HOBBS OCD

District I 1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410

1220 S. St. Francis Dr., Santa Fe, NM 87505

Date: 6-2-11

Attach Additional Sheets If Necessary

State of New Mexico Energy Minerals and Natural Resources JUL 0 1 2011

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

RECEIVED

XK1535545413 Form C-141

Revised October 10, 2003

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Release Notification and Corrective Action **OPERATOR** Initial Report Final Report Name of Company COG Operating LLC Contact Pat Ellis Address 550 W. Texas, Suite 1300 Midland, Texas 79701 Telephone No. (432) 685-4332 Facility Name MC Federal #4 Facility Type Well Surface Owner: Federal Mineral Owner Lease No. API#30-025-34933 LOCATION OF RELEASE Unit Letter Section Township Feet from the North/South Line East/West Line Range Feet from the County L 2.1 17S 32E 2310 South 330 West Lea Latitude N 32.819197° Longitude W 103.77899° NATURE OF RELEASE Type of Release: Produced Fluids Volume of Release 9 bbls Volume Recovered 8 bbls Source of Release Date and Hour of Occurrence Date and Hour of Discovery Flowline 5/23/10 5/23/10 Was Immediate Notice Given? If YES, To Whom? ☐ Yes ☐ No ☒ Not Required By Whom? Date and Hour Was a Watercourse Reached? If YES, Volume Impacting the Watercourse. ☐ Yes 🛛 No If a Watercourse was Impacted, Describe Fully.* N/A Describe Cause of Problem and Remedial Action Taken.* The cause of the release was due to a ruptured flowline. The flowline was immediately repaired and put back into service. Describe Area Affected and Cleanup Action Taken.* Tetra Tech inspected site and collected samples to define spills extent. Soil that exceeded RRAL was removed and hauled away for proper disposal. Site was then brought up to surface grade with clean backfill material. Tetra Tech prepared closure report and submitted to NMOCD for review. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION True c. Ella المن Signature: Approved by District Supervisor: Printed Name: Patrick L. Ellis Title: Environmental and Safety Supervisor Approval Date: **Expiration Date:** E-mail Address: pellis@conchoresources.com Conditions of Approval: Attached

Phone: (432) 686-3023

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 District II
1301 W. Grand Avenue, Artesia, NM 88210
District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

* Attach Additional Sheets If Necessary

State of New Mexico Energy Minerals and Natural Resources

Santa Fe, NM 87505

HOBBS OCD

Form C-141 Revised October 10, 2003

Oil Conservation Division 1220 South St. Francis Dr.

JUL 01 2011 Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

RECEIVED

			Rele	ease Notific	atio	n and Co	rrective A	ction				
						OPERA'	ror .			al Report	☐ Final	Repo
Name of Co	mpany	COG OP	ERATIN	G LLC		Contact	P	at Ellis				
Address	550 W.			dland, TX 7970	1	Telephone I	No. 432-	230-00	77			
Facility Na	ne	MC FE	DERAL	#4		Facility Typ	е	Well				
Surface Ow	ner	Federal		Mineral O	wner			·· · · · ·	Lease N	lo. API# 3	30-025-3493	33
		 		LOCA	TIO	N OF RE	EASE					
Unit Letter	Section	Township	Range	Feet from the		/South Line	Feet from the	East/V	Vest Line	County		
L	21	178	32E	2310		FSL	330	1	WL	_	ea	
				Latitude 32.8	819197	Longit	ude 103.77899					
				NAT	URE	OF REL	EASE					
Type of Rele		Produced Flu	uids				Release 9bbls		Volume R		Sbbls	
Source of Re	lease	Fłowline				5/23/2010	lour of Occurrence	e	Date and 5/23/2010	Hour of Disc	overy	
Was Immedi	ate Notice (Yes	No ⊠ Not Re	quired	If YES, To	Whom?					
By Whom?					1	Date and I-	lour					
Was a Water	course Read	ched?					olume Impacting t	he Wate	rcourse.			
man a mater			Yes 🗵	No		, , , ,			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
If a Watercon	ırse was lın	pacted. Descr	ibe Fully.	k .							 	
Describe Car	ise of Probl	em and Reme	dial Actio	n Taken.*		·						
mai			A	owline. The flow.	l:	. :		L 1				
The cause of	the release	was due to a i	ruptureu n	ownne. The now.	inie wa	s immediately	тераней апо рис	Dack in	o service.			
Describe Are	a Affected	and Cleanup /	Action Tal	cen.*								
The release f	rom the flo	wline initially	released 9	bbls of produced:	fluids a	nd we were al	ole to recover 8bb	ls with a	vacuum tr	uck. The rele	ease caused a	ä
4'x4' spill ar	ea on the le	ase road by th	e flowline	, and a 10'x20' ov	erspray	area in the pa	asture to the north	west. A	ay produce	d water from	the release v	will
				mg/l. Any oil rela								
				IZE, 1650 FNL 536 le contamination f								
prior to any			prosero							10 610 1111		r
1 basabas as	firehat the	information o	iven above	is true and compl	lete to *	he best of my	knowledge and w	ndersta	d that much	ugni to NIMO	CD initias as:	
•	*	-		e is true and compl nd/or file certain re								
public health	or the envi	ronment. The	e acceptant	ce of a C-141 repo	et by th	e NMOCD in	arked as "Final R	eport" d	oes not relic	eve the opera	tor of liabilit	ty
				investigate and re								aith
		iddition, NMC ws and/or regi		ptance of a C-141 i	report d	toes not reliev	e the operator of i	responsi	buity for co	mphance wit	th any other	
ictieral, state	, or avear ia	no and/or regu		7			OIL CON	SERV	ATION	DIVISIO	N	
		7	1 /				<u> </u>				<u></u>	
Signature:			(<u> </u>			_, _ ,					
Printed Nam	e: /	Josh	Russo			Approved by	District Supervise	or:				
Title:		HSE C	oordinator	·		Approval Dat	e:		Expiration I	Date:		
		imune of times	oh organis	ac com		Conditions of	Annough					
E-mail Addr		jrusso@con			\neg	COBURRORS OF	другочат:			Attached		
Date: 05/25	/2010		Phone:	432-212-2399								

		SI	TE INFORMAT	TION		
		Repo	ort Type: Wo	rk Plan		
General Site Inf	ormation:					
Site:		MC Federal	#4			
Company:		COG Operat				
Section, Towns	hip and Range	<u> </u>		7S R-32E Sec. 21 Unit L		
Lease Number:		30-025-3493	<u> </u>			
County:		Lea County	00.0404070.11	100 7770000 114		
GPS: Surface Owner:		Federal	32.819197° N	103.77899° W		
Mineral Owner:		Trederal				
Directions:				ad and CR-126 (South of Maljamar, NM), travel west on 3 miles, turn left 0.5 miles to location.		
Release Data:						
Date Released:		5/23/2010				
Type Release:		Produced Wa	iter			
Source of Contai	mination:	Flowline failure				
Fluid Released:		9 bbls				
Fluids Recovered		8 bbls				
Official Commu	nication:					
Name:	Pat Ellis			Kim Dorey		
Company:	COG Operating, LL	.C		Tetra Tech		
Address:	550 W. Texas Ave.	Ste. 1300		1910 N. Big Spring		
P.O. Box						
City:	Midland Texas, 797	701		Midland, Texas		
Phone number:	(432) 686-3023			(432) 631-0348		
Fax:	(432) 684-7137					
Email:	pellis@conchoreso	urces.com		kim.dorey@tetratech.com		

Depth to Groundwater:	Ranking Score	Site Data
<50 ft	20	
50-99 ft	10	
>100 ft.	0	0
WellHead Protection:	Ranking Score	Site Date
Water Source <1,000 ft., Private <200 ft.	20	
Water Source >1,000 ft., Private >200 ft.	0	0
Surface Body of Water:	Ranking Score	Site Data
<200 ft.	20	
200 ft - 1,000 ft.	10	
>1,000 ft.	0	0
Total Ranking Score:		

5,000

January 12, 2011

Mr. Geoffrey Leking **Environmental Engineer Specialist** Oil Conservation Division. District 1 1625 North French Drive Hobbs, New Mexico 88240

Work Plan for the COG Operating LLC., MC Federal #4 Flowline, Re: Unit L, Section 21, Township 17 South, Range 32 East, Lea County, New Mexico.

Mr. Leking:

Tetra Tech, Inc. (Tetra Tech) was contacted by COG Operating LLC. (COG) to assess a spill from the MC Federal #4 Flow line, Unit L, Section 21, Township 17 South, Range 32 East, Lea County, New Mexico (Site). The spill site coordinates are N 32.819197°, W 103.77899°. The site location is shown on Figures 1 and 2.

Background

According to the State of New Mexico C-141 Initial Report, the leak was discovered on May 23, 2010, and released approximately nine (9) barrels of produced water due to flow line failure. To alleviate the problem. COG personnel repaired the flow line. Eight (8) barrels of standing fluids were recovered. The spill measured approximately 10' x 25' and was contained in a native low-lying area north of the lease road in the vicinity of the flow lines. The initial C-141 form is enclosed in Appendix C.

Groundwater

The United States Geological Survey (USGS) Well Reports did not list any wells in Section 21. According to the NMOCD groundwater map, the average depth to groundwater in this area is greater than 175' below surface. The groundwater data is shown in Appendix A.

Regulatory

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the depth to groundwater, the proposed RRAL for TPH is 5,000 mg/kg.

Soil Assessment and Analytical Results

On August 17, 2010, Tetra Tech personnel inspected and sampled the spill area, which measured approximately 10' x 25'. Two (2) auger holes (AH-1 and AH-2) were installed using a stainless steel hand auger to assess the impacted soils. Select samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix B. The results of the sampling are summarized in Table 1. The auger hole locations are shown on Figure 3.

Referring to Table 1, all of the submitted samples were below the RRAL for BTEX and TPH. Elevated chloride concentrations were detected in AH-1 and AH-2, with bottom hole samples of 4,540 mg/kg (3-3.5') and 2,200 mg/kg (2-2.5'), respectively. The spill was not vertically defined.

In order to delineate the chloride concentrations impact, a soil boring was installed utilizing an air rotary drilling rig. On November 11, 2010, Tetra Tech personnel supervised the installation of a borehole (BH-1) between AH-1 and AH-2 utilizing an air rotary drilling rig. Soil samples were collected to a depth of 25' to define the impact of the chloride concentrations. Referring to Table 1, chloride concentrations decreased with depth to 287 mg/kg at 7' bgs.

