[1]

[2]

[A]

[B]

30-025-43282

NEW MEXICO OIL CONSERVATION DIVISION

- Engineering Bureau -

1220 South St. Francis Drive, Santa Fe, NM 87505

ADMINISTRATIVE APPLICATION CHECKLIST THIS CHECKLIST IS MANDATORY FOR ALL ADMINISTRATIVE APPLICATIONS FOR EXCEPTIONS TO DIVISION RULES AND REGULATIONS WHICH REQUIRE PROCESSING AT THE DIVISION LEVEL IN SANTA FE **Application Acronyms:** [NSL-Non-Standard Location] [NSP-Non-Standard Proration Unit] [SD-Simultaneous Dedication] [DHC-Downhole Commingling] [CTB-Lease Commingling] [PLC-Pool/Lease Commingling] [PC-Pool Commingling] [OLS - Off-Lease Storage] [OLM-Off-Lease Measurement] [WFX-Waterflood Expansion] [PMX-Pressure Maintenance Expansion] [SWD-Salt Water Disposal] [IPI-Injection Pressure Increase] [EOR-Qualified Enhanced Oil Recovery Certification] [PPR-Positive Production Response] **TYPE OF APPLICATION -** Check Those Which Apply for [A]: - Occidental Permin [A] Location - Spacing Unit - Simultaneous Dedication \square NSL \square NSP \square SD Check One Only for [B] or [C] Commingling - Storage - Measurement ☐ DHC ☐ CTB ☐ PLC ☐ PC ☐ OLS ☐ OLM [C] Injection - Disposal - Pressure Increase - Enhanced Oil Recovery □ WFX X PMX □ SWD □ IPI □ EOR □ PPR Other: Specify Additional Injector within approved project area (R-6199-F) [D] **NOTIFICATION REQUIRED TO:** - Check Those Which Apply, or Does Not Apply

	[C]	Application is One Which Requires Published Legal Notice — Hobbs', Grabus
A .	[D]	Application is One Which Requires Published Legal Notice Notification and/or Concurrent Approval by BLM or SLO U.S. Bureau of Land Management - Commissioner of Public Lands, State Land Office Hubbs, Graybun San Andres 31920
	[E]	For all of the above, Proof of Notification or Publication is Attached, and/or,
	[F]	Waivers are Attached
		•

SUBMIT ACCURATE AND COMPLETE INFORMATION REQUIRED TO PROCESS THE TYPE [3] OF APPLICATION INDICATED ABOVE.

Working, Royalty or Overriding Royalty Interest Owners

Offset Operators, Leaseholders or Surface Owner

CERTIFICATION: I hereby certify that the information submitted with this application for administrative [4] approval is accurate and complete to the best of my knowledge. I also understand that no action will be taken on this application until the required information and notifications are submitted to the Division.

Note: S	tatement must be completed by an individ	ual with managerial and/or supervisory capacity.	
	\bigcirc		1/11/11
April Hood	appril No	Regulatory Coordinator	6/16/16
Print or Type Name	Signature	Title	Date

April_Hood@Oxy.com e-mail Address

RECEIVED Phone,7,13.215.7000

June 16, 2016

+ 2016 JUN 17 P 2: 37

State of New Mexico
Energy, Minerals & Natural Resources Department
Oil Conservation Division
1220 S. St. Frances Dr.
Santa Fe, NM 87505

RE: Pressure Maintenance Project North Hobbs G/SA Unit Well No. 693 Letter L, Section 33, T-18S, R-38E Lea County, NM

Mr. Richard Ezeanyim, Chief Engineer:

Occidental Permian Ltd. respectfully request administrative approval to commence injection (water, CO2, and produced gas) per the authorized Order No. R-6199-F dated May 22, 2014. In support of this request please find the following documentation:

- Administrative Application Checklist
- Form C-108 with miscellaneous data attached
- An Injection Well Data Sheet
- Form C-102
- Maps (2)

*** Per Oder No. R-6199-F, this application is eligible for administrative approval without notice or hearing ***

If you have any questions regarding this application, please contact me at 713-366-5771 or email april_hood@oxy.com.

