15 NPP 8/17/2009 5536.83 NPP 34.61 5502.22 43.43 4/2/2009 5536.83 43.43 NPP 36.63 5500.20 NPP 2nd Quarter 4/6/2009 5536.83 43.43 NPP 33.84 5502.99 NPP 2/19/2009 5536.83 43.43 NPP 30.48 5506.35 NPP **1st Quarter** NPP 2/23/2009 5536.83 43.43 NPP 34.56 5502.27 NPP 11/2/2009 5535.45 41.48 NPP 34.75 5500.70 4th Quarter NPP 11/9/2009 5535.45 41.48 NPP 33.78 5501.67 8/13/2009 5535.45 41.48 NPP 38.42 5497.03 NPP **3rd Quarter** RW-16 NPP 8/17/2009 5535.45 41.48 NPP 33.77 5501.68 4/2/2009 5535.45 41.48 NPP 35.02 5500.43 NPP 2nd Quarter NPP 4/6/2009 5535.45 41.48 NPP 33.83 5501.62 5535.45 41.48 NPP 35.16 5500.29 NPP 2/19/2009 **1st Quarter** NPP 2/23/2009 5535.45 41.48 NPP 33.78 5501.67

NPP = No Product Present

Measuring Depth To Corrected Well Monitoring Phase Total Well Depth To Point Date Product Groundwater Hydrocarbon Event D Depth Water (DTW) Elevation (DTP) Elevation Thickness 5533.84 11/2/2009 41.89 NPP 34.35 5499.49 NPP 4th Quarter 11/9/2009 5533.84 32.87 41.89 NPP 5500.97 NPP 8/13/2009 5533.84 41.89 NPP 35.07 5498.77 NPP **3rd Quarter** RW-17 8/17/2009 5533.84 41.89 NPP 32.93 5500.91 NPP 4/2/2009 5533.84 41.89 NPP 34.18 5499.66 NPP 2nd Quarter 4/6/2009 5533.84 41.89 NPP 32.83 5501.01 NPP 2/19/2009 NPP 5533.84 41.89 NPP 34.55 5499.29 **1st Quarter** 2/23/2009 5533.84 41.89 NPP 32.66 5501.18 NPP 11/2/2009 5529.38 37.58 NPP NPP 35.15 5494.23 4th Quarter 37.58 11/9/2009 5529.38 34.04 5495.41 0.09 33.95 NPP NPP 8/13/2009 5529.38 37.58 35.08 5494.30 **3rd Quarter** RW-18 8/17/2009 5529.38 37.58 33.90 34.13 5495.43 0.23 NPP 5529.38 37.58 NPP 35.19 5494.19 4/2/2009 2nd Quarter 4/6/2009 5529.38 37.58 33.94 34.10 5495.41 0.16 NPP 2/19/2009 5529.38 37.58 NPP 35.06 5494.32 **1st Quarter** 2/23/2009 5529.38 37.58 34.05 34.10 5495.32 0.05 32.15 32.63 5498.26 0.48 11/2/2009 5530.51 36.64 4th Quarter 2.51 11/9/2009 5530.51 36.64 29.99 32.5 5500.02 36.64 0.03 5530.51 32.04 32.07 5498.46 8/13/2009 **RW-19 3rd Quarter** 30.13 0.05 8/17/2009 5530.51 36.64 30.08 5500.42 30.80 5499.79 0.10 4/2/2009 5530.51 36.64 30.70 2nd Quarter 4/6/2009 5530.51 36.64 29.92 30.05 5500.56 0.13 2/19/2009 5530.51 36.64 NPP 30.43 5500.08 NPP **1st Quarter** 2/23/2009 NPP 29.68 NPP 5530.51 36.64 5500.83 11/2/2009 5524.44 35.60 25.68 26.71 5498.55 1.03 4th Quarter 11/9/2009 5524.44 35.60 25.35 26.39 5498.88 1.04 8/13/2009 5524.44 35.60 25.52 26.10 5498.80 0.58 **RW-22 3rd Quarter** 0.63 8/17/2009 5524.44 35.60 25.32 25.95 5498.99 0.36 4/2/2009 5524.44 35.60 26.63 26.99 5497.74 2nd Quarter 4/6/2009 5524.44 35.60 25.25 25.55 5499.13 0.30 2/19/2009 5524.44 35.60 25.47 26.11 5498.84 0.64 **1st Quarter** 2/23/2009 5524.44 35.60 25.18 25.25 5499.25 0.07

NPP = No Product Present

NWP = No Water Present

Section 8.0 - Tab 1.0

Separate

Section 8.0 - Tab 1.0

		the second second	-			1	Section 8.0 - Ta	
Well ID	Monitoring Event	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbor Thickness
1 19	Ath Quarter	11/2/2009	5521.38	35.53	30.82	30.88	5490.55	0.06
	4th Quarter	11/9/2009	5521.38	35.53	NPP	23.7	5497.68	NPP
	2nd Quester	8/13/2009	5521.38	35.53	NPP	30.78	5490.60	NPP
RW-23	3rd Quarter	8/17/2009	5521.38	35.53	NPP	23.58	5497.80	NPP
N N	and Question	4/2/2009	5521.38	35.53	NPP	30.73	5490.65	NPP
-	2nd Quarter	4/6/2009	5521.38	35.53	NPP	23.59	5497.79	NPP
	1-10	2/19/2009	5521.38	35.53	24.02	24.62	5497.24	0.60
	1st Quarter	2/23/2009	5521.38	35.53	23.49	23.72	5497.84	0.23
	Ath Outstan	11/2/2009	5527.93	36.99	29.18	29.45	5498.70	0.27
	4th Quarter	11/9/2009	5527.93	36.99	28.91	29.16	5498.97	0.25
	2nd Outstan	8/13/2009	5527.93	36.99	29.06	29.20	5498.84	0.14
RW-28	3rd Quarter	8/17/2009	5527.93	36.99	28.83	29.02	5499.06	0.19
S	2 d Ourter	4/2/2009	5527.93	36.99	NPP	28.97	5498.96	NPP
-	2nd Quarter	4/6/2009	5527.93	36.99	28.94	28.97	5498.98	0.03
		2/19/2009	5527.93	36.99	28.96	28.97	5498.97	0.01
	1st Quarter	2/23/2009	5527.93	36.99	28.93	28.94	5499.00	0.01
	4th Quarter	11/2/2009	5527.48	32.02	NPP	26.84	5500.64	NPP
		11/9/2009	5527.48	32.02	NPP	26.86	5500.62	NPP
	and Ownstern	8/13/2009	5527.48	32.02	27.05	27.10	5500.42	0.05
W-42	3rd Quarter	8/17/2009	5527.48	32.02	26.95	27.01	5500.52	0.06
RV	and Question	4/2/2009	5527.48	32.02	NPP	26.93	5500.55	NPP
-	2nd Quarter	4/6/2009	5527.48	32.02	NPP	26.95	5500.53	NPP
	1st Quarter	2/19/2009	5527.48	32.02	NPP	26.71	5500.77	NPP
	ist quarter -	2/23/2009	5527.48	32.02	NPP	26.68	5500.80	NPP
	4th Quarter	11/2/2009	5515.74	24.03	21.75	21.83	5493.97	0.08
	4th Quarter -	11/9/2009	5515.74	24.03	21.74	21.85	5493.98	0.11
-	3rd Quarter	8/13/2009	5515.74	24.03	21.66	21.87	5494.04	0.21
-43	3rd Quarter	8/17/2009	5515.74	24.03	21.64	21.83	5494.06	0.19
RW-43	and Quester	4/2/2009	5515.74	24.03	NPP	21.67	5494.07	NPP
-	2nd Quarter	4/6/2009	5515.74	24.03	21.72	21.75	5494.01	0.03
	1et Ouerter	2/19/2009	5515.74	24.03	21.62	21.67	5494.11	0.05
	1st Quarter	2/23/2009	5515.74	24.03	21.56	21.65	5494.16	0.09

NPP = No Product Present

Lavell	Monitoring Event	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Section 8.0 - To Corrected Groundwater Elevation	Separate Phase Hydrocarbor Thickness
-	4th Quarter	11/2/2009	5506.62	12.26	NPP	12.02	5494.60	NPP
	4th Quarter	11/9/2009	5506.62	12.26	NPP	12.06	5494.56	NPP
0	3rd Quarter	8/13/2009	5506.62	12.26	NPP	11.86	5494.76	NPP
0+60	Stu Quarter	8/17/2009	5506.62	12.26	NPP	11.88	5494.74	NPP
OW 0		4/2/2009	5506.62	12.26	NPP	11.74	5494.88	NPP
0	2nd Quarter	4/6/2009	5506.62	12.26	NPP	11.77	5494.85	NPP
	1st Quarter 4th Quarter	2/19/2009	5506.62	12.26	NPP	11.66	5494.96	NPP
	1st Quarter -	2/23/2009	5506.62	12.26	NPP	11.67	5494.95	NPP
		11/2/2009	5508.03	14.36	14.03	14.35	5493.94	0.32
	4th Quarter	11/9/2009	5508.03	14.36	13.97	14.35	5493.98	0.38
0		8/13/2009	5508.03	14.36	13.85	14.45	5494.06	0.60
+50	3rd Quarter	8/17/2009	5508.03	14.36	13.85	14.45	5494.06	0.60
N 1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	4/2/2009	5508.03	14.36	13.5	14.00	5494.43	0.50
MO	2nd Quarter	4/6/2009	5508.03	14.36	13.52	14.03	5494.41	0.51
	1	2/19/2009	5508.03	14.36	13.45	13.68	5494.53	0.23
1	1st Quarter	2/23/2009	5508.03	14.36-	13.45	13.68	5494.53	0.23
-		11/2/2009	5507.31	15.06	13.55	13.59	5493.75	0.04
	4th Quarter	11/9/2009	5507.31	15.06	13.55	13.60	5493.75	0.05
5		8/13/2009	5507.31	15.06	NPP	13.37	5493.94	NPP
3+85	3rd Quarter	8/17/2009	5507.31	15.06	NPP	13.38	5493.93	NPP
>		4/2/2009	5507.31	15.06	NPP	13.04	5494.27	NPP
VO	2nd Quarter	4/6/2009	5507.31	15.06	NPP	13.07	5494.24	NPP
		2/19/2009	5507.31	15.06	NPP	12.92	5494.39	NPP
	1st Quarter	2/23/2009	5507.31	15.06	NPP	12.93	5494.38	NPP
		11/2/2009	5507.59	13.67	NPP	13.63	5493.96	NPP
	4th Quarter	11/9/2009	5507.59	13.67	NPP	13.65	5493.94	NPP
0	and Quester	8/13/2009	5507.59	13.67	NPP	13.50	5494.09	NPP
5+50	3rd Quarter	8/17/2009	5507.59	13.67	NPP	13.48	5494.11	NPP
MO	and Quest	4/2/2009	5507.59	13.67	NPP	13.38	5494.21	NPP
0	2nd Quarter	4/6/2009	5507.59	13.67	NPP	13.39	5494.20	NPP
	tet Ouerie	2/19/2009	5507.59	13.67	NPP	13.34	5494.25	NPP
1.1	1st Quarter	2/23/2009	5507.59	13.67	NPP	13.36	5494.23	NPP

VPP = No Product Present

NWP = No Water Present

Page 13 of 20

Quarterly Groundwater Elevation - 2009

(Pre and Post Recovery Well Operation)

			-	27 1-1-			Section 8.0 - Ta	
Well ID	Monitoring Event	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbo Thickness
	Ath Quarter	11/2/2009	5504.78	14.67	NPP	NWP		NPP
-	4th Quarter	11/9/2009	5504.78	14.67	NPP	NWP		NPP
0	3rd Quarter	8/13/2009	5504.78	14.67	NPP	NWP		NPP
6+70	Srd Quarter	8/17/2009	5504.78	14.67	NPP	NWP		NPP
MO	2nd Outstan	4/2/2009	5504.78	14.67	NPP	NWP	1	NPP
0	2nd Quarter	4/6/2009	5504.78	14.67	NPP	NWP		NPP
	1at Outertax	2/19/2009	5504.78	14.67	NPP	NWP		NPP
a britis	1st Quarter	2/23/2009	5504.78	14.67	NPP	NWP		NPP
	Ath Ownstan	11/2/2009	5506.53	15.99	NPP	NWP		NPP
	4th Quarter	11/9/2009	5506.53	15.99	NPP	NWP		NPP
0	2nd Outstan	8/13/2009	5506.53	15.99	NPP	NWP	1111	NPP
8+10	3rd Quarter	8/17/2009	5506.53	15.99	NPP	NWP	1.1.1	NPP
š		4/2/2009	5506.53	15.99	NPP	NWP		NPP
MO	2nd Quarter	4/6/2009	5506.53	15.99	NPP	NWP		NPP
	1 at Ourstan	2/19/2009	5506.53	15.99	NPP	NWP		NPP
	1st Quarter	2/23/2009	5506.53	15.99	NPP	NWP		NPP
	4th Quarter	11/2/2009	5506.7	16.59	12.42	12.46	5494.27	0.04
		11/9/2009	5506.7	16.59	12.44	12.46	5494.26	0.02
15	2rd Ouerter	8/13/2009	5506.70	16.59	NPP	12.38	5494.32	NPP
1+1	3rd Quarter	8/17/2009	5506.70	16.59	NPP	12.36	5494.34	NPP
Z	and Quarter	4/2/2009	5506.7	16.59	NPP	12.35	5494.35	NPP
NO	2nd Quarter	4/6/2009	5506.7	16.59	NPP	12.46	5494.24	NPP
	1st Quarter	2/19/2009	5506.7	16.59	NPP	12.43	5494.27	NPP
	ist quarter	2/23/2009	5506.7	16.59	NPP	12.47	5494.23	NPP
	4th Quarter	11/2/2009	5508.14	12.96	NPP	NWP		NPP
	4th Quarter	11/9/2009	5508.14	12.96	NPP	NWP		NPP
2	3rd Quarter	8/13/2009	5508.14	12.96	NPP	NWP		NPP
4+1	oru quarter -	8/17/2009	5508.14	12.96	NPP	NWP		NPP
Z	2nd Quarter	4/2/2009	5508.14	12.96	NPP	NWP		NPP
No	2nd Quarter	4/6/2009	5508.14	12.96	NPP	NWP		NPP
	1st Quarter	2/19/2009	5508.14	12.96	NPP	NWP		NPP
	1st Quarter	2/23/2009	5508.14	12.96	NPP	NWP		NPP

NPP = No Product Present

Quarterly Groundwater Elevation - 2009

(Pre and Post Recovery Well Operation)

		- NC - 5					Section 8.0 - Ta	
Well	Monitoring Event	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
×	4th Quarter	11/2/2009	5508.43	15.21	NPP	13.18	5495.25	NPP
	4th Quarter	11/9/2009	5508.43	15.21	NPP	13.17	5495.26	NPP
60	3rd Quarter	8/13/2009	5508.43	15.21	NPP	12.99	5495.44	NPP
6+60	Sru Quarter	8/17/2009	5508.43	15.21	NPP	12.98	5495.45	NPP
V 1	2nd Quarter	4/2/2009	5508.43	15.21	NPP	12.71	5495.72	NPP
MO	2nd Quarter	4/6/2009	5508.43	15.21	NPP	12.75	5495.68	NPP
	Ant Ownstern	2/19/2009	5508.43	15.21	NPP	12.68	5495.75	NPP
	1st Quarter	2/23/2009	5508.43	15.21	NPP	12.68	5495.75	NPP
	Ath Owneday	11/2/2009	5508.03	13.00	NPP	NWP	C. S. S. M.	NPP
	4th Quarter	11/9/2009	5508.03	13.00	NPP	NWP	and the	NPP
20	2nd Outerter	8/13/2009	5508.03	13.00	NPP	NWP	一般になって	NPP
9+50	3rd Quarter	8/17/2009	5508.03	13.00	NPP	NWP	- 50 m - 12	NPP
-		4/2/2009	5508.03	13.00	NPP	12.16	5495.87	· NPP
MO	2nd Quarter	4/6/2009	5508.03	13.00	NPP	12.26	5495.77	NPP
		2/19/2009	5508.03	13.00	NPP	11.94	5496.09	NPP
	1st Quarter	2/23/2009	5508.03	13.00	NPP	11.94	5496.09	NPP
		11/2/2009	5506.91	14.16	NPP	12.55	5494.36	NPP
	4th Quarter	11/9/2009	5506.91	14.16	NPP	12.53	5494.38	NPP
00		8/13/2009	5506.91	14.16	NPP	12.69	5494.22	NPP
22+00	3rd Quarter	8/17/2009	5506.91	14.16	NPP	12.70	5494.21	NPP
-		4/2/2009	5506.91	14.16	NPP	11.57	5495.34	NPP
NO	2nd Quarter	4/6/2009	5506.91	14.16	NPP	11.78	5495.13	NPP
	1at Questas	2/19/2009	5506.91	14.16	NPP	11.23	5495.68	NPP
	1st Quarter	2/23/2009	5506.91	14.16	NPP	11.26	5495.65	NPP
	Ath Ouerter	11/2/2009	5514.12	18.34	NPP	16.24	5497.88	NPP
	4th Quarter	11/9/2009	5514.12	18.34	NPP	16.25	5497.87	NPP
10	3rd Quarter	8/13/2009	5514.12	18.34	NPP	16.34	5497.78	NPP
23+1	Siu Quarter -	8/17/2009	5514.12	18.34	NPP	16.33	5497.79	NPP
N N	and Questor	4/2/2009	5514.12	18.34	NPP	16.20	5497.92	NPP
MO	2nd Quarter	4/6/2009	5514.12	18.34	NPP	16.25	5497.87	NPP
	1et Quarter	2/19/2009	5514.12	18.34	NPP	16.20	5497.92	NPP
	1st Quarter	2/23/2009	5514.12	18.34	NPP	16.25	5497.87	NPP

NPP = No Product Present

NWP = No Water Present

Page 15 of 20

Well ID	Monitoring Event	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
10	4th Quarter	11/2/2009	5515.18	18.01	NPP	17.09	5498.09	NPP
1	4th Quarter -	11/9/2009	5515.18	18.01	NPP	17.09	5498.09	NPP
+90	3rd Quarter	8/13/2009	5515.18	18.01	NPP	17.11	5498.07	NPP
23+	Sid Quarter -	8/17/2009	5515.18	18.01	NPP	17.12	5498.06	NPP
	2nd Quarter	4/2/2009	5515.18	18.01	NPP	17.05	5498.13	NPP
MO	2nd Quarter	4/6/2009	5515.18	18.01	NPP	17.11	5498.07	NPP
	1st Quarter	2/19/2009	5515.18	18.01	NPP	17.11	5498.07	NPP
4		2/23/2009	5515.18	18.01	NPP	17.08	5498.10	NPP
	4th Quarter	11/2/2009	5509.00	13.98	NPP	10.73	5498.27	NPP
	4th Quarter	11/9/2009	5509.00	13.98	NPP	10.68	5498.32	NPP
20	3rd Quarter	8/13/2009	5509.00	13.98	NPP	10.71	5498.29	NPP
25+7	Sid Quarter	8/17/2009	5509.00	13.98	NPP	10.72	5498.28	NPP
	and Quarter	4/2/2009	5509.00	13.98	NPP	10.70	5498.30	NPP
MO	2nd Quarter	4/6/2009	5509.00	13.98	NPP	10.73	5498.27	NPP
	1et Quarter	2/19/2009	5509.00	13.98	NPP	10.74	5498.26	NPP
11	1st Quarter	2/23/2009	5509.00	13.98	NPP	10.74	5498.26	NPP

NPP = No Product Present

90

Measuring Depth To Corrected Phase Well Monitoring Total Well Depth To Point Groundwater Date Product Hydrocarbon Event Depth Water (DTW) Elevation (DTP) Elevation Thickness 11/2/2009 5506.68 14.09 NPP NPP 8.57 5498.11 4th Quarter 11/9/2009 5506.68 14.09 NPP 8.45 5498.23 NPP 8/13/2009 5506.68 14.09 NPP 8.45 5498.23 NPP **3rd Quarter** 8/17/2009 5506.68 14.09 NPP 8.39 5498.29 NPP 4/2/2009 5506 68 NPP NPP 14.09 8.56 5498.12 2nd Quarter 4/6/2009 5506.68 14.09 NPP 8.53 5498.15 NPP 2/19/2009 5506.68 14.09 NPP 5498.19 NPP 8.49 **1st Quarter** 2/23/2009 5506.68 14.09 NPP 8.42 5498.26 NPP 11/2/2009 5505.13 13.74 NPP 7.00 5498.13 NPP 4th Quarter 11/9/2009 5505.13 13.74 NPP 6.85 5498.28 NPP 8/13/2009 5505.13 13.74 NPP 6.96 5498.17 NPP 1+50 **3rd Quarter** 8/17/2009 5505.13 13.74 NPP 6.85 5498.28 NPP 4/2/2009 5505.13 13.74 NPP 6.95 5498.18 NPP 2nd Quarter 4/6/2009 5505.13 13.74 NPP 6.83 5498.30 NPP 2/19/2009 5505.13 13.74 NPP 6.91 5498.22 NPP **1st Quarter** NPP 2/23/2009 5505.13 13.74 NPP 6.73 5498.40 11/2/2009 5503.87 13.11 NPP 5.74 5498.13 NPP 4th Quarter 11/9/2009 5503.87 13.11 NPP 5.69 5498.18 NPP NPP 8/13/2009 5503.87 13.11 NPP 5.73 5498.14 3+85 **3rd Quarter** NPP 8/17/2009 5503.87 13.11 NPP 5.67 5498.20 CW 4/2/2009 5503.87 13.11 NPP 5.61 5498.26 NPP 2nd Quarter NPP 4/6/2009 5503.87 13.11 NPP 5.55 5498.32 NPP 2/19/2009 5503.87 13.11 NPP 6.58 5497.29 **1st Quarter** NPP NPP 2/23/2009 5503.87 13.11 5.48 5498.39 5503.76 NPP NPP 11/2/2009 12.27 6.43 5497.33 4th Quarter 11/9/2009 12.27 NPP 5503.76 NPP 6.42 5497.34 5503.76 NPP NPP 8/13/2009 12.27 6.39 5497.37 5+50 **3rd Quarter** 8/17/2009 5503.76 12.27 NPP 6.37 5497.39 NPP SO 4/2/2009 5503.76 12.27 NPP 6.39 5497.37 NPP 2nd Quarter 12.27 4/6/2009 5503.76 NPP 6.39 5497.37 NPP 2/19/2009 5503.76 12.27 NPP 6.38 5497.38 NPP 1st Quarter 2/23/2009 5503.76 12.27 NPP 6.36 5497.40 NPP

PP = No Product Present

CW 0+60

SV

NWP = No Water Present

Page 17 of 20

Section 8.0 - Tab 1.0

Separate

Section 8.0 - Tab 1.0

			1	1		1	Section 8.0 - T	ab 1.0 Separate
Well ID	Monitoring Event	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Phase Hydrocarbo Thickness
al.	Ath Questan	11/2/2009	5503.84	11.45	NPP	6.76	5497.08	NPP
	4th Quarter	11/9/2009	5503.84	11.45	NPP	6.77	5497.07	NPP
0	3rd Quarter	8/13/2009	5503.84	11.45	NPP	6.70	5497.14	NPP
6+70	Sid Quarter	8/17/2009	5503.84	11.45	NPP	6.71	5497.13	NPP
CW	and Quarter	4/2/2009	5503.84	11.45	NPP	6.65	5497.19	NPP
U	2nd Quarter	4/6/2009	5503.84	11.45	NPP	6.67	5497.17	NPP
	1at Outertan	2/19/2009	5503.84	11.45	NPP	6.66	5497.18	NPP
	1st Quarter	2/23/2009	5503.84	11.45	NPP	6.66	5497.18	NPP
	Ath Outstan	11/2/2009	5504.02	11.63	NPP	7.64	5496.38	NPP
	4th Quarter	11/9/2009	5504.02	11.63	NPP	7.64	5496.38	NPP
0	2nd Outerter	8/13/2009	5504.02	11.63	NPP	7.47	5496.55	NPP
8+10	3rd Quarter	8/17/2009	5504.02	11.63	NPP	7.47	5496.55	NPP
N	2nd Quarter	4/2/2009	5504.02	11.63	NPP	7.46	5496.56	NPP
CW		4/6/2009	5504.02	11.63	NPP	7.53	5496.49	NPP
	1st Quarter	2/19/2009	5504.02	11.63	NPP	7.55	5496.47	NPP
		2/23/2009	5504.02	11.63	NPP	7.52	5496.50	NPP
	4th Quarter	11/2/2009	5503.8	12.6	NPP	7.77	5496.03	NPP
		11/9/2009	5503.8	12.6	NPP	7.76	5496.04	NPP
2	3rd Quarter	8/13/2009	5503.80	12.6	NPP	7.58	5496.22	NPP
8+45		8/17/2009	5503.80	12.6	NPP	7.62	5496.18	NPP
>	2nd Quarter	4/2/2009	5503.8	12.60	7.59	7.60	5496.21	0.01
CV		4/6/2009	5503.8	12.60	7.70	7.71	5496.10	0.01
	1-10	2/19/2009	5503.8	12.60	7.70	7.72	5496.10	0.02
	1st Quarter	2/23/2009	5503.8	12.60	7.67	7.68	5496.13	0.01
	4th Quarter	11/2/2009	5503.95	12.27	NPP	5.98	5497.97	NPP
-		11/9/2009	5503.95	12.27	NPP	6.01	5497.94	NPP
15	3rd Quarter	8/13/2009	5503.95	12.27	NPP	5.97	5497.98	NPP
11+1		8/17/2009	5503.95	12.27	NPP	6.00	5497.95	NPP
V 1	2nd Quarter -	4/2/2009	5503.95	12.27	NPP	5.90	5498.05	NPP
CW		4/6/2009	5503.95	12.27	NPP	5.94	5498.01	NPP
	1et Quarter	2/19/2009	5503.95	12.27	NPP	5.94	5498.01	NPP
1.5	1st Quarter	2/23/2009	5503.95	12.27	NPP	5.86	5498.09	NPP

NPP = No Product Present

NWP = No Water Present

Page 18 of 20

Section 8.0 - Tab 1.0 Separate Measuring Depth To Corrected Well Phase Monitoring Depth To Total Well Date Point Product Groundwater Hydrocarbon D Event Depth Water (DTW) (DTP) Elevation Elevation Thickness 11/2/2009 5504.39 13.05 NPP NPP 6.54 5497.85 4th Quarter 11/9/2009 5504.39 13.05 NPP 6.53 5497.86 NPP 14+10 8/13/2009 5504.39 13.05 NPP NPP 6.43 5497.96 **3rd Quarter** 8/17/2009 5504.39 NPP NPP 13.05 6.43 5497.96 4/2/2009 5504.39 NPP NPP 13.05 6.52 5497.87 CW 2nd Quarter 4/6/2009 NPP 5504.39 13.05 NPP 6.58 5497.81 5504.39 NPP 2/19/2009 13.05 NPP 6.56 5497.83 **1st Quarter** 2/23/2009 5504.39 13.05 NPP NPP 6.46 5497.93 NPP 11/2/2009 5504.32 12.86 NPP 6.35 5497.97 4th Quarter 11/9/2009 5504.32 12.86 NPP 6.32 5498.00 NPP 16+60 8/13/2009 5504.32 12.86 NPP 6.28 5498.04 NPP **3rd Quarter** 8/17/2009 5504.32 NPP 6.26 5498.06 NPP 12.86 4/2/2009 5504.32 12.86 NPP 6.33 5497.99 NPP NO 2nd Quarter 4/6/2009 5504.32 NPP 6.35 NPP 12.86 5497.97 2/19/2009 5504.32 12.86 NPP 6.34 5497.98 NPP **1st Quarter** 2/23/2009 5504.32 NPP NPP 12.86 6.28 5498.04 5504.52 NPP NPP 11/2/2009 9.99 6.47 5498.05 4th Quarter 5504.52 NPP 5498.08 NPP 11/9/2009 9.99 6.44 19+50 8/13/2009 5504.52 9.99 NPP 6.20 5498.32 NPP **3rd Quarter** 8/17/2009 5504.52 9.99 NPP 6.02 5498.50 NPP S 4/2/2009 5504.52 9.99 NPP 6.3 5498.22 NPP 2nd Quarter 4/6/2009 5504.52 9.99 NPP 6.3 5498.22 NPP NPP 2/19/2009 5504.52 9.99 NPP 6.25 5498.27 **1st Quarter** 2/23/2009 5504.52 9.99 NPP 6.17 5498.35 NPP 11/2/2009 5508.04 12.34 NPP 8.96 5499.08 NPP 4th Quarter 11/9/2009 5508.04 12.34 NPP 8.96 5499.08 NPP 22+00 8/13/2009 5508.04 12.34 NPP 8.93 5499.11 NPP **3rd Quarter** 8/17/2009 5508.04 12.34 NPP 8.93 5499.11 NPP 4/2/2009 5508.04 12.34 NPP 8.97 5499.07 NPP CW 2nd Quarter 4/6/2009 5508.04 12.34 NPP 8.99 5499.05 NPP 2/19/2009 5508.04 12.34 NPP NPP 8.97 5499.07 **1st Quarter** 2/23/2009 NPP 5508.04 12.34 NPP 8.97 5499.07

NPP = No Product Present

NWP = No Water Present

Page 19 of 20

_		Contraction of the second	1.				Section 8.0 - Tab 1.0	
Well ID	Monitoring Event	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
3.4	Ath Outputon	11/2/2009	5510.04	14.65	NPP	10.56	5499.48	NPP
	4th Quarter	11/9/2009	5510.04	14.65	NPP	10.58	5499.46	NPP
10	3rd Quarter	8/13/2009	5510.04	14.65	NPP	10.56	5499.48	NPP
23+10	Sid Quarter	8/17/2009	5510.04	14.65	NPP	10.54	5499.50	NPP
N	2nd Quarter	4/2/2009	5510.04	14.65	NPP	10.63	5499.41	NPP
CW	2nd Quarter	4/6/2009	5510.04	14.65	NPP	10.65	5499.39	NPP
	1st Quarter	2/19/2009	5510.04	14.65	NPP	10.65	5499.39	NPP
	ist Quarter	2/23/2009	5510.04	14.65	NPP	10.64	5499.40	NPP
E.	4th Quarter	11/2/2009	5507.32	11.72	NPP	8.04	5499.28	NPP
		11/9/2009	5507.32	11.72	NPP	8.05	5499.27	NPP
60	3rd Quarter	8/13/2009	5507.32	11.72	NPP	7.99	5499.33	NPP
23+90		8/17/2009	5507.32	11.72	NPP	7.98	5499.34	NPP
	2nd Quarter	4/2/2009	5507.32	11.72	NPP	8.11	5499.21	NPP
CW		4/6/2009	5507.32	11.72	NPP	8.12	5499.20	NPP
	1st Quarter	2/19/2009	5507.32	11.72	NPP	8.12	5499.20	NPP
		2/23/2009	5507.32	11.72	NPP	8.12	5499.20	NPP
	4th Quarter	11/2/2009	5505.9	12.25	NPP	7.1	5498.80	NPP
		11/9/2009	5505.9	12.25	NPP	7.11	5498.79	NPP
92	3rd Quarter	8/13/2009	5505.90	12.25	NPP	7.10	5498.80	NPP
CW 25+95		8/17/2009	5505.90	12.25	NPP	7.09	5498.81	NPP
	2nd Quarter	4/2/2009	5505.9	12.25	NPP	7.15	5498.75	NPP
		4/6/2009	5505.9	12.25	NPP	7.14	5498.76	NPP
	1st Quarter	2/19/2009	5505.9	12.25	NPP	7.16	5498.74	NPP
2. 4	ist quarter	2/23/2009	5505.9	12.25	NPP	7.16	5498.74	NPP

NPP = No Product Present

Sump Well Fluids Monitoring Jan. 2009

10000		2 Faller Barry	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	A starting	Section 8.0 - Tab 2.0			
Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness	
SW1- 0206	1/12/2009	5508.27	53.08	NPP ·	52.77	5455.50	NPP	
SV 02	1/26/2009	5508.27	53.08	NPP	52.77	5455.50	NPP	
SW2- 0206	1/12/2009	5507.75	27.69	NPP	27.18	5480.57	NPP	
SV 02	1/26/2009	5507.75	27.69	NPP	27.15	5480.60	NPP	
SW3- 0206	1/12/2009	5505.29	52.56	NPP	26.07	5479.22	NPP	
SV 02	1/26/2009	5505.29	52.56	NPP	26.04	5479.25	NPP	
SW4- 0206	1/12/2009	5504.45	42.34	NPP	32.92	5471.53	NPP	
SV 02	1/26/2009	5504.45	42.34	NPP	32.85	5471.60	NPP	
SW5- 0206	1/12/2009	5514.34	52.24	33.88	34.25	5480.39	0.37	
SV 02	1/26/2009	5514.34	52.24	33.65	34.07	5480.61	0.42	
SW6- 0206	1/12/2009	5519.72	47.41	NPP	40.78	5478.94	NPP	
SM 02	1/26/2009	5519.72	47.41	NPP	40.95	5478.77	NPP	
-11-	1/12/2009	5517.63	32.95	NPP	17.55	5500.08	NPP	
SW7- 0206	1/26/2009	5517.63	32.95	NPP	17.18	5500.45	NPP	

NPP = No Product Present NWP = No Water Present

Sump Well	Fluids	Monitoring	Feb. 2009
-----------	--------	------------	-----------

	and the second se	and the second			Section 8.0 - Tab 2.0			
Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbor Thickness	
SW1- 0206	2/9/2009	5508.27	53.08	NPP	52.77	5455.50	NPP	
SV 02	2/23/2009	5508.27	53.08	NPP	52.78	5455.49	NPP	
SW2- 0206	2/9/2009	5507.75	27.69	NPP	27.14	5480.61	NPP	
SV 02	2/23/2009	5507.75	27.69	NPP	27.15	5480.60	NPP	
SW3- 0206	2/9/2009	5505.29	52.56	NPP	26.09	5479.20	NPP	
SV 02	2/23/2009	5505.29	52.56	NPP	26.11	5479.18	NPP	
SW4- 0206	2/9/2009	5504.45	42.34	NPP	32.82	5471.63	NPP	
SN 02	2/23/2009	5504.45	42.34	NPP	32.83	5471.62	NPP	
/5- 06	2/9/2009	5514.34	52.24	33.61	33.97	5480.66	0.36	
SW5- 0206	2/23/2009	5514.34	52.24	33.71	34.09	5480.55	0.38	
-9/	2/9/2009	5519.72	47.41	NPP	40.99	5478.73	NPP	
SW6- 0206	2/23/2009	5519.72	47.41	NPP	41.04	5478.68	NPP	
-71	2/9/2009	5517.63	32.95	NPP	17.33	5500.30	NPP	
SW7- 0206	2/23/2009	5517.63	32.95	NPP	17.95	5499.68	NPP	

NPP = No Product Present NWP = No Water Present

Page 2 of 12

Sump Well Fluids Monitoring March 2009

	and strength		Charles Barris	Section 8.0 - Tab 2.0					
Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness		
SW1- 0206	3/9/2009	5508.27	53.08	NPP	52.78	5455.49	NPP		
SM 02	3/23/2009	5508.27	53.08	NPP	52.77	5455.50	NPP		
SW2- 0206	3/9/2009	5507.75	27.69	NPP	27.16	5480.59	NPP		
SV 02	3/23/2009	5507.75	27.69	NPP	27.18	5480.57	NPP		
13-	3/9/2009	5505.29	52.56	NPP	26.21	5479.08	NPP		
SW3- 0206	3/23/2009	5505.29	52.56	NPP	26.21	5479.08	NPP		
SW4- 0206	3/9/2009	5504.45	42.34	NPP	32.74	5471.71	NPP		
SW 02	3/23/2009	5504.45	42.34	NPP	32.72	5471.73	NPP		
/5- 06	3/9/2009	5514.34	52.24	33.61	33.97	5480.66	0.36		
SW5- 0206	3/23/2009	5514.34	52.24	33.68	33.78	5480.64	0.10		
-9/	3/9/2009	5519.72	47.41	NPP	41.13	5478.59	NPP		
SW6- 0206	3/23/2009	5519.72	47.41	NPP	41.29	5478.43	NPP		
-71	3/9/2009	5517.63	32.95	NPP	17.73	5499.90	NPP		
SW7- 0206	3/23/2009	5517.63	32.95	NPP	17.83	5499.80	NPP.		

NPP = No Product Present NWP = No Water Present

Page 3 of 12

Sump Well Fluids Monitoring April 2009

			and the second	and the second second	Section 8.0 - Tab 2.0				
Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness		
SW1- 0206	4/6/2009	5508.27	53.08	NPP	52.77	5455.50	NPP		
SV 02	4/20/2009	5508.27	53.08	NPP	52.78	5455.49	NPP		
SW2- 0206	4/6/2009	5507.75	27.69	NPP	27.23	5480.52	NPP		
SV 02	4/20/2009	5507.75	27.69	NPP	27.25	5480.50	NPP		
SW3- 0206	4/6/2009	5505.29	52.56	NPP	26.39	5478.90	NPP		
SV 02	4/20/2009	5505.29	52.56	NPP	26.37	5478.92	NPP		
SW4- 0206	4/6/2009	5504.45	42.34	NPP	32.72	5471.73	NPP		
SV 02	4/20/2009	5504.45	42.34	NPP	32.73	5471.72	NPP		
SW5- 0206	4/6/2009	5514.34	52.24	35.57	35.58	5478.77	0.01		
SV 02	4/20/2009	5514.35	52.24	NPP	35.67	5478.68	NPP		
SW6- 0206	4/6/2009	5519.72	47.41	NPP	41.32	5478.40	NPP		
SM 02	4/20/2009	5519.72	47.41	NPP	41.53	5478.19	NPP		
-77	4/6/2009	5517.63	32.95	NPP	18.16	5499.47	NPP		
SW7- 0206	4/20/2009	5517.63	32.95	NPP	18.2	5499.43	NPP		

NPP = No Product Present NWP = No Water Present

Sump Well Fluids Monitoring May 2009

CORE AND				A.S. 1. 1	Se	ection 8.0 - Tab	2.0
Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
SW1- 0206	5/7/2009	5508.27	53.08	NPP	52.77	5455.50	NPP
SV 02	5/18/2009	5508.27	53.08	NPP	52.76	5455.51	NPP
SW2- 0206	5/5/2008	5507.75	27.69	NPP	27.28	5480.47	NPP
SV 02	5/19/2008	5507.75	27.69	NPP	27.28	5480.47	NPP
SW3- 0206	5/7/2009	5505.29	52.56	NPP	26.33	5478.96	NPP
SV 02	5/18/2009	5505.29	52.56	NPP	26.36	5478.93	NPP
SW4- 0206	5/7/2009	5504.45	42.34	NPP	32.74	5471.71	NPP
SV 02	5/18/2009	5504.45	42.34	NPP	32.78	5471.67	NPP
SW5- 0206	5/7/2009	5514.34	52.24	NPP	35.78	5478.56	NPP
SV 02	5/18/2009	5514.34	52.24	NPP	35.85	5478.49	NPP
SW6- 0206	5/7/2009	5519.72	47.41	NPP	41.88	5477.84	NPP
SV 02	5/18/2009	5519.72	47.41	NPP	42.08	5477.64	NPP
SW7- 0206	5/7/2009	5517.63	32.95	NPP	18.03	5499.60	NPP
SW7- 0206	5/18/2009	5517.63	32.95	NPP	18.16	5499.47	NPP

NPP = No Product Present NWP = No Water Present

Page 5 of 12

Sump Well Fluids Monitoring June 2009

	ALC: NO. 1	1 and the second second		Standard Street	Section 8.0 - Tab 2.0			
Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbor Thickness	
' (0	6/1/2009	5508.27	53.08	NPP	52.77	5455.50	NPP	
SW1- 0206	6/18/2009	5508.27	53.08	NPP	52.76	5455.51	NPP	
0,0	6/29/2009	5508.27	53.08	NPP	52.77	5455.50	NPP	
	6/1/2009	5507.75	27.69	NPP	27.29	5480.46	NPP	
SW2- 0206	6/18/2009	5507.75	27.69	NPP	27.31	5480.44	NPP	
00	6/29/2009	5507.75	27.69	NPP	27.32	5480.43	NPP	
1 10	6/1/2009	5505.29	52.56	NPP	26.26	5479.03	NPP	
SW3- 0206	6/18/2009	5505.29	52.56	NPP	26.25	5479.04	NPP	
00	6/29/2009	5505.29	52.56	NPP	26.21	5479.08	NPP	
4 00	6/1/2009	5504.45	42.34	NPP	32.81	5471.64	NPP	
SW4- 0206	6/18/2009	5504.45	42.34	NPP	32.82	5471.63	NPP	
0,0	6/29/2009	5504.45	42.34	NPP	32.88	5471.57	NPP	
	6/1/2009	5514.34	52.24	NPP	35.86	5478.48	NPP	
SW5- 0206	6/18/2009	5514.34	52.24	NPP	35.94	5478.40	NPP	
0,0	6/29/2009	5514.34	52.24	NPP	36.12	5478.22	NPP	
1 10	6/1/2009	5519.72	47.41	42.33	42.35	5477.39	0.02	
SW6- 0206	6/18/2009	5519.72	47.41	42.50	42.57	5477.21	0.07	
00	6/29/2009	5519.72	47.41	42.83	42.85	5476.89	0.02	
.' (0	6/1/2009	5517.63	32.95	NPP	18.05	5499.58	NPP	
SW7- 0206	6/18/2009	5517.63	32.95	NPP	17.94	5499.69	NPP	
0,0	6/29/2009	5517.63	32.95	NPP	17.92	5499.71	NPP	

NPP = No Product Present NWP = No Water Present

Page 6 of 12

20

Sump Well Fluids Monitoring July 2009

					Se	Section 8.0 - Tab 2.0		
Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness	
SW1- 0206	7/14/2009	5508.27	53.08	NPP	52.77	5455.50	NPP	
SV 02	7/27/2009	5508.27	53.08	NPP	52.77	5455.50	NPP	
SW2- 0206	7/14/2009	5507.75	27.69	NPP	27.30	5480.45	NPP	
SV 02	7/27/2009	5507.75	27.69	NPP	27.29	5480.46	NPP	
/3-	7/14/2009	5505.29	52.56	NPP	26.33	5478.96	NPP	
SW3- 0206	7/27/2009	5505.29	52.56	NPP	26.22	5479.07	NPP	
14-06	7/14/2009	5504.45	42.34	NPP	32.84	5471.61	NPP	
SW4- 0206	7/27/2009	5504.45	42.34	NPP	32.83	5471.62	NPP	
/5- 06	7/14/2009	5514.34	52.24	NPP	36.08	5478.26	NPP	
SW5- 0206	7/27/2009	5514.34	52.24	NPP	35.99	5478.35	NPP	
-9/	7/14/2009	5519.72	47.41	42.90	42.91	5476.82	0.01	
SW6- 0206	7/27/2009	5519.72	47.41	42.94	42.95	5476.78	0.01	
-71	7/14/2009	5517.63	32.95	NPP	17.96	5499.67	NPP	
SW7- 0206	7/27/2009	5517.63	32.95	NPP	18.1	5499.53	NPP	

NPP = No Product Present NWP = No Water Present

Sump Well Fluids Monitoring Aug. 2009

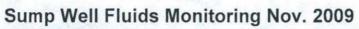
		Section 8.0 - Tab 2.									
Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness				
11-06	8/13/2009	5508.27	53.08	NPP	52.77	5455.50	NPP				
SW1- 0206	8/31/2009	5508.27	53.08	NPP	52.78	5455.49	NPP				
SW2- 0206	8/13/2009	5507.75	27.69	NPP	27.32	5480.43	NPP				
SV 02	8/31/2009	5507.75	27.69	NPP	27.32	5480.43	NPP				
/3-	8/13/2009	5505.29	52.56	NPP	26.15	5479.14	NPP				
SW3- 0206	8/31/2009	5505.29	52.56	NPP	26.98	5478.31	NPP				
SW4- 0206	8/13/2009	5504.45	42.34	NPP	32.95	5471.50	NPP				
SV 02	8/31/2009	5504.45	42.34	NPP	33.00	5471.45	NPP				
SW5- 0206	8/13/2009	5514.34	52.24	NPP	36.18	5478.16	NPP				
SW 02	8/31/2009	5514.34	52.24	NPP	36.10	5478.24	NPP				
SW6- 0206	8/13/2009	5519.72	47.41	43.03	43.04	5476.69	0.01				
SM 02	8/31/2009	5519.72	47.41	43.13	43.14	5476.59	0.01				
SW7- 0206	8/13/2009	5517.63	32.95	NPP	17.8	5499.83	NPP				
SW7.0206	8/31/2009	5517.63	32.95	NPP	17.4	5500.23	NPP				

Section 8.0 - Tab 2.0

NPP = No Product Present NWP = No Water Present

Sump Well Fluids Monitoring Sept. 2009

	A State				Se	ection 8.0 - Tab	Section 8.0 - Tab 2.0				
Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbor Thickness				
SW1- 0206	9/9/2009	5508.27	53.08	NPP	52.78	5455.49	NPP				
SV 02	9/21/2009	5508.27	53.08	NPP	52.78	5455.49	NPP				
12-06	9/9/2009	5507.75	27.69	NPP	27.27	5480.48	NPP				
SW2- 0206	9/21/2009	5507.75	27.69	NPP	27.24	5480.51	NPP				
SW3- 0206	9/9/2009	5505.29	52.56	NPP	25.89	5479.40	NPP				
SV 02	9/21/2009	5505.29	52.56	NPP	25.81	5479.48	NPP				
SW4- 0206	9/9/2009	5504.45	42.34	NPP	33.01	5471.44	NPP				
SV 02	9/21/2009	5504.45	42.34	NPP	33.01	5471.44	NPP				
SW5- 0206	9/9/2009	5514.34	52.24	NPP	36.31	5478.03	NPP				
SW5- 0206	9/21/2009	5514.34	52.24	NPP	36.22	5478.12	NPP				
-9/	9/9/2009	5519.72	47.41	43.10	43.12	5476.62	0.02				
SW6- 0206	9/21/2009	5519.72	47.41	NPP	43.05	5476.67	NPP				
-71	9/9/2009	5517.63	32.95	NPP	17.39	5500.24	NPP				
SW7- 0206	9/21/2009	5517.63	32.95	NPP	17.23	5500.40	NPP				


NPP = No Product Present NWP = No Water Present

Page 9 of 12

Sump Well Fluids Monitoring Oct. 2009

					Se	Section 8.0 - Tab 2.0				
Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbor Thickness			
SW1- 0206	10/5/2009	5508.27	53.08	NPP	52.78	5455.49	NPP			
SW 02	10/19/2009	5508.27	53.08	NPP	52.77	5455.50	NPP			
12-06	10/5/2009	5507.75	27.69	NPP	27.13	5480.62	NPP			
SW2- 0206	10/19/2009	5507.75	27.69	NPP	26.07	5481.68	NPP			
SW3- 0206	10/5/2009	5505.29	52.56	NPP	25.67	5479.62	NPP			
SV 02	10/19/2009	5505.29	52.56	NPP	25.69	5479.60	NPP			
14-06	10/5/2009	5504.45	42.34	NPP	32.87	5471.58	NPP			
SW4- 0206	10/19/2009	5504.45	42.34	NPP	32.87	5471.58	NPP			
15-16	10/5/2009	5514.34	52.24	NPP	34.33	5480.01	NPP			
SW5- 0206	10/19/2009	5514.34	52.24	NPP	34.35	5479.99	NPP			
-9/	10/5/2009	5519.72	47.41	42.84	42.85	5476.88	0.01			
SW6- 0206	10/19/2009	5519.72	47.41	NPP	42.59	5477.13	NPP			
-71	10/5/2009	5517.63	32.95	NPP	16.76	5500.87	NPP			
SW7- 0206	10/19/2009	5517.63	32.95	NPP	17.2	5500.43	NPP			

NPP = No Product Present NWP = No Water Present

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbor Thickness
1 10	11/2/2009	5508.27	53.08	NPP	52.77	5455.50	NPP
SW1- 0206	11/16/2009	5508.27	53.08	NPP	52.78	5455.49	NPP
0,0	11/30/2009	5508.27	53.08	NPP	52.78	5455.49	NPP
	11/2/2009	5507.75	27.69	NPP	26.97	5480.78	NPP
SW2- 0206	11/16/2009	5507.75	27.69	NPP	26.85	5480.90	NPP
00	11/30/2009	5507.75	27.69	NPP	26.80	5480.95	NPP
! <i>(</i> 0	11/2/2009	5505.29	52.56	NPP	25.75	5479.54	NPP
SW3- 0206	11/16/2009	5505.29	52.56	NPP	25.71	5479.58	NPP
00	11/30/2009	5505.29	52.56	NPP	25.72	5479.57	NPP
1 10	11/2/2009	5504.45	42.34	NPP	32.82	5471.63	NPP
SW4- 0206	11/16/2009	5504.45	42.34	NPP.	32.72	5471.73	NPP
00	11/30/2009	5504.45	42.34	NPP	32.69	5471.76	NPP
	11/2/2009	5514.34	52.24	NPP	34.43	5479.91	NPP
SW5- 0206	11/16/2009	5514.34	52.24	NPP	34.35	5479.99	NPP
00	11/30/2009	5514.34	52.24	NPP	34.30	5480.04	NPP
1 10	11/2/2009	5519.72	47.41	NPP	42.23	5477.49	NPP
SW6- 0206	11/16/2009	5519.72	47.41	NPP	41.88	5477.84	NPP
0.0	11/30/2009	5519.72	47.41	NPP	41.77	5477.95	NPP
	11/2/2009	5517.63	32.95	NPP	17.30	5500.33	NPP
SW7- 0206	11/16/2009	5517.63	32.95	NPP	17.29	5500.34	NPP
00	11/30/2009	5517.63	32.95	NPP	17.29	5500.34	NPP

NPP = No Product Present NWP = No Water Present

Page 11 of 12

Sump Well Fluids Monitoring Dec. 2009

Section 8.0 - Tab 2.0 Separate Measuring Depth To Depth To Corrected **Total Well** Phase Well ID Date Point Product Water Groundwater Depth Hydrocarbon Elevation (DTP) (DTW) Elevation Thickness SW1-0206 12/14/2009 5508.27 53.08 NPP NPP 52.78 5455.49 5508.27 NPP 52.75 12/28/2009 5455.52 53.08 NPP SW2-0206 5507.75 27.69 NPP 12/14/2009 26.75 5481.00 NPP 12/28/2009 5507.75 NPP 26.68 27.69 5481.07 NPP SW3-0206 12/14/2009 5505.29 NPP 52.56 25.92 5479.37 NPP 5505.29 NPP 12/28/2009 25.96 5479.33 52.56 NPP SW4-0206 12/14/2009 32.63 5471.82 5504.45 42.34 NPP NPP 12/28/2009 42.34 32.59 5471.86 5504.45 NPP NPP SW5-0206 12/14/2009 5514.34 52.24 NPP 34.41 5479.93 NPP 52.24 12/28/2009 5514.34 34.44 34.45 5479.90 0.01 SW6-0206 NPP 12/14/2009 5519.72 41.65 5478.07 NPP 47.41 47.41 NPP 12/28/2009 5519.72 41.32 5478.40 NPP SW7-0206 12/14/2009 5517.63 NPP 32.95 17.32 5500.31 NPP 12/28/2009 5517.63 32.95 NPP 17.35 5500.28 NPP

NPP = No Product Present NWP = No Water Present

	Date	Depth to H2O (ft)	Depth to Product (ft)	Well Depth (ft)	TDS (mg/L)	E.C. (umhos/cm)	рН	TEMP. (Farenheit)	on 8.0 - Tal D.O. (mg/L)	ORP (mV)
	Aug-09	16.72	NPP	21.56	529	771	6.93	61.2	2.5	225
MW #1	Apr-09	17.28	NPP	21.56	544	792	7.17	53.1	NS ³	NS ³
1.10	Aug-08	16.92	NPP	21.56	579	831	7.03	61.2	NS ³	NS ³
	Aug-09	36.18	NPP	36.75	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
MW #3	Apr-09	36.41	NPP	36.75	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
A. I.	Aug-08	36.27	NPP	36.75	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
100	Aug-09	27.19	NPP	30.48	1871	2545.0	6.94	64.0	2.3	258
MW #4	Apr-09	26.99	NPP	30.48	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-08	27.03	NPP	30.48	1680	2287.0	6.96	64.7	NS ³	NS ³
	Aug-09	NWP	NPP	37.2	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
MW #5	Apr-09	NWP	NPP	37.2	NS ¹	NS ¹	NS ¹	NS1	NS ¹	NS ¹
100	Aug-08	NWP	NPP	37.2	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
1. 1.1.	Aug-09	NWP	NPP	47.92	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
MW #6	Apr-09	NWP	NPP	47.92	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
10.1	Aug-08	NWP	NPP	47.92	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
12 - 14	Aug-09	27.40	NPP	62.61	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
MW #7	Apr-09	26.87	NPP	62.61	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-08	27.39	NPP	62.61	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
1.0	Aug-09	31.35	NPP	35.93	693	1004	6.98	65.9	0.9	240
TVIW #8	Apr-09	31.97	NPP	35.93	1740	2361	6.88	56.3	NS ³	NS ³
1	Aug-08	31.65	NPP	35.93	1943	2612	6.96	59.7	NS ³	NS ³
1. 194	Aug-09	11.49	NPP	22.94	1929	2619	6.96	64.4	1.3	268
MW #11	Apr-09	11.53	NPP	22.94	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
1	Aug-08	10.46	NPP	22.94	1655	2226	7.02	66.7	NS ³	NS ³
1.1.1.1.	Aug-09	11.20	NPP	14.98	1256	1763	6.93	62.5	0.9	212
MW #12	Apr-09	10.27	NPP	14.98	946	1346	7.06	50.3	NS ³	NS ³
142 -	Aug-08	10.28	NPP	14.98	541	775	7.10	62.6	NS ³	NS ³
14.1	Aug-09	40.42	NPP	52.89	2684	3474	6.91	60.3	1.4	256
MW #13	Apr-09	40.33	NPP	52.89	2895	3777	6.95	59.1	NS ³	NS ³
1235	Aug-08	40.36	NPP	52.89	3079	3943	6.92	60.9	NS ³	NS ³
-977 (54-	Aug-09	21.23	20.62	27.13	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
MW #20	Apr-09	20.96	20.60	27.13	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
100	Aug-08	21.15	20.71	27.13	NR ¹	NR ¹	NR ¹	NR1	NR ¹	NR ¹

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

NS³ =Analyte Inadvertently not Monitored this Sampling Event

NR¹= No Sample Required - Well Contains Separate Phase Hydrocarbon

NR² = No Sample Required per OCD and NMED pre-2007 Conditions

NWP = No Water Present

NPP = No Product Present

Section 8.0 - Tab 3.0

RW/MW	Date	Depth to H2O (ft)	Depth to Product (ft)	Well Depth (ft)	TDS (mg/L)	E.C. (umhos/cm)	рН	TEMP. (Farenheit)	D.O. (mg/L)	ORP (mV)
ALC: NO	Aug-09	21.80	21.70	30.38	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
MW #21	Apr-09	21.82	21.74	30.38	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-08	21.90	21.79	30.38	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
	Aug-09	32.95	32.70	41.2	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR1
MW #25	Apr-09	32.84	32.64	41.2	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-08	33.05	32.67	41.2	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
	Aug-09	17.39	NPP	25.11	2149	2877	6.88	62.8	1.1	222
MW #26	Apr-09	17.32	NPP	25.11	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-08	17.21	NPP	25.11	2179	2878	6.95	63.4	NS ³	NS ³
1.1	Aug-09	18.75	NPP	24.42	1975	2665	6.94	61.6	0.9	225
MW #27	Apr-09	18.7	NPP	24.42	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-08	18.13	NPP	24.42	1973	2639	7.01	63.4	NS ³	NS ³
	Aug-09	22.74	NPP	28.62	636	919.0	7.0	60.6	1.1	222
MW #29	Apr-09	23.12	NPP	28.62	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-08	22.80	NPP	28.62	637	917.0	7.0	62.1	NS ³	NS ³
	Aug-09	33.75	NPP	40.13	2300	3062	6.96	62.1	2.3	270
MW #30	Apr-09	34.02	NPP	40.13	2271	3020	6.92	60.1	NS ³	NS ³
	Aug-08	33.85	NPP	40.13	2219	2935	6.94	65.3	NS ³	NS ³
-	Aug-09	34.10	NPP	39.16	2300	4073.0	6.9	62.1	5.6	237
MW #31	Apr-09	34.05	NPP	39.16	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-08	34.00	NPP	39.16	3250	4144.0	7.0	62.4	NS ³	NS ³
	Aug-09	25.03	NPP	27.51	4218	5318	6.99	60.1	7.8	224
MW #32	Apr-09	25.05	NPP	27.51	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-08	24.97	NPP	27.51	4364	5426	7.00	61.4	NS ³	NS ³
	Aug-09	22.36	NPP	25.51	2962	3863	6.97	61.8	2.6	218
MW #33	Apr-09	22.36	NPP	25.51	3035	3947	6.97	57.8	NS ³	NS ³
	Aug-08	22.25	NPP	25.51	2966	3840	6.98	62.6	NS ³	NS ³
	Aug-09	14.18	NPP	20.96	1495	2061	6.92	61.8	0.9	239
MW #34	Apr-09	14.35	NPP	20.96	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-08	13.36	NPP	20.96	1225	1701	7.02	63.2	NS ³	NS ³
	Aug-09	22.09	NPP	26.45	1079	1611	6.94	61.5	0.8	231
MW #35	Apr-09	22.32	NPP	26.45	1146	1524	7.00	57.1	NS ³	NS ³
	Aug-08	21.98	NPP	26.45	1311	1810	7.01	61.4	NS ³	NS ³

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

NS³ =Analyte Inadvertently not Monitored this Sampling Event

NR¹= No Sample Required - Well Contains Separate Phase Hydrocarbon

NR² = No Sample Required per OCD and NMED pre-2007 Conditions

NWP = No Water Present NPP = No Product Present

Section 8.0 - Tab 3.0

								Jecu	on 8.0 - Tal	0 3.0
	Date	Depth to H2O (ft)	Depth to Product (ft)	Well Depth (ft)	TDS (mg/L)	E.C. (umhos/cm)	pН	TEMP. (Farenheit)	D.O. (mg/L)	ORP (mV)
	Aug-09	20.87	NPP	23.26	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
MW #36	Apr-09	20.96	NPP	23.26	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-08	20.71	NPP	23.26	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
1	Aug-09	23.22	NPP	27.58	1588	2180	6.95	60.6	0.9	223
MW #37	Apr-09	23.61	NPP	27.58	1583	2179	6.99	58.1	NS ³	NS ³
	Aug-08	23.37	NPP	27.58	1601	2164	7.02	62.4	NS ³	NS ³
	Aug-09	23.86	NPP	26.82	925	1319	6.99	61.9	0.9	193
MW #38	Apr-09	23.79	NPP	26.82	961	1369	6.98	58.4	NS ³	NS ³
	Aug-08	23.53	NPP	26.82	932	1306	7.00	62.5	NS ³	NS ³
	Aug-09	25.78	NPP	38.34	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
MW #39	Apr-09	25.62	NPP	38.34	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
1000	Aug-08	25.92	NPP	38.34	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-09	28.17	NPP	30.07	2080	2809	7.0	68.4	2.1	246
MW #40	Apr-09	28.02	NPP	30.07	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-08	28.25	NPP	30.07	2121	2827	6.9	68.4	NS ³	NS ³
	Aug-09	27.10	26.55	31.62	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
MW #41	Apr-09	26.83	26.47	31.62	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-08	27.22	26.76	31.62	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
	Aug-09	34.04	NPP	50.91	3807	4,663	6.98	61.4	1.2	261
WW #44	Apr-09	33.86	NPP	50.91	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-08	33.91	NPP	50.91	4080	5,099	6.91	62.4	NS ³	NS ³
	Aug-09	11.68	NPP	16.92	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
MW #45	Apr-09	11.81	NPP	16.92	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-08	11.72	NPP	16.92	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
10.2219	Aug-09	NS	NPP	10.39	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
MW #46	Apr-09	NS	NPP	10.39	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
1	Aug-08	NS	NPP	10.39	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
1. 34	Aug-09	12.80	NPP	14.28	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
MW#47	Apr-09	12.50	NPP	14.28	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
1	Aug-08	13.30	12.68	14.28	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR1
12.53	Aug-09	Not a Well	Not a Well	Not a Well	281	441	6.95	63.7	NS ³	NS ³
O/F #2	Apr-09	Not a Well	Not a Well	Not a Well	587	855	7.13	55.9	NS ³	NS ³
	Aug-08	Not a Well	Not a Well	Not a Well	1220	1696	7.07	66.7	NS ³	NS ³

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

NS³ =Analyte Inadvertently not Monitored this Sampling Event

NR1= No Sample Required - Well Contains Separate Phase Hydrocarbon

NR² = No Sample Required per OCD and NMED pre-2007 Conditions

NWP = No Water Present

NPP = No Product Present

Section 8.0 - Tab 3.0

RW/MW	Date	Depth to H2O (ft)	Depth to Product (ft)	Well Depth (ft)	TDS (mg/L)	E.C. (umhos/cm)	рН	TEMP. (Farenheit)	D.O. (mg/L)	ORP (mV)
	Aug-09	Not a Well	Not a Well	Not a Well	238	355	6.94	57.9	NS ³	NS ³
O/F #3	Apr-09	Not a Well	Not a Well	Not a Well	655	947	7.07	54.1	NS ³	NS ³
1. N	Aug-08	Not a Well	Not a Well	Not a Well	310	455	7.08	68.1	NS ³	NS ³
	Aug-09	30.90	NPP	40.8	2291	3057	6.97	63.0	NS ³	253
RW #1	Apr-09	30.88	NPP	40.8	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-08	30.92	NPP	40.8	2097	2793	7.03	63.8	NS ³	NS ³
	Aug-09	26.80	26.30	35.86	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
RW #2	Apr-09	27.45	27.05	35.86	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-08	27.03	26.11	35.86	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
	Aug-09	21.79	NPP	34.57	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
RW #3	Apr-09	21.88	NPP	34.57	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-08	21.57	NPP	34.57	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-09	24.8	NPP	34.04	1988	2681	7.0	60.9	2.4	271.0
RW #9	Apr-09	24.46	NPP	34.04	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-08	24.84	24.83	34.04	NR ¹	NR ¹	NR ¹	NR1	NR ¹	NR ¹
	Aug-09	35.45	34.71	41.94	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
RW #14	Apr-09	36.11	34.96	41.94	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-08	34.94	NPP	41.94	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-09	34.61	NPP	43.43	2613	3435	6.92	60.0	2.8	265
RW #15	Apr-09	33.84	NPP	43.43	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-08	34.67	NPP	43.43	2435	3206	6.90	62.0	NS ³	NS ³
	Aug-09	33.8	NPP	41.48	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
RW #16	Apr-09	35.02	NPP	41.48	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-08	35.0	NPP	41.48	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-09	32.93	NPP	41.89	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
RW #17	Apr-09	32.8	NPP	41.89	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-08	32.61	NPP	41.89	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-09	34.13	33.9	37.58	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
RW #18	Apr-09	34.10	33.94	37.58	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
-	Aug-08	33.97	33.95	37.58	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
	Aug-09	30.13	30.08	36.64	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
RW #19	Apr-09	30.05	29.92	36.64	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-08	29.88	NPP	36.64	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

NS³ =Analyte Inadvertently not Monitored this Sampling Event

NR1= No Sample Required - Well Contains Separate Phase Hydrocarbon

NR² = No Sample Required per OCD and NMED pre-2007 Conditions

NWP = No Water Present NPP = No Product Present

	Date	Depth to H2O (ft)	Depth to Product (ft)	Well Depth (ft)	TDS (mg/L)	E.C. (umhos/cm)	рН	TEMP. (Farenheit)	D.O. (mg/L)	ORP (mV)
	Aug-09	25.95	25.32	35.61	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
RW #22	Apr-09	25.55	25.25	35.61	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-08	25.52	NPP	35.61	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-09	23.58	NPP	35.53	1239	1857	6.98	64.8	2.4	222
RW #23	Apr-09	23.59	NPP	35.53	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-08	22.91	NPP	35.53	1139	1596	7.03	65.8	NS ³	NS ³
	Aug-09	29.02	28.83	36.99	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
RW #28	Apr-09	28.97	28.94	36.99	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
The second	Aug-08	29.13	28.94	36.99	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
Sec. 2	Aug-09	27.01	26.95	32.02	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
RW #42	Apr-09	26.95	NPP	32.02	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
2000	Aug-08	26.78	26.65	32.02	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
14111	Aug-09	21.83	21.64	24.03	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
RW #43	Apr-09	21.75	21.72	24.03	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-08	20.68	20.55	24.03	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

NS³ =Analyte Inadvertently not Monitored this Sampling Event

NWP = No Water Present

NPP = No Product Present

NR1= No Sample Required - Well Contains Separate Phase Hydrocarbon

Section 8.0 - Tab 3.0

Seep #	Date	TDS (mg/L)	E.C. (umhos/c m)	рН	TEMP. (Farenhei t)	D.O. (mg/L)	ORP (mV)
	Aug-09	3086	4061	7.08	76.8	NS ³	230
Seep 1	Apr-09	2857	3742	6.91	50.8	NS ³	NS ³
	Aug-08	2980	3851	7.03	81.9	NS ³	NS ³
	Aug-09	1271	1438	7.19	73.4	NS ³	283
Seep 3	Apr-09	3697	4674	6.89	52.1	NS ³	NS ³
100	Aug-08	4206	5274	7.06	87.8	NS ³	NS ³
	Aug-09	8862	10.4	6.98	66.6	NS ³	283
Seep 6	Apr-09	4799	5927	6.80	47.5	NS ³	NS ³
	Aug-08	7099	8469	6.96	72.3	NS ³	NS ³
14	Aug-09	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
Seep 7	Apr-09	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
	Aug-08	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
	Aug-09	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
Seep 8	Apr-09	4007	4891	6.60	71.7	NS ³	NS ³
	Aug-08	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
	Aug-09	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
Seep 9	Apr-09	3562	4568	6.87	59.5	NS ³	NS ³
	Aug-08	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

NS³ =Analyte Inadvertently not Monitored this Sampling Event

NR1= No Sample Required - Well Contains Separate Phase Hydrocarbon

NR² = No Sample Required per OCD and NMED pre-2007 Conditions

NWP = No Water Present NPP = No Product Present

Page 6 of 6

Groundwater Analysis - Organics

Section 8.0 - Tab 4.0

			EP	A Method 826	50B		EPA Meth	od 8015B
Sample Location	Date	Benzene (mg/L)	Toluene (mg/L)	EthylBen (mg/L)	Xylene (mg/L)	MTBE (mg/L)	DRO (mg/L)	GRO (mg/L)
Location	1999年1月1日	0.005	0.75	0.70	0.62	0.012	0.2	
	Aug-09	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
#3	Apr-09	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
MM	Aug-08	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
17	Apr-08	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
	Aug-09	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
#2	Apr-09	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
MM	Aug-08	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
	Apr-08	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
St - 22	Aug-09	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
9#	Apr-09	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
MIM	Aug-08	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
1. A. A.	Apr-08	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

NS³ = Sample Inadvertently not Collected this Sampling Event

NR1= No Sample Required - Well Contains Separate Phase Hydrocarbon

Groundwater Analysis - General Chemistry

Section 8.0 - Tab 4.0

		The second			EPA 300.0	New York and			SM 2	320B
Sample Location	Date	Fluoride (mg/L)	Chloride (mg/L)	Nitrite (mg/L)	Bromide (mg/L)	Nitrogen (mg/L)	P (mg/L)	Sulfate (mg/L)	CO2 (mg/L)	ALK (mg/L)
2.4.4.4	福风石18-134	1.6	250			10		600		神経の言語
~	Aug-09	NS ¹	NS1	NS1	NS ¹	NS1	NS1	NS ¹	NS ¹	NS'
#3	Aug-08	NS ¹	NS ¹	NS1	NS1	NS ¹	NS ¹	NS ¹	NS ¹	NS1
MM	Aug-07	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS1	NS1
	Aug-06	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS1	NS1	NS ¹	NS1
	Aug-09	NS ¹	NS ¹	NS1	NS ¹	NS ¹	NS ¹	NS ¹	NS1	NS ¹
\$#	Aug-08	NS ¹	NS ¹	NS1	NS ¹	NS ¹	NS1	NS ¹	NS ¹	NS ¹
MM	Aug-07	NS ¹	NS ¹	NS'	NS ¹	NS ¹	NS'	NS1	NS ¹	NS1
	Aug-06	NS'	NS1	NS ¹	NS ¹	NS1	NS1	NS ¹	NS ¹	NS ¹
	Aug-09	NS ¹	NS'	NS'	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
9#	Aug-08	NS ¹	NS1	NS'	NS ¹	NS1	NS ¹	NS ¹	NS ¹	NS'
MM	Aug-07	NS ¹	NS ¹	NS ¹	NS ¹	NS1	NS ¹	NS ¹	NS ¹	NS1
	Aug-06	NS ¹	NS ¹	NS'	NS ¹	NS ¹	NS1	NS1	NS'	NS1

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

NS³ = Sample Inadvertently not Collected this Sampling Event

NR1= No Sample Required - Well Contains Separate Phase Hydrocarbon

NR² = No Sample Required per OCD and NMED pre-2007 Conditions

* - Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet holdtime

Page 2 of 4

Groundwater Analysis - Total Metals

Section 8.0 - Tab 4.0

			Ε	PA Method 6	010B, EPA	Method 7	470: Mercu	ry	a Marine Standard
Sample Location	Date	Arsenic (mg/L)	Barium (mg/L)	Cadmium (mg/L)	Cr (mg/L)	Lead (mg/L)	Se (mg/L)	Silver (mg/L)	Mercury (mg/L)
Location		0.01	1 1	0.005	0.05	0.015	0.05	0.05	0.002
1.0	Aug-09	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
#3	Aug-08	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
MM	Aug-07	NS ¹	NS ¹	NS ¹	NS1	NS ¹	NS ¹	NS ¹	NS1
1	Aug-06	NS ¹	NS ¹	NS ¹	NS1	NS ¹	NS ¹	NS ¹	NS ¹
	Aug-09	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
5#	Aug-08	NS'	NS1	NS ¹	NS ¹	NS1	NS ¹	NS ¹	NS ¹
MM	Aug-07	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS1
	Aug-06	NS1	NS1	NS'	NS1	NS ¹	NS ¹	NS ¹	NS1
	Aug-09	NS ¹	NS1	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS1
9#	Aug-08	NS ¹	NS ¹	NS1	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
MM	Aug-07	NS ¹	NS ¹	NS ¹	NS1	NS1	NS1	NS1	NS1
	Aug-06	NS ¹	NS ¹	NS ¹	NS ¹	NS1	NS1	NS ¹	NS1

NS¹= Well is Dry or Not Enough Water to Sample- No Sample NS² = Not Sampled due to approved Facility-Wide Monitoring Plan NS³ = Sample Inadvertently not Collected this Sampling Event NR¹= No Sample Required - Well Contains Separate Phase Hydrocarbon NR² = No Sample Required per OCD and NMED pre-2007 Conditions

* - Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet holdtime

Groundwater Analysis - Dissolved Metals

Section 8.0 - Tab 4.0

		Real Land	L. Like		and shift	EF	A Method	6020A fo	r Uranlum	- EPA Me	thod 6010	B for All	Other Met	als		and the second	1.1.1
Sample Location	Date	Arsenic (mg/L)	Barium (mg/L)	(mg/L)	Calcium (mg/L)	Cr (mg/L)	Copper (mg/L)	Iron (mg/L)	Lead (mg/L)	Mg (mg/L)	Mn (mg/L)	K (mg/L)	Se (mg/L)	Silver (mg/L)	Sodium (mg/L)	(mg/L)	Zinc (mg/L)
19 201/5444	- All Andrews	0.1		0.01		0.05		1	0.05		0.2		0.05	0.05		0.03	10
~	Aug-09	NS ¹	NS1	NS1	NS1	NS1	NS'	NS'	NS ¹	NS'	NS ¹	NS1	NS ¹	NS ¹	NS'	NS1	NS ¹
#3	Aug-08	NS1	NS'	NS1	NS ¹	NS ¹	NS1	NS1	NS1	NS'	NS1	NS1	NS ¹	NS1	NS1	NS1	NS1
MM	Aug-07	NS1	NS1	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS1	NS'	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS1	NS ¹
	Aug-06	NS ¹	NS'	NS1	NS ¹	NS ¹	NS ¹	NS1	NS ¹	NS'	NS ¹	NS1	NS1	NS'	NS'	NS ¹	NS ¹
	Aug-09	NS ¹	NS1	NS ¹	NS ¹	NS1	NS1	NS'	NS1	NS'	NS1	NS1	NS ¹	NS ¹	NS1	NS ¹	NS1
9# 1	Aug-08	NS ¹	NS ¹	NS ¹	NS1	NS ¹	NS1	NS'	NS1	NS1	NS1	NS1	NS'	NS1	NS'	NS1	NS'
MM	Aug-07	NS ¹	NS ¹	NS ¹	NS ¹	NS'	NS ¹	NS ¹	NS ¹	NS1	NS ¹	NS'	NS ¹	NS'	NS1	NS1	NS'
- it had	Aug-06	NS ¹	NS'	NS ¹	NS1	NS ¹	NS ¹	NS'	NS ¹	NS1	NS ¹	NS ¹	NS ¹	NS1	NS'	NS1	NS ¹
1.100	Aug-09	NS ¹	NS ¹	NS ¹	NS ¹	NS1	NS'	NS'	NS ¹	NS1	NS ¹	NS ¹	NS1	NS1	NS1	NS1	NS1
9#	Aug-08	NS ¹	NS ¹	NS ¹	NS1	NS ¹	NS ¹	NS1	NS ¹	NS ¹	NS ¹	NS ¹	NS1	NS ¹	NS ¹	NS ¹	NS1
MM	Aug-07	NS ¹	NS1	NS1	NS ¹	NS1	NS ¹	NS1	NS1	NS1	NS ¹	NS1	NS1	NS ¹	NS ¹	NS1	NS1
	Aug-06	NS ¹	NS1	NS ¹	NS1	NS'	NS'	NS'	NS1	NS'	NS1	NS ¹	NS1	NS1	NS1	NS1	NS'

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

NS3 = Sample Inadvertently not Collected this Sampling Event

NR1= No Sample Required - Well Contains Separate Phase Hydrocarbon

C

Groundwater Analysis - Organics

Section 8.0 - Tab 5.0

			EP	A Method 826	50B		EPA Meth	od 8015B
Sample Location	Date	Benzene (mg/L) 0.005	Toluene (mg/L) 0.75	EthylBen (mg/L) 0.70	Xylene (mg/L) 0.62	MTBE (mg/L) 0.012	DRO (mg/L) 0.2	GRO (mg/L)
10 A A A	Aug-09	0.14	<0.005	<0.005	0.014	0.036	65	3.9
ŧ	Apr-09	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
RW	Aug-08	0.2	<0.005	0.21	0.067	0.021	47	6.7
	Apr-08	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
1.76	Aug-09	0.22	<0.02	0.056	0.65	<0.02	9	6.4
#4	Apr-09	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
MM	Aug-08	0.53	<0.01	0.11	1.6	<0.01	17	10
12.10	Apr-08	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
Sale Pro	Aug-09	0.024	0.21	0.047	0.48	<0.001	<1.0	3.3
8#	Apr-09	< 0.001	<0.001	<0.001	<0.002	<0.001	<1.0	<0.05
MW #8	Aug-08	<0.001	<0.001	<0.001	<0.0015	<0.001	<1.0	<0.05
199.784	Apr-08	<0.001	<0.001	<0.001	<0.003	<0.0015	<1.0	<0.05
	Aug-09	9.5	<0.02	0.89	2.2	3.4	14	47
6#	Apr-09	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
RW	Aug-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
a la la	Apr-08	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-09	3.0	2.0	2.5	11.0	<0.05	9.4	90
#15	Apr-09	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
RW	Aug-08	6.0	1.0	4.1	21.0	0.03	2.3	62
	Apr-08	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-09	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
#18	Apr-09	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
RW	Aug-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
	Apr-08	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-09	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
#20	Apr-09	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
MM	Aug-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
	Apr-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

NS³ = Sample Inadvertently not Collected this Sampling Event

NR1= No Sample Required - Well Contains Separate Phase Hydrocarbon

NR² = No Sample Required per OCD and NMED pre-2007 Conditions

Groundwater Analysis - Organics

Section 8.0 - Tab 5.0

		and a	EP	A Method 820	60B		EPA Meth	nod 8015B
Sample Location	Date	Benzene (mg/L) 0.005	Toluene (mg/L) 0.75	EthylBen (mg/L) 0.70	Xylene (mg/L) 0.62	MTBE (mg/L) 0.012	DRO (mg/L) 0.2	GRO (mg/L)
-	Aug-09	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
#21	Apr-09	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
MM	Aug-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
~	Apr-08	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
12.1	Aug-09	6.2	<0.05	1.5	2.2	1.2	36	36
#23	Apr-09	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
RW	Aug-08	9.8	<0.10	1.6	9.7	1.5	48	70
	Apr-08	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-09	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
#28	Apr-09	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
RW	Aug-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
L. Frank	Apr-08	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
-	Aug-09	<0.001	<0.001	<0.001	<0.0015	<0.001	<1.0	<0.05
#29	Apr-09	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
MM	Aug-08	<0.001	<0.001	<0.001	<0.0015	0.001	<1.0	<0.05
~	Apr-08	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
-	Aug-09	9.5	8.0	6.3	24.0	<0.10	24	84
#30	Apr-09	5.1	2.7	3.9	14.0	<0.10	23	76
MM	Aug-08	6.7	6.7	4.5	18.0	<0.10	6.3	80
-	Apr-08	6.0	2.4	3.5	13.0	<0.15	7.3	68
1	Aug-09	3.3	0.024	0,83	1.6	<0.02	5.1	19
#31	Apr-09	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
MM	Aug-08	4.0	0.018	1.4	3.0	<0.01	<1.0	<0.05
-	Apr-08	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
0	Aug-09	0.019	<0.005	<0.005	<0.0075	0.013	17	5.4
#4	Apr-09	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
MW #40	Aug-08	0.034	<0.001	0.0056	0.0018	0.016	41	5.1
_	Apr-08	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

NS³ = Sample Inadvertently not Collected this Sampling Event

NR¹= No Sample Required - Well Contains Separate Phase Hydrocarbon

Groundwater Analysis - Organics

Section 8.0 - Tab 5.0

			EP	A Method 826	30B		EPA Meth	nod 8015B
Sample	Date	Benzene (mg/L)	Toluene (mg/L)	EthylBen (mg/L)	Xylene (mg/L)	MTBE (mg/L)	DRO (mg/L)	GRO (mg/L)
Location		0.005	0,75	0.70	0.62	0.012	0.2	
	Aug-09	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
#42	Apr-09	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
RW	Aug-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
	Apr-08	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-09	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
#43	Apr-09	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
RW	Aug-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
	Apr-08	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-09	<0.001	<0.001	<0.001	<0.0015	<0.0015	<1.0	<0.05
#44	Apr-09	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
MW	Aug-08	<0.001	<0.001	<0.001	<0.0015	0.0018	<1.0	<0.05
-	Apr-08	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²

 NS^2 = Not Sampled due to approved Facility-Wide Monitoring Plan

NS³ = Sample Inadvertently not Collected this Sampling Event

NR¹= No Sample Required - Well Contains Separate Phase Hydrocarbon

Groundwater Analysis - General Chemistry

Section 8.0 - Tab 5.0

				ten da serie da serie Manda serie da serie	EPA 300.0				SM 2	320B
Sample Location	Date	Fluoride (mg/L) 1.6	Chloride (mg/L) 250	Nitrite (mg/L)	Bromide (mg/L)	Nitrogen (mg/L) 10	P (mg/L)	Sulfate (mg/L) 600	CO2 (mg/L)	ALK (mg/L)
	Aug-09	<2.0	330	<2.0	3.5	<2.0	<10.0	<10.0	1100	1100
14	Aug-08	0.31	250	<0.50	2.3	<0.10	<0.50	<0.50	1100	1100
RW	Aug-07	<0.50	220	<0.50	2.2	<0.50	<2.5	110	1400	1300
	Aug-06	<0.50	230	<0.50	2.8	NS ²	<2.5	3.8	1200	1200
100	Aug-09	0.29	180	<2.0	2.7	<0.10	<0.05	6.5	1100	1100
MW #4	Aug-08	0.23	190	<0.10	3.5	<0.10	<0.50	4.4	1000	1000
MM	Aug-07	NR ¹	NR1	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR'
	Aug-06	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³
12.0	Aug-09	0.33	20	<0.10	0.23	0.5	<0.50	410	100	110
MW #8	Aug-08	0.69	180	0.12	1.6	24	<0.50	790	220	230
MM	Aug-07	0.74	410	<0.10	1.6	20	<0.50	1300	200	190
1 2. ř. j	Aug-06	0.67	300	26	1.5	NS ²	<0.50	980	200	210
	Aug-09	<1.0	160	<1.0	4.5	<1.0	<5.0	280	920	1000
6#	Aug-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
RW	Aug-07	<2.0	420	<2.0	3.9	<2.0	<10	41	1200	1000
	Aug-06	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
2	Aug-09	<0.10	460	<0.10	1.6	<0.10	<0.50	1.3	980	1100
#15	Aug-08	0.29	420	<2.0	7.8	<0.10	<0.50	0.76	1200	1200
RW	Aug-07	0.32	400	<2.0	8.4	<0.10	<0.50	<0.50	1300	1300
-	Aug-06	<0.50	370	<0.50	7.6	NS ²	<2.5	<2.5	1200	1200
~	Aug-09	NR ¹	NR ¹	NR ¹	NR1	NR'	NR ¹	NR ¹	NR ¹	NR ¹
#18	Aug-08	NR ¹	NR ¹	NR'	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
RW	Aug-07	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
and an	Aug-06	NR ¹	NR ¹	NR1	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR'

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

NS³ = Sample Inadvertently not Collected this Sampling Event

* - Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet holdtime

NR1= No Sample Required - Well Contains Separate Phase Hydrocarbon

NR² = No Sample Required per OCD and NMED pre-2007 Conditions

110

Groundwater Analysis - General Chemistry

Section 8.0 - Tab 5.0

					EPA 300.0	编辑记。 1997年	A		SM 2	320B
Camala		Fluoride	Chloride	Nitrite	Bromide	Nitrogen	Р	Sulfate	CO2	ALK
Sample Location	Date	(mg/L)								
		1.6	250			10		600		No.
0	Aug-09	NR ¹								
#20	Aug-08	NR ¹								
MM	Aug-07	NR ¹								
F 67	Aug-06	NR ¹	NR ¹	NR ¹	NR1	NR ¹	NR'	NR ¹	NR ¹	NR ¹
	Aug-09	NR ¹								
#21	Aug-08	NR ¹	NR'	NR'	NR ¹					
MM	Aug-07	NR ¹								
2	Aug-06	NR ¹	NR ¹	NR'	NR ¹					
~	Aug-09	<1.0	100	<1.0	5.1	<1.0	<5.0	11	860	890
#23	Aug-08	0.4	76	<0.10	<1.0	<0.10	<0.50	3.2	850	780
RW	Aug-07	NR ¹	NR ¹	NR ¹	NR1	NR ¹	NR'	NR ¹	NR1	NR ¹
	Aug-06	NR ¹	NR ¹	NR1	NR ¹	NR1				
	Aug-09	NR ¹	NR1							
#28	Aug-08	NR ¹	NR'	NR1						
RW	Aug-07	NR ¹								
	Aug-06	NR ¹								
	Aug-09	0.4	52	<0.10	0.45	0.93	<0.50	160	190	210
#29	Aug-08	0.36	57	<0.10	0.4	0.99	<0.50	160	200	210
MW	Aug-07	NS ³								
2	Aug-06	NR ²								
	Aug-09	<1.0	230	<2.0	4.6	<2.0	<5.0	24	1100	1200
#30	Aug-08	0.15	210	*<0.10	5.6	*<0.10	<0.50	12	1500	1400
MM	Aug-07	0.17	240	<0.10	4.7	<0.10	<0.50	76	1500	1400
-	Aug-06	NR ²								

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan NR¹=

NS³ = Sample Inadvertently not Collected this Sampling Event

* - Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet holdtime NR¹= No Sample Required - Well Contains Separate Phase Hydrocarbon

Groundwater Analysis - General Chemistry

Section 8.0 - Tab 5.0

					EPA 300.0			and the second	SM 2	320B
Sample	Date	Fluoride (mg/L)	Chloride (mg/L)	Nitrite (mg/L)	Bromide (mg/L)	Nitrogen (mg/L)	P (mg/L)	Sulfate (mg/L)	CO2 (mg/L)	ALK (mg/L)
Location		1.6	250			10		600		
	Aug-09	0.21	720	<2.0	15	0.14	<0.50	22	1000	1100
#31	Aug-08	0.15	740	<1.0	17	<0.10	<0.50	6.4	1100	1100
MM	Aug-07	NS ²	NS ²	NS ²	NS ²	NS ²	. NS ²	NS ²	NS ²	NS ²
2	Aug-06	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
-	Aug-09	0.28	310	<2.0	4	<0.10	<0.50	<0.50	1100	1100
#40	Aug-08	0.33	310	<2.0	4.4	<2.0	<0.50	<0.50	1200	1200
MM	Aug-07	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR1	NR ¹	NR ¹	NR ¹
2	Aug-06	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR'
100	Aug-09	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR'
#42	Aug-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR	NR'
RW	Aug-07	NR ¹	NR ¹	NR'	NR ¹	NR ¹	NR'	NR ¹	NR ¹	NR ¹
bite.	Aug-06	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR1
-	Aug-09	NR ¹	NR1	NR'	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
#43	Aug-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR1
RW	Aug-07	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
	Aug-06	NR ¹	NR'	NR ¹	NR'	NR ¹	NR'	NR ¹	NR ¹	NR'
	Aug-09	0.19	69	*<1.0	0.27	*<1.0	<0.50	2900	330	350
#44	Aug-08	0.62	72	<0.10	0.28	<0.10	<0.50	3000	360	350
MM	Aug-07	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³
6	Aug-06	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²

NS¹= Well is Dry or Not Enough Water to Sample- No Sample NS² = Not Sampled due to approved Facility-Wide Monitoring Plan NS³ = Sample Inadvertently not Collected this Sampling Event

 * - Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet holdtime NR¹= No Sample Required - Well Contains Separate Phase Hydrocarbon
 NR² = No Sample Required per OCD and NMED pre-2007 Conditions