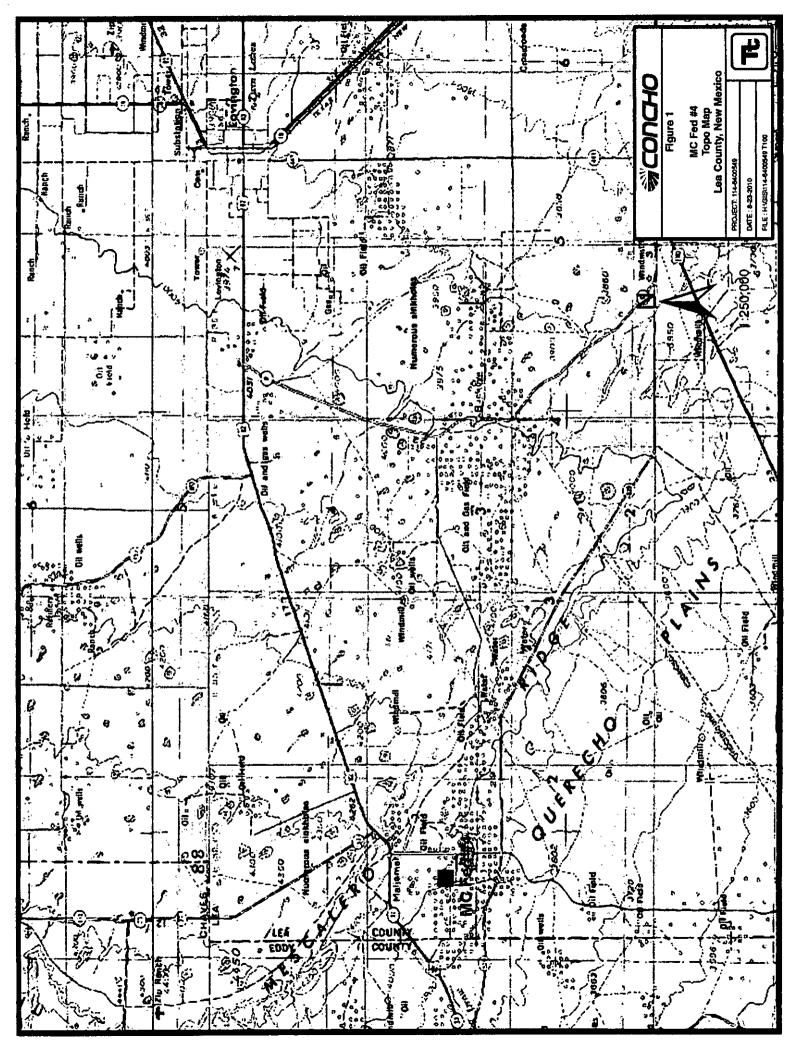
Work Plan

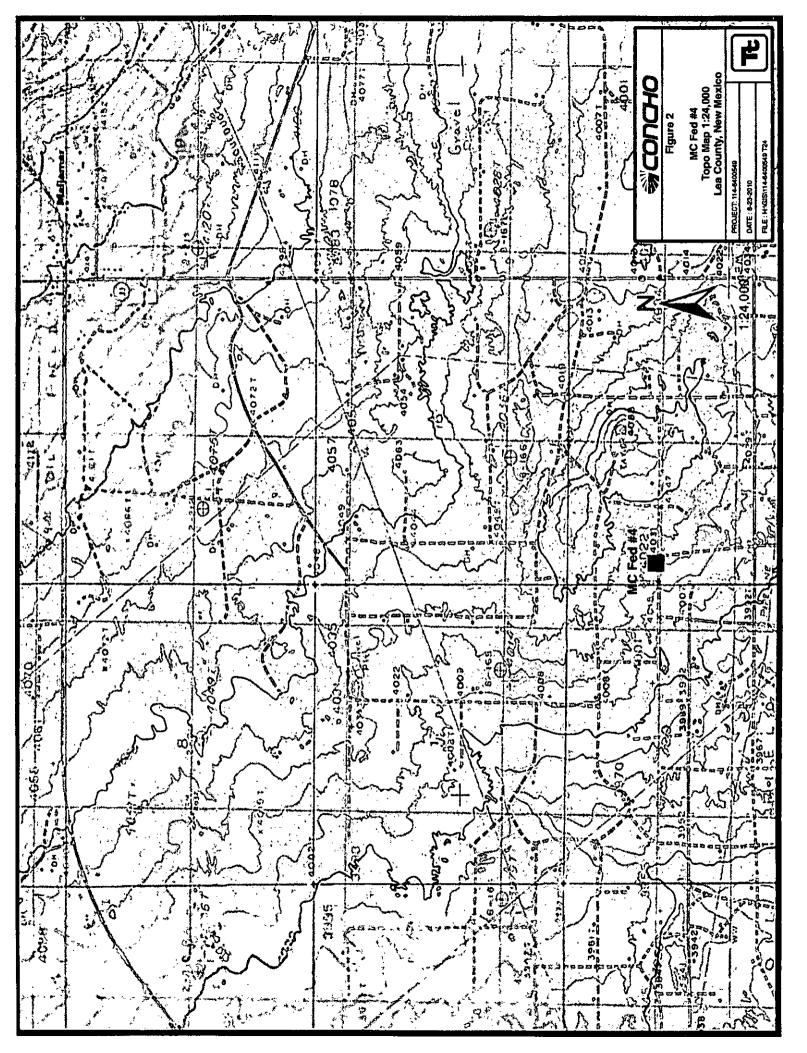
Based on the results, the spill did show a shallow impact to the soils. Tetra Tech proposes to supervise the removal of impacted to a depth of approximately 4' to 5' below surface. The proposed excavation depth is shown in Table 1. Once the areas are excavated to the appropriate depth,

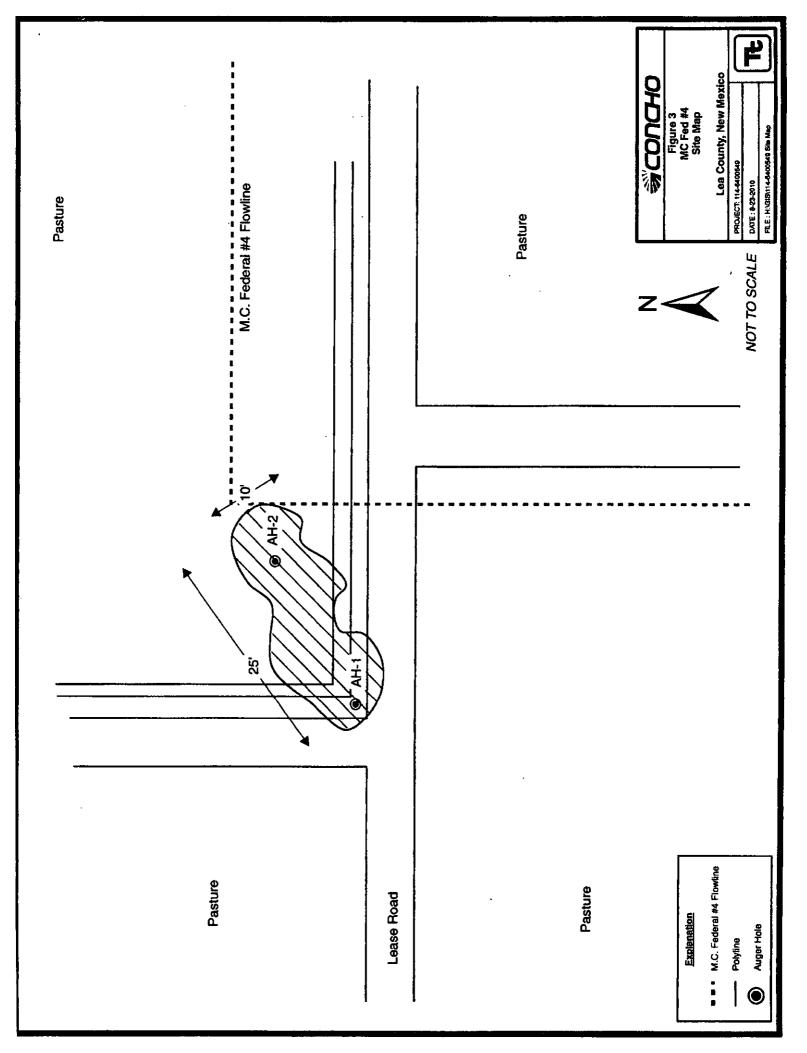
the excavation will be backfilled with clean soil. Since the impacted area is in the native sand dunes, the proposed excavation depths may not be reached due to wall cave ins and safety concerns for onsite personnel. In addition, impacted soil around oil and gas equipment, structures or lines may not be feasible or practicable to be removed due to safely concerns. As such, Tetra Tech will excavate the soils to the maximum extent practicable. Upon completion, a final closure report will be submitted to the NMOCD.

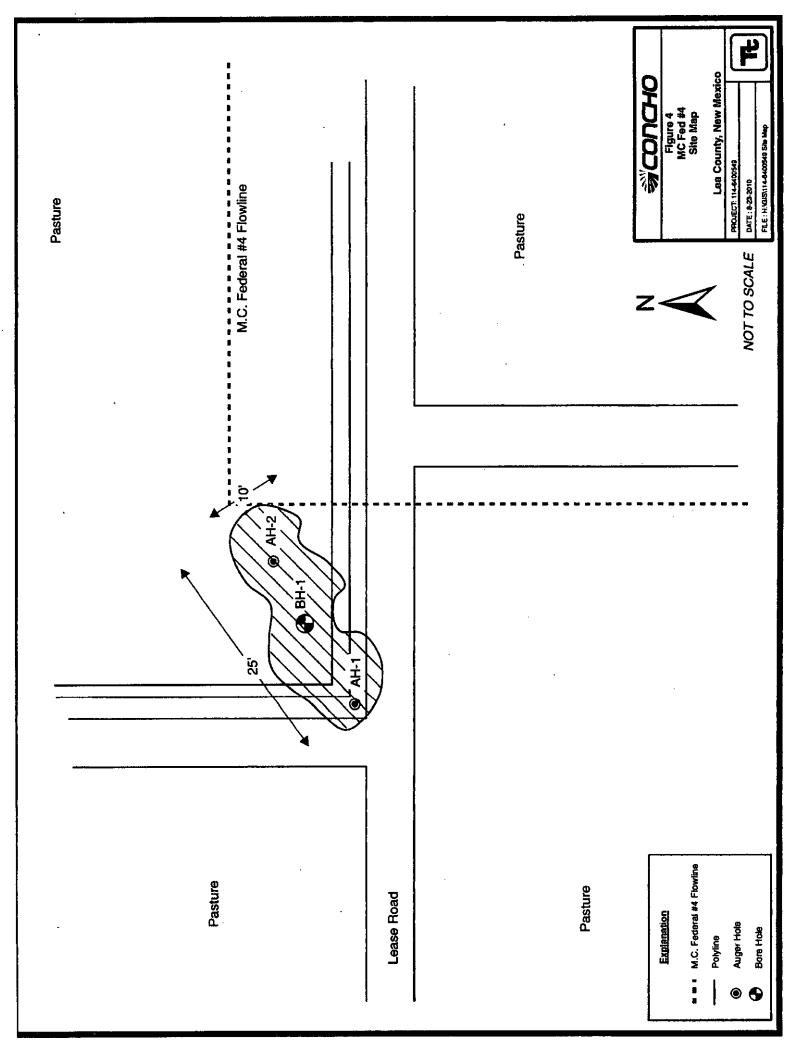
If you have any questions or require any additional information regarding this work plan, please call me at (432) 682-4559.