Sincerely,

appeal Nood

April Hood

Regulatory Coordinator

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

Oil Conservation Division ¹ 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

FORM C-108 Revised June 10, 2003

APPLICATION FOR AUTHORIZATION TO INJECT

I.	PURPOSE: Secondary Recovery X Pressure Maintenance Disposal Application qualifies for administrative approval? X Yes No	Storage
H.	OPERATOR: Occidental Permian LTD.	
	ADDRESS: PO Box 4294 Houston, TX 77210	
	CONTACT PARTY: April Hood PHONE: 71	3-366-5771
Ш.	WELL DATA: Complete the data required on the reverse side of this form for each well proposed for injection. Additional sheets may be attached if necessary.	
IV.	Is this an expansion of an existing project? X Yes If yes, give the Division order number authorizing the project: No R-6199-F (May 22, 2014)	
V.	Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mil drawn around each proposed injection well. This circle identifies the well's area of review.	e radius circle
VI.	Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed inject data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, of any plugged well illustrating all plugging detail.	
VII.	Attach data on the proposed operation, including:	
	 Proposed average and maximum daily rate and volume of fluids to be injected; Whether the system is open or closed; Proposed average and maximum injection pressure; Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other that produced water; and, If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, st wells, etc.). 	l well, attach a
*VIII.	Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thick Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing wardissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such so be immediately underlying the injection interval.	ters with total
IX.	Describe the proposed stimulation program, if any.	
*X.	Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be	be resubmitted).
*XI.	Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within on injection or disposal well showing location of wells and dates samples were taken.	e mile of any
XII.	Applicants for disposal wells must make an affirmative statement that they have examined available geologic and eand find no evidence of open faults or any other hydrologic connection between the disposal zone and any undergradrinking water.	
XIII.	Applicants must complete the "Proof of Notice" section on the reverse side of this form.	
XIV.	Certification: I hereby certify that the information submitted with this application is true and correct to the best of my belief.	knowledge and
	NAME: April Hood TITLE: Regulatory Coordinator	
	SIGNATURE: WATE: W//W//	<u>'</u> Q
*	E-MAIL ADDRESS: April_Hood@Oxy.com If the information required under Sections VI, VIII, X, and XI above has been previously submitted, it need not be replease show the date and circumstances of the earlier submittal: Case No. 15103 Order R-6199-F - Effective May	

III. WELL DATA

- A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include:
 - (1) Lease name; Well No.; Location by Section, Township and Range; and footage location within the section.
 - (2) Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined.
 - (3) A description of the tubing to be used including its size, lining material, and setting depth.
 - (4) The name, model, and setting depth of the packer used or a description of any other seal system or assembly used.

Division District Offices have supplies of Well Data Sheets which may be used or which may be used as models for this purpose. Applicants for several identical wells may submit a "typical data sheet" rather than submitting the data for each well.

- B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.
 - (1) The name of the injection formation and, if applicable, the field or pool name.
 - (2) The injection interval and whether it is perforated or open-hole.
 - (3) State if the well was drilled for injection or, if not, the original purpose of the well.
 - (4) Give the depths of any other perforated intervals and detail on the sacks of cement or bridge plugs used to seal off such perforations.
 - (5) Give the depth to and the name of the next higher and next lower oil or gas zone in the area of the well, if any.

XIV. PROOF OF NOTICE

All applicants must furnish proof that a copy of the application has been furnished, by certified or registered mail, to the owner of the surface of the land on which the well is to be located and to each leasehold operator within one-half mile of the well location.

Where an application is subject to administrative approval, a proof of publication must be submitted. Such proof shall consist of a copy of the legal advertisement which was published in the county in which the well is located. The contents of such advertisement must include:

- (1) The name, address, phone number, and contact party for the applicant;
- (2) The intended purpose of the injection well; with the exact location of single wells or the Section, Township, and Range location of multiple wells;
- (3) The formation name and depth with expected maximum injection rates and pressures; and,
- (4) A notation that interested parties must file objections or requests for hearing with the Oil Conservation Division, 1220 South St. Francis Dr., Santa Fe, New Mexico 87505, within 15 days.

NO ACTION WILL BE TAKEN ON THE APPLICATION UNTIL PROPER PROOF OF NOTICE HAS BEEN SUBMITTED.

NOTICE: Surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date this application was mailed to them.