Groundwater Analysis - Total Metals

Section 8.0 - Tab 5.0

				PA Method 6	Contraction of the Contract of	A Method 7		And a state of the second state of the second	
Sample		Arsenic	Barium	Cadmium	Cr	Lead	Se	Silver	Mercury
Location	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
		0.01	1	0.005	0.05	0.015	0.05	0.05	0.002
	Aug-09	<0.02	2.1	<0.002	<0.006	<0.005	<0.25	<0.005	< 0.0002
#	Aug-08	<0.020	1.7	<0.002	<0.006	<0.005	<0.05	<0.005	< 0.0002
RW	Aug-07	<0.020	0.61	<0.002	<0.006	0.019	<0.05	<0.005	<0.0002
	Aug-06	NR ²	NR ²	NR ²	<0.006	<0.005	NR ²	NR ²	NR ²
1	Aug-09	<0.02	2.0	<0.002	0.0084	0.0081	<0.05	< 0.005	<0.002
#4	Aug-08	<0.020	1.3	<0.002	<0.006	<0.005	<0.05	<0.005	< 0.0002
MW	Aug-07	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
. The	Aug-06	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³
	Aug-09	<0.02	0.034	<0.002	0.021	<0.005	< 0.05	<0.005	<0.0002
MW #8	Aug-08	<0.020	<0.020	<0.002	0.0071	<0.005	<0.05	<0.005	<0.0002
MM	Aug-07	<0.020	0.027	<0.002	0.56	<0.005	< 0.05	0.069	< 0.0002
· · · · · · · · · · · · · · · · · · ·	Aug-06	NR ²	NR ²	NR ²	2.9	<0.005	NR ²	NR ²	NR ²
	Aug-09	<0.02	0.23	<0.002	<0.006	<0.005	<0.25	<0.005	<0.0002
6#	Aug-08	NR ¹	NR ¹	NR'	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
RW	Aug-07	<0.020	1.7	<0.002	<0.006	0.052	<0.05	<0.005	< 0.0002
	Aug-06	NR ¹	NR ¹	NR ¹		NR ¹	NR ¹	NR ¹	NR ¹
	Aug-09	<0.02	1.7	<0.002	<0.006	<0.005	< 0.05	<0.005	< 0.0002
#15	Aug-08	<0.020	1.2	<0.002	<0.006	<0.005	<0.05	<0.005	< 0.001
RW	Aug-07	<0.020	1.8	<0.002	<0.006	<0.005	< 0.05	< 0.005	<0.001
L.	Aug-06	NR ²	NR ²	NR ²	<0.006	<0.005	NR ²	NR ²	NR ²
1.1.1.16	Aug-09	NR1	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR'
#18	Aug-08	NR ¹	NR ¹	NR ¹	NR ¹	NR1	NR ¹	NR ¹	NR1
RW	Aug-07	NR ¹	NR ¹	NR1	NR ¹	NR ¹	NR1	NR ¹	NR ¹
Ľ.	Aug-06	NR1	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹

NS1= Well is Dry or Not Enough Water to Sample- No Sample

* - Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet holdtime

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

NR'= No Sample Required - Well Contains Separate Phase Hydrocarbon

NS³ = Sample Inadvertently not Collected this Sampling Event

Groundwater Analysis - Total Metals

Section 8.0 - Tab 5.0

Sample	Date	Arsenic	Barium	PA Method 6 Cadmium	Cr	Lead	Se	Silver	Mercury
Location	Date	(mg/L) 0.01	(mg/L) 1	(mg/L) 0.005	(mg/L) 0.05	(mg/L) 0.015	(mg/L) 0.05	(mg/L) 0.05	(mg/L) 0.002
1.7 STORED	Aug-09	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
#20	Aug-08	NR'	NR ¹	NR ¹	NR ¹	NR ¹	NR1	NR ¹	NR ¹
MW #20	Aug-07	NR ¹	NR'	NR ¹	NR1	NR'	NR'	NR ¹	NR1
Z	Aug-06	NR ¹	NR ¹	NR ¹	NR ¹	NR'	NR'	NR1	NR1
	Aug-09	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
#21	Aug-08	NR ¹	NR1	NR ¹	NR ¹	NR1	NR ¹	NR ¹	NR ¹
MM	Aug-07	NR ¹	NR1	NR ¹	NR ¹	NR1	NR ¹	NR ¹	NR ¹
~	Aug-06	NR ¹	NR ¹	NR ¹	NR'	NR1	NR ¹	NR ¹	NR ¹
	Aug-09	<0.02	1.7	<0.002	<0.006	0.0096	<0.25	<0.005	<0.0002
#23	Aug-08	<0.02	1.4	<0.002	<0.006	0.013	<0.25	<0.005	<0.0002
RW	Aug-07	NR ¹	NR ¹	NR ¹	NR ¹	NR'	NR ¹	NR ¹	NR ¹
	Aug-06	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
~	Aug-09	NR ¹	NR1	NR ¹	NR ¹	NR ¹	NR ¹	NR1	NR ¹
#28	Aug-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR1
RW	Aug-07	NR ¹	NR ¹	NR ¹	NR ¹	NR'	NR ¹	NR ¹	NR ¹
	Aug-06	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR'
	Aug-09	<0.02	0.028	<0.002	<0.006	<0.005	<0.05	<0.005	< 0.0002
#29	Aug-08	<0.02	0.072	<0.002	<0.006	<0.005	<0.25	<0.005	< 0.0002
MM	Aug-07	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³
2	Aug-06	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
0	Aug-09	<0.02	0.91	<0.002	<0.006	<0.005	<0.05	<0.005	< 0.0002
#30	Aug-08	<0.02	0.72	<0.002	<0.006	<0.005	<0.25	<0.005	<0.0002
MM	Aug-07	<0.020	0.89	<0.002	<0.006	<0.005	<0.05	<0.005	< 0.0002
~	Aug-06	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan NR

NS³ = Sample Inadvertently not Collected this Sampling Event

* - Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet holdtime NR¹= No Sample Required - Well Contains Separate Phase Hydrocarbon

NR² = No Sample Required per OCD and NMED pre-2007 Conditions

Groundwater Analysis - Total Metals

Section 8.0 - Tab 5.0

		And And And	E	PA Method 6	010B, EP/	A Method 7	470: Mercu	ıry	
Sample Location	Date	Arsenic (mg/L)	Barium (mg/L)	Cadmium (mg/L)	Cr (mg/L)	Lead (mg/L)	Se (mg/L)	Silver (mg/L)	Mercury (mg/L)
		0.01	1	0.005	0.05	0.015	0.05	0.05	0.002
-	Aug-09	<0.02	0.81	<0.002	<0.006	<0.005	<0.05	<0.005	<0.0002
#31	Aug-08	<0.02	1.1	<0.002	<0.006	<0.005	<0.05	<0.005	< 0.0002
MM	Aug-07	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
-	Aug-06	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
0	Aug-09	<0.02	2.8	<0.002	<0.006	0.0075	<0.25	<0.005	<0.0002
#40	Aug-08	<0.02	1.8	<0.002	<0.006	<0.005	<0.25	<0.005	<0.0002
MM	Aug-07	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
-	Aug-06	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR1
01	Aug-09	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
RW #42	Aug-08	NR ¹	NR'	NR ¹	NR ¹	NR ¹	NR1	NR ¹	NR1
M2	Aug-07	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR1	NR1
-	Aug-06	NR ¹	NR1	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
~	Aug-09	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
#43	Aug-08	NR ¹	NR ¹	NR ¹	NR'	NR ¹	NR ¹	NR ¹	NR ¹
RW	Aug-07	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR'	NR ¹	NR ¹
	Aug-06	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR'	NR1	NR ¹
-	Aug-09	<0.02	<0.02	<0.002	<0.006	<0.005	<0.05	< 0.005	<0.0002
#44	Aug-08	<0.02	<0.02	<0.002	<0.006	<0.005	<0.25	<0.005	<0.0002
MM	Aug-07	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³
-	Aug-06	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²

NS¹= Well is Dry or Not Enough Water to Sample- No Sample NS² = Not Sampled due to approved Facility-Wide Monitoring Plan NS³ = Sample Inadvertently not Collected this Sampling Event

* - Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet holdtime NR¹= No Sample Required - Well Contains Separate Phase Hydrocarbon NR² = No Sample Required per OCD and NMED pre-2007 Conditions

Groundwater Analysis - Dissolved Metals

Section 8.0 - Tab 5.0

		They all				OPE-CHORE BALLS	Aethod 602	20A for Ur	anium - E	PA Metho	d 6010B	or All Oth		SAN FOR SUSTAINED	See.	Mar Alley	THE LEASE
Sample ocation	Date	Arsenic (mg/L)	Barium (mg/L)	Cadmium (mg/L)	Calcium (mg/L)	Cr (mg/L)	Copper (mg/L)	Iron (mg/L)	Lead (mg/L)	Mg (mg/L)	Mn (mg/L)	K (mg/L)	Se (mg/L)	Silver (mg/L)	Sodium (mg/L)	Uranium (mg/L)	Zinc (mg/L)
的行之。前中的		0.1	1	0.01		0.05	1	1	0.05		0.2	and sector is	0.05	0.05	S. S	0.03	10
1	Aug-09	<0.02	1.9	<0.002	110	<0.006	<0.006	3.9	< 0.005	40	2.5	4.1	< 0.05	< 0.005	570	<0.001	< 0.05
	Aug-08	<0.02	1.7	<0.002	NS ³	<0.006	< 0.006	3.7	<0.005	NS ³	2.5	NS ³	<0.25	<0.005	NS ³	<0.001	0.052
RW	Aug-07	<0.02	68	<0.002	140	<0.006	<0.006	8.0	0.007	37	4.2	3.1	<0.25	<0.005	530	<0.10	< 0.05
	Aug-06	<0.20	1.7	< 0.002	120	<0.006	<0.006	6.4	0.008	32	3	3.2	< 0.05	<0.005	500	<0.10	0.057
4	Aug-09	<0.02	1.7	<0.002	130	<0.006	0.017	12	< 0.005	52	3.2	5.3	< 0.05	< 0.005	380	<0.001	< 0.05
V #4	Aug-08	<0.02	1.3	<0.002	NS ³	<0.006	< 0.006	9.6	<0.005	NS ³	3.1	NS ³	<0.25	< 0.005	NS ³	<0.001	< 0.05
MW	Aug-07	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR1	NR ¹	NR ¹	NR'	NR'	NR ¹	NR ¹	NR1
143	Aug-06	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³
	Aug-09	<0.02	0.025	<0.002	150	<0.006	<0.006	0.042	<0.005	12	0.61	1.9	<0.05	<0.005	50	0.001	<0.05
8#	Aug-08	<0.02	<0.02	<0.002	NS ³	0.007	<0.006	0.1	<0.005	NS ³	0.027	NS ³	<0.25	<0.005	NS ³	0.01	0.096
MM	Aug-07	<0.020	<0.020	<0.002	250	<0.006	<0.006	0.2	<0.005	35	0.24	3.1	0.1	<0.005	420	<0.10	<0.05
	Aug-06	<0.020	0.018	<0.002	230	<0.006	<0.006	0.033	<0.005	35	0.42	3.2	0.05	<0.005	380	<0.10	0.044
	Aug-09	<0.02	0.25	<0.002	140	<0.006	<0.006	2.3	0.007	39	2.2	2.9	<0.05	<0.005	450	<0.001	<0.05
6#	Aug-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR'	NR ¹	NR ¹	NR'	NR ¹	NR ¹	NR1	NR1
RW	Aug-07	<0.020	2.5	<0.002	180	<0.006	<0.006	16.0	0.026	52	4.4	3.0	<0.25	<0.005	400	<0.10	0.084
	Aug-06	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR1	NR ¹	NR ¹	NR'	NR ¹	NR ¹	NR ¹	NR'	NR ¹	NR'	NR ¹
	Aug-09	<0.02	1.5	<0.002	150	<0.006	<0.006	7.2	<0.005	51	4	3.6	<0.05	<0.005	580	<0.001	<0.05
#15	Aug-08	<0.02	1.2	<0.002	130	<0.006	<0.006	5.3	<0.005	44	2.8	3.7	<0.25	<0.005	550	<0.001	0.054
RW	Aug-07	<0.020	1.6	<0.002	140	<0.006	<0.006	16.0	<0.005	42	3.2	3.3	<0.25	<0.005	550	<0.10	0.057
ι.	Aug-06	<0.020	1.3	<0.002	140	<0.006	<0.006	9.9	0.009	43	3.2	3.2	<0.05	< 0.005	560	<0.10	0.034
	Aug-09	NR1	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR'	NR ¹	NR ¹	NR1	NR ¹	NR1	NR'
#18	Aug-08	NR ¹	NR1	NR ¹	NR1	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
RW	Aug-07	NR1	NR ¹	NR ¹	NR1	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR1	NR'
œ	Aug-06	NR ¹	NR ¹	NR1	NR1	NR ¹	NR1	NR ¹	NR1	NR'	NR ¹	NR ¹	NR1	NR ¹	NR ¹	NR1	NR ¹

NS¹= Well is Dry or Not Enough Water to Sample- No Sample NS² = Not Sampled due to approved Facility-Wide Monitoring Plan NS³ = Sample Inadvertently not Analyzed this Sampling Event NR¹= No Sample Required - Well Contains Separate Phase Hydrocarbon

NR² = No Sample Required per OCD and NMED pre-2007 Conditions

* - Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet holdtime

Groundwater Analysis - Dissolved Metals

Section 8.0 - Tab 5.0

						EPA N	Aethod 602	20A for U	ranium - E	PA Metho	d 6010B f	or All Ot	ner Metals				
Sample ocation	Date	Arsenic (mg/L)	Barium (mg/L)	Cadmium (mg/L) 0.01	Calcium (mg/L)	Cr (mg/L) 0.05	Copper (mg/L)	Iron (mg/L)	Lead (mg/L) 0.05	Mg (mg/L)	Mn (mg/L) 0.2	K (mg/L)	Se (mg/L) 0.05	Silver (mg/L) 0.05	Sodium (mg/L)	Uranium (mg/L) 0.03	Zinc (mg/L 10
	Aug-09	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	0.05 NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
#20	Aug-08	NR ¹	NR1	NR'	NR1	NR1	NR ¹	NR'	NR'	NR'	NR'	NR'	NR'	NR'	NR ¹	NR'	NR
MM	Aug-07	NR ¹	NR ¹	NR ¹	NR1	NR ¹	NR ¹	NR1	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR1	NR ¹	NR ¹	NR ¹
2	Aug-06	NR ¹	NR ¹	NR1	NR ¹	NR'	NR1	NR'	NR'	NR1	NR'	NR'	NR1	NR'	NR ¹	NR1	NR'
	Aug-09	NR ¹	NR ¹	NR ¹	NR ¹	NR1	NR1	NR1	NR ¹	NR'	NR ¹	NR ¹	NR ¹	NR1	NR1	NR ¹	NR1
#21	Aug-08	NR ¹	NR1	NR1	NR'	NR'	NR1	NR1	NR'	NR ¹	NR'	NR'	NR'	NR ¹	NR1	NR ¹	NR1
MM	Aug-07	NR ¹	NR ¹	NR'	NR ¹	NR ¹	NR ¹	NR ¹	NR1	NR'	NR ¹	NR ¹	NR'	NR1	NR'	NR ¹	NR'
2	Aug-06	NR ¹	NR1	NR1	NR ¹	NR1	NR'	NR'	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR1	NR'	NR ¹	NR ¹
-	Aug-09	<0.02	1.3	<0.002	120	<0.006	< 0.006	1.1	0.0086	52	4.6	6.8	< 0.05	< 0.005	200	< 0.001	0.058
#23	Aug-08	<0.02	1.4	<0.002	110	<0.006	<0.006	2.9	0.013	47	4.6	6.3	<0.25	<0.005	170	<0.001	<0.05
RW	Aug-07	NR ¹	NR ¹	NR1	NR ¹	NR ¹ ·	NR'	NR'	NR'	NR ¹	NR ¹	NR1	NR1	NR1	NR'	NR1	NR ¹
	Aug-06	NR ¹	NR ¹	NR1	NR ¹	NR ¹	NR1	NR ¹	NR ¹	NR ¹	NR ¹	NR1	NR1	NR ¹	NR ¹	NR ¹	NR ¹
3	Aug-09	NR'	NR'	NR1	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR'	NR1	NR1	NR ¹	NR'
#28	Aug-08	NR ¹	NR'	NR1	NR ¹	NR ¹	NR ¹	NR	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR1	NR ¹	NR ¹
RW	Aug-07	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR1	NR1	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR1
	Aug-06	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR1.	NR ¹	NR'
	Aug-09	<0.02	<0.02	<0.002	53	<0.006	<0.006	<0.02	<0.005	14	0.87	2.2	<0.05	< 0.005	110	0.0017	<0.05
#29	Aug-08	<0.02	<0.02	<0.002	NS ³	<0.006	<0.006	<0.02	<0.005	NS ³	0.97	NS ³	<0.25	< 0.005	NS ³	0.002	0.059
MM	Aug-07	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³
	Aug-06	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
0	Aug-09	<0.02	0.70	<0.002	190	<0.006	<0.006	0.4	<0.005	42	1.7	4	<0.05	< 0.005	600	<0.001	<0.05
#30	Aug-08	<0.02	0.72	<0.002	NS ³	<0.006	<0.006	0.37	<0.005	NS ³	1.7	NS ³	<0.25	<0.005	NS ³	<0.001	<0.05
MM	Aug-07	<0.02	0.59	<0.002	190	<0.006	<0.006	0.31	<0.005	39	1.8	2.9	<0.25	<0.005	560	<0.10	<0.05
1111	Aug-06	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²

NS'= Well is Dry or Not Enough Water to Sample- No Sample

NR1= No Sample Required - Well Contains Separate Phase Hydrocarbon

NR² = No Sample Required per OCD and NMED pre-2007 Conditions

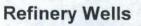
 NS^2 = Not Sampled due to approved Facility-Wide Monitoring Plan NS^3 = Sample Inadvertently not Analyzed this Sampling Event

* - Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet holdtime

Groundwater Analysis - Dissolved Metals

Section 8.0 - Tab 5.0

10-1-						EPA N	Aethod 602	20A for U	ranium - E	PA Metho	od 6010B 1	for All Ot	ner Metals				
Sample ocation	Date	Arsenic (mg/L) 0.1	Barium (mg/L)	Cadmium (mg/L) 0.01	Calcium (mg/L)	Cr (mg/L) 0.05	Copper (mg/L)	Iron (mg/L)	Lead (mg/L) 0.05	Mg (mg/L)	Mn (mg/L) 0.2	K (mg/L)	Se (mg/L) 0.05	Silver (mg/L) 0.05	Sodium (mg/L)	Uranium (mg/L) 0.03	Zinc (mg/L) 10
CONTRACTOR OF	Aug-09	<0.02	0.81	<0.002	150	<0.006	<0.006	0.12	<0.005	63	0.51	4.7	< 0.05	<0.005	690	<0.001	<0.05
#31	Aug-08	<0.02	1.1	<0.002	NS ³	<0.006	<0.006	0.12	<0.005	NS ³	0.71	NS ³	<0.05	<0.005	NS ³	<0.001	<0.05
	Aug-07	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS2	NS ²	NS ²	NS ²	NS2 .
MW	Aug-06	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
1.1	Aug-09	<0.02	1.7	<0.002	86	<0.006	<0.006	6.2	<0.005	41	2.3	3.8	<0.05	<0.005	540	<0.001	0.057
#40	Aug-08	<0.02	1.8	<0.002	91	<0.006	<0.006	5.5	<0.005	41	2.5	3.5	<0.25	<0.005	520	<0.001	0.063
WW #	Aug-07	NR1	NR ¹	NR1	NR ¹	NR1	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR'	NR ¹	NR ¹	NR ¹
Z	Aug-06	NR1	NR'	NR ¹	NR1	NR'	NR1	NR	NR'	NR1	NR'	NR'	NR1	NR'	NR'	NR'	NR
-	Aug-09	NR ¹	NR'	NR'	NR'	NR ¹	NR ¹	NR	NR'	NR'	NR1	NR1	NR1	NR'	NR ¹	NR ¹	NR
#42		NR ¹	NR ¹	NR ¹	NR'	NR'	NR'	NR	NR'	NR ¹	NR ¹	NR ¹	NR ¹	NR'	NR ¹	NR ¹	NR'
	Aug-08																
RW	Aug-07	NR ¹	NR ¹	NR ¹	NR ¹	NR'	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR1	NR ¹	NR ¹	NR'	NR ¹	NR ¹
-	Aug-06	NR ¹	NR ¹	NR1	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR'	NR1	NR ¹	NR1	NR ¹	NR ¹	NR ¹
3	Aug-09	NR ¹	NR ¹	NR ¹	NR ¹	NR'	NR ¹	NR ¹	NR ¹	NR1	NR ¹	NR1	NR1	NR ¹	NR ¹	NR ¹	NR ¹
#43	Aug-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR1	NR1	NR ¹	NR ¹	NR1	NR1	NR ¹	NR1	NR'	NR ¹	NR1
RW	Aug-07	NR1	NR ¹	NR ¹	NR1	NR ¹	NR1	NR ¹	NR ¹	NR ¹	NR1	NR1	NR ¹	NR1	NR ¹	NR ¹	NR'
-	Aug-06	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
-	Aug-09	<0.02	0.7	<0.002	190	<0.006	<0.006	0.40	< 0.005	42	1.7	4.0	< 0.05	< 0.005	600	< 0.001	<0.05
#44	Aug-08	<0.02	<0.02	<0.002	470	<0.006	<0.006	0.083	<0.005	64	1.7	8.0	<0.25	<0.005	900	0.001	<0.05
MM	Aug-07	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³	NS ³
Z	Aug-06	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²


NS¹= Well is Dry or Not Enough Water to Sample- No Sample NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

NR² = No Sample Required per OCD and NMED pre-2007 Conditions

NR'= No Sample Required - Well Contains Separate Phase Hydrocarbon

NS³ = Sample Inadvertently not Analyzed this Sampling Event

* - Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet holdtime

Groundwater Analysis - Semi-Volatile Organic Compounds

Section 8.0 - Tab 5.0

			and the state of the	and the second second		EPA Method 8270	B			and the state
Sample Location	Date	Acenaphthene (mg/L)	Bis(2-ethylexyl) phthalate (mg/L)	2,4 Dimethylphenol (mg/L)	Fluorene (mg/L)	2- Methylnaphthalene (mg/L)	3+2-Methylphenol (mg/L)	Naphthalene (mg/L)	Phenanthrene (mg/L)	Phenol (mg/L)
		2.2 ²	0.0062		1.5 ²	0.15 ²	0.18 ²	0.0014 ²		0.005 ²
Tel luis	Aug-09	<0.01	0.031	<0.01	0.034	0.41	<0.01	0.15	0.056	< 0.01
RW #1	Aug-08	0.011	0.051	<0.01	0.058	0.54	<0.01	0.29	0.077	<0.01
3	Aug-07	0.022	0.077	<0.02	0.088	0.86	<0.02	0.43	0.093	<0.02
	Aug-09	<0.01	<0.01	0.02	<0.01	0.034	<0.01	0.048	<0.01	<0.01
MW #4	Aug-08	<0.01	0.022	0.022	<0.01	0.082	<0.01	0.096	<0.01	<0.01
	Aug-07	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
	Aug-09	<0.01	<0.01	<.01	<0.01	0.012	<0.01	0.011	<0.01	<0.01
MW #8	Aug-08	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	Aug-07	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	Aug-09	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	0.074	< 0.05	<0.05
RW #9	Aug-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
	Aug-07	<0.02	<0.03	0.029	<0.02	0.12	< 0.04	0.13	0.026	0.044
	Aug-09	<0.01	< 0.01	0.013	< 0.01	0.088	0.011	0.31	<0.01	0.012
RW #15	Aug-08	<0.01	<0.01	0.013	<0.01	0.079	<0.01	0.28	<0.01	0.018
in the	Aug-07	<0.05	<0.075	0.078	<0.05	0.33	<0.10	0.35	0.068	0.11
T. dest	Aug-09	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
RW #18	Aug-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
Adams	Aug-07	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

NS³ = Sample Inadvertently not Collected this Sampling Event

NR1= No Sample Required - Well Contains Separate Phase Hydrocarbon

NR² = No Sample Required per OCD and NMED pre-2007 Conditions

Groundwater Analysis - Semi-Volatile Organic Compounds

Section 8.0 - Tab 5.0

					and the second	EPA Method 8270	B			and the
Sample Location	Date	Acenaphthene (mg/L)	Bis(2-ethylexyl) phthalate (mg/L)	2,4 Dimethylphenol (mg/L)	Fluorene (mg/L)	2- Methylnaphthalene (mg/L)	3+2-Methylphenol (mg/L)	Naphthalene (mg/L)	Phenanthrene (mg/L)	Phenol (mg/L)
Sec. Contract	and the second	2.2 ²	0.006 ²		1.5 ²	0.15 ²	0.18²	0.0014 ²		0.005 ²
	Aug-09	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
MW #20	Aug-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
and a start	Aug-07	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
19-10-10	Aug-09	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
MW #21	Aug-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
	Aug-07	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
	Aug-09	<0.05	<0.05	0.078	<0.05	0.62	0.14	0.53	0.053	<0.05
RW #23	Aug-08	<0.05	<0.05	<0.05	0.083	2.6	<0.05	1.5	0.15	<0.05
1.1	Aug-07	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
	Aug-09	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
RW #28	Aug-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
	Aug-07	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
	Aug-09	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
MW #29	Aug-08	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	Aug-07	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-09	<0.05	<0.05	<0.05	<0.05	0.2	<0.05	0.39	<0.05	< 0.05
MW #30	Aug-08	<0.01	<0.01	0.019	<0.01	0.21	0.025	0.59	<0.01	<0.01
1.1	Aug-07	<0.01	<0.015	<0.01	<0.01	0.14	0.02	0.44	<0.01	<0.01

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

NS3 = Sample Inadvertently not Collected this Sampling Event

NR1= No Sample Required - Well Contains Separate Phase Hydrocarbon

NR² = No Sample Required per OCD and NMED pre-2007 Conditions

120

Groundwater Analysis - Semi-Volatile Organic Compounds

Section 8.0 - Tab 5.0

	4					EPA Method 8270	B	and the second	Nut in a state of the state	AND STREET	
Sample Location	Date	Acenaphthene (mg/L)	Bis(2-ethylexyl) phthalate (mg/L)	2,4 Dimethylohenol (mg/L)	Fluorene (mg/L)	2- Methylnaphthalene (mg/L)	3+2-Methylphenol (mg/L)	Naphthalene (mg/L)	Phenanthrene (mg/L)	Phenol (mg/L)	
	and a strangent for	2.2 ²	0.0062		1.5 ²	0.15 ²	0.182	0.0014 ²		0.005 ²	
North Mar	Aug-09	<0.05	<0.05	<0.05	<0.05	0.085	<0.05	0.14	<0.05	<0.05	N
MW #31	Aug-08	<0.01	<0.01	<0.01	<0.01	0.082	<0.01	0.14	<0.01	0.01	USE
es.	Aug-07	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	PA
	Aug-09	<0.05	<0.05	<0.05	<0.05	0.29	<0.05	0.079	0.052	<0.05	USEPA Regional
MW #40	Aug-08	<0.05	<0.05	<0.05	<0.05	0.30	<0.05	0.14	0.056	<0.05	Regional
	Aug-07	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	
	Aug-09	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	Screening
RW #42	Aug-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	ng L
	Aug-07	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	evels
	Aug-09	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	Screening Levels (April 2009
RW #43	Aug-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	pril
	Aug-07	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	6002
	Aug-09	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
MW #44	Aug-08	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
10 - A	Aug-07	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	

NS1= Well is Dry or Not Enough Water to Sample- No Sample

 NS^2 = Not Sampled due to approved Facility-Wide Monitoring Plan

NS³ = Sample Inadvertently not Collected this Sampling Event

NR1= No Sample Required - Well Contains Separate Phase Hydrocarbon

Cross - Gradient Wells

Groundwater Analysis - Organics

Section 8.0 - Tab 6.0

			EP	A Method 82	60B		EPA Meth	od 8015B	
Sample Location	Date	Benzene (mg/L) 0.005	Toluene (mg/L) 0.75	EthylBen (mg/L) 0.70	Xylene (mg/L) 0.62	MTBE (mg/L) 0.012	DRO (mg/L) 0.2	GRO (mg/L)	
	Aug-09	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001	<1.0	< 0.05	
Ħ	Apr-09	< 0.001	<0.001	< 0.001	< 0.002	< 0.001	<1.0	<0.05	
MM	Aug-08	<0.001	< 0.001	<0.001	< 0.0015	<0.001	<1.0	<0.05	
	Apr-08	<0.001	<0.001	0.0023	0.016	<0.0015	<1.0	0.21	
2.16	Aug-09	<0.001	<0.001	<0.001	<0.0015	0.0017	<1.0	<0.05	
#13	Apr-09	<0.001	<0.001	<0.001	<0.002	0.0018	<1.0	<0.05	
MM	Aug-08	<0.001	<0.001	<0.001	0.0015	0.0022	<1.0	<0.05	A STATE OF
-	Apr-08	<0.001	<0.001	<0.001	<0.003	0.0032	<1.0	<0.05	
	Aug-09	0.11	<0.005	0.12	<0.0075	0.0095	7.8	5	
#26	Apr-09	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	
MM	Aug-08	0.12	<0.002	<0.002	0.0039	0.011	2.0	7.9	MTBE
-	Apr-08	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	BE
	Aug-09	<0.001	<0.001	<0.001	<0.0015	<0.001	1.3	<0.05	
#27	Apr-09	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	
MM	Aug-08	<0.001	<0.001	<0.001	<0.0015	<0.001	1.3	<0.05	
	Apr-08	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	
N	Aug-09	<0.001	<0.001	<0.001	<0.0015	<0.001	<1.0	<0.05	
#32	Apr-09	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	
MM	Aug-08	<0.001	<0.001	<0.001	<0.0015	<0.001	<1.0	<0.05	
	Apr-08	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	
~	Aug-09	<0.001	<0.001	<0.001	<0.0015	<0.001	<1.0	<0.05	
#33	Apr-09	<0.001	<0.001	<0.001	<0.002	<0.001	<1.0	<0.05	
MM	Aug-08	<0.001	<0.001	<0.001	<0.0015	<0.001	<1.0	<0.05	
	Apr-08	<0.001	<0.001	<0.001	<0.003	<0.0015	<1.0	<0.05	

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

NS³ = Sample Inadvertently not Collected this Sampling Event

NR¹= No Sample Required - Well Contains Separate Phase Hydrocarbon

Cross - Gradient Wells

Groundwater Analysis - General Chemistry

Section 8.0 - Tab 6.0

			in an		EPA 300.0		· 第二人 14		SM 2	320B
Sample Location	Date	Fluoride (mg/L) 1.6	Chloride (mg/L) 250	Nitrite (mg/L)	Bromide (mg/L)	Nitrogen (mg/L) 10	P (mg/L)	Sulfate (mg/L) 600	CO2 (mg/L)	ALK (mg/L)
	Aug-09	0.53	16	<0.10	0.3	0.69	<0.50	70	250	270
#1	Aug-08	0.67	19	<0.10	0.14	1.2	<0.50	130	250	280
MM	Aug-07	0.74	16	<0.10	<0.50	1.9	<0.50	160	270	290
	Aug-06	0.65	17	1.2	<0.50	NR	<0.50	190	240	270
~	Aug-09	0.16	200	<2.0	2.6	5.8	<0.50	1000	840	890
#13	Aug-08	0.16	240	0.58	3.6	6	<0.50	1100	1000	970
MM	Aug-07	0.2	310	<0.10	4	7.8	<0.50	1100	1000	960
-	Aug-06	0.12	310	8.3	3.7	NR	<0.50	1100	910	960
10	Aug-09	0.32	400	<2.0	5.2	<0.10	<0.50	<0.50	1100	1100
#26	Aug-08	0.34	390	<1.0	5.5	<0.10	<0.50	<0.50	1100	1000
MM	Aug-07	0.38	330	<0.10	5.4	<0.10	<0.50	0.52	1200	1000
-	Aug-06	0.36	410	<0.50	5.2	NR	<0.50	0.68	990	960
2	Aug-09	0.38	180	<2.0	1.3	<0.10	<0.5	960	280	290
#27	Aug-08	0.47	170	<1.0	1.2	<0.10	<0.50	990	330	320
MW	Aug-07	0.76	110	<1.0	0.83	<0.10	<0.5	1300	350	290
-	Aug-06	0.38	150	<0.50	1.1	NR	<0.5	1700	380	370
5	Aug-09	0.21	840	<2.0	7.9	37	<0.50	1500	150	170
#32	Aug-08	0.21	1000	<1.0	4.7	26	<0.50	1400	160	180
MM	Aug-07	0.36	1100	<1.0	4.7	15	<0.50	1300	180	190
-	Aug-06	0.19	940	5.6	3.4	NR	<0.50	940	180	200
~	Aug-09	0.32	600	<2.0	5.4	23	<0.50	1000	120	130
#33	Aug-08	0.35	540	< <mark>1.0</mark>	2.7	19	<0.50	1100	130	140
MM	Aug-07	0.31	560	<1.0	3.0	26	<0.50	1300	150	160
	Aug-06	0.23	560	33	3.0	NR	<0.50	1600	130	140

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

NS³ = Sample Inadvertently not Collected this Sampling Event

* - Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet holdtime NR1= No Sample Required - Well Contains Separate Phase Hydrocarbon

NR² = No Sample Required per OCD and NMED pre-2007 Conditions

Cross - Gradient Wells

Groundwater Analysis - Total Metals

Section 8.0 - Tab 6.0

			E	PA Method 6	010B, EP/	A Method 7	470: Mercu	iry	The second
Sample Location	Date	Arsenic (mg/L) 0.01	Barium (mg/L) 1	Cadmium (mg/L) 0.005	Cr (mg/L) 0.05	Lead (mg/L) 0.015	Se (mg/L) 0.05	Silver (mg/L) 0.05	Mercury (mg/L) 0.002
	Aug-09	<0.02	0.18	<0.003	< 0.006	< 0.005	<0.05	< 0.005	<0.002
۴	Aug-08	<0.02	<0.020	<0.002	<0.006	< 0.005	<0.050	< 0.005	< 0.0002
MM	Aug-07	<0.020	0.086	<0.002	<0.006	< 0.005	<0.050	< 0.005	<0.0002
2	Aug-06	<0.020	0.023	<0.002	<0.006	< 0.005	<0.050	< 0.005	<0.0002
	Aug-09	<0.02	0.023	<0.002	< 0.006	0.005	<0.25	< 0.005	< 0.0002
#13	Aug-08	<0.020	0.026	<0.002	<0.006	<0.005	< 0.050	< 0.005	< 0.0002
MM	Aug-07	<0.020	0.026	<0.002	0.006	0.006	<0.050	<0.005	< 0.0002
2	Aug-06	<0.020	0.025	<0.002	<0.006	0.0078	<0.050	<0.005	< 0.0002
	Aug-09	< 0.02	2.4	< 0.002	< 0.006	0.008	<0.05	<0.005	<0.0002
#26	Aug-08	<0.020	2.3	<0.002	<0.006	<0.005	<0.050	<0.005	<0.0002
MM	Aug-07	<0.020	2.3	<0.002	<0.006	0.009	<0.050	<0.005	<0.0002
	Aug-06	<0.020	2.2	<0.002	<0.006	<0.005	<0.050	<0.005	<0.0002
~	Aug-09	<0.02	0.03	<0.002	<0.006	0.007	<0.05	<0.005	<0.0002
#27	Aug-08	<0.020	0.028	<0.002	<0.006	<0.005	<0.050	<0.005	<0.0002
MM	Aug-07	<0.020	0.09	<0.002	<0.006	0.011	<0.050	<0.005	<0.0002
- ·	Aug-06	<0.020	0.038	<0.002	<0.006	<0.005	<0.050	<0.005	<0.0002
5	Aug-09	<0.02	0.033	<0.002	<0.006	0.0074	<0.05	<0.005	<0.0002
#32	Aug-08	<0.020	0.026	<0.002	<0.006	<0.006	<0.050	<0.005	<0.0002
MM	Aug-07	<0.020	0.037	<0.002	<0.006	<0.006	<0.050	<0.005	<0.0002
	Aug-06	<0.020	0.032	<0.002	<0.006	<0.005	<0.050	<0.005	<0.0002
	Aug-09	<0.02	<0.02	<0.002	<0.006	<0.005	<0.05	<0.005	<0.0002
#33	Aug-08	<0.020	<0.02	<0.002	<0.006	<0.005	<0.050	<0.005	<0.0002
MW	Aug-07	<0.020	0.26	<0.002	<0.006	0.007	<0.050	<0.005	<0.0002
8 6 1 3	Aug-06	<0.020	0.017	<0.002	<0.006	<0.005	<0.050	<0.005	<0.0002

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

* - Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet holdtime NR'= No Sample Required - Well Contains Separate Phase Hydrocarbon

NS³ = Sample Inadvertently not Collected this Sampling Event

NR² = No Sample Required per OCD and NMED pre-2007 Conditions

Cross - Gradient Wells

Groundwater Analysis - Dissolved Metals

Section 8.0 - Tab 6.0

						EPA Me	thod 6020/	A for Urar	nium - EP/	A Method	6010B for	All Other	r Metals				
Sample Location	Date	Arsenic (mg/L)	Barium (mg/L)	Cadmium (mg/L)	Calcium (mg/L)	Cr (mg/L)	Copper (mg/L)	lron (mg/L)	Lead (mg/L)	Mg (mg/L)	Mn (mg/L)	K (mg/L)	Se (mg/L)	Silver (mg/L)	Sodium (mg/L)	Uranium (mg/L)	Zinc (mg/L)
		0.1	1	0.01		0.05	1	1	0.05		0.2		0.05	0.05	Sandal State	0.03	10
-	Aug-09	<0.02	<0.02	< 0.002	63	<0.006	<0.006	0.041	<0.005	16	0.031	2.6	< 0.05	< 0.005	85	0.002	< 0.05
1 #1	Aug-08	<0.02	< 0.02	<0.002	NS ³	<0.006	<0.006	<0.02	<0.005	NS ³	0.022	NS ³	<0.05	<0.005	NS ³	0.002	< 0.05
MM	Aug-07	<0.02	0.023	<0.002	63	<0.006	<0.006	<0.02	<0.005	16	0.027	2.0	<0.05	<0.005	78	<0.1	< 0.05
_	Aug-06	<0.02	0.023	<0.002	74	<0.006	<0.006	<0.02	<0.005	18	0.09	2.4	<0.05	<0.005	120	<0.1	0.047
3	Aug-09	<0.02	0.022	<0.002	240	<0.006	<0.006	<0.02	<0.005	76	1.3	4.0	<0.05	<0.005	540	0.008	<0.05
ŧ	Aug-08	<0.02	0.026	<0.002	NS ³	<0.006	<0.006	<0.02	<0.005	NS ³	1.4	NS ³	<0.025	<0.005	NS ³	0.009	< 0.05
MM	Aug-07	<0.02	0.027	<0.002	270	<0.006	<0.006	0.047	<0.005	81	1.4	3.6	<0.05	<0.005	640	<0.1	< 0.05
-	Aug-06	<0.02	0.025	<0.002	250	<0.006	0.0063	<0.02	0.0078	82	1.1	3.6	<0.05	<0.005	620	<0.1	0.061
.0	Aug-09	<0.02	2.2	<0.002	120	<0.006	<0.006	7.2	<0.005	41	2.9	3.7	<0.05	<0.005	460	<0.001	<0.05
#26	Aug-08	<0.02	2.3	<0.002	NS ³	<0.006	<0.006	6.9	<0.005	NS ³	3	NS ³	<0.025	<0.005	NS ³	< 0.001	<0.05
MM	Aug-07	<0.2	2.3	<0.002	110	<0.006	<0.006	6.3	<0.005	38	3.2	3	<0.05	<0.005	450	<0.1	< 0.05
-	Aug-06	<0.02	2.2	<0.002	10	<0.006	<0.006	6.8	<0.005	38	3.1	3	<0.05	<0.005	450	<0.1	0.048
7	Aug-09	<0.02	0.03	<0.002	230	<0.006	<0.006	0.4	<0.005	33	2.1	2.7	<0.05	<0.005	350	0.0014	< 0.05
#27	Aug-08	<0.02	0.028	<0.002	NS ³	<0.006	<0.006	1.5	<0.005	NS ³	4.6	NS ³	<0.025	<0.005	NS ³	0.002	0.058
MM	Aug-07	<0.02	0.021	<0.002	330	<0.006	<0.006	10	<0.005	41	9.6	2.6	<0.05	<0.005	350	<0.1	<0.05
~	Aug-06	<0.02	0.038	<0.002	360	<0.006	<0.006	7.4	<0.005	52	8	3.7	<0.05	<0.005	440	<0.1	0.005
	Aug-09	<0.02	0.022	<0.002	330	<0.006	<0.006	<0.02	<0.005	52	<0.002	4.8	<0.05	<0.005	780	0.01	<0.05
#32	Aug-08	<0.02	0.026	<0.002	NS ³	<0.006	<0.006	<0.02	<0.005	NS ³	<0.002	NS ³	<0.25	<0.005	NS ³	0.01	<0.05
MW	Aug-07	<0.02	0.028	<0.002	350	<0.006	<0.006	<0.02	< 0.005	51	0.002	3.5	<0.05	<0.005	820	<0.1	<0.05
2	Aug-06	<0.02	0.032	<0.002	260	<0.006	<0.006	<0.02	<0.005	38	<0.002	3.1	<0.05	<0.005	700	<0.1	0.046
	Aug-09	<0.02	<0.02	< 0.002	230	<0.006	<0.006	<0.02	<0.005	33	<0.002	5.5	< 0.05	<0.005	550	0.006	<0.05
#33	Aug-08	<0.02	<0.02	<0.002	NS ³	<0.006	<0.006	<0.02	<0.005	NS ³	<0.002	NS ³	<0.025	<0.005	NS ³	0.007	<0.05
MM	Aug-07	<0.02	<0.02	<0.002	270	<0.006	<0.006	<0.02	< 0.005	37	0.009	4.1	<0.05	<0.005	620	<0.1	<0.05
M	Aug-06	<0.02	0.017	<0.002	320	<0.006	<0.006	<0.020	< 0.005	47	0.0077	4.6	<0.05	<0.005	660	<0.1	0.12

NS¹= Well is Dry or Not Enough Water to Sample- No Sample NS² = Not Sampled due to approved Facility-Wide Monitoring Plan NR1= No Sample Required - Well Contains Separate Phase Hydrocarbon

NR² = No Sample Required per OCD and NMED pre-2007 Conditions

NS3 = Sample Inadvertently not Analyzed this Sampling Event

* - Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet holdtime

Cross - Gradient Wells

and the second s		EPA M	Section 8.0 - Tab 6.0 ethod 8270B	
Sample Location	Date	lsophorone (mg/L)	2- Methylnaphthalene (mg/L)	Naphthalene (mg/L)
		0.071 ²	0.15 ²	0.0014 ²
	Aug-09	<0.01	0.016	0.075
MW #26	Aug-08	0.013	0.013	0.06
	Aug-07	<0.01	0.012	0.051

Groundwater Analysis - Semi-Volatile Organic Compounds

1 - WQCC 20 NMAC 6.2.3103

2 - USEPA Regional Screening Levels (April 2009)

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

NS³ = Sample Inadvertently not Collected this Sampling Event

NR1= No Sample Required - Well Contains Separate Phase Hydrocarbon

NR² = No Sample Required per OCD and NMED pre-2007 Conditions

Groundwater Analysis - Organics

Section 8.0 - Tab 7.0

			EP	A Method 82	60B		EPA Meth	nod 8015B
Sample Location	Date	Benzene (mg/L) 0.005	Toluene (mg/L) 0.75	EthylBen (mg/L) 0.70	Xylene (mg/L) 0.62	MTBE (mg/L) 0.012	DRO (mg/L) 0.2	GRO (mg/L)
	Aug-09	0.009	<0.001	0.004	< 0.0015	0.012	12	1.9
#11	Apr-09	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
MW #	Aug-08	0.0038	< 0.001	0.0022	< 0.0015	0.019	9.6	3.4
Σ	Apr-08	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-09	<0.001	<0.001	<0.001	<0.0015	<0.001	<1.0	<0.05
#12	Apr-09	<0.001	<0.001	<0.001	<0.002	<0.001	<1.0	<0.05
MM	Aug-08	<0.001	<0.001	<0.001	<0.0015	<0.001	<1.0	<0.05
2	Apr-08	<0.001	<0.001	<0.001	<0.003	<0.0015	<1.0	<0.05
	Aug-09	0.032	<0.001	<0.001	<0.0015	0.0041	9.5	0.74
#34	Apr-09	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
MW #34	Aug-08	0.0033	<0.001	<0.001	0.0017	0.0026	3.9	1.4
~	Apr-08	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
10	Aug-09	<0.001	<0.001	<0.001	<0.0015	0.0025	2.9	0.84
#35	Apr-09	<0.001	<0.001	<0.001	<0.002	0.0024	2.3	0.33
MM	Aug-08	<0.002	<0.002	<0.002	<0.003	<0.002	1.6	0.54
	Apr-08	<0.001	<0.001	<0.001	<0.003	0.0018	2.1	0.52
-	Aug-09	<0.001	<0.001	<0.001	<0.0015	< 0.001	2.1	<0.05
#37	Apr-09	<0.001	<0.001	<0.001	<0.002	<0.001	2.4	0.053
MW #37	Aug-08	<0.001	<0.001	<0.001	<0.0015	<0.001	1.5	0.11
14 24	Apr-08	<0.001	<0.001	<0.001	<0.003	<0.0015	2.3	0.15
80	Aug-09	<0.001	<0.001	<0.001	<0.0015	<0.001	<1.0	<0.05
#38	Apr-09	<0.001	<0.001	<0.001	<0.002	0.002	1.6	<0.05
MM	Aug-08	<0.001	<0.001	<0.001	<0.0015	<0.001	<1.0	<0.05
N N	Apr-08	<0.001	<0.001	<0.001	<0.003	0.0024	1.2	0.073

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

NS³ = Sample Inadvertently not Collected this Sampling Event

NR¹= No Sample Required - Well Contains Separate Phase Hydrocarbon

NR² = No Sample Required per OCD and NMED pre-2007 Conditions

Groundwater Analysis - General Chemistry

Section 8.0 - Tab 7.0

					EPA 300.0				SM 2	320B
Sample Location	Date	Fluoride (mg/L) 1.6	Chloride (mg/L) 250	Nitrite (mg/L)	Bromide (mg/L)	Nitrogen (mg/L) 10	P (mg/L)	Sulfate (mg/L) 600	CO2 (mg/L)	ALK (mg/L)
1	Aug-09	0.38	330	<0.20	4.00	<0.10	<0.50	4.0	1100	980
#11	Aug-08	0.57	110	<1.0	1.40	<0.10	<0.50	1.1	1100	1100
MW #11	Aug-07	0.57	96	<1.0	1.03	<0.10	<0.50	10	1300	1000
2	Aug-06	0.10	82	<1.0	1.00	<0.10	<0.50	19	1100	1100
	Aug-09	0.44	15	<0.10	0.25	<0.10	<0.50	600	300	320
#12	Aug-08	0.50	8.3	<0.10	<0.10	<0.10	<0.50	130	270	280
MM	Aug-07	0.39	19	<0.10	<0.50	<0.10	<0.50	830	250	260
2	Aug-06	0.36	19	<0.10	<0.50	<0.10	<0.50	140	260	290
1.25	Aug-09	0.61	180	<2.0	2.20	<0.10	<0.50	18	850	880
#34	Aug-08	0.83	110	<0.10	1.30	<0.10	<0.50	9.9	740	750
MW #34	Aug-07	0.83	100	<1.0	1.30	<0.10	<0.50	68	880	840
~	Aug-06	0.95	60	<1.0	0.80	<0.10	<0.50	27	730	760
	Aug-09	0.64	98	<1.0*	1.10	<1.0*	<0.50	10	670	710
#35	Aug-08	0.76	110	<0.1	1.30	<0.10	<0.50	3.6	830	870
MM	Aug-07	0.71	100	<1.0	1.00	<0.10	<0.50	4.3	820	820
2	Aug-06	0.48	180	<1.0	2.30	<0.10	<0.50	3.2	980	1000
	Aug-09	0.77	280	<1.0*	2.50	<1.0*	<0.50	37	740	810
#37	Aug-08	0.79	230	<0.10	2.90	<0.10	<0.50	34	760	820
MM	Aug-07	0.75	320	3.70	<1.0	<0.10	<0.50	37	870	890
2	Aug-06	0.45	390	<1.0	4.20	<0.10	<0.50	290	720	780
	Aug-09	0.84	64	<1.0*	0.70	<1.0*	<0.50	68	530	580
#38	Aug-08	0.78	60	<0.10	0.67	<0.10	<0.50	150	570	600
MM	Aug-07	1.00	43	<0.10	0.50	<0.10	<0.50	89	610	630
2	Aug-06	0.67	96	<0.10	1.10	<0.10	<0.50	490	600	640

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

NS³ = Sample Inadvertently not Collected this Sampling Event

* - Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet holdtime NR¹= No Sample Required - Well Contains Separate Phase Hydrocarbon NR² = No Sample Required per OCD and NMED pre-2007 Conditions

Groundwater Analysis - Total Metals

Section 8.0 - Tab 7.0

pate (H)	and the second		a de la companya de l	EPA Met	hod 6010E	3, EPA Met	hod 7470: I	Mercury	
Sample Location	Date	Arsenic (mg/L) 0.01	Barium (mg/L) 1	Cadmium (mg/L) 0.005	Cr (mg/L) 0.05	Lead (mg/L) 0.015	Se (mg/L) 0.05	Silver (mg/L) 0.05	Mercury (mg/L) 0.002
	Aug-09	<0.020	0.92	<0.002	0.009	0.011	< 0.050	<0.005	< 0.0002
#11	Aug-08	<0.020	0.7	<0.002	0.009	0.0074	<0.25	<0.005	< 0.0002
MM	Aug-07	<0.020	0.75	<0.002	<0.006	0.019	<0.050	<0.005	<0.0002
2	Aug-06	<0.020	0.69	<0.002	<0.006	<0.005	<0.050	<0.005	<0.0002
01	Aug-09	<0.020	0.17	<0.002	0.69	0.081	<0.050	<0.005	<0.0002
#12	Aug-08	<0.020	0.06	<0.002	0.011	<0.005	<0.050	<0.005	<0.0002
MM	Aug-07	<0.020	0.19	<0.002	0.93	0.03	<0.050	<0.005	<0.0002
-	Aug-06	<0.020	0.04	<0.002	0.0078	<0.005	<0.050	<0.005	< 0.0002
**	Aug-09	<0.020	0.71	<0.002	<0.006	0.0073	< 0.050	<0.005	<0.0002
#3	Aug-08	<0.020	0.57	<0.002	<0.006	<0.005	<0.25	<0.005	<0.0002
MW #34	Aug-07	<0.020	0.55	<0.002	<0.006	<0.005	<0.050	<0.005	<0.0002
-	Aug-06	<0.020	0.44	<0.002	<0.006	<0.005	<0.050	<0.005	<0.0002
5	Aug-09	<0.02	0.54	<0.002	<0.006	0.011	<0.05	<0.005	<0.0002
#35	Aug-08	<0.020	0.65	<0.002	<0.006	<0.005	<0.25	<0.005	<0.0002
MM	Aug-07	0.022	0.86	<0.002	<0.006	0.008	<0.050	<0.005	<0.0002
-	Aug-06	0.027	0.71	<0.002	<0.006	<0.005	<0.050	<0.005	<0.0002
2	Aug-09	<0.020	0.7	<0.002	<0.006	0.0065	<0.25	<0.005	<0.0002
#37	Aug-08	<0.020	0.43	<0.002	<0.006	<0.005	<0.25	<0.005	<0.0002
MM	Aug-07	<0.020	0.65	<0.002	<0.006	<0.005	<0.050	<0.005	<0.0002
	Aug-06	<0.020	0.3	<0.002	<0.006	<0.005	<0.050	<0.005	<0.0002
~	Aug-09	<0.02	0.18	<0.002	<0.006	0.009	<0.25	<0.005	<0.0002
#38	Aug-08	<0.020	0.17	<0.002	<0.006	<0.005	<0.050	<0.005	<0.0002
MW	Aug-07	<0.020	0.14	<0.002	<0.006	0.020	<0.050	<0.005	<0.0002
in the ship	Aug-06	<0.020	0.093	<0.002	<0.006	<0.005	<0.050	<0.005	<0.0002

NS1= Well is Dry or Not Enough Water to Sample- No Sample

* - Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet holdtime

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

NS^s = Sample Inadvertently not Collected this Sampling Event

NR¹= No Sample Required - Well Contains Separate Phase Hydrocarbon NR² = No Sample Required per OCD and NMED pre-2007 Conditions

Groundwater Analysis - Dissolved Metals

Section 8.0 - Tab 7.0

			and the star	a search an		EPA I	Method 60	20A for U	ranium - E	PA Metho	od 6010B f	or All Otl	ner Metals	1	See See		Section and
Sample Location	Date	Arsenic (mg/L)	Barium (mg/L)	Cadmium (mg/L)	Calcium (mg/L)	Cr (mg/L)	Copper (mg/L)	Iron (mg/L)	Lead (mg/L)	Mg (mg/L)	Mn (mg/L)	K (mg/L)	Se (mg/L)	Silver (mg/L)	Sodium (mg/L)	Uranium (mg/L)	Zinc (mg/L)
Location		0.1	1.	0.01		0.05	1	1	0.05		0.2	S. S. T. C. LARS	0.05	0.05		0.03	10
-	Aug-09	<0.02	0.87	< 0.002	120	<0.006	<0.006	12	0.007	27	2.3	1.6	<0.05	<0.005	420	<0.001	<0.05
£	Aug-08	<0.02	0.7	<0.002	NS ³	0.009	<0.006	12	0.007	NS ³	1.9	NS ³	<0.25	<0.005	NS ³	<0.001	<0.05
MM	Aug-07	<0.02	0.6	<0.002	98	<0.006	0.008	9.5	0.011	22	1.9	1.5	<0.05	<0.005	400	<0.1	<0.05
	Aug-06	<0.02	0.69	<0.002	100	<0.006	<0.006	9.3	<0.005	22	1.8	1.4	<0.05	<0.005	390	<0.1	0.051
3	Aug-09	<0.02	0.066	<0.002	100	0.013	<0.006	0.26	<0.005	21	0.34	<1.0	<0.05	<0.005	260	0.008	<0.05
ŧ	Aug-08	<0.02	0.06	<0.002	NS ³	0.011	<0.006	0.021	<0.005	NS ³	0.065	NS ³	<0.25	<0.005	NS ³	0.003	0.095
MM	Aug-07	<0.02	0.05	<0.002	120	0.008	<0.006	0.042	<0.005	25	0.46	1.1	<0.05	<0.005	220	<0.1	<0.05
	Aug-06	<0.02	0.04	<0.002	73	0.0078	<0.006	0.069	<0.005	14	0.3	1.1	<0.05	<0.005	100	<0.1	0.036
	Aug-09	<0.02	0.65	<0.002	99	<0.006	<0.006	3.6	<0.005	19	3.6	1.3	< 0.05	<0.005	350	<0.001	<0.05
#34	Aug-08	<0.02	0.57	<0.002	NS ³	<0.006	<0.006	4.1	<0.005	NS ³	3.1	NS ³	<0.25	<0.005	NS ³	<0.001	<0.05
MM	Aug-07	<0.02	0.25	<0.002	130	<0.006	<0.006	1.4	0.005	30	2.0	2.9	<0.05	<0.005	520	<0.1	<0.05
-	Aug-06	<0.02	0.71	<0.002	110	<0.006	0.0065	3	<0.005	12	2.4	<1.0	<0.05	< 0.005	310	<0.1	0.11
	Aug-09	<0.2	0.39	<0.002	73	<0.006	<0.006	3.1	<0.005	13	1.6	2.3	<0.05	<0.005	270	< 0.001	<0.05
#35	Aug-08	<0.02	0.65	<0.002	NS ³	<0.006	<0.006	2.6	<0.005	NS ³	1.4	NS ³	<0.25	<0.005	NS ³	< 0.001	<0.05
MM	Aug-07	<0.02	0.71	<0.002	79	<0.006	0.006	3.5	<0.005	16	1.7	1.9	<0.05	<0.005	340	<0.1	<0.05
2	Aug-06	0.027	0.71	<0.002	110	<0.006	<0.006	2.8	<0.005	26	2.9	2.1	<0.05	<0.005	410	<0.1	0.061
	Aug-09	<0.02	0.43	<0.002	82	<0.006	<0.006	1.1	<0.005	18	1.4	2.9	< 0.05	<0.005	370	<0.001	<0.05
#37	Aug-08	<0.02	0.43	<0.002	NS ³	<0.006	<0.006	0.95	<0.005	NS ³	1.2	NS ³	<0.25	< 0.005	NS ³	< 0.001	0.15
MW	Aug-07	<0.02	0.47	<0.002	110	<0.006	<0.006	1.5	0.005	23	1.7	2.9	< 0.05	< 0.005	460	<0.1	<0.05
2	Aug-06	<0.02	0.3	<0.002	180	<0.006	<0.006	1.3	<0.005	44	2.9	3.5	< 0.05	< 0.005	550	<0.1	0.032
	Aug-09	<0.10	0.11	<0.002	91	<0.006	< 0.006	2.5	< 0.005	16	1.6	3.3	<0.05	< 0.005	210	0.003	<0.05
#38	Aug-08	<0.02	0.17	<0.002	NS ³	<0.006	<0.006	2.2	< 0.005	NS ³	2.6	NS ³	<0.25	< 0.005	NS ³	0.002	<0.05
MM	Aug-07	<0.02	0.11	<0.002	95	<0.006	<0.006	1.2	< 0.005	16	2	2.5	<0.05	< 0.005	230	<0.1	<0.05
N	Aug-06	<0.02	0.093	<0.002	210	<0.006	<0.006	3.1	< 0.005	36	3.5	4.3	< 0.05	< 0.005	290	<0.1	0.059

NS'= Well is Dry or Not Enough Water to Sample- No Sample NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

NR*= No Sample Required - Well Contains Separate Phase Hydrocarbon

NR² = No Sample Required per OCD and NMED pre-2007 Conditions

NS³ = Sample Inadvertently not Analyzed this Sampling Event

* - Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet holdtime

14			Section 8.0 - T EPA Method 82	and some the second sec	Shirth Las
Sample Location	Date	2-methylnaphthalene (mg/L)	Naphthalene (mg/L)	Bis (2-ethylexyl) phthalate (mg/L)	1 WQC 2USEPA Le
		0.15 ²	0.0014 ²	0.006 ²	
Station .	Aug-09	0.019	0.051	<0.01	
MW #11	Aug-08	0.01	0.032	<0.01	NMA jional (April
and the	Aug-07	0.013	0.043	<0.01	C 6.2. Scree 2009
BALAL #40	Aug-09	<0.01	<0.01	0.013	3.2.3103 creening 009)
MW #12	Aug-08	<0.01	<0.01	<0.01	ng

Groundwater Analysis - Semi-Volatile Organic Compounds

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NS² = Sample Inadvertently not Collected this Sampling Event

NR1= No Sample Required - Well Contains Separate Phase Hydrocarbon

NR² = No Sample Required per OCD and NMED pre-2007 Conditions

Groundwater Analysis - Organics

Section 8.0 - Tab 8.0

			EP	A Method 826	60B		
Sample Location	Date	Benzene (mg/L) 0.005	Toluene (mg/L) 0.75	EthylBen (mg/L) 0.70	Xylene (mg/L) 0.62	MTBE (mg/L) 0.012	40CF TPH Sc 2a(DRO) Screening
~	Aug-09	< 0.001	< 0.001	< 0.001	< 0.003	< 0.0015	40CFR1 E H Scree DRO) ening L
Outfall #2	Apr-09	<0.001	<0.001	<0.001	<0.003	<0.0015	R141.6 Ethylt eening Levels
utfa	Aug-08	<0.001	<0.001	<0.001	<0.003	<0.0015	CONTRACTOR STRUCTURE OF CONTRACTOR
0	Apr-08	<0.001	<0.001	<0.001	<0.003	<0.0015	(Benz enzen Guide USE (April
69	Aug-09	<0.001	<0.001	<0.001	<0.003	<0.0015	izene ne) eline EPA EPA
# IIE	Apr-09	<0.001	<0.001	<0.001	<0.003	<0.0015	e ai s T s T s T s 9)
Outfall #3	Aug-08	<0.001	<0.001	<0.001	<0.003	<0.0015	on
0	Apr-08	<0.001	<0.001	<0.001	<0.003	<0.0015	BE

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

NS³ = Sample Inadvertently not Collected this Sampling Event

NR1= No Sample Required - Well Contains Separate Phase Hydrocarbon

NR² = No Sample Required per OCD and NMED pre-2007 Conditions

Groundwater Analysis - General Chemistry

Section 8.0 - Tab 8.0

		AP A BEAR			EPA 300.0		19-2 A.J. 14		SM 2	320B
Sample Location	Date	Fluoride (mg/L) 1.6	Chloride (mg/L) 250	Nitrite (mg/L)	Bromide (mg/L)	Nitrogen (mg/L) 10	P (mg/L)	Sulfate (mg/L) 600	CO2 (mg/L)	ALK (mg/L)
2	Aug-09	0.43	5.3	<0.10	0.18	<0.10	<0.50	73	120	130
Outfall #2	Apr-09	0.65	11	*<0.10	0.11	*<0.10	<0.50	84	320	360
utfa	Aug-08	1.5	17	<0.10	<0.10	<0.10	<0.50	770	240	250
0	Apr-08	0.7	14	<0.01	<0.01	<0.01	<0.50	110	320	360
#3	Aug-09	0.27	4.5	<0.10	0.16	0.25	<0.50	50	92	100
# IIE	Apr-09	0.47	22	*<0.10	0.16	*<0.10	<0.50	150	280	300
Outfall	Aug-08	0.38	6.1	<0.10	<0.10	0.36	<0.50	100	110	120
0	Apr-08	0.48	23	<0.01	0.15	2.8	<0.50	170	260	280

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

NS³ = Sample Inadvertently not Collected this Sampling Event

NR1= No Sample Required - Well Contains Separate Phase Hydrocarbon

NR² = No Sample Required per OCD and NMED pre-2007 Conditions

* - Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet holdtime

Groundwater Analysis - Total Metals

Section 8.0 - Tab 8.0

				EPA Met	hod 6010E	8, EPA Met	hod 7470: M	Nercury	and the
Sample Location	Date	Arsenic (mg/L)	Barium (mg/L)	Cadmium (mg/L)	Cr (mg/L)	Lead (mg/L)	Se (mg/L)	Silver (mg/L)	Mercury (mg/L)
Location		0.01	1	0.005	0.05	0.015	0.05	0.05	0.002
5	Aug-09	<0.02	0.029	<0.002	<0.006	<0.005	<0.05	<0.005	<0.0002
all #	Apr-09	<0.02	0.048	<0.002	<0.006	<0.005	<0.05	<0.005	<0.0002
Outfall #2	Aug-08	<0.02	0.11	<0.002	<0.006	0.0062	<0.05	<0.005	<0.0002
0	Apr-08	<0.020	0.039	<0.002	<0.006	<0.005	<0.050	<0.005	<0.0002
#3	Aug-09	<0.02	0.056	>0.002	<0.006	0.006	<0.05	<0.005	<0.0002
all #	Apr-09	<0.02	0.04	>0.002	<0.006	<0.005	<0.05	<0.005	<0.0002
Outfall	Aug-08	<0.02	0.08	>0.002	<0.006	<0.005	<0.05	<0.005	<0.0002
0	Apr-08	<0.020	0.033	<0.002	<0.006	<0.005	<0.050	<0.005	<0.0002

NS¹= Well is Dry or Not Enough Water to Sample- No Sample NS² = Not Sampled due to approved Facility-Wide Monitoring Plan NS³ = Sample Inadvertently not Collected this Sampling Event

NR1= No Sample Required - Well Contains Separate Phase Hydrocarbon

NR² = No Sample Required per OCD and NMED pre-2007 Conditions

Groundwater Analysis - Dissolved Metals

Section 8.0 - Tab 8.0

								(Asia)	EPA	Method 6	010B						
Sample Location	Date	Arsenic (mg/L) 0.1	Barium (mg/L)	Cadmium (mg/L) 0.01	Calcium (mg/L)	Cr (mg/L) 0.05	Copper (mg/L)	Iron (mg/L) 1	Lead (mg/L) 0.05	Mg (mg/L)	Mn (mg/L) 0.2	K (mg/L)	Se (mg/L) 0.05	Silver (mg/L) 0.05	Sodium (mg/L)	Uranium (mg/L) 0.03	Zinc (mg/L) 10
8	Aug-09	<0.02	0.028	<0.002	48	<0.006	<0.006	<0.02	<0.005	9.5	0.0028	1.9	<0.05	<0.005	27	0.0018	<0.05
# 11	Apr-09	<0.02	0.047	<0.002	98	<0.006	<0.006	<0.02	<0.005	21	<0.002	2	<0.05	<0.005	64	0.005	<0.05
utfall	Aug-08	<0.02	0.088	<0.002	NS ³	<0.006	<0.006	<0.02	<0.005	NS ³	<0.002	NS ³	<0.25	<0.005	NS ³	0.004	0.079
0	Apr-08	<0.02	0.042	<0.002	92	<0.006	<0.006	<0.02	<0.005	21	<0.002	1.9	<0.05	<0.005	70	<0.10	<0.05
#3	Aug-09	<0.02	0.053	<0.002	39	<0.006	<0.006	<0.02	<0.005	7.5	<0.002	1.5	<0.05	<0.005	20	0.0013	<0.05
=	Apr-09	<0.02	0.044	<0.002	99	<0.006	<0.006	<0.02	<0.005	20	<0.002	1.7	<0.05	<0.005	76	0.005	<0.05
utfa	Aug-08	<0.02	0.075	<0.002	NS ³	<0.006	<0.006	<0.02	<0.005	NS ³	<0.002	NS ³	<0.05	<0.005	NS ³	0.001	<0.05
0	Apr-08	<0.02	0.034	<0.002	88	<0.006	<0.006	<0.02	<0.005	20	<0.002	1.8	<0.05	<0.005	87	<0.10	0.068

NS¹= Well is Dry or Not Enough Water to Sample- No Sample NS² = Not Sampled due to approved Facility-Wide Monitoring Plan NS³ = Sample Inadvertently not Collected this Sampling Event NR¹= No Sample Required - Well Contains Separate Phase Hydrocarbon NR² = No Sample Required per OCD and NMED pre-2007 Conditions

Groundwater Analysis

EPA 8260B							EPA 300.0						SM 2320B		
Sample Location	Date	Benzene (mg/L) 0.005	Toluene (mg/L) 0.75	EthylBen (mg/L) 0.70	Xylene (mg/L) 0.62	MTBE (mg/L) 0.012		Fluoride (mg/L)	Chloride (mg/L) 250	Nitrite (mg/L)	Nitrogen (mg/L) 10	P (mg/L)	Sulfate (mg/L) 600	CO2 (mg/L)	ALK (mg/L)
	Aug-09	< 0.003	<0.001	<0.001	< 0.003	0.0034		1.6		-0.0	CONTRACTOR	-0.50		000	000
100 11	Aug-09 Apr-09	<0.001	< 0.001	<0.001	<0.003	0.0034	Salation and	0.29	390	<2.0	<0.10	<0.50	1500	200	220
Seep 1	Aug-08	< 0.001	<0.001	<0.001	< 0.002	0.042	2	0.28	310 370	<1.0 <1.0	<0.10 <0.10	<0.50	1400 1500	340 250	380 250
	Apr-08	< 0.001	< 0.001	<0.001	<0.003	NS ²	acc	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-09	< 0.001	< 0.001	<0.001	<0.002	< 0.0015	207	0.22	1400	<2.0	<2.0	<10.0	6800	120	130
	Apr-09	< 0.001	< 0.001	<0.001	<0.002	0.006	SEP/	0.32	340	<1.0	<0.10	<0.50	2200	290	320
Seep 3	Aug-08	< 0.001	<0.001	<0.001	< 0.002	< 0.015	WQCC 20 NMAC 6.2.3103 40CFR141.61 (Benzene and USEPA Regional Screening Levels (April 2009) -	0.32	370	<1.0	<0.10	<0.50	2500	160	160
	Apr-08	NS ¹	NS ¹	NS ¹	NS1	NS ¹	.310 gion	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	
	Aug-09	<0.001	< 0.001	< 0.001	< 0.003	< 0.0015	al So	0.58	4800	<2.0	<2.0	<10.0	1500	150	NS ² 160 440 370 NS ² NS ¹
_	Apr-09	< 0.001	<0.001	<0.001	<0.003	0.0013	400	<0.50	2900	<2.0*	<2.0*	<0.50	1000	420	440
Seep 6	Aug-08	<0.001	<0.001	<0.001	<0.002	0.006	UPR I	0.47	2500	<1.0	<0.10	<0.50	960	370	370
	Apr-08	< 0.001	< 0.001	< 0.001	<0.002	NS ²	41.6 eve	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-09	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	1 (B) Is (A	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
	Apr-09	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	pril	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
Seep 7	Aug-08	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	ne a 2009	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
	Apr-08	<0.001	<0.001	<0.001	<0.002	NS ²) - M	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²
	Aug-09	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	d Ethylbenzene) - MTBE	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
S. March	Apr-09	<0.001	< 0.001	<0.001	<0.002	<0.001	penz	0.27	650	<2.0*	<2.0*	<0.50	2200	190	200
Seep 8	Aug-08	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	ene)	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
	Apr-08	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹		NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
	Aug-09	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹		NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
L'ALIN	Apr-09	<0.001	<0.001	<0.001	<0.002	0.048		0.35	620	<2.0*	<2.0*	<0.50	1500	420	460
Seep 9	Aug-08	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹		NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹
Charles and	Apr-08	<0.001	<0.001	<0.001	<0.002	NS ²		NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²	NS ²

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NS² = Not Sampled - Sample was taken before implementation of Facility-Wide Monitoring Plan

* - Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet holdtime

Tank #33 Effluent Analytical Results 2009

Section 8.0 - Tab 9.0

Det	Benzene (ppb)	Toluene (ppb)	EthylBen (ppb)	Xylene (ppb)	MTBE (ppb)					
Date	EPA 8260B									
alle aller	500									
1/5/2009	5.9	<1.0	1.5	<2.0	3.7					
2/2/2009	1.2	<1.0	<1.0	<2.0	3.4					
3/5/2009	1.1	<1.0	<1.0	<2.0	4.1					
4/1/2009	<1.0	<1.0	<1.0	<2.0	3.8					
5/5/2009	1.4	<1.0	<1.0	<2.0	3.2					
6/1/2009	<1.0	<1.0	<1.0	<2.0	2.4					
7/1/2009	1.1	<1.0	<1.0	<2.0	2.2					
8/3/2009	<1.0	<1.0	<1.0	<2.0	1.5					
9/7/2009	1.3	<1.0	<1.0	<2.0	<1.0					
10/1/2009	<1.0	<1.0	<1.0	<2.0	<1.0					
11/17/2009	<1.0	<1.0	<1.0	<2.0	1.70					
12/2/2009	<1.0	<1.0	<1.0	<2.0	<1.0					

San Juan River Analysis - 2009

Organics

Section 8.0 - Tab 10.0

	mg/L	Sampling Event	Date Sampled	North of MW #46	North of MW #45	Upstream of Refinery	Downstream of Refinery	
	U	Semi-Annual	08/20/09	< 0.001	< 0.001	<0.001	< 0.001	
	Benzene (mg/L)	Semi-Annual	04/13/09	<0.001	<0.001	< 0.001	<0.001	0.005 (mg/L)
	en:	Semi-Annual	08/05/08	<0.001	<0.001	<0.001	<0.001	40CFR141.61
	8	Semi-Annual	03/12/08	<0.001	<0.001	<0.001	<0.001	Section Section
0	e	Semi-Annual	08/20/09	<0.001	<0.001	<0.001	< 0.001	0.75
8260	Toluene (mg/L)	Semi-Annual	04/13/09	<0.001	<0.001	<0.001	<0.001	(mg/L) WQCC 20
8	olt (mg	Semi-Annual	08/05/08	<0.001	<0.001	< 0.001	<0.001	NMAC
po	F	Semi-Annual	03/12/08	<0.001	<0.001	<0.001	<0.001	6.2.3103
EPA Method -	ua	Semi-Annual	08/20/09	<0.001	<0.001	<0.001	<0.001	0.7
Ň	EthylBen (mg/L)	Semi-Annual	04/13/09	<0.001	<0.001	<0.001	<0.001	(mg/L)
Ac	(Thy	Semi-Annual	08/05/08	<0.001	< 0.001	<0.001	<0.001	40CFR141.61
Ē	ш	Semi-Annual	03/12/08	< 0.001	< 0.001	<0.001	<0.001	A CARLES AND A CARL
	0	Semi-Annual	08/20/09	<0.003	<0.003	< 0.003	<0.003	0.62
	Xylene (mg/L)	Semi-Annual	04/13/09	<0.003	< 0.003	<0.003	<0.003	(mg/L) WQCC 20
	IX E	Semi-Annual	08/05/08	< 0.003	< 0.003	<0.003	<0.003	NMAC
	ALC: NO	Semi-Annual	03/12/08	<0.002	<0.002	<0.002	<0.002	6.2.3103
		Semi-Annual	08/20/09	<0.0015	<0.0015	<0.0015	<0.0015	
	MTBE (mg/L)	Semi-Annual	04/13/09	<0.0015	<0.0015	<0.0015	<0.0015	0.012 (mg/L)
	LW)	Semi-Annual	08/05/08	<0.0015	<0.0015	<0.0015	<0.0015	USEPA Regional Screening Levels
		Semi-Annual	03/12/08	<0.0025	<0.0025	<0.0025	<0.0025	(April 2009)
	Sec. Sec. 5	Semi-Annual	08/20/09	<1.0	<1.0	<1.0	<1.0	0.20 (mg/L)
	DRO (mg/L)	Semi-Annual	04/13/09	<1.0	<1.0	<1.0	<1.0	TPH Screening
8	ŌĔ	Semi-Annual	08/05/08	<1.0	<1.0	<1.0	<1.0	Guidelines
hod 8015B		Semi-Annual	03/12/08	<1.0	<1.0	<1.0	<1.0	Table 2a
1 8(16.1	Semi-Annual	08/20/09	<5.0	<5.0	<5.0	<5.0	and the state of the state
100	MRO (mg/L)	Semi-Annual	04/13/09	<5.0	<5.0	<5.0	<5.0	
eth	N E	Semi-Annual	08/05/08	<5.0	<5.0	<5.0	<5.0	
Σ	Talls TRu	Semi-Annual	03/12/08	<5.0	<5.0	<5.0	<5.0	
EPA Met		Semi-Annual	08/20/09	<0.050	<0.050	<0.050	<0.050	
ш	GRO (mg/L)	Semi-Annual	04/13/09	<0.050	<0.050	<0.050	<0.050	
P	UE	Semi-Annual	08/05/08	<0.050	<0.050	<0.050	<0.050	
		Semi-Annual	03/12/08	<0.050	<0.050	<0.050	<0.050	

San Juan River Analysis - 2009

General Chemistry

Section 8.0 - Tab 10.0

			ANCE IN	1. 1. 1. 1.	214 40	A Statistics	- E - 1	WQCC
	mg/L	Sampling Event	Date Sampled	North of MW #46	North of MW #45	Upstream of Refinery	Downstream of Refinery	20 NMAC 6.2.3103
1. 1997	Sector States	Semi-Annual	08/20/09	0.22	0.10	0.23	0.22	1.60
ANA CAR	Fluoride	Semi-Annual	04/13/09	0.15	0.14	0.15	0.18	
	Thuonae	Semi-Annual	08/05/08	0.20	0.20	0.24	0.19	
		Semi-Annual	03/12/08	0.19	0.20	0.20	0.21	是一個目的
		Semi-Annual	08/20/09	3.2	3.1	3.5	2.8	250
	Chloride	Semi-Annual	04/13/09	3.1	3.1	3.3	3.1	
	Cillonde	Semi-Annual	08/05/08	3.0	2.9	5.5	3.1	
A STATE OF		Semi-Annual	03/12/08	2.7	2.7	2.8	2.8	
EPA Method 300.0		Semi-Annual	08/20/09	<0.10	<0.10	<0.10	<0.10	
30	Nitrite	Semi-Annual	04/13/09	<0.10	<0.10	<0.10	<0.10	
P	Withte	Semi-Annual	08/05/08	<0.10	<0.10	<0.10	<0.10	
ho		Semi-Annual	03/12/08	<0.10	<0.10	<0.10	<0.10	
let	1	Semi-Annual	08/20/09	<0.10	<0.10	<0.10	<0.10	
2	Bromide	Semi-Annual	04/13/09	<0.10	<0.10	<0.10	<0.10	
P		Semi-Annual	08/05/08	<0.10	<0.10	<0.10	<0.10	
		Semi-Annual	03/12/08	<0.10	<0.10	<0.10	<0.10	Section and
		Semi-Annual	08/20/09	<0.50	<0.50	<0.50	<0.50	
	Phoenhorous	Semi-Annual	04/13/09	<0.50	<0.50	<0.50	<0.50	
	Phosphorous	Semi-Annual	08/05/08	<0.50	<0.50	<0.50	<0.50	
		Semi-Annual	03/12/08	<0.50	<0.50	<0.50	<0.50	
	Sulfate	Semi-Annual	08/20/09	49	50	62	44	600
		Semi-Annual	04/13/09	72	72	73	75	Call Marine A
		Semi-Annual	08/05/08	60	59	130	62	
		Semi-Annual	03/12/08	52	53	53	59	A Constant
		Semi-Annual	08/20/09	180	193	184	196	1000
EPA 160.1	TDS	Semi-Annual	04/13/09	250	240	250	280	a sata sa s
19 16	103	Semi-Annual	08/05/08	190	200	360	200	
		Semi-Annual	03/12/08	240	260	480	260	
		Semi-Annual	08/20/09	82	83	83	280	经回应 理论 教
-	CO3	Semi-Annual	04/13/09	78	78	76	78	
10.	000	Semi-Annual	08/05/08	85	84	85	80	
3		Semi-Annual	03/12/08	85	84	84	84	
EPA 310.1		Semi-Annual	08/20/09	82	83	83	84	
Ш	ALK	Semi-Annual	04/13/09	87	87	85	87	
1	ALK	Semi-Annual	08/05/08	89	91	95	90	
		Semi-Annual	03/12/08	85	84	84	86	
1	E.C.	Semi-Annual	08/20/09	310	280	270	280	
EP/		Semi-Annual	04/13/09	330	340	340	350	
EPA 120.1	(umhos/cm)	Semi-Annual	08/05/08	300	290	450	300	
		Semi-Annual	03/12/08	280	280	280	300	

San Juan River Analysis - 2009

Total Metals

Section 8.0 - Tab 10.0

PA Me	thod 6010,	EPA Method 7470: Mercury								
mg/L	Sampling Event	Date Sampled	North of MW #46	North of MW #45	Upstream of Refinery	Down stream of Refinery	MCL			
0	Semi-Annual	08/20/09	<0.020	<0.020	<0.020	<0.020	0.01			
Arsenic	Semi-Annual	04/13/09	<0.020	<0.020	<0.020	<0.020				
Ars	Semi-Annual	08/05/08	<0.020	<0.020	<0.020	<0.020				
4	Semi-Annual	03/12/08	<0.020	<0.020	<0.020	<0.020	加利也。非时间			
E	Semi-Annual	08/20/09	0.07	0.07	0.07	0.07	1.0			
Barium	Semi-Annual	04/13/09	0.07	0.07	0.07	0.08				
3ar	Semi-Annual	08/05/08	0.16	0.17	0.13	0.16				
	Semi-Annual	03/12/08	0.4	0.38	0.39	0.46				
Ε	Semi-Annual	08/20/09	<0.002	<0.002	< 0.002	<0.002	0.005			
niu	Semi-Annual	04/13/09	<0.002	<0.002	< 0.002	<0.002				
Cadmium	Semi-Annual	08/05/08	<0.002	<0.002	< 0.002	<0.002				
	Semi-Annual	03/12/08	< 0.002	<0.002	<0.002	< 0.002				
Chromium	Semi-Annual	08/20/09	<0.006	<0.006	< 0.006	<0.006	0.05			
	Semi-Annual	04/13/09	< 0.006	<0.006	<0.006	<0.006				
	Semi-Annual	08/05/08	< 0.006	<0.006	< 0.006	<0.006	COLOR SEA			
	Semi-Annual	03/12/08	<0.006	<0.006	< 0.006	<0.006				
	Semi-Annual	08/20/09	<0.005	< 0.005	< 0.005	<0.005	0.015			
Lead	Semi-Annual	04/13/09	<0.005	<0.005	<0.005	<0.005				
Le	Semi-Annual	08/05/08	0.0057	<0.005	0.0065	<0.005				
	Semi-Annual	03/12/08	0.0051	0.0066	0.0064	0.0056				
Е	Semi-Annual	08/20/09	< 0.050	<0.050	<0.050	<0.050	0.05			
Selenium	Semi-Annual	04/13/09	< 0.050	<0.050	<0.050	<0.050				
eler	Semi-Annual	08/05/08	< 0.050	<0.050	< 0.050	<0.050				
Š	Semi-Annual	03/12/08	<0.050	<0.050	<0.050	<0.050				
	Semi-Annual	08/20/09	<0.005	<0.005	< 0.005	<0.005	States and			
ver	Semi-Annual	04/13/09	<0.005	<0.005	< 0.005	<0.005				
Silv	Semi-Annual	08/05/08	<0.005	<0.005	< 0.005	<0.005				
1	Semi-Annual	03/12/08	<0.005	<0.005	<0.005	<0.005				
>	Semi-Annual	08/20/09	<0.0002	<0.0002	<0.0002	<0.0002	0.002			
cur	Semi-Annual	04/13/09	<0.0002	<0.0002	<0.0002	<0.0002				
Mercury	Semi-Annual	08/05/08	<0.0002	<0.0002	<0.0002	<0.0002				
5	Semi-Annual	03/12/08	< 0.0002	< 0.0002	< 0.0002	< 0.0002				