Respectfully submitted,


TETRA TECH


Kim Dorey Staff Geologist


cc: Pat Ellis - COG


cc: Terry Gregston - BLM

cc: Jim Amos - BLM

MC Federal #4 LEA COUNTY, NEW MEXICO Table 1 COG Operating LLC.

Sample	Sample	Sample	Depth	Soil	l Status	TP	TPH (mg/kg)	<u>a</u>	Benzene	Toluene	Ethlybenzene	Xviene	Chloride
Qi	Date	Depth (ft)	(BEB)	In-Situ	Removed	DRO	GRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
AH-1	8/17/10	0-1,	N/A	×		<50.0	<2.00	<50.0	<0.0200	<0.0200	<0.0200	<0.0200	341
	п	1-1.5'	N/A	×	,	•	•				1		239
	=	2-2.5	N/A	×		,				,			2,820
		3-3.5'	N/A	×		•	•	·		•		,	4,540
SB-1	11/11/10	0-1.	N.	×		•			-	•	•		256
	æ	3,	N/A	×								•	27.1
	я	5.	NA	×		,	-	,		'	•		1,310
	=	7'	NA	×		-	-	ı	•	r	•		287
	=	10,	N/A	×		-	,	•	•	•	ı	,	445
	=	15'	N/A	×		-	_	1	t	-	•	•	312
		20,	N/A	×		-	•	•	•	•	•	•	<200
	9	25'	ΥN	×		•	-	'	1	-	•	•	<200
AH-2	8/17/10	0-1,	N/A	×		,		•				•	266
	#	1-1.5′	NVA	×		•	-		,	•	•		789
	=	2-2.5	NA	×		•	•	•	-	•	•	•	2.200

Below Excavation Bottom 858

Not Analyzed I 🗌

Proposed excavation depths

Water Well Data Average Depth to Groundwater (ft) COG - MC Federal #4 Tank Battery Lea County, New Mexico

	16 9	South		1 East				16 S	outh	3	2 East			16 S			East	
6	5	4	3	2	1	6		5	4	3	2	1	6	5 180		3 130	r	1
		le le	40		- 120	<u> </u>				65	265	285	<u> </u>	ļ	150	1	148	142
	ð	٦	10	111	12	ľ		8	9	10	11	12	ľ	8	9	10 182	יין	12
8	17	16	15	14	288 13	18		17	16	15	14	215	18	200 17	16	15	14	142
	- ['	1"	13	'"	113	18)'	221	13	'7	215	l'°	182	180	175	143	110
9	20	21	22	23	24	19		20	21	22	23	24	19	20	21	22	23	24
•		1	1			220			210		210	F	'"		<u> </u>		120	
Ю	29	28	27	26	25	30		29	28	27	26	25	30	29	28	27	26	25
										[`	243		191	Γ.	190	130	143	120
H	32	33	34	35	36	. 31		32	33	34	35	36	31	32	33	34	35	36
90		.1			Li						1	260	190	168	t	160	1	l
	4=4		_	4 5 1						_				4-0				
	17 :	outh		1 East		<u> </u> _		17 S			2 East			17 S			East	
1	15	4	3	2	P I	6		5	4	3	2	1 225	6	5	4	3 155	2 158	1 1
	8	9	10	111	12	<u> </u>			82	175	60 11	10	90 7 167	-	9	10	11	
	ľ	a	ייו	וין '	' ^e	ľ		8	la la	טון	1	120	/ 16/	173	161	170	וין	12
8	17	16	15	14	13	18		17	16	15	70 88	13	18	173	16	15	14	13
	- 1''	1'0	'5	'7)' "	10		l''	'"	'"	'~	"	188	180	'"	'3	''	165
9	20	21	22	23	24	19		20	21	22	23	24	19	20	21	22	23	24
•		[T	l'*			SITE	_			1.	190	j .		115	-
0	29	28	27	26	25	30	180	29	28	27	26	25	30	29	28	27	26	25
				1	1.				Ī		_{		l	İ			l	1
1	32	33	34	35	36	31		32	33	34	35	36	31	32	33	34	35	36
			271						<u> </u>				<u> </u>				155	
	10 (outh	2	1 East				18 S	outh	2	2 East			18 S	nuth	33	East	
	15	14	13	2	1	6		5	4 65		2 2031	11	6	10 G	14	13	2	1
	ľ	ľ		-		. [_	"	ľ		l'	ľ	ľ	Γ	J		'
	8	9	10	11	12	7	460	8	9	10	11	12	7	B 100	9	10	11	12 14
		İ			400	82			1	1		t I	1	[(62		140
8	17	16	15	14	13	18		17	16	15	14	13	18	17	16	15	14	13
				317		L_			84		1	$oldsymbol{ol}}}}}}}}}}}}}}}}}}}}}$	L	85	<u> </u>			60
9	20	21	22	23	24	19		20	21	22	23	24	19	20	21	22	23	24
		<u> </u>			↓	<u> </u>		164		429			>140	L				195
0	29	28	27	26	25	30		29	2B	27	26	25	30 35	29	28	27	26	25
1	32	33	34	35	36	31		32	33	34	35	36	31	32	33		35	36
	1	1		261]]	ı	1		1	117		1	1	l	L	177		

New Mexico State Engineers Well Reports
USGS Well Reports
Geology and Groundwater Conditions in Southern Eddy, County, NM
NMOCD - Groundwater Data
Field water level
New Mexico Water and Infrastructure Data System
Tetra Tech Temporary well (TO 180' - Dry Well)

Summary Report

Ike Tavarez Tetra Tech

1910 N. Big Spring Street Midland, TX 79705

Report Date: August 27, 2010

Page Number: 1 of 2

Work Order: 10081830

Project Location: Lea County, NM

Project Name:

COG/MC Fed. #4 (Flowline)

Project Number: 114-6400549

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
241709	AH-1 0-1'	soil	2010-08-17	00:00	2010-08-18
241710	AH-1 1-1.5'	soil	2010-08-17	00:00	2010-08-18
241711	AH-1 2-2.5'	soil	2010-08-17	00:00	2010-08-18
241712	AH-1 3-3.5'	soil	2010-08-17	00:00	2010-08-18
241713	AH-2 0-1'	soil	2010-08-17	00:00	2010-08-18
241714	AH-2 1-1.5'	soil	2010-08-17	00:00	2010-08-18
241715	AH-2 2-2.5'	soil	2010-08-17	00:00	2010-08-18

			BTEX	I	TPH DRO - NEW	TPH GRO
	Benzene	Toluene	Ethylbenzenc	Xylene	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
241709 - AH-1 0-1'	< 0.0200	< 0.0200	< 0.0200	< 0.0200	<50.0	<2.00

Sample: 241709 - AH-1 0-1'

Param	Flag	Result	Units	RL
Chloride		341	mg/Kg	4.00

Sample: 241710 - AH-1 1-1.5'

Param	Flag	Result	Units	RL
Chloride		239	mg/Kg	4.00

Sample: 241711 - AH-1 2-2.5'

Report Date: Augu	ust 27, 2010	Work Order: 10081830	Page	Number: 2 of 2
Param	Flag	Result	Units	RL
Chloride		2820	mg/Kg	4.00
Sample: 241712	- AH-1 3-3.5'			
Param	Flag	Result	Units	RL
Chloride		4540	mg/Kg	4.00
Sample: 241713	- AH-2 0-1'			
Param	Flag	Result	Units	RL
Chloride		266	mg/Kg	4.00
Sample: 241714	- AH-2 1-1.5'			
Param	Flag	Result	Units	RL
Chloride		789	mg/Kg	4.00
Sample: 241715	- AH-2 2-2.5'			
Param	Flag	Result	Units	RL
Chloride		2200	mg/Kg	4.00

		SI	TE INFORMAT	ON		
		Report	Type: Closur	e Report		
General Site Info	rmation:					
Site:		MC Federal				
Company:		COG Operat	ing LLC			
Section, Townsi	hip and Range			S R-32E Sec. 21 Unit L		
Lease Number:		30-025-3493				
County:		Lea County.	New Mexico			
GPS:		<u> </u>	32.819197° N	103.77899° W		
Surface Owner:		Federal				
Mineral Owner: Directions:		From the inter-	notion of Conne Bend	and CR-126 (South of Maljamar, NM), travel west on		
		Conoco road 0	9.3 miles, turn right 0.3 r	niles, turn left 0.5 miles to location.		
Release Data:		5/23/2010				
Type Release:		Produced Water				
Source of Contar	nination:	Flowline failure				
Fluid Released:		9 bbls				
Fluids Recovered	d:	8 bbls				
Official Commun	nication:					
Name:	Pat Ellis			Aaron Hale		
Company:	COG Operating, L	LC		Tetra Tech		
Address:	550 W. Texas Ave	. Ste. 1300		1910 N. Big Spring		
P.O. Box	<u> </u>					
City:	Midland Texas, 79	701		Midland, Texas		
Phone number:	(432) 686-3023			(432) 631-0348		
Fax:	(432) 684-7137					
Email:	pellis@conchores	ources.com		aaron.hale@tetratech.com		

Depth to Groundwater:	Ranking Score	Site Data
<50 ft	20	
50-99 ft	10	
>100 ft.	0	0
WellHead Protection:	Ranking Score	Site Data
Water Source <1,000 ft., Private <200 ft.	20	
Water Source >1,000 ft., Private >200 ft.	0	0
Surface Body of Water:	Ranking Score	Site Data
<200 ft.	20	
200 ft - 1,000 ft.	10	
>1,000 ft.	0	0
はTotal Ranking Score:		
新規的 新規的 Washing Cool Control of Control of C	是一种的一种的一种,是一种的一种的一种的一种的一种的一种的一种的一种的一种的一种的一种的一种的一种的一	HOBBS OCD

Acceptable Soil RRAL (mg/kg)

Total BTEX

50

Benzene

10

TPH 5,000

JUL 0 1 2011

May 25, 2011

HOBBS OCD

JUL 0 1 2011

Mr. Geoffrey Leking
Environmental Engineer Specialist
Oil Conservation Division, District 1
1625 North French Drive
Hobbs, New Mexico 88240

RECEIVED

Re: Closure Report for the COG Operating LLC., MC Federal #4 Flowline, Unit L, Section 21, Township 17 South, Range 32 East, Lea County, New Mexico.

Mr. Leking:

Tetra Tech, Inc. (Tetra Tech) was contacted by COG Operating LLC. (COG) to assess a spill from the MC Federal #4 Flow line, Unit L, Section 21, Township 17 South, Range 32 East, Lea County, New Mexico (Site). The spill site coordinates are N 32.819197°, W 103.77899°. The site location is shown on Figures 1 and 2.

Background

According to the State of New Mexico C-141 Initial Report, the leak was discovered on May 23, 2010, and released approximately nine (9) barrels of produced water due to flow line failure. To alleviate the problem, COG personnel repaired the flow line. Eight (8) barrels of standing fluids were recovered. The spill measured approximately 10' x 25' and was contained in a native low-lying area north of the lease road in the vicinity of the flow lines. The initial C-141 form is enclosed in Appendix C.