C-108 Application Attachment Occidental Permian Ltd. North Hobbs G/SA Unit Lea County, New Mexico

- V. Two maps are attached.
- VII. The area of review is attached.. If cement tops were not available, the top of cement was calculated using 1.32 cubic feet/sack of cement and 70% fill.

1. Average Injection Rate N/A

Maximum Injection Rate 9000 BWPD / 15000

- This will be a closed system.
- 3. Average Surface Injection Pressure N/A Maximum Surface Injection Pressure

Produced Water 1100 PSI

CO2 w/produced gas 1770 PSI

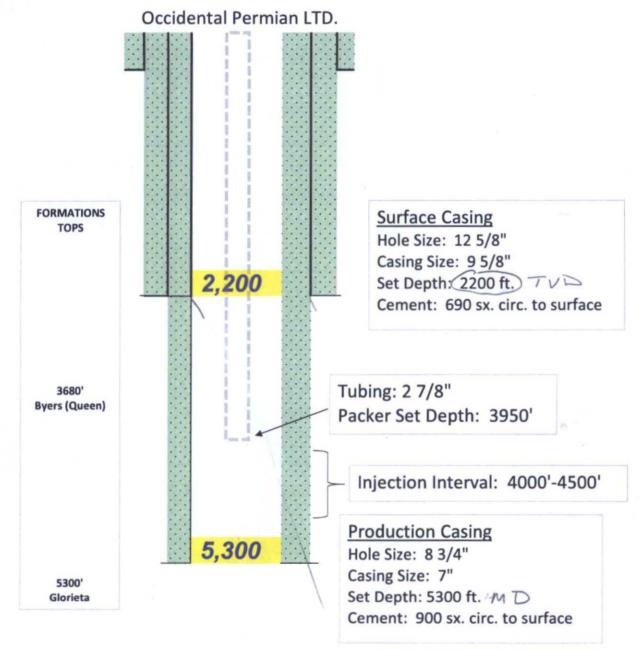
(In accordance with Order No. R-6199-F, effective 5/22/14)

- 4. Source Water San Andres Produced Water (Analysis previously provided at hearing, Case No. 15103)
- IX. Acid treatment of injection interval may be performed during well workover (approximately 4000 gal. of 15% HCL)

>

- XII. NA. This is a pressure maintenance project, not a disposal well.
- XIII. Per Order No. R-6199-F, this application is eligible for administrative approval without notice or hearing.

INJECTION WELL DATA SHEET


OPERATOR: Occidental Permian LTD.				
WELL NAME & NUMBER: North Hobbs Unit No. 693				•
WELL LOCATION: 1880 FSL & 1298 FWL	L	33 1	8S	38E
FOOTAGE LOCATION	UNIT LETTER	SECTION	TOWNSHIP	RANGE
WELLBORE SCHEMATIC		<u>WELL CO</u> <u>Surface C</u>	NSTRUCTION DATA Casing	<u>.</u>
	Hole Size: 12 5/8		Casing Size: 9 5/8	
	Cemented with:	590 sx.	or	ft³
	Top of Cement:		Method Determined:	Circulation
		Intermediate	e Casing	
	Hole Size:		Casing Size:	
	Cemented with:	sx.	or	ft³
·	Top of Cement:		Method Determined:	
	•	Production	Casing	
	Hole Size: 8 3/4		Casing Size: 7	
	Cemented with:	900 sx.	or	ft³
	Top of Cement:	0	Method Determined:	Calculation
	Total Depth:530	00		
		Injection I	nterval	
	4(000 feet	to4500	

(Perforated or Open Hole; indicate which)

INJECTION WELL DATA SHEET

Tubing Size:		2 7/8	Lining Material:
Туј	pe of Packer:	T&C EU Duoline	
Pac	cker Setting Depth:	3950	<u> </u>
Otł	ner Type of Tubing	/Casing Seal (if applica	able):
		<u>А</u>	dditional_Data
1.	Is this a new wel	l drilled for injection?	XYesNo
	If no, for what pu	irpose was the well orig	ginally drilled?
2.	Name of the Inje	ction Formation:	San Andres
3.	Name of Field or	Pool (if applicable): _	Hobbs; Grayburg - San Andres
4.			other zone(s)? List all such perforated acks of cement or plug(s) used
5.			gas zones underlying or overlying the proposed
	Byers (Queen) (@ +/- 3680	
	Glorieta @ +/- 5	300	