San Juan River Analysis- 2009

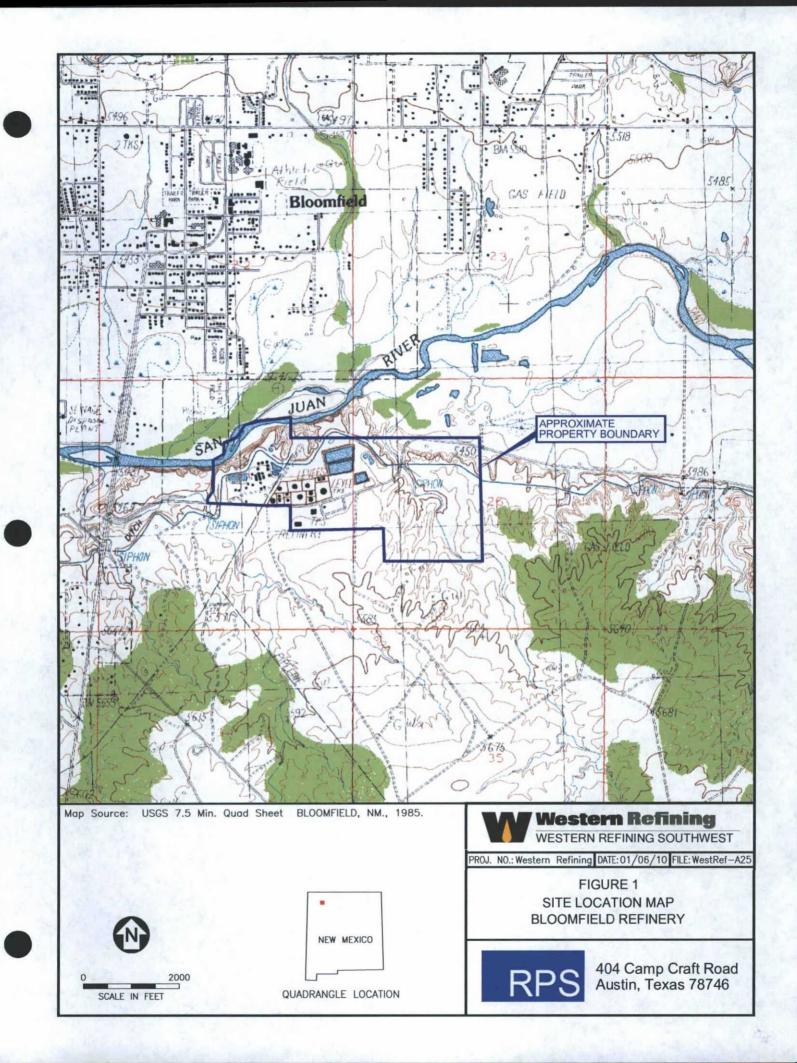
Dissolved Metals

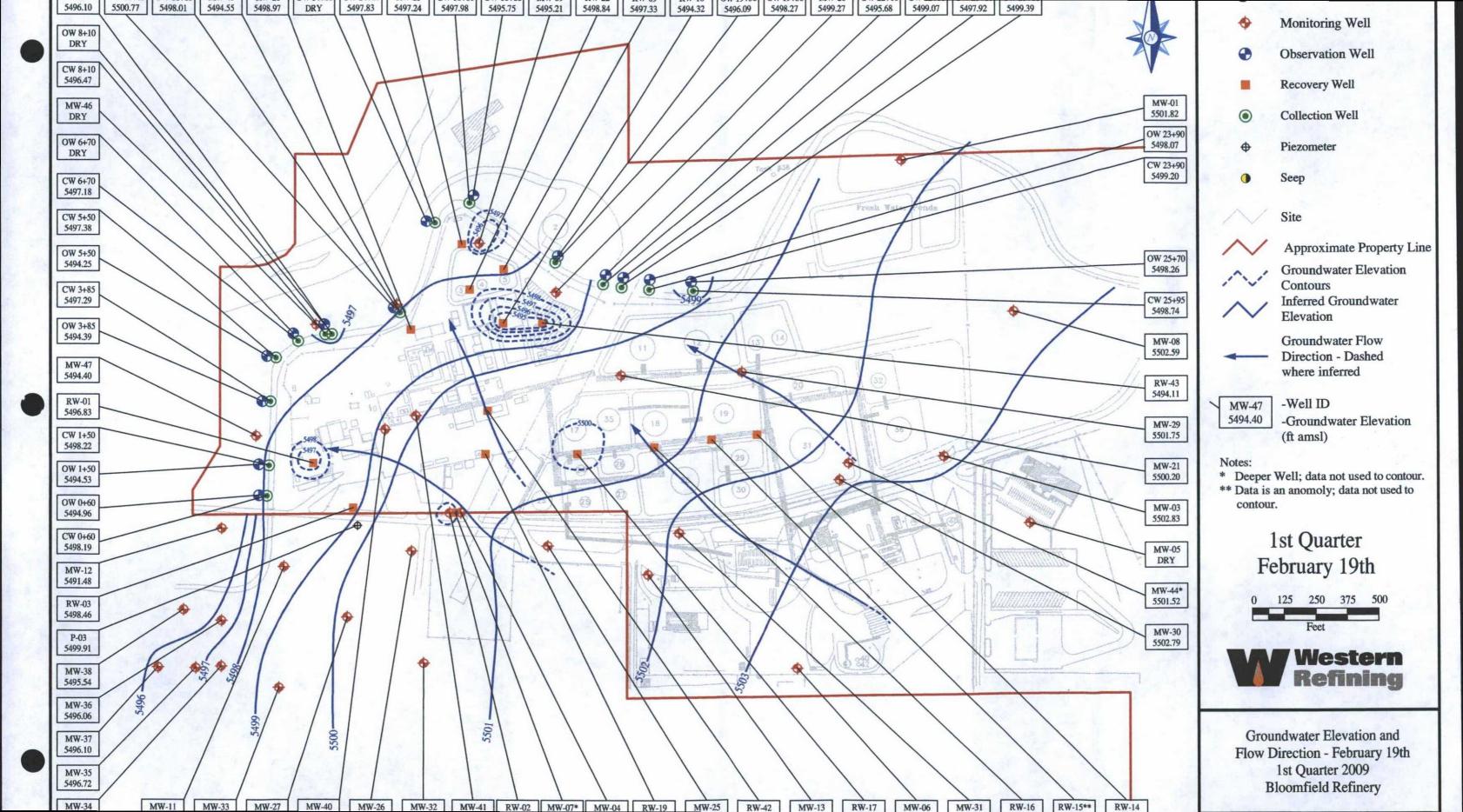
Section 8.0 - Tab 10.0

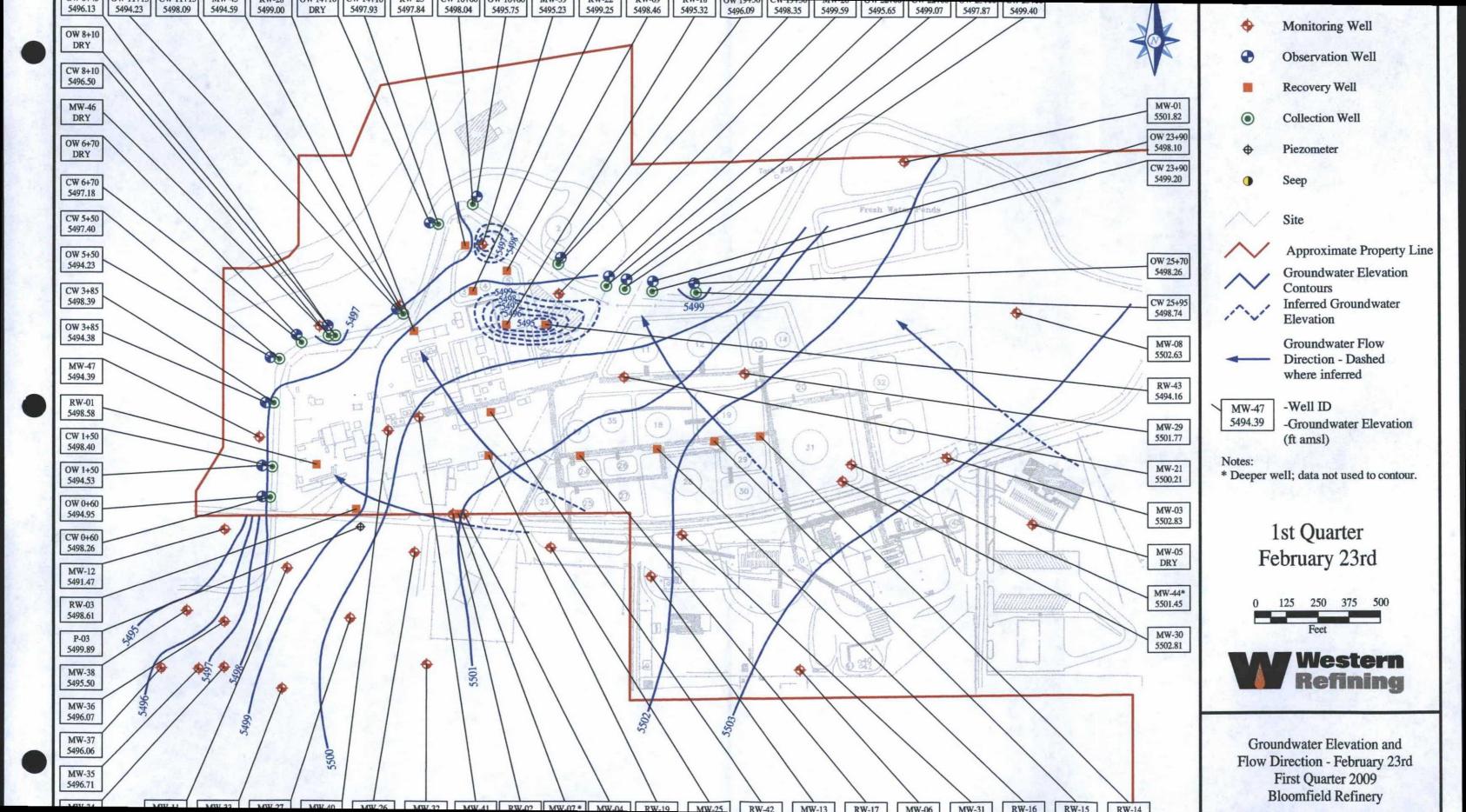
PA Method 6010B							
mg/L	Sampling Event	Date Sampled	North of MW #46	North of MW #45	Upstream of Refinery	Downstream of Refinery	20 NMA0 6.2.3103
	Semi-Annual	08/20/09	<0.020	<0.020	<0.020	<0.020	0.10
enic	Semi-Annual	04/13/09	<0.020	<0.020	<0.020	<0.020	
Arsenic	Semi-Annual	08/05/08	<0.020	<0.020	<0.020	<0.020	
	Semi-Annual	03/12/08	<0.020	<0.020	<0.020	<0.020	· 在在外
-	Semi-Annual	08/20/09	0.060	0.041	0.060	0.063	1.00
Barium	Semi-Annual	04/13/09	0.064	0.068	0.065	0.064	
Bar	Semi-Annual	08/05/08	0.077	0.081	0.130	0.080	
a series of	Semi-Annual	03/12/08	0.086	0.080	0.085	0.081	
F	Semi-Annual	08/20/09	< 0.002	<0.002	< 0.002	<0.002	0.01
niur	Semi-Annual	04/13/09	<0.002	<0.002	<0.002	<0.002	
Cadmium	Semi-Annual	08/05/08	<0.002	<0.002	<0.002	<0.002	
0	Semi-Annual	03/12/08	<0.002	<0.002	<0.002	<0.002	
-	Semi-Annual	08/20/09	30	22	28	31	1. 小市市
ium	Semi-Annual	04/13/09	36	35	35	38	
Calcium	Semi-Annual	08/05/08	33	34	39	34	
	Semi-Annual	03/12/08	28	28	29	28	
Chromium	Semi-Annual	08/20/09	< 0.006	<0.006	<0.006	< 0.006	0.05
	Semi-Annual	04/13/09	< 0.006	< 0.006	<0.006	<0.006	这种情况 下
	Semi-Annual	08/05/08	< 0.006	<0.006	<0.006	< 0.006	
	Semi-Annual	03/12/08	0.007	<0.006	0.007	<0.006	
oer	Semi-Annual	08/20/09	<0.006	<0.006	<0.006	<0.006	1.00
	Semi-Annual	04/13/09	< 0.006	<0.006	<0.006	<0.006	
Copper	Semi-Annual	08/05/08	< 0.006	<0.006	<0.006	<0.006	First State
0	Semi-Annual	03/12/08	< 0.006	< 0.006	< 0.006	<0.006	
4.41	Semi-Annual	08/20/09	< 0.02	< 0.02	<0.02	< 0.02	1.00
5	Semi-Annual	04/13/09	0.030	0.032	0.021	0.04	
Iron	Semi-Annual	08/05/08	0.059	0.068	0.074	0.09	ter and a
	Semi-Annual	03/12/08	0.360	3.800	0.490	0.33	
	Semi-Annual	08/20/09	<0.005	<0.005	<0.005	<0.005	0.05
ad	Semi-Annual	04/13/09	< 0.005	<0.005	<0.005	<0.005	
Lead	Semi-Annual	08/05/08	<0.005	<0.005	<0.005	<0.005	Chile all
	Semi-Annual	03/12/08	< 0.005	<0.005	<0.005	<0.005	
E	Semi-Annual	08/20/09	5.6	4.1	5.4	5.7	ST Jack La
siu	Semi-Annual	04/13/09	6.1	6.1	6.2	6.4	and Manager
Magnesium	Semi-Annual	08/05/08	5.5	5.7	7.0	5.5	
Mag	Semi-Annual	03/12/08	4.5	4.9	4.7	4.5	States Part States
	Semi-Annual	08/20/09	0.004	0.004	0.003	0.006	0.20
Manganese	Semi-Annual	04/13/09	0.017	0.180	0.023	0.046	E State
egu	Semi-Annual	08/05/08	0.008	0.012	0.073	0.012	
Mai	Semi-Annual	03/12/08	0.040	0.037	0.038	0.035	

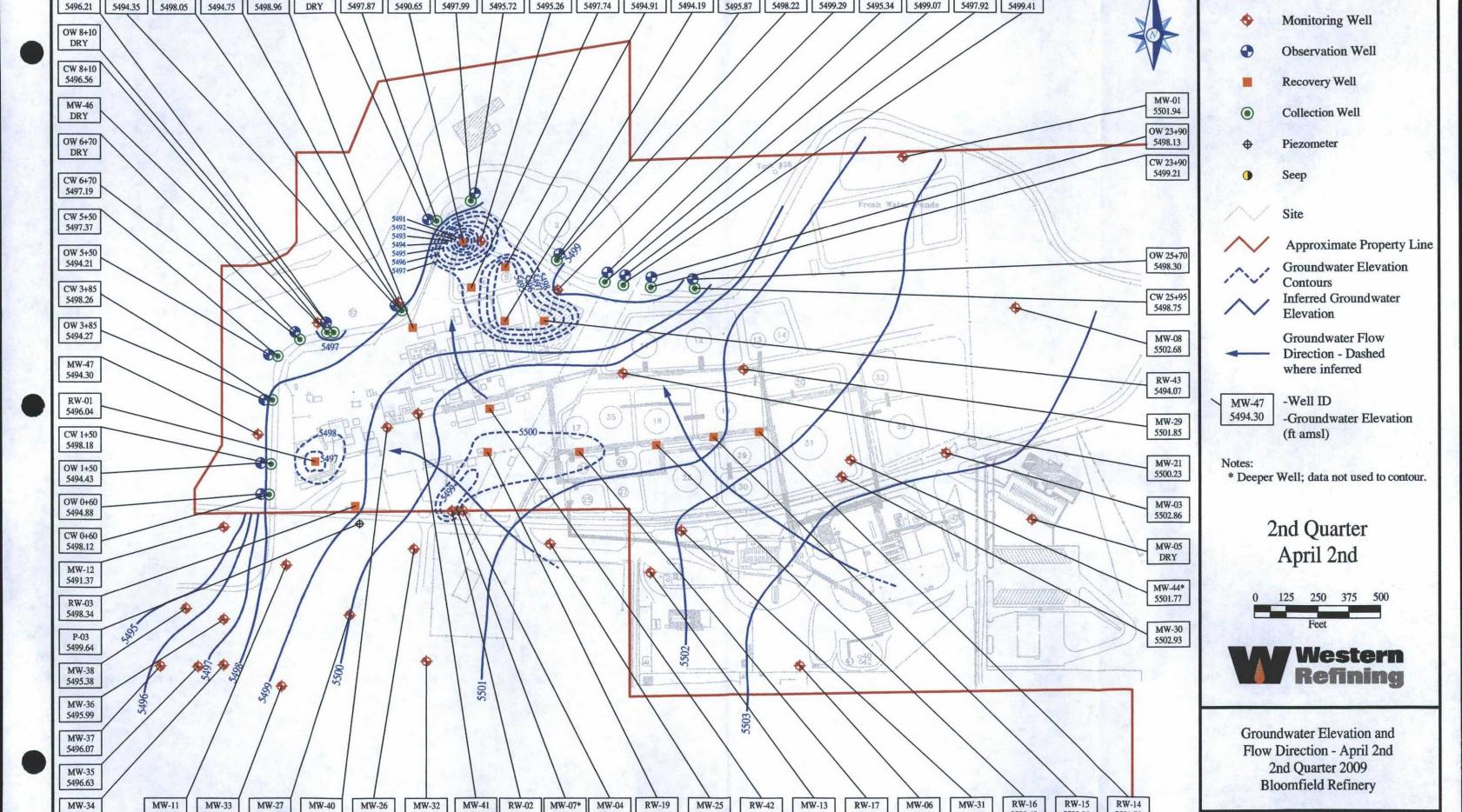
San Juan River Analysis- 2009

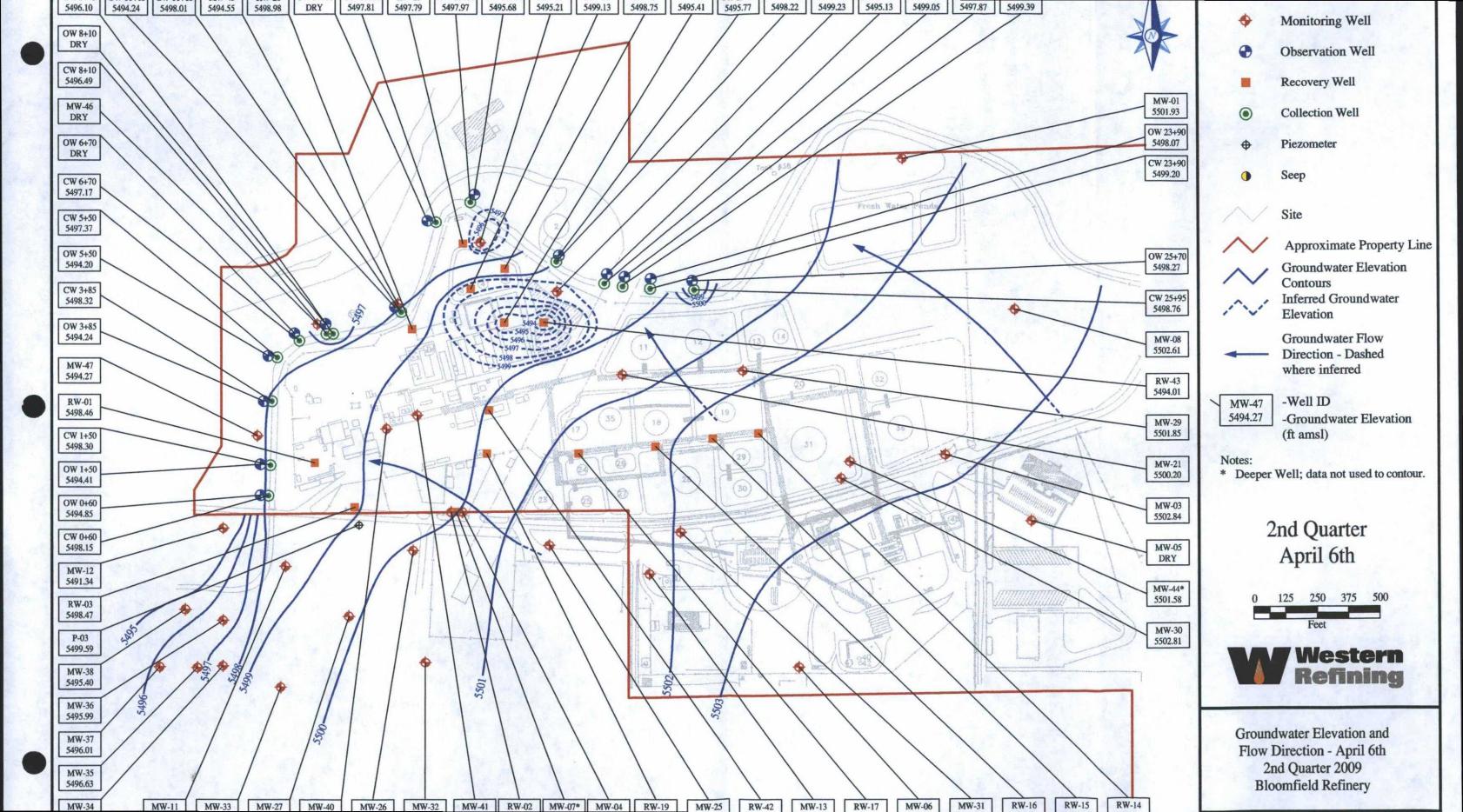
Dissolved Metals

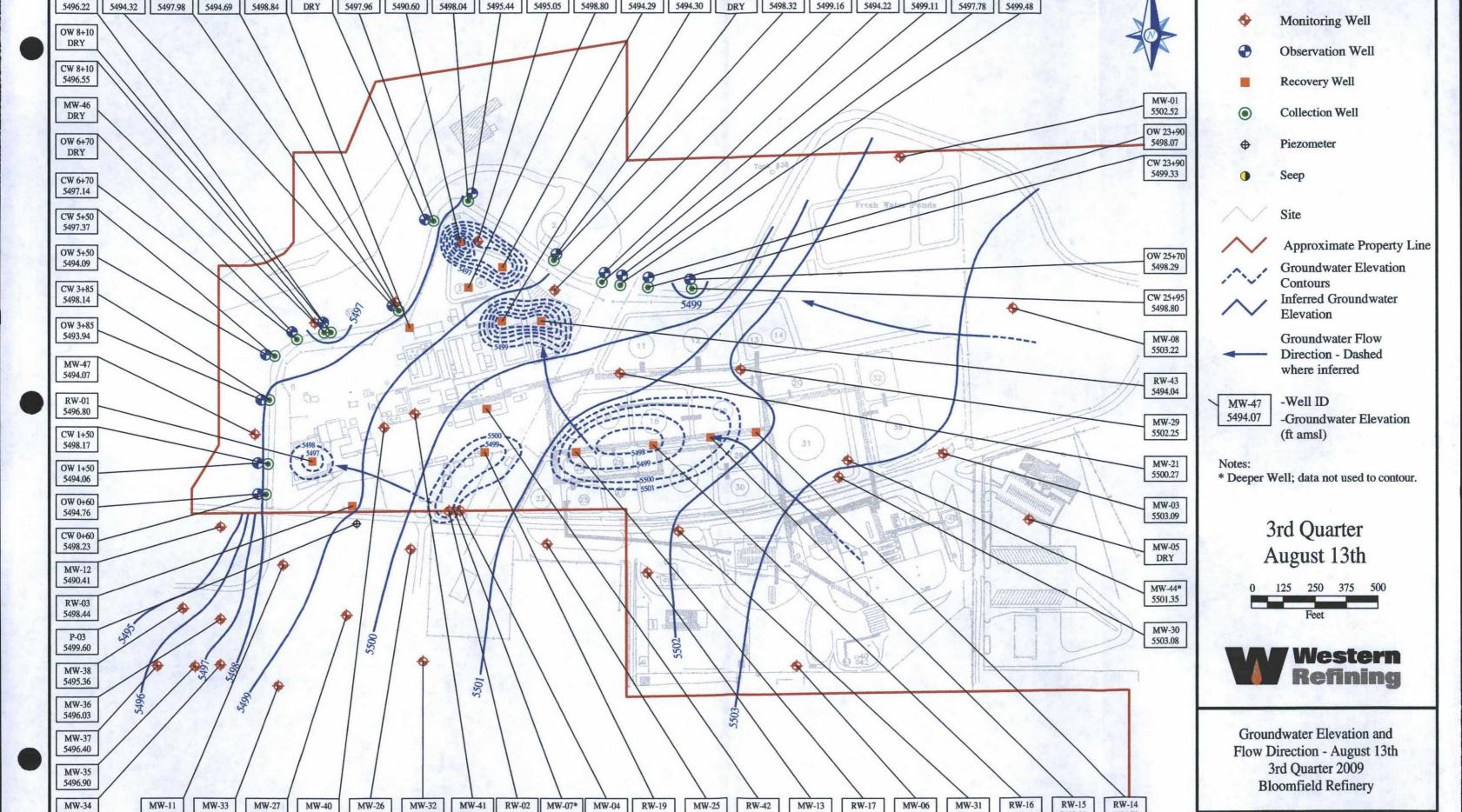

Section 8.0 - Tab 10.0

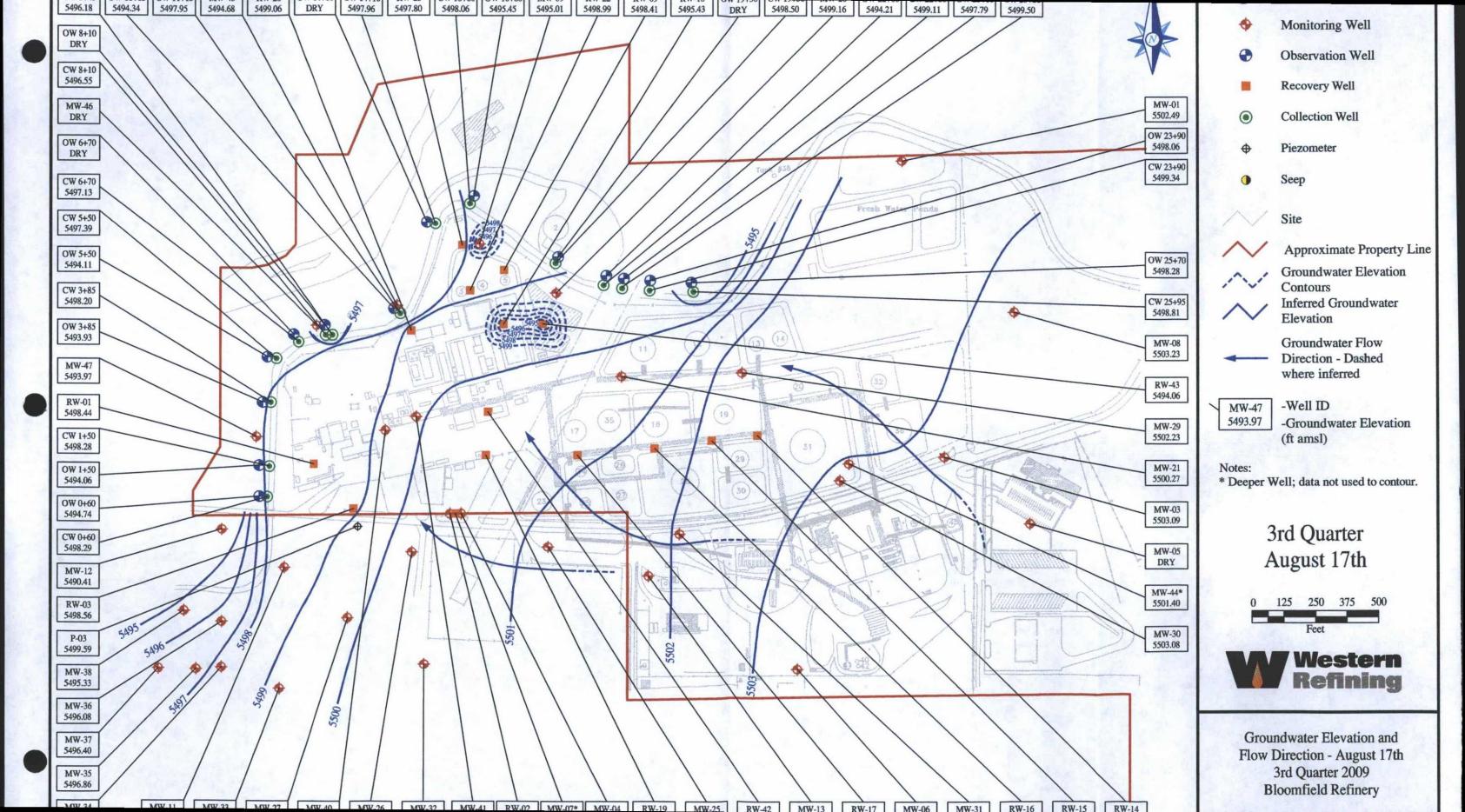

PA Method 6010B							WQCC
mg/L	Sampling Event	Date Sampled	North of MW #46	North of MW #45	Upstream of Refinery	Downstream of Refinery	20 NMA0 6.2.3103
E	Semi-Annual	08/20/09	1.7	1.1	1.6	1.6	
Potassium	Semi-Annual	04/13/09	1.7	1.6	1.7	1.8	
tas	Semi-Annual	08/05/08	1.8	1.8	2.0	1.9	
Po	Semi-Annual	03/12/08	1.7	2.3	1.8	1.7	le se
Е	Semi-Annual	08/20/09	<0.050	<0.050	<0.050	<0.050	0.05
niu	Semi-Annual	04/13/09	<0.050	<0.050	<0.050	<0.050	
Selenium	Semi-Annual	08/05/08	<0.050	<0.050	<0.050	<0.050	No. Contraction
Ś	Semi-Annual	03/12/08	<0.050	<0.050	<0.050	<0.050	
Silver	Semi-Annual	08/20/09	<0.0050	<0.0050	<0.0050	<0.0050	0.05
	Semi-Annual	04/13/09	<0.0050	<0.0050	<0.0050	<0.0050	A CONTRACT OF A
	Semi-Annual	08/05/08	<0.0050	<0.0050	<0.0050	<0.0050	
	Semi-Annual	03/12/08	<0.0050	<0.0050	<0.0050	<0.0050	
-	Semi-Annual	08/20/09	16	11	14	16	Research to
Sodium	Semi-Annual	04/13/09	23	22	25	24	
pog	Semi-Annual	08/05/08	19	19	49	. 20	人名加利尔
05	Semi-Annual	03/12/08	19	21	20	21	
F	Semi-Annual	08/20/09	<0.001	<0.001	<0.001	<0.001	0.03
ini	Semi-Annual	04/13/09	<0.001	<0.001	<0.001	< 0.001	·马德·马·河南
Uranium	Semi-Annual	08/05/08	<0.001	<0.00	0.0013	<0.00	
5	Semi-Annual	03/12/08	<0.10	<0.10	<0.10	<0.10	
	Semi-Annual	08/20/09	<0.05	<0.05	<0.05	<0.05	10
g	Semi-Annual	04/13/09	0.066	0.052	0.12	0.082	
Zinc	Semi-Annual	08/05/08	<0.05	<0.05	<0.05	<0.05	No. 2 Long
	Semi-Annual	03/12/08	<0.05	<0.05	<0.05	<0.05	

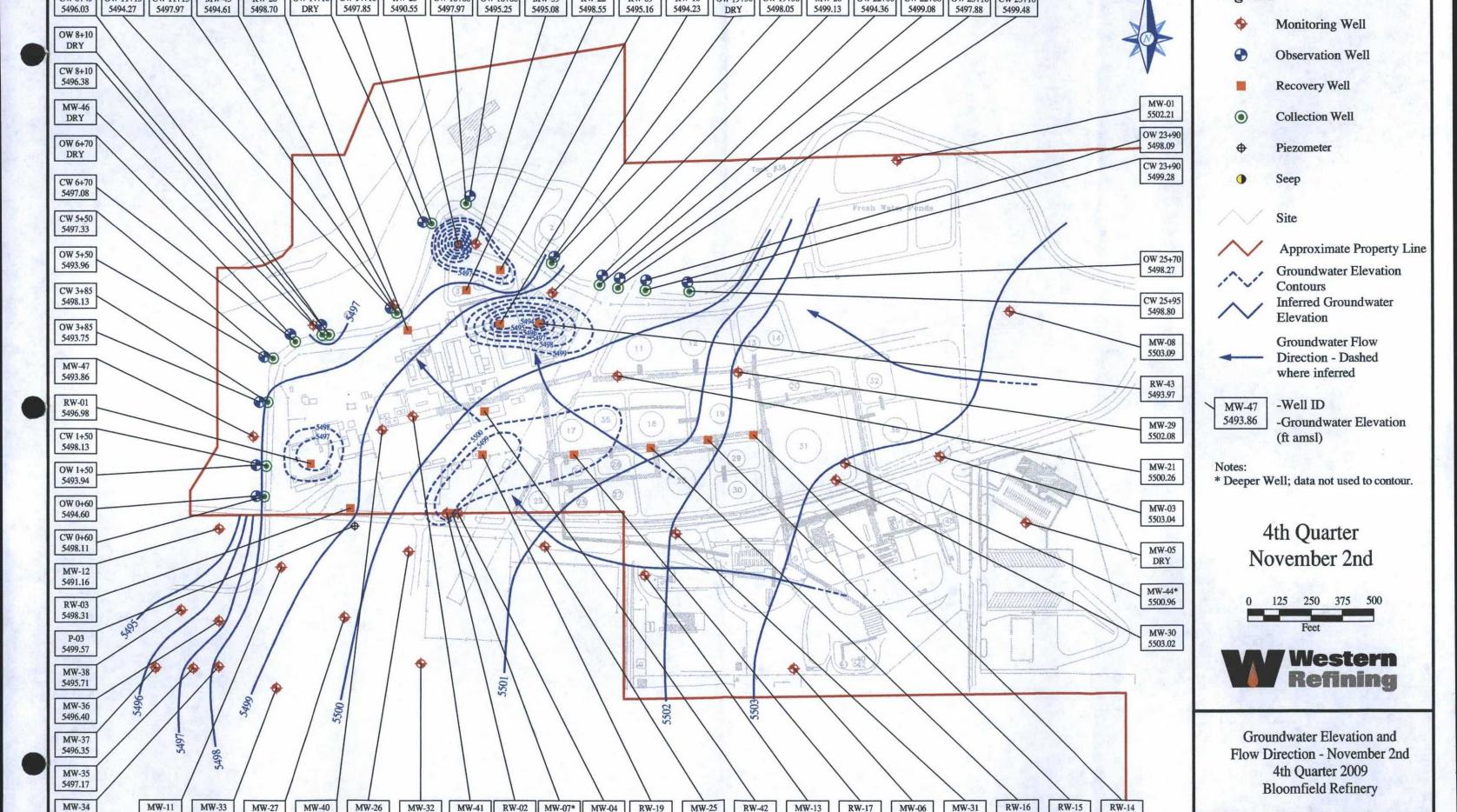

Section 9.0 Figures

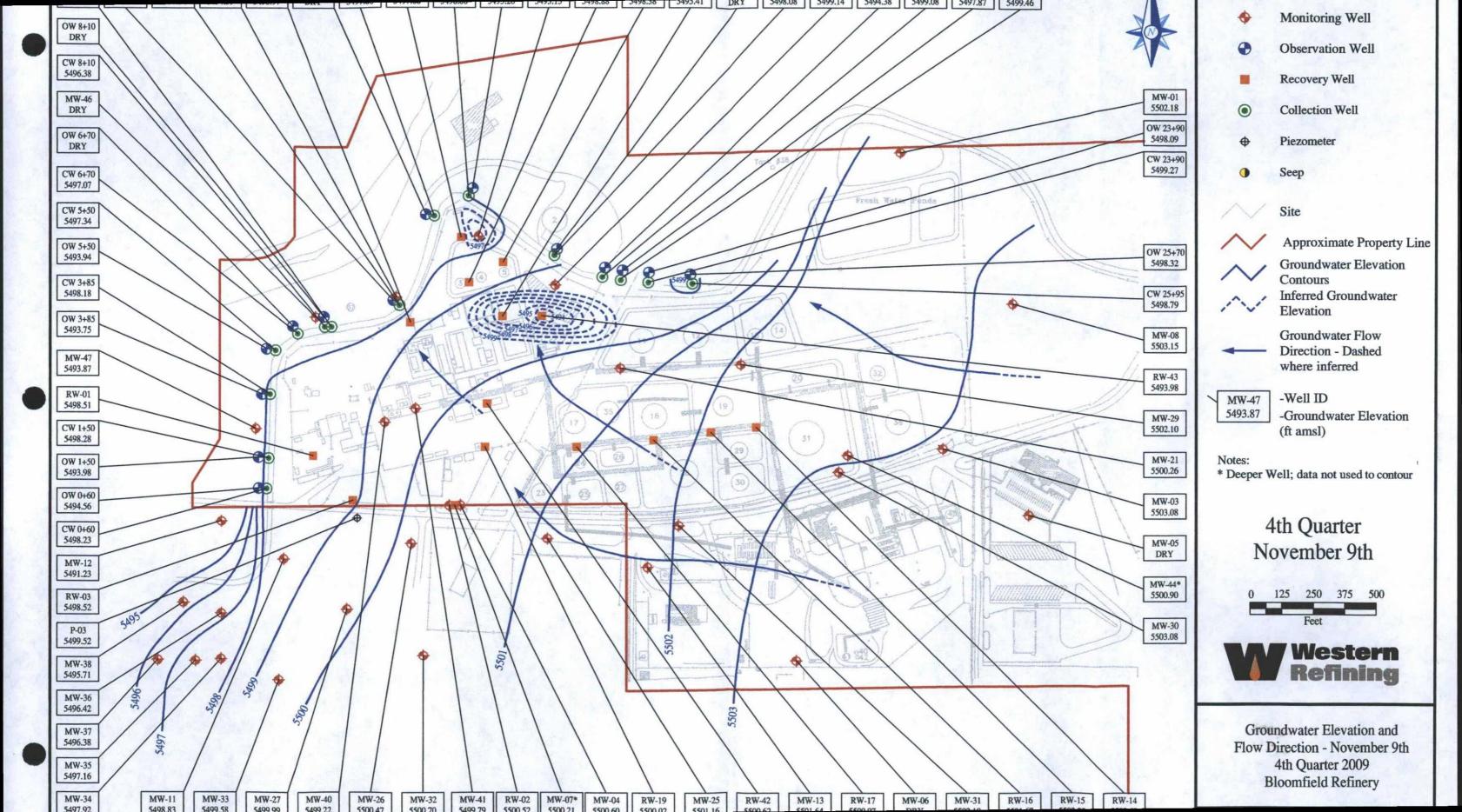

Title	Figure
Vicinity Map	Figure 1
Facility Site Plan (11X17)	Figure 2
Facility Site Plan	Figure 3
Groundwater Elevation and Flow Direction – February 19th – 1 st QTR	Figure 4
Groundwater Elevation and Flow Direction – February 23rd – 1 st QTR	Figure 5
Groundwater Elevation and Flow Direction – April 2 nd – 2 nd QTR	Figure 6
Groundwater Elevation and Flow Direction – April 6th – 2 nd QTR	Figure 7
Groundwater Elevation and Flow Direction – August 13th – 3rd QTR	Figure 8
Groundwater Elevation and Flow Direction – August 17 th – 3 rd QTR	Figure 9
Groundwater Elevation and Flow Direction – November 2nd – 4 th QTR	Figure 10
Groundwater Elevation and Flow Direction – November 9th – 4 th QTR	Figure 11
Product Thickness Map – February 19th – 1 st QTR	Figure 12
Product Thickness Map – April 2nd– 2 nd QTR	Figure 13
Product Thickness Map – August13th – 3 rd QTR	Figure 14
Product Thickness Map – November 2nd – 4 th QTR	Figure 15
BTEX & MTBE Concentration Map – April	Figure 16
BTEX & MTBE Concentration Map – August	Figure 17
San Juan River Bluff – Seep Identification	Figure 18

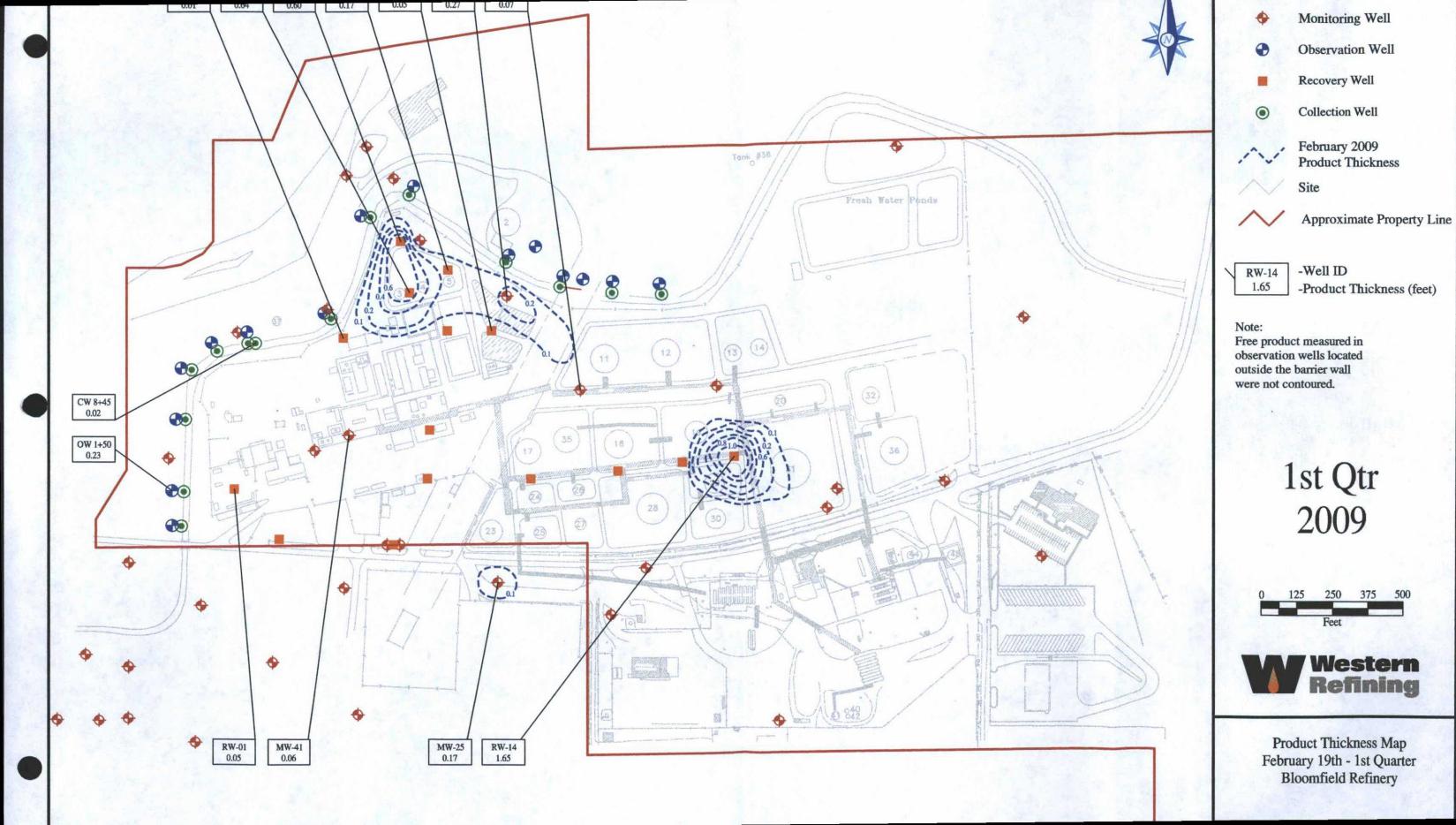


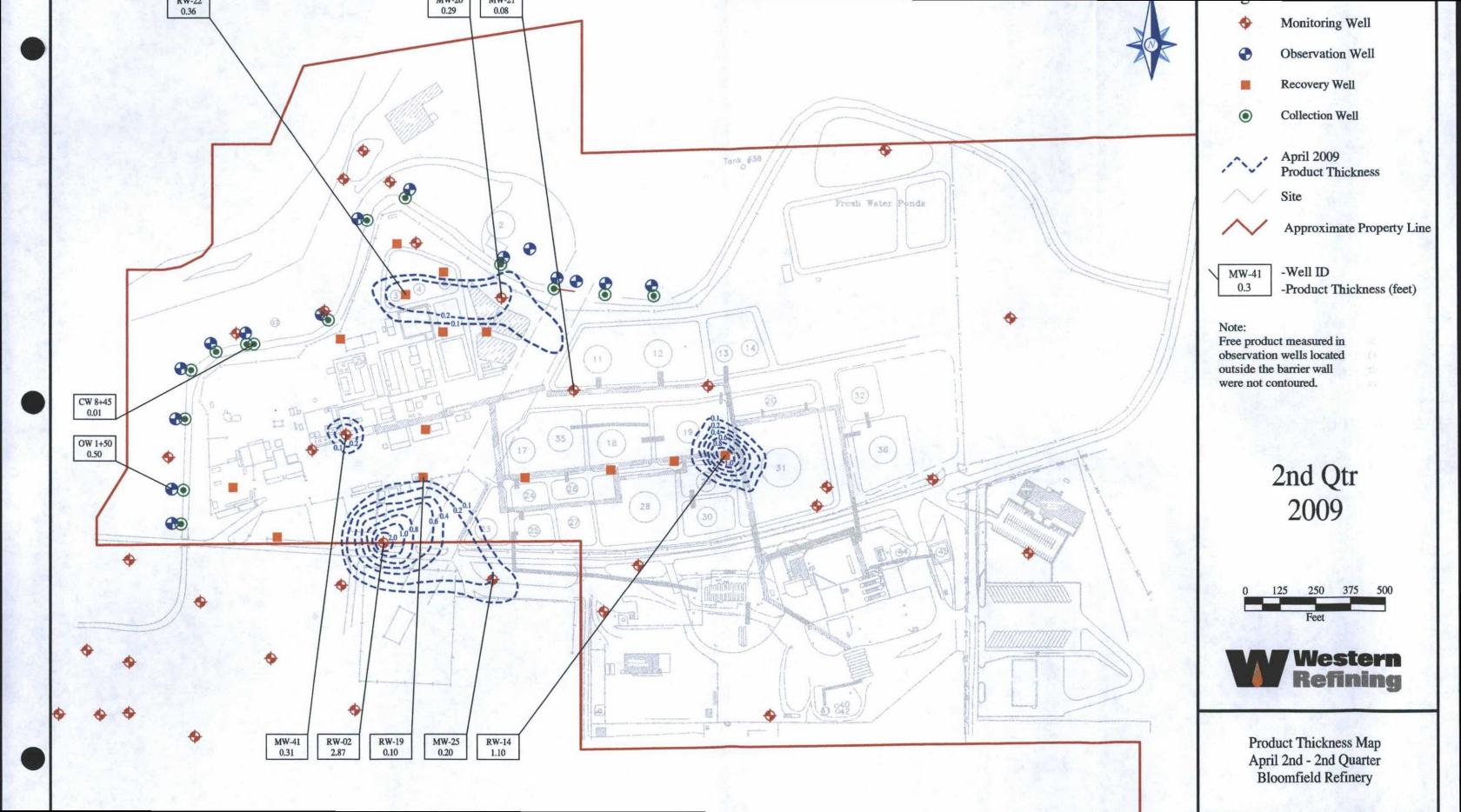


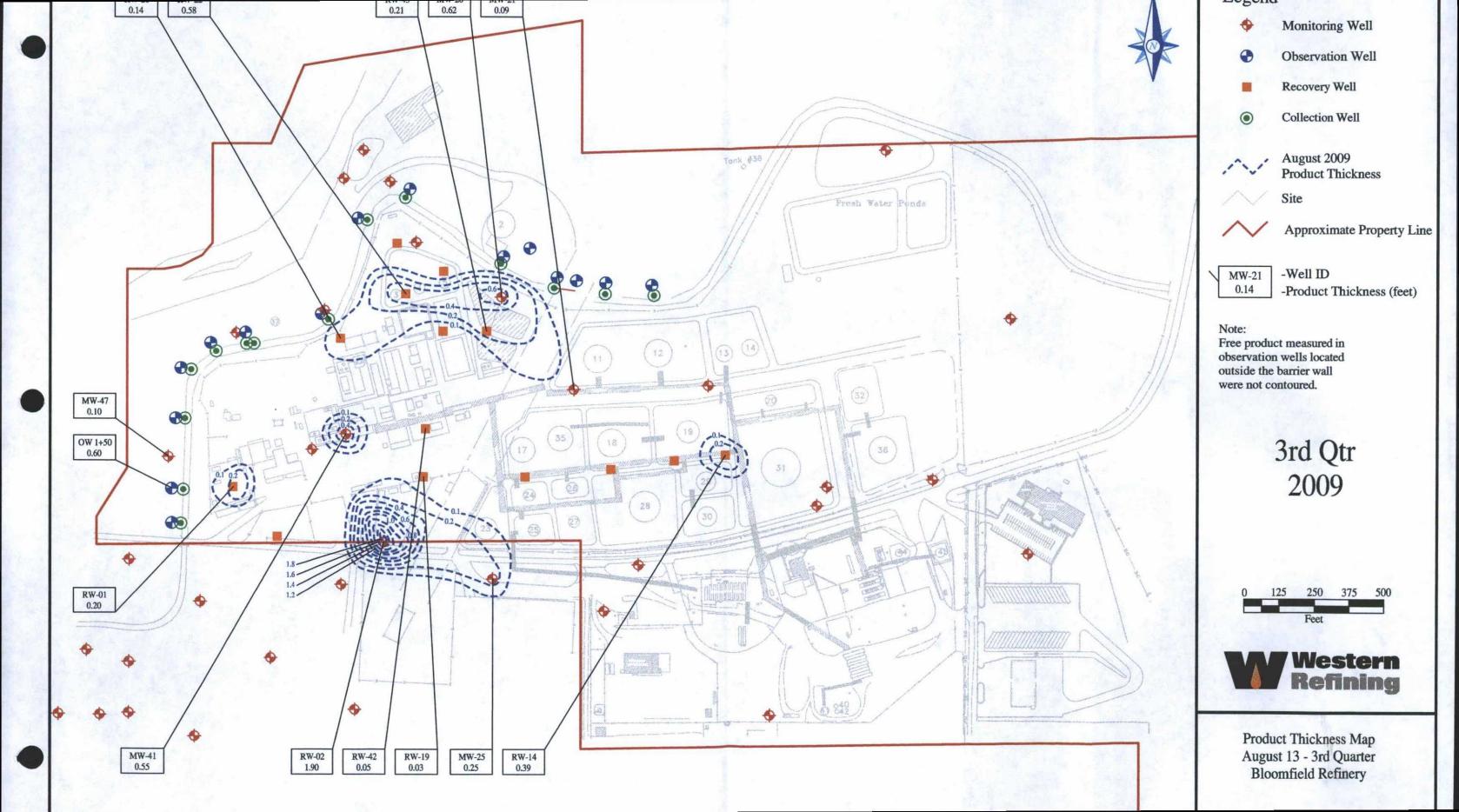


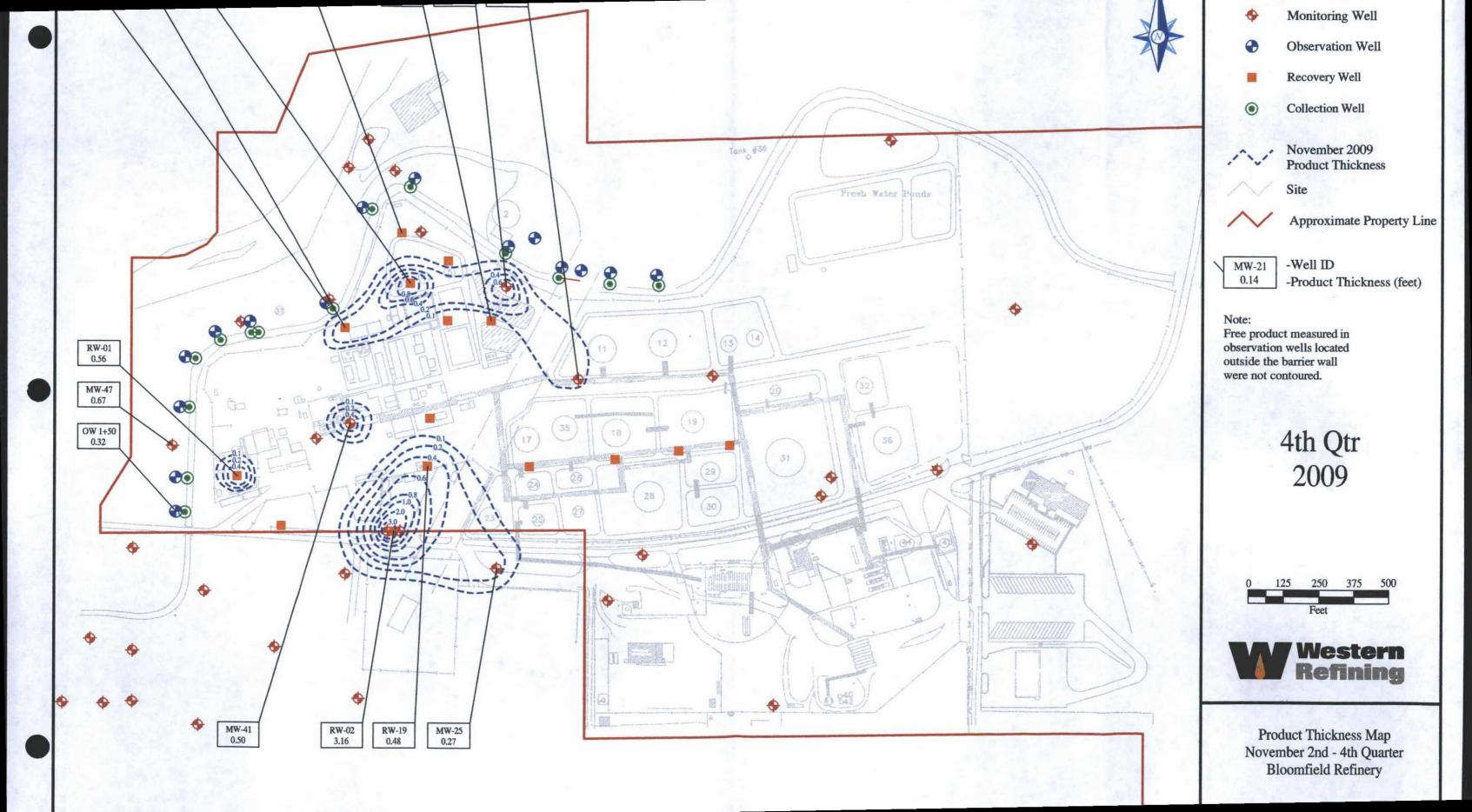


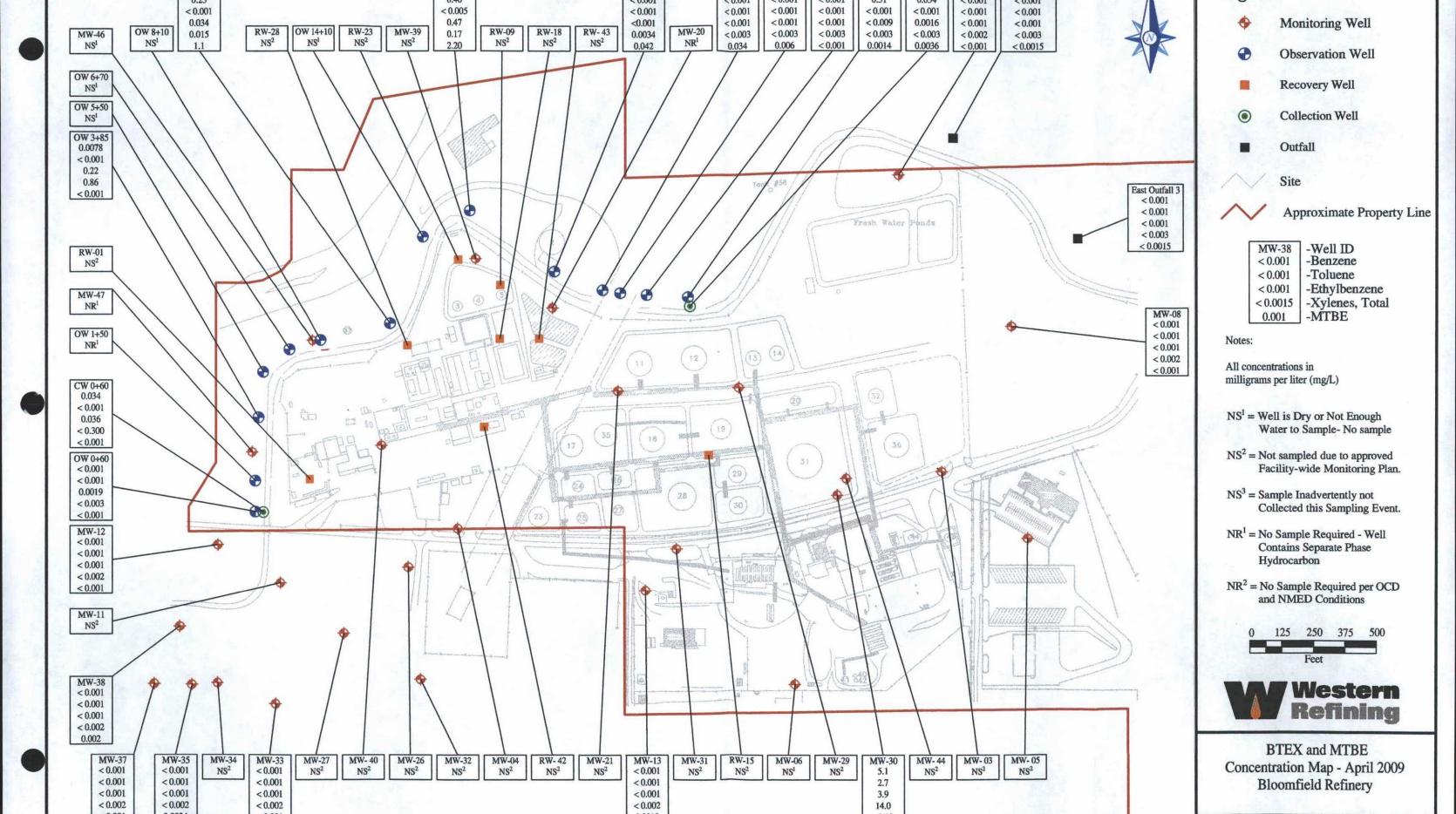


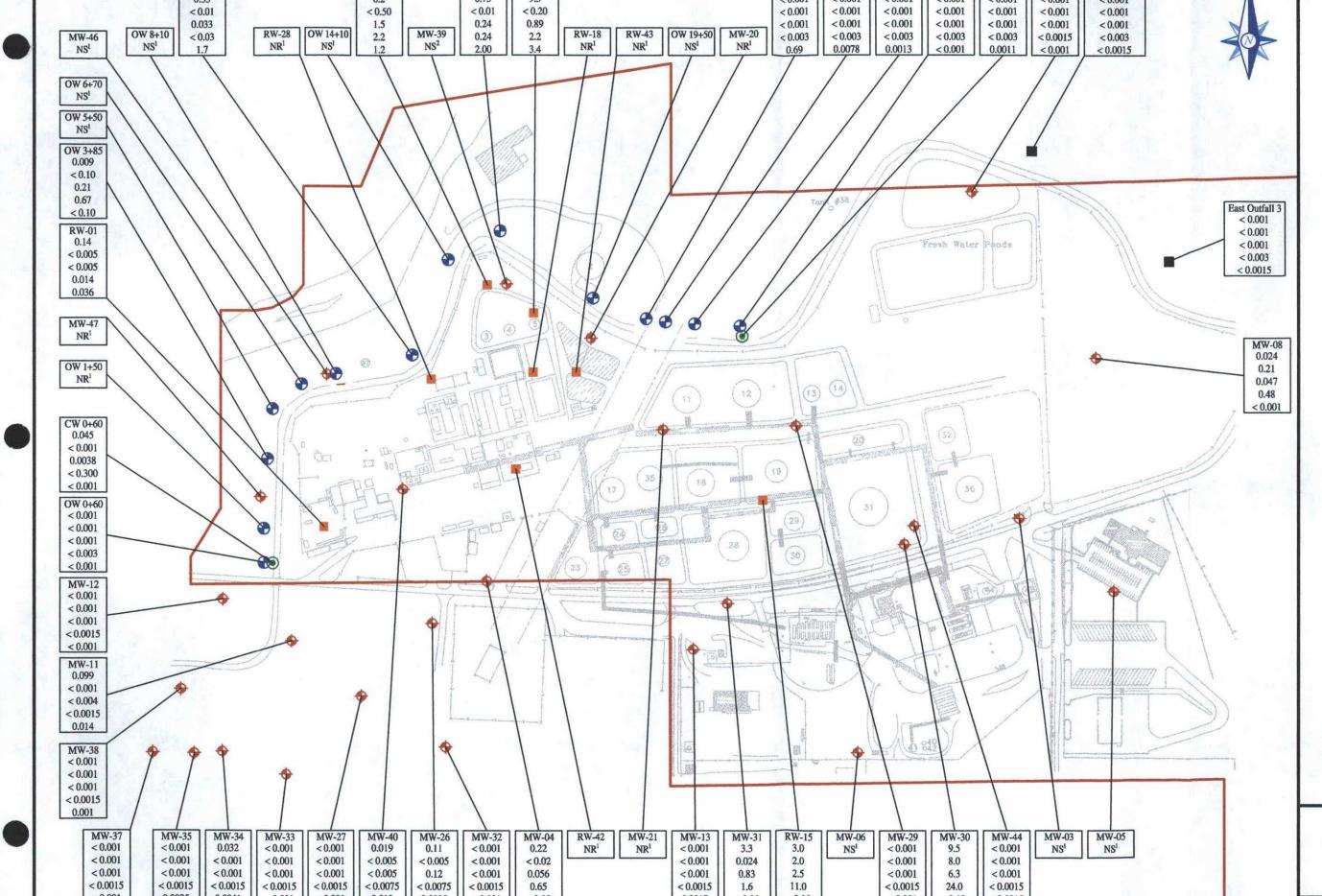


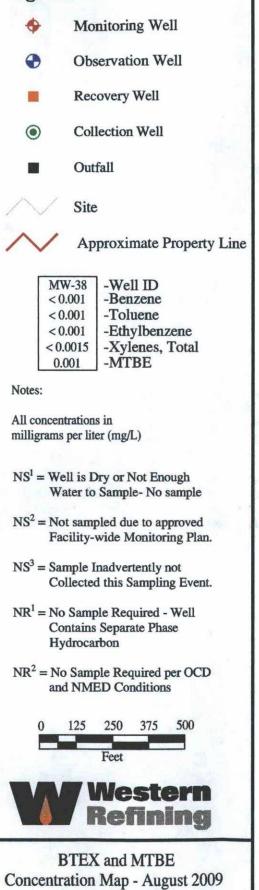








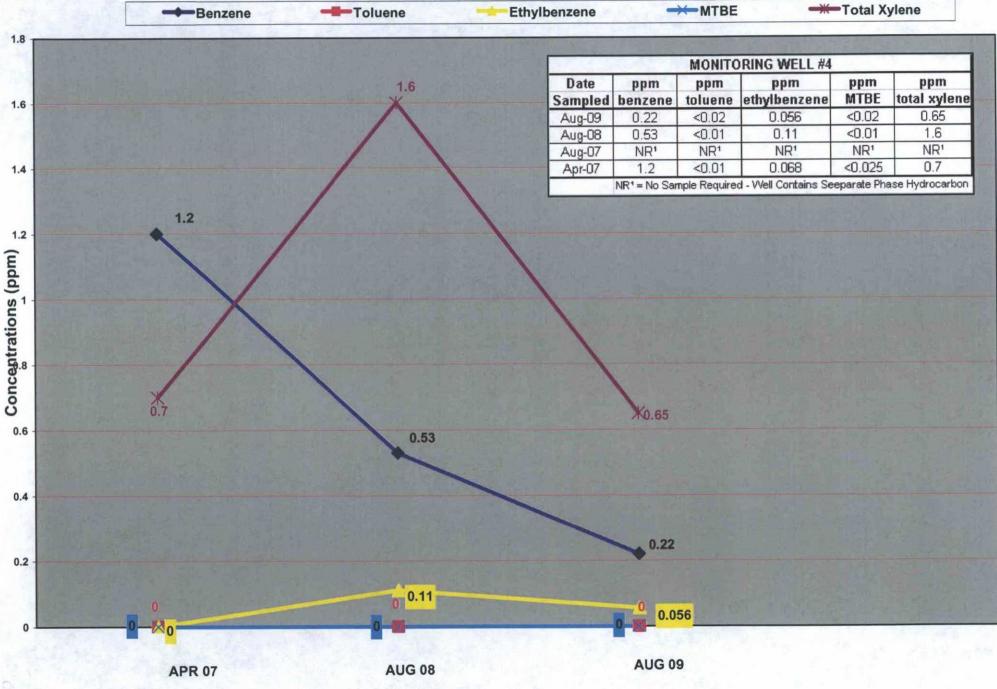


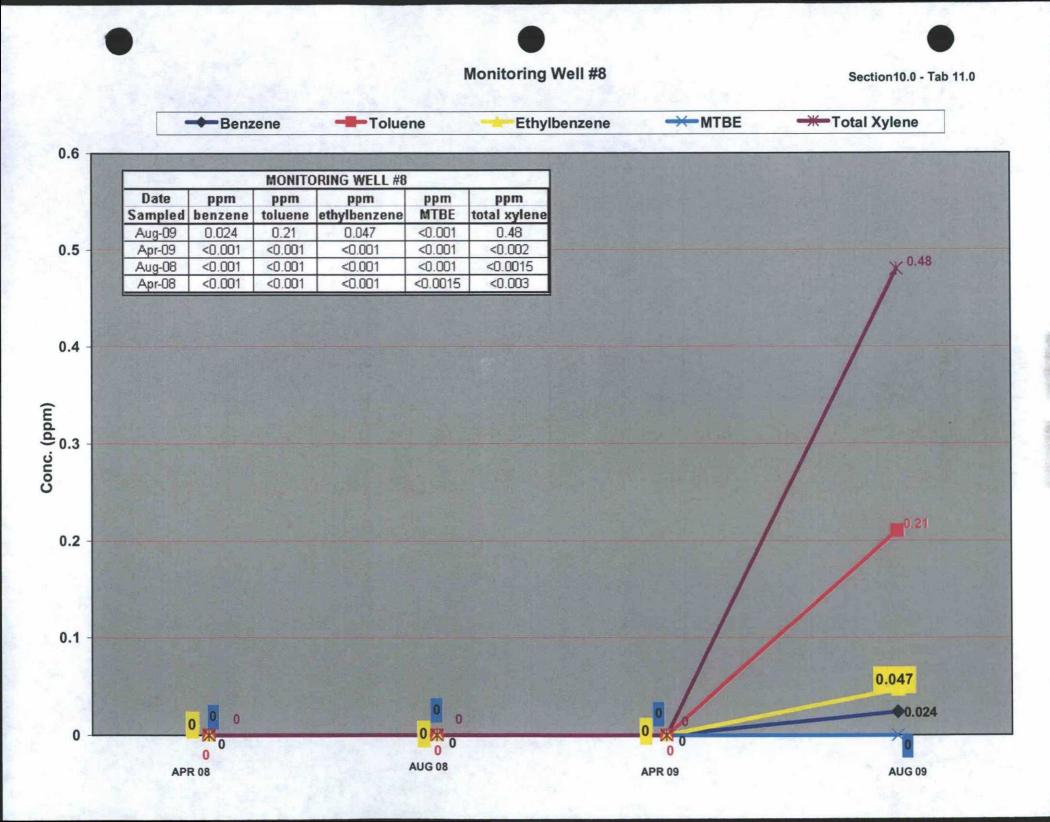


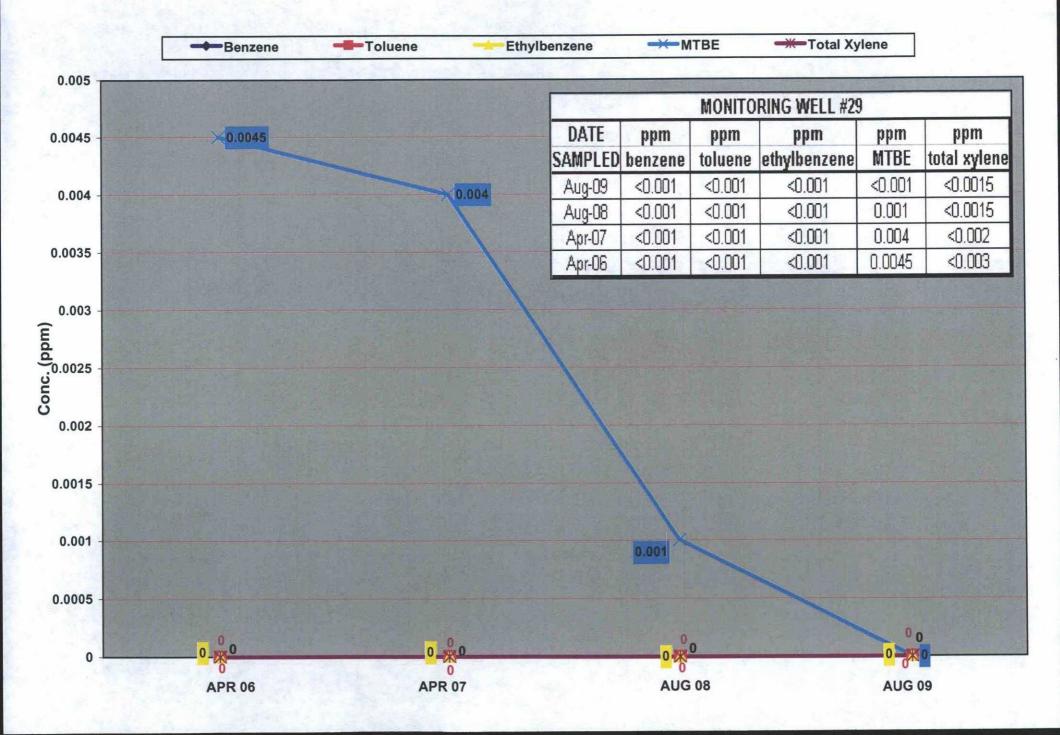
Bloomfield Refinery

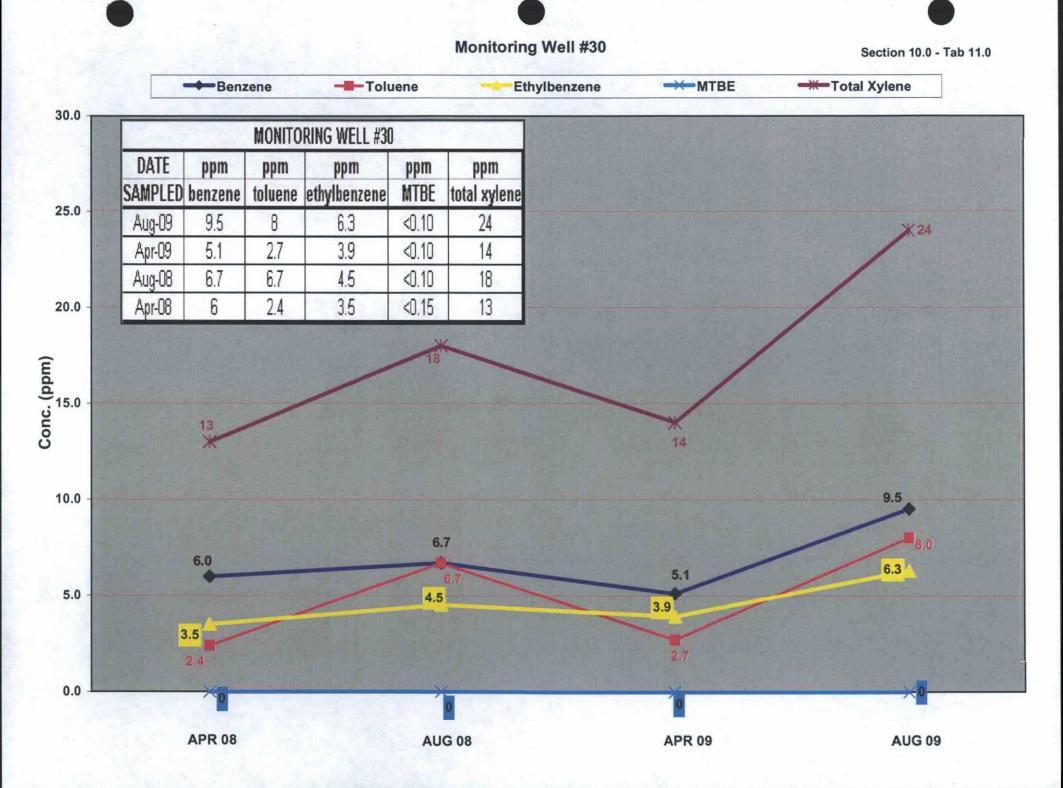
San Juan River Bluft – Seep Identification

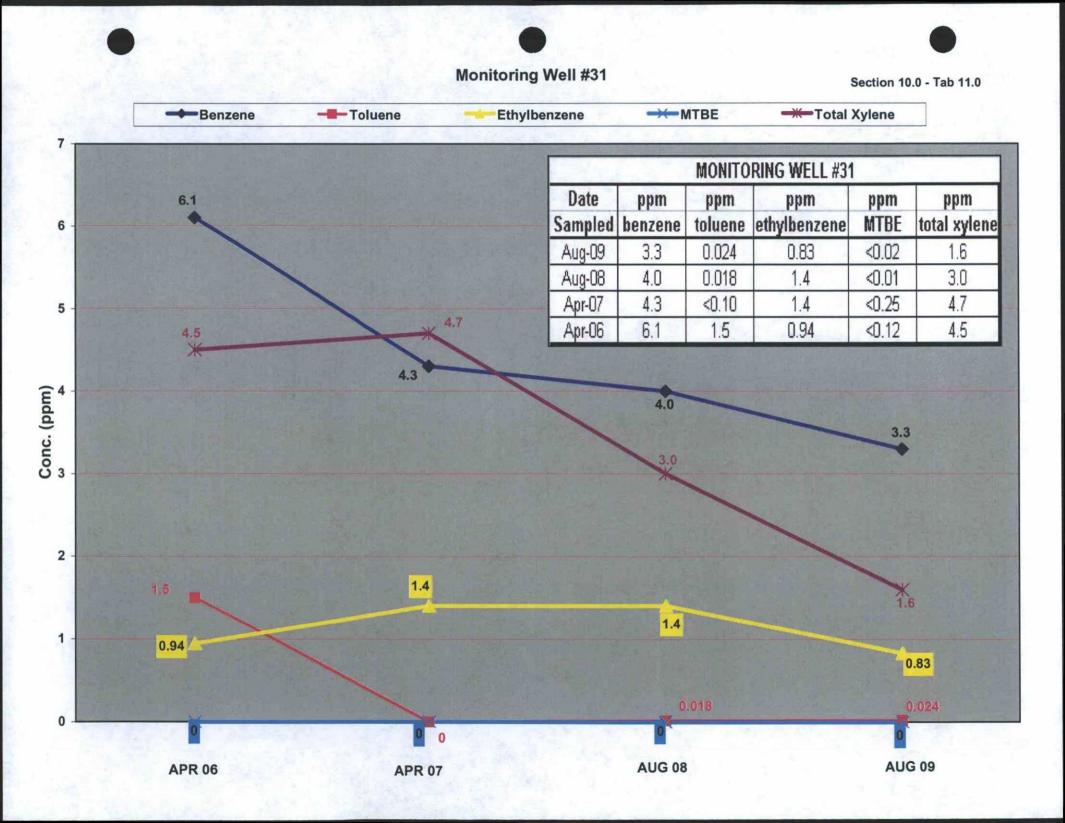
Seeps are Designated by Numbers 1-9

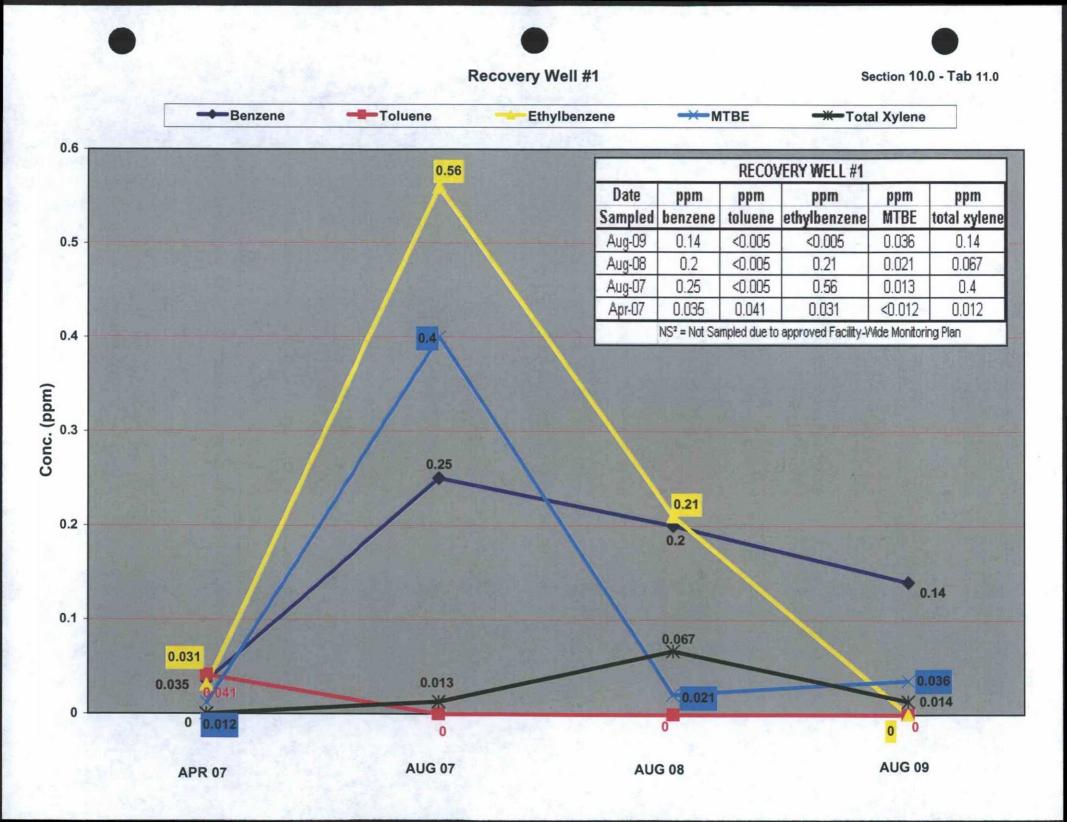


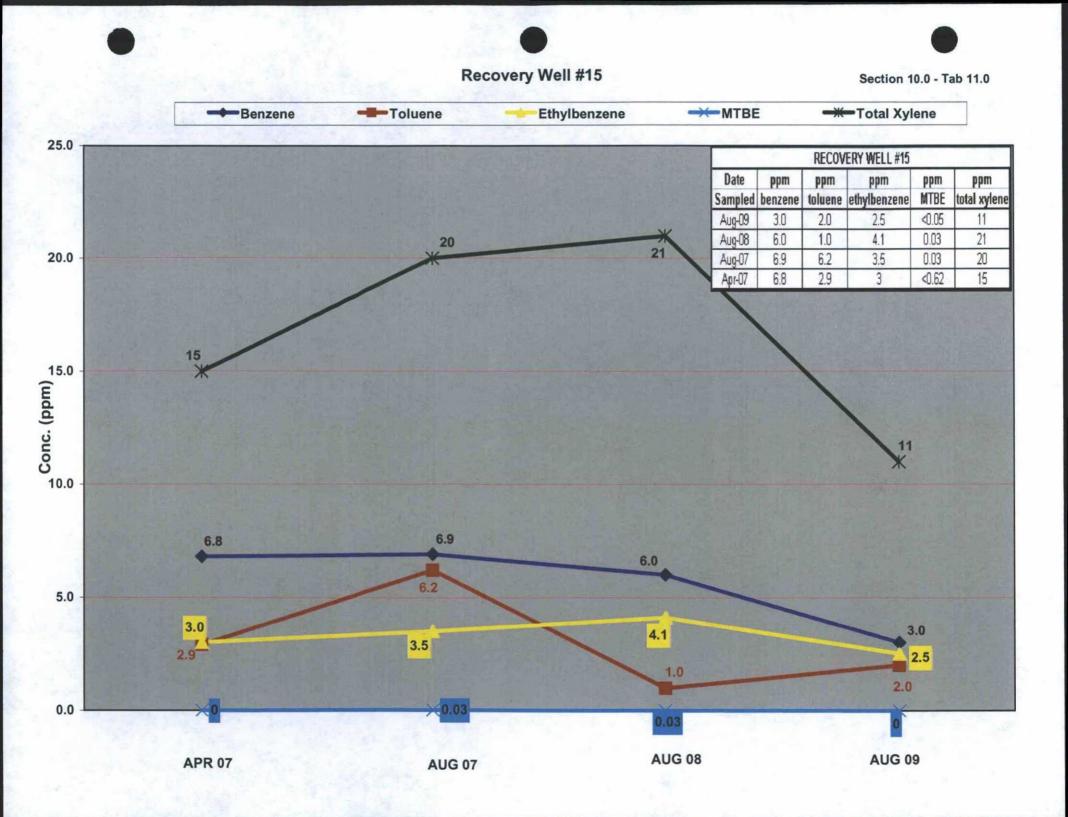

Section 10.0 BTEX & MTBE Concentration vs Time

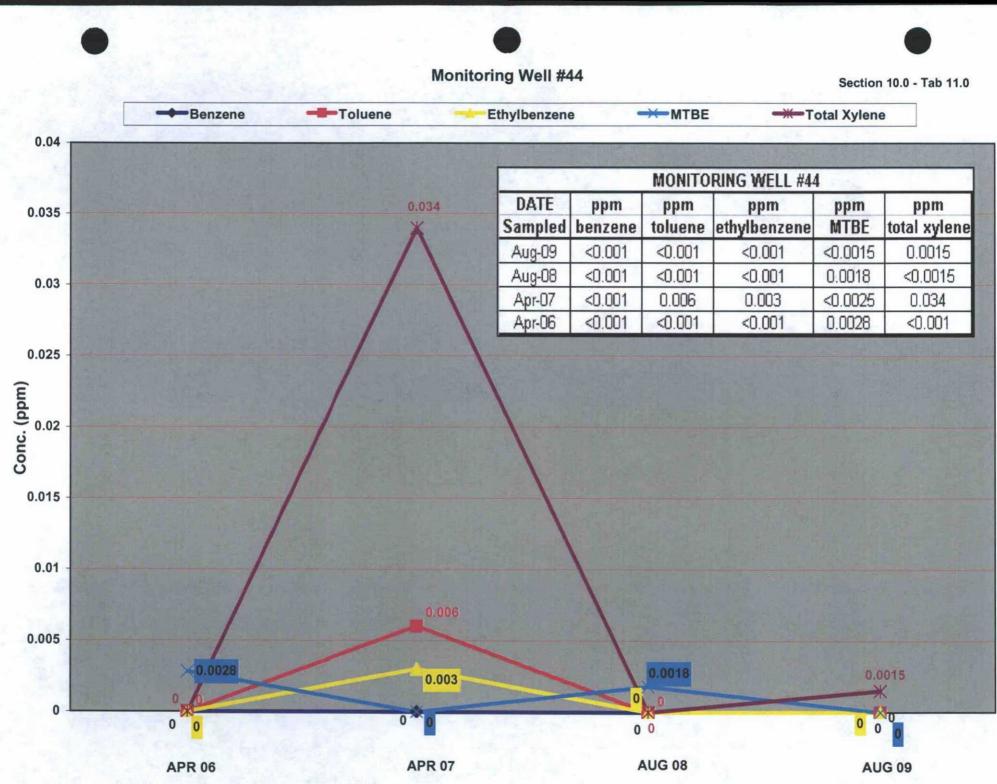

Title	Tab
Refinery Wells	11
Cross-gradient Wells	
Downgradient Wells	13
San Juan River Bluff	14