Groundwater

The United States Geological Survey (USGS) Well Reports did not list any wells in Section 21. According to the NMOCD groundwater map, the average depth to groundwater in this area is greater than 175' below surface. The groundwater data is shown in Appendix B.

Regulatory

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the depth to groundwater, the proposed RRAL for TPH is 5,000 mg/kg.

Soil Assessment and Analytical Results

On August 17, 2010, Tetra Tech personnel inspected and sampled the spill area, which measured approximately 10' x 25'. Two (2) auger holes (AH-1 and AH-2) were installed using a stainless steel hand auger to assess the impacted soils. Select samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix B. The results of the sampling are summarized in Table 1. The auger hole locations are shown on Figure 3.

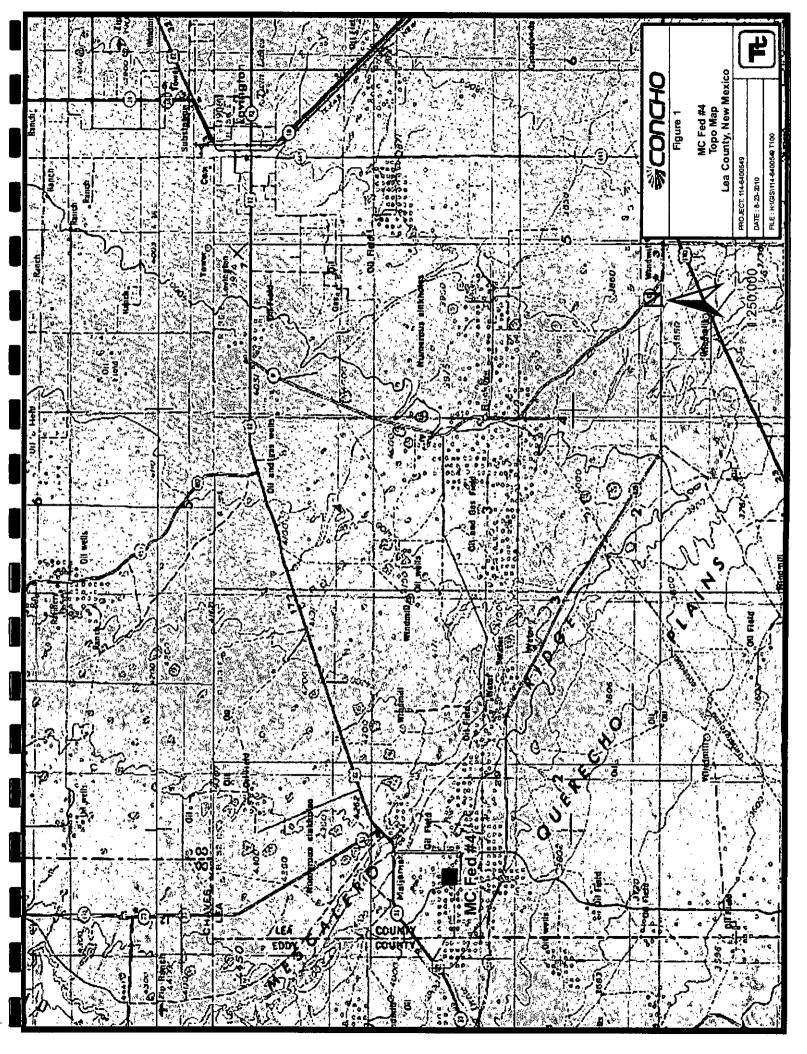
Referring to Table 1, all of the submitted samples were below the RRAL for BTEX and TPH. Elevated chloride concentrations were detected in AH-1 and AH-2, with bottom hole samples of 4,540 mg/kg (3-3.5') and 2,200 mg/kg (2-2.5'), respectively. The spill was not vertically defined.

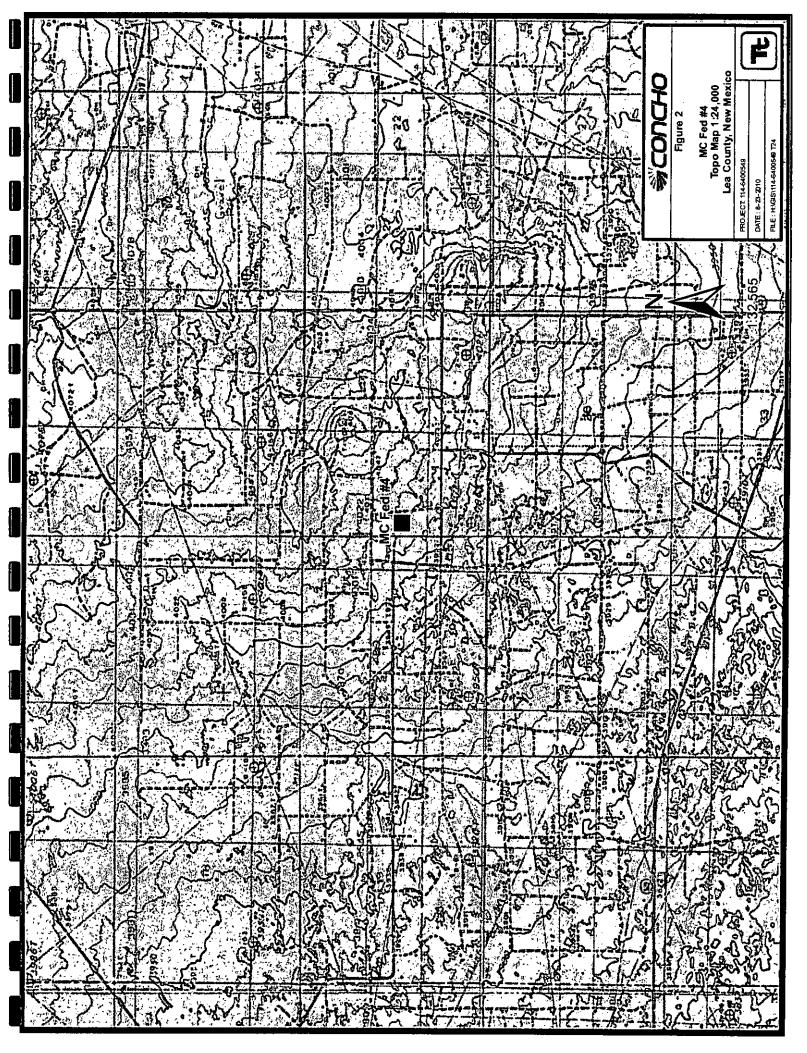
In order to delineate the chloride concentrations impact, a soil boring was installed utilizing an air rotary drilling rig. On November 11, 2010, Tetra Tech personnel supervised the installation of a borehole (BH-1) between AH-1 and AH-2 utilizing an air rotary drilling rig. Soil samples were collected to a depth of 25' to define the impact of the chloride concentrations. Referring to Table 1, chloride concentrations decreased with depth to 287 mg/kg at 7' bgs.

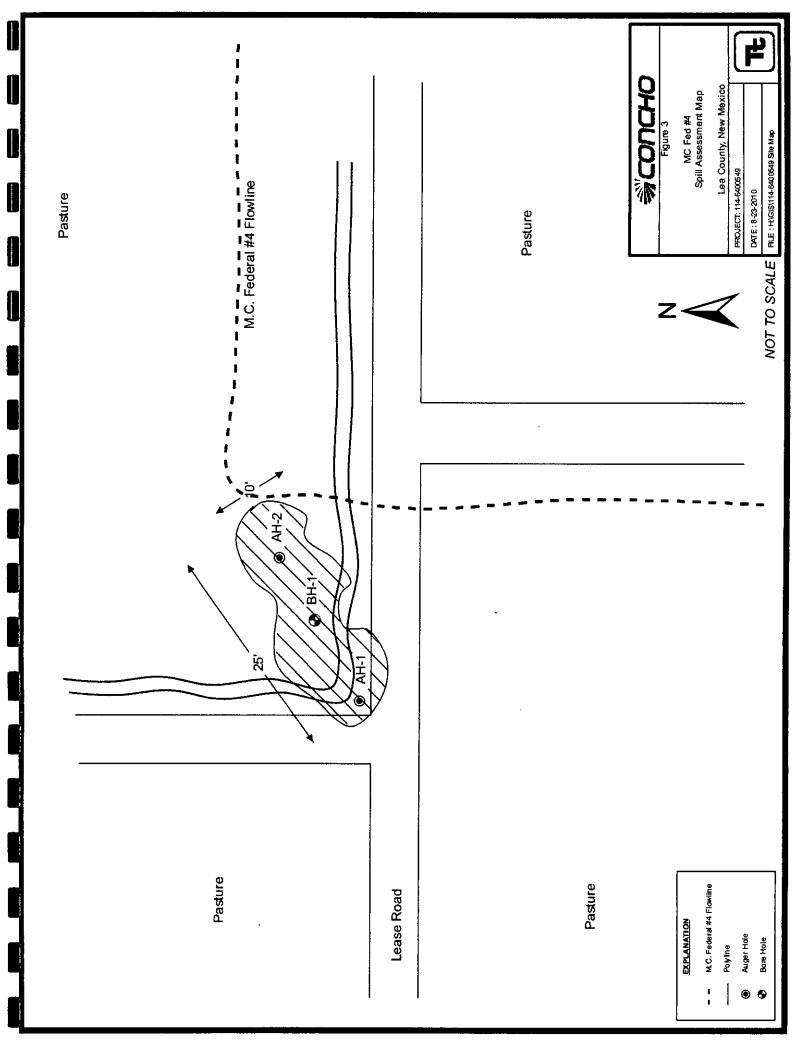
Remedial Work and Closure Request

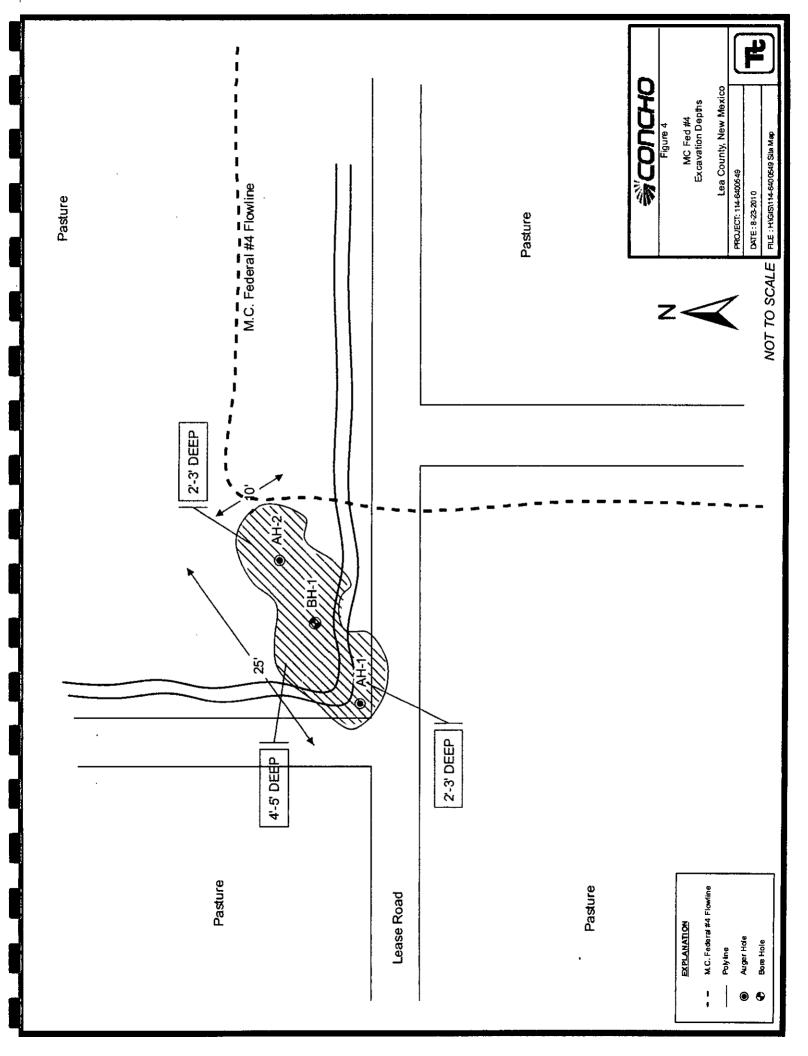
Tetra Tech personnel oversaw the excavation of the site on March 28 and March 29, 2011. The soil remediation was performed according to the approved work plan. The excavation area measured approximately 45'