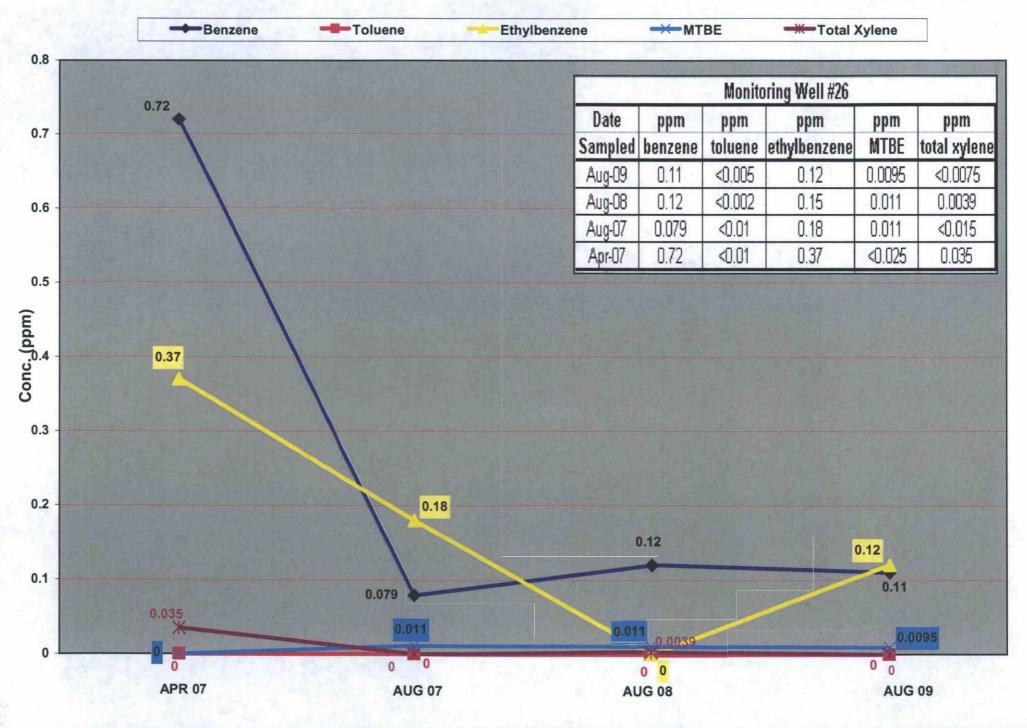


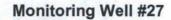


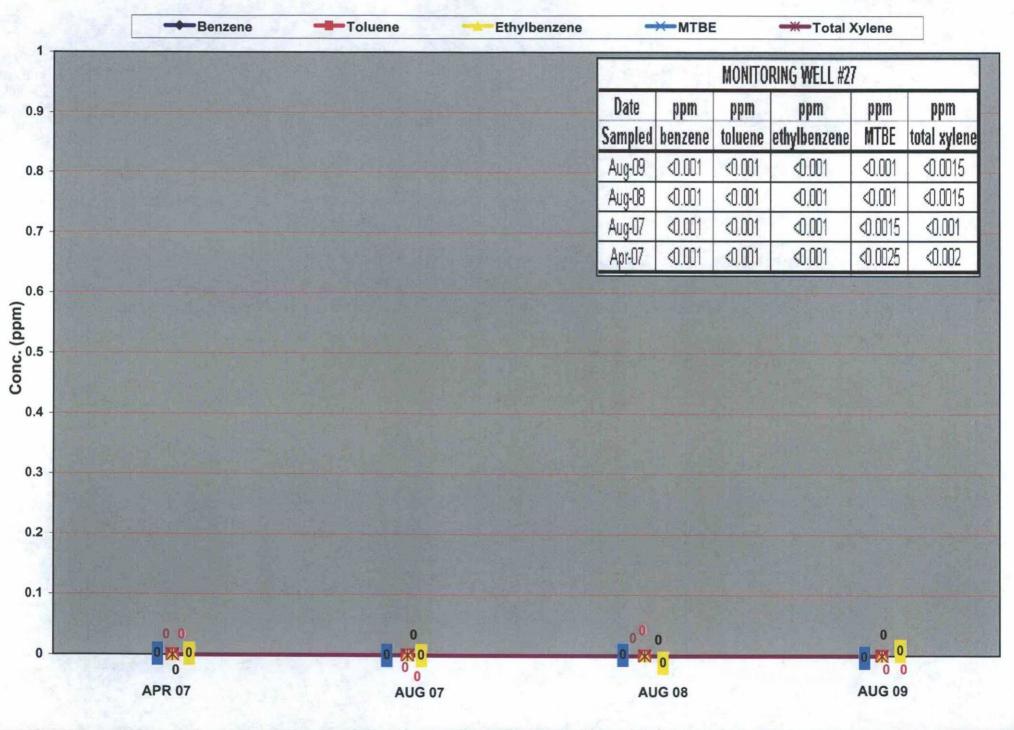


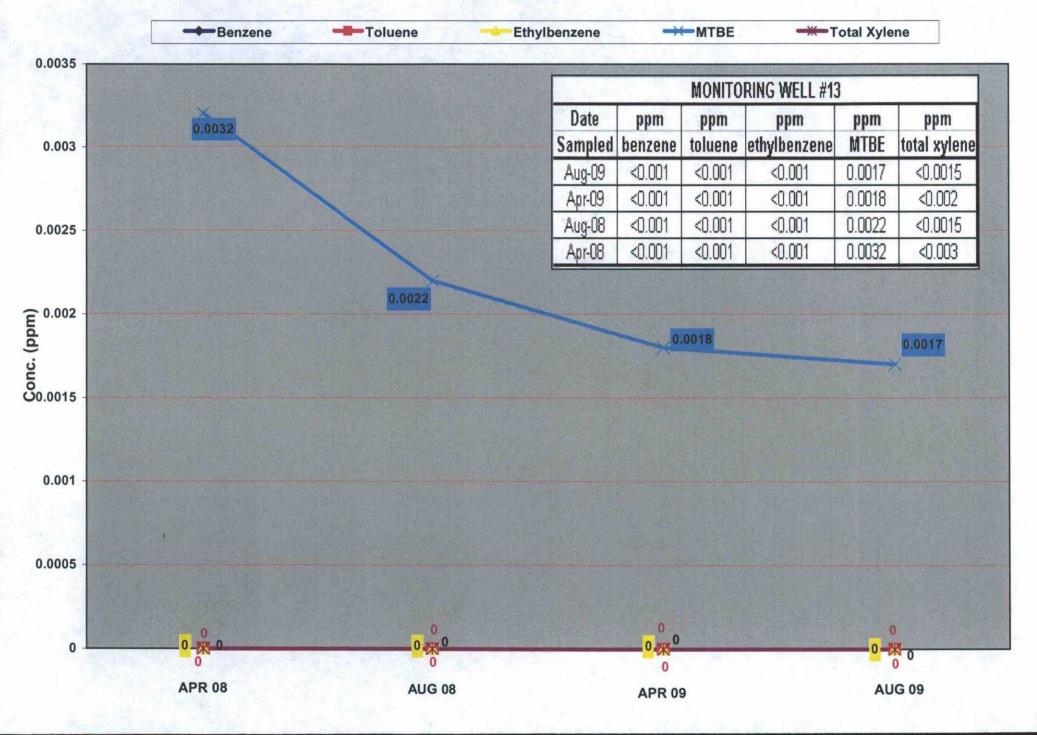


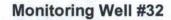


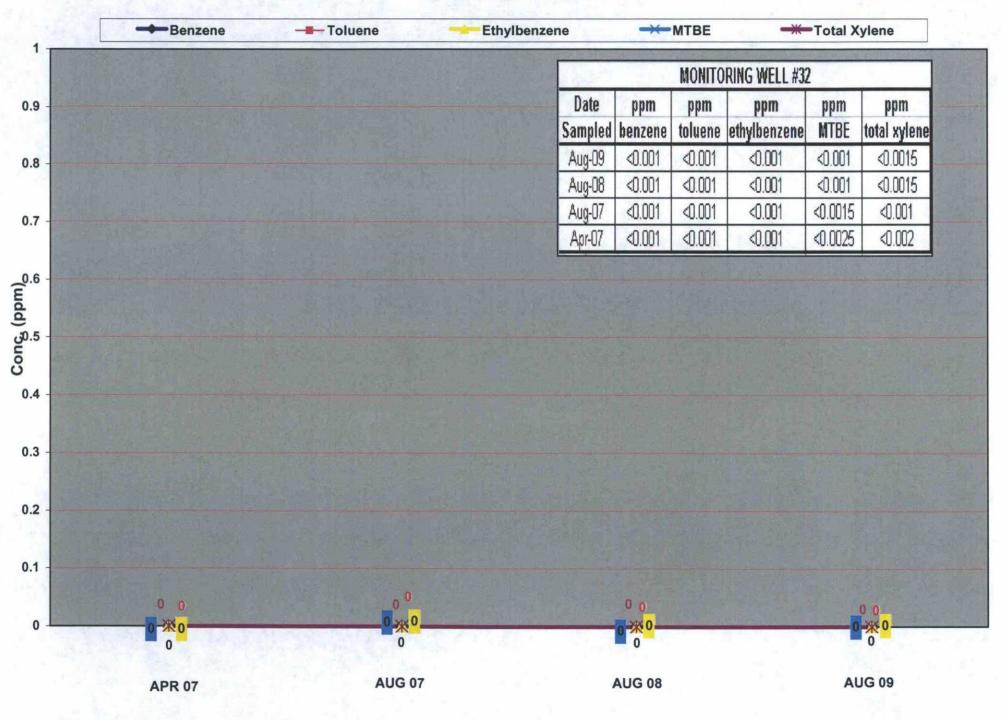


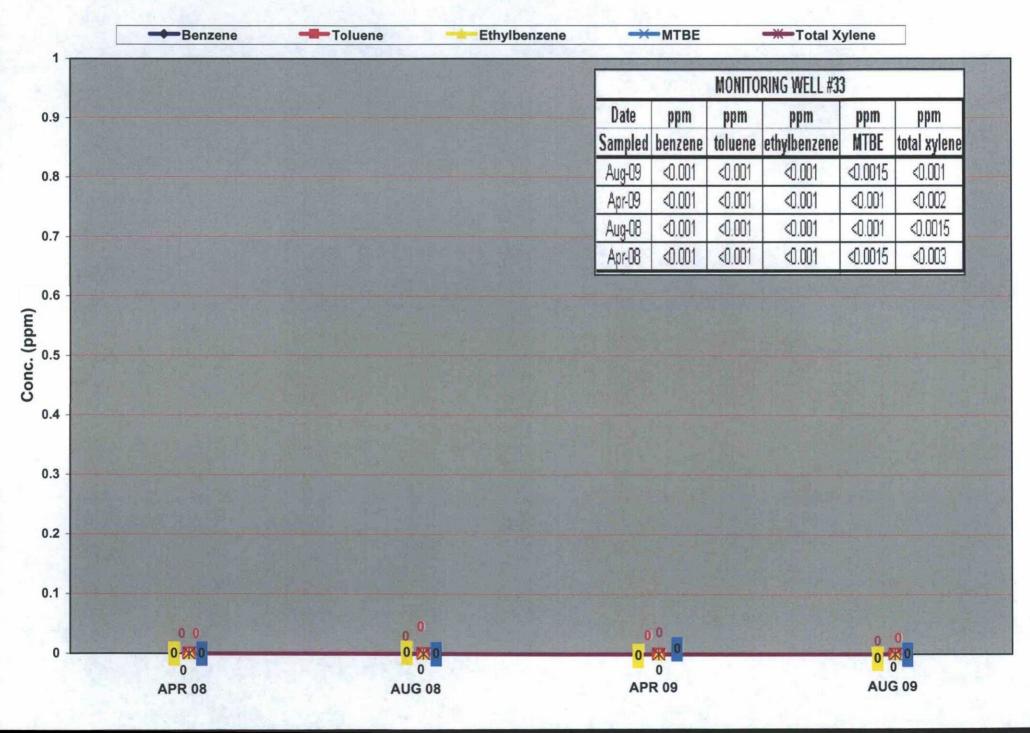


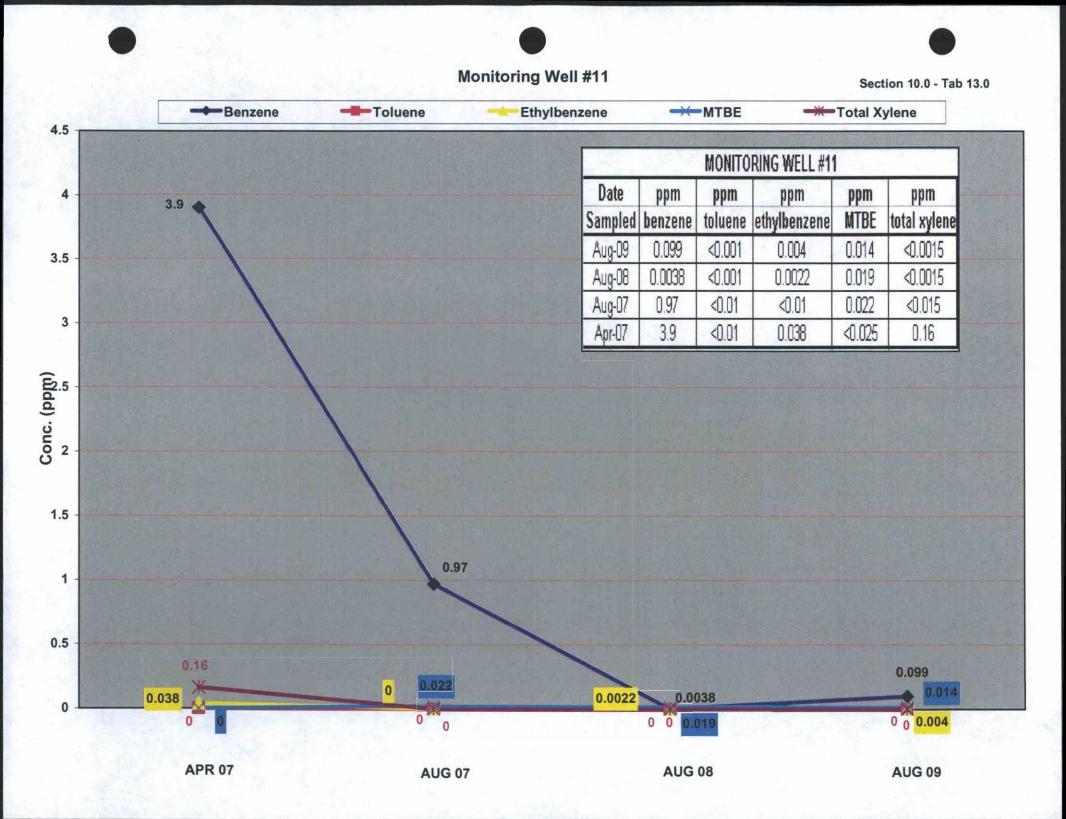


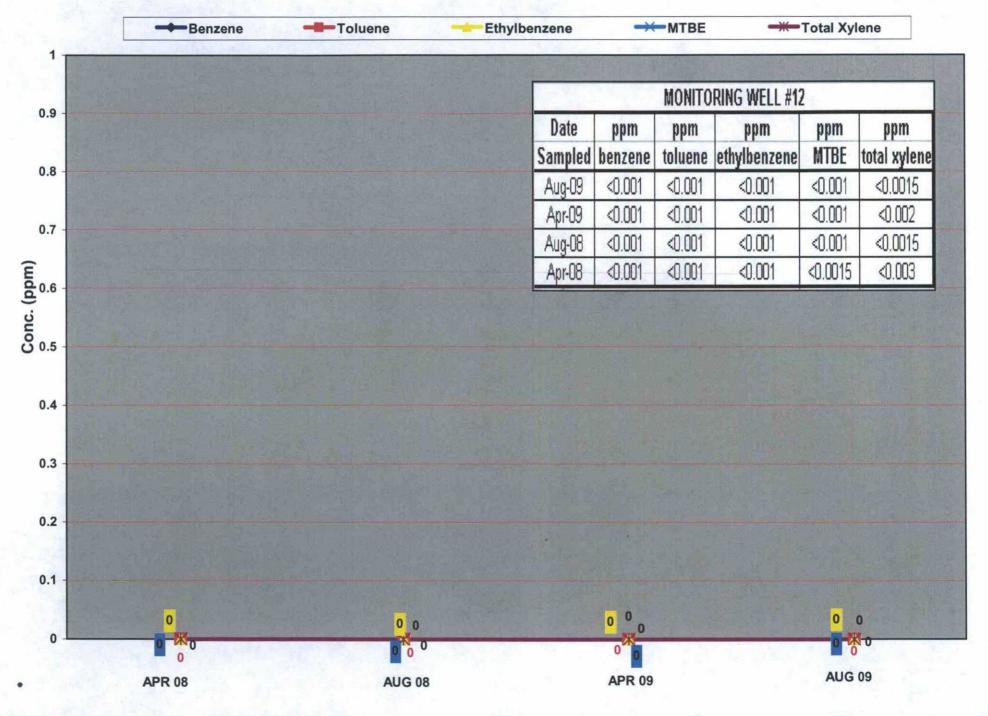


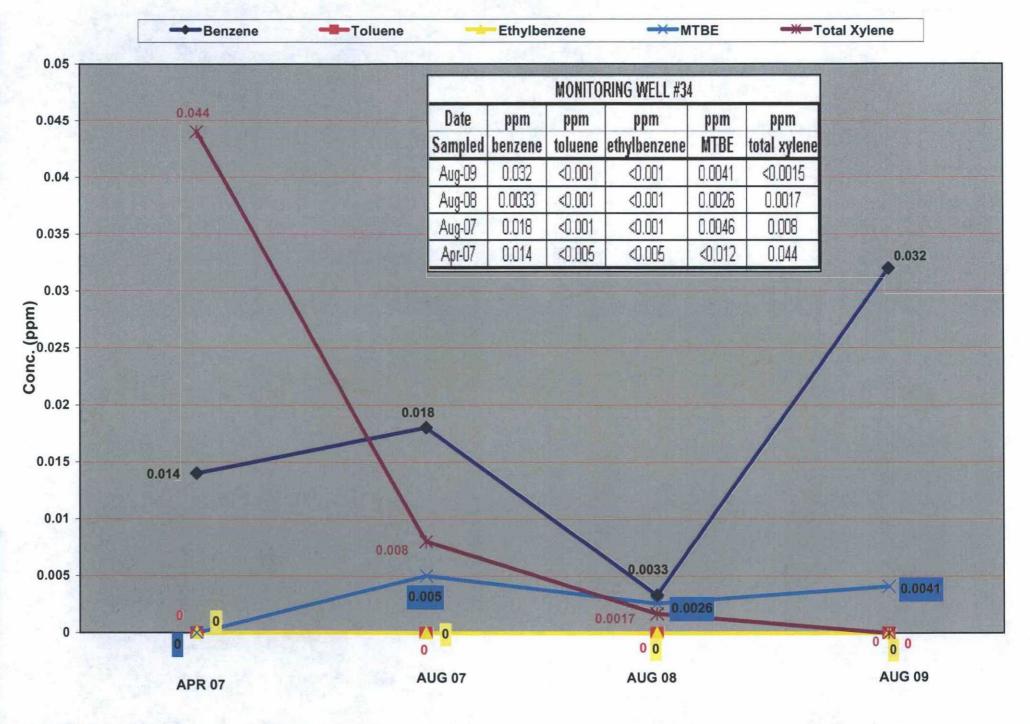


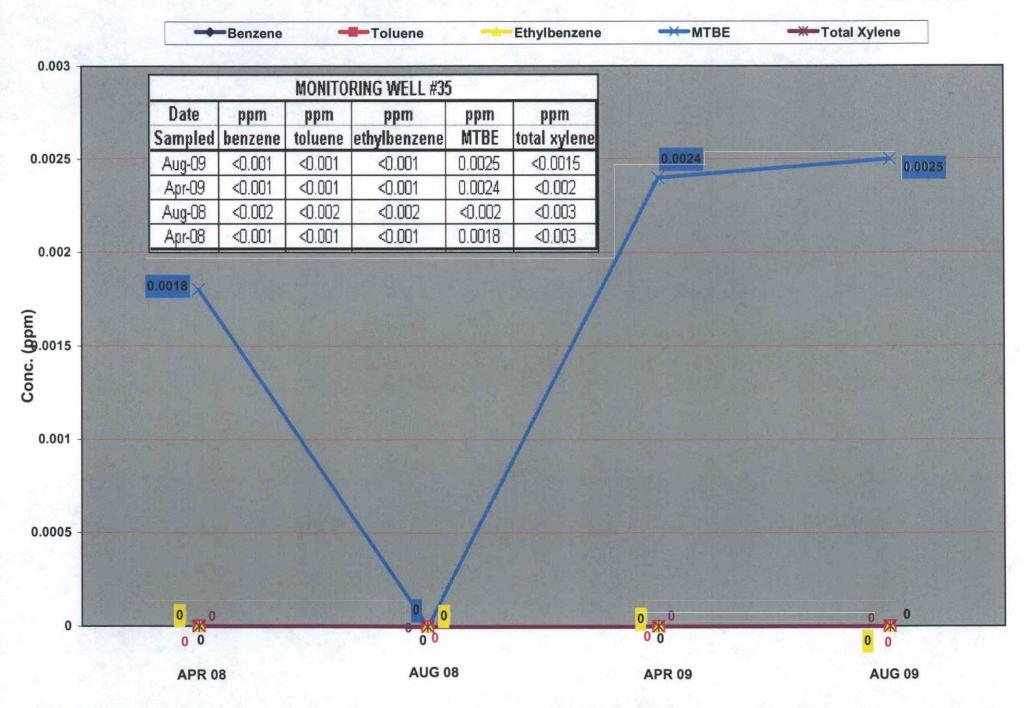


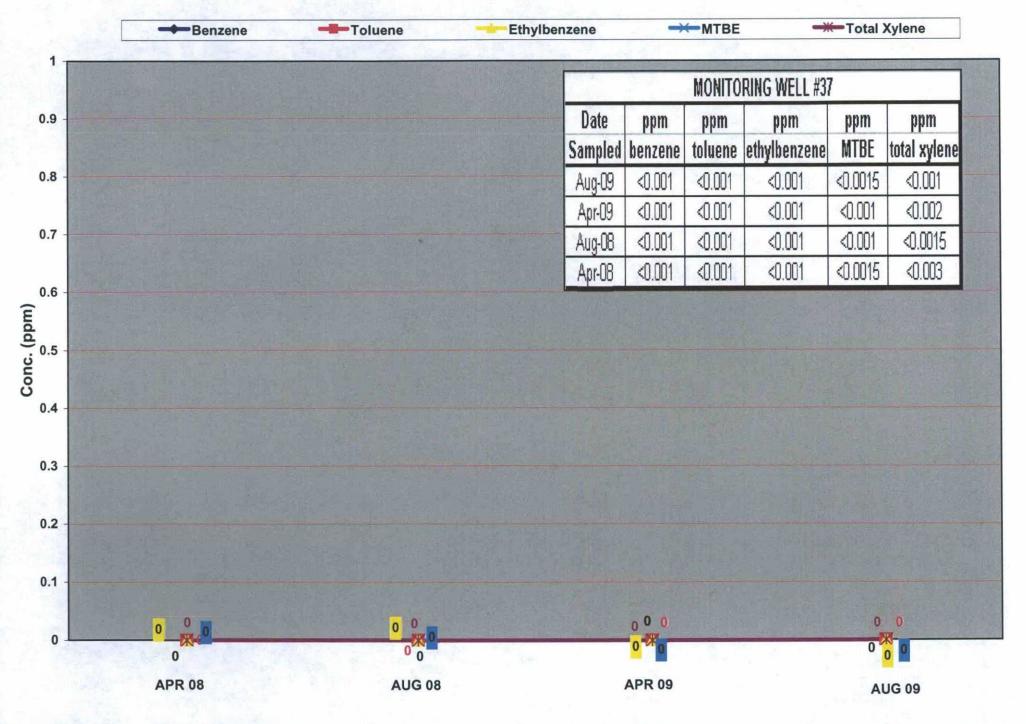


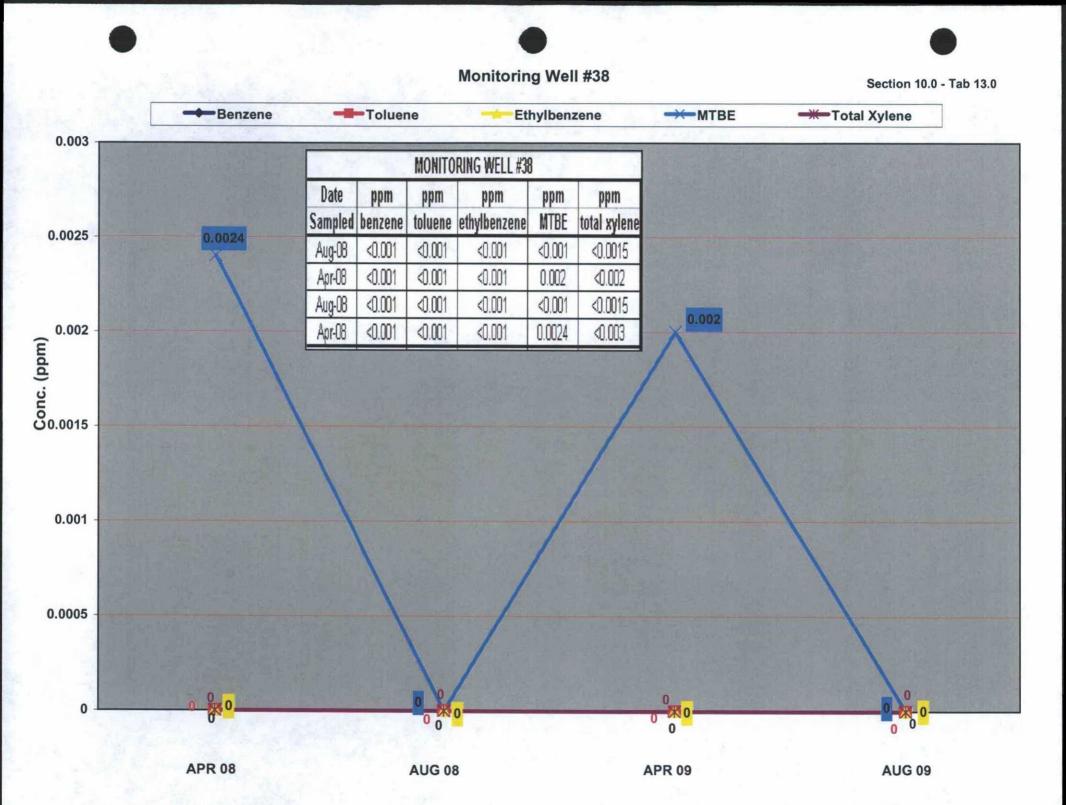


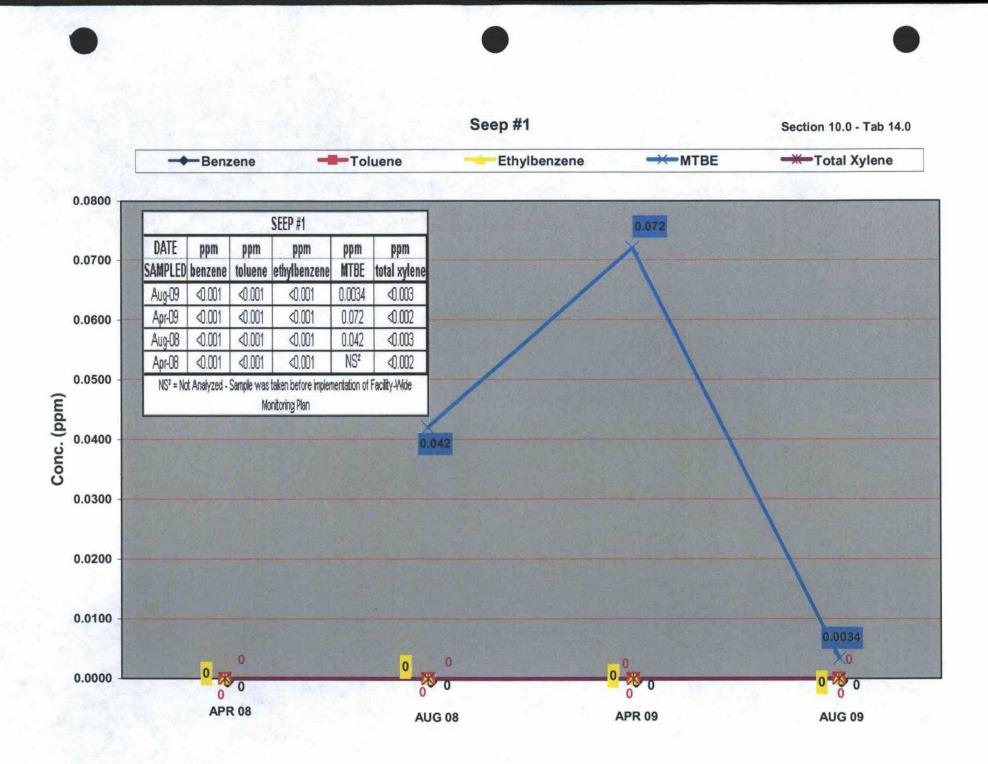


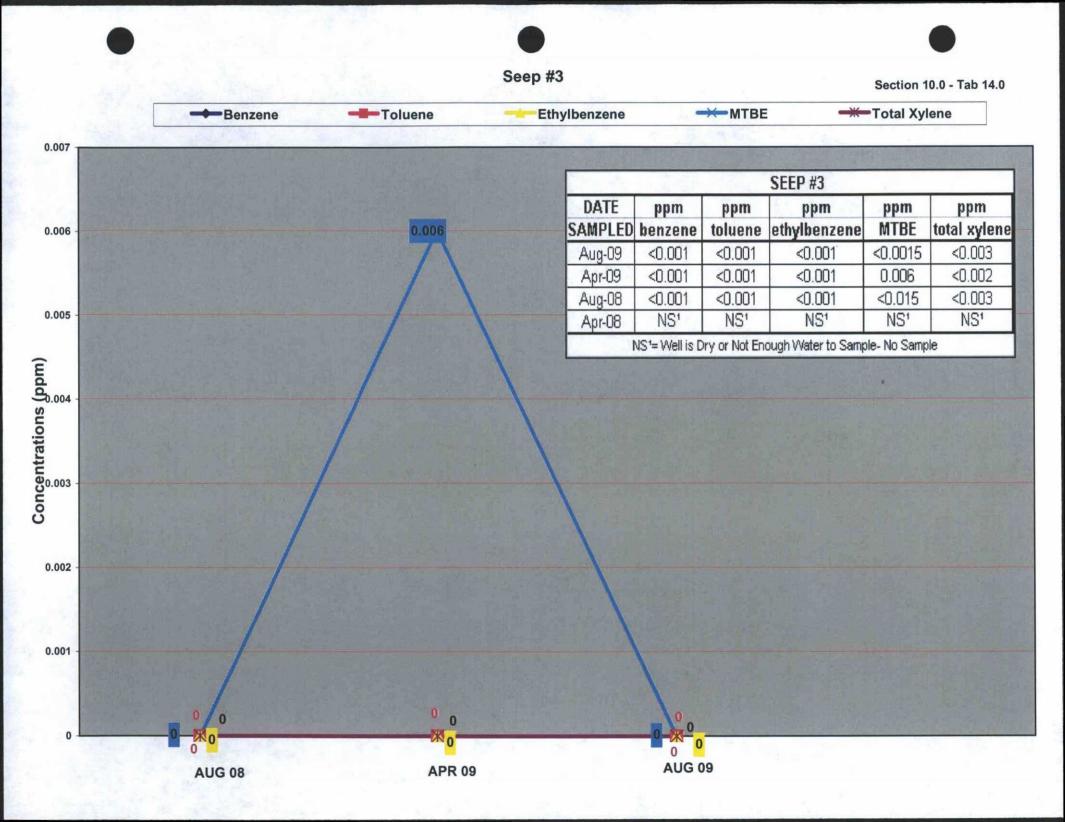


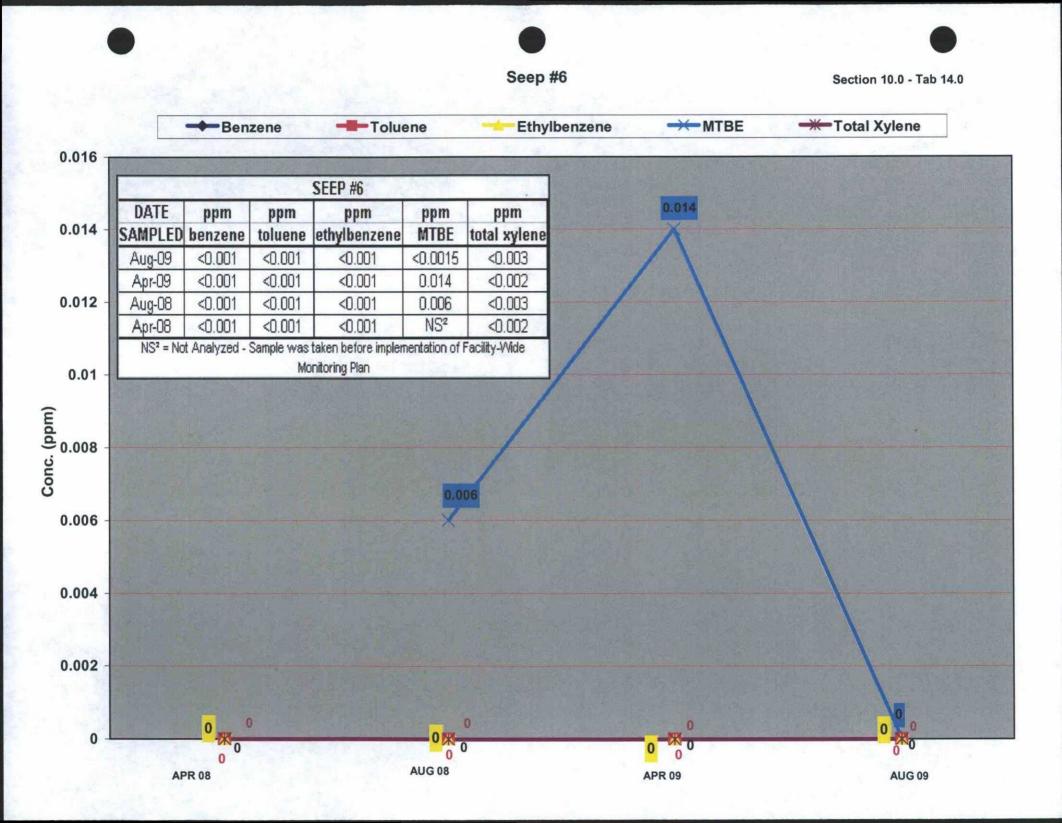


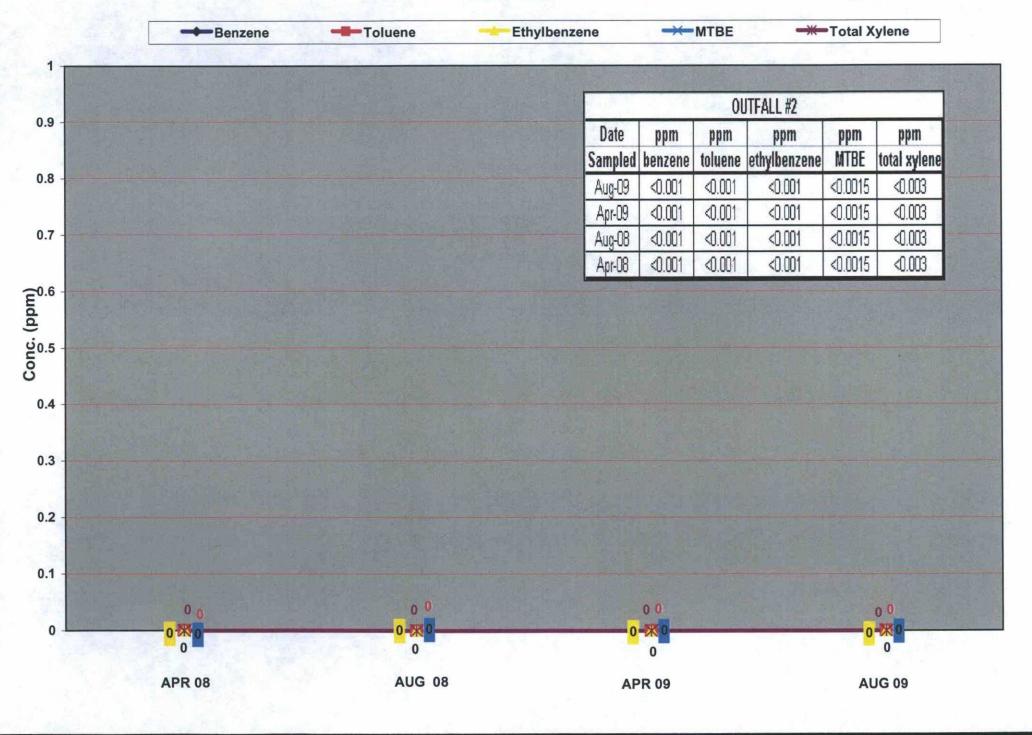


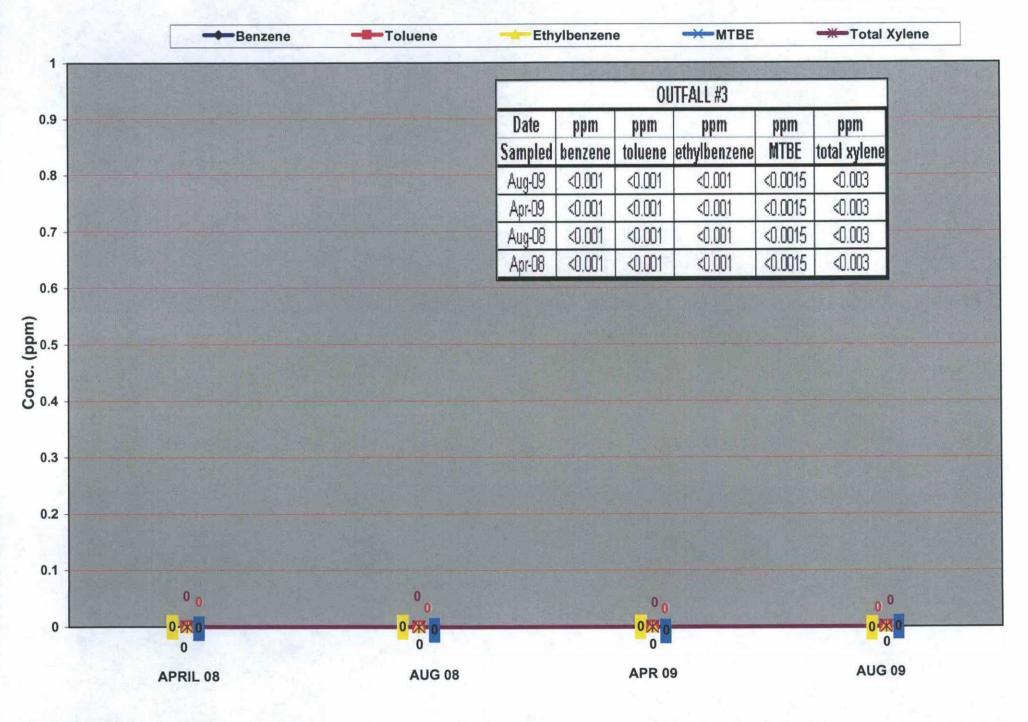












OUTFALL #2

OUTFALL #3

Section 11.0 Field Methods

Field Methods

Groundwater Elevation

All facility monitoring wells, recovery wells, observation and collection wells were measured for groundwater elevation in February, April, August, and November. Refinery personnel followed the guidelines of the *Facility-Wide Groundwater Monitoring Plan December 2007 (Revised May 2008)* to collect groundwater levels and SPH thickness measurements. Water elevation measurements were collected in all wells while the recovery wells were in operation and again after the pumps were removed and water levels had stabilized (5 or more days later).

All water/product levels are determined to an accuracy of 0.01 foot using a Geotech Interface Meter. The technician records separate phase hydrocarbon, depth to water, and total well depth using this probe.

Water Quality/Groundwater Sampling

Prior to purging, a YSI 550A Dissolved Oxygen Probe is used to determine dissolved oxygen (DO) levels. Water quality parameters are measured using an Ultrameter 6P by the Myron L Company. Electrical conductance, oxidation-reduction potential (ORP), Total Dissolved Solids (TDS), pH, and temperature are monitored during purging.

Well Purging Technique

After determining water levels and measuring DO, initial well volumes are calculated. Total purge volume is determined by monitoring electrical conductance, pH, temperature, ORP, and TDS after every two gallons or each well volume, whichever is less, has been purged from the well. The wells were considered satisfactorily purged when the field parameter values did not vary by more than 10 percent for at least three measurements.

Well volumes are determined using the following equation:

Well Depth – Casing Height – Depth to Liquid X Conversion Factor X Three. The conversion factor is determined by the diameter of the well casing.

Casing	Conversion Factor
6"	1.50 gal/ft
5"	1.02 gal/ft
4"	0.74 gal/ft
3"	0.367 gal/ft
2"	0.163 gal/ft

Typically disposable bailers are used for purging and sampling. Each bailer holds one liter of liquid. Three well volumes can be calculated by counting the number of times a well is bailed.

On occasion, the submersible pump is used for purging wells that have a large volume of water. All purged water is poured/pumped into a 55-gallon drum designated for sampling events.

11.0

Well Sampling and Sample Handling Procedure

Equipment and supplies needed for collecting representative groundwater samples include:

- Interface Meter
- YSI 550A Dissolved Oxygen Probe
- Ultrameter 6P
- Distilled Water
- Disposable Latex Gloves
- Disposable Bailers
- Submersible pump and Generator (if needed)
- String/Twine
- Cooler with Ice
- Bottle kits with Preservatives (provided by the contract laboratory)
- Disposable 0.45 micron Field Filters and Syringes
- Glass Jar (usually 4 oz.)
- Sharpie Permanent Marker
- Field Paperwork/Logsheet
- Two 5-gallon buckets
- Trash container (plastic garbage bag)
- Ziploc Bags
- Paper towels

After sufficient purging, samples are collected with the bailer and poured into the appropriate sample containers. Two people are usually utilized for sampling. Sampling takes place over a bucket to insure that spills are contained

For dissolved metals, sample water is poured into a jar and then extracted with a syringe. The syringe is then used to push water through a field filter into the proper sample bottle to collect the dissolved metals sample. Volatile organic analysis samples are collected as to allow no head space in the container.

Samples are labeled immediately with location, date, time, analysis, preservative, and sampler. Then they are put in a Ziploc bag and placed in a cooler holding sufficient ice to keep them cool. The field logsheet is reviewed to verify all entries.

Purge and Decontamination Water Disposal

The Ultrameter 6P, YSI 550A Dissolved Oxygen Probe, and the interface probe are rinsed with distilled water after every well. The rinse procedure takes place over a bucket to insure that spills are contained.

All rinse and purge water is contained and then disposed of through the refinery wastewater system.

The submersible pump is decontaminated by placing it in a 55-gallon barrel filled with plant water and some Alconox. The pump is activated and will pump down

the barrel twice. External areas are washed down and rinsed, also. All wash and rinse water is on containment and runs to the refinery wastewater system. Any glassware used is taken to the refinery laboratory and washed with Alconox and water and rinsed with reverse osmosis water. Laboratory wastewater runs through the refinery system.

Instrument Calibration

Calibration of the YSI 550A Dissolved Oxygen Instrument occurs at the beginning of each day of sampling. The probe is powered on and allowed to stabilize, which usually takes 15 minutes. Enter the calibration menu. The LCD will prompt you to enter the local altitude in hundreds of feet. When the proper altitude appears on the LCD, press the **ENTER** key.

The LCD will then prompt you to enter the salinity of the water you are about to analyze. After entering the correct salinity, the instrument will return to normal operation.

The Ultrameter 6P instrument calibration occurs at the beginning of each day of sampling. For Conductivity and TDS calibration, the cell is rinsed three times with a 3000 umhos/cm NaCl Standard. The cell cup is refilled with the standard. Either the **COND** or the **TDS** button is pressed and then the **CAL** button is pushed. Press the up or down arrow until the display agrees with the standard. The **CAL** button is pressed to accept the value.

The Ultrameter 6P has an electronic ORP calibration which is automatically calibrated with the 7 pH. The pH sensor well is rinsed three times with 7.0 buffer solution and then refilled again with that buffer. The **pH** button is pressed then the **CAL** button. The up or down arrow is adjusted until the display agrees with the buffer value. The **CAL** button is pushed to accept that value. Repeat the calibration steps using an acid buffer solution and then again with a base buffer solution.

Remediation System Measurement

Recovery well flows are measured using a 1000 ml graduated cylinder. The sample port on the discharge line of the pump is opened and effluent flows into the graduated cylinder. During a pump cycle, a measurement is taken over time and then calculated to a gallon per day rate.

Recovery rates at Tk #37 (Hammond Ditch French Drain) and Tk #38 (#1 East Outfall) are determined through flow meters installed in those systems. Refinery personnel record the rates periodically.

Waste Disposition 2009

Pick-up Date Profile	Profile #	Manifest #	Description	Cont	ainers	Quantity	Destination	Treatment	Cert. of Disposal
rick-up Date	Prome #	Mannest #	Description	No.	Туре	Quantity	Destination	Treatment	Consumption
2/4/2009	CH247415	002224224FLE	Main Column Bottoms Sludge K-170, D008, D009	2	DM	900 P	Clean Harbors El Dorado LLC 309 American Circle El Dorado, Arkansas 71730	Incineration	Yes
2/4/2009	CH315168	002224225FLE	Burner Rack Sludge (Non-Hazardous)	4	DM	2500 P	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Landfill	Yes
2/4/2009	CH296865	002224226FLE	Process Sewer Spill Clean-up Hazardous Waste Solid D-018, F-037	1	DM	500 P	Clean Harbors 2247 South Highway 71 Kimball, NE 69145	Incineration	Yes
2/4/2009	CH296877	002224226FLE	API Sludge (Hazardous Waste Solid) K-051, D-018	2	DM	900 P	Clean Harbors 2247 South Highway 71 Kimball, NE 69145	Incineration	Yes
2/4/2009	CH331091	002224227FLE	Crude Oil and Soil from Clean Up (Tk #31) (Non-Hazardous)	3	DM	1,500	Clean Harbors Arizona, LLC 1340 West Lincoln Street Phoenix, Arizona 85007	Landfill	Yes
5/6/2009	CH 106148	002659448 FLE	Exchanger Bundle Sludge (K-050)	3	DM	900 P	Clean Harbors Deer Park LP 2027 Independence Parkway South La Porte, TX 77571	Incineration	Yes
5/6/2009	CH 247415	002659448 FLE	Main Column Bottoms Sludge K-170, D008, D009	1	DM	550 P	Clean Harbors Deer Park LP 2027 Independence Parkway South La Porte, TX 77571	Incineration	Yes
5/6/2009	CH 315430	002296624FLE	Vacuum Truck Sludge (F037)	13	DM	7150 P	Clean Harbors Deer Park LP 2027 Independence Parkway South La Porte, TX 77571	Incineration	Yes
5/6/2009	CH 364761	002659448 FLE	Benzene Stripper Sludge (F038)	12	DM	6800 P	Clean Harbors Deer Park LP 2027 Independence Parkway South La Porte, TX 77571	Incineration	Yes

BA = Burlap.cloth,paper.or plastic bags

CF = Fiber or plastic boxes, cartons, cases CM = Metal boxes, cartons, cases (including rolloffs)

CW = Wooden boxes, cartons, cases

CY = Cylinders

DF = Fiberboard or plastic drums, barrels, kegs

DM = Metal drums, barrels, kegs

DT = Dump truck

DW = Wooden drums, barrels, kegs

HG = Hopper or gondola cars

TC = Tanker cars

TP = Portable tanks

12.0

Waste Disposition 2009

Pick-up Date	Profile #	Manifest #	Description	Con	tainers	Quantity	Destination	Treatment	Cert. of Disposal/
ick-up Date	Frome #	Wannest #	Description	No.	Туре	Quantity	Destination	reatment	Consumption
5/6/2009	CH 355517	002296624FLE	Desalter Sludge (D008, D009, D018)	10	DM	5500 P	Clean Harbors Deer Park LP 2027 Independence Parkway South La Porte, TX 77571	Incineration	Yes
6/25/2009	CH 374834B	002648087 FLE	Vacuum Truck Sludge (F037, D009)	1	CM (Vac Box)	20,980 P	Clean Harbors Env. Sevices, Inc 2247 South Highway 71 Kimball, NE 69145	Incineration	Yes
6/29/2009		004162526 JJK	Spent Hydrotreating Catalyst (DHT) (K-171)	8	СМ	37,820 P	Eurecat U.S., Inc. 13100 Bay Park Rd. Pasadena, Texas 77507	Recycled	Yes
7/14/2009	CH309573B	002637882 FLE	Soil Contaminated with Liquid from the Poly Unit Process Sewer (D018) (F037)	1	π	46,400 P	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Incineration	Yes
9/1/2009	CH106148	002978183 FLE	Exchanger Bundle Sludge/Debris - Tk #28	1	DM	500 P	Clean Harbors Env. Sevices, Inc 2247 South Highway 71 Kimball, NE 69145	Incineration	Yes
9/1/2009	CH247415	002978183 FLE	Main Column Bottoms Sludge K-170, D008, D009	2	DM	1,000 P	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Incineration	Yes
9/1/2009	CH255646	002978183 FLE	Soil Contaminated with Red Dye/Debris - Non RCRA (Clean up at Terminals)	2	DM	1,000 P	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Incineration	Yes
12/1/2009	CH106150	002918766FLE	Crude Oil Tank Bottoms (Tk #28 Clean Out) K-169	2	DM	800 P	Clean Harbors Env. Sevices, Inc 2247 South Highway 71 Kimball, NE 69145	Incineration	Yes
12/1/2009	CH106150	002918766FLE	Main Column Bottoms Sludge K-170, D008, D009	1	DM	400 P	Clean Harbors Env. Sevices, Inc 2247 South Highway 71 Kimball, NE 69145	Incineration	Yes
	BA = Burlap,cloth	paper,or plastic bags	DF = Fiberboard or plas	stic drums,	barrels, kegs		TC = Tanker cars		
	53 10/04	boxes, cartons, cases		ls, kegs			TP = Portable tanks		
CM = Me	tal boxes, cartons,	cases (including roll- offs)	DI = Dump truck				TT = Cargo tanks (tank true	cks)	
	CW = Wooden I	boxes, cartons, cases		rels, kegs					

HG = Hopper or gondola cars

CY = Cylinders

12.0

Waste Disposition 2009

Pick-up Date	Destile #	Profile # Manifest #	Description	Containers		Quantity	Destination	Treatment	Cert. of Disposa
	Profile #	Manifest #	Description	No.	Туре	Quantity	Destination	Heatmone	Consumption
12/1/2009	CH364761	002918766FLE	Benzene Stripper Sludge (F038)	2	DM	1600 P	Clean Harbors Env. Sevices, Inc 2247 South Highway 71 Kimball, NE 69145	Incineration	Yes
12/8/2009	424076-00	002459286FLE	Hazardous Debris (K-169 - PPE from Tk #28 Clean Out)	2	CF	1140 P	U.S Ecology Idaho, Inc. 20400 Lemley Rd Grand Veiw, ID. 83624	Encapsulation	Yes
al sind some			i na si	1 p 11 =		Λ.			L
						9			

BA = Burlap, cloth, paper, or plastic bags CF = Fiber or plastic boxes, cartons, cases CM = Metal boxes, cartons, cases (including rolloffs) CW = Wooden boxes, cartons, cases CY = Cylinders

DM = Metal drums, barrels, kegs

DT = Dump truck

DW = Wooden drums, barrels, kegs HG = Hopper or gondola cars

TP = Portable tanks

23 12.0

Spent Caustic Waste 2009

Pick-up Date	Profile #	Manifest #	t Description	Cont	Containers		Destination	Treatment	Cert. of Disposal
liek up Bate	T Tome #	Warnest #	Description	No.	Туре	Quantity	Destination	Treatment	Consumption
1/21/2009	CH248999B	002322434FLE	Waste Caustic Alkali Liquids D002	1	Π	32,060 P	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Landfilled	Yes
2/4/2009	CH248999B	002322455FLE	Waste Caustic Alkali Liquids D002	1	π	36,700 P	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Landfilled	Yes
2/17/2009	CH248999B	001148588FLE	Waste Caustic Alkali Liquids D002	1	π	37,480 P	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Landfilled	Yes
2/24/2009	CH248999B	001148698FLE	Waste Caustic Alkali Liquids D002	1	Π	37,440 P	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Landfilled	Yes
4/1/2009	CH248999B	002659117FLE	Waste Caustic Alkali Liquids D002	1	Π	40,680 P	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Landfilled	Yes
4/9/2009	CH248999B	002659179FLE	Waste Caustic Alkali Liquids D002	1	π	42,400 P	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Landfilled	Yes
4/23/2009	CH248999B	002698069FLE	Waste Caustic Alkali Liquids D002	1	π	36,740 P	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Landfilled	Yes
5/7/2009	CH248999B	002659449FLE	Waste Caustic Alkali Liquids D002	1	π	40,220 P	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Landfilled	Yes
5/12/2009	CH248999B	002645017 FLE	Waste Caustic Alkali Liquids D002	1	Π	40,030 P	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Landfilled	Yes

12.0

Spent Caustic Waste 2009

Diele un Dete	Profile #	Manifest#	Description	Cont	Containers		Destination	Trachmant	Cert. of Disposal/
Pick-up Date	Profile #	Manifest #	Description	No.	Туре	Quantity	Destination	Treatment	Consumption
5/27/2009	CH248999B	004162522 JJK	Waste Caustic Alkali Liquids D002	1	π	40,320 P	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Landfilled	Yes
6/15/2009	CH248999B	002635705 FLE	Waste Caustic Alkali Liquids D002	1	π	40,060 P	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Landfilled	Yes
7/7/2009	CH248999B	002637854 FLE	Waste Caustic Alkali Liquids D002	1	тт	40,320 P	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Landfilled	Yes
7/16/2009	CH248999B	002637855 FLE	Waste Caustic Alkali Liquids D002	1	Π	44,040 P	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Landfilled	Yes
7/30/2009	CH248999B	002635863 FLE	Waste Caustic Alkali Liquids D002	1	т	39680 P	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Landfilled	Yes
8/13/2009	CH248999B	002698594 FLE	Waste Caustic Alkali Liquids D002	1	π	41500 P	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Landfilled	Yes
8/24/2009	CH248999B	002635862 FLE	Waste Caustic Alkali Liquids D002	1	Π	39320 P	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Landfilled	Yes
9/3/2009	CH248999B	002698706 FLE	Waste Caustic Alkali Liquids D002	1	тт	43180 P	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Landfilled	Yes
9/22/2009	CH248999B	002698831 FLE	Waste Caustic Alkali Liquids D002	1	π	44140 P	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Landfilled	Yes

12.0

Spent Caustic Waste 2009

Pick-up Date	Profile #	Manifest #	Description	Cont	ainers	Questitu	Destination	Treatment	Cert. of Disposal
Tick-up Date	Frome #	Warnest #	Description	No.	Туре	Quantity	Destination	Treatment	Consumption
10/1/2009	CH248999B	002698882FLE	Waste Caustic Alkali Liquids D002	1	Π	37780 P	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Landfilled	Yes
10/15/2009	CH248999B	002698941FLE	Waste Caustic Alkali Liquids D002	1	π	34,420 P	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Landfilled	Yes
11/4/2009	CH248999B	003051098FLE	Waste Caustic Alkali Liquids D002	1	Π	43520 P	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Landfilled	Yes
11/24/2009	CH248999B	003051166FLE	Waste Caustic Alkali Liquids D002	1	π	36,980 P	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Landfilled	Yes
12/2/2009	CH248999B	003051285FLE	Waste Caustic Alkali Liquids D002	1	Π	39,100	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Landfilled	Yes
12/9/2009	CH248999B	003051286FLE	Waste Caustic Alkali Liquids D002	1	π	41,400	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Landfilled	Yes
12/29/2009	CH248999B	003051398FLE	Waste Caustic Alkali Liquids D002	1	π	27,620	Clean Harbors Grassy Mountain, UT Facility 3miles east, 7 miles north of Knolls Grantsville, UT 84029	Landfilled	Yes
-									

TT = Cargo tanks (tank trucks)

2.0		Ser and the	FINERY										
132.2	and and the second second		and the second second		A Bright	P.O. BOX			Second Second				
	Sur Angel	111 <u>5 4</u>	<u> </u>	E	BLOOMFIE	LD, NEW	MEXICO	D 87413					•))(
				٩	DISCI	INJECTION HARGE PLA 4 SECTION JUAN COUN	N GW-13 27, T29N	0 , R11W				 (a) and (b) and (
	AMOUNT OF WATER	AMOUNT TO SOLAR	TOTALIZER	DOWN-	INJECTION P	RESSURE		ANNULAR P	RESSURE		ON-L		na an tao
PERIOD	FROM RIVER	EVAP PONDS	INJECTED	TIME	MAX	MIN	AVG	MAX	MIN	AVG	MAX	MIN	AVG
2009	(GALLONS)	(GALLONS)	(GALLONS)	(HRS)	(PSIA)	(PSIA)	(PSIA)	(PSIA)	(PSIA)	(PSIA)	(GPM)	(GPM)	(GPM)
JAN	8,613,000	5,685,000	3,571,904	0	1138	1090	1111	300	113	216	91	39	81
FEB	8,257,000	8,838,500	3,221,260	0	1130	1104	1119	231	113	175	86	71	74
MAR	9,316,000	4,127,000	2,984,184	0	1122	1049.0	1108	191	170	178	*	*	67
APR	9,183.000	4,115,000	2,534,774	36	1142	1049	1117	228	143	184	104	14	62
MAY	9,421,000	4,177,000	3,669,236	0	1144	1050	1129 .	190	174	180	98	69	82
JUN	9,188,000	4,001,000	3,063,006	0	1138	997	1119	192	175	184	83	43	69
JUL	11,053,000	4,040,000	2,899,690	12	1143	1020	1120	190	93	176	106	68	86
AUG	10,282,000	3,878,000	3,255,566	0	1139	994	1097	181	100	154	93	47	78
SEP	8,630,000	3,992,000	3,225,841	12	1115	922	1058	188	136	164	98	24	75
OCT	4,960,000	1,430,000	2,047,955	264	1050	993	1075	249	106	159	95	61	80
NOV	7,231,000	4,048,000	2,405,228	108	1108	956	1025	177	61	126	96	34	66
	2,345,000	1,918,000	1,163,711	180	995	916	957	197	127	141	53	18	36

BLOOMFIELD REFINERY UNDERGROUN

٠

COCESS AND WASTEWATER LINES - Inspection & Repair

hedule

						-							
Line Number	Description (Service)	Line Size	Line Length	Starting Location	End Location	Drawing Reference	Construction Material	Inspection Scheduled	Inspection Date	Inspection Results Pass/Fail	Test/ Inspection Method	Repairs/M aint Needed	Repairs-Maint Completion date
1	Effilent Wtr. Transfer Line	6	907 L/F	Effilent Pond Outlet Pump P-616	North Evaporation Pond	D-500-800-031	PVC	2012					
2	Effilent Wtr. Trans. Pump	6	908 L/F	North Evaporation Pond Outlet	Effilent Transfer Pump P-671	D-500-800-031	PVC	2012				_	-
3	Effilent Wtr. Pump Disch.	6	2,797 L/F	Effilent Trans. Pump Disch.	Injection Well Building	D-500-800-031	PVC	2012	Oct-09	Pass	Hydrostatic	None	N/A
4	Injection Well Recir. Line	6	910 L/F	Injection Well Building	North Evaporation Pond	D-500-800-031	PVC	2012					
5	River Terrace Transfer Line	2	911 L/F	River Terrace Processing Skid	River Pump Building Water Basin	D-500-800-043	PVC	2012					
6	Crude Transfer Line	12	912 L/F	Pipe Rack East Of LPG Stg Tks.	Pipe Rack Southwest of Tk. # 31	N/A	Carbon steel	2008	May-08	Pass	Praxair	None	N/A
7	Steam Header at Terminals	6	913 L/F	Pipe Rack Southwest of Tk. # 31	Pipe Rack East Of LPG Stg. Tks.	N/A	Carbon steel	2011					
8	Condensate Return Header	4	914 L/F	Pipe Rack East Of LPG Stg Tks.	Pipe Rack Southwest of Tk. # 31	N/A	Carbon steel	2011					
9	C-4 To Blend	4	218 L/F	Pipe Rack East Of LPG Bullets	Pipe Rack Southwest of Tk. # 31	N/A	Carbon steel			*Temporarily O	ut of Service		
10	ULSD Sales Line	12	916 L/F	Pipe Rack Southwest of Tk. # 31	Filter Pad Area North Of Loading Pad	N/A	Carbon steel	2007	Nov-07	Pass	Praxair	None	N/A
11	Unleaded Gasoline Sales	12	917 L/F	Pipe Rack Southwest of Tk. # 31	Filter Pad Area North Of Loading Pad	N/A	Carbon steel	2007	Nov-07	Pass	Praxair	None	N/A
12	Naphtha Sales from Tk #35	12	980 L/F	Pipe Rack Southwest of Tk. # 31	Filter Pad Area North Of Loading Pad	N/A	Carbon steel	out of service					
13	Lite Straight Run Product	4	218 L/F	Pipe Rack Southwest of Tk. # 31	Rack Area North Of B- 23	N/A	Carbon steel	2011					
14	Poly Material To Storage	3	275 L/F	Pipe Rack Southwest of Tk. # 31	Area Northeast of B-21	N/A	Carbon steel			*Temporarily O	ut of Service		
15	Poly Unit Feed Line	3	275 L/F	Area Northeast of B- 21	Pipe Rack Southwest of Tk. # 31	N/A	Carbon steel			*Temporarily O	ut of Service		
16	LPG Rerun Line	2	275 L/F	Area Northeast of B- 21	Pipe Rack Southwest of Tk. # 31	N/A	Carbon steel			*Temporarily O	ut of Service		4
17	Saturate To Storage	2	275 L/F	Pipe Rack Southwest of Tk. # 31	Area Northeast of B- 21	N/A	Carbon steel			*Temporarily O	ut of Service		
18	C-4 To Storage	2	275 L/F	Pipe Rack Southwest of Tk. # 31	Area Northeast of B- 21	N/A	Carbon steel			*Temporarily O	ut of Service		
19	C-3 To Storage	2	275 L/F	Pipe Rack Southwest of Tk. # 31	Area Northeast of B- 21	N/A	Carbon steel	E		*Temporarily O	ut of Service		
20	JP-8 Sales Line	8	388 L/F	Pipe Rack Southwest of Tk. # 31	Out Of Service	N/A	Carbon steel	out of service					
21	Off Road Diesel Sales From Tk.18	6	389 L/F	Pipe Rack Southwest of Tk. # 31	Filter Pad Area North Of Loading Pad	N/A	Carbon steel	2007	Nov-07	Pass	Praxair	None	N/A
22	Slop Line ToTk. # 22	4	390 L/F	Area Northeast of B- 21	Out of Service	N/A	Carbon steel	out of service					
23	Isomerate/Naptha Line	6	699 L/F	Low Rack West Of Tk.# 25	Area West of B-12	D-000-900-023	Carbon steel	2008	May-08	Pass	Praxair	None	N/A
24	Sub Grade Gasoine (Tk #32)	8	392 L/F	Pipe Rack West Of Tk.# 36	Filter Pad Area North Of Loading Pad	N/A	Carbon steel	2007	Nov-07	Pass	Praxair	None	N/A
25	Premium Sales from Tk.s # 3 & 4	6	393 L/F	Pipe Rack West Of Tk.# 36	Filter Pad Area North Of Loading Pad	N/A	Carbon steel	2007	Nov-07	Pass	Praxair	None	N/A
26	Naptha to VRU	4	313 L/F	Crude Line East of B- 21	Manifold @ VRU Unit	NewTech 595-M-601	Carbon steel	2008	May-08	Pass	Praxair	None	N/A
27	Naphta Feed To VRU Unit	4	223 L/F	Transfer Pump @ Tk. # 44	Manifold @ VRU Unit	NewTech 595-M-601	Carbon steel	2008	May-08	Pass	Praxair	None	N/A
28	Naptha Fill/Rerun To Tk. #44	4	223 L/F	Manifold @ VRU Unit	Naptha Fill Line To Tk. # 44	NewTech 595-M-601	Carbon steel	2008	May-08	Pass	Praxair	None	N/A
29	Off-Road Diesel To Bays #1 & 2	8	397 L/F	From F-706 Filter Piping	To Meter Spools @ Bays # 1&2	D-700-500-118	Carbon steel	2007	Nov-07	Pass	Praxair	None	N/A
30	(Old Kerosene) To Bay # 3	6	398 L/F	From F-706 Filter Piping	To Meter Spools @ Bays # 3	D-700-500-118	Carbon steel	2011	3				

*All lines that are temporarily out of service due to suspension of refining operations were steamed out and are hydrocarbon free

13.0 BLOOMFIELD REFINERY UNDERGROUND PROCESS AND WASTEWATER LINES - Inspection & Repair Schedule

Line Number	Description (Service)	Line Size	Line Length	Starting Location	End Location	Drawing Reference	Construction Material	Inspection Scheduled	Inspection Date	Inspection Results Pass/Fail	Test/ Inspection Method	Repairs/ Maint Needed	Repairs-Maint Completion date
31	Premiun Sales Line	10	399 L/F	From F-705 Filter Piping	To Meter Spools @ Bays # 1,2 & 3	D-700-500-118	Carbon steel	2007	Nov-07	Pass	Praxair	None	N/A
32	Unleaded GasolineSales Line	10	400 L/F	From F-704 Filter Piping	To Meter Spools @ Bays # 1,2 & 3	D-700-500-118	Carbon steel	2007	Nov-07	Pass	Praxair	None	N/A
33	ULSD To Bay # 4	8	401 L/F	From F-703 Filter Piping	To Meter Spool @ Bay # 4	D-700-500-123	Carbon steel	2007	Nov-07	Pass	Praxair	None	N/A
34	Ethanol Pump Suction Line	8	330 L/F	From Tk. # 45 Outlet Nozzel	To P-707 & P-707A Pump Suction	D-700-500-140	Carbon steel	2010					
35	Ethanol Unloading Line	4	330 L/F	From P-706 Pump Discharge	To Tk. # 45 Inlet Nozzel	D-700-500-140	Carbon steel	2010					
36	Naphtha Unloading Line	6	420 L/F	Suction Manifold @ P- 607A	Unloading line @ Tk. #18 and 19	B-600-500-296	Carbon steel	2007	Sep-07	Pass	the sale	None	N/A
37	Naptha Rundown To Tk.# 35	3	99	Line From North Pipe Rack Area	To Tk. # 35 Fill Nozzle	B-600-500-232	Carbon steel			*Temporarily O	ut of Service		Series 2
38	Naptha Feed Line to Unit	4	99	From P-607A Pump Discharge	To North Pipe Rack Feed To Units	B-600-500-236	Carbon steel			*Temporarily Ou	ut of Service		
39	Cooling Water Supply Line	12	165 L/F	From # 1 Cooling Tower Pumps	To Rack Area @ Reformer Unit	D-500-500-011	Carbon steel	Marine Park		*Temporarily O	ut of Service		
40	Cooling Water Return Line	12	165 L/F	From Rack Area @ Reformer	To #1 Cooling Tower Water Iniet	D-500-500-011	Carbon steel			*Temporarily Ou	ut of Service		
41	Cooling Water Supply Line	20	145 L/F	From # 2 Cooling Tower Pumps	To S. End of FCC Unit @ Twr. 207 Area	D-201-500-123	Carbon steel			*Temporarily Ou	ut of Service		
42	Cooling Water Return Line	20	145 L/F	From South End of FCC Unit	To # 2 Cooling Tower Water Inlet	D-201-500-123	Carbon steel			*Temporarily Ou	ut of Service		
43	Sewer Transfer Line	10	54 L/F	From Main Sewer Box # 12	To Main Sewer Box # 11	D-500-500-134	Carbon steel	2010					
44	Sewer Transfer Line	10	46 L/F	From Main Sewer Box # 11	To Observation Access Can	D-500-500-134	Carbon steel	2010					
45	Sewer Transfer Line	12	33 L/F	From Observation Access Can	To Observation Access Can	D-500-500-134	Carbon steel	2010			HE DE		
46	Sewer Transfer Line	12	73 L/F	From Observation Access Can	To Main Sewer Box # 5	D-500-500-134	Carbon steel	2010					
47	Sewer Transfer Line	14	69 L/F	From Main Sewer Box # 5	To Observation Access Can (Desalter)	D-500-500-134	Carbon steel	2010					
48	Sewer Transfer Line	14	86 L/F	From Observation Access Can	To Main Sewer Box # 3	D-500-500-134	Carbon steel	2010					
49	Sewer Transfer Line	12	62 L/F	From Main Sewer Box # 9	To main Sewer Box # 8	D-500-500-134	Carbon steel	2010					
50	Sewer Transfer Line	12	66 L/F	From Main Sewer Box # 8	To Main Sewer Box # 7	D-500-500-134	Carbon steel	2010		e Surap	Dining, B		
51	Sewer Transfer Line	14	86 L/F	From Main Sewer Box # 7	To Main Sewer Box # 3	D-500-500-134	Carbon steel	2010					
52	Sewer Transfer Line	14	145 L/F	From Main Sewer Box # 3	To Observation Access Can (Precipitator)	D-500-500-134	Carbon steel	2010					
53	Sewer Transfer Line	14	100 L/F	From Observation Access Can	To Main Sewer Box # 1	D-500-500-134	Carbon steel	2010				(Length)	
54	Sewer Transfer Line	12/10	TBD	From Main Sewer Box # 1	To Inlet @ API Seperator	D-500-500-106	Carbon steel	2010					
55	Sewer Collection Manifold	8>4	TBD	Boiler	To North Side of Sewer Box # 12	D-500-500-124	Carbon steel	2010					
56	Sewer Collection Manifold	10>4	TBD	Area @ & Around Crude Twr	To North Side Of Sewer Box # 11	D-500-500-124	Carbon steel	2010					
57	Sewer Collection Manifold	8>4	TBD	Area @ & Around E- 106A & B	To Northwest Of Sewer Box # 10	D-500-500-124	Carbon steel	· 2010		1.1.2.2.4			1445-141
58	Sewer Collection Manifold	6	TBD	Area @ V-101A Desalter	To East Side Of Sewer Box # 10	D-500-500-124	Carbon steel	2010			211	121	
59	Sewer Collection Manifold	10>4	TBD	Area Thru Reformer Pump Row	To Observation Access Can	D-500-500-098	Carbon steel	2010			Sec. 1	S. A.L	

*All lines that are temporarily out of service due to suspension of refining operations were steamed out and are hydrocarbon free

BLOOMFIELD REFINERY UNDERGROUN .OCESS AND WASTEWATER LINES - Inspection & Repa

									1			1	
Line Number	Description (Service)	Line Size	Line Length	Starting Location	End Location	Drawing Reference	Construction Material	Inspection Scheduled	Inspection Date	Inspection Results Pass/Fail	Test/ Inspection Method	Repairs/ Maint Needed	Repairs-Maint Completion date
59	Sewer Collection Manifold	10>4	TBD	Area Thru Reformer Pump Row	To Observation Access Can	D-500-500-098	Carbon steel	2010			1		
60	Sewer Collection Manifold	10>4	TBD	Area Along East Side of Reformer	To Observation Access Can	D-500-500-098	Carbon steel	2010				· · ·	
61	Sewer Collection Manifold	8>4	TBD	Area @ & Around V101 Desaiter	Can (Desalter)	D-500-500-124	Carbon steel	2010					
62	Sewer Collection Manifold	8>4	TBD	101 Tower	To West Side Of Sewer Box # 9	D-500-500-124	Carbon steel	2010				['	
63	Sewer Collection Manifold	8>4	TBD	Area @ & Around P101 Charge P.	Sewer Box # 9	D-500-500-124	Carbon steel	2010					
64	Sewer Collection Manifold	8>4	TBD	Area @ & Around T- 103 Tower	To Northwest Side Of Sewer Box # 8	D-500-500-124	Carbon steel	2010					
65	Sewer Collection Manifold	8>4	TBD	Area @ & Around Heavy Oil Exch	To North Side Of Sewer Box # 8	D-500-500-124	Carbon steel	2010		· · · · ·			
66	Sewer Collection Manifold	8>4	TBD	Area @ & Around Main Air Blower	To Northwest Side Of Sewer Box # 3	D-500-500-134	Carbon steel	2010				/	
67	Sewer Collection Manifold	6>3	TBD	Area @ Burner Fuel Loading	To Observation Access Can (Precipitator)	D-600-500-127	Carbon steel	2010				· · · · ·	
68.	Sewer Collection Manifold	4	TBD	Area Drains @ Air Building	To Sewer Transfer Line(Box # 1 to API)	D-500-500-160	Carbon steel	2010		/		('	
69	Sewer Collection Manifold	4	86 L/F	P-224 Pump & Cat Surface Drain	To Sewer Transfer Line From FCC Process	D-201-500-001	Carbon steel	2011	Jul-09	Pass	Hydrostatic	None	N/A
70	Sewer Collect /Transfer Line	6	325 L/F	Gas Con Unit Collection M.H.	To FCC Sewer Box Manhole # 13	D-201-500-001	Carbon steel	2011	Jul-09	Pass	Hydrostatic	None	N/A
71	Sewer Transfer Line	10	35 L/F	From FCC Sewer Box M.H. # 13	To FCC Sewer Box # 14 (Roadway)	D-201-500-001	Carbon steel	2011	Jul-09	Pass	Hydrostatic	None	N/A
72	Sewer Transfer Line	10	TBD	From FCC Sewer Box M.H. #14	To 20" Inlet @ API	D-500-500-106	Carbon steel	2011				(
73	Sewer Collection Manifold	6/4	335 L/F	Area @ & Around Gas Con. Unit	To Gas Con. Unit Sewer Collection	D-200-200-233	Carbon steel	2011	Jul-09	Pass	Hydrostatic	None	N/A
74	Sewer Transfer Line	10	TBD	From Treater Main Sewer Box # 16	To Sewer Box #15 - S.E. Of C-204	D-500-500-166	Carbon steel	2011					
75	Sewer Transfer Line	10	TBD	Sewer Box #15 - S.E. Of C-204	To 20" Inlet @ API	D-500-500-105	Carbon steel	2011		-			
76	Sewer Collection Manifold	10>4	410 L/F	Area In & Around Treater Unit	To Treater Sewer Box At South Side Of Unit	D-500-500-122	Carbon steel	2011	Sep-09	Pass	Hydrostatic	None	N/A
77	Sewer Collection Manifold	6>2	550 L/F	Area In & Around Poly Unit		D-500-500-126	Carbon steel	2011	May-09	Pass	Hydrostatic	None	N/A
78	Sewer Transfer Line	10	130 L/F	From Sewer Box # 17 @ DHT Unit	To Sewer Box # 18 @ S.E. Corner of Poly	D-500-500-097	Carbon steel	2011	Jun-09	Pass	Stainless Steel	None	N/A
79	Sewer Transfer Line	12	TBD	From Sewer Box # 18	To Inlet Manifold @ API Basin Area		Carbon steel	2011					
80	Sewer Collection Manifold	10>4	TBD	Area in & Around DHT/Larox Unit	To Sewer Box # 18 @ S.E. Corner of DHT		Carbon steel	2007	Dec-07	Pass	Hydrotest	None	N/A
81	Crude Transfer Line	12	99 L/F	Pipe Rack East Of LPG Stg Tks		D-000-900-023	Carbon steel	2008	May-08	Pass	Praxair	None	N/A
82	Crude Transfer Line	12	194 L/F	Pipe Rack South of Crude Unloading Bays	Berm South of Tank	D-000-900-023	Carbon steel	2008	May-08	Pass	Praxair	None	N/A
83	Sewer Transfer Line	4	822	Discharge at Tk #37	Valve box at corner Northeast of DHT	AMEC 6/7	Carbon Steel/PVC						
84	Premium Sales Line from Tk #3 & 4	8	300	Area West of API Separator	DHT Option City		Carbon Steel	2007	Nov-07	Pass	Praxair	None	N/A

*All lines that are temporarily out of service due to suspension of refining operations were steamed out and are hydrocarbon free

13.0	BLOOMFIELD REFINE	1		- Inspection &	Next Test/	Date OCD-SFO	Test/	et according to API 650	Repairs/Main
Tank #	Service	Normal Capacity (bbls)	Last Test/ Inspection	Test/ Inspection Method	Inspection	Requirements Satisfied	Inspection Date	Repairs/Maint Needed	Completion
2	FILTERED WATER	64,347	2000	Internal	2010	2010	3/30/2000	Cleaned Out Sediment	3/28/2000
3	MID-GRADE	9,365	2003	Internal	2013	2013	10/1/2003	Seal Replacement	10/8/2003
4	MID-GRADE	9,365	2003	Internal	2013	2013	9/17/2003	Seal Replacement	9/24/2003
5	WASTE WATER SURGE	9096	2007	Internal	2017	2007	5/28/2008	None	N/A
8	CRUDE SLOP	460	2007	Internal	2017	2007	6/7/2007	None	N/A
9	CRUDE SLOP	460	2007	External (Conrete Liner)	2017	2007	11/10/07	None	N/A
10	SPENT CAUSTIC	360	2007	Internal	2017	2007	8/24/2007	Repaired Hatch & Floor	8/22/2007
11	LOW REFORMATE	50,358	2002	Internal	2012	2012	9/11/2002	Seal Replacement	9/18/2002
12	CAT / POLY GAS	50,358	1999	Internal	2010	2010	10/28/1999	Seal Replacement	11/12/1999
13	UNLEAD SALES	27,646	2008	Internal	2018	2008	2/20/2008	Seal Repair	2/28/2008
14	UNLEAD SALES	27,615	2005	Internal	2015	2005	9/21/2005	None	N/A
17	CAT FEED	38403	2007	Internal	2017	2007	7/8/2007	Floor Repair	7/29/2007
18	#1 DIESEL SALES	50358	1999	Internal	2010	2010	8/1/1999	Seal Replacement & Floor Repair	8/1/1999
19	#2 DIESEL SALES	34991	2000	Internal	2010	2010	06/22/00	Roof Replacement	6/20/2000
20	NAPHTHA	10000	2007	Internal	2017	2007	10/29/07	New Construction	N/A
23	BASE GASOLINE	38,402	2002	Internal	2012	2012	08/12/02	Seal Repair	8/11/2002
24	ULS DIESEL	10107	2006	Internal	2016	2006	03/01/06	New Construction	N/A
25	ULS DIESEL	10107	2006	Internal	2016	2006	02/06/06	New Construction	N/A
26	SWEET NAPHTHA	3,264	2008	Praxair	2018	2008	05/29/08	None	N/A
27	HEAVY BURNER FUEL	9,854	2006	Internal	2016	2006	08/31/06	Floor Repair	8/21/2006
28	CRUDE	77,854	2009	Internal	2019	2009	11/09/09	None	N/A
29	#2 DIESEL/FCC SLOP	16,676	2005	Internal	2015	2005	04/25/05	Repair Auto Gauge & Install Sample Port	4/23/2005
30	PREMIUM UNLEAD BLEND	16,676	2004	Internal	2014	2004	12/20/04	Repair Seal & Pontoon	12/19/2004
31	CRUDE	98,676	2003	Internal	2013	2013	01/09/03	Repair Roof Drain	1/8/2003
32	PREMIUM UNLEAD SALES	17,913	1999	Internal/UTS*	2019	2009	04/01/09	None	N/A
33	RECOVERY WELL WATER	360	2008	Internal	2018	2008	04/09/08	None	N/A
34	INJECTION WELL RESERVIOR	360	2002	Internal	2012	2012	11/20/02	Repair Pinhole	1/20/2002
35	REFORMER FEED	43904	2005	Internal	2015	2005	08/29/05	Repair Seal & Recoat Roof	8/28/2008
36	CAT / POLY GAS	43904	2005	Internal	2015	2005	08/24/05	None	N/A
37	FRENCH DRAIN	121	2009	Internal/UTS*	2019	2009	06/11/09	None	N/A
38	EAST OUTFALL	302	2003	Internal	2013	2013	04/09/08	None	N/A
41	CRUDE STORAGE	2798	2008	Praxair	2018	2008	05/29/08	None	N/A
42A	TERMINALS SLOP	400	2007	API 650	2017	2007	06/01/07	New Construction	N/A
42B	TERMINALS SLOP	400	2007	API 650	2017	2007	06/01/07	New Construction	N/A
43	TERMINALS SLOP	560	O/S	O/S	O/S	O/S	O/S	Out of Service	O/S
44	VRU NAPHTHA	1,751	2008	Praxair	2018	2008	05/29/08	None	N/A
45	ETHANOL	4821	2008	Internal	2018	2008	02/20/08	None	N/A

UTS = Utransonic Thickness Survey

240

Rage 4 of 6

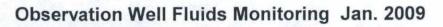
13.0 BLOOMFIELD REFINERY

SEWER BOXES - Inspection & Repair Schedule

Sewer Box Number	Location	Type Material	Drawing Reference	Actual Inspection Date	Inspection results Pass/Fail	Repairs/Maint Needed	Repairs/Maint Completion date
1	Northwest of Main Pipe Bridge	Concrete	D-500-500-134	4/28/2009	Pass	None	N/A
2	Southeast of Precipitator	Concrete	D-500-500-134	4/28/2009	Pass	None	N/A
3	Southeast of Main Blower	Concrete	D-500-500-134	4/29/2009	Pass	None	N/A
4	Southeast of Old Desalter	Concrete	D-500-500-134	4/29/2009	Pass	None	N/A
5	Southeast of Control Room	Concrete	D-500-500-134	4/29/2009	Pass	None	N/A
6	Southeast of Reformer	Concrete	D-500-500-124	5/4/2009	Pass	None	N/A
7	Southwest of Mainblower	Concrete	D-500-500-124	5/4/2009	Pass	None	N/A
8	South of E-113's	Concrete	D-500-500-124	4/30/2009	Pass	None	N/A
9	South of P-105's	Concrete	D-500-500-124	4/30/2009	Pass	None	N/A
10	West of New Desalter	Concrete	D-500-500-124	5/4/2009	Pass	None	N/A
11	South of T-102	Concrete	D-500-500-124	5/5/2009	Pass	None	N/A
12	South of P-103;s	Concrete	D-500-500-124	4/30/2009	Pass	None	N/A
13	In Roadway South of FCCU	Concrete	D-500-500-134	4/28/2009	Pass	None	N/A
14	In Roadway Southwest of C-801's	Concrete	D-500-500-134	5/5/2009	Pass	None	N/A
15	In Roadway Southeast of Wet Gas	Concrete	D-500-500-134	5/6/2009	Pass	None	N/A
16	South of Treater	Concrete	D-500-500-134	5/5/2009	Pass	None	N/A
17	In Roadway East of DHT	Concrete	D-500-500-134	5/6/2009	Pass	None	N/A
18	In Roadway Southeast of Poly Unit	Concrete	D-500-500-134	5/6/2009	Pass	None	N/A

Page 5 of 6

13.0 BLOOMFIELD REFINERY


SUMPS - Inspection & Repair Schedule

Sump Number	Location	Type Material	Drawing Reference	Actual Inspection Date	Inspection results Pass/Fail	Repairs/Maint Needed	Repairs/Maint Completion date
16	Sump @ S.W. Side Of Tk. 3	Concrete	D-000-900-023	6/8/2009	Pass	None	N/A
17	Sump Between Tk. 3 & 4	Concrete	D-000-900-023	6/8/2009	Pass	None	N/A
18	Sump Between Tk. 4 & 5	Concrete	D-000-900-023	6/8/2009	Pass	None	N/A
19	Sump @ N.Side Of Tk. 5	Concrete	D-000-900-023	6/8/2009	Pass	None	N/A
20	Sump Between Tk. 11 & 12	Concrete	D-000-900-023	6/8/2009	Pass	None	N/A
21	Sump Between Tk. 13 & 14	Concrete	D-000-900-023	6/8/2009	Pass	None	N/A
22	Sump @ N. Side Of Tk. 17	Concrete	D-000-900-023	6/10/2009	Pass	None	N/A
23	Sump @ N.E. Side Of Tk. 18	Concrete	D-000-900-023	6/9/2009	Pass	None	N/A
24	Sump @ N.E. Side Of Tk. 19	Concrete	D-000-900-023	6/9/2009	Pass	None	N/A
25	Sump @ S.W. Side Of Tk. 20	DW Steel	D-000-900-023	6/9/2009	Pass	None	N/A
26	Sump @ S. Side Of Tk. 23	Concrete	D-000-900-023	6/11/2009	Pass	None	N/A
27	Sump @ E. Side Of Tk. 24	DW Steel	D-000-900-023	6/15/2009	Pass	None	N/A
28	Sump @ E. Side Of Tk. 25	DW Steel	D-000-900-023	6/15/2009	Pass	None	N/A
29	Sump @ N.W. Side Of Tk. 26	Concrete	D-000-900-023	6/15/2009	Pass	None	N/A
30	Sump @ S.E. Side Of Tk. 27	Concrete	D-000-900-023	6/11/2009	Pass	None	N/A
31	Sump @ West Side Of Tk. 28	Concrete	D-000-900-023	6/10/2009	Pass	None	N/A
32	Sump @ N.E. Side Of Tk. 29	Concrete	D-000-900-023	6/15/2009	Pass	None	N/A
33	Sump @ S.W. Side Of Tk. 30	Concrete	D-000-900-023	6/15/2009	Pass	None	N/A
34	Sump @ N.W. Side Of Tk. 31	Concrete	D-000-900-023	6/10/2009	Pass	None	N/A
35	Sump @ S.E. Side Of Tk. 31	Concrete	D-000-900-023	6/10/2009	Pass	None	N/A
36	Sump @ East Side Of Tk. 32	Concrete	D-000-900-023	6/8/2009	Pass	None	N/A
37	Sump @ N.E. Side Of Tk. 35	DW Steel	D-000-900-023	6/9/2009	Pass	Replaced in Kind	8-20-09 - Pass
38	Sump @ N.E. Side Of Tk. 36	DW Steel	D-000-900-023	6/8/2009	Pass	None	N/A
39	Sump @ S. Side Of Tk. 18	Concrete	D-000-900-023	6/9/2009	Pass	None	N/A
40	Sump @ S. Side Of Tk. 19	Concrete	D-000-900-023	6/10/2009	Pass	None	N/A
41	Sump @ S. Side Of Flare	Concrete	D-000-900-023	6/9/2009	Pass	None	N/A
42	Sump @ N.W. Of Precipitator	Concrete	D-000-900-023	6/15/2009	Pass	None	N/A

Page 6 of 6

Appendix A North Barrier Wall

Title	Tab
North Barrier Wall Measured Depth to Groundwater	
January 2009	1
February 2009	2
March 2009	3
April 2009	4
May 2009	5
June 2009	6
July 2009	7
August 2009	8
September 2009	9
October 2009	10
November 2009	11
December 2009.	12
North Barrier Wall Analytical Data	
Collection Well Data	13
Observation Well Data	14
Monitoring Well Data	15
BTEX & MTBE Concentration vs Time	16

Appendix A - Tab 1.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbor Thickness
09+0	1/12/2009	5506.62	12.26	NPP	11.56	5495.06	NPP
0 5	1/26/2009	5506.62	12.26	NPP	11.58	5495.04	NPP
OW 1+50	1/12/2009	5508.03	14.36	13.37	13.56	5494.62	0.19
0 +	1/26/2009	5508.03	14.36	13.40	13.60	5494.59	0.20
OW 3+85	1/12/2009	5507.31	15.06	13.46	13.50	5493.84	0.04
0 ;	1/26/2009	5507.31	15.06	NPP	12.87	5494.44	NPP
OW 5+50	1/12/2009	5507.59	13.67	NPP	13.26	5494.33	NPP
0W 5+50	1/26/2009	5507.59	13.67	NPP	13.30	5494.29	NPP
32	1/12/2009	5504.78	14.67	NPP	NWP		NPP
OW 6+70	1/26/2009	5504.78	14.67	NPP	NWP		NPP
3 6	1/12/2009	5506.53	15.99	NPP	NWP		NPP
OW 8+10	1/26/2009	5506.53	15.99	NPP	NWP		NPP
OW 11+15	1/12/2009	5506.70	16.59	NPP	12.44	5494.26	NPP
0W 11+11	1/26/2009	5506.70	16.59	NPP	12.35	5494.35	NPP
10	1/12/2009	5508.14	12.96	NPP	NWP		NPP
OW 14+10	1/26/2009	5508.14	12.96	NPP	NWP		NPP
OW 16+60	1/12/2009	5508.43	15.21	NPP	12.71	5495.72	NPP
0W 16+6	1/26/2009	5508.43	15.21	NPP	12.56	5495.87	NPP

NPP = No Product Present NWP = No Water Present

Observation Well Fluids Monitoring Jan. 2009

Appendix A - Tab 1.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
OW 19+50	1/12/2009	5508.03	13.00	NPP	12.81	5495.22	NPP
19 0	1/26/2009	5508.03	13.00	NPP	12.03	5496.00	NPP
OW 22+00	1/12/2009	5506.91	14.16	NPP	10.61	5496.30	NPP
22+0	1/26/2009	5506.91	14.16	NPP	11.04	5495.87	NPP
OW 23+10	1/12/2009	5514.12	18.34	NPP	16.23	5497.89	NPP
23+	1/26/2009	5514.12	18.34	NPP	16.23	5497.89	NPP
OW 23+90	1/12/2009	5515.18	18.01	NPP	17.09	5498.09	NPP
23+	1/26/2009	5515.18	18.01	NPP	17.11	5498.07	NPP
N 70	1/12/2009	5509.00	13.98	NPP	10.74	5498.26	NPP
OW 25+70	1/26/2009	5509.00	13.98	NPP	10.73	5498.27	NPP

NPP = No Product Present NWP = No Water Present

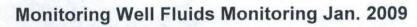
Collection Well Fluids Monitoring Jan. 2009

Appendix A - Tab 1.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbor Thickness
CW 0+60	1/12/2009	5506.68	14.09	NPP	8.31	5498.37	NPP
0 5	1/26/2009	5506.68	14.09	NPP	8.35	5498.33	NPP
CW 1+50	1/12/2009	5505.13	13.74	NPP	6.79	5498.34	NPP
0 +	1/26/2009	5505.13	13.74	NPP	6.78	5498.35	NPP
CW 3+85	1/12/2009	5503.87	13.11	NPP	5.60	5498.27	NPP
0 *	1/26/2009	5503.87	13.11	NPP	5.50	5498.37	NPP
CW 5+50	1/12/2009	5503.76	12.27	NPP	6.36	5497.40	NPP
2+C	1/26/2009	5503.76	12.27	NPP	6.29	5497.47	NPP
CW 6+70	1/12/2009	5503.84	11.45	NPP	6.72	5497.12	NPP
Ú #	1/26/2009	5503.84	11.45	NPP	6.57	5497.27	NPP
CW 8+10	1/12/2009	5504.02	11.63	NPP	7.61	5496.41	NPP
0 *	1/26/2009	5504.02	11.63	NPP	7.46	5496.56	NPP
CW 8+45	1/12/2009	5503.80	12.6	7.75	7.76	5496.05	0.01
U #	1/26/2009	5503.80	12.6	7.56	7.57	5496.24	0.01
CW 11+15	1/12/2009	5503.95	12.27	NPP	5.86	5498.09	NPP
110	1/26/2009	5503.95	12.27	NPP	5.83	5498.12	NPP
CW 14+10	1/12/2009	5504.39	13.05	NPP	6.42	5497.97	NPP
141	1/26/2009	5504.39	13.05	NPP	6.36	5498.03	NPP

NPP = No Product Present

Collection Well Fluids Monitoring Jan. 2009


Appendix A - Tab 1.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
CW 16+60	1/12/2009	5504.32	12.86	NPP	6.28	5498.04	NPP
16-0	1/26/2009	5504.32	12.86	NPP	6.25	5498.07	NPP
CW 19+50	1/12/2009	5504.52	9.99	NPP	6.29	5498.23	NPP
19+01	1/26/2009	5504.52	9.99	NPP	6.21	5498.31	NPP
CW 22+00	1/12/2009	5508.04	12.34	NPP	8.97	5499.07	NPP
CW 22+0	1/26/2009	5508.04	12.34	NPP	8.94	5499.10	NPP
<u> </u>	1/12/2009	5510.04	14.65	NPP	10.64	5499.40	NPP
CW 23+10	1/26/2009	5510.04	14.65	NPP	10.62	5499.42	NPP
CW 23+90	1/12/2009	5507.32	11.72	NPP	8.13	5499.19	NPP
CW 23+9	1/26/2009	5507.32	11.72	NPP	8.11	5499.21	NPP
CW 25+95	1/12/2009	5505.90	12.25	NPP	7.17	5498.73	NPP
CW 25+9	1/26/2009	5505.90	12.25	NPP	7.15	5498.75	NPP

NPP = No Product Present NWP

NWP = No Water Present

Page 4 of 5

Appendix A - Tab 1.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbor Thickness
3 5	1/12/2009	5510.31	22.94	NPP	11.39	5498.92	NPP
MW #11	1/26/2009	5510.31	22.94	NPP	11.38	5498.93	NPP
#12	1/12/2009	5501.61	14.98	NPP	10.07	5491.54	NPP
Σ¥	1/26/2009	5501.61	14.98	NPP	10.09	5491.52	NPP
MW #20	1/12/2009	5519.90	27.13	20.58	20.86	5499.26	0.28
Z #	1/26/2009	5519.90	27.13	20.56	20.77	5499.30	0.21
MW #21	1/12/2009	5521.99	30.38	21.75	21.83	5500.22	0.08
2 #	1/26/2009	5521.99	30.38	21.75	21.84	5500.22	0.09
MW #39	1/12/2009	5520.83	38.34	NPP	25.79	5495.04	NPP
Z #	1/26/2009	5520.83	38.34	NPP	25.53	5495.30	NPP
≥ rõ	1/12/2009	5506.36	16.92	NPP	11.74	5494.62	NPP
MW #45	1/26/2009	5506.36	16.92	NPP	11.63	5494.73	NPP
3 9	1/12/2009	5504.65	10.39	NPP	NWP		NPP
MW #46	1/26/2009	5504.65	10.39	NPP	NWP		NPP
MW #47	1/12/2009	5506.77	14.28	NPP	12.25	5494.52	NPP
N #	1/26/2009	5506.77	14.28	NPP	12.29	5494.48	NPP

NPP = No Product Present

Observation Well Fluids Monitoring Feb. 2009

Appendix A - Tab 2.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
09+0	2/9/2009	5506.62	12.26	NPP	11.61	5495.01	NPP
ō	2/23/2009	5506.62	12.26	NPP	11.67	5494.95	NPP
OW 1+50	2/9/2009	5508.03	14.36	13.43	13.64	5494.56	0.21
ò ‡	2/23/2009	5508.03	14.36	13.45	13.68	5494.53	0.23
85 85	2/9/2009	5507.31	15.06	NPP	12.92	5494.39	NPP
OW 3+85	2/23/2009	5507.31	15.06	NPP	12.93	5494.38	NPP
50 V	2/9/2009	5507.59	13.67	NPP	13.32	5494.27	NPP
OW 5+50	2/23/2009	5507.59	13.67	NPP ·	13.36	5494.23	NPP
≥	2/9/2009	5504.78	14.67	NPP	NWP		NPP
OW 6+70	2/23/2009	5504.78	14.67	NPP	NWP		NPP
3 €	2/9/2009	5506.53	15.99	NPP	NWP		NPP
OW 8+10	2/23/2009	5506.53	15.99	NPP	NWP		NPP
<u>,</u> , , , , , , , , , , , , , , , , , ,	2/9/2009	5506.70	16.59	NPP	12.35	5494.35	NPP
OW 11+15	2/23/2009	5506.70	16.59	NPP	12.47	5494.23	NPP
9 €	2/9/2009	5508.14	12.96	NPP	NWP		NPP
OW 14+10	2/23/2009	5508.14	12.96	NPP	NWP	Sec. And and	NPP
× 60	2/9/2009	5508.43	15.21	NPP	12.62	5495.81	NPP
OW 16+60	2/23/2009	5508.43	15.21	NPP	12.68	5495.75	NPP

NPP = No Product Present NWP = No Water Present

Observation Well Fluids Monitoring Feb. 2009

Appendix A - Tab 2.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
OW 19+50	2/9/2009	5508.03	13.00	NPP	11.8	5496.23	NPP
0 4	2/23/2009	5508.03	13.00	NPP	11.94	5496.09	NPP
OW 22+00	2/9/2009	5506.91	14.16	NPP	11.24	5495.67	NPP
224	2/23/2009	5506.91	14.16	NPP	11.26	5495.65	NPP
OW 23+10	2/9/2009	5514.12	18.34	NPP	16.23	5497.89	NPP
23-	2/23/2009	5514.12	18.34	NPP	16.25	5497.87	NPP
OW 23+90	2/9/2009	5515.18	18.01	NPP	17.09	5498.09	NPP
23-0	2/23/2009	5515.18	18.01	NPP	17.08	5498.10	NPP
N 202+	2/9/2009	5509.00	13.98	NPP	10.72	5498.28	NPP
OW 25+70	2/23/2009	5509.00	13.98	NPP	10.74	5498.26	NPP

NPP = No Product Present NWP = No Water Present

Page 2 of 5

Collection Well Fluids Monitoring Feb. 2009

Appendix A - Tab 2.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
CW 0+60	2/9/2009	5506.68	14.09	NPP	8.42	5498.26	NPP
υ÷	2/23/2009	5506.68	14.09	NPP	8.42	5498.26	NPP
CW 1+50	2/9/2009	5505.13	13.74	NPP	6.80	5498.33	NPP
υ ‡	2/23/2009	5505.13	13.74	NPP	6.73	5498.40	NPP
CW 3+85	2/9/2009	5503.87	13.11	NPP	5.50	5498.37	NPP
5 *	2/23/2009	5503.87	13.11	NPP	5.48	5498.39	NPP
CW 5+50	2/9/2009	5503.76	12.27	NPP	6.31	5497.45	NPP
0 t	2/23/2009	5503.76	12.27	NPP	6.36	5497.40	NPP
CW 6+70	2/9/2009	5503.84	11.45	NPP	6.62	5497.22	NPP
0 #	2/23/2009	5503.84	11.45	NPP	6.66	5497.18	NPP
CW 8+10	2/9/2009	5504.02	11.63	NPP	7.44	5496.58	NPP
О *	2/9/2009	5504.02	11.63	NPP	7.52	5496.50	NPP
CW 8+45	2/9/2009	5503.80	12.6	7.56	7.57	5496.24	0.01
Ú #	2/23/2009	5503.80	12.6	7.67	7.68	5496.13	0.01
CW 11+15	2/9/2009	5503.95	12.27	NPP	5.80	5498.15	NPP
1 ⁴ 0	2/23/2009	5503.95	12.27	NPP	5.86	5498.09	NPP
CW 14+10	2/9/2009	5504.39	13.05	NPP	6.37	5498.02	NPP
14 ⁺	2/23/2009	5504.39	13.05	NPP	6.46	5497.93	NPP

NPP = No Product Present

Collection Well Fluids Monitoring Feb. 2009

Appendix A - Tab 2.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
CW 16+60	2/9/2009	5504.32	12.86	NPP	6.62	5497.70	NPP
16- 16-	2/23/2009	5504.32	12.86	NPP	6.28	5498.04	NPP
CW 19+50	2/9/2009	5504.52	9.99	NPP	6.17	5498.35	NPP
19 C	2/23/2009	5504.52	9.99	NPP	6.17	5498.35	NPP
CW 22+00	2/9/2009	5508.04	12.34	NPP	8.94	5499.10	NPP
22+C	2/23/2009	5508.04	12.34	NPP	8.97	5499.07	NPP
CW 23+10	2/9/2009	5510.04	14.65	NPP	10.62	5499.42	NPP
23+ C	2/23/2009	5510.04	14.65	NPP	10.64	5499.40	NPP
CW 23+90	2/9/2009	5507.32	11.72	NPP	8.11	5499.21	NPP
23+ 23+	2/23/2009	5507.32	11.72	NPP	8.12	5499.20	NPP
CW 25+95	2/9/2009	5505.90	12.25	NPP	7.15	5498.75	NPP
C 254	2/23/2009	5505.90	12.25	NPP	7.16	5498.74	NPP

NPP = No Product Present

NWP = No Water Present

Page 4 of 5

Monitoring Well Fluids Monitoring Feb. 2009

Appendix A - Tab 2.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
MW #11	2/9/2009	5510.31	22.94	NPP	11.39	5498.92	NPP
N #	2/23/2009	5510.31	22.94	NPP	11.48	5498.83	NPP
MW #12	2/9/2009	5501.61	14.98	NPP	10.09	5491.52	NPP
N #	2/23/2009	5501.61	14.98	NPP	10.14	5491.47	NPP
MW #20	2/9/2009	5519.90	27.13	20.55	20.75	5499.31	0.20
Z #	2/23/2009	5519.90	27.13	20.56	20.82	5499.29	0.26
MW #21	2/9/2009	5521.99	30.38	21.74	21.82	5500.23	0.08
Σ¥	2/23/2009	5521.99	30.38	21.76	21.85	5500.21	0.09
MW #39	2/9/2009	5520.83	38.34	NPP	25.55	5495.28	NPP
Σ¥	2/23/2009	5520.83	38.34	NPP	25.60	5495.23	NPP
MW #45	2/9/2009	5506.36	16.92	NPP	11.64	5494.72	NPP
M #	2/23/2009	5506.36	16.92	11.76	11.77	5494.60	0.01
2 9	2/9/2009	5504.65	10.39	NPP	NWP		NPP
MW #46	2/23/2009	5504.65	10.39	NPP	NWP		NPP
35	2/9/2009	5506.77	14.28	NPP	12.32	5494.45	NPP
MW #47	2/23/2009	5506.77	14.28	NPP	12.38	5494.39	NPP

NPP = No Product Present

Observation Well Fluids Monitoring March 2009

Appendix A - Tab 3.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
> 09	3/9/2009	5506.62	12.26	NPP	11.69	5494.93	NPP
09+0 MO	3/23/2009	5506.62	12.26	NPP	11.72	5494.90	NPP
OW 1+50	3/9/2009	5508.03	14.36	#13.50	13.72	5494.49	0.22
0 +	3/23/2009	5508.03	14.36	13.54	13.77	5494.44	0.23
85	3/9/2009	5507.31	15.06	NPP	12.94	5494.37	NPP
OW 3+85	3/23/2009	5507.31	15.06	NPP	13.01	5494.30	NPP
50 V	3/9/2009	5507.59	13.67	NPP	13.36	5494.23	NPP
OW 5+50	3/23/2009	5507.59	13.67	NPP	13.38	5494.21	NPP
× °2	3/9/2009	5504.78	14.67	NPP	NWP		NPP
OW 6+70	3/23/2009	5504.78	14.67	NPP	NWP		NPP
3 €	3/9/2009	5506.53	15.99	NPP	NWP		NPP
OW 8+10	3/23/2009	5506.53	15.99	NPP	NWP	200720	NPP
15	3/9/2009	5506.70	16.59	NPP	12.41	5494.29	NPP
OW 11+15	3/23/2009	5506.70	16.59	NPP	12.38	5494.32	NPP
OW 14+10	3/9/2009	5508.14	12.96	NPP	NWP		NPP
OW 14+1	3/23/2009	5508.14	12.96	NPP	NWP		NPP
OW 16+60	3/9/2009	5508.43	15.21	NPP	12.60	5495.83	NPP
0W 16+6	3/23/2009	5508.43	.15.21	NPP	12.70	5495.73	NPP

NPP = No Product Present NWP = No Water Present

Observation Well Fluids Monitoring March 2009

Appendix A - Tab 3.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
OW 19+50	3/9/2009	5508.03	13.00	NPP	11.94	5496.09	NPP
0 4	3/23/2009	5508.03	13.00	NPP	12.07	5495.96	NPP
OW 22+00	3/9/2009	5506.91	14.16	NPP	11.43	5495.48	NPP
OW 22+0	3/23/2009	5506.91	14.16	NPP	11.53	5495.38	NPP
OW 23+10	3/9/2009	5514.12	18.34	NPP	16.26	5497.86	NPP
23+	3/23/2009	5514.12	18.34	NPP	16.25	5497.87	NPP
OW 23+90	3/9/2009	5515.18	18.01	NPP	17.1	5498.08	NPP
23-	3/23/2009	5515.18	18.01	NPP	17.10	5498.08	NPP
N 02-	3/9/2009	5509.00	13.98	NPP	10.73	5498.27	NPP
OW 25+70	3/23/2009	5509.00	13.98	NPP	10.71	5498.29	NPP

NPP = No Product Present NWP = No Water Present

Page 2 of 5

Collection Well Fluids Monitoring March 2009

Appendix A - Tab 3.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
CW 0+60	3/9/2009	5506.68	14.09	NPP	8.48	5498.20	NPP
0 \$	3/23/2009	5506.68	14.09	NPP	8.52	5498.16	NPP
CW 1+50	3/9/2009	5505.13	13.74	NPP	6.84	5498.29	NPP
0 +	3/23/2009	5505.13	13.74	NPP	6.89	5498.24	NPP
CW 3+85	3/9/2009	5503.87	13.11	NPP	5.52	5498.35	NPP
0 *	3/23/2009	5503.87	13.11	NPP	5.56	5498.31	NPP
CW 5+50	3/9/2009	5503.76	12.27	NPP	6.37	5497.39	NPP
0 1	3/23/2009	5503.76	12.27	NPP	6.37	5497.39	NPP
CW 6+70	3/9/2009	5503.84	11.45	NPP	6.63	5497.21	NPP
0 #	3/23/2009	5503.84	11.45	NPP	6.63	5497.21	NPP
CW 8+10	3/9/2009	5504.02	11.63	NPP	7.45	5496.57	NPP
О *	3/23/2009	5504.02	11.63	NPP	7.42	5496.60	NPP
CW 8+45	3/9/2009	5503.80	12.6	7.57	7.58	5496.23	0.01
Ú #	3/23/2009	5503.80	12.6	7.54	7.57	5496.25	0.03
CW 11+15	3/9/2009	5503.95	12.27	NPP	5.83	5498.12	NPP
14	3/23/2009	5503.95	12.27	NPP	5.87	5498.08	NPP
CW 14+ 0	3/9/2009	5504.39	13.05	NPP	6.41	5497.98	NPP
CW 14+ (3/23/2009	5504.39	13.05	NPP	16.43	5487.96	NPP

NPP = No Product Present

Collection Well Fluids Monitoring March 2009

Appendix A - Tab 3.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
CW 16+60	3/9/2009	5504.32	12.86	NPP	6.26	5498.06	NPP
16-0	3/23/2009	5504.32	12.86	NPP	6.29	5498.03	NPP
CW 19+50	3/9/2009	5504.52	9.99	NPP	6.20	5498.32	NPP
19 0	3/23/2009	5504.52	9.99	NPP	6.23	5498.29	NPP
CW 22+00	3/9/2009	5508.04	12.34	NPP	8.95	5499.09	NPP
5 tg	3/23/2009	5508.04	12.34	NPP	8.96	5499.08	NPP
CW 23+10	3/9/2009	5510.04	14.65	NPP	10.62	5499.42	NPP
23+ 23+	3/23/2009	5510.04	14.65	NPP	10.62	5499.42	NPP
CW 23+90	3/9/2009	5507.32	11.72	NPP	8.12	5499.20	NPP
23+ 23+	3/23/2009	5507.32	11.72	NPP	8.12	5499.20	NPP
CW 25+95	3/9/2009	5505.90	12.25	NPP	7.16	5498.74	NPP
C1	3/23/2009	5505.90	12.25	NPP	7.16	5498.74	NPP

NPP = No Product Present

NWP = No Water Present

Page 4 of 5

Monitoring Well Fluids Monitoring March 2009

Appendix A - Tab 3.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
MW 11#	3/9/2009	5510.31	22.94	NPP	11.48	5498.83	NPP
₹¥	3/23/2009	5510.31	22.94	NPP	11.51	5498.80	NPP
MW #12	3/9/2009	5501.61	14.98	NPP	10.17	5491.44	NPP
N #	3/23/2009	5501.61	14.98	NPP	10.21	5491.40	NPP
MW #20	3/9/2009	5519.90	27.13	20.55	20.78	5499.30	0.23
W #	3/23/2009	5519.90	27.13	20.55	20.78	5499.30	0.23
MW #21	3/9/2009	5521.99	30.38	21.74	21.82	5500.23	0.08
Σ#	3/23/2009	5521.99	30.38	21.75	21.85	5500.22	0.10
MW #39	3/9/2009	5520.83	38.34	NPP	25.56	5495.27	NPP
≥ ¥	3/23/2009	5520.83	38.34	NPP	25.54	5495.29	NPP
MW #45	3/9/2009	5506.36	16.92	NPP	11.67	5494.69	NPP
N #	3/23/2009	5506.36	16.92	NPP	11.67	5494.69	NPP
MW #46	3/9/2009	5504.65	10.39	NPP	NWP		NPP
≥¥	3/23/2009	5504.65	10.39	NPP	NWP		NPP
MW #47	3/9/2009	5506.77	14.28	NPP	12.41	5494.36	NPP
N #	3/23/2009	5506.77	14.28	NPP	12.45	5494.32	NPP

NPP = No Product Present

Observation Well Fluids Monitoring April 2009

Appendix A - Tab 4.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbor Thickness
09+0	4/6/2009	5506.62	12.26	NPP	11.77	5494.85	NPP
0 5	4/20/2009	5506.62	12.26	NPP	11.82	5494.80	NPP
OW 1+50	4/6/2009	5508.03	14.36	13.52	14.03	5494.41	0.51
0 +	4/20/2009	5508.03	14.36	13.54	14.08	5494.38	0.54
OW 3+85	4/6/2009	5507.31	15.06	NPP	13.07	5494.24	NPP
0 *	4/20/2009	5507.31	15.06	NPP	13.11	5494.20	NPP
50 M	4/6/2009	5507.59	13.67	NPP	13.39	5494.20	NPP
OW 5+50	4/20/2009	5507.59	13.67	NPP	13.39	5494.20	NPP
OW 6+70	4/6/2009	5504.78	14.67	NPP	NWP		NPP
0 +9	4/20/2009	5504.78	14.67	NPP	NWP		NPP
≥ €	4/6/2009	5506.53	15.99	NPP	NWP		NPP
OW 8+10	4/20/2009	5506.53	15.99	NPP	NWP		NPP
0W 11+15	4/6/2009	5506.70	16.59	NPP	12.46	5494.24	NPP
0W 11+11	4/20/2009	5506.70	16.59	NPP	12.45	5494.25	NPP
OW 14+10	4/6/2009	5508.14	12.96	NPP	NWP		NPP
OW 14+1	4/20/2009	5508.14	12.96	NPP	NWP		NPP
OW 16+60	4/6/2009	5508.43	15.21	NPP	12.85	5495.58	NPP
OW 16+6(4/20/2009	5508.43	15.21	NPP	12.81	5495.62	NPP

Observation Well Fluids Monitoring April 2009

Appendix A - Tab 4.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
OW 19+50	4/6/2009	5508.03	13.00	NPP	12.26	5495.77	NPP
0 +61	4/20/2009	5508.03	13.00	NPP	12.52	5495.51	NPP
OW 22+00	4/6/2009	5506.91	14.16	NPP	11.78	5495.13	NPP
22+	4/20/2009	5506.91	14.16	NPP	11.87	5495.04	NPP
OW 23+10	4/6/2009	5514.12	18.34	NPP	16.25	5497.87	NPP
23-	4/20/2009	5514.12	18.34	NPP	16.31	5497.81	NPP
OW 23+90	4/6/2009	5515.18	18.01	NPP	17.11	5498.07	NPP
23+	4/20/2009	5515.18	18.01	NPP	17.09	5498.09	NPP
OW 25+70	4/6/2009	5509.00	13.98	NPP	10.73	5498.27	NPP
OW 25+7	4/20/2009	5509.00	13.98	NPP	10.73	5498.27	NPP

NPP = No Product Present NWP = No Water Present

Page 2 of 5

Appendix A - Tab 4.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
N 09	4/6/2009	5506.68	14.09	NPP	8.53	5498.15	NPP
CW 0+60	4/20/2009	5506.68	14.09	NPP	8.45	5498.23	NPP
CW 1+50	4/6/2009	5505.13	13.74	NPP	6.83	5498.30	NPP
υ÷	4/20/2009	5505.13	13.74	NPP	6.82	5498.31	NPP
85 V	4/6/2009	5503.87	13.11	NPP	5.55	5498.32	NPP
CW 3+85	4/20/2009	5503.87	13.11	NPP	5.49	5498.38	NPP
CW 5+50	4/6/2009	5503.76	12.27	NPP	6.39	5497.37	NPP
CW 5+50	4/20/2009	5503.76	12.27	NPP	6.32	5497.44	NPP
CW 6+70	4/6/2009	5503.84	11.45	NPP	6.67	5497.17	NPP
ΰ <u></u>	4/20/2009	5503.84	11.45	NPP	6.61	5497.23	NPP
9 ≥	4/6/2009	5504.02	11.63	NPP	7.53	5496.49	NPP
CW 8+10	4/20/2009	5504.02	11.63	NPP	7.47	5496.55	NPP
45 45	4/6/2009	5503.80	12.6	7.70	7.71	5496.10	0.01
CW 8+45	4/20/2009	5503.80	12.6	7.62	7.63	5496.18	0.01
15	4/6/2009	5503.95	12.27	NPP	5.94	5498.01	NPP
CW 11+15	4/20/2009	5503.95	12.27	NPP	5.92	5498.03	NPP
CW 14+10	4/6/2009	5504.39	13.05	NPP	6.58	5497.81	NPP
CW 14+1	4/20/2009	5504.39	13.05	NPP	6.53	5497.86	NPP

NPP = No Product Present NWP =

Appendix A - Tab 4.0

Collection Well Fluids Monitoring April 2009

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
CW 16+60	4/6/2009	5504.32	12.86	NPP	6.35	5497.97	NPP
16-1 16-1	4/20/2009	5504.32	12.86	NPP	6.33	5497.99	NPP
CW 19+50	4/6/2009	5504.52	9.99	NPP	6.30	5498.22	NPP
19-07	4/20/2009	5504.52	9.99	NPP	6.32	5498.20	NPP
CW 22+00	4/6/2009	5508.04	12.34	NPP	8.99	5499.05	NPP
22+ CI	4/20/2009	5508.04	12.34	NPP	8.98	5499.06	NPP
CW 23+10	4/6/2009	5510.04	14.65	NPP	10.65	5499.39	NPP
CW 23+1	4/20/2009	5510.04	14.65	10.63	10.63	5499.41	0.00
CW 23+90	4/6/2009	5507.32	11.72	NPP	8.12	5499.20	NPP
23+ 23+	4/20/2009	5507.32	11.72	NPP	8.09	5499.23	NPP
CW 25+95	4/6/2009	5505.90	12.25	7.13	7.14	5498.77	0.01
CW 25+9	4/20/2009	5505.90	12.25	NPP	7.14	5498.76	NPP

NPP = No Product Present

NWP = No Water Present

Page 4 of 5

Monitoring Well Fluids Monitoring April 2009

Appendix A - Tab 4.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
MW #11	4/6/2009	5510.31	22.94	NPP	11.57	5498.74	NPP
₹¥	4/20/2009	5510.31	22.94	NPP	11.45	5498.86	NPP
MW #12	4/6/2009	5501.61	14.98	NPP	10.27	5491.34	NPP
Z #	4/20/2009	5501.61	14.98	NPP	10.32	5491.29	NPP
MW #20	4/6/2009	5519.90	27.13	20.55	20.84	5499.29	0.29
Z #	4/20/2009	5519.90	27.13	20.57	20.83	5499.28	0.26
MW #21	4/6/2009	5521.99	30.38	21.77	21.87	5500.20	0.10
Z #	4/20/2009	5521.99	30.38	21.80	21.91	5500.17	0.11
MW #39	4/6/2009	5520.83	38.34	NPP	25.62	5495.21	NPP
N #	4/20/2009	5520.83	38.34	NPP	25.73	5495.10	NPP
≥ Ω	4/6/2009	5506.36	16.92	NPP	11.81	5494.55	NPP
MW #45	4/20/2009	5506.36	16.92	NPP	11.78	5494.58	NPP
N 9	4/6/2009	5504.65	10.39	NPP	NWP		NPP
MW #46	4/20/2009	5504.65	10.39	NPP	NWP		NPP
MW #47	4/6/2009	5506.77	14.28	NPP .	12.50	5494.27	NPP
Z ¥	4/20/2009	5506.77	14.28	12.51	12.52	5494.26	0.01

NPP = No Product Present

Observation Well Fluids Monitoring MAY 2009

Appendix A - Tab 5.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
09+0 MO	5/7/2009	5506.62	12.26	NPP	11.67	5494.95	NPP
0.5	5/18/2009	5506.62	12.26	NPP	11.6	5495.02	NPP
OW 1+50	5/7/2009	5508.03	14.36	13.56	14.05	5494.37	0.49
0 +	5/18/2009	5508.03	14.36	13.54	14.04	5494.39	0.50
OW 3+85	5/7/2009	5507.31	15.06	NPP	13.12	5494.19	NPP
0 #	5/18/2009	5507.31	15.06	NPP	13.15	5494.16	NPP
OW 5+50	5/7/2009	5507.59	13.67	NPP	13.42	5494.17	NPP
0 + 0	5/18/2009	5507.59	13.67	NPP	13.44	5494.15	NPP
0X+9	5/7/2009	5504.78	14.67	NPP	NWP		NPP
0 5	5/18/2009	5504.78	14.67	NPP	NWP		NPP
OW 8+10	5/7/2009	5506.53	15.99	NPP	NWP		NPP
0 #	5/18/2009	5506.53	15.99	NPP	NWP	- Space of the	NPP
OW 11+15	5/7/2009	5506.70	16.59	NPP	12.37	5494.33	NPP
0 1 0	5/18/2009	5506.70	16.59	NPP	12.46	5494.24	NPP
OW 14+10	5/7/2009	5508.14	12.96	NPP	NWP		NPP
OW 14+1(5/18/2009	5508.14	12.96	NPP	NWP	6.20.20	NPP
OW 16+60	5/7/2009	5508.43	15.21	NPP	12.85	5495.58	NPP
16-1	5/18/2009	5508.43	15.21	NPP	12.59	5495.84	NPP

Observation Well Fluids Monitoring May 2009

Appendix A - Tab 5.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
OW 19+50	5/7/2009	5508.03	13.00	NPP	12.56	5495.47	NPP
0.61	5/18/2009	5508.03	13.00	NPP .	12.68	5495.35	NPP
22+ 22+	5/7/2009	5506.91	14.16	NPP	11.91	5495.00	NPP
0 % 0	5/18/2009	5506.91	14.16	NPP	12.02	5494.89	NPP
OW 23+10	5/7/2009	5514.12	18.34	NPP	16.28	5497.84	NPP
53.0	5/18/2009	5514.12	18.34	NPP	16.30	5497.82	NPP
OW 23+90	5/7/2009	5515.18	18.01	NPP	17.11	5498.07	NPP
23-	5/18/2009	5515.18	18.01	NPP	17.16	5498.02	NPP
OW 25+70	5/7/2009	5509.00	13.98	NPP	10.73	5498.27	NPP
254	5/18/2009	5509.00	13.98	NPP	10.73	5498.27	NPP

NPP = No Product Present NWP = No Water Present

Page 2 of 5

Collection Well Fluids Monitoring May 2009

Appendix A - Tab 5.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbor Thickness
CW 0+60	5/7/2009	5506.68	14.09	NPP	8.34	5498.34	NPP
05	5/18/2009	5506.68	14.09	NPP	8.34	5498.34	NPP
CW 1+50	5/7/2009	5505.13	13.74	NPP	6.81	5498.32	NPP
υ †	5/18/2009	5505.13	13.74	NPP	6.80	5498.33	NPP
CW 3+85	5/7/2009	5503.87	13.11	NPP	5.52	5498.35	NPP
0 *	5/18/2009	5503.87	13.11	NPP	5.51	5498.36	NPP
CW 5+50	5/7/2009	5503.76	12.27	NPP	6.3	5497.46	NPP
U to	5/18/2009	5503.76	12.27	NPP	6.28	5497.48	NPP
CW 6+70	5/7/2009	5503.84	11.45	NPP	6.60	5497.24	NPP
U #	5/18/2009	5503.84	41.45	NPP	6.61	5497.23	NPP
CW 8+10	5/7/2009	5504.02	11.63	NPP	7.41	5496.61	NPP
Ú #	5/18/2009	5504.02	11.63	NPP	7.42	5496.60	NPP
45	5/7/2009	5503.80	12.6	7.52	7.53	5496.28	0.01
CW 8+45	5/18/2009	5503.80	12.6	NPP	7.57	5496.23	NPP
15	5/7/2009	5503.95	12.27	NPP	5.89	5498.06	NPP
CW 11+15	5/18/2009	5503.95	12.27	NPP	5.91	5498.04	NPP
CW 14+10	5/7/2009	5504.39	13.05	NPP	6.47	5497.92	NPP
CW 14+1	5/18/2009	5504.39	13.05	NPP	6.45	5497.94	NPP

NPP = No Product Present NWP = No Water Present

Collection Well Fluids Monitoring May 2009

Appendix A - Tab 5.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
CW 16+60	5/7/2009	5504.32	12.86	NPP	6.3	5498.02	NPP
16- C	5/18/2009	5504.32	12.86	NPP	6.31	5498.01	NPP
CW 19+50	5/7/2009	5504.52	9.99	NPP	6.27	5498.25	NPP
19 0	5/18/2009	5504.52	9.99	NPP	6.29	5498.23	NPP
22+ 00	5/7/2009	5508.04	12.34	NPP	8.96	5499.08	NPP
0%0	5/18/2009	5508.04	12.34	NPP	8.95	5499.09	NPP
CW 23+10	5/7/2009	5510.04	14.65	NPP	10.61	5499.43	NPP
23+ 23+	5/18/2009	5510.04	14.65	NPP	10.55	5499.49	NPP
CW 23+90	5/7/2009	5507.32	11.72	NPP	8.08	5499.24	NPP
C1 23+	5/18/2009	5507.32	11.72	NPP	8.07	5499.25	NPP
CW 25+95	5/7/2009	5505.90	12.25	7.13	7.14	5498.77	0.01
CW 25+9	5/18/2009	5505.90	12.25	NPP	7.13	5498.77	NPP

NPP = No Product Present

NWP = No Water Present

Page 4 of 5

Monitoring Well Fluids Monitoring May 2009

Appendix A - Tab 5.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
MW #11	5/7/2009	5510.31	22.94	NPP	11.19	5499.12	NPP
Σ¥	5/18/2009	5510.31	22.94	NPP	11.15	5499.16	NPP
MW #12	5/7/2009	5501.61	14.98	NPP	10.35	5491.26	NPP
Σ¥	5/18/2009	5501.61	14.98	NPP	10.45	5491.16	NPP
MW #20	5/7/2009	5519.90	27.13	20.61	21.07	5499.20	0.46
Σ¥	5/18/2009	5519.90	27.13	20.63	21.02	5499.19	0.39
MW #21	5/7/2009	5521.99	30.38	21.75	21.84	5500.22	0.09
Σ¥	5/18/2009	5521.99	30.38	21.75	21.85	5500.22	0.10
MW #39	5/7/2009	5520.83	38.34	NPP	25.78	5495.05	NPP
Σ¥	5/18/2009	5520.83	38.34	NPP	25.61	5495.22	NPP
MW #45	5/7/2009	5506.36	16.92	11.38	11.68	5494.92	0.30
≥ ¥	5/18/2009	5506.36	16.92	NPP	11.71	5494.65	NPP
MW #46	5/7/2009	5504.65	10.39	NPP	NWP	a e madridh Achille Achille	NPP
Z ¥	5/18/2009	5504.65	10.39	NPP	NWP		NPP
MW #47	5/7/2009	5506.77	14.28	12.54	12.56	5494.23	0.02
₹¥	5/18/2009	5506.77	14.28	12.60	12.66	5494.16	0.06

NPP = No Product Present

Observation Well Fluids monitoring June 2009

Appendix A - Tao 6.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
_	6/1/2009	5506.62	12.26	NPP	11.51	5495.11	NPP
09+0 0+60	6/18/2009	5506.62	12.26	NPP	11.55	5495.07	NPP
- 0	6/29/2009	5506.62	12.26	NPP	11.67	5494.95	NPP
	6/1/2009	5508.03	14.36	13.55	13.95	5494.40	0.40
OW 1+50	6/18/2009	5508.03	14.36	13.54	14.04	5494.39	0.50
	6/29/2009	5508.03	14.36	13.69	14.14	5494.25	0.45
10	6/1/2009	5507.31	15.06	NPP	13.10	5494.21	NPP
OW 3+85	6/18/2009	5507.31	15.06	NPP	13.13	5494.18	NPP
~ m	6/29/2009	5507.31	15.06	NPP	13.23	5494.08	NPP
	6/1/2009	5507.59	13.67	NPP	13.43	5494.16	NPP
OW 5+50	6/18/2009	5507.59	13.67	NPP	13.42	5494.17	NPP
- 4)	6/29/2009	5507.59	13.67	NPP	13.47	5494.12	NPP
6	6/1/2009	5504.78	14.67	NPP	NWP		NPP
OW 6+70	6/18/2009	5504.78	14.67	NPP	NWP		NPP
- 0	6/29/2009	5504.78	14.67	NPP	NWP		NPP
	6/1/2009	5506.53	15.99	NPP	NWP		NPP
OW 8+10	6/18/2009	5506.53	15.99	NPP	NWP	18 1	NPP
~ ∞	6/29/2009	5506.53	15.99	NPP	NWP	A. Carlos M	NPP
2	6/1/2009	5506.70	16.59	NPP	12.38	5494.32	NPP
OW 11+15	6/18/2009	5506.70	16.59	NPP	12.35	5494.35	NPP
-	6/29/2009	5506.70	16.59	NPP	12.37	5494.33	NPP

NPP = No Product Present NWP = No Water Present

Page 1 of 7

Observation Well Fluids Monitoring June 2009

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
_ 0	6/1/2009	5508.14	12.96	NPP	NWP		NPP
OW 14+10	6/18/2009	5508.14	12.96	NPP	NWP	1.200.00	NPP
77	6/29/2009	5508.14	12.96	NPP	NWP	Last starter	NPP
0	6/1/2009	5508.43	15.21	NPP	12.81	5495.62	NPP
OW 16+60	6/18/2009	5508.43	15.21	NPP	12.90	5495.53	NPP
-	6/29/2009	5508.43	15.21	NPP	12.93	5495.50	NPP
. 0	6/1/2009	5508.03	13.00	NPP	12.76	5495.27	NPP
OW 19+50	6/18/2009	5508.03	13.00	NPP	12.92	5495.11	NPP
	6/29/2009	5508.03	13.00	NPP	NWP		NPP
~ 2	6/1/2009	5506.91	14.16	NPP	11.73	5495.18	NPP
OW 22+00	6/18/2009	5506.91	14.16	NPP	12.03	5494.88	NPP
2	6/29/2009	5506.91	14.16	NPP	12.53	5494.38	NPP
0	6/1/2009	5514.12	18.34	16.24	16.27	5497.87	0.03
OW 23+10	6/18/2009	5514.12	18.34	NPP	16.30	5497.82	NPP
3	6/29/2009	5514.12	18.34	NPP	16.33	5497.79	NPP
	6/1/2009	5515.18	18.01	NPP	17.15	5498.03	NPP
OW 23+90	6/18/2009	5515.18	18.01	NPP	17.12	5498.06	NPP
19	6/29/2009	5515.18	18.01	NPP	17.15	5498.03	NPP
0	6/1/2009	5509.00	13.98	NPP	10.72	5498.28	NPP
OW 25+70	6/18/2009	5509.00	13.98	NPP	10.73	5498.27	NPP
3	6/29/2009	5509.00	13.98	NPP	10.77	5498.23	NPP

NPP = No Product Present NWP = No V

NWP = No Water Present

Page 2 of 7

Collection Well Fluids Monitoring June 2009

Appendix A - Tab 6.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
-	6/1/2009	5506.68	14.09	NPP	8.13	5498.55	NPP
CW 0+60	6/18/2009	5506.68	14.09	NPP	8.17	5498.51	NPP
- 0	6/29/2009	5506.68	14.09	NPP	8.29	5498.39	NPP
	6/1/2009	5505.13	13.74	NPP	6.65	5498.48	NPP
CW 1+50	6/18/2009	5505.13	13.74	NPP	6.69	5498.44	NPP
	6/29/2009	5505.13	13.74	NPP	6.83	5498.30	NPP
10	6/1/2009	5503.87	13.11	NPP	5.41	5498.46	NPP
CW 3+85	6/18/2009	5503.87	13.11	NPP	5.41	5498.46	NPP
- <mark>m</mark>	6/29/2009	5503.87	13.11	NPP	5.56	5498.31	NPP
	6/1/2009	5503.76	12.27	NPP	6.24	5497.52	NPP
CW 5+50	6/18/2009	5503.76	12.27	NPP	6.21	5497.55	NPP
- LO	6/29/2009	5503.76	12.27	NPP	6.28	5497.48	NPP
-	6/1/2009	5503.84	11.45	NPP	6.58	5497.26	NPP
CW 6+70	6/18/2009	5503.84	11.45	NPP	6.58	5497.26	NPP
- 0	6/29/2009	5503.84	11.45	NPP	6.61	5497.23	NPP
	6/1/2009	5504.02	11.63	NPP	7.36	5496.66	NPP
CW 8+10	6/18/2009	5504.02	11.63	NPP	7.36	5496.66	NPP
	6/29/2009	5504.02	11.63	NPP	7.37	5496.65	NPP

NPP = No Product Present

Collection Well Fluids Monitoring June 2009

Appendix A - Tab 6.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
- 10	6/1/2009	5503.80	12.6	NPP	7.49	5496.31	NPP
CW 8+45	6/18/2009	5503.80	12.6	NPP	7.49	5496.31	NPP
~	6/29/2009	5503.80	12.6	NPP	7.51	5496.29	NPP
ູບ	6/1/2009	5503.95	12.27	NPP	5.88	5498.07	NPP
CW 11+15	6/18/2009	5503.95	12.27	NPP	5.93	5498.02	NPP
	6/29/2009	5503.95	12.27	NPP	5.97	5497.98	NPP
	6/1/2009	5504.39	13.05	NPP	6.40	5497.99	NPP
CW 14+10	6/18/2009	5504.39	13.05	NPP	6.45	5497.94	NPP
-	6/29/2009	5504.39	13.05	NPP	6.45	5497.94	NPP
. 0	6/1/2009	5504.32	12.86	NPP	6.27	5498.05	NPP
CW 16+60	6/18/2009	5504.32	12.86	NPP	6.3	5498.02	NPP
5.00	6/29/2009	5504.32	12.86	NPP	6.27	5498.05	NPP
. 0	6/1/2009	5504.52	9.99	NPP	6.22	5498.30	NPP
CW 19+50	6/18/2009	5504.52	9.99	NPP	6.24	5498.28	NPP
	6/29/2009	5504.52	9.99	NPP	6.10	5498.42	NPP
_ 0	6/1/2009	5508.04	12.34	NPP	8.95	5499.09	NPP
CW 22+00	6/18/2009	5508.04	12.34	NPP	8.95	5499.09	NPP
8	6/29/2009	5508.04	12.34	NPP	8.94	5499.10	NPP

NPP = No Product Present

Appendix A - Tab 6.0

Collection Well Fluids Monitoring June 2009

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
0	6/1/2009	5510.04	14.65	NPP	10.61	5499.43	NPP
CW 23+10	6/18/2009	5510.04	14.65	NPP	10.6	5499.44	NPP
3	6/29/2009	5510.04	14.65	NPP	10.58	5499.46	NPP
0	6/1/2009	5507.32	11.72	NPP	8.08	5499.24	NPP
CW 23+90	6/18/2009	5507.32	11.72	NPP	8.04	5499.28	NPP
	6/29/2009	5507.32	11.72	NPP	8.00	5499.32	NPP
2	6/1/2009	5505.90	12.25	NPP	7.13	5498.77	NPP
CW 25+95	6/18/2009	5505.90	12.25	NPP	7.12	5498.78	NPP
5	6/29/2009	5505.90	12.25	NPP	7.21	5498.69	NPP

NPP = No Product Present

Page 5 of 7

Monitoring Well Fluids Monitoring June 2009

Appendix A - Tab 6.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
11	6/1/2009	5510.31	22.94	NPP	10.9	5499.41	NPP
MW #11	6/18/2009	5510.31	22.94	NPP	11.08	5499.23	NPP
<u>S</u>	6/29/2009	5510.31	22.94	NPP	11.24	5499.07	NPP
12	6/1/2009	5501.61	14.98	NPP	10.50	5491.11	NPP
MW #12	6/18/2009	5501.61	14.98	NPP	10.67	5490.94	NPP
E .	6/29/2009	5501.61	14.98	NPP	10.88	5490.73	NPP
20	6/1/2009	5519.90	27.13	20.62	21.15	5499.17	0.53
MW #20	6/18/2009	5519.90	27.13	20.63	21.18	5499.16	0.55
ž	6/29/2009	5519.90	27.13	20.64	21.21	5499.15	0.57
21	6/1/2009	5521.99	30.38	21.75	21.85	5500.22	0.10
MW #21	6/18/2009	5521.99	30.38	21.75	21.83	5500.22	0.08
۶.	6/29/2009	5521.99	30.38	21.74	21.84	5500.23	0.10
39	6/1/2009	5520.83	38.34	NPP	25.61	5495.22	NPP
MW #39	6/18/2009	5520.83	38.34	NPP	25.64	5495.19	NPP
W	6/29/2009	5520.83	38.34	NPP	25.71	5495.12	NPP
45	6/1/2009	5506.36	16.92	NPP	11.64	5494.72	NPP
MW #45	6/18/2009	5506.36	16.92	NPP	11.67	5494.69	NPP
ž	6/29/2009	5506.36	16.92	NPP	11.70	5494.66	NPP

NPP = No Product Present

NWP = No Water Present

Page 6 of 7

Monitoring Well Fluids Monitoring June 2009

Appendix A - Tab 6.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
#46	6/1/2009	5504.65	10.39	NPP	NWP	121 121	NPP
	6/18/2009	5504.65	10.39	NPP	NWP		NPP
MM	6/29/2009	5504.65	10.39	NPP	NWP		NPP
#47	6/1/2009	5506.77	14.28	NPP	12.56	5494.21	NPP
	6/18/2009	5506.77	14.28	NPP	12.60	5494.17	NPP
MM	6/29/2009	5506.77	14.28	NPP	12.68	5494.09	NPP

Observation Well Fluids Monitoring July 2009

Appendix A - Tab 7.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbor Thickness
≥ 09	7/13/2009	5506.62	12.26	NPP	11.69	5494.93	NPP
09+0 MO	7/27/2009	5506.62	12.26	NPP	11.76	5494.86	NPP
OW 1+50	7/13/2009	5508.03	14.36	13.61	14.21	5494.30	0.60
0 +	7/27/2009	5508.03	14.36	13.70	14.29	5494.21	0.59
85 ≥	7/13/2009	5507.31	15.06	NPP	13.27	5494.04	NPP
OW 3+85	7/27/2009	5507.31	15.06	NPP	13.30	5494.01	NPP
50 V	7/13/2009	5507.59	13.67	NPP	13.46	5494.13	NPP
OW 5+50	7/27/2009	5507.59	13.67	NPP	13.47	5494.12	NPP
OW 6+70	7/13/2009	5504.78	14.67	NPP	NWP		NPP
0 5	7/27/2009	5504.78	14.67	NPP	NWP		NPP
3 2	7/13/2009	5506.53	15.99	NPP	NWP		NPP
OW 8+10	7/27/2009	5506.53	15.99	NPP	NWP		NPP
15	7/13/2009	5506.70	16.59	NPP	12.36	5494.34	NPP
OW 11+15	7/27/2009	5506.70	16.59	NPP	12.40	5494.30	NPP
396	7/13/2009	5508.14	12.96	NPP	NWP		NPP
OW 14+10	7/27/2009	5508.14	12.96	NPP	NWP		NPP
OW 16+60	7/13/2009	5508.43	15.21	NPP	12.91	5495.52	NPP
0W 16+6	7/27/2009	5508.43	15.21	NPP	12.95	5495.48	NPP

Observation Well Fluids Monitoring July 2009

Appendix A - Tab 7.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
OW 19+50	7/13/2009	5508.03	13.00	NPP	NWP		NPP
0 4	7/27/2009	5508.03	13.00	NPP	NWP		NPP
OW 22+00	7/13/2009	5506.91	14.16	NPP	12.47	5494.44	NPP
224	7/27/2009	5506.91	14.16	NPP	12.60	5494.31	NPP
OW 23+10	7/13/2009	5514.12	18.34	16.25	16.32	5497.86	0.07
23-0	7/27/2009	5514.12	18.34	NPP	16.32	5497.80	NPP
OW 23+90	7/13/2009	5515.18	18.01	NPP	17.1	5498.08	NPP
23-	7/27/2009	5515.18	18.01	NPP	17.14	5498.04	NPP
M 70	7/13/2009	5509.00	13.98	NPP	10.72	5498.28	NPP
OW 25+70	7/27/2009	5509.00	13.98	NPP	10.74	5498.26	NPP

Collection Well Fluids Monitoring July 2009

Appendix A - Tab 7.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbor Thickness
CW 0+60	7/13/2009	5506.68	14.09	NPP	8.31	5498.37	NPP
0 3	7/27/2009	5506.68	14.09	NPP	8.39	5498.29	NPP
CW 1+50	7/13/2009	5505.13	13.74	NPP	6.83	5498.30	NPP
0 +	7/27/2009	5505.13	13.74	NPP	6.90	5498.23	NPP
CW 3+85	7/13/2009	5503.87	13.11	NPP	5.58	5498.29	NPP
0 *	7/27/2009	5503.87	13.11	NPP	6.68	5497.19	NPP
CW 5+50	7/13/2009	5503.76	12.27	NPP	6.31	5497.45	NPP
0 1	7/27/2009	5503.76	12.27	NPP	6.35	5497.41	NPP
CW 6+70	7/13/2009	5503.84	11.45	NPP	6.62	5497.22	NPP
Ú +	7/27/2009	5503.84	11.45	NPP	6.67	5497.17	NPP
CW 8+10	7/13/2009	5504.02	11.63	NPP	7.40	5496.62	NPP
О *	7/27/2009	5504.02	11.63	NPP	7.44	5496.58	NPP
CW 8+45	7/13/2009	5503.80	12.6	NPP	7.52	5496.28	NPP
О *	7/27/2009	5503.80	12.6	NPP	7.57	5496.23	NPP
CW 11+15	7/13/2009	5503.95	12.27	NPP	5.94	5498.01	NPP
11+0	7/27/2009	5503.95	12.27	NPP	5.96	5497.99	NPP
CW 14+10	7/13/2009	5504.39	13.05	NPP	6.36	5498.03	NPP
CW 14+1	7/27/2009	5504.39	13.05	NPP	6.43	5497.96	NPP

NPP = No Product Present

Collection Well Fluids Monitoring July 2009

Appendix A - Tab 7.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
CW 16+ 60	7/13/2009	5504.32	12.86	NPP	6.27	5498.05	NPP
0 2 0	7/27/2009	5504.32	12.86	NPP	6.27	5498.05	NPP
CW 19+50	7/13/2009	5504.52	9.99	NPP	6.20	5498.32	NPP
0.4	7/27/2009	5504.52	9.99	NPP	6.31	5498.21	NPP
CW 22+00	7/13/2009	5508.04	12.34	NPP	8.96	5499.08	NPP
22-C	7/27/2009	5508.04	12.34	NPP	8.96	5499.08	NPP
CW 23+10	7/13/2009	5510.04	14.65	NPP	10.59	5499.45	NPP
53-C	7/27/2009	5510.04	14.65	NPP	10.58	5499.46	NPP
CW 23 90	7/13/2009	5507.32	11.72	NPP	8.03	5499.29	NPP
33 C	7/27/2009	5507.32	11.72	NPP	8.01	5499.31	NPP
CW 25+95	7/13/2009	5505.90	12.25	NPP	7.12	5498.78	NPP
C 25+	7/27/2009	5505.90	12.25	NPP	7.12	5498.78	NPP

NPP = No Product Present

NWP = No Water Present

Page 4 of 5

Monitoring Well Fluids Monitoring July 2009

Appendix A - Tab 7.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
MW #11	7/13/2009	5510.31	22.94	NPP	11.27	5499.04	NPP
≥¥	7/27/2009	5510.31	22.94	NPP	11.08	5499.23	NPP
MW #12	7/13/2009	5501.61	14.98	NPP	10.91	5490.70	NPP
Σ ¥	7/27/2009	5501.61	14.98	NPP	10.97	5490.64	NPP
MW #20	7/13/2009	5519.90	27.13	20.63	21.20	5499.16	0.57
Σ¥	7/27/2009	5519.90	27.13	20.71	21.10	5499.11	0.39
MW #21	7/13/2009	5521.99	30.38	21.76	21.85	5500.21	0.09
Σ¥	7/27/2009	5521.99	30.38	21.69	21.78	5500.28	0.09
MW #39	7/13/2009	5520.83	38.34	NPP	25.69	5495.14	NPP
Σ¥	7/27/2009	5520.83	38.34	NPP	25.72	5495.11	NPP
MW #45	7/13/2009	5506.36	16.92	NPP	11.68	5494.68	NPP
N #	7/27/2009	5506.36	16.92	NPP	11.68	5494.68	NPP
MW #46	7/13/2009	5504.65	10.39	NPP	NWP		NPP
N #	7/27/2009	5504.65	10.39	NPP	NWP		NPP
MW #47	7/13/2009	5506.77	14.28	NPP	12.67	5494.10	NPP
N #	7/27/2009	5506.77	14.28	NPP	12.72	5494.05	NPP

NPP = No Product Present

Observation Well Fluids Monitoring August 2009

Appendix A - Tab 8.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
09+00	8/13/2009	5506.62	12.26	NPP	11.19	5495.43	NPP
0 5	8/24/2009	5506.62	12.26	NPP	10.30	5496.32	NPP
OW 1+50	8/13/2009	5508.03	14.36	NPP	12.65	5495.38	NPP
0 (8/24/2009	5508.03	14.36	NPP	12.19	5495.84	NPP
OW 3+85	8/13/2009	5507.31	15.06	NPP	12.27	5495.04	NPP
0 #	8/24/2009	5507.31	15.06	NPP	11.99	5495.32	NPP
OW 5+50	8/13/2009	5507.59	13.67	NPP	13.52	5494.07	NPP
OW 5+50	8/24/2009	5507.59	13.67	NPP	13.43	5494.16	NPP
0X 6+70	8/13/2009	5504.78	14.67	NPP	NWP		NPP
0 ;	8/24/2009	5504.78	14.67	NPP	NWP		NPP
≥ ₽	8/13/2009	5506.53	15.99	NPP	NWP		NPP
OW 8+10	8/24/2009	5506.53	15.99	NPP	NWP		NPP
15 2	8/13/2009	<u>5506.70</u>	16.59	12.24	12.69	5494.37	0.45
OW 11+15	8/24/2009	5506.70	16.59	12.20	12.45	5494.45	0.25
10	8/13/2009	5508.14	12.96	NPP	NWP		NPP
OW 14+10	8/24/2009	5508.14	12.96	NPP	NWP		NPP
× 60	8/13/2009	5508.43	15.21	NPP	12.78	5495.65	NPP
OW 16+60	8/24/2009	5508.43	15.21	NPP	12.50	5495.93	NPP

Observation Well Fluids Monitoring August 2009

Appendix A - Tab 8.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
OW 19+50	8/13/2009	5508.03	13.00	NPP	12.89	5495.14	NPP
0 -61	8/24/2009	5508.03	13.00	NPP	12.41	5495.62	NPP
OW 22+00	8/13/2009	5506.91	14.16	NPP	10.23	5496.68	NPP
53-0	8/24/2009	5506.91	14.16	NPP	10.60	5496.31	NPP
OW 23+10	8/13/2009	5514.12	18.34	NPP	15.69	5498.43	NPP
23-0	8/24/2009	5514.12	18.34	NPP	16.09	5498.03	NPP
OW 23+90	8/13/2009	5515.18	18.01	NPP	16.69	5498.49	NPP
23-0	8/24/2009	5515.18	18.01	NPP	16.92	5498.26	NPP
OW 25+70	8/13/2009	5509.00	13.98	NPP	10.40	5498.60	NPP
0	8/24/2009	5509.00	13.98	NPP	10.56	5498.44	NPP

NPP = No Product Present NWP = No Water Present

Page 2 of 5

Collection Well Fluids Monitoring August 2009

Appendix A - Tab 8.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbor Thickness
CW 0+60	8/13/2009	5506.68	14.09	NPP	8.04	5498.64	NPP
ΰ <u></u>	8/24/2009	5506.68	14.09	NPP	8.00	5498.68	NPP
CW 1+50	8/13/2009	5505.13	13.74	NPP	6.75	5498.38	NPP
0 +	8/24/2009	5505.13	13.74	NPP	6.56	5498.57	NPP
CW 3+85	8/13/2009	5503.87	<mark>13</mark> .11	NPP	5.58	5498.29	NPP
0 ÷	8/24/2009	5503.87	13.11	NPP	5.42	5 <mark>4</mark> 98.45	NPP
CW 5+50	8/13/2009	5503.76	12.27	NPP	6.26	5497.50	NPP
0 +	8/24/2009	5503.76	12.27	NPP	6.21	5497.55	NPP
CW 6+70	8/13/2009	5503.84	11.45	NPP	6.62	5497.22	NPP
Ú #	8/24/2009	5503.84	11.45	NPP	6.58	5497.26	NPP
CW 8+10	8/13/2009	5504.02	11.63	NPP	7.46	5496.56	NPP
Ú + ∞	8/24/2009	5504.02	11.63	NPP	7.36	5496.66	NPP
CW 8+45	8/13/2009	5503.80	12.6	NPP	7.51	5496.29	NPP
U #	8/24/2009	5503.80	12.6	NPP	7.44	5496.36	NPP
CW 11+15	8/13/2009	5503.95	12.27	NPP	6.07	5497.88	NPP
11+1	8/24/2009	5503.95	12.27	NPP	5.94	5498.01	NPP
CW 14+10	8/13/2009	5504.39	13.05	NPP	6.37	5498.02	NPP
CW 14+1	8/24/2009	5504.39	13.05	NPP	6.32	5498.07	NPP

Appendix A - Tab 8.0

Collection Well Fluids Monitoring August 2009

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
CW 16+60	8/13/2009	5504.32	12.86	NPP	6.17	5498.15	NPP
16-0	8/24/2009	5504.32	12.86	NPP	6.19	5498.13	NPP
CW 19+50	8/13/2009	5504.52	9.99	NPP	6.00	5498.52	NPP
19 0	8/24/2009	5504.52	9.99	NPP	6.01	5498.51	NPP
CW 22+00	8/13/2009	5508.04	12.34	NPP	8.88	5499.16	NPP
22+ 22+	8/24/2009	5508.04	12.34	NPP	8.83	5499.21	NPP
CW 23+10	8/13/2009	5510.04	14.65	NPP	10.53	5499.51	NPP
C 23+	8/24/2009	5510.04	14.65	NPP	10.45	5499.59	NPP
CW 23+90	8/13/2009	5507.32	11.72	NPP	8.00	5499.32	NPP
23+ 23+	8/24/2009	5507.32	11.72	NPP	7.94	5499.38	NPP
CW 25+95	8/13/2009	5505.90	12.25	NPP	7.08	5498.82	NPP
C 254	8/24/2009	5505.90	12.25	NPP	7.07	5498.83	NPP

NPP = No Product Present

Monitoring Well Fluids Monitoring August 2009

Appendix A - Tab 8.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
3 -	8/13/2009	5510.31	22.94	NPP	10.46	5499.85	NPP
MW #11	8/24/2009	5510.31	22.94	NPP	10.46	5499.85	NPP
MW #12	8/13/2009	5501.61	14.98	NPP	10.28	5491.33	NPP
N #	8/24/2009	5501.61	14.98	NPP	9.50	5492.11	NPP
MW #20	8/13/2009	5519.90	27.13	20.67	21.08	5499.15	0.41
2 #	8/24/2009	5519.90	27.13	20.61	20.91	5499.23	0.30
MW #21	8/13/2009	5521.99	30.38	21.52	21.68	5500.44	0.16
Σ#	8/24/2009	5521.99	30.38	21.34	21.54	5500.61	0.20
MW #39	8/13/2009	5520.83	38.34	NPP	25.85	5494.98	NPP
N #	8/24/2009	5520.83	38.34	NPP	25.87	5494.96	NPP
≥ rö	8/13/2009	5506.36	16.92	NPP	11.64	5494.72	NPP
MW #45	8/24/2009	5506.36	16.92	NPP	11.54	5494.82	NPP
MW #46	8/13/2009	5504.65	10.39	NPP	9.36	5495.29	NPP
N #	8/24/2009	5504.65	10.39	NPP	9.83	5494.82	NPP
35	8/13/2009	5506.77	14.28	NPP	11.67	5495.10	NPP
MW #47	8/24/2009	5506.77	14.28	NPP	11.46	5495.31	NPP

NPP = No Product Present

Observation Well Fluids Monitoring Sept. 2009

Appendix A - Tab 9.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
09+0 MO	9/9/2009	5506.62	12.26	NPP	11.97	5494.65	NPP
ō ŧ	9/21/2009	5506.62	12.26	NPP	12	5494.62	NPP
OW 1+50	9/9/2009	5508.03	14.36	13.89	14.35	5494.05	0.46
o †	9/21/2009	5508.03	14.36	13.93	14.34	5494.02	0.41
85 2	9/9/2009	5507.31	15.06	NPP	13.44	5493.87	NPP
OW 3+85	9/21/2009	5507.31	15.06	NPP	13.46	5493.85	NPP
202	9/9/2009	5507.59	13.67	NPP	13.53	5494.06	NPP
OW 5+50	9/21/2009	5507.59	13.67	NPP	13.53	5494.06	NPP
2 K	9/9/2009	5504.78	14.67	NPP	NWP		NPP
OW 6+70	9/21/2009	5504.78	14.67	NPP	NWP		NPP
≥ ¢	9/9/2009	5506.53	15.99	NPP	NWP		NPP
OW 8+10	9/21/2009	5506.53	15.99	NPP	NWP		NPP
15	9/9/2009	5506.70	16.59	12.34	12.35	5494.36	0.01
OW 11+15	9/21/2009	5506.70	16.59	12.31	12.34	5494.38	0.03
10	9/9/2009	5508.14	12.96	NPP	NWP		NPP
OW 14+10	9/21/2009	5508.14	12.96	NPP	NWP		NPP
N 60	9/9/2009	5508.43	15.21	NPP	13.03	5495.40	NPP
OW 16+60	9/21/2009	5508.43	15.21	NPP	13.13	5495.30	NPP

Observation Well Fluids Monitoring Sept. 2009

Appendix A - Tab 9.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
OW 19+50	9/9/2009	5508.03	13.00	NPP	NWP	a the second second	NPP
0 4	9/21/2009	5508.03	13.00	NPP	NWP		NPP
OW 22+00	9/9/2009	5506.91	14.16	NPP	12.73	5494.18	NPP
22-0	9/21/2009	5506.91	14.16	NPP	12.73	5494.18	NPP
OW 23+10	9/9/2009	5514.12	18.34	NPP	16.31	5497.81	NPP
23-0	9/21/2009	5514.12	18.34	NPP	16.23	5497.89	NPP
OW 23+90	9/9/2009	5515.18	18.01	NPP	17.12	5498.06	NPP
23-0	9/21/2009	5515.18	18.01	NPP	17.11	5498.07	NPP
OW 5+70	9/9/2009	5509.00	13.98	NPP	10.73	5498.27	NPP
OW 25+70	9/21/2009	5509.00	13.98	NPP	10.71	5498.29	NPP

NPP = No Product Present NWP = No Water Present

Page 2 of 5

Collection Well Fluids Monitoring Sept. 2009

Appendix A - Tab 9.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbor Thickness
CW 0+60	9/9/2009	5506.68	14.09	NPP	8.40	5498.28	NPP
Ú đ	9/21/2009	5506.68	14.09	NPP	8.43	5498.25	NPP
CW 1+50	9/9/2009	5505.13	13.74	NPP	6.78	5498.35	NPP
υ <u>+</u>	9/21/2009	5505.13	13.74	NPP	6.89	5498.24	NPP
CW 3+85	9/9/2009	5503.87	13.11	NPP	5.49	5498.38	NPP
0 *	9/21/2009	5503.87	13.11	NPP	5.64	5498.23	NPP
CW 5+50	9/9/2009	5503.76	12.27	NPP	6.30	5497.46	NPP
2+0	9/21/2009	5503.76	12.27	NPP	6.33	5497.43	NPP
CW 6+70	9/9/2009	5503.84	11.45	NPP	6.68	5497.16	NPP
0 #	9/21/2009	5503.84	11.45	NPP	6.68	5497.16	NPP
3 €	9/9/2009	5504.02	11.63	NPP	7.45	5496.57	NPP
CW 8+10	9/21/2009	5504.02	11.63	NPP	7.48	5496.54	NPP
CW 8+45	9/9/2009	5503.80	12.6	NPP	7.55	5496.25	NPP
Ú #	9/21/2009	5503.80	12.6	NPP	7.55	5496.25	NPP
CW 11+15	9/9/2009	5503.95	12.27	NPP	5.97	5497.98	NPP
110	9/21/2009	5503.95	12.27	NPP	6.00	5497.95	NPP
CW 14+10	9/9/2009	5504.39	13.05	NPP	6.41	5497.98	NPP
14-1 14-1	9/21/2009	5504.39	13.05	NPP	6.44	5497.95	NPP

NPP = No Product Present

Collection Well Fluids Monitoring Sept. 2009

Appendix A - Tab 9.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
CW 16+60	9/9/2009	5504.32	12.86	NPP	6.25	5498.07	NPP
16-0	9/21/2009	5504.32	12.86	NPP	6.27	5498.05	NPP
CW 19+50	9/9/2009	5504.52	9.99	NPP	5.78	5498.74	NPP
19-0	9/21/2009	5504.52	9.99	NPP	5.80	5498.72	NPP
CW 22+00	9/9/2009	5508.04	12.34	NPP	8.89	5499.15	NPP
22-C	9/21/2009	5508.04	12.34	NPP	8.88	5499.16	NPP
CW 23+10	9/9/2009	5510.04	14.65	NPP	10.50	5499.54	NPP
23+ C	9/21/2009	5510.04	14.65	NPP	10.50	5499.54	NPP
CW 23+90	9/9/2009	5507.32	11.72	NPP	7.94	5499.38	NPP
234 234	9/21/2009	5507.32	11.72	NPP	7.95	5499.37	NPP
CW 25+95	9/9/2009	5505.90	12.25	NPP	7.08	5498.82	NPP
C1 25+	9/21/2009	5505.90	12.25	NPP	7.08	5498.82	NPP

NPP = No Product Present

NWP = No Water Present

Page 4 of 5

Monitoring Well Fluids Monitoring Sept. 2009

Appendix A - Tab 9.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
MW #11	9/9/2009	5510.31	22.94	NPP	11.51	5498.80	NPP
Σ¥	9/21/2009	5510.31	22.94	NPP	11.51	5498.80	NPP
MW #12	9/9/2009	5501.61	14.98	NPP	11.14	5490.47	NPP
Σ¥	9/21/2009	5501.61	14.98	NPP	10.96	5490.65	NPP
MW #20	9/9/2009	5519.90	27.13	20.60	21.21	5499.18	0.61
Z ¥	9/21/2009	5519.90	27.13	20.72	21.23	5499.08	0.51
MW #21	9/9/2009	5521.99	30.38	21.65	21.74	5500.32	0.09
Σ¥	9/21/2009	5521.99	30.38	21.63	21.75	5500.34	0.12
MW #39	9/9/2009	5520.83	38.34	NPP	25.83	5495.00	NPP
≥¥	9/21/2009	5520.83	38.34	NPP	25.86	5494.97	NPP
2 5	9/9/2009	5506.36	16.92	NPP	11.65	5494.71	NPP
MW #45	9/21/2009	5506.36	16.92	NPP	11.65	5494.71	NPP
2 9	9/9/2009	5504.65	10.39	NPP	NWP		NPP
MW #46	9/21/2009	5504.65	10.39	NPP	NWP		NPP
MW #47	9/9/2009	5506.77	14.28	12.84	13.18	5493.86	0.34
N #	9/21/2009	5506.77	14.28	12.72	13.26	5493.94	0.54

NPP = No Product Present

Observation Well Fluids Monitoring Oct. 2009

Appendix A - Tab 10.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
09+0	10/5/2009	5506.62	12.26	NPP	12.02	5494.60	NPP
0 ÷	10/19/2009	5506.62	12.26	NPP	12.00	5494.62	NPP
OW 1+50	10/5/2009	5508.03	14.36	14.01	14.36	5493.95	0.35
0 +	10/19/2009	5508.03	14.36	13.97	14.36	5493.98	0.39
OW 3+85	10/5/2009	5507.31	15.06	<u>13.51</u>	13.53	5493.80	0.02
0 #	10/19/2009	5507.31	15.06	13.52	13.54	5493.79	0.02
OW 5+50	10/5/2009	5507.59	13.67	NPP	13.56	5494.03	NPP
2+0	10/19/2009	5507.59	13.67	NPP	13.60	5493.99	NPP
OW 6+70	10/5/2009	5504.78	14.67	NPP	NWP		NPP
OW 6+70	10/19/2009	5504.78	14.67	NPP	NWP		NPP
2 2	10/5/2009	5506.53	15.99	NPP	NWP		NPP
OW 8+10	10/19/2009	5506.53	15.99	NPP	NWP		NPP
OW 11+15	10/5/2009	5506.70	16.59	NPP	12.34	5494.36	NPP
0W 11+11	10/19/2009	5506.70	16.59	12.40	12.42	5494.30	0.02
39	10/5/2009	5508.14	12.96	NPP	NWP		NPP
OW 14+10	10/19/2009	5508.14	12.96	NPP	NWP		NPP
OW 16+60	10/5/2009	5508.14	15.21	NPP	13.10	5495.04	NPP
0W 16+6	10/19/2009	5508.43	15.21	NPP	13.13	5495.30	NPP

Observation Well Fluids Monitoring Oct. 2009

Appendix A - Tab 10.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
0W 19+ 50	10/5/2009	5508.03	13.00	NPP	NWP		NPP
04.0	10/19/2009	5508.03	13.00	NPP	NWP		NPP
OW 22+ 00	10/5/2009	5506.91	14.16	NPP	12.62	5494.29	NPP
0%0	10/19/2009	5506.91	14.16	NPP	12.61	5494.30	NPP
OW 23+ 10	10/5/2009	5514.12	18.34	NPP	16.27	5497.85	NPP
180	10/19/2009	5514.12	18.34	NPP	16.23	5497.89	NPP
OW 23+ 90	10/5/2009	5515.18	18.01	NPP	17.11	5498.07	NPP
0 % 0	10/19/2009	5515.18	18.01	NPP	17.06	5498.12	NPP
OW 25+ 70	10/5/2009	5509.00	13.98	NPP	10.72	5498.28	NPP
25	10/19/2009	5509.00	13.98	NPP	10.70	5498.30	NPP

Collection Well Fluids Monitoring Oct. 2009

Appendix A - Tab 10.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbor Thickness
CW 0+60	10/5/2009	5506.68	14.09	NPP	8.5	5498.18	NPP
53	10/19/2009	5506.68	14.09	NPP	8.59	5498.09	NPP
CW 1+50	10/5/2009	5505.13	13.74	NPP	7.00	5498.13	NPP
υ÷	10/19/2009	5505.13	13.74	NPP	7.01	5498.12	NPP
CW 3+85	10/5/2009	5503.87	13.11	NPP	5.75	5498.12	NPP
0 *	10/19/2009	5503.87	13.11	NPP	5.75	5498.12	NPP
CW 5+50	10/5/2009	5503.76	12.27	NPP	6.34	5497.42	NPP
0 1	10/19/2009	5503.76	12.27	NPP	6.39	5497.37	NPP
CW 6+70	10/5/2009	5503.84	11.45	NPP	6.69	5497.15	NPP
υ <u></u>	10/19/2009	5503.84	11.45	NPP	6.70	5497.14	NPP
CW 8+10	10/5/2009	5504.02	11.63	NPP	7.48	5496.54	NPP
υ *	10/19/2009	5504.02	11.63	NPP	7.56	5496.46	NPP
42	10/5/2009	5503.80	12.6	NPP	7.53	5496.27	NPP
CW 8+45	10/19/2009	5503.80	12.6	NPP	7.64	5496.16	NPP
CW 11+15	10/5/2009	5503.95	12.27	NPP	5.59	5498.36	NPP
CW 11+1	10/19/2009	5503.95	12.27	NPP	5.96	5497.99	NPP
CW 14+10	10/5/2009	5504.39	13.05	NPP	6.37	5498.02	NPP
14+1 14+1	10/19/2009	5504.39	13.05	NPP	6.44	5497.95	NPP

NPP = No Product Present

Collection Well Fluids Monitoring Oct. 2009

Appendix A - Tab 10.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
CW 16+60	10/5/2009	5504.32	12.86	NPP	6.22	5498.10	NPP
16-0	10/19/2009	5504.32	12.86	NPP	6.28	5498.04	NPP
CW 19+50	10/5/2009	5504.52	9.99	NPP	5.72	5498.80	NPP
19-C	10/19/2009	5504.52	9.99	NPP	6.11	5498.41	NPP
CW 22+00	10/5/2009	5508.04	12.34	NPP	8.91	5499.13	NPP
CI 224	10/19/2009	5508.04	12.34	NPP	8.91	5499.13	NPP
CW 23+10	10/5/2009	5510.04	14.65	NPP	10.5	5499.54	NPP
C1	10/19/2009	5510.04	14.65	NPP	10.53	5499.51	NPP
CW 3+90	10/5/2009	5507.32	11.72	NPP	7.95	5499.37	NPP
CW 23+90	10/19/2009	5507.32	11.72	NPP	7.99	5499.33	NPP
N 95	10/5/2009	5505.90	12.25	NPP	7.08	5498.82	NPP
CW 25+95	10/19/2009	5505.90	12.25	NPP	7.10	5498.80	NPP

NPP = No Product Present

nt NWP = No Water Present

Page 4 of 5

Monitoring Well Fluids Monitoring Oct. 2009

Appendix A - Tab 10.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
MW #11	10/5/2009	5510.31	22.94	NPP	11.53	5498.78	NPP
Σ¥	10/19/2009	5510.31	22.94	NPP	11.38	5498.93	NPP
MW #12	10/5/2009	5501.61	14.98	NPP	10.79	5490.82	NPP
Σ#	10/19/2009	5501.61	14.98	NPP	10.54	5491.07	NPP
MW #20	10/5/2009	5519.90	27.13	20.58	21.17	5499.20	0.59
Σ¥	10/19/2009	5519.90	27.13	20.60	21.25	5499.17	0.65
MW #21	10/5/2009	5521.99	30.38	21.70	21.8	5500.27	0.10
Σ¥	10/19/2009	5521.99	30.38	21.67	21.78	5500.30	0.11
MW #39	10/5/2009	5520.83	38.34	NPP	25.83	5495.00	NPP
Σ¥	10/19/2009	5520.83	38.34	NPP	25.87	5494.96	NPP
MW #45	10/5/2009	5506.36	16.92	NPP	11.61	5494.75	NPP
M #	10/19/2009	5506.36	16.92	NPP	11.67	5494.69	NPP
≥ 9	10/5/2009	5504.65	10.39	NPP	NWP	ng balantiki dan disenga sing darih. Ala	NPP
MW #46	10/19/2009	5504.65	10.39	NPP	NWP		NPP
MW #47	10/5/2009	5506.77	14.28	12.71	13.35	5493.93	0.64
M #	10/19/2009	5506.77	14.28	12.71	13.45	5493.91	0.74

Observation Well Fluids Monitoring November 2009

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
	11/2/2009	5506.62	12.26	NPP	12.02	5494.60	NPP
09+0	11/16/2009	5506.62	12.26	NPP	12.07	5494.55	NPP
- 0	11/30/2009	5506.62	12.26	NPP	12.09	5494.53	NPP
- 0	11/2/2009	5508.03	14.36	14.03	14.35	5493.94	0.32
0W 1+50	11/16/2009	5508.03	14.36	14.01	14.35	5493.95	0.34
	11/30/2009	5508.03	14.36	14.00	14.35	5493.96	0.35
- 10	11/2/2009	5507.31	15.06	NPP	13.55	13.59	NPP
OW 3+85	11/16/2009	5507.31	15.06	13.59	13.69	5493.70	0.10
- 69	11/30/2009	5507.31	15.06	13.58	13.72	5493.70	0.14
~ 0	11/2/2009	5507.59	13.67	NPP	13.63	5493.96	NPP
0W 5+50	11/16/2009	5507.59	13.67	NPP	13.68	5493.91	NPP
- 4)	11/30/2009	5507.59	13.67	NPP	13.68	5493.91	NPP
0	11/2/2009	5504.78	14.67	NPP	NWP		NPP
0V 6+70	11/16/2009	5504.78	14.67	NPP	NWP		NPP
- 0	11/30/2009	5504.78	14.67	NPP	NWP		NPP
	11/2/2009	5506.53	15.99	NPP	NWP		NPP
OW 8+10	11/16/2009	5506.53	15.99	NPP	NWP		NPP
- @	11/30/2009	5506.53	15.99	NPP	NWP		NPP
- LO	11/2/2009	5506.70	16.59	12.42	12.46	5494.27	0.04
OW 11+15	11/16/2009	5506.70	16.59	12.46	12.47	5494.24	0.01
-	11/30/2009	5506.70	16.59	12.45	12.47	5494.25	0.02

Observation Well Fluids Monitoring November 2009

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
0	11/2/2009	5508.14	12.96	NPP	NWP		NPP
0W 14+10	11/16/2009	5508.14	12.96	NPP	NWP		NPP
4	11/30/2009	5508.14	12.96	NPP	NWP		NPP
0	11/2/2009	5508.43	15.21	NPP	13.18	5495.25	NPP
OW 16+60	11/16/2009	5508.43	15.21	NPP	13.21	5495.22	NPP
°.₽	11/30/2009	5508.43	15.21	NPP	13.13	5495.30	NPP
0	11/2/2009	5508.03	13.00	NPP	NWP		NPP
OW 19+50	11/16/2009	5508.03	13.00	NPP	NWP		NPP
÷ ,	11/30/2009	5508.03	13.00	NPP	NWP	and the second	NPP
. 0	11/2/2009	5506.91	14.16	NPP	12.55	5494.36	NPP
OW 22+00	11/16/2009	5506.91	14.16	NPP	12.47	5494.44	NPP
3	11/30/2009	5506.91	14.16	NPP	12.42	5494.49	NPP
0	11/2/2009	5514.12	18.34	NPP	16.24	5497.88	NPP
OW 23+10	11/16/2009	5514.12	18.34	NPP	16.27	5497.85	NPP
2	11/30/2009	5514.12	18.34	NPP	16.25	5497.87	NPP
. 0	11/2/2009	5515.18	18.01	NPP	17.09	5498.09	NPP
OW 23+90	11/16/2009	5515.18	18.01	NPP	17.12	5498.06	NPP
6	11/30/2009	5515.18	18.01	NPP	17.11	5498.07	NPP
_ 0	11/2/2009	5509.00	13.98	NPP	10.73	5498.27	NPP
OW 25+70	11/16/2009	5509.00	13.98	NPP	10.72	5498.28	NPP
2	11/30/2009	5509.00	13.98	NPP	10.73	5498.27	NPP

Collection Well Fluids Monitoring November 2009

Appendix A - Tab 11.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
	11/2/2009	5506.68	14.09	NPP ·	8.57	5498.11	NPP
CW 0+60	11/16/2009	5506.68	14.09	NPP	8.65	5498.03	NPP
0	11/30/2009	5506.68	14.09	NPP	8.71	5497.97	NPP
- 0	11/2/2009	5505.13	13.74	NPP	7.00	5498.13	NPP
CW 1+50	11/16/2009	5505.13	13.74	NPP	7.11	5498.02	NPP
	11/30/2009	5505.13	13.74	NPP	7.10	5498.03	NPP
- 10	11/2/2009	5503.87	13.11	NPP	5.74	5498.13	NPP
CW 3+85	11/16/2009	5503.87	13.11	NPP	5.82	5498.05	NPP
	11/30/2009	5503.87	13.11	NPP	5.82	5498.05	NPP
	11/2/2009	5503.76	12.27	NPP	6.43	5497.33	NPP
CW 5+50	11/16/2009	5503.76	12.27	NPP	6.45	5497.31	NPP
- 10	11/30/2009	5503.76	12.27	NPP	6.45	5497.31	NPP
	11/2/2009	5503.84	11.45	NPP	6.76	5497.08	NPP
CW 6+70	11/16/2009	5503.84	11.45	NPP	6.78	5497.06	NPP
6	11/30/2009	5503.84	11.45	NPP	6.80	5497.04	NPP
	11/2/2009	5504.02	11.63	NPP	7.64	5496.38	NPP
CW 8+10	11/16/2009	5504.02	11.63	NPP	7.65	5496.37	NPP
- 00	11/30/2009	5504.02	11.63	NPP	7.67	5496.35	NPP

NPP = No Product Present

Collection Well Fluids Monitoring November 2009

Appendix A - Tab 11.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
- 10	11/2/2009	5503.80	12.6	NPP	7.77	5496.03	NPP
CW 8+45	11/16/2009	5503.80	12.6	NPP	7.77	5496.03	NPP
- @	11/30/2009	5503.80	12.6	NPP	7.79	5496.01	NPP
S	11/2/2009	5503.95	12.27	NPP	5.98	5497.97	NPP
CW 11+15	11/16/2009	5503.95	12.27	NPP	6.02	5497.93	NPP
÷	11/30/2009	5503.95	12.27	NPP	5.93	5498.02	NPP
. 0	11/2/2009	5504.39	13.05	NPP	6.54	5497.85	NPP
CW 14+10	11/16/2009	5504.39	13.05	NPP	6.58	5497.81	NPP
÷	11/30/2009	5504.39	13.05	NPP .	6.50	5497.89	NPP
0	11/2/2009	5504.32	12.86	NPP	6.35	5497.97	NPP
CW 16+ 60	11/16/2009	5504.32	12.86	NPP	6.38	5497.94	NPP
91	11/30/2009	5504.32	12.86	NPP	6.37	5497.95	NPP
	11/2/2009	5504.52	9.99	NPP	6.47	5498.05	NPP
CW 19+ 50	11/16/2009	5504.52	9.99	NPP	6.55	5497.97	NPP
- 01	11/30/2009	5504.52	9.99	NPP	6.53	5497.99	NPP
0	11/2/2009	5508.04	12.34	NPP	8.96	5499.08	NPP
CW 22+ 00	11/16/2009	5508.04	12.34	NPP	8.96	5499.08	NPP
5	11/30/2009	5508.04	12.34	NPP	8.93	5499.11	NPP

NPP = No Product Present

NWP = No Water Present

Page 4 of 7

Collection Well Fluids Monitoring November 2009

Appendix A - Tab 11.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
0	11/1/2009	5510.04	14.65	NPP	10.56	5499.48	NPP
CW 23+10	11/16/2009	5510.04	14.65	NPP	10.6	5499.44	NPP
3	11/30/2009	5510.04	14.65	NPP	10.57	5499.47	NPP
. 0	11/1/2009	5507.32	11.72	NPP	8.04	5499.28	NPP
CW 23+90	11/16/2009	5507.32	11.72	NPP	8.05	5499.27	NPP
2	11/30/2009	5507.32	11.72	NPP	8.02	5499.30	NPP
22	11/1/2009	5505.90	12.25	NPP	7.10	5498.80	NPP
CW 25+95	11/16/2009	5505.90	12.25	NPP	7.12	5498.78	NPP
10	11/30/2009	5505.90	12.25	NPP	7.12	5498.78	NPP

NPP = No Product Present

Monitoring Well Fluids Monitoring November 2009

Appendix A - Tab 11.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
Ę	11/2/2009	5510.31	22.94	NPP	11.43	5498.88	NPP
MW #11	11/16/2009	5510.31	22.94	NPP	11.51	5498.80	NPP
W	11/30/2009	5510.31	22.94	NPP	11.52	5498.79	NPP
12	11/2/2009	5501.61	14.98	NPP	10.45	5491.16	NPP
MW #12	11/16/2009	5501.61	14.98	NPP	10.29	5491.32	NPP
ž.	11/30/2009	5501.61	14.98	NPP	10.28	5491.33	NPP
20	11/2/2009	5519.90	27.13	20.63	21.32	5499.13	0.69
MW #20	11/16/2009	5519.90	27.13	20.62	21.34	5499.14	0.72
E	11/30/2009	5519.90	27.13	20.61	21.35	5499.14	0.74
21	11/2/2009	5521.99	30.38	21.70	21.84	5500.26	0.14
MW #21	11/16/2009	5521.99	30.38	21.72	21.84	5500.25	0.12
ž	11/30/2009	5521.99	30.38	21.74	21.84	5500.23	0.10
39	11/2/2009	5520.83	38.34	NPP	25.75	5495.08	NPP
MW #39	11/16/2009	5520.83	38.34	NPP	25.79	5495.04	NPP
Ŵ	11/30/2009	5520.83	38.34	NPP	25.77	5495.06	NPP
45	11/2/2009	5506.36	16.92	NPP	11.75	5494.61	NPP
MW #45	11/16/2009	5506.36	16.92	11.75	11.76	5494.61	0.01
M	11/30/2009	5506.36	16.92	11.71	11.72	5494.65	0.01

NPP = No Product Present

Monitoring Well Fluids Monitoring November 2009

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
#46	11/2/2009	5504.65	10.39	NPP	NWP		NPP
# ≥	11/16/2009	5504.65	10.39	NPP	NWP		NPP
MM	11/30/2009	5504.65	10.39	NPP	NWP		NPP
#47	11/2/2009	5506.77	14.28	NPP	13.45	5493.32	NPP
	11/16/2009	5506.77	14.28	12.77	13.45	5493.86	0.68
MM	11/30/2009	5506.77	14.28	12.83	13.43	5493.82	0.60

NPP = No Product Present

NWP = No Water Present

Page 7 of 7

Observation Well Fluids Monitoring Dec. 2009

Appendix A - Tab 12.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
≥ 09	12/14/2009	5506.62	12.26	NPP	12.11	5494.51	NPP
09+0 MO	12/28/2009	5506.62	12.26	NPP	12.18	5494.44	NPP
OW 1+50	12/14/2009	5508.03	14.36	14,01	14.36	5493.95	0.35
ō †	12/28/2009	5508.03	14.36	14.08	14.36	5493.89	0.28
OW 3+85	12/14/2009	5507.31	15.06	13.57	13.78	5493.70	0.21
OW 3+85	12/28/2009	5507.31	15.06	13.66	13.79	5493.62	0.13
20 2	12/14/2009	5507.59	13.67	13.63	13.66	5493.95	0.03
OW 5+50	12/28/2009	5507.59	13.67	13.61	13.62	5493.98	0.01
0M 6+70	12/14/2009	5504.78	14.67	NPP	NWP		NPP
ō	12/28/2009	5504.78	14.67	NPP	NWP		NPP
3 €	12/14/2009	5506.53	15.99	NPP	NWP		NPP
OW 8+10	12/28/2009	5506.53	15.99	NPP	NWP		NPP
12 5	12/14/2009	5506.70	16.59	12.55	12.56	5494.15	0.01
OW 11+15	12/28/2009	5506.70	16.59	12.56	12.58	5494.14	0.02
10 2	12/14/2009	5508.14	12.96	NPP	NWP		NPP
OW 14+10	12/28/2009	5508.14	12.96	NPP	NWP		NPP
× 60	12/14/2009	5508.43	15.21	NPP	13.04	5495.39	NPP
OW 16+60	12/28/2009	5508.43	15.21	NPP	13.08	5495.35	NPP

Observation Well Fluids Monitoring Dec. 2009

• Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
OW 19+50	12/14/2009	5508.03	13.00	NPP	NWP		NPP
19-0	12/28/2009	5508.03	13.00	NPP	NWP		NPP
OW 22+00	12/14/2009	5506.91	14.16	NPP	12.42	5494.49	NPP
22-0	12/28/2009	5506.91	14.16	NPP	12.45	5494.46	NPP
OW 23+10	12/14/2009	5514.12	18.34	NPP	16.25	5497.87	NPP
53-0	12/28/2009	5514.12	18.34	NPP	16.24	5497.88	NPP
OW 23+90	12/14/2009	5515.18	18.01	NPP	17.08	5498.10	NPP
53-0	12/28/2009	5515.18	18.01	NPP	17.12	5498.06	NPP
OW 25+70	12/14/2009	5509.00	13.98	NPP	10.71	5498.29	NPP
0.	12/28/2009	5509.00	13.98	NPP	10.74	5498.26	NPP

NPP = No Product Present NWP = No Water Present

Page 2 of 5

Collection Well Fluids Monitoring Dec. 2009

Appendix A - Tab 12.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbor Thickness
CW 0+60	12/14/2009	5506.68	14.09	NPP	8.84	5497.84	NPP
U 4	12/28/2009	5506.68	14.09	NPP	8.89	5497.79	NPP
CW 1+50	12/14/2009	5505.13	13.74	NPP	7.22	5497.91	NPP
5 +	12/28/2009	5505.13	13.74	NPP	7.29	5497.84	NPP
85 >	12/14/2009	5503.87	13.11	NPP	5.84	5498.03	NPP
CW 3+85	12/28/2009	5503.87	13.11	NPP	5.92	5497.95	NPP
CW 5+50	12/14/2009	5503.76	12.27	NPP	6.53	5497.23	NPP
5+ C	12/28/2009	5503.76	12.27	NPP	6.48	5497.28	NPP
32	12/14/2009	5503.84	11.45	NPP	6.89	5496.95	NPP
CW 6+70	12/28/2009	5503.84	11.45	NPP	6.91	5496.93	NPP
CW 8+10	12/14/2009	5504.02	11.63	NPP	7.80	5496.22	NPP
CW 8+10	12/28/2009	5504.02	11.63	NPP	7.87	5496.15	NPP
A 45	12/14/2009	5503.80	12.6	NPP	8.91	5494.89	NPP
CW 8+45	12/28/2009	5503.80	12.6	NPP	8.02	5495.78	NPP
CW 11+15	12/14/2009	5503.95	12.27	NPP	6.04	5497.91	NPP
11+0	12/28/2009	5503.95	12.27	NPP	6.06	5497.89	NPP
CW 14+10	12/14/2009	5504.39	13.05	NPP	6.68	5497.71	NPP
CW 14+1	12/28/2009	5504.39	13.05	NPP	6.65	5497.74	NPP

NPP = No Product Present

Collection Well Fluids Monitoring Dec. 2009

Appendix A - Tab 12.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	6.48	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
CW 16+60	12/14/2009	5504.32	12.86	NPP	6.48	5497.84	NPP
16+ 16+	12/28/2009	5504.32	12.86	NPP	6.39	5497.93	NPP
CW 19+50	12/14/2009	5504.52	9.99	NPP	6.64	5497.88	NPP
19+ 19+	12/28/2009	5504.52	9.99	NPP	6.68	5497.84	NPP
CW 2+00	12/14/2009	5508.04	12.34	NPP	8.96	5499.08	NPP
CW 22+00	12/28/2009	5508.04	12.34	NPP	9.00	5499.04	NPP
10	12/14/2009	5510.04	14.65	NPP	10.58	5499.46	NPP
CW 23+10	12/28/2009	5510.04	14.65	NPP	10.61	5499.43	NPP
2 00	12/14/2009	5507.32	11.72	NPP	8.05	5499.27	NPP
CW 23+90	12/28/2009	5507.32	11.72	NPP	8.06	5499.26	NPP
202	12/14/2009	5505.90	12.25	NPP	7.12	5498.78	NPP
CW 25+95	12/28/2009	5505.90	12.25	NPP	7.15	5498.75	NPP

NPP = No Product Present

NWP = No Water Present

Page 4 of 5

Monitoring Well Fluids Monitoring Dec. 2009

Appendix A - Tab 12.0

Well ID	Date	Measuring Point Elevation	Total Well Depth	Depth To Product (DTP)	Depth To Water (DTW)	Corrected Groundwater Elevation	Separate Phase Hydrocarbon Thickness
3 5	12/14/2009	5510.31	22.94	NPP	11.57	5498.74	NPP
MW #11	12/28/2009	5510.31	22.94	NPP	13.6	5496.71	NPP
#12	12/14/2009	5501.61	14.98	NPP	10.26	5491.35	NPP
M #	12/28/2009	5501.61	14.98	NPP	10.18	5491.43	NPP
MW #20	12/14/2009	5519.90	27.13	20.57	20.62	21.34	0.05
W #	12/28/2009	5519.90	27.13	20.65	21.38	5499.10	0.73
MW #21	12/14/2009	5521.99	30.38	21.75	21.86	5500.22	0.11
N #	12/28/2009	5521.99	30.38	21.79	21.89	5500.18	0.10
MW #39	12/14/2009	5520.83	38.34	NPP	25.68	5495.15	NPP
2 #	12/28/2009	5520.83	38.34	NPP	25.72	5495.11	NPP
≥ rõ	12/14/2009	5506.36	16.92	11.82	11.86	5494.53	0.04
MW #45	12/28/2009	5506.36	16.92	11.90	11.96	5494.45	0.06
2 9	12/14/2009	5504.65	10.39	NPP	NWP	 March 1997 State of the Construction of the Construct	NPP
MW #46	12/28/2009	5504.65	10.39	NPP	NWP		NPP
31	12/14/2009	5506.77	14.28	12.79	13.45	5493.85	0.66
MW #47	12/28/2009	5506.77	14.28	13.80	13.94	5492.94	0.14