x 45' with a bottom hole depth of approximately 4.5-5.5'. The excavation areas and final depths are shown on Figure 4 and Table 1.

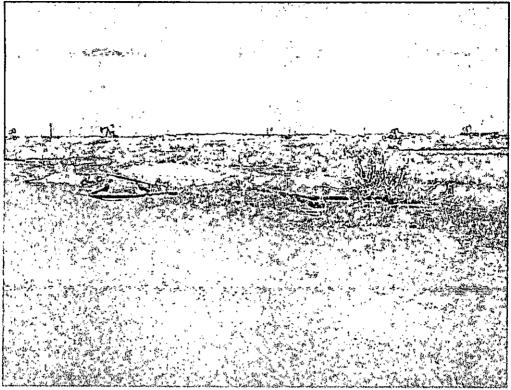

The excavated areas were backfilled with clean material and brought up to surface grade. Approximately 260 yards³ were removed and hauled to CRI Inc. for proper disposal.

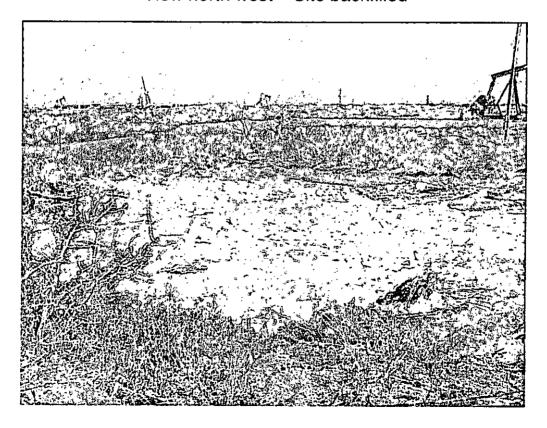

Based on the remedial activities performed at this site, COG request closure of this site. A copy of the C-141 (Final) is included in Appendix C. If you require any additional information or have any questions or comments concerning this report, please call at (432) 682-4559.


Respectfully submitted, TETRA TECH

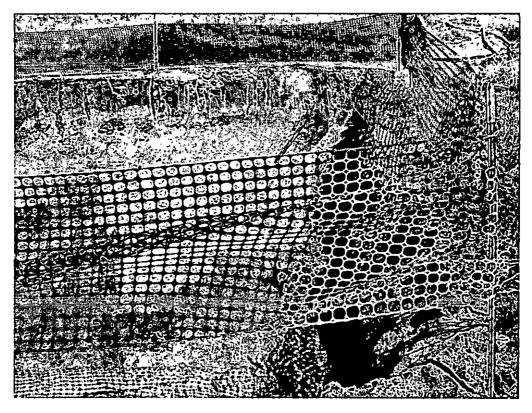

Kim Dorey Staff II Geologist

cc: Pat Ellis - COG cc: Terry Gregston - BLM cc: Jim Amos - BLM





COG Operating LLC MC Federal #4 Lea County, New Mexico


View north west - Site backfilled

Site backfilled with clean material

COG Operating LLC MC Federal #4 Lea County, New Mexico

View east across excavation site

Final depth of excavation from 4.5' to 5.5'

Table 1
COG Operating LLC.
MC Federal #4
LEA COUNTY, NEW MEXICO

Sample	Sample	Sample	Depth	Soil	Status	 F	TPH (mg/kg)	(6)	Benzene	Toluene	Ethlybenzene	Xvlene	Chloride
<u></u>			(BEB)	In-Situ	Removed	DRO	GRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
AH-1	8/17/10	0-1	NVA		×	<50.0	<2.00	<50.0	<0.0200	<0.0200	<0.0200	<0.0200	341
	=	1-1.5	N/A		×	. I '	- 02	-	•	*	1		239
		2-2.5'	V/N		×	-	•		•		•		2,820
	п	3-3.5	N/A		×	-		-	•	•	1	4	4,540
SB-1	11/11/10	0-1,	ΑΆ		×	,	•		•			,	256
	=	σ.	ξŽ		×	•		,			ı		27.1
	=	ດ໌	N/A		×	,	•			•	•		1,310
	=	1,2	N/A	×		,	•		•	-	•		287
	Ð	10,	N/A	×		1	1	•	•	•	ı	,	445
	#	15'	N/A	×		1	1	1	ı	•	ì	•	312
		20,	N/A	×		-	-	•	•	_	•	•	<200
,		25'	N/A	×		-	-	-	•	-	•	•	<200
AH-2	8/17/10	0-1,	N/A		×		, '	-	, #	•			266
		1-1.5'	VΑ	,	×				,		ŧ	*	789
	=	2-2.5	N/A		×			•	•	•	•	•	2,200

BEB Below Excavation Bottom

(--) Not Analyzed

Excavated Material

Water Well Data Average Depth to Groundwater (ft) COG - MC Federal #4 Tank Battery Lea County, New Mexico

	16 9	South	3	1 East				16 S	outh	3	2 East			16 S	outh		East	
	5	4	3	2	1	6		5	4	3	2	1	6	5 180	1	3 130		1
			-	4		<u> </u>				65	265	265	<u> </u>	<u> </u>	150		148	142
	8	9	10	11	12	7		8	9	10	111	12	- 1′	8	9	10	11	12
n	17	16	15	14	288	18		17	16	15	14	215 13	18	200 17	16	1 82	14	142
8	- ''	110	13	14	113	10		17	221	'3	'*	215	l'°	182	180	175	143	110
9	20	21	22	23	24	19	_	20	21	22	23	24	19	20	21		23	24
	٦٠	["		1.0		220		-"	210		210			1	ļ-'		120]
0	29	28	27	26	25	30		29	28	27	26	25	30	29	28	27	26	25
	[·	ľ		ļ		ŀ					243		191		190	130	143	120
1	32	33	34	35	36	31		32	33	34	35	36	31	32	33	34	35	36
90									1			260	190	168	<u> </u>	160	l	<u> </u>
	17 9	South	3	1 East	_			17 S	outh	3	2 East			17 Sc	outh	33	East	
	15	4	3	2	1	6		5	14	13	2	1 225	6	5	4	3 155	2 158	1 1
		1							82	175	60		90		1			ł
	8	9	10	11	12	7		8	9	10	11	12	7 167	8	9	10	11	12
						1					70 88	120		173	161			
8	17	16	15	14	13	18		17	16	15	14	13	18	17	16	15	14	13
										<u> </u>			188	160				165
9	20	21	22	23	24	19		20	21	22	23	24	19	20	21		23	24
			 	-	 	-		~~	SITE	107		25	20	190	200		115	ļ
0	29	28	27	26	25	30	180	29	28	27	26	25	30	29	28	27	26	25
1	32	33	34	35	36	31		32	33	34	35	36	31	32	33	34	35	36
	<u> </u>		271			<u> </u>								<u> </u>	<u> </u>		155	
	18 9	South	3	1 East				18 S	outh	3	2 East			18 Sc	outh	33	East	
	5	4	3	5	1	6		5	4 65	3	2	1	6	5	4	3	2	1
	18	9	10	11	12	7	460	8	9	10	11	12	7	8 100	9	10	11	12 1
	ľ	١	1.0	1"	400	82	700	Ĭ	ľ	"	' '	,,,	ľ		ľ	62	, ·	140
3	17	16	15	14	13	18		17	16	15	14	13	18	17	16		14	13
			1	317					84	1				85			36	60
}	20	21	22	23	24	19		20	21	22	23	24	19	20	21	22	23	24
	_i	_L				L		164	1	429			>140					195
)	29	28	27	26	25	30		29	28	27	26	25	30	29	28	27	26	25
							,						35	 				L.
ı	32	33	34	35	36	31		32	33	34	35	36	31	32	33	1	35	36
	1	1	1	261	1 1				l	117	1	1 1	ı	l	ļ	177		ı

USGS Well Reports

Geology and Groundwater Conditions in Southern Eddy, County, NM

NMOCD - Groundwater Data

Field water level

New Mexico Water and Infrastructure Data System

Tetra Tech Temporary well (TD 180' - Dry Well)

Work Order: 10081830

Page Number: 1 of 2

Summary Report

Ike Tavarez Tetra Tech 1910 N. Big Spring Street Midland, TX 79705

Report Date: August 27, 2010

Work Order: 10081830

Project Location: Lea County, NM

Project Name: COG/MC Fed. #4 (Flowline)

Project Number: 114-6400549

			Date	\mathbf{Time}	Date
Sample	Description	Matrix	Taken	Taken	Received
241709	AH-1 0-1'	soil	2010-08-17	00:00	2010-08-18
241710	AH-1 1-1.5'	soil	2010-08-17	00:00	2010-08-18
241711	AH-1 2-2.5'	soil	2010-08-17	00:00	2010-08-18
241712	AH-1 3-3.5'	soil	2010-08-17	00:00	2010-08-18
241713	AH-2 0-1'	soil	2010-08-17	00:00	2010-08-18
241714	AH-2 1-1.5'	soil	2010-08-17	00:00	2010-08-18
241715	AH-2 2-2.5'	soil	2010-08-17	00:00	2010-08-18

	 -		BTEX		TPH DRO - NEW	TPH GRO
	Benzene	Toluene	Ethylbenzene	Xylene	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
241709 - AH-1 0-1'	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 50.0	< 2.00

Sample: 241709 - AH-1 0-1'

Param	Flag	Result	Units	RL
Chloride		341	mg/Kg	4.00

Sample: 241710 - AH-1 1-1.5'

Param	Flag	Result	Units	RL
Chloride		239	mg/Kg	4.00

Sample: 241711 - AH-1 2-2.5'

Report Date: Augu	ıst 27, 2010	Work Order: 10081830	Page	Number: 2 of 2
Param	Flag	Result	Units	RL
Chloride		2820	mg/Kg	4.00
Sample: 241712	- AH-1 3-3.5'			
Param	Flag	Result	Units	RL
Chloride		4540	mg/Kg	4.00
Sample: 241713				
Param	- AH-2 0-1' Flag	Result	Units	RL
-		Result 266	Units mg/Kg	RL 4.00
Param	Flag			
Param Chloride	Flag - AH-2 1-1.5'	266		4.00
Param Chloride Sample: 241714	Flag		mg/Kg	
Param Chloride Sample: 241714	Flag - AH-2 1-1.5' Flag	266 Result	mg/Kg Units	4.00 RL
Param Chloride Sample: 241714 Param Chloride	Flag - AH-2 1-1.5' Flag	266 Result	mg/Kg Units	4.00 RL

6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1 .