NPP = No Product Present

NWP = No Water Present

Collection Wells

Groundwater Analysis & Field Data

		EPA	Method 82	60B			EPA Method 8015B		Field	I Data	
40CFR141. Ethylben Regional S	NMAC 6.2.3103 61 (Benzene and Izene) USEPA Icreening Levels 2009)-MTBE	Benzene	Toluene	Ethylben	Xylene	MTBE	DRO TPH Screening Guidelines Table 2a	E.C.	рН	Temp	TDS
	Date Sampled	0.005 (mg/L)	0.75 (mg/L)	0.70 (mg/L.)	0.62 (mg/L.)	0.012 (mg/L)	0.20 (mg/L.)	mmhos/cm	6,0-9.0	Farenheit	1000 (mg/l)
	Aug-09	0.045	<0.001	0.0038	<0.003	<0.001	4.1	1240	6.89	67.5	863
09+0	Apr-09	0.034	<0.001	0.036	<0.003	<0.001	5.6	1231	6.93	53.7	867
CW	Aug-08	0.047	<0.001	0.0066	<0.002	<0.001	<1.0	1173	6.96	68.1	827
0	Apr-08	0.18	<0.005	0.049	0.026	0.052	5.3	1122	6.79	51.8	805
10	Aug-09	<0.001	<0.001	<0.001	<0.003	0.0011	<1.0	1215	6.93	65.7	846
25+95	Apr-09	0.340	<0.001	0.0016	<0.003	0.0036	<1.0	1823	6.84	57.2	1313
CW 2	Aug-08	0.0018	0.0011	0.0023	<0.002	<0.001	<1.0	1312	7.07	66.2	931
0	Apr-08	0.043	0.085	0.013	0.11	<0.002	<1.0	1004	6.92	55.7	714

NS¹= Well is Dry or Not Enough Water to Sample- No Sample NS² = Not Sampled due to approved Facility-Wide Monitoring Plan NS³ = Sample Inadvertently not Analyzed this Sampling Event NR¹= No Sample Required - Well Contains Separate Phase Hydrocarbon NR² = No Sample Required per OCD and NMED pre-2007 Conditions

Observation Wells

Groundwater Analysis & Field Data

EPA Method 8260B						EPA Metho	od 8015B		Field	Data		
40CFR141.61	MAC 6.2.3103 (Benzene and USEPA Regional	Benzene	Toluene	Ethylben	Xylene	МТВЕ	DRO	GRO	E.C.	рН	Temp	TDS
Screening Lev	rels (April 2009)- TBE		The second				TPH Screening Guidelines Table 2a					
TO	Date Sampled	0.005 (mg/L)	0.75 (mg/L)	0.70 (mg/L.)	0.62 (mg/L.)	0.012 (mg/L)	0.20 (mg/L.)	mg/L	mmhos/cm	6.0-9.0	Farenheit	1000 (mg/l
-	Aug-09	<0.001	<0.001	<0.001	< 0.003	<0.001	47	7.4	1610	6.88	69	1136
OW 0+60	Apr-09	<0.001	<0.001	0.0019	<0.003	<0.001	14.0	1.1	1652	6.87	57.3	1183
M	Aug-08	< 0.001	< 0.001	0.0066	0.019	< 0.001	6.4	2.3	1577	6.91	69.2	1129
0	Apr-08	<0.01	<0.01	0.018	0.048	<0.01	360.0	6.7	1727	6.78	56.2	1257
0	Aug-09	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹					
1+5(Apr-09	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹					
OW 1+50	Aug-08	0.076	<0.01	0.95	6.7	<0.01	2.9	24.0	1562	6.91	69.6	1116
0	Apr-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹					
10	Aug-09	0.009	<0.01	0.21	0.67	<0.01	28.0	3.9	3195	6.84	68.7	2397
3+85	Apr-09	0.0078	< 0.001	0.22	0.86	<0.001	40	5.1	2865	6.84	55.8	2153
OW 3+85	Aug-08	0.099	<0.01	0.95	3.2	<0.01	12.0	14.0	2835	6.87	67.1	2142
0	Apr-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹					
-	Aug-09	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹					
5+50	Apr-09	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹					
MO	Aug-08	NS ¹	NR ²	NS ¹	NS ¹	NS ¹	NS ¹					
0	Apr-08	NR ¹	NR ²	NR ¹	NR ¹	NR ¹	NR ¹					
-	Aug-09	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹					
92+50	Apr-09	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹					
OW 6+70	Aug-08	NS ¹	NR ²	NS ¹	NS ¹	NS ¹	NS ¹					
0	Apr-08	NS ¹	NR ²	NS ¹	NS ¹	NS ¹	NS ¹					

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NR¹= No Sample Required - Well Contains Separate Phase Hydrocarbon NR² = No Sample Required per OCD and NMED pre-2007 Conditions

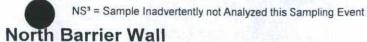
NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

NS³ = Sample Inadvertently not Analyzed this Sampling Event

North Barrier Wall

Observation Wells

Groundwater Analysis & Field Data


		EPA	Method 82	60B	Real Providence		EPA Metho	od 8015B		Field	Data	
40CFR141.6	NMAC 6.2.3103 51 (Benzene and) USEPA Regional	Benzene	Toluene	Ethylben	Xylene	МТВЕ	DRO.	GRO	E.C.	рH	Temp	TDS
	evels (April 2009)- MTBE	1 - Sale		de se la	- 640 -		TPH Screening Guidelines Table 2a					
	Date Sampled	0.005 (mg/L)	0.75 (mg/L)	0.70 (mg/L.)	0.62 (mg/L.)	0.012 (mg/L)	0.20 (mg/L.)	mg/L	mmhos/cm	6.0-9.0	Farenheit	1000 (mg/l
0	Aug-09	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹					
8+10	Apr-09	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹					
MO	Aug-08	NS ¹	NR ²	NS ¹	NS ¹	NS ¹	NS ¹					
0	Apr-08	NS ¹	NR ²	NS ¹	NS ¹	NS ¹	NS ¹					
5	Aug-09	0.33	<0.01	0.033	<0.03	1.7	60	3.2	1940	6.82	65.1	1393
OW 11+15	Apr-09	0.23	<0.001	0.034	0.015	1.1	100	2.7	1921	6.82	57.6	1391
N1	Aug-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹					
0	Apr-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹					
0	Aug-09	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹					
4+,	Apr-09	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹					
OW 14+10	Aug-08	NS ¹	NR ²	NS ¹	NS ¹	NS ¹	NS ¹					
0	Apr-08	NS ¹	NR ²	NS ¹	NS ¹	NS ¹	NS ¹					
0	Aug-09	0.75	<0.01	0.24	0.24	2.00	62	14.0	2653	6.82	69.6	1952
6+6	Apr-09	0.40	<0.005	0.47	0.17	2.20	36.0	7.5	2655	6.77	62.2	1972
OW 16+60	Aug-08	1.20	<0.01	1.10	0.98	3.90	7.7	17.0	2544	6.91	71.9	1900
0	Apr-08	2.30	<0.05	1.40	1.30	4.50	34.0	21.0	2474	6.78	61.1	1865
0	Aug-09	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹					
9+6	Apr-09	<0.001	<0.001	<0.001	0.0034	0.042	12	0.11	3678	6.77	59.8	2824
OW 19+50	Aug-08	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹					
0	Apr-08	<0.002	<0.002	<0.002	<0.006	0.14	8.8	<0.25	3937	6.79	57.8	3112

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

NR¹= No Sample Required - Well Contains Separate Phase Hydrocarbon NR² = No Sample Required per OCD and NMED pre-2007 Conditions

Observation Wells

Groundwater Analysis & Field Data

		EPA	Method 82	60B			EPA Meth	od 8015B		Field	Data	
40CFR141.61 Ethylbenzene)	MAC 6.2.3103 (Benzene and USEPA Regional els (April 2009)-	Benzene	Toluene	Ethylben	Xylene	МТВЕ	DRO	GRO	E.C.	рH	Temp	TDS
	BE		and the second			透 100	TPH Screening Guidelines Table 2a		学学长 国家			Same and the
	Date Sampled	0.005 (mg/L)	0.75 (mg/L)	0.70 (mg/L.)	0.62 (mg/L.)	0.012 (mg/L)	0.20 (mg/L.)	mg/L	mmhos/cm	6.0-9.0	Farenheit	1000 (mg/l)
0	Aug-09	<0.001	<0.001	<0.001	< 0.003	0.69	1.5	0.11	3601	6.82	66.2	2742
5+0	Apr-09	<0.001	<0.001	<0.001	< 0.003	0.034	4.6	0.059	2942	6.8	56.3	2213
OW 22+00	Aug-08	<0.001	<0.001	<0.001	<0.002	0.044	3.1	0.078	3101	6.85	68.5	2367
0	Apr-08	<0.01	<0.01	<0.01	<0.03	1.2	5.4	0.51	3905	6.8	55.8	3082
0	Aug-09	<0.001	<0.001	<0.001	<0.003	0.0078	2.5	0.28	1756	6.8	66.8	1250
3+1	Apr-09	<0.001	<0.001	<0.001	<0.003	0.006	22.0	0.33	1535	6.86	59.4	1115
OW 23+10	Aug-08	<0.001	<0.001	<0.001	<0.002	0.0097	13.0	1.2	1648	6.9	67.7	1187
0	Apr-08	<0.001	<0.001	<0.001	<0.003	0.025	11.0	0.94	1689	6.8	58.6	1235
0	Aug-09	<0.001	<0.001	<0.001	< 0.003	0.0013	<1.0	0.26	1659	6.83	64.8	1178
OW 23+90	Apr-09	<0.001	<0.001	<0.001	<0.003	<0.001	1.6	0.16	1401	6.8.5	60.1	989
N 2	Aug-08	<0.001	<0.001	<0.001	< 0.002	<0.001	<1.0	<0.05	1477	6.99	65.3	1055
0	Apr-08	<0.001	<0.001	<0.001	<0.003	<0.001	<1.0	<0.05	1470	6.78	57.9	1065
0	Aug-09	<0.001	<0.001	<0.001	<0.003	<0.001	<1.0	<0.05	1204	6.85	68.1	837
OW 25+70	Apr-09	0.31	<0.001	0.009	<0.003	0.0014	<1.0	0.6	1450	6.85	55.8	1025
W 2	Aug-08	<0.001	<0.001	<0.001	<0.002	<0.001	<1.0	<0.05	1623	7.03	68.5	1167
0	Apr-08	0.0027	0.0026	<0.001	<0.003	<0.001	<1.0	0.14	1249	6.86	53.6	898

NS¹= Well is Dry or Not Enough Water to Sample- No Sample NS² = Not Sampled due to approved Facility-Wide Monitoring Plan NR¹= No Sample Required - Well Contains Separate Phase Hydrocarbon NR² = No Sample Required per OCD and NMED pre-2007 Conditions

NS³ = Sample Inadvertently not Analyzed this Sampling Event

Monitoring Wells

Groundwater Analysis & Field Data

		EP/	A Method 8	260B			EPA Method 8015B		Field	Data	
40CFR141.6 Ethylbenz Regional Sc	MAC 6.2.3103 1 (Benzene and tene) USEPA treening Levels 009)-MTBE	Benzene	Toluene	Ethylben	Xylene	МТВЕ	DRO TPH Screening Guidelines Table 2a	E.C.	рН	Temp	TDS
	Date Sampled	0.005 (mg/L)	0.75 (mg/L)	0.70 (mg/L.)	0.62 (mg/L.)	0.012 (mg/L)	0.20 (mg/L.)	mmhos/cm	6.0-9.0	Farenheit	1000 (mg/l)
-	Aug-09	0.099	<0.001	0.004	<0.0015	0.014	12	2619	6.96	64.4	1929
MW - #11	Apr-09	NS ²	NS ²	NS ²	NS ²	NS ²					
MM	Aug-08	0.0038	<0.001	0.0022	<0.0015	0.019	9.6	2226	7.02	66.7	1655
	Apr-08	NS ²	NS ²	NS ²	NS ²	NS ²					
8	Aug-09	<0.001	<0.001	<0.001	<0.0015	<0.001	<1.0	1763	6.93	62.5	1256
- #1	Apr-09	<0.001	<0.001	<0.001	<0.002	<0.001	<1.0	1346	7.06	50.3	946
MW - #12	Aug-08	<0.001	<0.001	<0.001	<0.0015	<0.001	<1.0	775	7.10	62.6	541
E	Apr-08	<0.001	<0.001	<0.001	<0.003	<0.0015	<1.0	707	6.84	51.1	495
0	Aug-09	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹					
- #2(Apr-09	NR ¹	NR1	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹
MW - #20	Aug-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹					
	Apr-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹					
	Aug-09	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹					
-#2	Apr-09	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹					
MW - #21	Aug-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹					
	Apr-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹					

NS1= Well is Dry or Not Enough Water to Sample- No Sample

NR1= No Sample Required - Well Contains Separate Phase Hydrocarbon

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

NR² = No Sample Required per OCD and NMED pre-2007 Conditions

NS³ = Sample Inadvertently not Analyzed this Sampling Event

North Barrier Wall

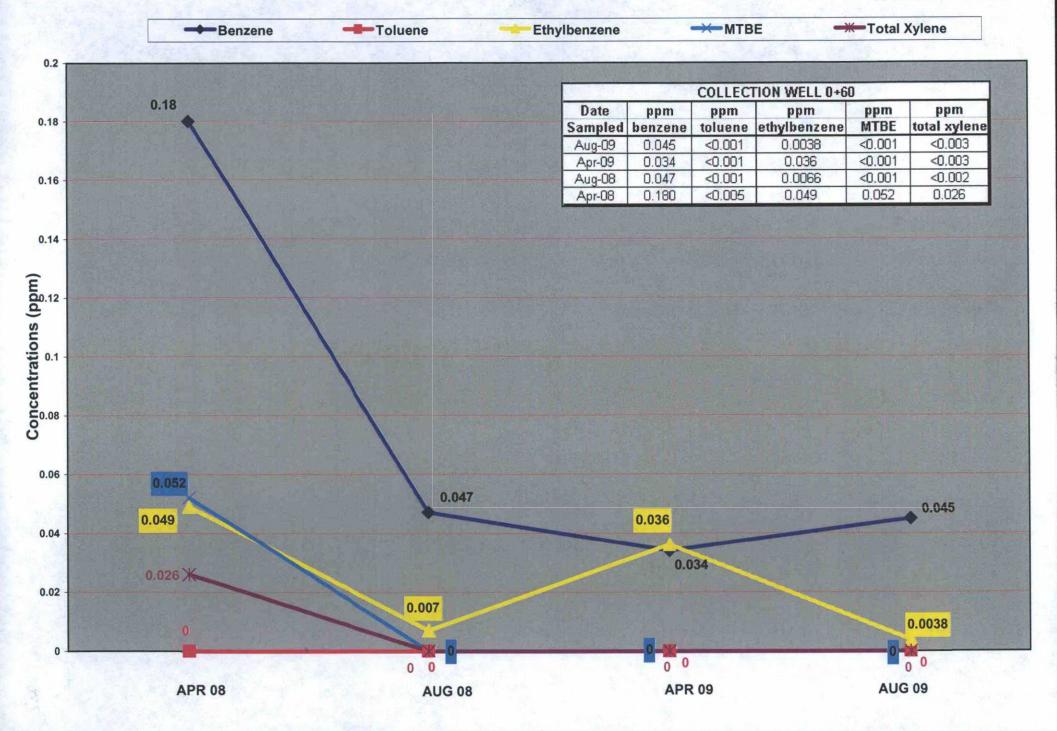
Appendix A - Tab15.0

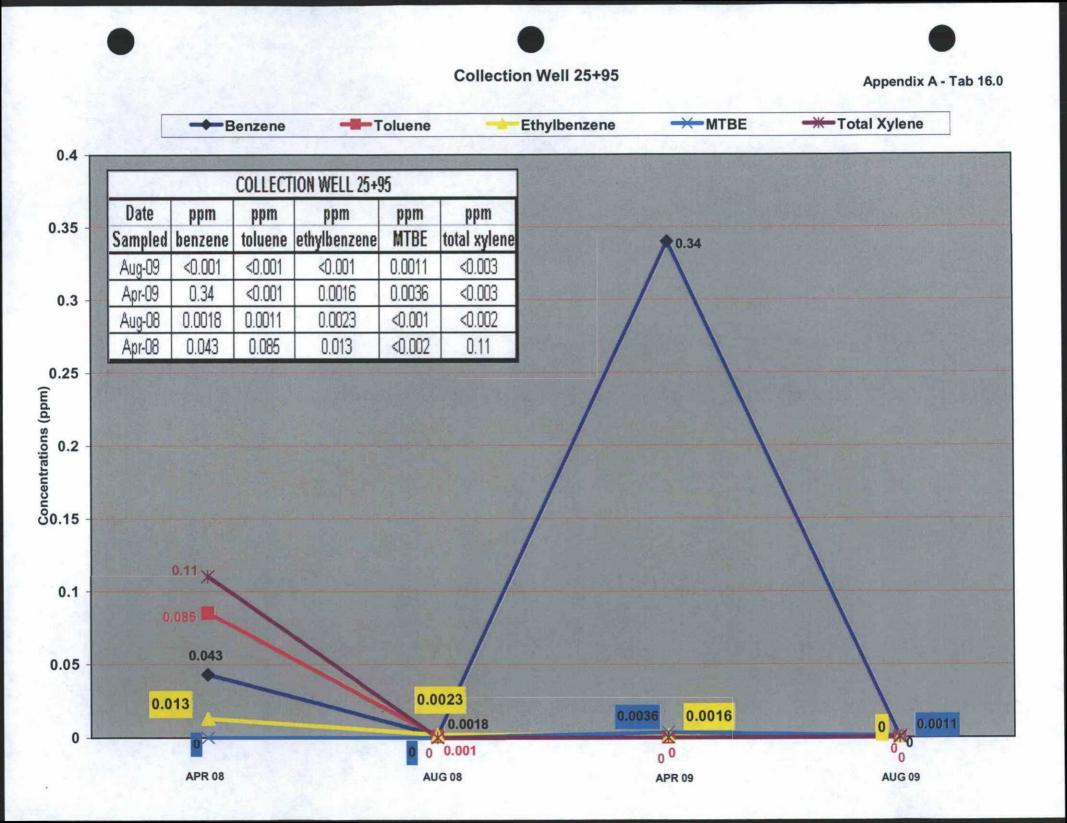
Monitoring Wells

Groundwater Analysis & Field Data

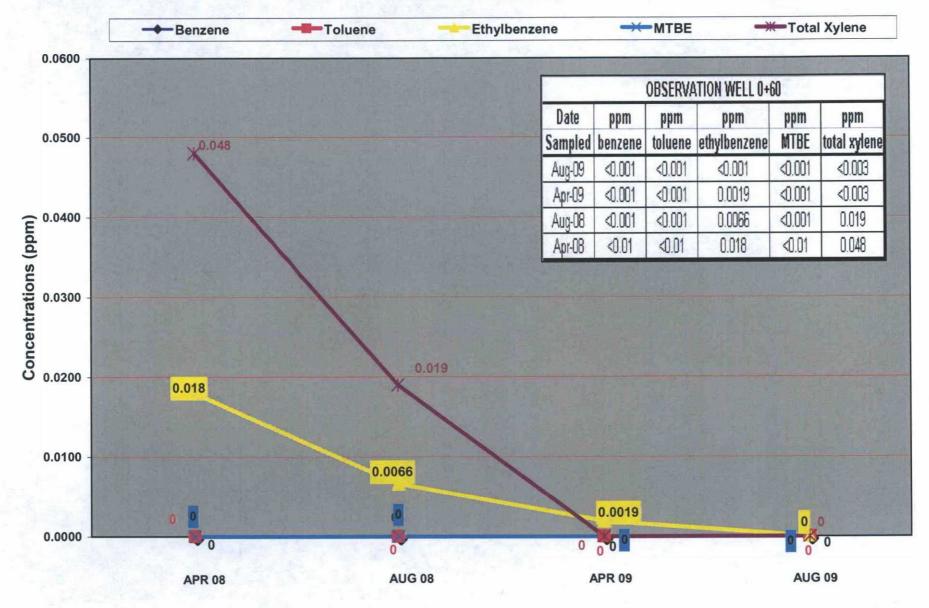
		EP/	A Method 8	260B			EPA Method 8015B		Field	Data	
40CFR141.6 Ethylbenz Regional So	NMAC 6.2.3103 1 (Benzene and tene) USEPA creening Levels 009)-MTBE	Benzene	Toluene	Ethylben	Xylene	МТВЕ	DRO TPH Screening Guidelines Table 2a	E.C.	рН	Temp	TDS
	Date Sampled	0.005 (mg/L)	0.75 (mg/L)	0.70 (mg/L.)	0.62 (mg/L.)	0.012 (mg/L)	0.20 (mg/L.)	mmhos/cm	6.0-9.0	Farenheit	1000 (mg/l)
	Aug-09	NS ²	NS ²	NS ²	NS ²	NS ²					
MW -#39	Apr-09	NS ²	NS ²	NS ²	NS ²	NS ²					
MM	Aug-08	NS ²	NS ²	NS ²	NS ²	NS ²					
	Apr-08	NS ²	NS ²	NS ²	NS ²	NS ²					
212	Aug-09	NS ²	NS ²	NS ²	NS ²	NS ²					
MW -#45	Apr-09	NS ²	NS ²	NS ²	NS ²	NS ²					
MIM	Aug-08	NS ²	NS ²	NS ²	NS ²	NS ²					
	Apr-08	NS ²	NS ²	NS ²	NS ²	NS ²					
	Aug-09	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹					
#46	Apr-09	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹					
MW -#46	Aug-08	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹					
-	Apr-08	NS ¹	NS ¹	NS ¹	NS ¹	NS ¹					
	Aug-09	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹					
#47	Apr-09	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹					
MW #47	Aug-08	NR ¹	NR1	NR ¹	NR ¹	NR ¹					
2	Apr-08	NR ¹	NR ¹	NR ¹	NR ¹	NR ¹					

NS1= Well is Dry or Not Enough Water to Sample- No Sample

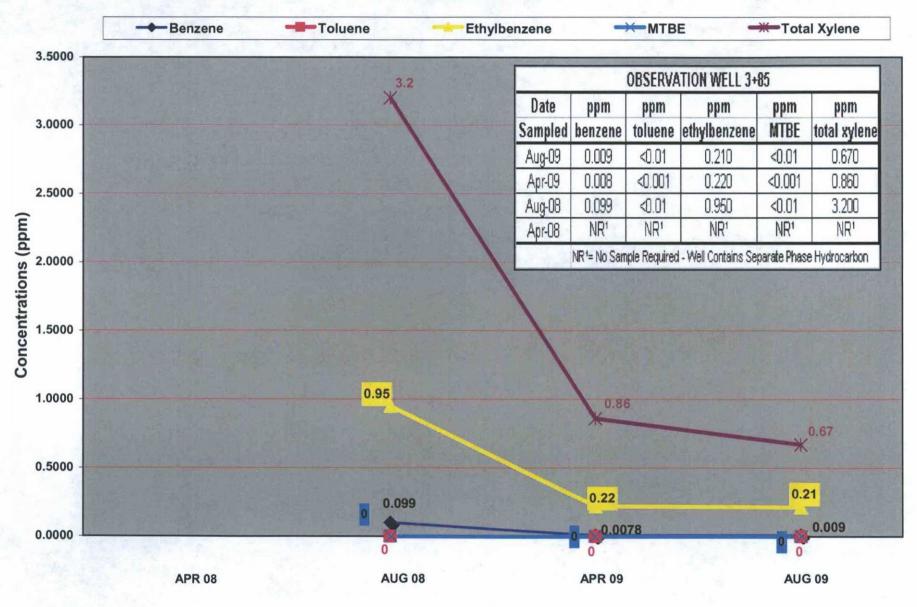

NS² = Not Sampled due to approved Facility-Wide Monitoring Plan

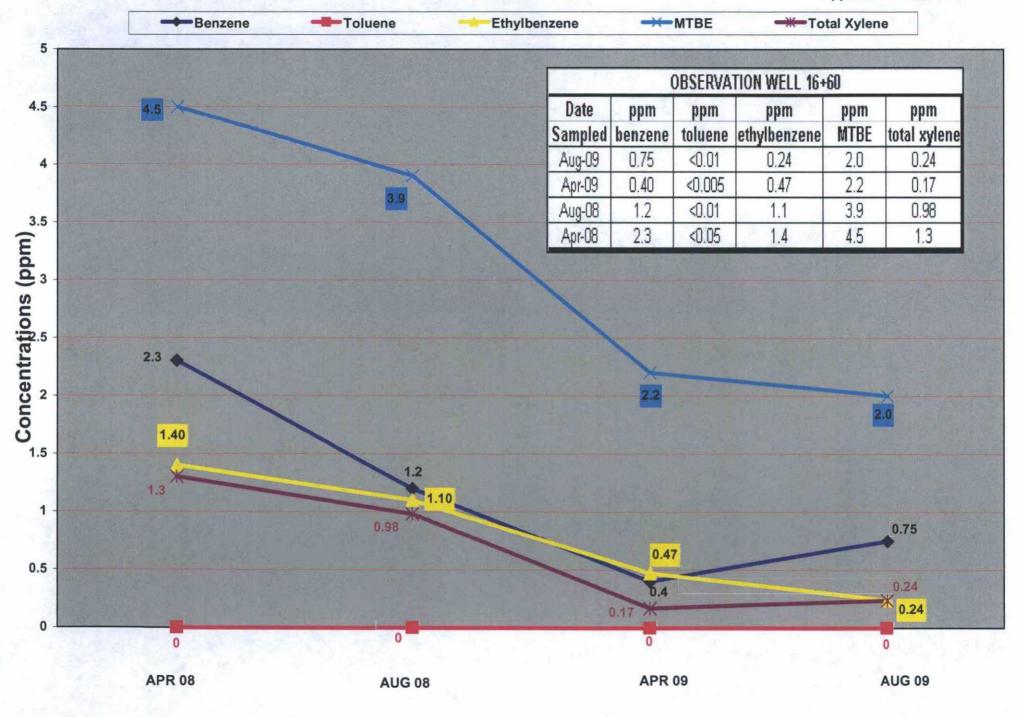

NS³ = Sample Inadvertently not Analyzed this Sampling Event

NR1= No Sample Required - Well Contains Separate Phase Hydrocarbon

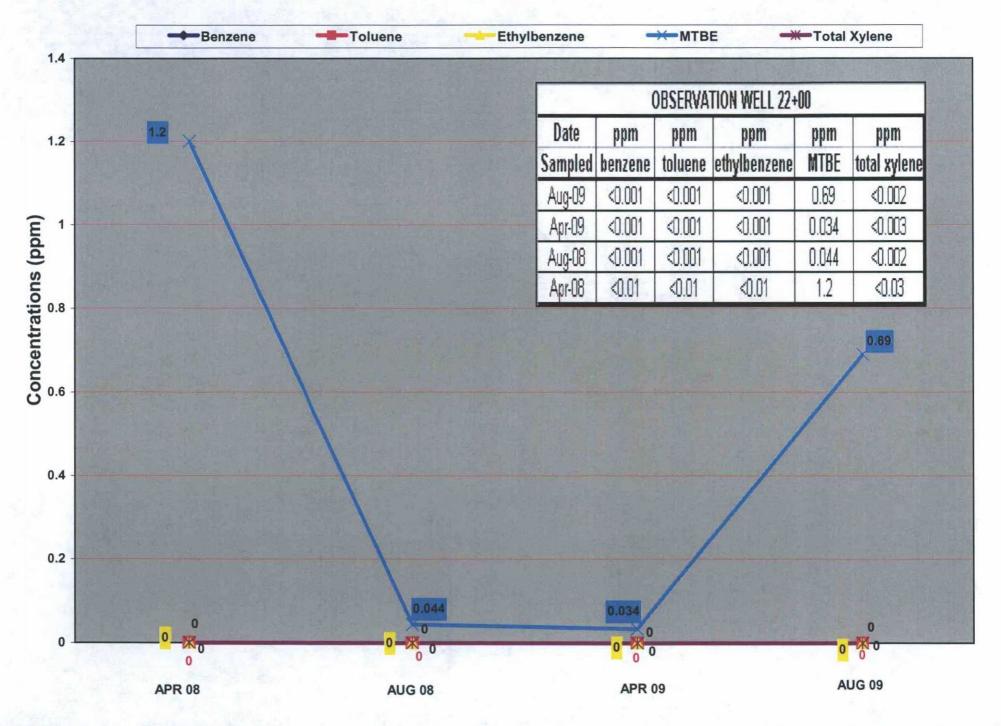

NR² = No Sample Required per OCD and NMED pre-2007 Conditions

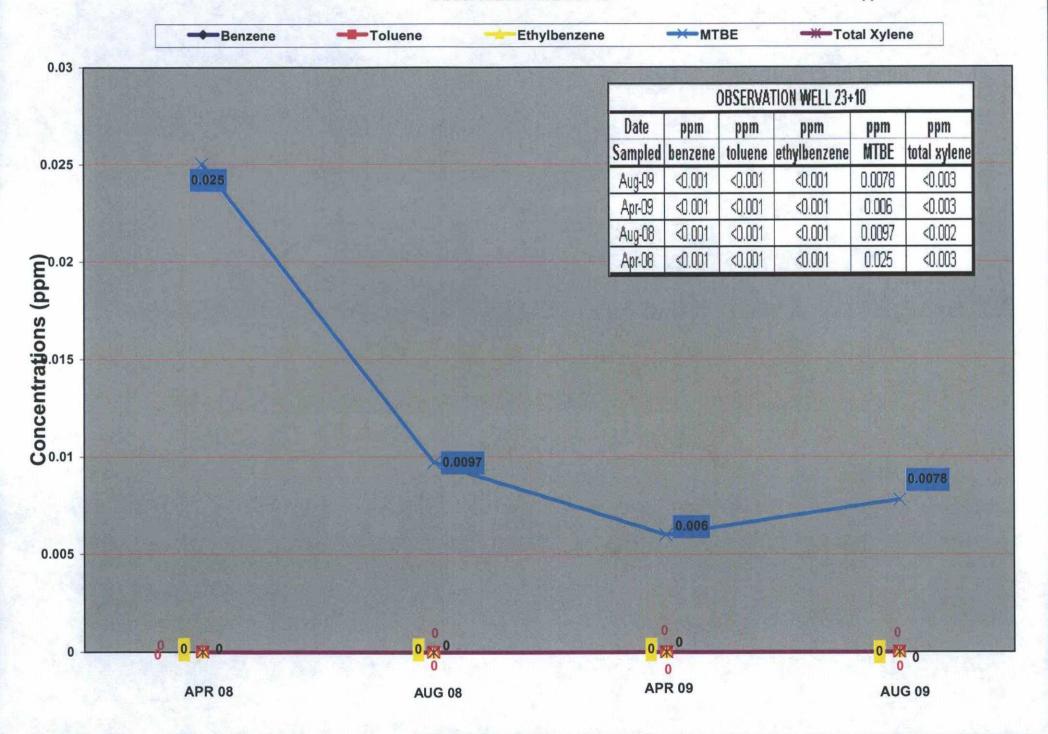
Collection Well 0+60

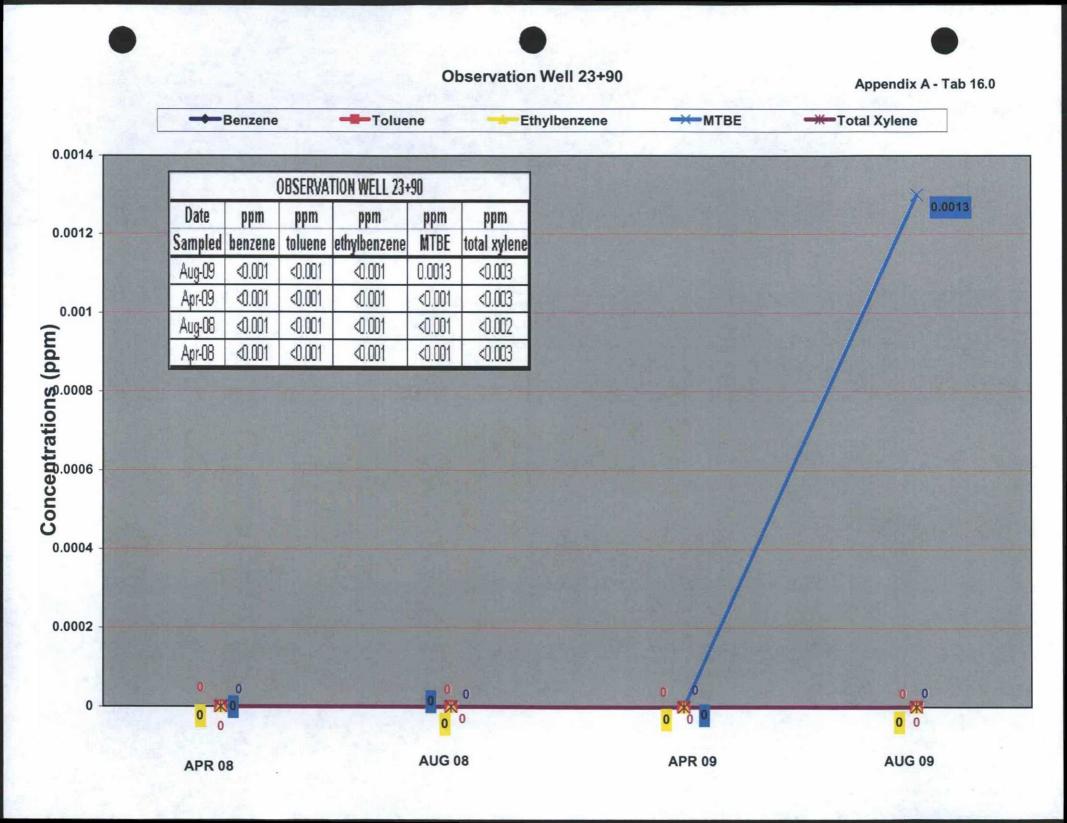


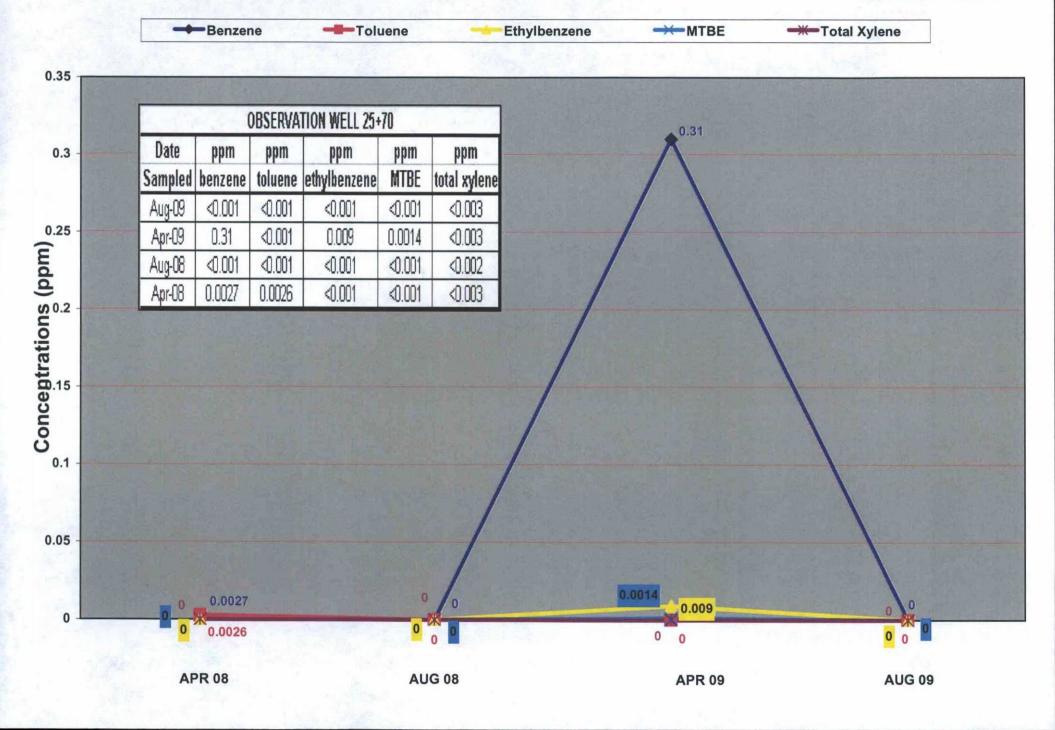

Observation Well 0+60

Observation Well 3+85








Observation Well 23+10

Observation Well 25+70

Hall Environmental Analysis Laboratory

QUALITY ASSURANCE PLAN

Effective Date: January 31st 2009

Revision 9.0

www.hallenvironmental.com

Control Number: 0000082

a far de la serie de la serie

Approved By:

Nancy McDuffie Laboratory Manager

Date

Page 1 of 48 Quality Assurance Plan Effective January 31, 2009

Table of Contents

350

Section	Title	Page
1.0	Title Page	1
2.0	Table of Contents	3
3.0	Introduction Purpose of Document Objectives Policies	6
4.0	Organization and Responsibility Company Certifications Personnel Laboratory Director Laboratory Manager/ Lead Technical Director Quality Assurance Officer Business/Project Manager Section Managers/Technical Directors Health and Safety/Chemical Hygiene Officer Chemist I-III Laboratory Technician Sample Control Manager Sample Custodians Delegations in the Absence of Key Personnel Personnel Qualifications and Training	8
5.0	Receipt and Handling of Samples Sampling Procedures Containers Preservation Sample Custody Receiving Samples Logging in Samples and Storage Disposal of Samples	16
6.0	Analytical Procedures List of Procedures Used Criteria for Standard Operating Procedures	19

Page 2 of 48 Quality Assurance Plan Effective January 31, 2009

7.0		23
	Thermometers	
	Refrigerators/Freezers	
	Ovens	
	Analytical/Table Top Balances	
	Instrument Calibration	
	pH Meter	
	Other Analytical Instrumentation and Equipment	
	Standards	
	Reagents	
	Reagents	
0.0		07
8.0	Maintenance	27
9.0	Data Integrity	28
10.0	Quality Control	29
	Internal Quality Control Checks	
	Precision, Accuracy, Detection Limit	
	Quality Control Parameter Calculations	
	Mean	
	Standard Deviation	
	Percent Recovery (%R)	
	Confidence Intervals	
	Relative Percent Difference (RPD)	
	Uncertainty Measurements	
	Calibration Calculations	
11.0	Data Reduction, Validation, and Reporting	39
11.0		55
	Data Reduction	
	Validation	
	Reports and Records	
40.0	Correction Action	44
12.0	Corrective Action	41
13.0	Quality Assurance Audits, Reports and Complaints	43
10.0	Internal/External Systems' Audits	40
	Management Reviews	
	Complaints	
	Internal and External Reports	
14.0	Analytical Protocois	46
14.0	Analytical Fiblocols	40
Append	ix A Personnel Chart/Organizational Structure	48
Append	ix B ORELAP Accreditation	
8	Full list of approved analytes, methods, analytical techniques and fields of testing	
	Reserved, available upon request	
	1 4 3 T 3	

Fage 3 of 48 Quality Assurance Plan Effective January 31, 2009 Appendix C TCEQ Accreditation

Full list of approved analytes, methods, analytical techniques and fields of testing **Reserved, available upon request**

- Appendix D ADHS Accreditation Full list of approved analytes, methods, analytical techniques and fields of testing Reserved, available upon request
- Appendix E NMED-DWB Certification Reserved, available upon request
- Appendix F Terms and Definitions Reserved, available upon request
- Appendix G Chain of Custody Record Reserved, available upon request
- Appendix H HEAL Forms Analyst Ethics and Data Integrity Agreement IDOC Certificate ADOCP Certificate Training Forms Reserved, available upon request

Page 4 of 48 Quality Assurance Plan Effective January 31, 2009

3.0 Introduction

Purpose of Document

The purpose of this Quality Assurance Plan is to formally document the quality assurance policies and procedures of Hall Environmental Analysis Laboratory, Inc. (HEAL), for the benefit of its employees, clients, and accrediting organizations. HEAL continually implements all aspects of this plan as an essential and integral part of laboratory operations in order to ensure that high quality data is produced in an efficient and effective manner.

Objectives

The objective of HEAL is to achieve and maintain excellence in environmental testing. This is accomplished by developing, incorporating and documenting the procedures and policies specified by each of our accrediting authorities and outlined in this plan. A laboratory staff that is analytically competent, well qualified, and highly trained carries out these activities. An experienced management team, knowledgeable in their area of expertise, monitors them. Finally, a comprehensive quality assurance program governs laboratory practices and ensures that the analytical results are valid, defensible, reproducible, reconstructable and of the highest quality.

HEAL establishes and thoroughly documents its activities to ensure that all data generated and processed will be scientifically valid and of known and documented quality. Routine laboratory activities are detailed in method specific standard operating procedures (SOP). All data reported meets the applicable requirements for the specific method that is referenced, ORELAP, TCEQ, EPA, client specific requirements and/or State Bureaus. In the event that these requirements are ever in contention with each other, it is HEAL's policy to always follow the most prudent requirement available. For specific method requirements refer to HEAL's Standard Operating Procedures (SOP's), EPA methods, Standard Methods 20th edition, ASTM methods or state specific methods.

HEAL management ensures that this document is correct in terms of required accuracy, data reproducibility, and that the procedures contain proper quality control measures. HEAL management additionally ensures that all equipment is reliable, well maintained and appropriately calibrated. The procedures and practices of the laboratory are geared towards not only strictly following our regulatory requirements but also allowing the flexibility to conform to client specific specifications. Meticulous records are maintained for all samples and their respective analyses so that results are well documented and defensible in a court of law.

The HEAL Quality Assurance/Quality Control Officer (QA/QCO) and upper management are responsible for supervising and administering this quality assurance program, and ensuring each individual is responsible for its proper implementation. All HEAL management remains committed to the encouragement of excellence in analytical testing and will continue to provide the necessary resources and environment conducive to its achievement.

Page 5 of 48 Quality Assurance Plan Effective January 31, 2009

Policies

Understanding that quality cannot be mandated, it is the policy of this laboratory to provide an environment that encourages all staff members to take pride in the quality of their work. In addition to furnishing proper equipment and supplies, HEAL stresses the importance of continued training and professional development. Further, HEAL recognizes the time required for data interpretation. Therefore, no analyst should feel pressure to sacrifice data quality for data quantity. Each staff member must perform with the highest level of integrity and professional competence, always being alert to problems that could compromise the quality of their technical work.

Management and senior personnel supervise analysts closely in all operations. Under no circumstance is the willful act or fraudulent manipulation of analytical data condoned. Such acts must be reported immediately to HEAL management. Reported acts will be assessed on an individual basis and resulting actions could result in dismissal. The laboratory staff is encouraged to speak with lab managers or senior management if they feel that there are any undo commercial, financial, or other pressures, which might adversely affect the quality of their work; or in the event that they suspect that data quality has been compromised in any way. HEALs Quality Assurance/Quality Control Officer is available if any analyst and/or manager wishes to anonymously report any suspected or known breaches in data integrity.

All proprietary rights and client information at HEAL (including national security concerns) are considered confidential. No information will be given out without the express verbal or written permission of the client. All reports generated will be held in the strictest of confidence.

This is a controlled document. Each copy is assigned a unique tracking number and when released to a client or accrediting agency the QA/QCO keeps the tracking number on file. This document is reviewed on an annual basis to ensure that it is valid and representative of current practices at HEAL.

Page 6 of 48 Quality Assurance Plan Effective January 31, 2009

Company

HEAL is accredited in accordance with the 2003 NELAC standard (see NELAC accredited analysis list in the appendix), through ORELAP and TCEQ and by the Arizona Department of Health Services. Additionally, HEAL is qualified as defined under the State of New Mexico Water Quality Control Commission regulations and the New Mexico State Drinking Water Bureau. HEAL is a locally owned small business that was established in 1991. HEAL is a full service environmental analysis laboratory with analytical capabilities that include both organic and inorganic methodologies and has performed analyses of soil, water, air as well as various other matrices for many sites in the region. HEAL's client base includes local, state and federal agencies, private consultants, commercial industries as well as individual homeowners. HEAL has performed as a subcontractor to the state of New Mexico and to the New Mexico Department of Transportation. HEAL has been acclaimed by its customers as producing quality results and as being adaptive to client-specific needs.

The laboratory is divided into an organic section, and an inorganic section. Each section has a designated manager/technical director. The technical directors report directly to the laboratory manager, who oversees all operations.

Certifications

ORELAP - NELAC Oregon Primary accrediting authority.

TCEQ - NELAC Texas Secondary accrediting authority.

The Arizona Department of Health Services

The New Mexico Drinking Water Bureau

See appendix B-E for copies of current licenses and licensed parameters, or refer to our current list of certifications online at <u>www.hallenvironmental.com</u>.

Personnel

HEAL management ensures the competence of all who operate equipment, perform environmental tests, evaluate results, and sign test reports. Personnel performing specific tasks shall be qualified on the basis of appropriate education, training, experience and /or demonstrated skills.

All personnel shall be responsible for complying with HEALs quality assurance/quality control requirements that pertain to their technical function. Each technical staff member must have a combination of experience and education to adequately demonstrate specific knowledge of their

Page 7 of 48 Quality Assurance Plan Effective January 31, 2009

particular function and a general knowledge of laboratory operations, test methods, quality assurance/quality control procedures and records management.

All employees training certificates and diplomas are kept on file with demonstrations of capability for each method they perform. An Organizational Chart can be found in Appendix A.

Laboratory Director

The Laboratory Director is responsible for overall technical direction and business leadership of HEAL. The Laboratory Manager, the Project Manager and Quality Assurance/Quality Control Officer report directly to the Laboratory Director. Someone with a minimum of 7 years of directly related experience and a bachelor's degree in a scientific or engineering discipline should fill this position.

Laboratory Manager/Lead Technical Director

The Laboratory Manager shall exercise day-to-day supervision of laboratory operations for the appropriate fields of accreditation and reporting of results. The Laboratory Manager shall be experienced in the fields of accreditation for which the laboratory is approved or seeking accreditation. The Laboratory Manager shall certify that personnel with appropriate educational and/or technical background perform all tests for which HEAL is accredited. Such certification shall be documented.

The Laboratory Manager shall monitor standards of performance in quality control and quality assurance and monitor the validity of the analyses performed and data generated at HEAL to assure reliable data.

The Laboratory Manager is responsible for the daily operations of the laboratory. The Laboratory Manager is the lead technical director of the laboratory and in conjunction with the section technical directors is responsible for coordinating activities within the laboratory with the overall goal of efficiently producing high quality data with in a reasonable time frame.

In events where employee scheduling or current workload is such that new work cannot be incorporated, with out missing hold times, the Laboratory Manager has authority to modify employee scheduling, re-schedule projects or, when appropriate, allocate the work to approved subcontracting laboratories.

Additionally, the laboratory manager reviews and approves new analytical procedures and methods, and performs a final review of most analytical results. The Laboratory Manager provides technical support to both customers and HEAL staff.

The Laboratory Manager also observes the performance of supervisors to ensure good laboratory practices and proper techniques are being taught and utilized, assisting in overall quality control implementation, and strategic planning for the future of the company. Other duties include assisting in establishing laboratory policies which lead to the fulfillment of requirements for various certification programs, assuring that all Quality

Page 8 of 48 Quality Assurance Plan Effective January 31, 2009 Assurance and Quality Control documents are reviewed and approved, and assisting in conducting Quality Assurance Audits.

The laboratory manager addresses questions or complaints that cannot be answered by the section managers.

The Laboratory Manager shall have a bachelor's degree in a chemical, environmental, biological sciences, physical sciences or engineering field, and at least five years of experience in the environmental analysis of representative inorganic and organic analytes for which the laboratory seeks or maintains accreditation.

Quality Assurance Quality Control Officer

The Quality Assurance/Quality Control Officer (QA/QCO) serves as the focal point for QA/QC and shall be responsible for the oversight and/or review of quality control data. The QA/QCO functions independently from laboratory operations and shall be empowered to halt unsatisfactory work and/or prevent the reporting of results generated from an out-of-control measurement system. The QA/QCO shall objectively evaluate data and perform assessments without any outside/managerial influence. The QA/QCO shall have direct access to the highest level of management at which decisions are made on laboratory policy and/or resources. The QA/QCO shall notify laboratory management of deficiencies in the quality system in periodic, independent reports.

The QA/QCO shall have general knowledge of the analytical test methods, for which data review is performed, have documented training and/or experience in QA/QC procedures and in the laboratory's quality system. The QA/QCO will have a minimum of a BS in a scientific or related field and a minimum of three years of related experience.

The QA/QCO shall schedule and conduct internal audits as per the Internal Audit SOP at least annually, monitor and trend Corrective Action Reports as per the Data Validation SOP, periodically review control charts for out of control conditions and initiate any appropriate corrective actions.

The QA/QCO shall oversee the analysis of proficiency testing in accordance with our standards and monitor any corrective actions issued as a result of this testing.

The QA/QCO reviews all standard operating procedures and statements of work in order to assure their accuracy and compliance to method and regulatory requirements.

The QA/QCO shall be responsible for maintaining and updating this quality manual.

Business/Project Manager

The role of the business/project manager is to act as a liaison between HEAL and our clients. The project manager reviews reports, updates clients on the status of projects inhouse, prepares quotations for new work, and is responsible for HEALs marketing effort.

Page 9 of 48 Quality Assurance Plan Effective January 31, 2009 All new work is assessed by the project manager and reviewed with the other managers so as to not exceed the laboratories capacity. In events where employee scheduling or current workload is such that new work cannot be incorporated with out missing hold times, the Project Manager has authority to re-schedule projects.

It is also the duty of the project manager to work with the Laboratory Manager and QA/QCO to insure that before new work is undertaken the resources required and accreditations requested are available to meet the client's specific needs.

Additionally, the Project Manager can initiate the review of the need for new analytical procedures and methods, and performs a final review of some analytical results. The Project Manager provides technical support to customers. Someone with a minimum of 2 years of directly related experience and a bachelor's degree in a scientific or engineering discipline should fill this position.

Section Manager/Technical Directors

The Section Manager/Technical Directors are full-time members of the staff at HEAL who exercise day-to-day supervision of laboratory operations for the appropriate fields of accreditation and reporting of results for their department within HEAL. A Technical Director's duties shall include, but not be limited to, monitoring standards of performance in quality control and quality assurance; monitoring the validity of the analyses performed and the data generated in their sections to ensure reliable data, overseeing training and supervising departmental staff, schedule in coming work for their sections and monitor laboratory personnel to ensure that proper procedures and techniques are being utilized. They supervise and implement new Quality Control procedures as directed by the QA/QCO, update and maintain quality control records including, but not limited to, training forms, IDOCs, ADOCPs, MDLs and evaluate laboratory personnel in their Quality Control activities. In addition technical directors are responsible for upholding the spirit and intent of HEAL's data integrity procedures.

They are the technical director of the associated section and review analytical data to acknowledge that data meets all criteria set forth for good Quality Assurance practices. Someone with a minimum of 2 years of experience in the environmental analysis of representative analytes for which HEAL seeks or maintains accreditation and a bachelor's degree in a scientific or related discipline should fill this position.

Health and Safety / Chemical Hygiene Officer

Refer to the most recent version of the Health and Safety and Chemical Hygiene Plans for the rolls, responsibilities and basic requirements of the Health and Safety Officer (H&SO) and the Chemical Hygiene Officer (CHO). These jobs can be executed by the same employee.

Page 10 of 48 Quality Assurance Plan Effective January 31, 2009

Chemist I, II and III

Chemists are responsible for the analysis of various sample matrices including, but not limited to, solid, aqueous, and air as well as the generation of high quality data in accordance with the HEAL SOPs and QA/QC guidelines in a reasonable time as prescribed by standard turnaround schedules or as directed by the Section Manager or Laboratory Manager.

Chemists are responsible for making sure all data generated is entered in the database in the correct manner and the raw data is reviewed, signed and delivered to the appropriate peer for review. A Chemist reports daily to the section manager and will inform them as to material needs of the section specifically pertaining to the analyses performed by the chemist. Additional duties may include preparation of samples for analysis, maintenance of lab instruments or equipment, cleaning and providing technical assistance to lower level laboratory staff.

The senior chemist in the section may be asked to perform supervisory duties as related to operational aspects of the section. The chemist may perform all duties of a lab technician.

The position of Chemist is a full or part time hourly position and is divided into three levels, Chemist I. II. and III. All employees hired into a Chemist position at HEAL must begin as a Chemist I and remain there at a minimum of three months regardless of their education and experience. Chemist I must have a minimum of an AA in a related field or equivalent experience (equivalent experience means years of related experience can be substituted for the education requirement). A Chemist 1 is responsible for analysis, instrument operation and data reduction. Chemist II must have a minimum of an AA in a related field or equivalent experience and must have documented and demonstrated aptitude to perform all functions of a Chemist II. A Chemist II is responsible for the full analysis of their test methods, routine instrument maintenance, purchase of consumables as dictated by their Technical Director, advanced data reduction and basic data review. Chemist II may also assist Chemist III in method development and as dictated by their Technical Director may be responsible for the review and/or revision of their method specific SOPs. Chemist III must have Bachelors degree or equivalent experience and must have documented and demonstrated aptitude to perform all functions of a Chemist III. Chemist III are responsible for all tasks completed by a Chemist I and II as well as advanced data review, non-routine instrument maintenance, assisting their technical director in basic supervisory duties and method development.

Laboratory Technician

A laboratory technician is responsible for providing support in the form of sample preparation, basic analysis, general laboratory maintenance, glassware washing, chemical inventories and sample kit preparation. This position can be filled by someone without the education and experience necessary to obtain a position as a chemist.

Page 11 of 48 Quality Assurance Plan Effective January 31, 2009

Sample Control Manager

The sample control manager is responsible for receiving samples and reviewing the sample login information after it has been entered into the computer. The sample control manager also checks the samples against the chain-of-custody for any sample and/or labeling discrepancies prior to distribution.

The sample control manager is responsible for sending out samples to the sub-contractors along with the review and shipping of field sampling bottle kits. The sample control manager acts as a liaison between the laboratory and field sampling crew to ensure that the appropriate analytical test is assigned. If a discrepancy is noted the sample control manager or sample custodian will contact the customer to resolve any questions or problems. The sample control manager is an integral part the customer service team.

This position should be filled by someone with a high school diploma and a minimum of 2 years of related experience and can also be filled by a senior manager.

Sample Custodians

Sample Custodians work directly under the Sample Control Manager. They are responsible for sample intake into the laboratory and into the LIMS. Sample Custodians take orders from our clients and prepare appropriate bottle kits to meet the client's needs. Sample Custodians work directly with the clients in properly labeling and identifying samples as well as properly filling out legal COCs. When necessary, Sample Custodians contact clients to resolve any questions or problems associated with their samples. Sample Custodians are responsible for distributing samples throughout the laboratory and are responsible for notifying analysts of special circumstances such as short holding times or improper sample preservation upon receipt.

Delegations in the Absence of Key Personnel

Planned absences shall be preceded by notification to the Laboratory Manager. The appropriate staff members shall be informed of the absence. In the case of unplanned absences, the organizational superior shall either assume the responsibilities and duties or delegate the responsibilities and duties to another appropriately qualified employee.

In the event that the Laboratory Manager is absent for a period of time exceeding fifteen consecutive calendar days, another full-time staff member meeting the basic qualifications and competent to temporarily perform this function will be designated. If this absence exceeds thirty-five consecutive calendar days, HEAL will notify ORELAP in writing of the absence and the pertinent qualifications of the temporary laboratory manager.

Laboratory Personnel Qualification and Training

All personnel joining HEAL shall undergo orientation and training. During this period the new personnel shall be introduced to the organization and their responsibilities, as well as

Page 12 of 48 Quality Assurance Plan Effective January 31, 2009 the policies and procedures of the company. They shall also undergo on the job training and shall work with trained staff. They will be shown required tasks and be observed while performing them.

When utilizing staff undergoing training, appropriate supervision shall be dictated and overseen by the appropriate section technical director. Prior to analyzing client samples, a new employee, or an employee new to a procedure, must meet the following basic requirements. The SOP and Method for the analysis must be read and signed by the employee indicating that they read, understood and intend to comply with the requirements The employee must undergo documented training. Training is of the documents. conducted by a senior analyst familiar with the procedure and overseen by the section Technical Director. This training is documented by any means deemed appropriate by the trainer and section Technical Director, and kept on file in the employees file located in the QA/QCO's office. The employee must perform a successful Initial Demonstration of Proficiency (IDOC). See Appendix H for the training documents and checklists utilized at HEAL to ensure that all of these requirements are met. Once all of the above requirements are met it is incumbent upon the section Technical Director to determine at which point the employee can begin to perform the test unsupervised. A Certification to Complete Work Unsupervised (see Appendix H) is them filled out by the employee and technical director.

All IDOCs shall be documented through the use of the certification form which can be found in Appendix H. IDOCs are performed by analyzing four Laboratory Control Spikes (LCSs). Using the results of the LCSs the mean recovery is calculated in the appropriate reporting units and the standard deviations of the population sample (n-1) (in the same units) as well as the relative percent difference for each parameter of interest. When it is not possible or pertinent to determine mean and standard deviations HEAL assesses performance against establish and documented criteria dictated in the method SOP. The mean and standard deviation are compared to the corresponding acceptance criteria for precision and accuracy in the test method (if applicable) or in laboratory-generated acceptance criteria. In the event that the HEAL SOP or test method fail to establish the pass/fail criteria the default limits of +/- 20% for calculated recovery and <20% relative percent difference based on the standard deviation will be utilized. If all parameters meet the acceptance criteria, the IDOC is successfully completed. If any one of the parameters do not meet the acceptance criteria, the performance is unacceptable for that parameter and the analyst must either locate and correct the source of the problem and repeat the test for all parameters of interest or repeat the test for all parameters that failed to meet criteria. Repeat failure, however, confirms a general problem with the measurement system. If this occurs the source of the problem must be identified and the test repeated for all parameters of interest.

New employees that do not have prior analysis experience will not be allowed to perform analysis until they have demonstrated attention to detail with minimal errors in the assigned tasks. To ensure a sustained level of quality performance among staff members, continuing demonstration of capability shall be performed at least once a year. These are as an Annual Documentation of Continued Proficiency (ADOCP).

At least once per year an ADOCP must be completed by: the acceptable performance of a blind sample (this is typically done using a PT sample but can be a single blind sample to the analyst), by performing another IDOC, or by summarizing the data of four consecutive

Page 13 of 48 Quality Assurance Plan Effective January 31, 2009 laboratory control samples with acceptable levels of precision and accuracy (these limits are those currently listed in the LIMS for an LCS using the indicated test method.) ADOCPs are documented using a standard form and are kept on file in each analysts employee folder.

Each new employee shall be provided with data integrity training as a formal part of their new employee orientation. Each new employee will sign an ethics and data integrity agreement to ensure that they understand that data quality is our main objective. Every HEAL employee recognizes that although turn around time is important, quality is put above any pressure to complete the task expediently. Analysts are not compensated for passing QC parameters nor are incentives given for the quantity of work produced. Data Integrity and Ethics training are performed on an annual basis in order to remind all employees of HEAL's policy on data quality. Employees are required to understand that any infractions of the laboratory data integrity procedures will result in a detailed investigation that could lead to very serious consequences including immediate termination, debarment or civil/criminal prosecution.

Training for each member of HEALs technical staff is further established and maintained through documentation that each employee has read, understood, and is using the latest version of this Quality Assurance Manual. Training courses or workshops on specific equipment, analytical techniques or laboratory procedures are documented through attendance sheets, certificates of attendance, training forms, or quizzes. This training documentation is located in either analyst specific employee folders in the QA/QCO Office or in the current years group training folder, also located in the QA/QCO Office. On the front of all methods, SOPs and procedures for HEAL there is a signoff sheet that is signed by all pertinent employees, indicating that they have read, understood and agreed to perform the most recent version of the document.

Page 14 of 48 Quality Assurance Plan Effective January 31, 2009

5.0 Receipt and Handling of Samples

Sampling

Procedures

HEAL does not provide field sampling for any projects. Sample kits are prepared and provided for clients upon request. The sample kits contain the appropriate sampling containers (with a preservative when necessary), labels, blue ice, a cooler, chain-of-custody forms, plastic bags, bubble wrap, and any special sampling instructions. Sample kits are reviewed prior to shipment for accuracy and completeness.

Containers

Containers which are sent out for sampling are purchased by HEAL from a commercial source. Glass containers are certified "EPA Cleaned" QA level 1. Plastic containers are certified clean when required. These containers are received with a Certificate of Analysis verifying that the containers have been cleaned according to the EPA wash procedure. Containers are used once and discarded. If the samples are collected and stored in inappropriate containers the laboratory may not be able to accurately quantify the amount of the desired components. In this case re-sampling may be required.

Preservation

If sampling for an analyte(s) requires preservation, the sample custodians fortify the containers prior to shipment to the field, or provide the preservative for the sampler to add in the field. The required preservative is introduced into the vials in uniform amounts and done so rapidly to minimize the risk of contamination. Vials that contain a preservative are labeled appropriately. If the samples are stored with inappropriate preservatives the laboratory may not be able to accurately quantify the amount of the desired components. In this case re-sampling may be required.

Refer to the current Login SOP and/or the current price book for detailed sample receipt and handling procedures, appropriate preservation and holding time requirements.

Sample Custody

Chain-of-Custody Form

A Chain-of-Custody (CoC) form is used to provide a record of sample chronology from the field to receipt at the laboratory. HEALs CoC contains the client's name, address, phone and fax numbers, the project name and number, the project manager's name,

> Page 15 of 48 Quality Assurance Plan Effective January 31, 2009

and the field sampler's name. It also identifies the date and time of sample collection, sample matrix, field sample ID number, number/volume of sample containers, sample temperature upon receipt, and any sample preservative information.

There is also a space to record the HEAL ID number assigned to samples after they are received. Next to the sample information is a space for the client to indicate the desired analyses to be performed. There is a section for the client to indicate the data package level as well as any accreditation requirements. Finally, there is a section to track the actual custody of the samples. The custody section contains lines for signatures, dates and times when samples are relinquished and received. The CoC form also includes a space to record special sample related instructions, sampling anomalies, time constraints, and any sample disposal considerations.

It is paramount that all CoCs arrive at HEAL complete and accurate so that the samples can be processed and allocated for testing in a timely and efficient manor. A sample chain-of-custody form can be found in Appendix G or on line at www.hallenvironmental.com.

Receiving Samples

Samples are received by authorized HEAL personnel. Upon arrival, the CoC is compared to the respective samples. After the samples and CoC have been determined to be complete and accurate, the sampler signs over the CoC. The HEAL staff member in turn signs the chain-of-custody, also noting the current date, time and sample temperature. This relinquishes custody of the samples from the sampler and delegates sample custody to HEAL. The third (pink) copy of the CoC form is given to the person who has relinquished custody of the samples.

Logging in Samples and Storage

Standard Operating Procedures have been established for the receiving and tracking of all samples (refer to the current HEAL Login SOP). These procedures ensure that samples are received and properly logged into the laboratory, and that all associated documentation, including chain of custody forms, are complete and consistent with the samples received. Each sample set is given a unique HEAL tracking ID number. Individual sample locations within a defined sample set are given a unique sample ID suffix-number. Labels with the HEAL numbers, and tests requested, are generated and placed on their respective containers. The pH of preserved, non-volatile samples is checked and noted if out of compliance. Due to the nature of the samples, the pHs of volatiles samples are checked after analysis. Samples are reviewed prior to being distributed for analysis.

Samples are distributed for analysis based upon the requested tests. In the event that sample volume is limited and different departments at HEAL are required to share the

Page 16 of 48 Quality Assurance Plan Effective January 31, 2009 sample, volatile work takes precedence and will always be analyzed first before the sample is sent to any other department for analysis.

Each project (sample set) is entered into the Laboratory Information Management System (LIMS) with a unique ID that will be identified on every container. The ID tag includes the Lab ID, Client ID, date and time of collection, and the analysis/analyses to be performed. The LIMS continually updates throughout the lab. Therefore, at any time, an analyst or manager may inquire about a project and/or samples status. For more information about the login procedures, refer to the Sample Login SOP.

Disposal of Samples

Samples are held at HEAL for a minimum of thirty days and then transferred to the HEAL warehouse for disposal. Analytical results are used to characterize their respective sample contamination level(s) so that the proper disposal can be performed. These wastes will be disposed of according to their hazard as well as their type and level of contamination. Refer to the Hall Environmental Analysis Laboratory Chemical Hygiene Plan and current Sample Disposal SOP for details regarding waste disposal.

Waste drums are provided by an outside agency. These drums are removed by the outside agency and disposed of in a proper manner.

The wastes that are determined to be non-hazardous are disposed of as non-hazardous waste in accordance with the Chemical Hygiene Plan and Sample Disposal SOP.

Page 17 of 48 Quality Assurance Plan Effective January 31, 2009

6.0 Analytical Procedures

All analytical methods used at HEAL incorporate necessary and sufficient Quality Assurance and Quality Control practices. A Standard Operating Procedure (SOP) is used for each method to provide the necessary criteria to yield acceptable results. These procedures are reviewed at least annually and revised as necessary and are attached as a pdf file in the Laboratory Information Management System (LIMS) for easy access by each analyst. The sample is often consumed or altered during the analytical process. Therefore, it is important that each step in the analytical process be correctly followed in order to yield valid data.

When unforeseen problems arise, the analyst, technical director, and, when necessary, laboratory manager meet to discuss the factors involved. The analytical requirements are evaluated and a suitable corrective action or resolution is established. The client is notified in the case narrative with the final report or before, if the validity of their result is in question.

List of Procedures Used

Typically, the procedures used by HEAL are EPA approved methodologies or 20th edition Standard Methods. However, proprietary methods for client specific samples, are sometimes used. The following tables list EPA and Standard Methods Method numbers with their corresponding analytes and/or instrument classification.

Methodology	Title of Method
120.1	"Conductance(Specific Conductance, uohms at 25 ° C)"
180.1	"Turbidity (Nephelometric)"
200.2	"Sample Preparation Procedure For Spectrochemical Determination of Total Recoverable Elements"
200.7	"Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry"
245.1	"Mercury (Manual Cold Vapor Technique)"
300.0	"Determination of Inorganic Anioras by Ion Chromatography"
413.2	"Oil and Grease"
418.1	"Petroleum Hydrocarbons (Spectrophotometric, Infrared)"
420.3	"Phenolics (Spectrophotometric, MBTH With Distillation)"
504.1	"EDB, DBCP and 123TCP in Water by Microextraction and Gas Chromatography"

Methods Utilized at HEAL

Page 18 of **4**8 Quality Assurance Plan Effective January 31, 2009

		_	
1	P		
	•	-	~

505	"Analysis of Organohalide Pesticides and Commercial Polychlorinated Biphenyl (PCB) Products in Water by Microextraction and Gas					
515.1	Chromatography" "Determination of Chlorinated Acids in Water by Gas Chromatography with an Electron Capture Delector"					
524.2	"Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry"					
531.1	"Measurement of N-Methylcarbomoyloximes and N-Methylcarbamates in Water by Direct Aqueous Injection HPLC with Post Column Dervivatization"					
547	"Determination of Glyphosate in Drinking Water by Direct-Aqueous Injection HPLC, Post-Column Derivatization, and Fluorescence Detection"					
552.1	"Determination of Haloacetic Acids and Dalapon in Drinking Water by Ion- Exchange Liquid-Solid Extraction and Gas Chromatography with an Electron Capture Detector"					
1311	"Toxicity Characteristic Leaching Procedure"					
1311ZHE	"Toxicity Characteristic Leaching Procedure"					
3005A	"Acid Digestion of Waters for Total Recoverable or Dissolved Metals for Analysis by FLAA or ICP Spectroscopy"					
3010A	"Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis by FLAA or ICP Spectroscopy"					
3050B	"Acid Digestion of Sediment, Sludge, and Soils"					
3510C	"Separatory Funnel Liquid-Liquid Extraction"					
3540	"Soxhlet Extraction"					
3545	"Pressurized Fluid Extraction(PFE)"					
3665	"Sulfuric Acid/Permanganate Cleanup"					
5030B	"Purge-and-Trap for Aqueous Samples"					
5035	"Closed-System Purge-and-Trap and Extraction for Volatile Organics in Soll and Waste Samples"					
6010B	"Inductively Coupled Plasma-Atomic Emission Spectrometry"					
7470A	"Mercury in Liquid Waste (Manual Cold-Vapor Technique)"					
7471A	"Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)"					
8021B	"Aromatic and Halogenated Volatiles By Gas Chromatography Using Photoionization and/or Electrolytic Conductivity Detectors"					
8015B	"Nonhalogenated Volatile Organics by Gas Chromatography" (Gasoline Range and Diesel Range Organics)					

Page 19 of 48 Quality Assurance Plan Effective January 31, 2009

8015AZ	"C10-C32 Hydrocarbons in Soil-8015AZ"				
8081A	"Organochlorine Pesticides by Gas Chromatography"				
8082	"Polychlorinated Biphenyls (PCBs) by Gas Chromatography"				
8260B "Volatile Organic Compounds by Gas Chromatography/ Mass Spectromet (GC/MS)"					
8270C	"Semivolatile Organic Compounds by Gas Chromatography/ Mass 				
8310	"Polynuclear Aromatic Hydrocarbons"				
9045C	"Soil and Waste pH"				
9056	"Determination of Inorganic Anions by Ion Chromatography"				
9060	"Total Organic Carbon"				
9067	"Phenolics (Spectrophotometric, MBTH With Distillation)"				
9095	Paint Filter				
Walkley/Black FOC/TOC WB					
SM2320 B "Alkalinity"					
SM2540 B	"Total Solids Dried at 103-105° C"				
SM2540 C	"Total Dissolved Solids Dried at 1 80° C"				
SM2540 D	"Total Suspended Solids Dried at 103-105° C"				
SM 3500 Fe+2	Ferrous Iron				
SM4500-H+B	"pH Value"				
SM4500-NH3 C	"4500-NH3" Ammonia				
SM4500-Norg C	"4500-Norg" Total Kjeldahl Nitrogen (TKN)				
SM4500-P B	"4500-P" Total Phosphorous				
SM4500-S2 F	"4500-S2" Sulfide				
SM5310 B	B "5310" Total Organic Carbon (TOC)				

Page 20 of **4**8 Quality Assurance Plan Effective January 31, 2009

Criteria for Standard Operating Procedures

HEAL has Standard Operating Procedures (SOPs) for each of the test methods listed above. These SOPs are based upon the listed methods and detail the specific procedure and equipment utilized as well as the quality requirements necessary to prove the integrity of the data. SOPs are reviewed or revised every twelve months or sooner if necessary. The review/revision is documented in the Master SOP Logbook filed in the QA/QC Office. All SOPs are available in the LIMS linked under the specific test method. Administrative SOPs, which are not linked in the LIMS are available on desktops throughout the laboratory in the link to administrative SOPs folder.

Each HEAL test method SOP shall include or reference the following topics where applicable:

Identification of the test method: Applicable matrix or matrices: Limits of detection and quantitation; Scope and application, including parameters to be analyzed; Summary of the test method; Definitions: Interferences; Safety; Equipment and supplies; Readents and standards: Sample collection, preservation, shipment and storage; Quality control parameters: Calibration and standardization; Procedure: Data analysis and calculations; Method performance; Pollution prevention; Data assessment and acceptance criteria for quality control measures; Corrective actions for out-of-control data: Contingencies for handling out-of-control or unacceptable data; Waste management: References; and

Any tables, diagrams, flowcharts and validation data.

Page 21 of 48 Quality Assurance Plan Effective January 31, 2009

7.0 Calibration

All equipment and instrumentation used at HEAL are operated, maintained and calibrated according to manufacturers guidelines, as well as criteria set forth in applicable analytical methodology. Personnel who have been properly trained in their procedures perform operation and calibration. Brief descriptions of the calibration processes for our major laboratory equipment and instruments are found below.

Thermometers

The thermometers in the laboratory are used to measure the temperatures of the refrigerators/freezers, ovens, water baths, hot blocks, ambient laboratory conditions, TCLP Extractions, digestion blocks and samples at the time of log-in. All NIST traceable thermometers are either removed from use upon their documented expiration date or they are checked annually with a NIST certified thermometer and a correction factor is noted on each thermometer log. See the most current Login SOP for detailed procedures on this calibration procedure.

Dickson Data Loggers are used to record sample and standard storage refrigerators over the weekend when the appropriate staff is not available to record the temperatures. These data loggers are shipped back to the manufacturer once a year to be re calibrated.

Refrigerators/Freezers

Each laboratory refrigerator or freezer contains a thermometer capable of measuring to a minimum precision of 1°C. The thermometers are kept with the bulb immersed in liquid. Each workday, the temperatures of the refrigerators are recorded in a designated logbook to insure that the refrigerators are within the required designated range. Samples are stored separately from the standards to reduce the risk of contamination.

See the current catastrophic Failure SOP for the procedure regarding how to handle failed refrigerators or freezers.

Ovens

The ovens contain thermometers graduated by 1° C. The ovens are calibrated quarterly against NIST thermometers and checked daily as required and in which ever way is dictated by or appropriate for the method in use.

Page 22 of 48 Quality Assurance Plan Effective January 31, 2009

Analytical and Table Top Balances

The table top balances are capable of weighing to a minimum precision of 0.01 grams. The analytical balances are capable of weighing to a minimum precision of 0.0001 grams. Records are kept of daily calibration checks for the balances in use. Working weights are used in these checks. The balances are annually certified by an outside source and the certifications are on file with the QA/QCO.

Balances, unless otherwise indicated by method specific SOPs, will be checked daily with at least two weights that will bracket the working range of the balance for the day. Daily balance checks will be done using working weights that are calibrated annually against Class S weights. Class S weights are calibrated as required by an external provider. The Class S weights are used once a year or more frequently if required, to assign values to the Working Weights. During the daily balance checks the working weights are compared to their assigned values and must pass within 5% of their assigned value in order to validate the calibration of the balance. The assigned values for the working weights, as well as the daily checks, are recorded in the balance logbook for each balance.

Instrument Calibration

An instrument calibration is the relationship between the known concentrations of a set of calibration standards introduced into an analytical instrument and the measured response they produce. Calibration curve standards are a prepared series of aliquots at various known concentrations levels from a primary source reference standard. Specific mathematical types of calibration techniques are outlined in SW-846 8000B. The entire initial calibration must be performed prior to sample analyses.

The lowest standard in the calibration curve must be at or below the required reporting limit.

Refer to the current SOP to determine the minimum requirement for calibration points.

Most compounds tend to be linear and a linear approach should be favored when linearity is suggested by the calibration data. Non-linear calibration should be considered only when a linear approach cannot be applied. It is not acceptable to use an alternate calibration procedure when a compound fails to perform in the usual manner. When this occurs it is indicative of instrument issues or operator error.

If a non-linear calibration curve fit is employed, a minimum of six calibration levels must be used for second-order (quadratic) curves.

When more than 5 levels of standards are analyzed in anticipation of using second-order calibration curves, all calibration points MUST be used regardless of the calibration option employed. The highest or lowest calibration point may be excluded for the purpose of narrowing the calibration range, and meeting the requirements for a specific calibration option. Otherwise, unjustified exclusion of calibration data is expressly forbidden.

Page 23 of 48 Quality Assurance Plan Effective January 31, 2009 Analytical methods vary in QC acceptance criteria. HEAL follows the method specific guidelines for QC acceptance. The specific acceptance criteria are outlined in the analytical methods and its corresponding SOP.

pH Meter

The pH meter measures to a precision of 0.01 pH units. The pH calibration logbook contains the calibration before each use, or each day, if used more than once per day. It is calibrated using a minimum of 3 certified buffers. Also available with the pH meter is a magnetic stirrer with a temperature sensor. See the current pH SOP (SM4500 H+ B) for specific details regarding calibration of the pH probe.

Other Analytical Instrumentation and Equipment

The conductivity probe is calibrated as needed and checked daily when in use.

Eppendorf (or equivalent brands) pipettes are checked gravimetrically prior to use.

Standards

All of the source reference standards used are ordered from a reliable commercial vendor. A Certificate of Analysis (CoA), which verifies the quality of the standard, accompanies the standards from the vendor. The Certificates of Analysis are dated and stored on file by the Technical Directors or their designee. These standards are traceable to the National Institute of Standards (NIST). When salts are purchased and used as standards the certificate of purity must be obtained from the vendor and filed with the CoAs.

All standard solutions, calibration curve preparations, and all other quality control solutions are labeled in a manner that can be traced back to the original source reference standard. All source reference standards are entered into the LIMS with an appropriate description of the standard. Dilutions of the source reference standard (or any mixes of the source standards) are fully tracked in the LIMS. Standards are labeled with the date opened for use, and an expiration date.

As part of the quality assurance procedures at HEAL, analysts strictly adhere to manufacture recommendations for storage times/expiration dates and policies of analytical standards and quality control solutions.

Reagents

HEAL ensures that the reagents used are of acceptable quality for their intended purpose. This is accomplished by ordering high quality reagents and adhering to good laboratory

Page 24 of 48 Quality Assurance Plan Effective January 31, 2009 practices so as to minimize contamination or chemical degradation. All reagents must meet any specifications noted in the analytical method. Refer to the current Purchase of Consumables SOP for details on how this is accomplished and documented.

Upon receipt, all reagents are assigned a separate ID number, and logged into the LIMS. All reagents shall be labeled with the date received into the laboratory and again with the date opened for use. Recommended shelf life shall be documented and controlled. Dilutions or solutions prepared shall be clearly labeled, dated, and initialed. These solutions are traceable back to their primary reagents.

All gases used with an instrument shall meet specifications of the manufacturer. All safety requirements that relate to maximum and/or minimum allowed pressure, fitting types, and leak test frequency, shall be followed. When a new tank of gas is placed in use, it shall be checked for leaks and the date put in use will be written in the instrument maintenance logbook.

HEAL continuously monitors the quality of the reagent water and provides the necessary indicators for maintenance of the purification systems in order to assure that the quality of laboratory reagent water meets established criteria for all analytical methods.

Reagent blank samples are also analyzed to ensure that no contamination is present at detectable levels. The frequency of reagent blank analysis is typically the same as calibration verification samples. Refrigerator storage blanks are stored in the volatiles refrigerator for a period of one week and analyzed and replaced once a week.

Page 25 of 48 Quality Assurance Plan Effective January 31, 2009

8.0 Maintenance

Maintenance logbooks are kept for each major instrument and all support equipment in order to document all repair and maintenance. In the front of the logbook, the following information is included:

Unique name of the item or equipment Manufacturer Type of Instrument Model Number Serial Number Date received and date placed into service Location of Instrument Condition of instrument upon receipt

For routine maintenance, the following information shall be included in the log:

Maintenance Date Maintenance Description Maintenance Performed by Initials

A manufacturer service agreement (or equivalent) covers most major instrumentation to assure prompt and reliable response to maintenance needs beyond HEAL instrument operator capabilities.

Refer to the current Maintenance and Troubleshooting SOP for each section in the laboratory for further information.

Fage 26 of 48 Quality Assurance Plan Effective January 31, 2009

9.0 Data Integrity

For HEAL's policy on ethics and data integrity see section 3.0 of this document. Upon being hired and annually there after, all employees at HEAL undergo documented data integrity training. All new employees sign an Ethics and Data Integrity Agreement, documenting their understanding of the high standards of integrity required at HEAL and outlining their responsibilities in regards to ethics and data integrity. See Appendix H for a copy of this agreement.

In instances of ethical concern analysts are required to report the known or suspected concern to their Technical Director, the Laboratory Manager or the QA/QCO. This will be done in a confidential and receptive environment, allowing all employees to privately discuss ethical issues or report items of ethical concern.

Once reported and documented the ethical concern will be immediately elevated to the Laboratory Manager and the need for an investigation, analyst remediation or termination will be determined on a case by case basis.

All reported instances of ethical concern will be thoroughly documented and handled in a manner sufficient to rectify any breaches in data integrity with an emphasis on preventing similar incidences from happening in the future.

Page 27 of 48 Quality Assurance Plan Effective January 31, 2009

9.0 Quality Control

Internal Quality Control Checks

HEAL utilizes various internal quality control checks, including duplicates, matrix spikes, matrix spike duplicates, method blanks, laboratory control spikes, laboratory control spike duplicates, surrogates, internal standards, calibration standards, quality control charts, proficiency tests and calculated measurement uncertainty.

Refer to the current method SOP to determine the frequency and requirements of all quality controls. In the event that the frequency of analysis is not indicated in the method specific SOP, duplicate samples, laboratory control spikes (LCS), Method Blanks (MB) and matrix spikes and matrix spike duplicates (MS/MSD) are analyzed for every batch of twenty samples.

When sample volume is limited on a test that requires an MS/MSD an LCSD shall be analyzed to demonstrate precision and accuracy and when possible a sample duplicate will be analyzed.

Duplicates, are identical tests repeated for the same sample or matrix spike in order to determine the precision of the test method. A Relative Percent Difference (RPD) is calculated as a measure of this precision. Unless indicated in the SOP, the default acceptance limit is </= 30%.

Matrix Spikes and Matrix Spike Duplicates are spiked samples (MS/MSD) that are evaluated with a known added quantity of a target compound. This is to help determine the accuracy of the analyses and to determine the matrix affects on analyte recovery. A percent recovery is calculated to assess the quality of the accuracy. In the event that the acceptance criteria is not outlined in the SOP a default limits of 70-130% will be utilized. When an MSD is employed an RPD is calculated and when not indicated in the SOP shall be acceptable at </

When appropriate for the method, a Method Blank should be analyzed with each batch of samples processed to assess contamination levels in the laboratory. MBs consist of all the reagents measured and treated as they are with samples, except without the samples. This enables the laboratory to ensure clean reagents and procedures. Guidelines should be in place for accepting or rejecting data based on the level of contamination in the blank. In the event that these guidelines are not dictated by the SOP or in client specific work plans, the MB should be less than the MDL reported for the analyte being reported.

A Laboratory Control Spike and Laboratory Control Spike Duplicate (LCS/LCSD) are reagent blanks, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. It is generally used to establish intra-laboratory or analyst-specific precision and bias or to assess the performance of all or a portion of the measurement system. Guidelines are outline in each

Page 28 of 48 Quality Assurance Plan Effective January 31, 2009 SOP for the frequency and pass fail requirements for LCS and LCSDs. These limits can be set utilizing control charts as discussed below.

Surrogates are utilized when dictated by method and are substances with properties that mimic the analytes of interest. The surrogate is an analyte that is unlikely to be found in environmental samples. Refer to the appropriate Method and SOP for guidelines on pass/fail requirements for surrogates.

Internal Standards are utilized when dictated by the method and are known amounts of standard added to a test portion of a sample as a reference for evaluating and controlling the precision and bias of the applied analytical method. Refer to the appropriate Method and SOP for guidelines on pass/fail requirements for Internal Standards.

Proficiency Test (PT) Samples are samples provided by an unbiased third party. They are typically analyzed twice a year, or at any other interval defined in the method SOP. They contain a pre-determined concentration of the target compound, which is unknown to HEAL. HEAL's management and all analyst shall ensure that all PT samples are handled in the same manner as real environmental samples utilizing the same staff, methods, procedures, equipment, facilities and frequency of analysis as used for routine analysis of that analyte. When analyzing a PT, HEAL shall employ the same calibration, laboratory quality control and acceptance criteria, sequence of analytical steps, number of replicates and other procedures as used when analyzing routine samples.

With regards to analyzing PT Samples HEAL shall not send any PT sample, or portion of a PT sample, to another laboratory for any analysis for which we seeks accreditation, or are accredited. HEAL shall not knowingly receive any PT sample or portion of a PT sample from another laboratory for any analysis for which the sending laboratory seeks accreditation, or is accredited. Laboratory management or staff will not communicate with any individual at another laboratory concerning the PT sample. Laboratory management or staff shall not attempt to obtain the assigned value of any PT sample from the PT Provider.

Calibration standards are standards run to calibrate. Once the calibration is established the same standards can be analyzed as Continuing Calibration Verifications (CCV), used to confirm the consistency of the instrumentation. Calibration standards can be utilized at the beginning and end of each batch, or more frequently as required. Typically Continuing Calibration Blanks (CCB) are run in conjunction with CCVs. Refer to the current method SOP for frequency and pass/fail requirements of CCVs and CCBs.

Control Limits are limits of acceptable ranges of the values of quality control checks. If a value falls outside the appropriate range, immediate evaluation and assessment of the procedure is required. Data generated with laboratory control samples that fall outside of the established control limits are judged to be generated during an "out-of-control" situation. These data are considered suspect and shall be repeated or reported with qualifiers.

Control limits should be established and updated according to the requirements of the method being utilized. When the method does not specify, and control limits are to be generated or updated for a test, the following guidelines shall be utilized.

Page 29 of 48 Quality Assurance Plan Effective January 31, 2009 Control Limits should be updated periodically and at least annually. The Limits should be generated utilizing the most recent 20-40 data values and Control Charts should be printed when these limits are updated in the LIMS. The data values used shall not reuse values that were included in the previous Control Limit update. The data values shall also be reviewed by the LIMS for any Grubbs Outliers, and if identified, the outliers must be removed prior to generating new limits. Once new Control Limits have been established and updated in the LIMS, the printed Control Chart shall be reviewed by the appropriate technical director and primary analyst performing the analysis for possible trends and compared to the previous Control Charts. The technical director initials the control charts, indicating that they have reviewed and determined the updated Limits to be accurate and appropriate. These initialed charts are then filed in the QA/QCO office.

Calculated Measurement Uncertainty is calculated annually using LCSs in order to determine the laboratory specific uncertainty associated with each test method. These uncertainty values are available to our clients upon request and are utilized as a trending tool internally to determine the effectiveness of new variables introduced into the procedure over time.

Precision, Accuracy, Detection Levels

Precision

The laboratory uses sample duplicates, laboratory control spike duplicates and matrix spike duplicates to assess precision in terms of relative percent difference (RPD). HEAL requires the RPD to fall within the 99% confidence interval of established control charts or an RPD of less than 30% if control charts are not available. RPD's greater than these limits are considered out-of-control and require an appropriate response.

RPD = 2 x (Sample Result – Duplicate Result) X 100 (Sample Result + Duplicate Result)

Accuracy

The accuracy of an analysis refers to the difference between the calculated value and the actual value of a measurement. The accuracy of a laboratory result is evaluated by comparing the measured amount of QC reference material recovered from a sample and the known amount added. Control limits can be established for each analytical method and sample matrix. Recoveries are assessed to determine the method efficiency and/or the matrix effect.

Analytical accuracy is expressed as the percent recovery (%R) of an analyte or parameter. A known amount of analyte is added to an environmental sample before

Page 30 of 48 Quality Assurance Plan Effective January 31, 2009 the sample is prepared and subsequently analyzed. The equation used to calculate percent recovery is:

%Recovery = {(concentration* recovered)/(concentration* added)} X 100

*or amount

HEAL requires that the Percent Recovery to fall within the 99 % confidence interval of established control limits. A value that falls outside of the confidence interval requires a warning and process evaluation. The confidence intervals are calculated by determining the mean and sample standard deviation. If control limits are not available, the range of 70 to 130% is used unless the specific method dictates otherwise. Percent Recoveries outside of this range mandate additional action such as analyses by Method of Standard Additions, additional sample preparation(s) where applicable, method changes, out-of-control action or data qualification.