Lubbock, Texas 79424 El Paso. Texas 79922 Midland, Texas 79703

800 • 378 • 1296 888 • 588 • 3443

915 • 585 • 3443 432 • 689 • 6301 817 • 201 • 5260 FAX'915 • 585 • 4944 FAX 432 • 689 • 6313

Ft. Worth, Texas 76132 6015 Harris Parkway, Suite 110

E-Mail: lab@traceanalysis.com

Certifications

WBENC: 237019

HUB:

1752439743100-86536

DBE: VN 20657

NCTRCA WFWB38444Y0909

NELAP Certifications

Lubbock: T104704219-08-TX

LELAP-02003

Kansas E-10317

T104704221-08-TX El Paso:

LELAP-02002

Midland: T104704392-08-TX

Analytical and Quality Control Report

Ike Tavarez Tetra Tech

1910 N. Big Spring Street Midland, TX, 79705

Report Date: August 27, 2010

Work Order: 10081830

Project Location: Lea County, NM

Project Name:

COG/MC Fed. #4 (Flowline)

Project Number:

114-6400549

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
241709	AH-1 0-1'	soil	2010-08-17	00:00	2010-08-18
241710	AH-1 1-1.5'	soil	2010-08-17	00:00	2010-08-18
241711	AH-1 2-2.5'	soil	2010-08-17	00:00	2010-08-18
241712	AH-1 3-3.5'	soil	2010-08-17	00:00	2010-08-18
241713	AH-2 0-1'	soil	2010-08-17	. 00:00	2010-08-18
241714	AH-2 1-1.5'	soil	2010-08-17	00:00	2010-08-18
241715	AH-2 2-2.5'	soil	2010-08-17	00:00	2010-08-18

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 13 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Mehar april

Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

Standard Flags

 ${f B}$ - The sample contains less than ten times the concentration found in the method blank.

Case Narrative

Samples for project COG/MC Fed. #4 (Flowline) were received by TraceAnalysis, Inc. on 2010-08-18 and assigned to work order 10081830. Samples for work order 10081830 were received intact at a temperature of 14.0 C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	$_{ m QC}$	Analysis
Test	Method	Batch	Date	Batch	Date
BTEX	S 8021B	62501	2010-08-24 at 15:00	72904	2010-08-24 at 19:56
Chloride (Titration)	SM 4500-Cl B	62487	2010-08-24 at 09:00	72925	2010-08-25 at 15:11
TPH DRO - NEW	S 8015 D	62430	2010-08-20 at 13:56	72816	2010-08-20 at 13:56
TPH GRO	S 8015 D	62501	2010-08-24 at 15:00	72905	2010-08-24 at 20:23

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 10081830 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Report Date: August 27, 2010

114-6400549

Work Order: 10081830 COG/MC Fed. #4 (Flowline) Page Number: 4 of 13 Lea County, NM

Analytical Report

Sample: 241709 - AH-1 0-1'

Laboratory: Midland

Analysis: BTEX QC Batch: 72904 Prep Batch: 62501

Analytical Method: S 8021B Date Analyzed: 2010-08-24 Sample Preparation: 2010-08-24

S 5035 Prep Method: Analyzed By: AG Prepared By: AG

RI.

		102			
Parameter	Flag	Result	Units	Dilution	RL
Benzene		< 0.0200	mg/Kg	1	0.0200
Toluene		< 0.0200	mg/Kg	1	0.0200
Ethylbenzene		< 0.0200	mg/Kg	1	0.0200
Xylene		< 0.0200	mg/Kg	· 1	0.0200

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		2.08	mg/Kg	1	2.00	104	52.8 - 137
4-Bromofluorobenzene (4-BFB)		1.62	mg/Kg	1	2.00	81	38.4 - 157

Sample: 241709 - AH-1 0-1'

Laboratory:

Midland

Analysis: Chloride (Titration) QC Batch: 72925 Prep Batch: 62487

Analytical Method: SM 4500-Cl B Date Analyzed: 2010-08-25 Sample Preparation: 2010-08-24

Prep Method: N/A Analyzed By: ARPrepared By: AR

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		341	mg/Kg	50	4.00

Sample: 241709 - AH-1 0-1'

Laboratory:

Midland

Analysis: TPH DRO - NEW QC Batch: 72816 Prep Batch: 62430

Analytical Method: S 8015 D Date Analyzed: 2010-08-20 Sample Preparation: 2010-08-20

Prep Method: N/A Analyzed By: kg Prepared By:

RL

Parameter	Flag	Result	Units	Dilution	RL
DRO		< 50.0	mg/Kg	1	50.0

Report Date: August 27, 2010

114-6400549

Work Order: 10081830 COG/MC Fed. #4 (Flowline) Page Number: 5 of 13 Lea County, NM

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Tricosane		107	mg/Kg	1	100	107	70 - 130

Sample: 241709 - AH-1 0-1'

Laboratory:

Midland Analysis: TPH GRO QC Batch: 72905 Prep Batch: 62501

Analytical Method: S 8015 D Date Analyzed: 2010-08-24 Sample Preparation: 2010-08-24

Prep Method: S 5035 Analyzed By: AG Prepared By: AG

RL

Parameter Flag Result Units Dilution RLGRO < 2.00 2.00 mg/Kg 1

					\mathbf{Spike}	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		2.33	mg/Kg	1	2.00	116	48.5 - 152
4-Bromofluorobenzene (4-BFB)		1.76	mg/Kg_	11	2.00	88	42 - 159

Sample: 241710 - AH-1 1-1.5'

Laboratory: Midland

Analysis: Chloride (Titration) QC Batch: 72925 Prep Batch: 62487

Analytical Method: SM 4500-Cl B Date Analyzed: 2010-08-25 Sample Preparation: 2010-08-24

Prep Method: N/A Analyzed By: ARPrepared By: AR

RLParameter Flag Result Units Dilution RLChloride 239 mg/Kg 50 4.00

Sample: 241711 - AH-1 2-2.5'

Laboratory: Midland

Analysis: Chloride (Titration) QC Batch: 72925 Prep Batch: 62487

Analytical Method: SM 4500-Cl B Date Analyzed: 2010-08-25 Sample Preparation: 2010-08-24

Prep Method: N/A Analyzed By: ARPrepared By: AR

RL Result Units Dilution Parameter Flag RL2820 Chloride mg/Kg 100 4.00

Report Date: August 27, 2010 Work Order: 10081830 Page Number: 6 of 13 114-6400549 COG/MC Fed. #4 (Flowline) Lea County, NM Sample: 241712 - AH-1 3-3.5' Laboratory: Midland Chloride (Titration) Analysis: Analytical Method: SM 4500-Cl B Prep Method: N/A QC Batch: 72925 Date Analyzed: 2010-08-25 Analyzed By: ARPrepared By: Prep Batch: 62487 Sample Preparation: 2010-08-24 ARRLFlag Parameter Result Units Dilution RL100 4.00 Chloride 4540 mg/Kg Sample: 241713 - AH-2 0-1' Laboratory: Midland Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N/A QC Batch: 72925 Date Analyzed: 2010-08-25 Analyzed By: ARPrep Batch: 62487 Prepared By: Sample Preparation: 2010-08-24 AR. RLParameter Units Dilution RLFlag Result Chloride 266 mg/Kg 50 4.00 Sample: 241714 - AH-2 1-1.5' Laboratory: Midland Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N/A QC Batch: 72925 2010-08-25 Analyzed By: \mathbf{AR} Date Analyzed: Prep Batch: 62487 Sample Preparation: 2010-08-24 Prepared By: ARRLResult Units Dilution Parameter Flag RLChloride 789 mg/Kg 50 4.00 Sample: 241715 - AH-2 2-2.5' Laboratory: Midland Analysis: Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N/A QC Batch: 2010-08-25 Analyzed By: 72925 Date Analyzed: ARPrep Batch: 62487 Sample Preparation: 2010-08-24 Prepared By: AR

RL

Result

2200

Parameter

Chloride

Flag

Dilution

100

RL

4.00

Units

mg/Kg

Report Date: August 27, 2010

114-6400549

Work Order: 10081830 COG/MC Fed. #4 (Flowline) Page Number: 7 of 13 Lea County, NM

Method Blank (1)

QC Batch: 72816

QC Batch: 72816 Prep Batch: 62430 Date Analyzed:

2010-08-20

QC Preparation: 2010-08-20

Analyzed By: kg Prepared By: kg

MDL

Parameter	Flag	Result	Units	$_{__}$ RL
DRO		<14.5	mg/Kg	50

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Tricosane		90.2	mg/Kg	1	100	90	70 - 130

Method Blank (1)

QC Batch: 72904

QC Batch: 72904Prep Batch: 62501 Date Analyzed:

2010-08-24

QC Preparation: 2010-08-24

Analyzed By: AG Prepared By: AG

MDL

Parameter	Flag	Result	Units	RL
Benzene		< 0.0150	mg/Kg	0.02
Toluene		< 0.00950	mg/Kg	0.02
Ethylbenzene		< 0.0106	mg/Kg	0.02
Xylene		< 0.00930	mg/Kg	0.02

					Spike	Percent	Recovery
Surrogate	\mathbf{Flag}	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		1.92	mg/Kg	1	2.00	96	66.6 - 122
4-Bromofluorobenzene (4-BFB)		1.38	mg/Kg	1	2.00	69	55.4 - 132

Method Blank (1)

QC Batch: 72905

QC Batch: 72905 Prep Batch: 62501

Date Analyzed:

2010-08-24

QC Preparation: 2010-08-24 Analyzed By: AG Prepared By: AG

MDL

Parameter	Flag	Result	Units	RL
GRO		<1.65	mg/Kg	2

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		2.19	mg/Kg	1	2.00	110	67.6 - 150
4-Bromofluorobenzene (4-BFB)		1.49	mg/Kg	1	2.00	74	52.4 - 130

Report Date: August 27, 2010

114-6400549

Work Order: 10081830 COG/MC Fed. #4 (Flowline) Page Number: 8 of 13 Lea County, NM

Method Blank (1)

QC Batch: 72925

QC Batch: 72925 Prep Batch: 62487 Date Analyzed: 2010-08-25 QC Preparation: 2010-08-24

Analyzed By: AR Prepared By: AR

MDL.