Detection Limit

Current practices at HEAL define the Detection Limit (DL) as the smallest amount that can be detected above the baseline noise in a procedure within a stated confidence level.

HEAL presently utilizes an Instrument Detection Limit (IDL), a Method Detection Limit (MDL), and a Practical Quantitation Limit (PQL). The relationship between these levels is approximately IDL: MDL: PQL = 1:5:5.

The IDL is a measure of the sensitivity of an analytical instrument. The IDL is the amount which, when injected, produces a detectable signal in 99% of the analyses at that concentration. An IDL can be considered the minimum level of analyte concentration that is detectable above random baseline noise.

The MDL is a measure of the sensitivity of an analytical method. An MDL determination (as required in 40CFR part 136 Appendix B) consists of replicate spiked samples carried through all necessary preparation steps. The spike concentration is three times the standard deviation of three replicates of spikes. At least seven replicates are spiked and analyzed and their standard deviation (s) calculated. Routine variability is critical in passing the 10 times rule and is best achieved by running the MDLs over different days and when possible over several calibration events. The method detection limit (MDL) can be calculated using the standard deviation according to the formula:

MDL = s * t (99%)

Page 31 of 48 Quality Assurance Plan Effective January 31, 2009 Where t (99%) is the student's t value for the 99% confidence interval. It depends on the number of trials used in calculating the sample standard deviation, so choose the appropriate value according to the number of trials.

Number of Trials	t(99%)
6	3.36
7	3.14
8	3.00
9	2.90

The calculated MDL must not be less than 10 times the spiked amount or the study must be performed again with a lower concentration.

The PQL is significant because different laboratories can produce different MDLs although they may employ the same analytical procedures, instruments and sample matrices. The PQL is about two to five times the MDL and represents a practical, and routinely achievable, reporting level with a good certainty that the reported value is reliable. It is often determined by regulatory limits. The reported PQL for a sample is dependent on the dilution factor utilized during sample analysis.

Quality Control Parameter Calculations

Mean

The sample mean is also known as the arithmetic average. It can be calculated by adding all of the appropriate values together, and dividing this sum by the number of values.

Average = $(\Sigma x_I) / n$

 x_i = the value x in the i^{th} trial n = the number of trials

Standard Deviation

The sample standard deviation, represented by s, is a measure of dispersion. The dispersion is considered to be the difference between the average and each of the values x_i . The variance, s^2 , can be calculated by summing the squares of the differences and dividing by the number of differences. The sample standard deviation, s, can be found by taking the square root of the variance.

Page 32 of 4 8 Quality Assurance Plan Effective January 31, 2009 Standard deviation = s = $\left[\sum (x_1 - average)^2 / (n - 1)\right]^{\frac{1}{2}}$

Percent Recovery (MS, MSD, LCS and LCSD)

Percent Recovery = <u>(Spike Sample Result – Sample Result)</u> X100 (Spike Added)

Confidence Intervals

Confidence intervals are calculated by the LIMS using the average (x), the sample standard deviation (s), and the Student's t distribution (s-dist), which depends on the number of values used to calculate the average and sample standard deviation.

The formula is: confidence interval = x ± s * s-dist

Student's t Distribution

# values	10	15	20	.25	31	-41	51	121	⇒ 121
95 %	2.262	2.145	2.093	2.064	2.042	2.021	2.000	1.980	1.960
99%	3.250	2.977	2.861	2.797	2.750	2.704	2.660	2.617	2.576

Unless there is insufficient data, at least 20 values will always be used in calculating the confidence intervals.

RPD (Relative Percent Difference)

Analytical precision is expressed as a percentage of the difference between the results of duplicate samples for a given analyst. Relative percent difference (RPD) is calculated as follows:

RPD = 2 <u>x</u> (Sample Result – Duplicate Result) X 100 (Sample Result + Duplicate Result)

Uncertainty Measurements

Uncertainty, as defined by ISO, is the parameter associated with the result of a measurement that characterizes the dispersion of the values that could reasonably be attributed to the measurement. Ultimately uncertainty measurements are used to state how good a test result is and to allow the end user of data to properly interpret their reported data. All procedures allow for some uncertainty. For most analyses the components and estimates of uncertainty are reduced by following well established test methods. To further reduce uncertainty, results are generally not reported below the lowest calibration point (PQL) or above the highest calibration point (UQL).

Fage 33 of 48 Quality Assurance Plan Effective January 31, 2009 Understanding that there are many influence quantities affecting a measurement result, so many in fact that it is impossible to identify all of them, HEAL calculates measurement uncertainty at least annually using LCSs. These estimations of measurement uncertainty are kept on file in the method folders in the QA/QC office.

Measurement Uncertainty contributors are those that may be determined statistically. These shall be generated by estimating the overall uncertainty in the entire analytical process by measuring the dispersion of values obtained from laboratory control samples over time. At least 20 of the most recent LCS data points are gathered. The standard deviation (s) is calculated using these LCSs data points. Since it can be assumed that the possible estimated values of the spikes are approximately normally distributed with approximate standard deviation (s), the unknown value of the spike is believed to lie in 95% confidence interval, corresponding to an uncertainty range of +/-2(s).

Calculate standard deviation (s) and 95% confidence interval according to the following formulae:

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{(n-1)}}$$

Where: s = standard deviation

x = number in series

 \bar{x} = calculated mean of series

n = number of samples taken

95% confidence = $2 \times s$

Example: Assuming that after gathering 20 of the most recent LCS results for Bromide, we have calculated the standard deviations of the values and achieved a result of 0.0326, our measurement uncertainty for Bromide (at 95% confidence = $2 \times s$) is 0.0652.

Calibration Calculations

1. Response Factor or Calibration Factor:

$$RF = ((A_x)(C_{is}))/((A_{is})(C_x))$$

 $CF = (A_x)/(C_x)$

a. Average RF or CF

Page 34 of 48 Quality Assurance Plan Effective January 31, 2009 $RF_{AVE} = \Sigma RF_i / n$

- b. Standard Deviation $s = SQRT \{ [\Sigma (RF_i - RF_{AVE})^2] / (n-1) \}$
- c. Relative Standard Deviation

$$RSD = s / RF_{AVE}$$

Where:

 A_x = Area of the compound C_x = Concentration of the compound A_{is} = Area of the internal standard C_{is} = Concentration of the internal standard n = number of pairs of data RF_i = Response Factor (or other determined value) RF_{AVE} = Average of all the response factors Σ = the sum of all the individual values

2. Linear Regression

y=mx+b

a. Slope (m)

 $m = (n\Sigma x_{i}y_{i} - (n\Sigma x_{i})^{*}(n\Sigma y_{i})) / (n\Sigma x_{i}^{2} - (\Sigma x_{i})^{2})$

b. Intercept (b)

 $b = y_{AVE} - m^*(x_{AVE})$

c. Correlation Coefficient (cc)

 $CC(r) = \{ \Sigma((x_{i}-x_{ave})^{*}(y_{i}-y_{ave})) \} / \{ SQRT((\Sigma(x_{i}-x_{ave})^{2})^{*}(\Sigma(y_{i}-y_{ave})^{2})) \}$

Or

CC (r) =[(Σw * Σwxy) - (Σwx * Σwy)] / (sqrt(([(Σw * Σwx²) - (Σwx * Σwx)] * [(Σw * Σwy²) - (Σwy * Σwy)])))]

d. Coefficient of Determination

 $COD(r^2) = CC^*CC$

Page 35 of 48 Quality Assurance Plan Effective January 31, 2009

Where:

y = Response (Area) Ratio A_x/A_{is}

x = Concentration Ratio C_x/C_{is}

m = slope

b = intercept

n = number of replicate x,y pairs

x_i = individual values for independent variable

y_i = individual values for dependent variable

 Σ = the sum of all the individual values

xave = average of the x values

yave = average of the y values

w = weighting factor, for equal weighting w=1

3. Quadratic Regression

 $y = ax^2 + bx + c$

a. Coefficient of Determination

COD
$$(r^2) = (\Sigma(y_i - y_{ave})^2 - \{[(n-1)/(n-p)] * [\Sigma(y_i - Y_i)^2]\}) / \Sigma(y_i - y_{ave})^2$$

Where:

y = Response (Area) Ratio Ax/Ais

 $x = Concentration Ratio C_x/C_{is}$

 $a = x^2$ coefficient

b = x coefficient

c = intercept

y_i = individual values for each dependent variable

 x_i = individual values for each independent variable

yave = average of the y values

n = number of pairs of data

p = number of parameters in the polynomial equation (I.e., 3 for third order, 2 for second order)

 $Yi = ((2^*a^*(C_x/C_{is})^2) - b^2 + b + (4^*a^*c))/(4a)$

b. Coefficients (a,b,c) of a Quadratic Regression

 $a = S_{(x2y)}S_{(xx)}-S_{(xy)}S_{(xx2)} / S_{(xx)}S_{(x2x2)}-[S_{(xx2)}]^{2}$

 $b = S_{(xy)}S_{(x2x2)} - S_{(x2y)}S_{(xx2)} / S_{(xx)}S_{(x2x2)} - [S_{(xx2)}]^{2}$

 $c = [(\Sigma yw)/n] - b^*[(\Sigma xw)/n] - a^*[\Sigma(x^2w)/n]$

Where:

Page 36 of 48 Quality Assurance Plan Effective January 31, 2009 n = number of replicate x,y pairs x = x values y = y values w = $S^{-2} / (\Sigma S^{-2}/n)$ $S_{(xx)} = (\Sigma x^2 w) - [(\Sigma xw)^2 / n]$ $S_{(xy)} = (\Sigma xyw) - [(\Sigma xw)^* (\Sigma yw) / n]$ $S_{(x22)} = (\Sigma x^3 w) - [(\Sigma xw)^* (\Sigma x^2 w) / n]$ $S_{(x22)} = (\Sigma x^2 yw) - [(\Sigma x^2 w)^* (\Sigma yw) / n]$ $S_{(x22)} = (\Sigma x^4 w) - [(\Sigma x^2 w)^* (\Sigma yw) / n]$ Or If unweighted calibration, w=1 $S(xx) = (Sx2) - [(Sx)^2 / n]$ $S(xy) = (Sx2) - [(Sx)^2 / n]$ $S(x2) = (Sx3) - [(Sx)^* (Sy) / n]$ $S(x2y) = (Sx2y) - [(Sx2)^* (Sy) / n]$ $S(x22) = (Sx4) - [(Sx2)^* (Sy) / n]$

> Page 37 of 48 Quality Assurance Plan Effective January 31, 2009

11.0 Data Reduction, Validation, Reporting, and Record Keeping

All data reported must be of the highest possible accuracy and quality. During the processes of data reduction, validation, and report generation, all work is thoroughly checked to insure that error is minimized.

Data Reduction

The analyst who generated the data usually performs the data reduction. The calculations include evaluation of surrogate recoveries (where applicable), and other miscellaneous calculations related to the sample quantitation.

If the results are computer generated, then the formulas must be confirmed by hand calculations, at minimum, one per batch.

See the current Data Validation SOP for details regarding data reduction.

Validation

A senior analyst, most often the section supervisor, validates the data. All data undergoes peer review. If an error is detected it is brought to the analyst attention to rectify and further checks ensure that all data for that batch is sound. Previous and/or common mistakes are stringently monitored throughout the validation process. Data is reported using appropriate significant figure criteria. In most cases, two significant digits are utilized, but three significant digits can be used in QC calculations. Significant digits are not rounded until after the last step of a sample calculation. All final reports undergo a review by the laboratory manager, or the project manager or their designee, to provide a logical review of all results before they are released to the client.

If data is to be manually transferred from one medium to another, the transcribed data is checked by a peer. This includes data typing, computer data entry, chromatographic data transfer, data table inclusion to a cover letter, or when data results are combined with other data fields.

All hand written data from run logs, analytical standard logbooks, hand entered data logbooks, or on instrument generated chromatograms, are systematically archived should the need for future retrieval arise.

See the current Data Validation SOP for detail regarding data validation.

Page 38 of 48 Quality Assurance Plan Effective January 31, 2009

Reports and Records

All records at HEAL are retained and maintained through the procedures outlined in the most recent version of the Records Control SOP.

The reports are compiled by the Laboratory Information Management System (LIMS). Most data is transferred directly from the instruments to the LIMS. After being processed by the analyst and reviewed by a data reviewer, final reports are approved and signed by the senior laboratory management. A comparative analysis of the data is performed at this point. For example, if TKN and NH3 are analyzed on the same sample the NH3 result should never be greater than the TKN result. Lab results and reports are released only to appropriately designated individuals. Release of the data can be by fax, email, electronic deliverables, or mailed hard copy.

When a project is completed, the project file folder is stored with a hard copy of the report, relevant supporting data, and the quality assurance/control worksheets. These folders are kept on file and are arranged by project number. Additionally, all electronic data is backed up daily on the HEAL main server. The backup includes raw data, chromatograms and report documents. Hard copies of chromatograms are stored separately according to the instrument and the analysis date. All records and analytical data reports are retained in a secure location as permanent records for a minimum period of five years (unless specified otherwise in a client contract). Access to archived information shall be documented with an access log. Access to archived electronic reports and data will be protected by a project manager password. In the event that HEAL transfers ownership or terminates business practices, complete records will be maintained or transferred according to the client's instructions.

After issuance, the original report shall remain unchanged. If a correction to the report is necessary, then an additional document shall be issued. This document shall have a title of "Addendum to Test Report or Correction to Original Report", or equivalent. Demonstration of original report integrity comes in two forms. First, the report date is included on each page of the final report. Second, each page is numbered in sequential order, making the addition or omission of any data page(s) readily detectable.

Page 39 of 48 Quality Assurance Plan Effective January 31, 2009

12.0 Corrective Action

Refer to the most recent version of the Data Validation SOP for the procedure utilized in filling out a Corrective Action Report.

The limits that have been defined for data acceptability also form the basis for corrective action initiation. Initiation of corrective action occurs when the data generated from continuing calibration standard, sample surrogate recovery, laboratory control spike, matrix spike or sample duplicates exceed acceptance criteria. If corrective action is necessary, the analyst or the section supervisor will coordinate to take the following steps to determine and correct the measurement system deficiency:

Check all calculations and data measurements systems (Calibrations, reagents, instrument performance checks etc.).

Assure that proper procedures were followed.

Unforeseen problems that arise during sample preparation and/or sample analysis that lead to treating a sample differently from documented procedures shall be documented with a corrective action report. The section supervisor and laboratory manager shall be made aware of the problem at the time of the occurrence. See the appropriate SOP regarding departures from documented procedures.

Continuing calibration standards below acceptance criteria can not be used for reporting analytical data unless method specific criteria states otherwise.

Continuing calibration standards above acceptance criteria can be used to report data so long as the failure is isolated to a single standard and the corresponding samples are nondetect for the failing analyte.

Samples with non-compliant surrogate recoveries should be reanalyzed unless deemed unnecessary by the supervisor for matrix, historical data, or other analysis related anomalies.

Laboratory and Matrix Spike acceptance criteria vary significantly depending on method and matrix. Analysts and supervisors meet and discuss appropriate corrective action measures as spike failures occur.

Sample duplicates with RPD values outside control limits require supervisor evaluation and possible reanalysis.

A second mechanism for initiation of corrective action is that resulting from Quality Assurance performance audits, system audits, inter and intra-laboratory comparison studies. Corrective Actions initiated through this mechanism will be monitored and coordinated by the laboratory QA/QCO.

All corrective action forms are entered in the LIMS and included with the raw data for peer review, signed by the technical director of the section and included in the case narrative to

Page 40 of 48 Quality Assurance Plan Effective January 31, 2009 the client whose samples were affected. All Corrective action forms in the LIMS are reviewed by the QA/QCO.

Page 41 of 48 Quality Assurance Plan Effective January 31, 2009

13.0 Quality Assurance Audits, Reports and Complaints

Internal/External Systems' Audits, Performance Evaluations, and Complaints

Several procedures are used to assess the effectiveness of the quality control system. One of these methods includes internal performance evaluations, which are conducted by the use of control samples, replicate measurements and control charts. Another method is external performance audits, which are conducted by the use of inter-laboratory checks, such as participation in laboratory evaluation programs and performance evaluation samples available from a NELAC accredited Proficiency Standard Vendor.

Proficiency samples will be obtained twice per year from an appropriate vendor for all tests and matrices for which we are accredited and for which there are PTs available. HEAL participates in soil, waste water, drinking water and underground storage tank PT studies. Copies of results are available upon request. HEAL's management and all analyst shall ensure that all PT samples are handled in the same manner as real environmental samples utilizing the same staff, methods, procedures, equipment, facilities and frequency of analysis as used for routine analysis of that analyte. When analyzing a PT, HEAL shall employ the same calibration, laboratory quality control and acceptance criteria, sequence of analytical steps, number of replicates and other procedures as used when analyzing routine samples.

With regards to analyzing PT Samples HEAL shall not send any PT sample, or portion of a PT sample, to another laboratory for any analysis for which we seeks accreditation, or are accredited. HEAL shall not knowingly receive any PT sample or portion of a PT sample from another laboratory for any analysis for which the sending laboratory seeks accreditation, or is accredited. Laboratory management or staff will not communicate with any individual at another laboratory concerning the PT sample. Laboratory management or staff shall no attempt to obtain the assigned value of any PT sample from the PT Provider.

Internal Audits are performed annually by the QA/QCO in accordance with the current Internal Audit SOP. They are performed using the guidelines outlined below:

The system audit consists of a qualitative inspection of the QA system in the laboratory and an assessment of the adequacy of the physical facilities for sampling, calibration, and measurement. This audit includes a careful evaluation and review of laboratory quality control procedures. Including but not limited to:

- Review of staff qualifications, demonstration of capability, and personnel training programs
- 2. Storage and handling of reagents, standards and samples
- 3. Standard preparation logbook and LIM S procedures
- 4. Extraction logbooks
- 5. Raw data logbooks
- 6. Analytical logbooks or batch printouts and instrument maintenance logbooks
- 7. Data review procedures

Page 42 of 48 Quality Assurance Plan Effective January 31, 2009

590

- 8. Corrective action procedures
- 9. Review of data packages is performed regularly by the lab manager/QA Officer.

The QA/QCO will conduct these audits on an annual basis.

Management Reviews

HEAL management shall periodically, and at least annually conduct a review of the laboratory's quality system and environmental testing activities to ensure their continuing suitability and effectiveness, and to introduce necessary changes or improvements. The review shall take account of:

- 1. the suitability and implementation of policies and procedures
- 2. reports from managerial and supervisory personnel
- 3. the outcome of recent internal audits
- 4. corrective and preventive actions
- 5. assessments by external bodies
- 6. the results of interlaboratory comparisons or proficiency tests
- 7. changes in volume and type of work
- 8. client feed back
- 9. complaints
- 10. other relevant factors, such as laboratory health and safety, QC activities, resources and staff training.

Findings from management reviews and the actions that arise from them shall be recorded and any corrective actions that arise shall be completed in an appropriate and agreed upon timescale.

Complaints

Complaints from clients are documented and given to the laboratory manager. The lab manager shall review the information and contact the client. If doubt is raised concerning the laboratories policies or procedures, then an audit of the section or sections may be performed. All records of complaints and subsequent actions shall be maintained in the client compliant logbook for 5 years unless otherwise stated.

internal and External Reports

The QA/QCO is responsible for preparation and submission of quality assurance reports to the appropriate management personnel as problems and issues arise. These reports include the assessment of measurement systems, data precision and accuracy, and the results of performance and system audits. Ad ditionally, they also include significant QA problems, corrective actions, and recommended resolution measures. Reports of these Quality Assurance Audits describe the particular activities audited, procedures utilized in

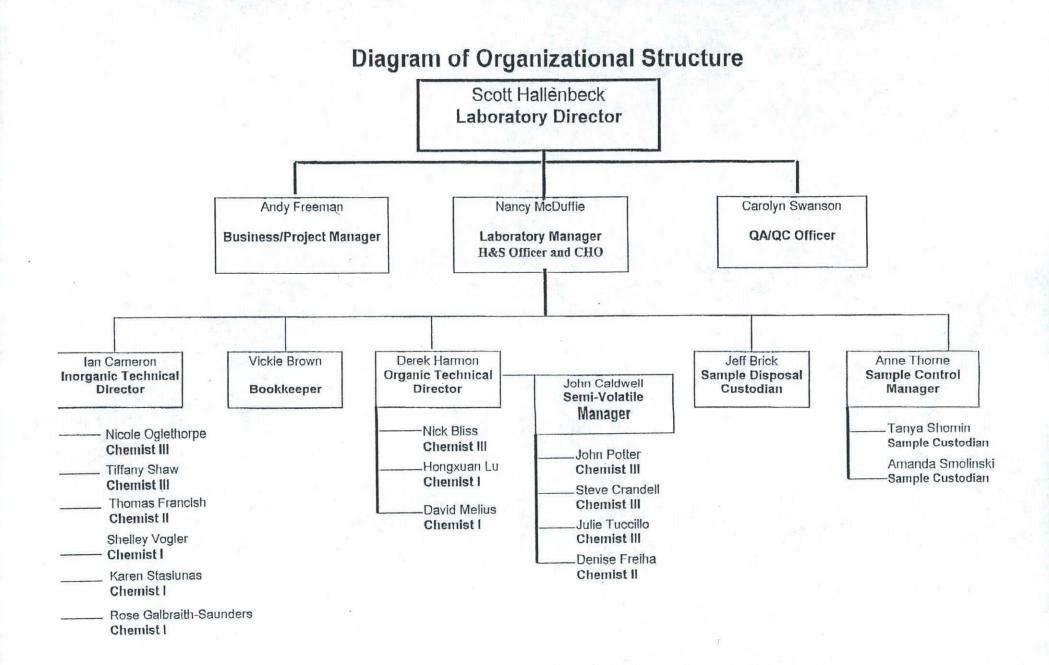
Page 43 of 4 8 Quality Assurance Plan Effective January 31, 2009 the examination and evaluation of laboratory records, and data validation procedures. Finally, there are procedures for evaluating the performance of Quality Control and Quality Assurance activities, and laboratory deficiencies and the implementation of corrective actions with the review requirements.

> Page 44 of **4**8 Quality Assurance Plan Effective January 31, 2009

14.0 Analytical Protocols Utilized at Hall Environmental Analysis Laboratory, Inc.

- 1. <u>Standard Methods for the Examination of Water and Wastewater:</u> AOHA, AWWA, and WPCG; 20th Edition, 1999.
- 2. <u>Methods for Chemical Analysis of Water and Wastes</u>, USEPA, EPA-600/4-79-020, March 1979 and as amended December, 1982 (EPA-600/4-82-055)
- 3. <u>Test Methods for Evaluating Solid Waste: Physical/Chemical Methods</u>, USEPA SW-846, 3rd Edition, Updates I, II, IIA, IIB, III, December, 1996.
- 4. <u>Methods of Soil Analysis</u>: Parts 1 & 2, 2nd Edition, Agronomy Society of America, Monograph 9
- 5. <u>Diagnosis & Improvement of Saline & Alkali Soils</u>, Agriculture Handbook No. 60, USDA, 1954
- 6. <u>Handbook on Reference Methods for Soil Testing</u>. The Council on Soil Testing & Plant Analysis, 1980 and 1992
- Field and Laboratory Methods Applicable to Overburdens and Mine Soils, USEPA, EPA-600/2-78-054, March 1978
- <u>Laboratory Procedures for Analyses of Oilfield Waste.</u> Department of Natural Resources, Office of Conservation, Injection and Mining Division, Louisiana, August 1988
- 9. Soil Testing Methods Used at Colorado State University for the Evaluation of Fertility, Salinity and Trace Element Toxicity, Technical Bulletin LT B88-2 January, 1988
- 10. <u>Manual of Operating Procedures for the Analysis of Selected Soil, Water, Plant Tissue and Wastes Chemical and physical Parameter.</u> Soil, Water, and Plant Analysis Laboratory, Dept. of Soil and Water Science, The University of Arizona, August 1989
- 11. <u>Sampling Procedures and Chemical Methods in Use at the U.S. Salinity Laboratory for</u> <u>Characterizing Salt-Affected Soils and Water.</u> USDA Salinity Laboratory.
- 12. <u>Procedures for Collecting Soil Samples and Methods of Analysis for Soil Survey.</u> USDA Soil Conservation Service, SSIR No. 1.
- 13. <u>Soil Survey Laboratory Methods Manual.</u> Soil Survey Laboratory Staff. Soil Survey Investigations Report No. 42, version 2.0, August 1992.
- 14. <u>Methods for the Determination of Metals in Environmental Samples</u>, USEPA, EPA-600/4-91-010, June 1991
- 15. The Merck Index. Eleventh Edition, Merck & Co., Inc. 1989.

Page 45 of 4 8 Quality Assurance Plan Effective January 31, 2009


- 16. Handbook of Chemistry and Physics, 62nd Edition, CRC Press, Inc. 1981-1982.
- 17. Analytical Chemistry of PCB's. Erickson, Mitchell D., CRC Press, Inc. 1992.
- 18. <u>Environmental Perspective on the Emerging Oil Shale Industry</u>, EPA Oil & Shale Research Group.
- 19. Polycyclic Aromatic Hydrocarbons in Water Systems, CRC Press, Inc.
- 20. <u>Quality Systems for Analytical Services, Revision 2.2</u>, U.S. Department of Energy, October 2006.

Page 46 of 48 Quality Assurance Plan Effective January 31, 2009

Appendix A Personnel Chart / Organizational Structure

Page 47 of 48 Quality Assurance Plan Effective January 31, 2009

Fage 48 of 48 Quality Assurance Plan Effective January 31, 2009

OREGON ENVIRONMENTAL LABORATORY ACCREDITATION PROGRAM

NELAP Recognized

Hall Environmental Analysis Laboratory, Inc.

NM100001 4901 Hawkins Rd. NE, Suite D Albuquerque, NM 87109

IS GRANTED APPROVAL BY ORELAP UNDER THE 2003 NELAC STANDARDS, TO PERFORM ANALYSES ON ENVIRONMENTAL SAMPLES IN MATRICES AS LISTED BELOW:

Air	Drinking Water	Non Potable Water	Solids and Chem. Waste	Tissue
	Chemistry	Chemistry	Chemistry	

AND AS RECORDED IN THE LIST OF APPROVED ANALYTES, METHODS, ANALYTIC TECHNIQUES, AND FIELDS OF TES TING ISSUED CONCURRENTLY WITH THIS CERTIFICATE AND REVISED AS NECESSARY.

ACCREDITED STATUS DEPENDS ON SUCCESSFUL ONGOING PARTICIPATION IN THE PROGRAM AND CONTINUED COMPLIANCE WITH THE STANDARDS.

CUSTOMERS ARE URGED TO VERIFY THE LABORATORY'S CURRENT ACCREDITATION STATUS IN OREGON.

G

Irene E. Ronning. Ph.D. ORELAP Administrator 3150 NW 229th Ave, Suite 100 Hillsboro, OR 97124

> ISSUE DATE: 3/1/2008 EXPIRATION DATE: 2/28/2009

Certificate No: NM100

NM100001-009

Environmental Laboratory Accreditation Program

Public Health Laboratory 3150 NW 229th Ave, Suite 100 Hillsboro, OR, OR 97124 NELAP Recognized (503) 693-4122 FAX (503) 693-5602

Page 1 of 14

Department of Agriculture, Laboratory Division Department of Environmental Quality, Laboratory Division Department of Human Services, Public Health Laboratory

ORELAP Fields of Accreditation

Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque, NM, 87109

Expiration Date: 2/28/2009 issue Date: 3/1/2008 As of 03/01/2008 this list supercedes all previous lists for this certificate number. Customers: Piease verify the current accreditation standing with ORELAP.

ORELAPID: NM100001 EPACode: NM00035

Certificate: NM100001-009

Reference		Code	Description	
EPA 200.7 5		10014003	ICP - metals	
Analyte Code	Analyte			
1000	Aluminum			
1015	Barium			
1020	Beryllium			
1025	Boron			
1030	Cadmium			
1035	Calcium			
1040	Chromium			
1055	Copper			
1070	iron			
1075	Lead		· · · · · · · · · · · · · · · · · · ·	
1085	Magnesium			
1090	Manganese			
1100	Molybdenum			
1105	Nickel			
1125	Potassium			
1150	Silver			
1155	Sodium			
1175	Tin			
1180	Titanium			
1185	Vanadium			
1190	Zinc	i.		
EPA 245.1 3		10036609	Mercury by Cold Vapor Atomic Absorption	
Analyte Code	Analyte			
1095	Mercury	Par I have		
EPA 300.0	1.1	10053006	ion chromatography - anions.	
Analyte Code	Analyte			
1575	Chioride			
1730	Fluoride			
1810	Nitrate as N			
1835	Nitrite			
2000	Sulfate	8	and the second sec	
EPA 300.0 2.1		10053200	Inorganic Anions in water by Ion Chromatography	20
Analyte Code	Analyte			
1870	Orthophosphate as	P		

4901 Hawkins Rd. NE, Suite D Albuquerque, NM, 87109

issue Date: 3/1/2008

Expiration Date: 2/28/2009

As of 03/01/2008 this list supercedes all previous lists for this certificate number. Customers: Please verify the current accreditation standing with ORELAP.

EPA	5030B 2	10153409	Purge and trap for aqueous samples
	Analyte Code	Analyte	
	125	Extraction/Preparation	
EPA	504.1	10083008	EDB/DBCP/TCP micro-extraction, GC/ECD
	Analyte Code	Analyte	
	4570	1,2-Dibromo-3-chloropropane (DB	CP)
	4585	1,2-Dibromoethane (EDB, Ethylen	e dibromide)
EPA	524.2 4.1	10088809	Volatile Organic Compounds GC/MS Capiliary Column
	Analyte Code	Analyte	
	5105	1,1,1,2-Tetrachioroethane	
	5160	1,1,1-Trichioroethane	
	5110	1,1,2,2-Tetrachioroethane	
	5165	1,1,2-Trichloroethane	
	4630	1,1-Dichloroethane	
	4640	1,1-Dichloroethylene	
	4670	1,1-Dichloropropene	
	5150	1,2,3-Trichlorobenzene	
	5180	1,2,3-Trichloropropane	
	5155	1,2,4-Trichlorobenzene	
	5210	1.2.4-Trimethylbenzene	
	4610	1.2-Dichlorobenzene	
	4635	1,2-Dichlorosthane	
	4655	1.2-Dichloropropane	
	5215	1,3,5-Trimethylbenzene	
	4615	1.3-Dichlorobenzene	
	4660	1.3-Dichloropropane	
	4620	1,4-Dichlorobenzene	
	4535	2-Chlorotoiuene	
	4540	4-Chlorotoluene	
	4375	Benzene	
	4385	Bromobenzene	
	4390	Bromochioromethane	
	4395	Bromodichloromethane	
	4400	Bromoform	
	4950	Bromomethane (Methyl bromide)	
	4455	Carbon tetrachloride	
	4475	Chlorobenzene	
	4485	Chloroethane	
	4505	Chioroform	
	105	Chloromethane	
	4645	cis-1,2-Dichloroethylene	
	4660	cis-1,3-Dichloropropene	
	4575	Dibromochloromethane	
	4595	Dibromomethane	
	4650	Dichloromethane (DCM, Methylen	e chloride)
	4765	Ethylbenzene	
	4835	Hexachiorobutadiene	
	4900	isopropylbenzene	
	5000	Methyl tert-butyl ether (MTBE)	
	4435	n-Butyibenzene	
		and the second se	
	5090	n-Propylbenzene	

Certificate: NM100001-009

ORELAP Fields of Accreditation

Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque, NM, 87109

Issue Date: 3/1/2008 Expiration Date: 2/28/2009 As of 03/01/2008 this list supercedes all previous lists for this certificate number. Customers: Please verify the current accreditation standing with ORELAP.

4440	sec-Butylbenze	ine		
5100	Styrene			
4445	tert-Butylbenze	ne		
5115	Tetrachioroethy	viene (Perchioroeth	yiene)	
.5140	Toluene			
4700	trans-1,2-Diclo	roethylene		
4685	trans-1,3-Dichi	oropropylene		
5170	Trichloroethene	(Trichloroethylene))	
5175	Trichlorofluoron	methane		
5235	Vinyl chloride			
5260	Xylene (total)			-
SM 2540 C 20th ED		20050004	Total Dissolved Solids	
Analyte Code	Analyte			
1955	Residue-filteral	ble (TDS)		20
SM 4500-H+ B 20th E	D	20104807	pH by Probe	
Analyte Code	Analyte			
1900	pH			
SM 5310 B 20th ED		20137400	Total Organic Carbon by Combustion Infra-red Method	
Analyte Code	Analyte			
2040	Total Organic	Carbon		

ORELAPID: NM100001 EPACode: NM00035

Certificate: NM100001-009

Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE. Suite D Albuquerque, NM, 87109

Reference

1540

1575

1730

1810

1840 1870

2000

125

125

125 EPA 6010B 2

1000

1005

1010

1015

1020

1025 1030

1035

1040

1050 1070

1075

1085

1090

1100

1105

1125

1140

1150

1155

1165

1175

1180

3035

1185

1190

Analyte Code 1095

EPA 7470A 1

Silver

Tin

Zinc

Sodium

Thallium

Titanium

Uranium

Analyte

Mercury

Vanadium

10165807

EPA 3005A 1

EPA 3510C 3

EPA 5030B 2

EPA 300.0

Issue Date: 3/1/2008 Expiration Date: 2/28/2009 As of 03/01/2008 this list supercedes all previous lists for this certificate number. Customers: Please verify the current accreditation standing with ORELAP.

MANTER NOR EGEDEWATER Code Description 10053006 ion chromatography - anions. Analyte Code Analyte Bromide Chloride Fluoride Nitrate as N Nitrite as N Orthophosphate as P Sulfate 10133207 Acid Digestion of waters for Total Recoverable or Dissolved Metals Analyte Code Analyte Extraction/Preparation 10138202 Separatory Funnel Liquid-liquid extraction Analyte Code Anaivte Extraction/Preparation 10153409 Purge and trap for aqueous samples Analyte Code Analyte Extraction/Preparation 10155609 ICP - AES Analyte Code Analyte Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Cnromium Cobalt iron Lead Magnesium Manganese Molybdenum Nickel Potassium Selenium

ORELAPID: NM100001 EPACode: NM00035

Certificate: NM100001-009

Page 4 of 14

Mercury in Liquid Waste by by Cold Vapor Atomic Absorption

ORELAP Fields of Accreditation

Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque, NM, 87109

4630

1,1-Dichloroethane

Issue Date: 3/1/2008 Expiration Date: 2/28/2009 As of 03/01/2008 this list supercedes all previous lists for this certificate number. Customers: Please verify the current accreditation standing with ORELAP.

EPA 8015B 2	10173601	Non-haloge nated organics using GC/FID
Analyte Code	Analyte	
9369	Diesel range organics (DRO)	
9408	Gasoline range organics (GRO)	
102	Motor Oil	
EPA 8021 B 2	10174808	Aromatic and Halogenated Volatiles by GC with PID and/or ECD Purge &
Analyte Code	Analyte	
5210	1,2,4-Trimethylbenzene	
5215	1,3,5-Trimethylbenzene	
4375	Benzene	
4765	Ethylbanzene	
5240	m+p-xylene	
5000	Methyl tert-butyl ether (MTBE)	
5250	o-Xylene	
5140	Toluene	
5260	Xyiene (total)	
EPA 8081A 1	10178606	Organochiorine Pesticides by GC/ECD
Analyte Code	Analyte	
7355	4,4'-DDD	
7360	4.4'-DDE	
7365	4,4'-DDT	
7025	Aldrin	
7110	aipha-BHC (aipha-Hexachiorocycle	ohexane)
7115	beta-BHC (beta-Hexachlorocycloh	
7105	delta-BHC	even search en all
7470	Dieldrin	
7510	Endosulfan I	
7515	Endosulfan II	· ·
7520	Endosulfan sulfate	
7540	Endrin	
7530	Endrin aldehyde	
7120	gamma-BHC (Lindane, gamma-He	exachiorocycion exanE)
7685	Heptachlor	
7690	Heptachlor epoxide	
7810	Methoxychior	
EPA 8082	10179007	Polychiorinated Biphenyis (PCBs) by GC/ECD
Analyte Code	Analyte	
8880	Aroclor-1016 (PCB-1016)	
8885	Aractor-1221 (PCB-1221)	
8890	Aractor-1232 (PCB-1232)	
8895	Arocior-1242 (PCB-1242)	
8900	Arocior-1248 (PCB-1248)	
8905	Aroclor-1254 (PCB-1254)	
8910	Arocior-1260 (PCB-1260)	
PA 8260B 2	10184802	Volatile Organic Compounds by purge and trap GC/MS
Analyte Code	Anaivte	
5105	1,1,1,2-Tetrachloroethane	
5160	1,1,1-Trichloroethane	
5110	1.1.2.2-Tetrachloroethane	
5165	1,1,2-Trichioroethane	

ORELAPID: NM100001 EPACode: NM00035

EPACode: NM0003 Certificate:

NM100001-009

Page 5 of 14

Hall Environmental Analysis Laboratory. Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque, NM, 87109

Issue Date: 3/1/2008 Expiration Date: 2/28/2009 As of 03/01/2008 this list supercedes all previous lists for this certificate number. Customers: Please verify the current accreditation standing with ORELAP.

1,1-Dichloroethylene 4640 4670 1,1-Dichloropropene 5150 1.2.3-Trichlorobenzene 5180 1.2.3-Trichloropropane 5155 1,2,4-Trichlorobenzene 5210 1.2.4-Trimethylbenzene 1,2-Dibromo-3-chloropropane (DBCP) 4570 1,2-Dibromoethane (EDB, Ethylene dibromide) 4585 4610 1.2-Dichlorobenzene 1.2-Dichloroethane 4635 1.2-Dichloropropane 4655 5215 1,3,5-Trimethylbenzene 1.3-Dichlorobenzene 4615 4660 1.3-Dichloropropane 4620 1.4-Dichlorobenzene 6380 1-Methyinaphthalene 4665 2.2-Dichloropropane 2-Butanone (Methyl ethyl ketone, MEK) 4410 4535 2-Chlorotoluene 4860 2-Hexanone 2-Methyinaphthalene 6385 4540 4-Chlorotoluene 4-Methyl-2-pentanone (MIBK) 4995 Acetone 4315 4375 Benzane 4385 Bromobenzene Bromochioromethane 4390 Bromodichloromethane 4395 4400 Bromoform 4950 Bromomethane (Methyl bromide) Carbon disulfide 4450 Carbon tetrachloride 4455 Chlorobenzene 4475 4485 Chioroethane Chloroform 4505 Chloromethane 105 cis-1,2-Dichloroethylene 4645 4680 cis-1,3-Dichloropropene Dibromochloromethane 4575 Dibromomethane 4595 Dichiorodifluoromethane 4625 Dichloromethane (DCM, Methylene chloride) 4650 4765 Ethylbenzene 4835 Hexachiorobutadiene 4900 isopropylbenzene 5240 m+p-xylene Methyl tert-butyl ether (MTBE) 5000 Naphthalene 5005 n-Butylbenzene 4435 n-Propylbenzene 5090 5250 o-Xylene

ORELAPID: NM100001 EPACode: NM00035

Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque, NM, 87109

E

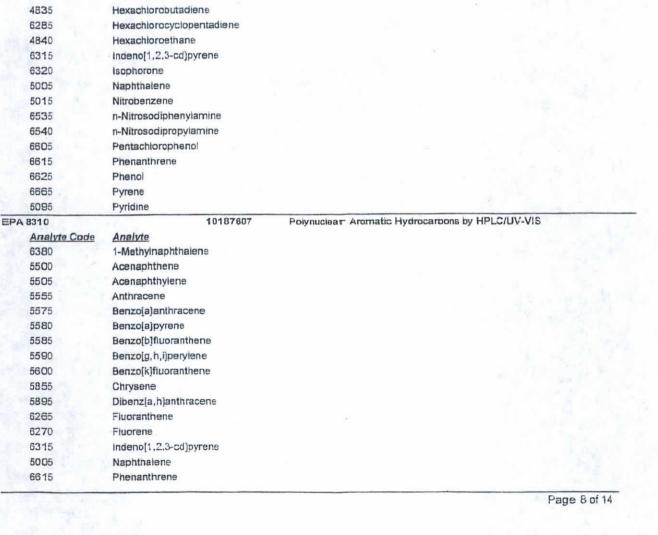
Issue Date: 3/1/2008 Expiration Date: 2/28/2009 As of 03/01/2008 this list supercedes all previous lists for this certificate number. Customers: Please verify the current accreditation standing with ORELAP.

	4910	p-isopropyltoiuene		
	4440	sec-Butylbenzene		
	5100	Styrene		
	4445	tert-Butylbenzene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	5115	Tetrachloroethylene (Perchloroethyle	ene)	
	5140	Toluene		
	4700	trans-1,2-Dicloroethylene		
	4685	trans-1,3-Dichloropropylene		
	5170	Trichloroethene (Trichloroethylene)		
		Trichlorofiuoromethane		
	5175			
	5235	Vinyl chloride		
	5260	Xyiene (total) 10185805	SemiVolitile Organic compounds by GC/MS	
EPA	8270C 3		Semivolitile ofgame compounds by come	
	Analyte Code	Analyte		
	5155	1,2,4-Trichlorobenzene		
	4610	1,2-Dichlorobenzene		
	4615	1,3-Dichlorobenzene		
	4620	1,4-Dichlorobenzene		
	6835	2,4,5-Trichiorophenol		
	6840	2,4,6-Trichiorophenol		
	6000	2,4-Dichlorophenol		
	6130	2,4-Dimethylphenol		
	6175	2,4-Dinitrophenol		
	6185	2,4-Dinitrotoluene (2,4-DNT)		
	6190	2,6-Dinitrotoluene (2,6-DNT)		
	5795	2-Chloronaphthalene		
	5800	2-Chlorophenol		
	6385	2-Methylnaphthalene		
	6400	2-Methylphenol (o-Cresol)		
	6460	2-Nitroanlline		
	6490	2-Nitrophenol		
	6412	3 & 4 Methylphenol		
	5945	3,3'-Dichlorobenzidine		
	6465	3-Nitroaniline		
	6140	4,6-Dinitro-2-methylphenol		
	5660	4-Bromophenyl phenyl ether		
	5700	4-Chioro-3-methylphenol		
	5745	4-Chloroaniline		
	5825	4-Chiorophenyi phenylether		
	6470	4-Nitroaniline		
	6500	4-Nitrophenol		
	5500	Acenaphthene		
	5505	Acenaphthylene		
	5545	Aniline		
	5555	Anthracene		
		Azobenzene		
	123	Azobenzene Benzo[a]anthracene		
	5575			
	5580	Benzo[a]pyrene		
	5585	Benzo[b]fiuoranthene		
	5590	Benzo[g,h,i]perylene		
	5600	Benzo[k]fluoranthene		

ORELAPID: NM100001 EPACode: NM00035

Hall Environmental Analysis Laboratory. Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque, NM, 87109


issue Date: 3/1/2008 Expiration Date: 2/28/2009 As of 03/01/2008 this list supercedes all previous lists for this certificate number. Customers: Please verify the current accreditation standing with ORELAP.

482 Benzofiuoranthene 5610 Benzoic acid 5630 Benzyl alcohol bis(2-Chloroethyl)ether 5765 5770 bis(2-Chioroethyloxymethane) 5780 bis(2-Chloroisopropyl)ether 6255 bis(2-Ethylnexyl)phthalate (DEHP) 5670 Butyl benzyl phthalate Carbazole 5680 5855 Chrysene 5895 Dibenz[a,h]anthracene 5905 Dibenzofuran 6070 Diethyl phthalate Dimethyl phthalate 6135 Di-n-butyl phthalate 5925 Di-n-octyl phthalate 6200 Fluoranthene 6265 6270 Fluorene 6275 Hexachiorobenzene 4835 Hexachlorobutadiene 6285 Hexachiorocyclopentadiene 4840 Hexachloroethane 6315 Indeno[1,2,3-cd]pyrene 6320 Isophorone 5005 Naphthalene 5015 Nitrobenzene n-Nitrosodiphenylamine 6535 n-Nitrosodipropylamine 6540 6605 Pentachiorophenol 6615 Phenanthrene 6625 Phenol 6665 Pyrene 5095 Pyridine 10187607 Analyte Code Anaivte 6380 1-Methylnaphthalene 5500 Acenaphthene 5505 Acenaphthylene

EPACode: NM00035

ORELAPID: NM100001

-		

Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque, NM, 87109

Issue Date: 3/1/2008 Expiration Date: 2/28/2009 As of 03/01/2008 this list supercedes all previous lists for this certificate number. Customers: Please verify the current accreditation standing with ORELAP.

6665	Pyrene			
SM 2540 C 20th ED		20050004	Total Dissolved Solids	
Analyte Code	Analyte			
1955	Residue-filteral	ole (TDS)		
SM 4500-H+ B 20th E	D	20104807	pH by Probe	
Analyte Code	Analyte			
1900	pH			

ORELAPID: NM100001 EPACode: NM00035

Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque, NM, 87109

Issue Date: 3/1/2008

Expiration Date: 2/28/2009

As of 03/01/2008 this list supercades all previous lists for this certificate number. Customers: Please verify the current accreditation standing with ORELAP.

MATERIA Solids Reference Code Description EPA 3050A 10135407 Acid Digestion of Sediments, Sludges, and solis Analyte Code Analyte 125 Extraction/Preparation EPA 3640C 3 10140202 Soxhlet Extraction Analyte Code Analyte Extraction/Preparation 125 Pressurized Fluid Extraction (PFE) EPA 3545 10140804 Anaivte Code Analyte Extraction/Preparation 125 10154004 Closed-System Purge-and-Trap and Extraction for Volatile Organics in So EPA 5035 Analyte Code Analyte Extraction/Preparation 125 ICP - AES EPA 6010B 2 10155609 Analyte Code Analyte 1000 Aluminum 1005 Antimony 1010 Arsenic 1015 Barium 1020 Beryllium 1025 Boron 1030 Cadmium 1035 Calcium 1040 Chromium 1050 Cobalt 1055 Copper 1070 tron 1075 Lead 1085 Magnesium Manganese 1090 Molybdenum 1100 1105 Nickel 1125 Potassium 1140 Selenium 1150 Silver 1155 Sodium Thallium 1165 1175 Tin 1180 Titanium 3035 Uranium 1185 Vanadium 1190 Zinc EPA 7471A 1 10166208 Mercury in Solid Waste by Cold Vapor Atomic Absorption Analyte Code Analyte 1095 Mercury EPA 8015B 2 10173601 Non-haloge nated organics using GC/FID Analyte Code Analyte 9369 Diesel range organics (DRO) Gasoline range organics (GRO) 9408 102 Motor Oll

Certificate: NM100001-009

Page 10 of 14

Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque, NM, 87109

Issue Date: 3/1/2008 Expiration Date: 2/28/2009 As of 03/01/2008 this list supercedes all previous lists for this certificate number. Customers: Please verify the current accreditation standing with ORELAP.

EPA 8021B 2	10174808	Aromatic and Halogenated Voiatiles by GC with PID and/or ECD Purge &
Analyte Code	Analyte	
4375	Benzene	
4765	Ethylbenzene	
5240	m+p-xylene	
5000	Methyl tert-butyl ether (MTBE)	
5250	o-Xyiene	
5140	Toluene	
5260	Xylene (total)	
PA 8081A 1	10178606	Organochtorine Pesticides by GC/ECD
Analyte Code	Analyte	
7355	4,4'-DDD	
7360	4,4'-DDE	
7365	4.4'-DDT	
7025	Aldrin	
7110	alpha-BHC (alpha-Hexachlorocyclo	hexane)
7115	beta-BHC (beta-Hexachlorocyclohe	
7105	delta-BHC	
7470	Dieldrin	
7510	Endosulfan	
7515	Endosulfan II	
7520	Endosulfan sulfate	
7540	Endrin	
7530	Endrin aldehyde	
7120	gamma-BHC (Lindane, gamma-He	xachiomovelo baxanE)
7685	Heptachlor	Recincitory of Contract - /
7690	Heptachlor epoxide	
7810	Methoxychior	
EPA 8082	10179007	Polychlorinated Biphenyls (PCBs) by GC/ECD
Analyte Code	Analyte	
8880	Arocior-1016 (PCB-1016)	
8885	Aroclor-1221 (PCB-1221)	
8890	Aroclor-1232 (PCB-1232)	
8895	Aroclor-1242 (PCB-1242)	
8900	Aroclor-1248 (PCB-1248)	
8905	Aroclor-1254 (PCB-1254)	
8910	Arocior-1260 (PCB-1260)	
PA 8260B 2	10184802	Volatile Organic Compounds by purge and trap GC/MS
Analyte Code	Analyte	
Land Carlo	1,1,1,2-Tetrachloroethane	
5105		
5105 5160	1.1.1-Trichloroethane	
5160	1,1,1-Trichloroethane	
5160 5110	1,1,2,2-Tetrachioroethane	
5160 5110 5165	1,1,2,2-Tetrachioroethane 1,1,2-Trichloroethane	
5160 5110 5165 4630	1,1,2,2-Tetrachioroethane 1,1,2-Trichloroethane 1,1-Dichloroethane	
5160 5110 5165 4630 4640	1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene	
5160 5110 5165 4630 4640 4670	1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloropropene	
5160 5110 5165 4630 4640 4670 5150	1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloropropene 1,2,3-Trichlorobenzene	
5160 5110 5165 4630 4640 4670 5150 5180	1,1,2,2-Tetrachioroethane 1,1,2-Trichioroethane 1,1-Dichioroethane 1,1-Dichioroethylene 1,1-Dichioroptropene 1,2,3-Trichiorobenzene 1,2,3-Trichioroptropane	
5160 5110 5165 4630 4640 4670 5150	1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloropropene 1,2,3-Trichlorobenzene	

ORELAPID: NM100001 EPACode: NM00035

Certificate: NM100001-009

Page 11 of 14

Hall Environmental Analysis Laboratory. Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque, NM, 87109

Issue Date: 3/1/2008 Expiration Date: 2/28/2009 As of 03/01/2008 this list supercedes all previous lists for this certificate number. Customers: Please verify the current accreditation standing with ORELAP.

4585 1.2-Dibromoethane (EDB, Ethylene dibromide) 4610 1,2-Dichlorobenzene 4635 1,2-Dichloroethane 4655 1,2-Dichloropropane 5215 1,3,5-Trimethylbenzene 4615 1.3-Dichlorobenzene 4660 1,3-Dichloropropane 4620 1,4-Dichlorobenzene 6380 1-Methyinaphthalene 4665 2,2-Dichloropropane 4410 2-Butanone (Methyl ethyl ketone, MEK) 4535 2-Chiorotoluene 4860 2-Hexanone 6385 2-Methyinaphthalene 4540 4-Chiorotoluene 4995 4-Methyl-2-pentanone (MIBK) 4315 Acetone 4375 Benzene 4385 Bromobenzene 4390 Bromochloromethane 4395 Bromodichioromethane 4400 Bromoform Bromomethane (Methyl bromide) 4950 4450 Carbon disulfide Carbon tetrachioride 4455 4475 Chiorobenzene 4485 Chloroethane 4505 Chioroform 105 Chloromethane cis-1,2-Dichloroethylene 4645 4680 cis-1,3-Dichloropropene Dibromochloromethane 4575 4595 Dibromomethane Dichlorodifiuoromethane 4625 Dichloromethane (DCM, Methylene chloride) 4650 4765 Ethylbenzene Hexachtorobutadiene 4835 4900 Isopropylbenzene 5240 m+p-xylene 5000 Methyl tert-butyl ether (MTBE) 5005 Naphthalene n-Butylbenzene 4435 5090 n-Propylbenzene 5250 o-Xyiene p-isopropyltoluene 4910 4440 sec-Butylbenzene 5100 Styrene 4445 teri-Butylbenzene Tetrachloroethylene (Perchloroethylene) 5115 5140 Toluene 4700 trans-1,2-Dicloroethylene

ORELAPID: NM100001 EPACode: NM00035

Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque, NM, 87109

Issue Date: 3/1/2008 Expiration Date: 2/28/2009 As of 03/01/2008 this list supercedes all previous lists for this certificate number. Customers: Please verify the current accreditation standing with ORELAP.

4685	trans-1,3-Dichloropropylene		
5170	Trichloroethene (Trichloroethylene)		
5175	Trichlorofluoromethane		
5235	Vinyi chloride		
5260	Xyiene (total)		
EPA 8270C 3	10185805	SemiVolitile Organic compounds by GC/MS	
Analyte		Sentrolitile organic competines by Comic	
5155	1,2,4-Trichlorobenzene		
4610	1,2-Dichlorobenzene		
4615	1,3-Dichlorobenzene		
4620	1.4-Dichlorobenzene		
6835	2,4,5-Trichlorophenol		
6840	2,4,5-Trichlorophenol		
6000			
	2,4-Dichlorophenol		
6130	2,4-Dimethylphenol		
6175	2,4-Dinitrophenol		
6185	2,4-Dinitrotoluene (2,4-DNT)		
6190	2,6-Dinitrotoluene (2,6-DNT)		
5795	2-Chloronaphthalene		
5800	2-Chlorophenol		
6385	2-Methylnaphthaiene		
6400	2-Methylphenol (o-Cresol)		
6460	2-Nitroanlline		
6490	2-Nitrophenol		
6412	3 & 4 Methylphenol		
5945	3,3'-Dichlorobenzidine		
6465	3-Nitroaniline		
6140	4,6-Dinitro-2-methylphenol		
5660	4-Bromophenyl phenyl ether		
5700	4-Chloro-3-methylphenol		
5745	4-Chioroaniline		
5825	4-Chiorophenyl phenylether		
6470	4-Nitroaniline		
6500	4-Nitrophenol		
5500	Acenaphthene		
5505	Acenaphthylene		
5545	Aniline		
5555	Anthracene		
123	Azobenzene		
5575	Benzo[a]anthracene		
5580	Benzo[a]pyrene		
5585	Benzo[b]fluoranthene		
5590	Benzo[g,h,i]perylene		
5600	Benzo[k]fluoranthene		
5610	Benzoic acld	5	
5630	Benzyl alcohol		
5760	bis(2-Chloroethoxy)methane		
5765	bis(2-Chloroethyl)ether		
5780	bis(2-Chloroisopropyl)ether		
6255	bis(2-Ethylhexyl)phthalate (DEHP)		
5670	Butyl benzyl phthalate		

ORELAPID: NM100001 EPACode: NM00035

Hall Environmental Analysis Laboratory, inc.

4901 Hawkins Rd. NE, Suite D Albuquerque, NM, 87109

Issue Date: 3/1/2008 Expiration Date: 2/28/2009 As of 03/01/2008 this list supercedes all previous lists for this certificate number. Customers: Please verify the current accreditation standing with ORELAP.

5680	Carbazole
5855	Chrysene
5895	Dibenz(a,h)anthracene
5905	Dibenzofuran
6070	Diethyl phthalate
6135	Dimethyl phthalate
5925	Di-n-butyl phthalate
6200	Di-n-octyl phthalate
6265	Fluoranthene
6270	Fluorene
6275	Hexachlorobenzene
4835	Hexachlorobutadiene
6285	Hexachlorocyclopentadiene
4840	Hexachioroethane
6315	indeno[1,2,3-cd]pyrene
6320	isophorone
5005	Naphthalene
5015	Nitrobenzene
6530	n-Nitrosodimethylamine
6535	n-Nitrosodiphenylamine
6540	n-Nitrosodipropylamine
6605	Pentachiorophenol
6615	Phenanthrene
6625	Phenol
6665	Pyrene
5095	Pyridine

EPA 83

0000	, judine									
8310	10187607									
Analyte Code	Analyte									
6380	1-Methyinaphthalene									
6385	2-Methyinaphthalene									
5500	Acenaphthene									
5505	Acenaphthylene									
5555	Anthracene									
5575	Benzo[a]anthracene									
5580	Benzo[a]pyrene									
5585	Benzo[b]fluoranthene									
5590	Benzo[g,h,i]perviene									
5600	Benzo[k]fluoranthene									
5855	Chrysene									
5895	Dibenz(a,h)anthracene									
6265	Fluoranthene									
6270	Fluorene									
6315	Indeno[1.2.3-cd]pyrene									
5005	Naphthaiene									
6615	Phenanthrene									
6665	Pyrene									

ORELAPID: NM100001 EPACode: NM00035

Certificate: NM100001-009

Polynuciear Aromatic Hydrocarbons by HPLC/UV-VIS

BILL RICHARDSON GOVERNOR State of New Mexico ENVIRONMENT DEPARTMENT Field Operations Division Drinking Water Bureau 525 Camino de Los Marquez Santa Fe, New Mexico 87501 Telephone (505) 476-8620 Fax (505) 476-8658

RON CURRY SECRETARY

Cindy Padilla Deputy Secretary

March 11, 2008

Hall Environmental Analysis Laboratory Inc. 4901 Hawkins Rd. NE, Suite D Albuquerque, NM 87109

Dear Mr. Freeman

The Drinking Water Bureau of the New Mexico Environment Department (NMED-DWB) has received and reviewed your Nelap certification /accreditation information from the state of Oregon, The documentation is acceptable and your New Mexico certification is now valid through February 29, 2009.

This certification is to perform drinking water analysis in compliance with the Federal Safe Drinking Water Act, pursuant 40CFR Part 141, and the New Mexico Environment Department Drinking Water Regulations for the Primary Regulated contaminants, including Contaminants in as listed in your Oregon Scope Accreditation.

You must advise NMED-DWB of any change in your accreditation by the State of Oregon and continue to provide this office with performance evaluation results. You are also required to provide evidence of renewal of accreditation by the state of Oregon to continue certification past February 29, 2009.

Laboratories certified by the New Mexico can be purged from the list if there is no evidence that they are performing drinking water compliance samples analysis for public water supply systems in New Mexico.

IF you have any questions or require additional information, please contact me at 505-476-8635.

Sincerely, Joe Chavez

Chemical Analytical Reports

Title	Tab Number
2009 Semi-Annual Monitoring Event	1
2009 Annual Monitoring Event	2
San Juan River Semi-Annual Analysis	3
Tank #33 Analysis	4

	Address	#50 Freld	1stody Record Refining CR 4990 NM 87413 2-4161	Turn-Around Time: Standard Rush Project Name: North Barnier Wall Semi-Annual Project #:				HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request													
□ Stan Accred	Package: Idard itation AP	Othe	Level 4 (Full Validation)	Project Mana	Ly /Bak	2 I Ng	+ TMB's (8021)	+ TPH (Gas only)	115B (Gagipiesel)	418.1)	504.1)	PAH)		Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	s / 8082 PCB's	TEX, MTBE ONLY	A) (A	Deo only			or N)
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	FEALNO CE15459.7	BTEX + MTBE	BTEX + MTBE	TPH Method 801	(Method	EDB (Method 5	8310 (PNA or P	RCRA 8 Metals	Anions (F,CI,NC	8081 Pesticides / 8082 PCB's	8260B (VOA) STEX	8270 (Semi-VOA)	8015 3-7			Air Bubbles (Y or N)
4106/09	12300	440	CW 0+60	5-VON	Her	1			V				_			X	-	×			
	1245		OW 0+60			2		_	Å	-	-	-	_			X	-	_	_		
	100p		DW 3+85			3	-		X	-	-	-	_	_		Ŷ	-			_	
	135Pm	-	OW 11+15 OW 11+15FD			4 5			XX		-		-			A V	-		+		
-	150p		aw 16+60			<u> </u>		-	~	-	-+	-				X	-	-+			\vdash
	205P	-	1 01-1			7	-			-+	-	-				X					
	2150		OW 19750			2			Y	-	-	-	-		-	Č		+			
	2308		OW 23+10			3			X		-				-	X	-	+		+-	
	2908	1.0	OW 23+90			10			X		-		,	-	-	X		-			\vdash
	2500		OW 25+70	5-VOA		11			V			1		1	1	X				-	\vdash
	3Pm	and and	Field Black	3-168-		12			2	-		-				A V		-			
Date: 106/09 Date:	Time: 3/52	Relinquishe	may Huntado	Received by: Received by:	wet	Date Time 4/7/09 /000 Date Time	Ren	narks	- 1	ofð	L					+-					

-

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report

Client: Mailing	Address	HERN T Field	stody Record Refining DCR 4990 NM 87413 32-4161	Turn-Around Time: Standard Rush Project Name: North Barner, Und Seni-Anal Project #:					HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request											
email c QA/QC Star Accred NEL	or Fax#: Package: ndard litation		Level 4 (Full Validation)	Project Mana Sampler: On Icca Sample Icca Container Type and #	1.		BTEX + MTBE + TMB's (8021)	BTEX + MTBE + TPH (Gas only)	TPH Method 8015B (Bac) Diesen	TPH (Method 418.1)	EDB (Method 504.1)	8310 (PNA or PAH)		Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA) BREX MILLEONLY				Air Bubbles (Y or N)
4/04/19	326	Hed	(wk5795	5-VOA	HCL	13			X		E	8	× ×	Ar	80	× 82	82			Air
Date:	Time: 315a Time:	Reinquishe Relinquishe	ngthintado	Received by: Received by: Received by:	22 And	Date Time 4/7/09 Date Time	22	4	pri(je i	2	of	2							

Client: Western Refining Mailing Address: #50 CR 4990				Turn-Around Time: A Standard Rush Project Name: Semi-ANNIC 2009 - Seeps				HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109												
-7	Sloon	field	NM 87413	Project #:							s NE -3975		1							
Phone			32-4/61	The second s					Te	1. 505	-343			Fax lysis	-	-				R. C. C.
email o		ALL.		Project Manager:			~	lly)	sel)	-		T	(4)		2		d		TT	
QA/QC	Package:		Level 4 (Full Validation)	1.1.1.1	(TMB's (8021)	TPH (Gas only)	(Gas/Diesel)				O4,SC	PCB's	TRECONTY		Diquide		
Accred			A	Sampler	La LBD	<i>b</i>	-	AB's) H	(Ga				02,P	182 F	14		100		
		□ Othe	er	Onlice	61	LE NO.		AT +	H +	15B	418.1)	PAH)		3,N(/ 80	12	()	arban		L N
	(Type)			Sample ten	perature		The sec	BE	BE	~ 1		or P a	tals	NU.	ides	A) B.	-V0/	T		(X o
Date	Time	Matrix Hz0	Sample Request ID	Container Type and #	Preservative Type	न्द्र 72 वर्ष	No ILI II	BTEX + MTBE	BTEX + MTBE	TPH Method		8310 (PNA or	RCRA 8 Metals	Arions (F, CI, NO ₃ , NO ₂ , PO ₄ , SO ₄)	8081 Pesticides / 8082	8260B (VOA) 8727	8270 (Semi-VOA)	Alkalinity		Air Bubbles (Y or N)
108/09	1010	M	Seep # 1	3-10A-	Her		-			F		0 00	LILL I	A		X	8	4		×
				1-liter	Amber		-1		14							-	X			
	ar i			1-125ml	HZSOY		-1		1					X		-		•		
		1.		1-500ml	100	T.	-1				-	1		X				V		
	1020A	HIZO	Seep#1 FD	3-VOA	Hec	The arts	-2		-	-	-	-		1		X				++-
		flzO	,	1- liter	Alber		-2									-	X		_	+
				1-125m	HESOY		-2					1		X			~			
				1-500nl	Ħ	1.1.1	-2				-	1	1	X				X		
	10304		Seep#3	3-VOA	HCL	1.2	-3	-	-					1	12	X	-	••		
1.1	V			1-liter	Amber	1.0	-3									t	X			
		1	C. I. C. Star	1-125m	Hasoy	12	-3					6 20	1	X			1		-	
			Start and Start	1-Soone.			-3							X				X		
Date:	Time: 1:15 Time:	Relinquish Relinquish	Sert Brakon	Received by:	2 1	-	Time 1315	Rem Ar	Jion	i Li	st ;	Fu	LON	ide, -Ni	Ch	lor , N	ide	, Be	omic Nita	le
Date. Inemiquisited by.									ANION List: Fluoride, Chloride, Bromide ANION List: Fluoride, Chloride, Bromide Nitrogen-Nitrite, Nitrogen-Nitrato Phosphorous - Orthophosphate (As P) Sulfata											

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This cance as notice of this possibility.

Client:	Ch of-Custody Record Client: Wester N Refining Mailing Address: #50 CR 4890 Bloomfield, NM 62413 Phone # 555 (R)				Turn-Around Time: Description Semi-ANNUA 2009- Suppose				HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109												
	Bloc	omfi	eld, NM 87413	Project #: Project Manager:				-			-345-3	3975	1	Fax	505-	-345-	4107				
Phone email o	#. 30	5-63	2-416j						21			A	hal	1	Req	uest					
	Package:		Level 4 (Full Validation)		iger:			TMB's (8021)	TPH (Gas only)	(Gas/pietel)			1	O4,SO4)	CB's	X conly	/				
	itation	□ Othe	r		dy/Bob		0008563	TMB's	TPH (0	28	504.1)	(HAH)	-	NO2,P	8082 F	SE BR				(N	
	(Type)			SampleMeni	eensuure			BE +	H +	d 801	14 Do 50	or PA	tals	I'NO	ides /	MM	VOA			(Y or	
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	FEAL NO STG A UNIL M		BTEX + MTBE	BTEX + MTBE	TPH Method 801	EDB (Method	8310 (PNA	RCRA 8 Metals	Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOAMTBE BTEX andy	8270 (Semi-VOA)			Air Bubbles (Y or N)	
108	1040A-	HZU	Field Blant	3-V04-	Ha		STREET, STREET			X	- <u>ш</u>	8	<u>u</u>	A	8	8 X	8			A	
			Field Blank Trip Blank Ary	1969		~	5				-					-		+	-		
		Max.				2															
	-					4		_	_				-	14							
								-	-	-	-	-							-		
	3			1				20	-		-	-				-	-				
											-						-				
								-	_	-	-			.6			-	-			
								-	-	-	-	-	-	-	_	_	-	-		$\left \right $	
Date: - 8-09 Date:	Time: 115 Time:	Relinquishe	but Brakon	Received by: Received by:	1 4/4	Date Time			arks:		,f:	1									
	fnecenary	samples subr	nitted to Hall Environmental may be subc	ontracted to other ac	medited laboratori	This service on poties		a a si h il	14. 5					9					2		

Mailing	West.	HS0	efining CR 4990 (d, NM 87413 32-4/61	Turn-Around Standard Project Name SEMI AM Project #:	C Rush	- Seeps			01 Ha	awki	www ins N	AL v.hal NE - 975	Ilenv Alt	ironi uqua	SL ment erque 505-	AE tal.co e, NI 345-	30 om M 87 -410	RA	NT/	
email o		2000	22-4/61	Project Mana	005			2	-			A	-		Req	uest	1			TT
	Package:		KLevel 4 (Full Validation)				TMB's (8021)	TPH (Gas only)	(Gas/Diesel)					PO4,SO4	PCB's	st only	-	Diograde	-	
Accredi		C Otho		Sampler	dy Bob		MB'	Hd	5B (G	(1)	(1)	Ŧ		NO2,	3082	C.W.		6		()
				On los	<u>1008</u>	교 Ng ////	+	+	3015	418.1)	504.1)	(HAH)	S	10 ³ ,1	es / 8	SIEX	(F	and		orb
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type		BTEX + MTB	BTEX + MTBE	TPH Method 801	TPH (Method	EDB (Method	8310 (PNA or	RCRA 8 Metals	AMONS (F, CI, NO3, NO2, PO4, SO4)	8081 Pesticides / 8082 PCB's	8260B (VOA)BRY, MIBE	8270 (Semi-VQA)	Whal wity (-	Air Bubbles (Y or N)
46769.	alson	HZU	Other Sampler and Bob Other Sampler and Bob Atrix Sample Request ID Container Preservative Type Type Seep # G 3-Vot I-l25vl H2Soy I-sov I						-	Ì	-			-		ž	~			
				1-liter	Anber	1					-						X		-	
				1-125ml		1								X						
1				1	. ,	1 4 4 7 9 1								x				X		
4/07/09	130p		Seep #8	3-VOA-	HCL	2					1			1-			X	-		
40709	139		/	1-liter	Anter	2												X		
1	1			1-182l	HIZSOY	Z								X			_	~		
1.	/			1-50 ml	181	2								X				X		
4/07/09	235p		Seep #9	3-V04-	HCL	3								-		X		-		
11	1		1	1- liter	Anter	3	1	-	16								X			
1		1		1-125m	Hasoy	3	100-0			-	-	-		X	15.77 A.					
1	1			1-500ml	1	3	10				-			X	4			X		
Date: Date:	250pm Time:	Relinquishe	lettutado	Received by:	4/8/0	Date Time 9 1025 Date Time		narks								-				

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. According to the subcontracted to the subcontracted to other accredited laboratories.

Client: Mailing	Address:	ern 7	Istody Record Refining CRA990 1 87413 1161	Project #:	C Rush	f-Annual - 2009			D1 H	awk	www.	AL w.ha NE - 975	.Y! Illenv - Alt	SI viron buqu Fax	5 L men erqu 505-	tal.co	BO om M 87 -4107	R /		AL
email o	r Fax#:57 Package: dard itation	05-63	2-391/ Level 4 (Full Validation)	Project Mana		Ēð	+ TMB's (8021)	+ TPH (Gas only)	15B (Gas/Diesel)	(8.1))4.1)		elle .			only		Baland	of Metals	Kunty
Date	(Type) _ Time	Matrix	Sample Request ID	Sample from Container Type and #	Preservative Type	onni en pol OGOLINO	BTEX + MTBE +	BTEX + MTBE +	TPH Method 8015B	TPH (Method 418.1)	EDB (Method 504.1)	8310 (PNA or PAH)	RCRA 8 Metals	Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA) BIEK MIDE	8270 (Semi-VOA)	CATION / Amon	1	('02-A1 Kalon
4-7-9	12:20	H20	outfall# 2	3-VOA- 1-250nl 1-520nl 1-250ml 1-250ml	HCL HNO3 HNO3 H2504								X			X		X	X	
47-09	12:45	H20	Ditfall # 3 Drip Blank	3-VOA 1-250ml 1-250ml 1-250ml 1-250ml 1-250ml		2 2 2 2 2 2 3							X			X		XXX	X	×
Hater 407/09 Date:	252R	Relinquishe	y Hustado	Received by:	4	Date Time 309 1025 Date Time	Ren	narks			1									

necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the

tical report.

Client		of-Cu	stody Record	Turn-Around	Time:								F	NV	/11	20		1EN	TA	
Client:	West	Fern	Refining	X Standard		1			E									RAT		
				Project Name	ə:	1		-	-NUE-							tal.co			VI	
Mailing	ddress	#5	OCR 4890	SEMI	-ANNICON	2009		49	01 H								M 87	100		
<	RA	mfi	eld, NN 97413	Project #:					el. 50											
Phone	#: 50	35-63	32-416/					TE	er. 50	13-34	+0-31	10000	-		1000 CO. 10	ues	-4107 t	-		
email	or Fax#:			Project Mana	ger:			ly)	Sid									T	TT	1 1
QAVQC	Package:						021	s on	(jes)				SO,	B's	nos				
□ Star			Level 4 (Full Validation)	1		,	s (8	(Gas only)	No.					PO	PC	X				
Accred		□ Othe		SamplerCu	ty Bo.	6	TMB's (8021)	TPH	2	8.1)	÷	Ŧ		NO2,	3082	W				5
	D (Type)			On loe	<u> Z</u>) (=S	ENC	+ +	+	3015	418.	504.	(HAH)	S	103,1	3 / Se	14	(A)			or N
				Sample feat			+ MTBE	ITBE	g po	pou	poq	o	8 Metals	CI,N	icide	AA	ni-V			s (Y
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL NO.	BTEX + N	BTEX + MTBE	TPH Method 8015B (Gas Diese)	TPH (Method	EDB (Method 504.1)	8310 (PNA	RCRA 8 N	Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOADIEY MIZE ON Ly	8270 (Semi-VOA)			Air Bubbles (Y or N)
4/07/09	815A	HZD	MW#1	5-VOA-	HCL		B	B	X	F	Ш	80	æ	AI	8(X	82			Ai
1	\$SOA	T	MW#8		1	-2	1		X							6			+-+	
	915A		M W # 30		8	-3			X			-				X				
	945A		MW#13			-4			X						-	X			+	
	1005		MW# 33			-5			X	-	_					X				
	1010		MW#33 Field Dyne			-16			X							x				
	1035A		MW#12			-7			X			_				X		_	++	
	1045A		MW#35			-8			Ŷ			_				X			1-1	
_	11 Am		MW#37			-9			X							X				
	IIISA		MW#38			- 10			X			1.0				X				
	11204		Field Blank	-		~!			X							X				
				101 4		-12	1	11	X				-		1	X				
Date:	Time: 2pn	Relinguishe	idy funtado	Received by:	2 4	Date Time 809 1030	Ren	narks	S:					1						
Date:	Time:	Relinquishe	ea by: 1	Received by:	2	I Date Time														

C	Clen-of-Custody Reco			Turn-Around	Time:		1												-		
Client:	West.	ern F	Refining	Standard	C Rush				E											CAL	
			the second second second second	Project Name	Cross- Gr	adjent Wells -									ment			TC.		JK	r
Mailing	Address	#50	CR 4990		ANNUAD-	8-2009		49	01 H						erqui			109			
Bio	onfi	010	NM 87413	Project #:		0.001	-			5-34					505-						
Phone	#: 50	5-63	32-4161									-		-	Req	-	and the second second			19	
email o	r Fax#:5	05-63	2-3911	Project Mana	iger:		((ylu	sel)		23			04)				5			
	Package:		,	-			TMB's (8021)	TPH (Gas only)	(Gas/Diesel)					4,S(PCB's			Natuls			
□ Stan Accredi			Level 4 (Full Validation)	A.	1/01		3's (8	(C	Gas					2,PC	2 P(A		N	
		□ Othe	r	Sampler: Ind	1/206		TME	뵵		418.1)	504.1)	(HH)		NON,	808			P	NO	6	Î
	(Type)			Sample item	y de la constanción De la función		3E +	+	801	1418	1 50	0.1	als	NO ₃	les /	-	/OA	Buluesi	gui	Z	Y or
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	EALNO DEALNO	BTEX + MTBE	BTEX + MTBE	TPH Method 8015B	TPH (Method	EDB (Method	8310 (PNA or	RCRA 8 Metals	Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082	8260B (VOA)	8270 (Semi-VOA)	Wace Di	Cation /	Alkaluity	Air Bubbles (Y or N)
81909	950	Hew)	Mw#27	6-10A	HEL	jange salve sa			X					1		X	8	-		1	4
	1		1	liter Ant	n	1										~	X			-	
					HN03	1							X								
				2-125ml	HN03	1												X	X		
				1-125ml	HZSOY	1													X		T
			1	1- Sound	1	1										1			X	X	
8-19.09	1020K	HED	MW#33	6-VOA-	HEL	2			X					2.0		X			-	1	
1	1		1	liter Andy		2								1			X				
				1-500 ml	HN03	2							Х		-	1					
1	1.4			2-125ml	fillenel HN83	2	10			-								X	X	19	
	1			1-125al	H2504	2	24				1	1		1					X		
1	J	1		1-500ml	See 1	2							1	2153	10				X	X	a rie
Date: 8-19-09 Date:	Time:	Relinquishe	- chytowtado	Received by:	8/20/0=	Date Time <u>10:00</u> Date Time	Ren	ρ_{1}	s: R u (7 10 In	fð	1 (cli	en	ti	ia	nt	s	-	00	
H	Decessary	samples subr	nitted to Hall Environmental may be sub-	matracted to other a	renariitad Ishoratoria	This converses as actives of the	in passal		A	(10:	4/0	In	ion	6	ale	and	Ø .	5/2	00	3

Client: Mailing	West	H-50	Istody Record Cefinery CR 4980 NM 87413 32 - 4161	Turn-Around X Standard Project Name Project #:	□ Rush	aturt Wells- 8-2009				A	www ns N	AL v.hal NE - 975	lenv Alb	ironr uque	5 L ment erqu	All.co e, N 345-	30 om M 87 -410	R /		OR	
email o	r Fax#: 5 Package: dard tation AP		23 - 39/1 V. Level 4 (Full Validation)	Project Mana Sample	ay/Bab	E Na S	TBE + TMB's (8021)	TBE + TPH (Gas only)	d 8015B (Gas/Diesel)	od 418.1)	od 504.1)	or PAH)		Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's		(Semi-VOA)	Dissolved Matals	Anion	Hy COr	(Y or N)
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEABNOR OGGREGE/M	BTEX + MTBE	BTEX + MTBE	TPH Method 8015B	TPH (Method	EDB (Method	8310 (PNA	RCRA 8 Metals	Anions (F,C	8081 Pestic	8260B (VOA)	8270 (Semi	WACC Z	ation	Alkalin	Air Bubbles (Y or N)
87997 879-09	10301- 1050A	H20 6120	Field Black MW#32	4-VQA 6-YOA Lite Ambr	Acc	3 4 4			X X							XX	X				
					HNO3 Fitters HISO3 HZSOY	4 4 4 4							X					X	XX	Ý	
	1		Ship Blank "	1-500ml		5													X		
Date: 8/11-09 Date:	Time: 106pn Time:	Relinquish	My Huntado	Received by:	8 20 00	Date Time 1 (): OD Date Time		narks		ð	f	ser 24/	an	hal	y v k	Cl 2al	ien an	Lt ere	100	inte	>

	Wes	tern	B CR 4990	Turn-Around Standard Project Name	Rush	adient Wells- 8-2009				AI w	WAI		SI:	S L	All	30 om	R/		CAL OR	
RIA	on fi	1A A	JM 87413	Project #:	- new car -	0-2007				awkin: 5-345			Fax							
- 101			32-4/6/	1. S. M.	1. 1. 1.			Te	1. 50	0-040	and specific and	and in case of	ysis	STORE OF BRIDE	and the second second	- ALLEY LOSS AN				
			632-3911	Project Mana	iger:		-	(Alt	(les											
QA/QC I	Package: dard		Level 4 (Full Validation)	1			TMB's (8021)	TPH (Gas only)	Gas/Diesel)				PO4,SC	PCB's			Metals			1
Accredi	editation ELAP			Sampler:	ndy Bel		+ TMB	+ TPH	5B (418.1)	(HA		3, NO2,	Pesticides / 8082		4)		nion	C02	(Y or N)
	(Type)	-		Sample Tem	peratures -		BE	HH.	d 801	4 p	or P	tals	I'NC	ides	1	107	Dissolved	An	t a	No
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type		BTEX + MTBE	BTEX + MTBE	TPH Method	TPH (Method	8310 (PNA or PAH)	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pestic	8260B (VOA)	8270 (Semi-VOA)	Wace De	ation /	Alkelint	Air Bubbles
8-19-09	730A	Hzo	€ MW±1	6-VOA	Har			_	X	1 .		-			X	~	-	1	-	
	1		1	liter Anken		1										X				\square
				1-500nl	HN03	Do Not						X								
					Filtered							1					X	X		+
T				1-125ml	HESOY	1												X	18	\square
1				1-500 m		1			-	-							-	X	X	+-1
8-19-09	820A	H20	MW#13	6-V04	HCL	2			X	-	1				Х				1	+
_ [1	1	1	Diter-Anter		2										X				\square
				1-500 ml	HN03	9						X		5						
14		2		2.125ml	Filtered HW03	a			Val				19				X	X		
				1-125 AD	HIZSOY	2	1.23			1			-	1		-		X		
			1	1-500ml	1	Q		1			-							X	X	
Date: 819-09 Date:	Time! PM Time:	Relinquishe	dythurtado	Received by:	10:05	Date Time	Ren	narks	eq "	10f	2 Ch	en	tu	Om 63	力	G	+/	an	uch	-
								ea	ar	ue.	13	31	201	07					-	

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report

Client:	Chain-of-Custody Reco Western Refining gAddress: #50 CR 4990 onfield, NM 87413			Turn-Around] [can sect								AL	
			et INIDY	Project Name Cross	Gradent V S-Gradent V	Vells -						AL v.hal						R/	T	DR	Y
Thaning	0	#S	5 CR 4990	Project #:	nnual 82	2009	1	490	01 H	awki	ns N	VE -	Alb	uqu	erqu	e, N	M 87	109			
K/00	nfiel	& NI	M 87413				-	Te	1. 50	5-34	5-39	And in case of the	Contract of the local division of the local	-	-	345-		7	1		
			32-4/6(Designation								A	naly		Req	uest					
70 10 10	Package:	105-6	52-5811	Project Mana	ger:		21)	TPH (Gas only)	(Gas/Diesel)					SO4	s's			5			
□ Stan			Level 4 (Full Validation)				\$ (80	Gas	as/D					0 ⁴ ,	PCB's			etals			
Accredi			,	Sampler Cin	dy Beb	A second	TMB's (8021)	Hd		1)	-	_		102,6	082	< -		(me	E.	ê	
		□ Othe	r	Onice		<u>ElNossus and ser</u>	+	+	0156	418.	504.1)	PAH)	0	O3, N	s / 8		(A)	dorel	210	U	or N
	(Type)_			Sample lient	oetanne	2 	+ MTBE	+ MTBE	od 8		pol	P	etals	CI'N	cide	(A)	i-VC	155	A	4	X
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type		BTEX + M	BTEX + M	TPH Method 8015B	TPH (Method	EDB (Method	8310 (PNA	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082	8260B (VOA)	827p (Semi-VOA)	War D	attige	1/Caller	Air Bubbles (Y or N)
8-19-09	830A	HZD	MW#13F7	6-10A	Ha	3			V		ш	8	ш	A	8	X	8	-	4	-	A
1	1	1	1	Viter Ambe		3			A		-					(1	X		-		+
				1-500ml	HN03	3	-						V		_		-			+	+
	T			2-125ml		3							~					X	X		
				1-125	H2504	3												-	x		
1			1	1-500ml		3		Ter.	121						1.1.1					V	
8-19-09	915	Azo	MW #26	6-10A	HCC	Ч			X							X					
				liter-Anley	~	4										1	V				
				1-500m	HNO3	Ч							X								
				2-125ml		Y							2					X	X		
1-				1-125ml	H2504	y	-	-	1										X		
-		1		1-soom		4													X	X	
Date:	Time: 10/pm	Relinguishe	-dy H wtado	Received by	0.01	Date Time	Ren	narks PJ	2	of	2	#	5	di	pB	slor	l.	h	1	nie	
Date:	Time:	Relinquishe	ed by:J	Received by:		Date Time	K	2er	Ci	no	ły	CIU	ien	+1	20	Nts 10<	C	at	Jau	nlor	7

C	Charof-Custody Reco			Turn-Around	Time:		1							<u>.</u>					1		
Client:	Western Refining ag Address: #50 CP 4990 somfield, NM 87413 e#: 535-632-4161			Standard	C Rush																
			the second second second	Project Name Pown 6/	dent Wes	ls						v.hal									
Mailing	Address	#50	CR-4990	- ANNICA	2-8-200	9	-25	49	01 H								M 87	109			
Bla	omfi	ett.	UM 97412	Project #:			1		1. 50								4107				
Phone	#: 58	5-63	32-4161										-		Req		-				
email o	r Fax#:	55 6	35-391	Project Mana	iger:		-	(ylr	sel)		5			04)			- 70				
	Package:			10.5			3021	as or	Die		an			4,SC	PCB's			S			
□ Star		-	Level 4 (Full Validation)	A	1101-		TMB's (8021)	(G	(Gas/Diesel)					PO,	2 P(Ì	-			
Accred		□ Othe	r	Sampler in	4 Bob		TME	TPH (Gas only)	SB	418.1)	504.1)	Î		NO	808			Moto	5	Cor	î
	D (Type)			Sample trem				+	801	1418	1 504	r PAH)	als	NO3	les /		AO/	plued	Anio.	Q	Y or
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEARNO NGAR QUAN	BTEX + MTBE	BTEX + MTBE	TPH Method 801	TPH (Method	EDB (Method	8310 (PNA or	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082	8260B (VOA)	8270 (Semi-VOA)	Wace Discolucial	ation /A	Alkalinity	Air Bubbles (Y or N)
8200	8 Am	HED	MW #11	6-VOA	HCL	I STATISTICAL STAT			Y	F	ш	8	œ	A	8	X	80	5	_	-	A
1		1		liter Awken									-	-		-	Y			+	
1				1-Sound	HND3								X			1	~		-	-	-
1				2-125mg	Filtered				1				4	-				V	X	-	
				1-125ml	HIZSOY		1			-	-	-		-		-		X	X	-	-
	1/			1-500ml	U.Cory					-				_		-	-		-	X	
2nog	SIDA	NZO	MW#11 FD	6-104	Hec	2			X	-	-		-			V			X	4	+
	I	1	10,00	liter Anter		2						-		_		X	X			-	+-
				1-Soone	HNO3	2							X				妻	-			
6 52			Provide Party of the	2-125ml	Filters	2			-								*	Y	X		+
1			all and a second	1-125ml	HZSOY	2	12		-							-	274	0	X	-	
19 8.				1-500ml	-30)	2		3.4				2-1							x	X	-
Date:	Time: 235p	Reinquishe	dy Hurtado	Received by:	10:05	Date Time	Ren	narks	"Pg	1-	52	/		2					<u>/ </u>	<u>/ 1</u>	
Date:	Time: '	Relinquishe	ed by:	Received by:		Date Time															

essarv	samples submitted to Hall Environmental may be subcontracted to other accordited laboratories	This converse as notice of this possibility	Anicosch manhanded data will be atractic astrony of the state of the s

Client:	hain	of-Cu	stody Record	Turn-Around						F	iA	LL	E	NV	/IF	05	N	ME	N	ΓΑΙ	
	Wes	Pern	Refining	Standard	C Rush															OR	
				Project Name	S Gradien	t wells										tal.co				6	199
Mailing	Address	#50	CR 4990	-ANN	nal-8-2	009	1.60	49	01 H	awki								109			
Bloo	mfi.	eld.	NM 87413 32-4161	Project #:						5-34						345-					
Phone	#: 50	5-63	32-4161										ALC: NOT THE OWNER.		-	uest					
email o	r Fax#:	8-63	32-391	Project Mana	iger:		-	(ylı	(las					(4)							
QA/QC I	Package:						021	IS OF	(Gas/Diesel)					4,SC	PCB's			Mateuls			
□ Stan			Level 4 (Full Validation)	1			s (8	(Ga	3as/					PO	2 PC			tal	2	N	
Accredi		□ Othe		Sample	ly Bob		TMB's (8021)	TPH (Gas only)	3B (0	÷.	(1.	Ŧ		NO ₂	808	1			1	0	5
			·		yZ_√es gefelurei		+	+	3015	418	504.	(HAH)	S	40 ₃ ,) S8		(AO)	Dissolvel	Anjor	4	orl
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type		BTEX + MTBE	BTEX + MTBE	TPH Method 8015B	TPH (Method 418.1)	EDB (Method	8310 (PNA or	RCRA 8 Metals	Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082	8260B (VOA)	8270 (Semi-VOA)	W/RCC Di	Cation / 4	1 kalinity	Air Bubbles (Y or N)
82009	Silva	HZD	MW#12	6-VOA	HCL	3			V	-	ш	00	æ	A	80	X	80	-	-	X	A
1	I	1	NW # 12	lity-Ante		3	-		A	-	-	-					∇		-	-+	
+-	1					3	-		-	+	-	-	1			_	X	-	-	-	
+-				1-500ml	HNO3 Sillered HNO3	2	-			-	-	-	X	_	_	_	-			-	-
+				2-125ml		3	-		-	-+	_	_				-		X	X	-	-
				1-125ml	HIZSOY		-		_		-	_		_		- 5-1			X	-	
1	1	1	4.14.21	1-500ml		3	-		14	-	-	-			_		-		X	X	
82009	920A	Hzo	MW #34	G-VOA-	HEC	4	-		X	-		_			1	X	•				
-1-				liter Anke		4								1			X				
				1-500ml	HNOS	4	1						X		1				1.14		
				2-125ml	filtered HN03	4								_				X	X		-
1				1-125 ml	HZSOY	4										-	-	1	X		
1		10		1-Sound		4													X	X	
Date:	Time: 235p Time:	Relinquishe	auturtado	Received by:	IN	Date Time Date Time Date Time		Pg d		F2	-			1	úp	BI	an	k	A	*#	5
	ne .	samples subr	nitted to Hall Environmental may be sub	contracted to other a	condited laborate	his sanues as noting of this						data:		daged	1		-				

	Wesi	-of-Cu	Istody Record Refining	Turn-Around Standard Project Name	□ Rush	ient Wells				A		AL	YS	SIS	5 L	AE	30			OR	r
Mailing	Address	#50	CR 4990		Annual - 8	-7.009	12	49	01 H		ins N							109			
Bla	omfi	ell,	NM 87413 32-4161 32-3911	Project #:							15-39				184		4107				
Phone	#: 50	5-6	32-4161									-	naly	Contractor in	No. of Concession, name	The second second					
email or	r Fax#:	05-6	32-3911	Project Mana	iger:		((ylı	sel)		3			04)	-						
QAVQC I	Package: Idard		Level 4 (Full Validation)				TMB's (8021)	(Gas only)	(Gas/Diesel)					CI,NO3,NO2,PO4,SO4)	PCB's		-	Netals		2	
Accredi		□ Othe	r	Samperind			TMB's	TPH (5B (G	418.1)	1.1)	(H		NO2,	8082			red N	Z.	00	(N
				Samplestern		 	3E +	+	8015B	1418	1 504	r PA	als	NO3	les /		VOA)	Dissoluel	Anio	1	Y or
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HELENO NGA 2015	BTEX + MTBE	BTEX + MTBE	TPH Method 8	TPH (Method	EDB (Method 504.1)	8310 (PNA or PAH)	RCRA 8 Metals	Anions (F,CI,	8081 Pesticides	8260B (VOA)	8270 (Semi-VOA)	Wace Di	ation /	Alkaliar	Air Bubbles (Y or N)
8-20-09	945A-	HZO	MW#35	6-VOA	HLL	10100			X	1			L	4	0	×	0		7	1	A
_1		1	1	liter Ambr	_	1								-			X				
				1-500ml	HNO3			12					×	-							
					filtered HNO3	Space		2	-									X	X		
		1		1-125 1	HESOY	and the second	34			1			1			-			X		-
V		1		1-500m		1													X	X	+
8-2009	1005	120	MW#37	6-VOA	HCL	2			X							Ż				-	-
	1	1		liter tomber		2											X				1
T				1-sound		2		1		-			X	21			-				
		1		2-125ml	filtered HNO3	2		3	1						1			X	X		
				1-125 m	HESOY	2					1	20	A.,		0				X		
		11		1-500 ml		2									1				X	X	
8-20-09	Time:	Relinquish	duffluttado	Received by:	\$ 10:00	Date Time Date Time	Ren	nark	^{s:} P_	3/1	ar2					1		-			

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Client:	hain West	eral	Refining	Turn-Around																TAL	
				Project Name DOWN	Fradjent p	viells										tal.co		R	110	OR	Y
Maining	Address	#50	0 CR 4990	-Anne	al-8-200	9	1	490	01 H	awki	ns N	IE -	Alb	uque	erqu	e, NI	M 87	109			
			NIC OTTI	Project #:			1.20	Те	1. 50	5-34	5-39	975	F	ax	505-	345-	410	7			1
			32-4/61									A	naly	sis	Req	uest	I				
		505-6	32-3911	Project Mana	iger:		-	only)	(les					04)							
QA/QC I	Package:		VLevel 4 (Full Validation)			E	(8021)	(Gas o	(Gas/Diesel)	-			۱. 	O4,S(PCB's			Metalls		1	
Accredi	itation	1		Sampler	delbob	S. B. S. S.	TMB's	TPH (()	()	-		10 ₂ ,P	8082			1 Ne	M	y , Coz	(
		□ Othe	r	Onice			+	+	8015B	118.	504.	HAG		03,1	-		(A)	Dissolved 1	nie	Y	or N
	(Type)	—		Sample Rem	perawire!	0.4	MTBE	MTBE	6 pd	pod 4	po	or	etal	N'IC	cide	A)	i-VC	1880	X	7	2
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type		BTEX + M ⁻	BTEX + M	TPH Method	TPH (Method 418.1)	EDB (Method 504.1)	8310 (PNA or PAH)	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides	8260B (VOA)	8270 (Semi-VOA)	WaceD	a	Alkalini	Air Bubbles (Y or N)
8.20-09	1040	#20	MW# 38	6-VOA-	Hec	Z		a	X		ш	80	Ľ.	A	8	ω X	80		-	A	A
1	1	1		liter Ander		3										-	X				-
				1-500 ml	HNOS	3							×		-						
				2-125 N	fittered HNOD	3										1.2	33	X	X		
				1-125ml	HESDY	3									181				X		
1	1	./		1-soon	1.00	3								1	1		1.	1	X	X	
8-20-99	1030	#20	Field Black	4-VOA	HUL	4	-		X				2	1	1-1	X		N.	1	1	
			Trip Blank is		and Manager	- 15															
				<u>.</u>				_	-	-	-	-	_	_	-				-	-	1
_							4					12	2		2	-	3	-		-	
_				Δ.	\bigcap							1				-					
Date:	Time:	Relinquishe	montantado	Received by:	10:1	J NHOI	Ren	harks	P(92	0	5.	2	986 1	2			200	N N		1
Date:	Time:	Relinquishe	nitted to Hall Environmental may be subcr	Received by	orradited laborate	Date time							20.0	1		1				J.Y.	

Client:	West	of-Cu	Istody Record Refining	Turn-Aroun															NT	AL
			CR 4990	Project Nan NoRth An	Barrier M Mal - 8-	VALL-		10	01 H		www	w.ha	llenv	iron	ment	tal.co			410	IK I
Blac Phone	mfi+ #: 50	10, N 5-63	IM 87413 2-4161	Project #:					el. 50			975	F		505-	345-	4107			
email o	r Fax#: < Package:	505-6	V Level 4 (Full Validation)	Project Mar			TMB's (8021)	TPH (Gas only)	(Gas/Diesel)			N N N		(Section 1	PCB's		•	They any	-	
		□ Othe	er	Sampler.(' On Ice and Sample Te	indy/Bob		+	+		1418.1)	I 504.1)	r PAH)	als	NO ₃ ,NO ₂ ,	les / 8082			MTBERB	ois	Y or N)
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative	HEALNO ONREG	BTEX + MTBE	BTEX + MTBE	TPH Method 8015B	TPH (Method	EDB (Method	8310 (PNA or	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides	8260B (VOA)	70 (Semi-	8240-1	De0 - 80	Air Bubbles (Y or N)
8-18-09	815A	H20	OW 25+70	6-VOA	HCL)	1		X							-		×		
	835A	1	OW 23 +90	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1	2	1.20		X	1						1		X		
	850A		OW 23+10			3	100	10	X			14	2		24			X		
	915A-		OW 22+00			4			X									X		
	945A		OW 16+60			5			X									X		
	JOAn		OW 11+15			6			X								ľ	X		
	1020A	1	OW 3+85	-		7			X	1			1					X		
	1035A		OW 0+60			8			X								7	X		
_	1050A		CW 0+60			9	1						1		16.4		-	X	X	
	1055A		CW OthoFD	See and	1.00	10	1								Case		1	X	V	Sec. 27
	130N		LW 25+95	6-VOR		11				14					20			X	X	Sec. 7.
1	1115A		Field Blank	4-VOA	Hec	2	12		X									X	-	
Date: 378/09 Date:	2450	Relinquish	indy Amtado	Received by:	\$ 10:05	Date Time 81909 Date Time	Rer	nark	5:											

Client: Mailing	Address	THE R	Stody Record EFINING CR 4990 NM 874/3 32 - 416/	Turn-Around Standard Project Name Project #:	□ Rush	wells- 1-8-2009				A	NWW.	halle E - /	rsi enviro Albuq Fax	Inmer uerqu	LAI Ital.co Je, N	om M 87	7109	ATO	TAL OR1	
email o QA/QC Stan Accred	r Fax#:2 Package: Idard itation	05-6	Level 4 (Full Validation)	Project Mana	Iger:		MTBE + TMB's (8021)	MTBE + TPH (Gas only)	TPH Method 8015B (Gas/Diesel)	TPH (Method 418.1)	EDB (Method 504.1)	AH)	Anions (F.CI.NO., NO., PO., SO.)	/ 8082 PCB's			Disso lued Mehals	Amion	into/Or	Air Bubbles (Y or N)
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	<u>.</u> ::	BTEX + N	BTEX + N	TPH Met	TPH (Me	EDB (Me	8310 (PN	Anions (F.CI.NC	8081 Pesticides	8260B (VOA)	8270 (Semi-VOA)	When by	2	Alkalu	Air Bubble
8309	10AM	HU	MW#4	6-10A	HCL	1			\times	-	_	-		-	X				-	1
				liter-Ante						-		K	-	-	-	X				+
				1-500ml	HNO3 FILLEN		1070			-		4	4	-		-	Ve			+
+				2-125m			-+-	_		-		+	-	-		-	X	X	_	-
1-				1-125ml	HOSDY					-	+		+-	+	-	-	-	X	-	-
1				1-500ml		1.	+	-	-	+		+	+	-	-	-		X	X	+
							-		-	+		+	+	+	-		\vdash	-	+	+
										-	-	1	-	1					+	+
																				T
				0				-	1	-	-	-	+	1	-			-	-	1
Date: 82409 Date:	Time: 1450M Time:	Relinquish	ndy Autado	Received by:	5 10:3	Date Time 5 8 2 5 09 Date Time	Rer	narks	s:			<u> </u>	_			Pres &	2			
	f necessary,	samples subr	nitted to Hall Environmental may be sub	contracted to other ad	ccredited taboratori	This serves as notice of	f this possi	bility.	Any su	b-contra	acted d	ata wi	f þe cle	arty not	ated or	n the a	ina	repor	rt.	

Mailing	Address	tto	Istody Record Refining CR 4990 M 87413 32-4161	Turn-Around A Standard Project Name Project #:	C Rush	Wells - 8-2007			01 H	awki	N. www ns N	AL v.hal NE - 975	Ilenv Alb	ironi ouque ax	5 L	AE al.co e, NN 345-	30 0m VI 87 4107	RA 109	T	OR	Y
email o	r Fax#: Package: Idard	505-6	NLevel 4 (Full Validation)	Project Mana	ager: by 1 Bob		TMB's (8021)	TPH (Gas only)	(Gas/Diesel)					-	PCB's		T	ved Nuctads		2	
Date	AP (Type) Time	□ Othe Matrix	sample Request ID	Container Type and #			BTEX + MTBE + TM	BTEX + MTBE + TP	TPH Method 8015B	TPH (Method 418.1)	EDB (Method 504.1)	8310 (PNA or PAH)	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082	8260B (VOA)	8270 (Semi-VOA)	Wace Dissolved	ATTON Anion	11kakinty/102	Air Bubbles (Y or N)
8-24-09	830A	HZD	RW #1	6-VOA	Hec)		Ξ	X	4	ш	80	R	A	æ	X	8	-	7	-	A
				lite - Amb	r	1											X				
				1-Soome	HNO3	1							X						-		12
			/	2-125ml) 1												X	×		
				1-125m	HISON	1.1													×		
	A		/-	1-500ml		1			1										X	X	
	GIDA		MW#31	6-VOA	HLL	2		_	X							\times				12	
			/	liter Anter		2	-	1									\times			-4	
				1-Sound	HN03	2							X					1			
	-				HNO3 RELLA													×	×	10	
				1-125ml	H2501	2		- of	-									-	4		
Date:	Time:	Relinquishe		1-5000	h	2					14			1		2.0	-	4	X	X	
Sidd of Date:	ISAN Time:	Relinquishe	indy thitado	Received by:	10:2	Date Time Date Time	Ren	narks	s: Yg	1.	fo	2							3	2	

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Client: Mailing	Nest.	#50 HED	CR 4890 NM 87413	Tum-Around A Standard Project Name Project #:	C Rush	Wells - - 8-2007			01 H	A v awkii	N N	AL v.hal IE - 975	YS lenv Alb F	ironr uque	nent erque	All tal.co e, N	30 om M 87 4107	RA 109		DR	
email o	r Fax#: g Package: dard tation AP	505-6	Level 4 (Full Validation)	Project Mana Sampler:	iger: ndu/Eab	<u> </u>	BE + TMB's (8021)	BE + TPH (Gas only)	d 8015B (Gas/Dlesel)	d 418.1)	bd 504.1)	or PAH)	-	Anions (F,CI,NO ₃ , NO ₂ , PO ₄ , SO ₄)	PCB's			rissolund Mathells	Anion	fr/co2-	(Y or N)
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type		BTEX + MTBE	BTEX + MTBE	TPH Method 8015B	TPH (Method	EDB (Method	8310 (PNA	RCRA 8 Metals	Anions (F,C	8081 Pesticides / 8082	8260B (VOA)	8270 (SemI-VOA)	A JOBM	Cation	Alladin	Air Bubbles (Y or N)
8-24-69	920A	120	MW#31FD	6-VOA-	HCL	3			Х							X					
1	/	1		liter Anter 1-500 nD	HNOJ	3				-	-	-	V		_	-	X	-	+	-	+
	1			2-1252	fitude HNO3	3	See a.			+	-	1	4					X	X	1	+
1		1		1-1252	HIZSON	3										1	13		X	1	
1		1	M OL IM	1-500mg		3							1	1					X	X	
			Ship Blank P			Ч				-	-							-			-
											-							-			+
				20															-		+
Date:	159pm	Relinquishe	dy Anotato	Received by: Received by:	\$ 10:35	Date Time	Ren	narks	P	gë	20	fa	2		. 1	-					

	West	erv F	Lefining CR 4990	Turn-Around	Territ and	Vells 8-2009				A	NA www.h	LY	SI	S L	AE tal.co	30	RA		DR	
Bla	omf	ield, 1	NN 874/3 32-4161	Project #:	INNHOX -	0 200)					is NE 5-397	5	Fax	505-	345-	4107				
email or	Fax#: 2	55-6	32-391	Project Mana	ager:			()	(le	1		Ana	lysis	Req	uest		and			
			KLevel 4 (Full Validation)		1 /		(8021)	Gas on	as/Dies				04'SO	PCB's			A May		2	
	AP	C Othe		Sampler:	indy Bo	þ	+ TMB's	+ MTBE + TPH (Gas only)	15B (G	18.1)	04.1) AHN		3,NO2,F			(1	Solve	2	11.02	r N)
EDD	(Type)		1	Saucent	DETECTOR	i she has a start of	MTBE -	TBE .	09 PO	od 4'	od 5(SI'NO	cides	(¥	10/-	Ā	Ano.	4	N o
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type		BTEX + M ¹	BTEX + M	TPH Method 8015B (Gas/Diesel)	TPH (Method 418.1)	EDB (Method 504.1) 8310 (PNA or PAH)	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082	8260B (VOA)	8270 (Semi-VOA)	Wacc	ation	11 Kallin	Air Bubbles (Y or N)
8.2609	Ilan	#20	RW # 23	6-10A-	HCL	/			Ź			1 CZ	A	8	$\frac{\infty}{\lambda}$	80	-	7	V	A
-				Dity Anter		1			15.4							×			1	+
				1-500nl	HN03	1						1>					1	1	-	1
	1			2-125m	Filter HNO3	. /					1	T					X	X	-	+
	1			1-125m	HESOY	1												X		1
[.	1	/	/	1-500ml		- 1					T		T					X	X	Ť
828	113A	420	MW#40	6.VOA	HCL	2			X						X				1	+
_/	1			liter Amber	-	2										X			1	1
1				1-500nl	HNO3	2						X	1	10						T
1		1		2-125ml	HNO3	2											×	X		
1	1	1		1-125 ml	HESQY	2							-				1	X		
1				1-500 ml Received by:	/	2	14			1								X	X	
\$125-09	Time: 130 p Time:	Relinquish	by Amtado	Received by:	10:00	Bate Time	Ren	FT of	s: iip	B	lar	Je	#	3 '	R					

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Client: Mailing	Weste Address	#50	Stody Record Sining CR 4990 M 87413 2-4161	Froject #:	□ Rush	Wells 8-2009			01 H	awki	www.	AL w.hal NE - 975	llenv Alb	ironn ouquu	5 L ment erqui	AE al.co e, NI 345-	30 om M 87 4107	R /		TAL OR'	
email o QA/QC I Stan	r Fax#: 2 Package: dard	505-6	E Level 4 (Full Validation)	Project Mana	, ,		TMB's (8021)	TPH (Gas only)	(Gas/Diesel)						PCB's		1	Methls	alance	2	
Accredi	AP	Other		Sampler: In Onderstand		E-No	\$ +	+		1418.1)	(Method 504.1)	r PAH)	als	NO3,NO	tes / 808			issolved	ACT D	4/10	Y or N)
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type		BTEX + MTBE	BTEX + MTBE	TPH Method 8015B	TPH (Method	EDB (Method	8310 (PNA or PAH)	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082	8260B (VOA)	8270 (Semi-VOA)	Wace Di	ahord A	AI Kalimit	Air Bubbles (Y or N)
8-24-09	11154	Hed	RW#15	6.Vor	Hec				X							X	-				-
	1. 10		1	liter Antor		l		-									X			175	1-
				1-50 A	HN03	1						1.1	X							1	
				2-125 ml	filtered 3	1												X	×		
	1. 18 10 PM			1-125A	HZSOY	Land (the set					11								X		7. J.
				FSOM	12.1.1	Last have	ie.			1									X	\times	
1	1240A		MW #30	6-VOA-	HCL	2			\times							X	1				
1				liter Amer		2											X	XIIIA	1		
-				1-500al	HN03	2							×				- 14		T		1
				2-125ml	filtered HNO3	2												X	X		
-				1-125m	HESDY	2	1				-							_	X		
Date:	Time:	Relinquishe	d by: []	Received D:	0	2. Date Time	Ren	nark	5	1	- (-				XI	XL	
5.24.99 Date:	152.pm Time:	Relinquishe	ndy Hurtado	Received by:	n & 10:3	T 8 25 05 Date Time	Ren		13	/	0+	2									

West	èrn R	Zefining	M Standard	D Rush	y Wells -8-2009		49		-	WWV	AL	YS lenv	SIS	5 L	AI	BO	R/	AT		
omfi	eld.		Project #:											1						
#: 5	25-6	32-4161	a stranger a			a share				0.01	-	and the second		and the second second		100		-	-	
or Fax#;	05-6	32-3911	Project Mana	iger:	1995 I.	((ylu	sel)					04)							
Package: ndard		🖌 Level 4 (Full Validation)	1			s (8021	Gas of	as/Die					PO4,SC	PCB's			lutuls	mee	2	
itation AP	□ Othe	r	Sampler (dy Bob		TMB'	HdT -		8.1)	4.1)	(HF		3,NO2,	/ 8082		()		Balo	9	(N
(Type)			Samplehien			<u>3</u> 日 +	н	80	d 41			tals	NO,	des	()	VOA	15So	(BH	X	Y or
Time	Matrix	Sample Request ID	Container Type and #	Preservative Type		+	3TEX + MTI	FPH Method	FPH (Metho	m	(PNA)	RCRA 8 Me	Anions (F,CI	3081 Pestici	3260B (VOA	1270 (Semi-	Wacc D	ation An	Allcaluni	Air Bubbles (Y or N)
1156	HEO	MW#44	6-VOA	HCL	3			X		-		-	4	8	X	8	_	U	×	4
		(3										~	X				
				HNQ3	3						14	X		-						
			2-125ml	fitted HND3	3	1											X	X		
			1-125ml	HESDY	3													X		
j		/	1-500ml		3					_								X	X	
125p	HED	Field Blank	4-VOA	Her	4			X						-	X			_		_
		Jup Blanh *			5					-							_		+	_
										1										
Time: 153p- Time:	<u> </u>	non Antado	Received by:	\$ 10:35	Date Time 8 25 8 9 Date Time	Ren	narks	" P	12	۱ ۹		2				h				
	Address Address Address Package: ndard itation AP (Type) Time 156 1256 Time: 156	Western Relinguishes	Time: Relinquished by: Time:	WesTern Refining Address: <u>H</u> :50 CR <u>4980</u> Project Name Project Name Project Name Project Name Project Name Project Name Project Mana Project Mana	NesTern Refining Project Name: Refiner Address: <u>#±50 CR 4990</u> Project Name: Refiner Address: <u>#±50 CR 4990</u> Project Name: Refiner Annual Project Manager: #±505 - 632 - <u>391</u> Project Manager: Package: Adard <u>M</u> Level 4 (Full Validation) Itation AP □ Other O(Type) Time Matrix Sample Request ID Container Type and # Preservative Type and # Preservative Type and # Hule IISP Heo MW #44 & VOA Hcc ISD Heo MW #44 & VOA Hcc ISD Heo MW #44 & VOA Hcc ISD Heo Field Blank HWA Hcc Jup Blank ANDA Hcc Time: Relinglighed by: Time: Relinglighed by: Tim	Western Refiving Standard Rush Project Name: Refinery Wills Address: ± 50 CR 4980 Annual -8 2009 Indide M 87413 Project Name: Refinery Wills Indide M 87413 Project #: #: #: 505 - 632 - 4161 Project Manager: Package: Madrd Individual (Full Validation) Itation Sample Request ID Container AP Other Sample Request ID Ontrope Sample Request ID Container ITIME Matrix Sample Request ID Container ISP H20 MW#44 6 VOA HC - ISP H20 MW#44 6 VOA HC - ISP H20 MW#44 6 VOA HC - ISP H20 Field Blank 3 3 I Intervelop Sample Request ID Sample Representative Sample Representative ISP H20 MW#44 6 VOA HC - Sample Representative ISP H20 Field Blank H035 Sample Representative	Western Refining # Standard Rush Address: # 50 CR 4990 Annual -8 2009 Inddress: # 50 CR 4990 Project Name: Refinery Wills Inddress: # 505 - 632 - 4/61 Project Manager: Package: Project Manager: Project Manager: Indard bl Level 4 (Full Validation) Bampler Lindy / Bob Project Manager: Sampler Lindy / Bob Project Manager: Project Manager: Other Sampler Lindy / Bob Itation AP Other Sampler Lindy / Bob Time Matrix Sample Request ID Container Time Matrix Sample Request ID Container ISD H20 MW #44 H204 H2023 IISD H20 MW #24 Integral Sampler IISD H20 Field Blank H204 Sampler IISD H20 Field Blank H204 Sam	Western Refining & Standard Rush Address: #roject Name: Refinency Wills Address: #roject Name: Refinency Wills Froject Name: Refinency Wills Tom field NM 87413 Project #: #: 505 - 632 - 4161 Project Manager: Package: Image: Refinency Project Manager: Madrad Mexel (Full Validation) Sampler (indw/fbbb Project Manager: Image: Refinence Image: Refinence Package: Image: Refinence Image: Refinence Matrix Sample Request ID Container Preservative Time Matrix Sample Request ID Container Preservative Ibsp H20 MW#444 Image: Refinence Image: Refinence Ibsp H20 MW#444 Image: Refinence Image: Refinence Ibsp H20 MW#444 Image: Refinence Image: Refinence Ibsp H20 Miles Image: Refinence Image: Refinence Ibsp H20 Field Blank HVDA H20 Image: Refinence	Western Refining # Standard Rush Address: #50 CR 4980 Ammal -872009 4901 H Impired M NN 87413 Project Name: Refiner y Wells Address: # 505 - 632 - 4161 Project Manager: 1000 geg yeg # 505 - 632 - 4161 Project Manager: 1000 geg yeg # 505 - 632 - 4161 Project Manager: 1000 geg yeg # 505 - 632 - 381 Project Manager: 1000 geg yeg Package: Address Ammal Abb Address # Level 4 (Full Validation) Sampler (indu/ fb0b AP Other Sample Request ID Container Time Matrix Sample Request ID Container Time Matrix Sample Request ID Container 1/500 M 1/500 M 4/023 3 1/156 Heo MW#444 6/004 Hoc 4 X 1/1250 Heo Time 1-125m H250y 3 1/1250 Heo Field Blank 4/00A Hoc 4 X 1/250 Heo Field Blank 4/0A 1 1 1/250 Heo Field Blan	Western Refining # Standard Rush Address: #:50 CR 4980 Annual -8:200 Indirection With 87413 Project Name: Refining Withs Indirection With 87413 Project #: #: 505 - 632 - 4121 Project #: Indirection #: 505 - 632 - 4121 Project #: Indirection #: 505 - 632 - 4121 Project Manager: Indirection Package: Indirection Sampler Indirection Project Manager: Package: Indirection Sampler Indirection Project Manager: Itation Sampler Indirection Project Manager: Indirection Itation Sampler Lindir / BOb Indirection Project Manager: Itation Sampler Lindir / BOb Indirection Indirection Time Matrix Sample Request ID Container Project Yall X IIS6 Heo MW # 44 Indirection X X IIS6 Heo MW # 44 Indirection X X IIS6 Heo MW # 44 Indirection X X IIS6 <td>Western Refining # Standard Rush Address: #:50 CR. 4980 Annual -8:200 Indires: #:50 - 632 - 4161 Project Name: Refining Wills In Faxt: 50 - 632 - 4161 Project Manager: It reatt: 50 - 632 - 4161 Project Manager: It reatt: 50 - 632 - 4161 Project Manager: It reatt: 50 - 632 - 381 Project Manager: Itation Sampler (100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100</td> <td>Western Refining Istandard Rush Address: #:50 CR 4980 Annul -8:2009 Www.hal Address: #:50 CR 4980 Annul -8:2009 Www.hal Indicates: #:50 CR 4980 Annul -8:2009 Www.hal Indicates: #:50 CR 4980 Annul -8:2009 Www.hal Interset: #:505 - 632 - 4/61 Project #: Tel.505:45:397 Interset: #:505 - 632 - 4/61 Project Manager: Interset: Interset: Package: Interset: Interset: Interset: Interset: Interset: Interset: Interset: Interset: Interset: I</td> <td>Western Refining & Standard Rush Address: #:50 CR 4820 Annual -8:009 Indiress: #:50 CR 4820 Annual -8:009 Image: Annual -8:009 Www.hallenv Image: #:505 - 632 - 4161 Project Manager: Image: #:505 - 632 - 4161 Project Manager: Image: #:505 - 632 - 381// Project Manager: Itation AP Other Image: Itation Sampler (indw/ / Bob Project Manager: Image: Itation Sample Request ID Container Type Itation AP Image: Image: Itation AP Image: Image: Itation AP Image: Image: Itation AP Image: Image: Itation AP Image: Image: Image: Itation AP Image: Image: Image: Image: Itation AP Image: Image: Image: Image: Image: Itation AP Image: Image: <t< td=""><td>Western Refining & Standard Rush Address: #:50 CR 4820 Analysis Tomfield, NN 87413 Project Name: Refinery Wills #: 525 - 632 - 4161 Project Manager: (i) (i) (i) (i) (i) (i) (i) (i) (i) (i)</td><td>Western Refining M Standard Rush Mall Environment Address: #50 CR. 4P20 Annual -8 2009 Multis Address: #50 CR. 4P20 Annual -8 2009 Multis Indicess: #50 CR. 4P20 Annual -8 2009 Multis Indicess: #50 CR. 4P20 Project #: Holest Multis Indicess: #505 - 632 - 4161 Project Manager: Analysis Ro Prodection Sampler Indy / Bob Analysis Ro Analysis Ro AP Other Sampler Indy / Bob If the group Wild of the group Wild of</td><td>Western Refining Mathematical Rush Mathematical Rush Address: HSSO CR. 4P20 Annual -8:200 Multis Address: HSSO CR. 4P20 Annual -8:200 Annual -8:200 Indicess: HSSO CR. 4P20 Project Manager: Annual -8:200 Indicess: HSSO CR. 4P20 Project Manager: Annual -8:200 Internation Apple: Project Manager: Annual -8:200 Project Manager: Project Manager: Annual -8:200 Annual -8:200 Address: Hall Standard If Hold Standard If Hold Standard If Hold Standard Are Internation Sampler Internation Sampler Internation If Hold Standard If Hold Standard If Hold Standard Itation Apple: If Hold Standard Itation If Hold Standard If Hold Standard</td><td>Western Refuire Mattern Rush Address: H:50 CR 4520 Analysis Labo Indiress: H:50 CR 4520 Analysis Request The project Name: Refuery Wills Analysis Request The project Name: Refuery Wills Analysis Request The project Name: Refuery Wills Analysis Request The package: Matrix Sampler (indy / Bob Analysis Request AP Other Sampler (indy / Bob Refuery Wills Time Matrix Sample Request ID Container Preservative Type Time Matrix Sample Request ID Container Preservative X X Ibsp H20 H20 H20 H20 X X X Ibsp H20 H20 H20 X X X X Itsp H20 MW#44 F/0A A X X X X Ibsp H20 H20 H20 H20 H20 X X X</td></t<><td>Western Refiving Matter Rush Address: H:50 CR 4980 Project Name: Refivery Wills Address: H:50 CR 4980 Project Name: Refivery Wills Topic III MIN. 87413 Project #: 401 Hawkins NE - Albuquerque, NM 87109 Tel: 505 - 633 - 4161 Project Manager: Image: Rest Soc. 433 - 38/L Project Manager: Package: Matrix Sampler Lindy / Bob Image: Rest Soc. 432 - 38/L Project Manager: Time Matrix Sampler Lindy / Bob Sampler Lindy / Bob Image: Rest Soc. 432 - 400 Big Big Big Big Big Big Big Big Big Big</td><td>Western Refinitive Italiand Rush Inddress: #550 CR 4980 Analysis Laboration Time Market Bits Analysis Laboration Inddress: #550 CR 4980 Analysis Caboration Www.hallenvironmental.com Time Market Bits Analysis Caboration Www.hallenvironmental.com Project #: #505 - 6320 - 91/61 Project Manager: Italiant Analysis Cabulation Packsoge: Market Bits Project Manager: Italiant Italiant Italiant Project Manager: Italiant Italiant Italiant Italiant Italiant Italiant Italiant Package: Italiant Sample Cindy / Bob Italiant Italiant</td><td>Western Refiniting Istandard Rush Inddress: #550 CR 4980 Analysis Laborator Inddress: #550 CR 4980 Analysis Caborator Inddress: #550 CR 4980 Analysis Caborator Inddress: #550 CR 4980 Analysis Caborator Inddress: #550 CR 4980 Project #: If Sob - 6320 - 91/61 Project Manager: If Sob - 6320 - 91/61 Package: If Level 4 (Full Validation) Barnpler (Indw / Bock Nature Sampler (Indw / Bock If Sob - 6320 - 91/61 Package: If Level 4 (Full Validation) Barnpler (Indw / Bock Interime Matrix Sample Request ID Container Time Matrix Sample Request ID Container Type and # Type 3 If Sob - 42000 X ISSp Heo MW #444 If Vot Hec X X ISSp Heo MW #444 If Vot Hec X X ISSp Heo MW #44 If Vot Hec X X X ISSp Heo MW #44 If Vot Hec</td></td>	Western Refining # Standard Rush Address: #:50 CR. 4980 Annual -8:200 Indires: #:50 - 632 - 4161 Project Name: Refining Wills In Faxt: 50 - 632 - 4161 Project Manager: It reatt: 50 - 632 - 4161 Project Manager: It reatt: 50 - 632 - 4161 Project Manager: It reatt: 50 - 632 - 381 Project Manager: Itation Sampler (100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100 / 100	Western Refining Istandard Rush Address: #:50 CR 4980 Annul -8:2009 Www.hal Address: #:50 CR 4980 Annul -8:2009 Www.hal Indicates: #:50 CR 4980 Annul -8:2009 Www.hal Indicates: #:50 CR 4980 Annul -8:2009 Www.hal Interset: #:505 - 632 - 4/61 Project #: Tel.505:45:397 Interset: #:505 - 632 - 4/61 Project Manager: Interset: Interset: Package: Interset: Interset: Interset: Interset: Interset: Interset: Interset: Interset: Interset: I	Western Refining & Standard Rush Address: #:50 CR 4820 Annual -8:009 Indiress: #:50 CR 4820 Annual -8:009 Image: Annual -8:009 Www.hallenv Image: #:505 - 632 - 4161 Project Manager: Image: #:505 - 632 - 4161 Project Manager: Image: #:505 - 632 - 381// Project Manager: Itation AP Other Image: Itation Sampler (indw/ / Bob Project Manager: Image: Itation Sample Request ID Container Type Itation AP Image: Image: Itation AP Image: Image: Itation AP Image: Image: Itation AP Image: Image: Itation AP Image: Image: Image: Itation AP Image: Image: Image: Image: Itation AP Image: Image: Image: Image: Image: Itation AP Image: Image: <t< td=""><td>Western Refining & Standard Rush Address: #:50 CR 4820 Analysis Tomfield, NN 87413 Project Name: Refinery Wills #: 525 - 632 - 4161 Project Manager: (i) (i) (i) (i) (i) (i) (i) (i) (i) (i)</td><td>Western Refining M Standard Rush Mall Environment Address: #50 CR. 4P20 Annual -8 2009 Multis Address: #50 CR. 4P20 Annual -8 2009 Multis Indicess: #50 CR. 4P20 Annual -8 2009 Multis Indicess: #50 CR. 4P20 Project #: Holest Multis Indicess: #505 - 632 - 4161 Project Manager: Analysis Ro Prodection Sampler Indy / Bob Analysis Ro Analysis Ro AP Other Sampler Indy / Bob If the group Wild of the group Wild of</td><td>Western Refining Mathematical Rush Mathematical Rush Address: HSSO CR. 4P20 Annual -8:200 Multis Address: HSSO CR. 4P20 Annual -8:200 Annual -8:200 Indicess: HSSO CR. 4P20 Project Manager: Annual -8:200 Indicess: HSSO CR. 4P20 Project Manager: Annual -8:200 Internation Apple: Project Manager: Annual -8:200 Project Manager: Project Manager: Annual -8:200 Annual -8:200 Address: Hall Standard If Hold Standard If Hold Standard If Hold Standard Are Internation Sampler Internation Sampler Internation If Hold Standard If Hold Standard If Hold Standard Itation Apple: If Hold Standard Itation If Hold Standard If Hold Standard</td><td>Western Refuire Mattern Rush Address: H:50 CR 4520 Analysis Labo Indiress: H:50 CR 4520 Analysis Request The project Name: Refuery Wills Analysis Request The project Name: Refuery Wills Analysis Request The project Name: Refuery Wills Analysis Request The package: Matrix Sampler (indy / Bob Analysis Request AP Other Sampler (indy / Bob Refuery Wills Time Matrix Sample Request ID Container Preservative Type Time Matrix Sample Request ID Container Preservative X X Ibsp H20 H20 H20 H20 X X X Ibsp H20 H20 H20 X X X X Itsp H20 MW#44 F/0A A X X X X Ibsp H20 H20 H20 H20 H20 X X X</td></t<> <td>Western Refiving Matter Rush Address: H:50 CR 4980 Project Name: Refivery Wills Address: H:50 CR 4980 Project Name: Refivery Wills Topic III MIN. 87413 Project #: 401 Hawkins NE - Albuquerque, NM 87109 Tel: 505 - 633 - 4161 Project Manager: Image: Rest Soc. 433 - 38/L Project Manager: Package: Matrix Sampler Lindy / Bob Image: Rest Soc. 432 - 38/L Project Manager: Time Matrix Sampler Lindy / Bob Sampler Lindy / Bob Image: Rest Soc. 432 - 400 Big Big Big Big Big Big Big Big Big Big</td> <td>Western Refinitive Italiand Rush Inddress: #550 CR 4980 Analysis Laboration Time Market Bits Analysis Laboration Inddress: #550 CR 4980 Analysis Caboration Www.hallenvironmental.com Time Market Bits Analysis Caboration Www.hallenvironmental.com Project #: #505 - 6320 - 91/61 Project Manager: Italiant Analysis Cabulation Packsoge: Market Bits Project Manager: Italiant Italiant Italiant Project Manager: Italiant Italiant Italiant Italiant Italiant Italiant Italiant Package: Italiant Sample Cindy / Bob Italiant Italiant</td> <td>Western Refiniting Istandard Rush Inddress: #550 CR 4980 Analysis Laborator Inddress: #550 CR 4980 Analysis Caborator Inddress: #550 CR 4980 Analysis Caborator Inddress: #550 CR 4980 Analysis Caborator Inddress: #550 CR 4980 Project #: If Sob - 6320 - 91/61 Project Manager: If Sob - 6320 - 91/61 Package: If Level 4 (Full Validation) Barnpler (Indw / Bock Nature Sampler (Indw / Bock If Sob - 6320 - 91/61 Package: If Level 4 (Full Validation) Barnpler (Indw / Bock Interime Matrix Sample Request ID Container Time Matrix Sample Request ID Container Type and # Type 3 If Sob - 42000 X ISSp Heo MW #444 If Vot Hec X X ISSp Heo MW #444 If Vot Hec X X ISSp Heo MW #44 If Vot Hec X X X ISSp Heo MW #44 If Vot Hec</td>	Western Refining & Standard Rush Address: #:50 CR 4820 Analysis Tomfield, NN 87413 Project Name: Refinery Wills #: 525 - 632 - 4161 Project Manager: (i)	Western Refining M Standard Rush Mall Environment Address: #50 CR. 4P20 Annual -8 2009 Multis Address: #50 CR. 4P20 Annual -8 2009 Multis Indicess: #50 CR. 4P20 Annual -8 2009 Multis Indicess: #50 CR. 4P20 Project #: Holest Multis Indicess: #505 - 632 - 4161 Project Manager: Analysis Ro Prodection Sampler Indy / Bob Analysis Ro Analysis Ro AP Other Sampler Indy / Bob If the group Wild of	Western Refining Mathematical Rush Mathematical Rush Address: HSSO CR. 4P20 Annual -8:200 Multis Address: HSSO CR. 4P20 Annual -8:200 Annual -8:200 Indicess: HSSO CR. 4P20 Project Manager: Annual -8:200 Indicess: HSSO CR. 4P20 Project Manager: Annual -8:200 Internation Apple: Project Manager: Annual -8:200 Project Manager: Project Manager: Annual -8:200 Annual -8:200 Address: Hall Standard If Hold Standard If Hold Standard If Hold Standard Are Internation Sampler Internation Sampler Internation If Hold Standard If Hold Standard If Hold Standard Itation Apple: If Hold Standard Itation If Hold Standard If Hold Standard	Western Refuire Mattern Rush Address: H:50 CR 4520 Analysis Labo Indiress: H:50 CR 4520 Analysis Request The project Name: Refuery Wills Analysis Request The project Name: Refuery Wills Analysis Request The project Name: Refuery Wills Analysis Request The package: Matrix Sampler (indy / Bob Analysis Request AP Other Sampler (indy / Bob Refuery Wills Time Matrix Sample Request ID Container Preservative Type Time Matrix Sample Request ID Container Preservative X X Ibsp H20 H20 H20 H20 X X X Ibsp H20 H20 H20 X X X X Itsp H20 MW#44 F/0A A X X X X Ibsp H20 H20 H20 H20 H20 X X X	Western Refiving Matter Rush Address: H:50 CR 4980 Project Name: Refivery Wills Address: H:50 CR 4980 Project Name: Refivery Wills Topic III MIN. 87413 Project #: 401 Hawkins NE - Albuquerque, NM 87109 Tel: 505 - 633 - 4161 Project Manager: Image: Rest Soc. 433 - 38/L Project Manager: Package: Matrix Sampler Lindy / Bob Image: Rest Soc. 432 - 38/L Project Manager: Time Matrix Sampler Lindy / Bob Sampler Lindy / Bob Image: Rest Soc. 432 - 400 Big	Western Refinitive Italiand Rush Inddress: #550 CR 4980 Analysis Laboration Time Market Bits Analysis Laboration Inddress: #550 CR 4980 Analysis Caboration Www.hallenvironmental.com Time Market Bits Analysis Caboration Www.hallenvironmental.com Project #: #505 - 6320 - 91/61 Project Manager: Italiant Analysis Cabulation Packsoge: Market Bits Project Manager: Italiant Italiant Italiant Project Manager: Italiant Italiant Italiant Italiant Italiant Italiant Italiant Package: Italiant Sample Cindy / Bob Italiant Italiant	Western Refiniting Istandard Rush Inddress: #550 CR 4980 Analysis Laborator Inddress: #550 CR 4980 Analysis Caborator Inddress: #550 CR 4980 Analysis Caborator Inddress: #550 CR 4980 Analysis Caborator Inddress: #550 CR 4980 Project #: If Sob - 6320 - 91/61 Project Manager: If Sob - 6320 - 91/61 Package: If Level 4 (Full Validation) Barnpler (Indw / Bock Nature Sampler (Indw / Bock If Sob - 6320 - 91/61 Package: If Level 4 (Full Validation) Barnpler (Indw / Bock Interime Matrix Sample Request ID Container Time Matrix Sample Request ID Container Type and # Type 3 If Sob - 42000 X ISSp Heo MW #444 If Vot Hec X X ISSp Heo MW #444 If Vot Hec X X ISSp Heo MW #44 If Vot Hec X X X ISSp Heo MW #44 If Vot Hec

С	hain	of-Cu	stody Record	Turn-Around	Time:		1														
Client:	the T	I land	efiving	Standard	C Rush				P											TAL	
	W-C)It	TN	CTIDING_	Project Name	D C	valle												RA	TC	DRY	1
Mailing	Address	460	CR 4990		-Andrey M	vells - 8-2009										tal.co					
RI	an (1-10	NM 87413	Project #:	TNN KOM	Vary	17		01 H												
			2-4/6/					Te	el. 50)5-34	15-39	Statement of the local division in the local	State State			345- uest		7			
			32-39/1	Project Mana	der.			5	()				many	1	rteq	uest	4	2			T
QA/QC F	Package:						TMB's (8021)	TPH (Gas only)	s/Diese					04,SO4	PCB's			Muhul		4	
□ Stan Accredi			Level 4 (Full Validation)	- (1	1.10.1	1	3's (H (G	Gas					2,P(32 P			- 1	4	Q.	
		□ Othe	r	Sampler:	ncy/bar		TMI	TPH	5B (3.1)	4.1)	Î		NON.	8082			M	M	Y	Î
	(Type)			Sample tem				+	801	41	150	r PAH)	als	NO3	les /		AO/	Disoluce	Anion	Z	Y or
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEALING	BTEX + MTE	BTEX + MTBE	TPH Method 8015B (Gas/Diesel)	TPH (Method 418.1)	EDB (Method 504.1)	8310 (PNA or	RCRA 8 Metals	Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides	8260B (VOA)	8270 (Semi-VOA)	Wac T	otion A.	1/Lallent	Air Bubbles (Y or N)
8-2589	9Au	#20	MW#8	10-VOA	HCL	/		ш	X	F	ш	8	<u></u>	A	8	×	8	-	-	1	A
1	1	1		liter-Anter		1			~							~	X		-	-	+
				1-Sound	HNO3	,	\mathbf{T}					_	X				~		+	-	+
				2-125m	Filked HNO3	1												X	X		1
				1-1250	HESOY	1												~	X	-	13
				1-500mg	110-1	1	1		2										X	X	-
	935A		MW#29	6-10A	HCL	2			×					-	1	X			4	1	1
	1		/	liter take		2											X		36		
				1-Son	HNQ3,	2							X				-			-	
				2-125 D	Filtered HN03	2												X	X		
				2-125 ml 1-125 ml	HESOY	2		1.00		-			1.00						X	21	
	1		/	1-500mg		2													X	X	
Date:	Time: 190pn Time:	Relinquishe	by Amtado	Received by:	\$ 10:	Date lime DD 8 240 09 Date Fime	Ren	Pg	s: /	of	N	2	1			13				-	2.5

If neg

	h	-of-Cu	stody Record	Turn-Around	Time:	0										20				AL	
Client:	West	ern R	efining	Standard	🗆 Rush				E											DR	
				Project Name	Refinery	Wells 2 - 8-2009										tal.co					-
			CR 4990	South As	- Annue	2 - 8-2009		49	01 H	awki	ns N	1E -	Alb	uqu	erqu	e, NI	M 87	109			
BI	oo nf	ield, A	JA 87413	Project #:				Te	el. 50	5-34	5-39	975	F	ax	505-	345-	410	7			
Phone :	#: 50	5-6:	32-4161		and the							A	naly	/sis	Req	uest					
		605-6	39-3911	Project Mana	ager:		1)	(July)	esel)			-		O4)				5		1	
QA/QC I	Package: dard		Level 4 (Full Validation)		. 1.		TMB's (8021)	TPH (Gas only)	(Gas/Diesel)					PO4,S	PCB's		-	Nleta		A	
Accredi		Othe) ·	Sampler:	ndy Bol	2	TMB'		8015B (G	8.1)	504.1)	(HAH)		3,NO2,	/ 8082		()	550 400	ho	Li.	(N
	(Type)			Sample Ten	eenaturee kan	0.9	BE +	BE +	1 80.	41	d 50	or P/	tals	ON'I	des	1	VOA	1550	Anio	2	(Y ol
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type		BTEX + MTB	BTEX + MTBE	TPH Method	TPH (Method	EDB (Method	8310 (PNA 0	RCRA 8 Metals	Anions (F,CI,NO3,NO2,PO4,SO4)	8081 Pesticides / 8082	8260B (VOA)	8270 (Semi-VOA)	A JOM	ation	Allalim	Air Bubbles (Y or N)
8209	10207	HZO,	# RW #9	6-VOA	HCL	3			X		-			-	~	×	~	-	-		
			1	Piter-Anter		3								-			×			-	
				1-500m0	HNQ3	3							×							1	-
	/			2-125me	-'11. Il	3									-			×	X	1	
				1-125ml	HIZSOY	3			1										×		
1	h			1-500ml		3													X	X	
						1.11													- f	BAN	
82507	10304	420	Field Blank	4- VOA-	HCL	V			X							X					
1.0			Thip Blank			5															
	ALC: N							N.								-					
			A.G. AND	C. March				•													
-13	162		Chiert the set of	11,0											-						
Date:	Time: 14/p	Relinquish	dy Huntado	Received by	\$ 10:00	Date Time	Ren	narks D	9 0	20	,f	2		1-1			1	T		,	
Date:	Time:	Relinquishe	ed by: 1	Received by:	0	Date I Time		(J												

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report

-01	erN	Refining	Standard														HEN RA		
dress:	11 1	1P. Co.	54	N Juan K	liver Bluff 8-2009	1.7			11	www	.hal	lenvi	ronr	nent	al.co	m			
0	#50	CR 4990	Project #:	ANNUAL-	8-2009		490	01 H	awki	ns N	E -	Alb	uque	erque	e, NM	M 87	109		
motio	ell, 1	UM 87413	Fiojeci#.				Te	el. 50	5-34	5-39	States of the local division of the local di	Contractory of the	-	ALC: NO. OF TAXABLE PARTY.	-		7		
			Decident Mana				2	-			A			Req					
10.000	07-6	32-3711	Project Iviana	iger:		21)	only	iese					S04	S	A	-	2		
rd		Level 4 (Full Validation)					Gas	as/D			1		04,	PCB					
ion			Sampler: (*	Suff	st	MB's	H		=	=	_		10 ₂ ,F	082	MM				
100	□ Othe	r	Onloc		EINO MARCHINE	+	+	015E	118.	504.	HAG	10	0 ₃ ,N	s / 8	白	(A)	N		or N
ype)			Samplemen	generitares dest		TBE	TBE	8 pc	po	pol	or	etal	CI'N	cide	A)P	-V-	C		1 L
Time	Matrix	Sample Request ID	Container Type and #	Preservative Type		- 18	+	TPH Metho	TPH (Meth	EDB (Meth	3310 (PNA	RCRA 8 M	Anions (F,(3081 Pesti	3260B (VO	3270 (Sem	Al Kalini ty		Air Bubbles (Y or N)
:35	Hoo	Seep # 6	3-VOA	Her	1			·	-	-	~	-			-	~			
	1					1		-								X		-	
		12		H2504	(I then								X			_			
					1		1										×	12	
200	H20	Seep #1		Hei	2										X			1.0	
((P		amber	2		di d						1			X	1		C Q
				a state of the second stat	2							2	X						
1	1		1-500-m		2		6		-								X	A.	
2:20	Hoo	Seep#3	3-40A	Hes	3										X		1		
1	- (lLiter	anto	3											X		1	
			1-125ml	H2504	3		-	1	-				X				1		
	l		1-500ml		3				12-1								X		
:05	1206	Krabon	ILLY	10:00	8/265	Ren	narks	s: Pg	10	fz	-					5	1999		
	x#: 9 (age: d on (pe)_ ime 35 (00 () () () () () () () () ()	35-63 $x#: 505-6$ $x#: 505-6$ pe pe pe $Matrix$ 35 $H50$ pe 1 1 1 1 1 1 1 1 1 1	$\frac{1}{20} \frac{1}{120} \frac{1}{$	$\frac{1}{20} \frac{1}{10} \frac$	$\frac{1}{20} \frac{1}{1} 1$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Achield JMM. B7H/3 Project M. Sa5-632-4/6/ Project Manager: Project Manager: Project Manager: age: Achield Yevel 4 (Full Validation) Project Manager: Project Manager: age: Achield Yevel 4 (Full Validation) Project Manager: Project Manager: age: Achield Project Manager: Project Manager: Project Manager: Ime Matrix Sampler: (Project Manager: Project Manager: Project Manager: Project Manager: Ime Matrix Sampler: (Project Manager: Project Manager: Project Manager: Project Manager: Ime Matrix Sample Request ID Container Project Mathe Project Mathe Project Mathe 35 H40 Saep # 1 S-VOA HCL I<	Tel. 505-345-4107 Tel. 505-345

Client:	ch Ch	-of-Cu	stody Record	Turn-Around	Sec. 2					ŀ	A	LL	E	NV	/16	20	NI	MEN	TAL	
	wesler	-N Ke	Fining	Project Name						-	N.	AL	YS	519	5 L	A	BO	RA	TOR	Y
Mailing	Address	# 50	CR 4980	Project Warner	AN Riv	Nual-8-2009 Ver Bluff		49	01 H						ment erqu		om M 87	109		
Phone	400m	rield,	NM 87413				1.1.1.1	Te	el. 50	05-34	45-39	and the second	1		-		410	7		
			2-4161	Project Mana	agor			5	() ()			A	naly		Req	ues				<u>Ruin</u>
	Package:	202 4	ALevel 4 (Full Validation)		iger.		s (8021)	TPH (Gas only)	as/Diese					PO4,SO4	PCB's	MTRE ON		22		
Accred		□ Othe	er	Sampler: C	my 48	306	+ TMB's	+ TPH	15B (G	18.1)	04.1)	(HA)		3,NO2,	Pesticides / 8082	W.Xa	()	q		r N)
	(Type)	1		Samplehlen	oerablie: 200		MTBE -	MTBE -	d 80	d 4	od 5(or P	etals	I'NC	ides	A) B	107-	5		×0 ×
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type		BTEX + MT	BTEX + MT	TPH Method 8015B (Gas/Diesel)	TPH (Method 418.1)	EDB (Method 504.1)	8310 (PNA or PAH)	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pestic	8260B (VOA) 751ex.	8270 (Semi-VOA)	A KALINITY		Air Bubbles (Y or N)
8-25-4	2:20	Aso	Seep 3 Dup	3-VOA	Hel	и		-	-			~		X	~	×	*			-
				Hiter	amber	4								<u> </u>			X			
		N.		1-125ml	HaSON	4	1							X	1	1	-	14	-	1
				1-500 ml	-	4												×		
			Dip Blank 2			5														
								-												
							1													+
Date:	Time:	Relinquish	· · / /	Received by	1	Date Time	Ren	nark	s:	0		2								
-25-09 Date:	3:05 Time:	Relinquish	ed by:	Received by:	\$ 10:00	8/26/59 Date Time			Pg	d	20	1C								

Client	hain	-of-Cu	ustody Record	Turn-Around							P	F	AF		E	NV	TE	20	NR	ИF	N		
Chern.	West	erN	Refining	Standard							6										ATC		
				Project Name	ian Rive	-B	luff							v.hal									
Mailing	Address	#50	CR 4990		uls- ANN			09		49	01 H			NE -						109			
Rloc	mfi	eld. h	JM 87413	Project #:			0.0		1		el. 50						505-						
Phone #	#: 50	5-6	32-4161	1									10 00	and the second	Contractor	The second second	Req						
email or	r Fax#:	65-6	35-3911	Project Mana	iger:					ly)	(lei			100		(4)			1	5	2		
QA/QC F	Package:								021	s or	(Gas/Diesel)					4,SC	PCB's			Jue	Neta		
Stan			A Level 4 (Full Validation)	1					s (8	(Ga	as/					PO	PC						1
Accredi				Sampler	rely/BO!	6		1	TMB's (8021)	TPH (Gas only)	5B (C	=	÷	Ŧ	2	NO2	3082			A BY	Dissolveol	1	202
	ELAP □ Other DD (Type) Time Matrix Sample Request P130p Hz0 OutFall #2_			Onloc	ZNES	JE NO			L + 1	+	015	418.	504.1)	PAH)	s	103,1	8 / Se		(YO	6,0	50	10	Or N)
	(Type)	-		Samplemen	perature and				TBE	+ MTBE	od 8	por	pot	5	letal	CI'N	icide	(YC	N-in	82	Dis	An	t s (1)
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type		14 141 2 / 2	0-11 2-11 2-11	BTEX + MT	BTEX + M	TPH Method 801	TPH (Method 418.1)	EDB (Method	8310 (PNA	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082	8260B (VOA)	8270 (Semi-VOA)	Baloo-MTBE, B	Wacc	ATI BM /	Air Bubbles
818-09	130p	HZU	autfall #2	3-VOA-	Her	A	R	NEXERCISES		ш	-	-	ш	80	Ľ.	A	8	8		X	-	9	A
		1		1-soonl	HND3	1	18	1							X	(+ ¹	_			-	•		
	1			1-125ml	filtered HNO3	V		1						N.	-						X	X	
	1			1-125ml	HZSOU		18	1													X	X	
1	/			1-250ml	1.000	1.5	18	1					_		-	24-	100	-			-	X	X
8-18-09	ZISP	He	Putfall #3	3-VOA	HEL	1	IL	2						6				R	-	X		-	
1	1	1		1-Soonl	HNO3	and a	IH	2	124		220			1	X	5							
/	1			1-125ml	fittered HNO3		H	2										2.1		1	X	X	
				1-125-	Hasay		14	2													X	X	
T	1			1-250m	2		14	2														X	X
			SipBlank to	6				3												1			
0-10-0				0.0				-														2	
24007	7ime:	Relinquish	influctado	Received by:	10:05	8	19/0	^{me}	Ren	nark	S:												
Date:	Time:	Relinquish	ied bly:	Received by		D	ate (Tir	ne															
	f ner v.	samples sub	mitted to Hall Environmental may be sub	contracted to other a	ccredited laborato	hiss	erves as no	ntice of this	s possi	bility	Any su	ih-cont	trarter	eteh h	will be	- clear	v nota	no hot	the			4	

		-of-Cu	ustody Record	Turn-Around	Time:		1										(D			
Client:	West	ern R	Refining	A Standard Project Name	e:					A	N	AL	YS	515	5 L	AE	301				r
Mailing	Address	#5	CR 4990	Swillian	Kiver-Se	emi 1-4/09		10	01 1							al.co		00			
			NM 87413	Project #:	1	1/01			el. 50								и 871 4107	09			
			2-4/61	1. 1. 1. 1. 1. 1.			-anter	16	1. 50	5-54	0-38				-	uest	1000				
email o				Project Mana	iger:	5	-	ly)	R							À			5	2	
QA/QC □ Star	Package: ndard		Level 4 (Full Validation)	1			TMB's (8021)	(Gas only)	(Aspector)				5	PO4,SO	PCB's	032/4	1	Sime	David	ANDAL	
Accred			er	Sampler. in	de Bob		+ TMB's	HdT 4	5B (418.1)	504.1)	(HAH)		3,NO2,I	/ 8082	BTER MIDE	(141-	VISSOIND I WE FOR	Set 1	CM De	(N
	(Type)	1		Sandleguen	Deficitures 31		BE	BE	d 80		od 50	or P.	tals	I'NO	ides	2	107	5010	L 14		20
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	FEAL NO	BTEX + MTBE	BTEX + MTBE	TPH Method 801	TPH (Method	EDB (Method	8310 (PNA	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082	8260B (VOA)	(0)	MACC VIS	Dirow Mario	11Lanna M	Air Bubbles (Y or N)
4-13-09	150pm	HZQ	Upstream	5-VOA-	HCL	and a sum for the second se			X		-		-	4		Ň		-	1		A
	1			2-125 l	HAD3filles	/			Ĩ								>	$\langle $			Π
1				1-5000	,	1.1	1										1)	XX		
	1			1-125ml	HESOY	Sec. 1 . Ash				1				,				15	XX		\square
	1			1-500nl	HN03	1	1						X					T.			\square
4-13-09	alsom	470	DOWNStream	5-V04	HCL	2	1		X							X					
				2-125m	Filting HN03	2											>	K	1		\square
				1-500-0	1	2		- 22					1	1.3		- 67	1	3	XX		\square
		1		1-125ml	H2SO4	2										1			XX		\square
22	1		1	1-sapal	HN03	2		100	N.S.			ľ	X								
	1					al see by	12.1	-					2		de.	2	2				2
Date:	Time:	Reinquish	od by:			Sec. 1	2								N.					12	
1-13-09 Date:	250pm	Relinquish	1 Minitado	Received by:	4/14/	Date Time	Ren	narks		fZ									94	1	
	10.20			L'actived by		Date Time				1								223			

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this necessitility. Any sub-contracted data will be already and the server as notice of this necessitility.

Client:	West Address Bloor	H 50 Af 50 nfield	CR 4990 NM 87413	Turn-Around Project Name Stud Ka Project #:	C Rush	Seni 1-4/09			01 H	awki	www.	AL w.hal NE - 975	.YS Ilenv Alb	SIS riron ouqu Fax	SL ment erqu 505-		30 om M 87 4107	R /	2.00	OR	- 114
email o QA/QC □ Star	I or Fax#: I or Fax#: IC Package: andard editation ELAP DD (Type) e Time Matrix Sample Request			Project Mana			FMB's (8021)	TPH (Gas only)	Gagnesel	()			-		andy		Nuturls		arbonnionite	
NEL Date	Time Matrix Sample Request			Container Type and #	Preservative Type	ERF NO FEAF NO VEAF SCI	BTEX + MTBE + TM	BTEX + MTBE + TF	TPH Method 8015B	TPH (Method 418.1)	EDB (Method 504.1)	8310 (PNA or PAH)	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA) BIEY, MIBE	8270 (Semi-VOA)	MRCC Dissolved	which (Anion for	11 kallinity - la	Air Bubbles (Y or N)
4309	1030A	HZD	North S/MW#45	5-Vot 2-125-D	HCL Ribuet HND3	3		1	X	-	H	3	1	/	8	×		X			4
(1		/	1-500ml 1-125ml 1-500ml	H2504 HNO3	3 3 3						-	X						X	XX	
43.09	1050A	And	North of MW#46	5=VOA	HCL Filtered HN03	4		North Contraction	X				+			Х		X	X	X	
1				1-125 A 1-500 ml	H2501 HNO3	<u> 4 </u> <u> 4 </u>			-				X					1	X	X	
Date: 413-09 Date:	Time: 250pm Time:	Reinquish	dy Nin tado	Received by: Received by:	4/14/0	Date Time	P	v	do				-			0.00					

С	C Package: andard A Level 4 (Full Valid editation ELAP Other DD (Type) Time Matrix Sample Reque			Turn-Around	Time:		1					1	-								
Client:	West	iern I	Refining	Standard	🗆 Rush				B										NT/		
				Project Name	e: SAN JUAN	River -			Serie .			v.hal							S .		
Mailing	Address	#50	CR 4990	and the	Rush E: SAN Juan - Augus 1	+-2009		49	01 H								M 87	109			
Ble	bom	feld.	NK 87413	Project #:	. 0				el. 50								4107				
Phone #	#: 50	5-6	32-4161										naly	sis	Req	uest				1.12	
email or	Fax#:5	5-6	32-3911	Project Mana	ager:			ly)	el)			5.0		(4)				k		-	
					5 m 1		021	s on	(Gas/Diesel)					SC,	PCB's	91	F	2	Chapan		
□ Stan	andard Level 4 (Full Valida editation ELAP □ Other DD (Type) e Time Matrix Sample Request			1	. 1.		s (8	(Ga	as/					PO	PC		1	and i	3		
	e Time Matrix Sample Reques			Sampler: in	de Bob		TMB's (8021)	TPH (Gas only)		=	=			102,	082	1.5			_	-	
	IC Package: iandard editation ELAP DD (Type) e Time Matrix Sample Request 9 1134 H20 North			Onlee	/Z/Yeş	E No.	T +	+	115E	418.1)	504.1)	(HAH)		O3,N	s / 8		(Y)	12-	Hoselund	è.	or N)
	I or Fax#:555-632-39// C Package: andard aditation ELAP DD (Type) e Time Matrix Sample Request			Sample dem	perature: 21		BE	BE	d 8(pd 4	od 5	5	etals	N'NG	ide	(A	07-	AS /	24	24	. 2
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	FEAL (CARA) NOR 920	BTEX + MTB	BTEX + MTBE	TPH Method 8015B	TPH (Method	EDB (Method	8310 (PNA	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082	8260B (VOA)	e	5	Welce	111/0/10	Air Bubbles (*
8-20:09	11304	#20	North of 46	6-101	HCC				$\frac{1}{\lambda}$	F	ш	8	LL	P	8	8		X			A
			017	1-Soome	HND3,	1				1	-		Χ								
				1-125ml	Fillered HNO3	36- 1 HOM							-	1.21	1		1.	1	XX		
				1-125ml	HIZSON			24		2								-	X		
				1-250m	The f	1 2	1						-				-	1	Í	X	
Schol	114	40	North Life	G-VOA	HCL	2		2	V				1			-		V		4	
0.000	1.12	Mar			1.10	2	-		~				V				•	4		+	++
				1-500ml	Filtered	2							~	-		19-	-	-	XX		+
1.1	212	11	Para and a second second	1-125ml	1	2			1		_	-	-	-		-	-	-	· · //	-	
			Constant of the	1-125ml		2						8			-	8	-	\rightarrow	X	1	1
-				1-250mb	4	L		-		-		-			-		-	-		Y	4
5200	1570	420	NOM STUS FD	6-10A	HCL	3			X		-				1973 1975 - 1975 1975 - 1975			X	-	+	
Bate:	Time:	Relinquish		Received by:	0	Date Time	Rer	nark	S: J	al	25	2		Y	-	- N.		/*		_	
5 <u>10-09</u> Date:	JH, Time:	Relinquish	an Antado	Received by:	× 10:	OT 82109 Date Title			ſ	91	0]	0									

Client	hain	of-Cu	stody Record	Turn-Around	Time:	19	1				-		E			20	N		BIT	TA	
Client.	Wes	TerN	Refining	X Standard	C Rush_				E								30				
			and the second	Project Name	ian River	~									men					Or.	
Mailing	Address	#50	CR 4990	Aug	ian River gust - 20	09	12	49	01 H									100			
Bla	omf	Pelo	NM 87413	Project #:	1				el. 50						1		4107				
Phone	#: 50	5-63	2-4161					10	1. 00	0-0-	10-01				Req		and the second				1
			1-39/1	Project Mana	iger:			ly)	(lei								- 12	3			
QA/QC	Package:		v.				021	s on	Dies		-	1		4'SC	PCB's			8	S		1
□ Stan			Level 4 (Full Validation)	1	1 101	A second second	s (8	(Ga	3as/					PO,	PC	-		8	Netal	-	
	editation ELAP □ Other DD (Type) te Time Matrix Sample Request			Sampler	ay 1006		TMB's (8021)	TPH (Gas only)	SB (0	===	=	Ŧ		NO2	808			MTB	NP	3	9
	te Time Matrix Sample Request			Sample for	<u>/=68</u>		· + 山		8015	418.1)	504.1)	(HAH)	S	VO ₃ ,	es /	14	(YO	定	Dissolved	Anion	(Y or N)
Date		Matrix	Sample Request ID	Container Type and #	Preservative Type	TEAL NO.	X + MTB	BTEX + MTBE +	TPH Method 8015B (Gas/Diesel)	TPH (Method	(Method	8310 (PNA or	KA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082	8260B (VOA)	8270 (Semi-VOA)	BRED - BTXFI	-	A/mort	Air Bubbles (Y
				· Jpo and m	1,700	09103357	BTEX	BTE	TPH	TPH	EDB	8310	RCRA	Anio	808	8260	8270	Se al	WACE	S	AIRBAIL
8-20-09	130pm	teo	UPS TREAM	5-VOA	HCL	4			×									X			
1	1	1	1	1-500ml	HNO3	4							X			_					-
1	1	/		1-125mg	HND3 Fitted	4	18.							14		8			X	X	
		1		1-125ml	HISOY	4	2		12										4	Y	3
1				1-250ml		4				3		2	-						-	Ŷ	V-
8-2009	2pm	H20	Downstream	6.VOA	Hec	5			V.			1	2	5	1			V	ľ	~	
1	1	1	Latter there	1-500nl	HNO3	5			~		3	8	X						1.0	-	
1				1-125mg	HNOSFIL	5	1	-			1 he		<i>f</i>						X	X	
				1-125ml	Hasay	5								1						X	
				1-250m	1	5														V	V
		1	/ TripBlank to			6	1	1	2								20			A	1
Date:	Time:	Relinquishe	d by: t	Received by:		Data Tina	-			100											
202-09	246		dustado	Received or.	X 10:05	Date Time	Ren	nark	3:	Л	1										
Date:	Time:	Retinquishe	by:	Received by:	0 10.0.	Date Time		IJ	0	1	0	Ę.									
-																					

Mailing	Address Bloc #: 502	N Ref #50 (pmfjel 5-632	1-4/61	Project #:	D Rush e: 73 JAN			Te	el. 50	lawk	WWV ins N	AL v.ha NE - 975	Ilenv Alt	viron ouqu Fax ysis	SL men erqu 505-	tal.co le, N -345	om IM 87 -4107 t	RA ⁻	
QA/QC	Iailing Address: #50 CR 4990 Bloom-field NM 87413 hone #: $535-632-4461$ mail or Fax#: $505-632-3911$ A/QC Package: Standard Evel 4 (Full Validation) Other EDD (Type) Date Time Matrix Sample Request II 05-09 145p H20 TK # 3 3			On Ice .	nger: Ly + Bé Messon Dérainne:	ENO ENT	MTBE + TMB's (8021)	MTBE + TPH (Gas only)	od 8015B (Gas/Diesel)	10d 418.1)	10d 504.1)	A or PAH)	letals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA) Btex, MTRE only	1 1		s (Y or N)
Date	Time		Sample Request ID	Container Type and #	Preservative Type	HEAL NG <u>APOLO 8 1</u> -	BTEX + M	BTEX + M	TPH Method 8015B	TPH (Method 418.1)	EDB (Method 504.1)	8310 (PNA	RCRA 8 Metals	Anions (F,	8081 Pesti	8260B (VC	8270 (Sem		Air Bubbles (Y or N)
01-05-09	145p		7K#33	3-VOA	Hel											×			
Date: 1-6-09	Time: 1430	Relinquishe	ed by: leg Krabon	Received by:	11.40	Dater Time	Ren	nark	s:	-		5 a		1		4			
Date:	Time:	Relinquishe	ed by:	Received by:	1 1 1 1 1 1	pate Time													

Client: Mailing Bla Phone	Hesle Address	#50 eld, 1 5-63	Stody Record efining (Blafld) CR 4990 VM 87413 2-4161		- Rusi	1-2-09			Те	1. 50	•	WWV	AL v.hal NE - 975	Illenv Alt	SI: vironi buqu Fax	5 L men [*] erqu 505-	LAL tal.co	BO om M 87 -410	RA	AL RY
QA/QC □ Star □ Othe	Package: Idard er		32-3911 E Level 4 (Full Validation)	Project Mana	Seb La est	⊒ Ng		MTBE + TMB's (8021)	MTBE + TPH (Gas only)	od 8015B (Gas/Diesel)	od 418.1)	od 504.1)	or PAH)	etals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	A) Blex, MTBE only			s (Y or N)
Date	Time	Matrix	Sample Request ID	i jpo una n	1360	HEAL NO 09620.		BTEX + M	BTEX + M	TPH Method 8015B	TPH (Method 418.1)	EDB (Method 504.1)	8310 (PNA or PAH)	RCRA 8 Metals	Anions (F,0	8081 Pesti	8260B (VOA) 房佐×	8270 (Sem	2.8	Air Bubbles (Y or N)
2-2-09	9:15	HOD	TK#33	3-00A	Hel	1											X	~		
										-										
														4						
Date: 2-2-09 Date:	Time: 10;00 Time:	Relinquishe Relinquishe Relinquishe	thiskow)	Received by:	D	Date Tim 12:35 2/3 Date Tim	109	Ren	narks	5:										

Mailing 73/ Phone	$\frac{1}{1304} - \frac{1}{120} - 1$			I urn-Around Standard Project Name Tk #3: Project #:	Rust	109			Te	el. 50	lawk	www.	AL w.ha NE - 975	Ilenv Alb	SIS ironi ouqu	5 L men erqu 505-	A tal.co e, N -345-	om M 87 -4107	RA	NT	and a second second	r
email c QA/QC ⊏ Star	Package: ndard	03-6,	A Level 4 (Full Validation)	Project Mana Sample ind Galles	1/20b	- Ē- Nō;; /		BE + TWEE (8021)	MTBE + TPH (Gas only)	TPH Method 8015B (Gas/Diesel)	od 418.1)	od 504.1)	or PAH)	etals	Anions (F,CI,NO3,NO2,PO4,SO4)	8081 Pesticides / 8082 PCB's	A)	-VOA)				(Y or N)
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HE CCC	11-No 3099	BTEX + MT	BTEX + MT	TPH Metho	TPH (Method 418.1)	EDB (Method 504.1)	8310 (PNA or PAH)	RCRA 8 Metals	Anions (F,C	8081 Pestic	8260B (VOA)	8270 (Semi-VOA)				Air Bubbles (Y or N)
3 <u>los</u> [09	11.30 A	1/20	Tk#33	3-VOA	Hec		-1	X														
																1 Nr 1.45						
Date: 3.109/09 Date:	Time: 103µn Time:	Relinquish	y Antado	Received by:	3/10/	Date 09 Date	Time 1050 Time	Rer	nark	s:												

	West	ērN	stody Record Refining	Turn-Around	🗆 Rush					A	N	AL	YS	SIS	5 L		301	RAT		
Mailing B Phone	Address	#50 Geld	CR 4990 NM 87413 2-4/6/	TK#:	33 April	4,2009					ns N	IE - 975	Alb F	uque ax	erqu 505-	e, NI	M 871 -4107	09		
email o QA/QC □ Star	or Fax#: Package: ndard		Br Level 4 (Full Validation)	Project Mana			's (8021)	TPH (Gas only)	(Gas/Diesel)					and the second se		only	1			
Accred		□ Othe	r	Sampler:	305	ENO	# TMB'	H TPH		18.1)	04.1)	(HH)		3,NO2	/ 808.	tet.	()		13	L N
Date	Time	Matrix	Sample Request ID	Samplehen Container Type and #	Preservative Type		BTEX + MTBE +	BTEX + MTBE +	TPH Method 8015B	TPH (Method 418.1)	EDB (Method 504.1)	8310 (PNA or PAH)	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA) BIAN, MIRE	8270 (Semi-VOA)			Air Bubbles (Y or N)
4-1-09	9:15	Hao	TR#33	3-10A	Hel									-	0	×				4
<u></u>																		_		
				1						-										
								4										-		
																-				
Date: 1-1-09 Date:	Time: 11:00 Time:	Relinquishe Relinquishe	ent Krakow	Received by:	\$ 10:00	Date Time) 4209 Date Time	Ren	narks	5:							1		* /		

		ErN R	Lefining CR 4990	Turn-Around	D Rush					1	AN www	AL w.ha	llen	SI !	S L	tal.co	BO om	R/	NT		
F	loom	Field.	NM 87413	TK#3 Project #:	3 5	01											IM 87				
Phone	#: 52	5-63	NM 87413 2-4161 2-3911					10	el. 50	10-34	40-3	-	-	and the second second	Concession of the local division of the loca	ues	-410 t				
email o	or Fax#:	205-63	2-3911	Project Mana	iger:		-	(VIL	(las					(1)	1.5%	B	1				
QA/QC □ Star	Package: ndard		Evel 4 (Full Validation)				s (8021)	TPH (Gas only)	ias/Die:					PO4,SC	PCB's	MTBEO					
Accred		Othe	ir	Sampler:	36	E Nô	+ TMB's	+	15B (G	18.1)	04.1)	(HH)	-	3,NO ₂ ,	/ 8082						r N)
	O (Type)			Samplesten	perature 30%	Constantine and	BE	BE	d 80	d 4'	od 5(or P	tals	I'NO	ides	181	101.				(Y o
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEALNG DADSHU	BTEX + MTBE	BTEX + MTBE -	TPH Method 8015B (Gas/Diesel)	TPH (Method 418.1)	EDB (Method 504.1)	8310 (PNA or PAH)	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA)BLex	8270 (Semi-VOA)				Air Bubbles (Y or N)
5-5-9	8:25	Ho	TK# 33	3-V0A	Hel	-/								/	3	×					P
										_							19 19 19			-	
																					+
														_							-
																			-		
14		-2150		1										-			-			-	_
10.0										-	2	0							-		+
Date:	Time:	Poliprovicho	ad hus a	Developt		linking		1							15			- 2			
Date:	Time:	Relinquishe Relinquishe	tathabou	Received by:	וןס	Date Time 0 <u>9</u> 1000 Date Time	Ren	narks	5:												

	Westa	TN R.	LR 4990 M 87413 2-4161	Turn-Around Standard Project Name TK	C Rush	Tune 2009				A	NN. www. ns N	AL v.hal IE - 975	llenv Alb	SIS ironi uque ax	SL ment erqu 505-	Al tal.co e, Ni	30 om M 87 -4107			
email o QA/QC I Stan Accredi	ling Address: $# 50 CR 4990$ Bloomfield, NM 87413 one #: 505-632-4/6/ ail or Fax#: 505-632-3911 QC Package: Standard Standard NELAP Other EDD (Type) ate Time Matrix Sample Request			Project Mana	1		TMB's (8021)	TPH (Gas only)	B (Gas/Diesel)	1)	1)				CB's	E and	1			
	(Type)		sample Request ID	On loc Sandyle rien Container Type and #	Aves and		BTEX + MTBE + T	BTEX + MTBE + T	TPH Method 8015B (Gas/Diesel)	TPH (Method 418.1)	EDB (Method 504.1)	8310 (PNA or PAH)	RCRA 8 Metals	Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA) Btax MTB.	8270 (Semi-VOA)		Air Bubblos (V or M)	IL BUDDIES (T UL IN
6-1-09	9:30	HaO	TK-33	3-10A	HCI										8	X	8			
Date: L - 1 - 09 Date:	Time:	Relinquishe Relinquishe	ed by: My Krabon	Received by:	De	Date Time 209 12:00 Date Time	Rer	mark	s:											

Mailing	Address	N Re #50	Listody Record Fining CR 4990 G NM 874.13 32-4/6/	Turn-Around Standard Project Nam TK - Project #:	I 🗆 Rusi		, 2009			01 H	awki	WWW ins N	AL v.hal IE - 975	lenv Alb	ironi uqui	5 L men erqu 505-	tal.co	BO om M 87 -4107		
email o QA/QC Stan Accredi	r Fax#: . Package: idard itation	505-6	B Level 4 (Full Validation)	Project Mana				TMB's (8021)	TPH (Gas only)	3 (Gas/Diesel)	()	()	(IO2, PO4, SO4)	082 PCB's	X, MTBE OUG			
Date		Othe Matrix	Sample Request ID	Onlice	Preservative Type	20	2 VINO 1047	BTEX + MTBE + TI	BTEX + MTBE + TH	TPH Method 8015B	TPH (Method 418.1)	EDB (Method 504.1)	8310 (PNA or PAH)	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA) BTwx, MTBE	8270 (Semi-VOA)		Air Bubbles (Y or N)
7 <u>-1-09</u>	11:05	Hao	TK 33	3-VOA	HCI		-1		1							8	X	8		4
Date: 7-1-09 Date:	Time: 2:3 2 Time:	Relinquishe Relinquishe	bert Kralow	Received by: Received by:	7/2/2	Date Date Date	Time 101 J Time	Rem	narks	3:										

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. A sub-table data with the data w

Mailing Add	idress: idd 505 ax#: 50 ckage: rd ion	#50 NM -63 05-63	ER 4990 B7413 B7413 D- 27161 B2-3911 ELevel 4 (Full Validation)	Project Name Project Name Project #: Project Mana	-33	8-3-09)1 Ha	AP ww wkins	3975	llenv Alt	SIS vironi ouque	S L ment erqu	AE	30 m 1 87	RA 109			
Mailing Add Phone #: email or Fa QA/QC Pack Standar Accreditation	idress: idd 505 ax#: 50 ckage: rd ion	#50 NM -63 05-63	CR 4990 87413 2-4161 32-3911	TANK Project #:	-33	8-3-09				wv wkins	ww.ha NE 3975	llenv - Alt	vironi	ment erqu	tal.co e, NN	om VI 87	109			
Phone #: email or Fa QA/QC Pack Standar Accreditation	ax#: 50 ckage: rd	NM. - 63: 05-63	87413 2-27161 32-3911	Project #:	v s	8-3-09				wkins	NE -	- Alt	ouqu	erqu	e, NN	И 87				
Phone #: email or Fa QA/QC Pack Standar Accreditation	ax#: 50 ckage: rd	NM. - 63: 05-63	87413 2-27161 32-3911	Project #:	v s						3975		-							
QA/QC Pack	ckage: rd ion			Project Mana	ger:				And the second		and some of the local division of the								-	
QA/QC Pack	ckage: rd ion			Project Mana	ger:		Analysis Request													
QA/QC Pack	ckage: rd ion						(only)	sel)			1	(4)		ly	-				
Accreditati	ion		Level 4 (Full Validation)				(8021)	s or	Dies			-	4'SC	B's	3					
)						0	(Ga	(Gas/Diesel)				PO	PC	TBG					
		D Othe	r	Sampler:			TMB'	TPH (Gas			ÎÎ		NO2	8082	N, XS					Î
	VDel	Louio		THE PARTY NAME OF TAXABLE PARTY OF TAXABLE PARTY OF TAXABLE PARTY.	OVes 100 setatores		+ Ш	+ Ш	801	504 1)	(HAH)	Is	VO3	es /	to	OA)		1		or
	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type		BTEX + MTBE	BTEX + MTBE	TPH Method 8015B	FDR (Mathod	8310 (PNA or	RCRA 8 Metals	Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA) BTex, MTBE	8270 (Semi-VOA)				Air Bubbles (Y or N)
3-3-09 8	3:50	H20	TK#33	3-10A	Hel	-1							-		×					
		, 14																		
		4 a				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						6	1	24			-			
_																		-		
Jan L				Sec. int	1442 746	and the second														
		- <u>A</u>						-	19						1					
							-													
			÷					1		_	_			-						
										_				5.1				-	_	
										-			-	-				_		
Date: Tim	me:	Relinguishe	ed by:	Received by:		Date Time	Ren	narks												
-#-09 2	1.50 THE:	Relinquishe	ent Krabon	Received	8 5	09 1040 Date Time														

Mailing Bla	Address	# 50 B, NM	CR 4990 87413	Turn-Around Project Name TK# 3 Project #:	□ Rush				01 H	awk	www.	AL w.ha NE - 975	Ilenv Alt	siron viron ouque =ax	S L men erqu 505-	A tal.co e, N -345-	BO om M 87' -4107	RA ⁻ 109	TA	
email o QA/QC I □ Stan Accredi □ NEL	r Fax#: ; Package: idard itation AP	505-6	4/6/ 32- 39// X Level 4 (Full Validation)	Project Mana Sampler:		- NO	+ TMB's (8021)	+ TPH (Gas only)	115B (Gas/Diesel)	418.1)	504.1)	or PAH)		Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)		tex, MTBE only B				or N)
Date	(Type)_ Time	Matrix	Sample Request ID	Sample Siem Container Type and #	Preservative Type		BTEX + MTBE	BTEX + MTBE	TPH Method 8015B	TPH (Method 4	EDB (Method 5	8310 (PNA or P	RCRA 8 Metals	Anions (F,CI,NC	8081 Pesticides / 8082 PCB's	8260B (VOA) Btex, MTBE	8270 (Semi-VOA)			Air Bubbles (Y or N)
9 <u>-</u> 8-09	[]:15	H20	TK# 33	3-10A	HC1	ر ۱										X				
Date: 9-8-09 Date:	Time: Q. 32 Time:	Relinquishe	at Krakon	Received by Received by:	10:30	Date Time Date Time Date Time	Ren	narks	3:											

Client:	Address	# 50	efining CR 4990 M 87413 R2-4161	Project Name	🗆 Rusł		- 09				Aawki	NA www.	halle	(SI nviror Albuqi	SL nmen Jerqu 505	LAI tal.co le, N -345	BO om M 87 -4107		
email o QA/QC □ Stan □ Othe	r Fax#: , Package: dard er	505-6	E Level 4 (Full Validation)	Project Mana Sampler: 73 On Ice	COL	TE NO		+ TMB's (8021)	+ TPH (Gas only)	TPH Method 8015B (Gas/Diesel)	418.1)	504.1)	PAH)	KURA 8 Metals Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	Btex MTRE			or N)
Date	Time	Matrix	Sample Request ID	C. Lawrence	Preservative Type			BTEX + MTBE	BTEX + MTBE	TPH Method 8	TPH (Method 418.1)	EDB (Method 504.1)	8310 (PNA or PAH)	Anions (F,CI,NC	8081 Pesticide	8260B (VOA) Btex, MTR	8270 (Semi-VOA)		Air Bubbles (Y or N)
10 <u>-1-09</u>	7:30	H20	TK-33	3-10A	HCI		1									X			
- 																			
																1			
Date: 10-1-09 Date:	Time: 2'30 Time:	Relinquishe Roberg Relinquishe	thabou)	Received by:	/ io/.	Date	Time 1012 Time	Rem	narks	3:									

Mailing	Address	#50 eld,	efining CR 4990 NM 87413 2-4161	Turn-Around Project Name TANK # Project #:	🗆 Rush		19			01 H	lawk	WWV	AL v.hal NE - 975	Ilenv Alb	ironr uque	5 L ment erqu 505-	Al tal.co	BO om M 87 -4107	RA	NTA TO	
email o	r Fax#: Package: idard	505-0	E Level 4 (Full Validation)	Project Mana			-	TMB's (8021)	TPH (Gas only)	(Gas/Diesel)	-	(O2,PO4,SO4)	382 PCB's	MTRE and				
NEL EDD Date	AP (Type) Time	□ Othe	Sample Request ID	On Ice	Preservative Type			BTEX + MTBE + TN	BTEX + MTBE + TF	TPH Method 8015B	TPH (Method 418.1)	EDB (Method 504.1)	8310 (PNA or PAH)	RCRA 8 Metals	Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082	8260B (VOA) Btex	8270 (Semi-VOA)			Air Bubbles (Y or N)
II <u>-17-</u> 9	8:20	H20	TK#33	3- vo A	Hc1		-								/						
Date: 1-18-01 Date:	Time: 1:30 Time:	Relinquishe Relinquishe	nt Krakow	Received by:	11/20	Date	Time LOCO Time	Ren	nark	s:											

.

If necessary, samples submitted to Hall Environmental may be subcontracted to other according to horatories. This source as notice of this paper have a subcontracted to other according to horatories.

0	ן נ	-of-CI	ustody	*of-Custody Record	Turn-Around Time:	Time:		Г												
Client:	Client: Western	cred	Refining	NING .	Dr Standard	🗆 Rush					H	HALL ENV	EX	SE	A L	ENVIRONMENTAL	J L	HZ F	A d	
					Project Name:	10				Π		ed wo	, in the last		lotal		5			
Mailing	Addres	Mailing Address: # 50		JR 4990	TANK#	#33	12-2-09	0	49(4901 Hawkins NF	wkins	NF ,	Alhi		www.nanenviroliniental.com	Alburninerule NM 87100	100			
73%	Blanfield.	eld.		87413	Project #:			T	Te	Tel. 505-345-3975	-345-			Fax 50	12-346	505-345-4107	201			
Phone #:	#: 50	505-6	632-416	(9)									naly	sis R	Analysis Request	t to				
email c	email or Fax#: Sos-	505-6	632-39	211	Project Manager:	ger:		(()ə		137		(*	0	1		-	-	
QA/QC Packs	QA/QC Package:		Incevel	Urcevel 4 (Full Validation)	-			1208) :	_	sei0\se	-					0.70			- 1	
Accreditation	litation AP	D Other	er		Sampler:	Bab		S'BMT	-											(N
DEDC	C EDD (Type)				Sample Hembera	Contract Sector		3E +	-	_										Y or
Date	Time	Matrix	and the second second	Sample Request ID	Container Type and #	Preservative Type		TEX + MTE	TEX + MTE	PPH Method	PDB (Method PDB (Method	DANA) OFE	19M 8 ARDF	ID, F) anoin/	AOV) 80828	-im92) 0721			1) səlddu8 ir
12-3-09	\$ 9:30	GeH	4	- 33	3-104	Hcl			1			1								√
							IT IT		1	12	- 13	1						-		
															114					
																		-		
		2						_	-			1.		1.15						
		1									$\left \right $									
															_					
								18			-	-		-		-		-		
	1	-														-			-	
2-2-09	11:00		ned by:	maken	Received by:	R 12 /31	Date Time	Re	Remarks:	16										
Date:	Time:	Relinquished by:	hed by:		Received by: V	R	Date Time	_												
	iss	mples sut	bmitted to Hall I	mples submitted to Hall Environmental may be subcontracted to other accredited labor	contracted to other ac	credited labor	serves as notice of this possibility.	his poss		Any sub-contracted data will be clearly notated on th	contract	ed data	will be o	learly n	olated o	ch th	n	Pour		