Parameter	Flag	Result	Units	RL
Chloride		<2.18	mg/Kg	4

Laboratory Control Spike (LCS-1)

QC Batch:

72816

Date Analyzed: 2010-08-20 Analyzed By: kg

Prep Batch: 62430

QC Preparation: 2010-08-20

Prepared By:

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
DRO	244	mg/Kg	1	250	<14.5	98	57.4 - 133.4

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	${ m Rec.}$	Limit	RPD	Limit
DRO	236	mg/Kg	1	250	<14.5	94	57.4 - 133.4	3	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			\mathbf{S} pike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
n-Tricosane	110	108	mg/Kg	1	100	110	108	70 - 130

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch: 62501

72904

Date Analyzed: QC Preparation:

2010-08-24 2010-08-24

Analyzed By: AGPrepared By: \mathbf{AG}

LCS Spike Matrix Rec. Param Result Units Dil. Amount Result Rec. Limit Benzene 2.04mg/Kg 1 2.00< 0.0150 102 81.9 - 108 Toluene 1.92 2.00 < 0.00950 96 81.9 - 107 mg/Kg 1 Ethylbenzene 1.77 mg/Kg 2.00 < 0.0106 88 78.4 - 107 1 79.1 - 107 Xylene 5.301 6.00< 0.00930 88 mg/Kg

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			$_{ m Spike}$	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene	2.09	mg/Kg	1	2.00	< 0.0150	104	81.9 - 108	2	20

continued ...

114-6400549

Work Order: 10081830 COG/MC Fed. #4 (Flowline) Page Number: 9 of 13 Lea County, NM

control spikes continued ...

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	\mathbf{Result}	${ m Rec.}$	Limit	RPD	Limit
Toluene	1.98	mg/Kg	1	2.00	< 0.00950	99	81.9 - 107	3	20
Ethylbenzene	1.82	mg/Kg	1	2.00	< 0.0106	91	78.4 - 107	3	20
Xylene	5.42	${ m mg/Kg}$	1	6.00	< 0.00930	90	79.1 - 107	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	1.94	1.90	mg/Kg	1	2.00	97	95	70.2 - 114
4-Bromofluorobenzene (4-BFB)	1.64	1.57	mg/Kg	1	2.00	82	78	69.8 - 121

Laboratory Control Spike (LCS-1)

QC Batch:

72905

Date Analyzed:

2010-08-24

Analyzed By: AG

Prep Batch: 62501

QC Preparation:

2010-08-24

Prepared By: AG

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
GRO	14.8	mg/Kg	1	20.0	< 1.65	74	69.9 - 95.4

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
GRO	15.0	mg/Kg	1	20.0	< 1.65	75	69.9 - 95.4	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	2.21	2.19	mg/Kg	1	2.00	110	110	61.9 - 142
4-Bromofluorobenzene (4-BFB)	1.62	1.58	mg/Kg	1	2.00	81	79	68.2 - 132

Laboratory Control Spike (LCS-1)

QC Batch:

72925

Date Analyzed:

2010-08-25

Analyzed By: AR

Prep Batch: 62487

QC Preparation: 2010-08-24

Prepared By: AR

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride	97.6	mg/Kg	1	100	< 2.18	98	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

114-6400549

Work Order: 10081830 COG/MC Fed. #4 (Flowline) Page Number: 10 of 13 Lea County, NM

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	102 .	mg/Kg	1	100	<2.18	102	85 - 115	4	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1)

Spiked Sample: 241849

QC Batch: 72816 Prep Batch: 62430 Date Analyzed: 2010-08-20 QC Preparation: 2010-08-20 Analyzed By: kg Prepared By: kg

	MS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
DRO	247	mg/Kg	1	250	<14.5	99	35.2 - 167.1

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO	247	mg/Kg	1	250	<14.5	99	35.2 - 167.1	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	${ m Rec.}$	Rec.	Limit
n-Tricosane	105	103	mg/Kg	1	100	$\overline{105}$	103	70 - 130

Matrix Spike (MS-1) Spiked Sample: 241968

QC Batch: 72904 Prep Batch: 62501 Date Analyzed: 2010-08-24 QC Preparation: 2010-08-24 Analyzed By: AG Prepared By: AG

	MS			$\mathbf{S}_{\mathbf{P}ike}$	Matrix		Rec.
Param	Result	${ m Units}$	Dil.	Amount	Result	Rec.	Limit
Benzene	2.11	mg/Kg	1	2.00	< 0.0150	106	80.5 - 112
Toluene	2.07	mg/Kg	1	2.00	< 0.00950	104	82.4 - 113
Ethylbenzene	2.02	mg/Kg	1	2.00	< 0.0106	101	83.9 - 114
Xylene	5.97	mg/Kg	1	6.00	< 0.00930	100	84 - 114

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene	I	2.31	mg/Kg	1	2.00	< 0.0150	116	80.5 - 112	9	20
Toluene		2.27	mg/Kg	1	2.00	< 0.00950	114	82.4 - 113	9	20
Ethylbenzene		2.22	mg/Kg	1	2.00	< 0.0106	111	83.9 - 114	9	20
Xylene		6.55	mg/Kg	1	6.00	< 0.00930	109	84 - 114	9	20

¹MSD analyte out of range. MS/MSD has a RPD within limits. Therfore, MS shows extraction occured properly.

114-6400549

Work Order: 10081830 COG/MC Fed. #4 (Flowline) Page Number: 11 of 13 Lea County, NM

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	${ m Rec.}$	Limit
Trifluorotoluene (TFT)	2.06	2.06	mg/Kg	1	2	103	103	41.3 - 117
4-Bromofluorobenzene (4-BFB)	1.65	1.67	mg/Kg	1	2	82	84	35.5 - 129

Matrix Spike (MS-1)

Spiked Sample: 241842

QC Batch: 72905 Date Analyzed: 2010-08-24 Analyzed By: AG Prepared By: AG

Prep Batch: 62501

QC Preparation: 2010-08-24

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
GRO	18.4	mg/Kg	1	20.0	<1.65	92	61.8 - 114

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
GRO	18.3	mg/Kg	1	20.0	<1.65	92	61.8 - 114	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Surrogate	$rac{ ext{MS}}{ ext{Result}}$	MSD Result	Units	Dil.	Spike Amount	$rac{MS}{Rec}$.	MSD Rec.	Rec. Limit
Trifluorotoluene (TFT)	2.26	2.22	mg/Kg	1	2	113	111	50 - 162
4-Bromofluorobenzene (4-BFB)	1.78	1.72	mg/Kg	1	2	89	86	50 - 162

Matrix Spike (MS-1)

Spiked Sample: 241715

QC Batch: 72925 Prep Batch: 62487 Date Analyzed: 2010-08-25 QC Preparation: 2010-08-24

Analyzed By: AR Prepared By: AR

·	MS			$_{ m Spike}$	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride	12400	mg/Kg	100	10000	2200	102	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	12800	mg/Kg	100	10000	2200	106	85 - 115	3	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Standard (CCV-2)

QC Batch: 72816

Date Analyzed: 2010-08-20

Analyzed By: kg

114-6400549

Work Order: 10081830 COG/MC Fed. #4 (Flowline) Page Number: 12 of 13 Lea County, NM

			CCVs True	CCVs Found	$rac{ ext{CCVs}}{ ext{Percent}}$	Percent Recovery	Date
\mathbf{Param}	Flag	\mathbf{Units}	Conc.	$\mathbf{Conc.}$	$\operatorname{Recovery}$	Limits	Analyzed
DRO		mg/Kg	250	268	107	80 - 120	2010-08-20

Standard (CCV-3)

QC Batch: 72816

Date Analyzed: 2010-08-20

Analyzed By: kg

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	246	98	80 - 120	2010-08-20

Standard (CCV-1)

QC Batch: 72904

Date Analyzed: 2010-08-24

Analyzed By: AG

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Benzene		mg/Kg	0.100	0.0988	99	80 - 120	2010-08-24
Toluene		mg/Kg	0.100	0.0947	95	80 - 120	2010-08-24
Ethylbenzene		mg/Kg	0.100	0.0870	87	80 - 120	2010-08-24
Xylene		mg/Kg	0.300	0.262	87	80 - 120	2010-08-24

Standard (CCV-2)

QC Batch: 72904

Date Analyzed: 2010-08-24

Analyzed By: AG

	`		CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		mg/Kg	0.100	0.104	104	80 - 120	2010-08-24
Toluene		mg/Kg	0.100	0.0997	100	80 - 120	2010-08-24
Ethylbenzene		mg/Kg	0.100	0.0894	89	80 - 120	2010-08-24
Xylene		mg/Kg	0.300	0.265	88	80 - 120	2010-08-24

Standard (CCV-1)

QC Batch: 72905

Date Analyzed: 2010-08-24

Analyzed By: AG

114 - 6400549

Work Order: 10081830 COG/MC Fed. #4 (Flowline) Page Number: 13 of 13

Lea County, NM

			CCVs True	CCVs Found	$\begin{array}{c} { m CCVs} \\ { m Percent} \end{array}$	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/Kg	1.00	0.947	95	80 - 120	2010-08-24

Standard (CCV-2)

QC Batch: 72905

Date Analyzed: 2010-08-24

Analyzed By: AG

			CCVs True	CCVs Found	${ m CCVs} \ { m Percent}$	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
$\overline{\text{GRO}}$		mg/Kg	1.00	0.890	89	80 - 120	2010-08-24

Standard (ICV-1)

QC Batch: 72925

Date Analyzed: 2010-08-25

Analyzed By: AR

			ICVs True	ICVs Found	$rac{ ext{ICVs}}{ ext{Percent}}$	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	100	101	101	85 - 115	2010-08-25

Standard (CCV-1)

QC Batch: 72925

Date Analyzed: 2010-08-25

Analyzed By: AR

			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride	•	mg/Kg	100	99.0	99	85 - 115	2010-08-25

Summary Report

Work Order: 10111514

Ike Tavarez

Tetra Tech

1910 N. Big Spring Street

Midland, TX 79705

Report Date: November 19, 2010

Work Order: 10111514

Project Location: Lea County, NM

Project Name:

COG/MC Fed. #4 (Flowline)

Project Number: 114-6400549

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
250489	SB-1 0-1'	soil	2010-11-11	00:00	2010-11-15
250490	SB-1 3'	soil	2010-11-11	00:00	2010-11-15
250491	SB-1 5'	soil	2010-11-11	00:00	2010-11-15
250492	SB-1 7'	soil	2010-11-11	00:00	2010-11-15
250493	SB-1 10'	soil	2010-11-11	00:00	2010-11-15
250494	SB-1 15'	soil	2010-11-11	00:00	2010-11-15
250495	SB-1 20'	soil	2010-11-11	00:00	2010-11-15
250496	SB-1 25'	soil	2010-11-11	00:00	2010-11-15

Sample: 250489 - SB-1 0-1'

Param ,	Flag	Result	Units	RL
Chloride		256	mg/Kg	4.00

Sample: 250490 - SB-1 3'

Param	Flag	Result	Units	RL
Chloride		271	mg/Kg	4.00

Sample: 250491 - SB-1 5'

Param	Flag	Result	Units	RL
Chloride		1310	mg/Kg	4.00

Report Date: Nove	mber 19, 2010	Work Order: 10111514		Page Number: 2 of 2
Sample: 250492	- SB-1 7'			
Param	Flag	Result	Units	RL
Chloride		287	mg/Kg	4.00
Sample: 250493	- SB-1 10'			
Param	Flag	Result	Units	RL
Chloride		445	mg/Kg	4.00
Sample: 250494	- SB-1 15'			
Param	Flag	Result	Units	RL
Chloride		312	mg/Kg	4.00
Sample: 250495	- SB-1 20'			
Param	Flag	Result	Units	RL
Chloride		<200	mg/Kg	4.00
Sample: 250496	- SB-1 25'			
Param	Flag	Result	Units	m RL
Chloride	~	<200	mg/Kg	4.00

6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1

Łubbock, Texas 79424 El Paso, Texas 79922 Midland, Texas 79703

800 • 378 • 1296 888 • 588 • 3443

Certifications

806 • 794 • 1296 915 • 585 • 3443 432 • 689 • 6301

FAX 806 • 794 • 1298 FAX 915 • 585 • 4944 FAX 432 + 689 + 6313

6015 Harris Parkway, Suite 110

Ft. Worth, Texas 76132

817 - 201 - 5260

E-Mail: lab@traceanalysis.com

WBENC:

237019

HUB:

1752439743100-86536

DBE: VN 20657

NCTRCA WFWB38444Y0909

NELAP Certifications

Lubbock:

T104704219-08-TX

El Paso:

T104704221-08-TX

Midland:

T104704392-08-TX

Date

LELAP-02003 Kansas E-10317 LELAP-02002

Analytical and Quality Control Report

Ike Tavarez

Tetra Tech 1910 N. Big Spring Street

Report Date: November 19, 2010

Midland, TX, 79705

Work Order: 10111514

Project Location: Lea County, NM

Project Name:

COG/MC Fed. #4 (Flowline)

Project Number:

114-6400549

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	rune	Dave
Sample	Description	Matrix	Taken	Taken	Received
250489	SB-1 0-1'	soil	2010-11-11	00:00	2010-11-15
250490	SB-1 3'	soil	2010-11-11	00:00	2010-11-15
250491	SB-1 5'	soil	2010-11-11	00:00	2010-11-15
250492	SB-1 7'	soil	2010-11-11	00:00	2010-11-15
250493	SB-1 10'	soil	2010-11-11	00:00	2010-11-15
250494	SB-1 15'	soil	2010-11-11	00:00	2010-11-15
250495	SB-1 20'	soil	2010-11-11	00:00	2010-11-15
250496	SB-1 25'	soil	2010-11-11	00:00	2010-11-15

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch

basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 7 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Michael abel

Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

Standard Flags

 ${f B}$ - The sample contains less than ten times the concentration found in the method blank.

Case Narrative

Samples for project COG/MC Fed. #4 (Flowline) were received by TraceAnalysis, Inc. on 2010-11-15 and assigned to work order 10111514. Samples for work order 10111514 were received intact at a temperature of 3.0 C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	$_{ m QC}$	Analysis
Test	Method	Batch	Date	Batch	Date
Chloride (Titration)	SM 4500-Cl B	64661	2010-11-16 at 08:29	75452	2010-11-18 at 10:31

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 10111514 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Report Date: November 19, 2010

114-6400549

Work Order: 10111514 COG/MC Fed. #4 (Flowline) Page Number: 4 of 7 Lea County, NM

Analytical Report

Sample: 250489 - SB-1 0-1'

Laboratory:

Midland

Analysis:

Chloride (Titration)

QC Batch: 75452 Prep Batch: 64661

Analytical Method: Date Analyzed:

Sample Preparation:

SM 4500-Cl B

2010-11-18 2010-11-16 Prep Method: N/A Analyzed By: ARPrepared By: AR

RL

Parameter Chloride

Flag

Result 256

Units mg/Kg Dilution 50 RL

4.00

Sample: 250490 - SB-1 3'

Laboratory:

Midland

Analysis:

Chloride (Titration)

QC Batch: 75452 Prep Batch: 64661 Analytical Method:

Sample Preparation:

Date Analyzed:

SM 4500-Cl B 2010-11-18

2010-11-16

Prep Method: N/A Analyzed By:

ARPrepared By: AR

RL

Parameter Chloride

Result Flag 271

Units mg/Kg Dilution 50 RL

4.00

Sample: 250491 - SB-1 5'

Laboratory:

Midland

Analysis:

Chloride (Titration)

Analytical Method: Date Analyzed:

SM 4500-Cl B

Prep Method: Analyzed By: AR

QC Batch: Prep Batch:

75452 64661

Sample Preparation:

2010-11-18 2010-11-16

Prepared By:

Parameter Flag Chloride

RL

Result 1310 Units

mg/Kg

Dilution

100

AR

RL

4.00

N/A

Sample: 250492 - SB-1 7'

Laboratory:

Midland

Chloride (Titration) Analysis: QC Batch: 75452 Prep Batch: 64661

Analytical Method: Date Analyzed:

Sample Preparation:

SM 4500-Cl B 2010-11-18

2010-11-16

Prep Method: N/A Analyzed By: ARPrepared By: AR

continued ...

Report Date 114-6400549				Page Number: 5 of 7 Lea County, NM	
sample 2504	92 continued				
	•	RL			
Parameter	Flag	Result	Units	Dilution	RL
		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride	·	287	mg/Kg	50	4.00
~					
Sample: 25	60493 - SB-1 10'				
Laboratory:	Midland			_	
Analysis:	Chloride (Titration)	Analytical Method:		Prep Method:	N/A
QC Batch:	75452	Date Analyzed: Sample Preparation	2010-11-18	Analyzed By:	AR
Prep Batch:	64661	Sample r reparation	: 2010-11-16	Prepared By:	AR
		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		445	mg/Kg	50	4.00
Sample: 25	60494 - SB-1 15'	_			
_					
Laboratory:	Midland	A 1 - 42 3 B # - 41 - 1	CM 4FOO CLD	D 34 (1 1	NT / A
Analysis: QC Batch:	Chloride (Titration) 75452	Analytical Method: Date Analyzed:	SM 4500-Cl B 2010-11-18	Prep Method:	N/A
Prep Batch:	64661	Sample Preparation		Analyzed By: Prepared By:	AR AR
Trep Daten.	04001	bumple I toparation	. 2010-11-10	r repared by.	AII,
		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		312	mg/Kg	50	4.00
			•		
Sample: 25	0495 - SB-1 20'	·			
Laboratory:	Midland				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	75452	Date Analyzed:	2010-11-18	Analyzed By:	AR
Prep Batch:	64661	Sample Preparation	: 2010-11-16	Prepared By:	AR
		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		<200	mg/Kg	50	4.00

Report Date: November 19, 2010

114-6400549

Work Order: 10111514 COG/MC Fed. #4 (Flowline) Page Number: 6 of 7 Lea County, NM

Sample: 250496 - SB-1 25'

Laboratory:

Midland

Analysis:

Chloride (Titration)

QC Batch: 75452 Analytical Method: Date Analyzed:

SM 4500-Cl B

2010-11-18

Prep Method: N/A Analyzed By:

ARAR

Prep Batch: 64661

Sample Preparation:

2010-11-16

Prepared By:

RL

Parameter Chloride

Flag

Result <200

Units mg/Kg Dilution 50 RL

4.00

Method Blank (1)

QC Batch: 75452

QC Batch: Prep Batch:

75452 64661 Date Analyzed: QC Preparation:

2010-11-18 2010-11-16 Analyzed By: AR

Prepared By: AR

MDL

Flag

Units

Result

Parameter Chloride

< 2.18

mg/Kg

RL

4

Laboratory Control Spike (LCS-1)

QC Batch:

75452

Date Analyzed:

2010-11-18

Analyzed By: AR

Prep Batch: 64661

QC Preparation: 2010-11-16

Prepared By: AR

LCS Param Result

Units

Matrix Result

Chloride

98.1 mg/Kg Dil. 1

Amount 100

Rec.

102

Rec. <2.18 98

Rec. Limit

85 - 115

20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Param	

LCSD Result 102

Spike Units Dil. Amount 100 mg/Kg 1

Matrix Result <2.18

Spike

Rec. Limit

85 - 115

RPD **RPD** Limit

4

Chloride

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1)

Spiked Sample: 250496

QC Batch:

75452

Date Analyzed:

2010-11-18

Analyzed By: AR

Prep Batch: 64661

QC Preparation:

2010-11-16

Prepared By:

AR

Report Date: November 19, 2010

114-6400549

Work Order: 10111514 COG/MC Fed. #4 (Flowline) Page Number: 7 of 7 Lea County, NM

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride	10500	mg/Kg	100	10000	<218	105	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	10800	mg/Kg ·	100	10000	<218	108	85 - 115	3	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Standard (ICV-1)

QC Batch: 75452

Date Analyzed: 2010-11-18

Analyzed By: AR

			ICVs True	ICVs Found	ICVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	100	99.2	99	85 - 115	2010-11-18

Standard (CCV-1)

QC Batch: 75452

Date Analyzed: 2010-11-18

Analyzed By: AR

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	100	101	101	85 - 115	2010-11-18

* 10/115/4

PAGE: OF: VANALYSIS REQUEST (Circle or Specify Method No.)	(Circle or Specify Method No.)	Cr Pb Hg Se	\$10\62\$	815X 8021B			X		X	X	No.	A A	×			SAMPLE Gripped BY: (Circle) FEDEX FEDEX	FEDER BLS BUS BUS TENT OF CONTACT PERSON:	The Taracet Missioned Authorised No.			
# (3/11)14	Request of Chain of Custody Record		1910 N. Big Spring St. Midland, Texas 79705 (432) 682-4559 • Fex (432) 682-3946		CONTA	Lea G., A.M. NUMBER OF MILIERED COMP. GOMP. GOMP.	1 SB-1 O-1.	1 50-1 3'	1 SB-1 S'	1 ,2 1-88-1	1 50-1 100	1		1 58-1 25'			11 ATT 10 RECEIVED BY: (Signature)	Data: RECEIVED BY: (Signature) Data:	HECEIVED BY: (SUgnature)	7P: Take 12	HEMARKS: LEST MIN A LON
2000	Analysis R			CLENT NAME:	PROJECT NO.: 114-6400549	Ē	11/11 58205	1 %	16h	rbh	493	764	767	1 980			RELINQUISHED BY: (Stopution)	RELINGUISHED BY: (Signature)	RELINGUISHED BY (Signature)	RECEIVING LABORATORY: ADDRESS: CITY: CONTACT: CONTACT:	3. OC it at