NHU 693

OCCIDENTAL PETROLEUM CORPORATION PERMIAN - EOR

ACTUAL WELLBORE SCHEMATIC

Name:

DEVIATED WELL

Wellbore TD:

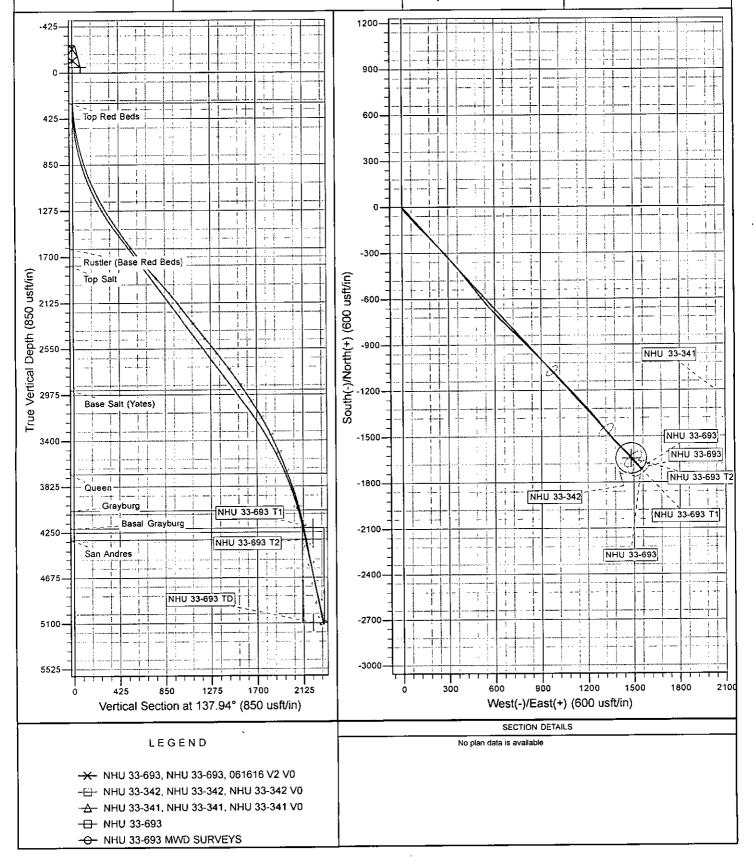
5 74

Name:	NHU-33-693		DEVIATI	ED WELL			5,740		
HOLE SECTION (Size)	Formation	ormation Measured WELLBORE ARCHITECTURE			Casing (MD)	Cement Surface	Cement Production	Mud System	
Surface (12-5/8")	Red Beds Rustler	1,516 1,612			9 5/8" 36# J-55 LTC	Lead - Prem. Plus 13.5 ppg (430 sx/131.5 bbls) Cmt to surface (131 sx / 40 bbl) Tail - Prem. Plus 14.8 ppg (200 sx / 47 bbl)		Fresh Water 8.6-9.1 ppg	
Production (8 3/4")	Top Salt Base Salt Queen	1,652 2,803 3,595		10.0 ppg Brine	7" 26# J-55 LTC 0' - 5,724'		Stage 2: Lead - Interfill C 11.9 ppg (620 sx/273 bls) Cmt to surface (14 bbl - 32 sx) Stage 2: Tail - Prem. Plus 14.2 ppg (210 sx / 58 bls)	Clear Brine 10.0-10.3 ppg	
	Grayburg	3,915		×	Top of DV Tool (4,280')		Stage 1:		
	Basal Grayburg	4,092			Top of Flag Joint (4,670')		Tail - Poz Prem. Plus 14.8 ppg (520 sx / 107 bbls) Full returns	Brine/Brine Base Mud 10.2-10.3 ppg	
	San Andres	4,194		PBTD 5,724	Top of FC (5,678')		(65 bls / 315 sx)	TOLE TOLO PIPE	
'Red" denotes Ac	Total Depth (TD)	5,740	7						

DXY Permian

OCCIDENTAL PERMIAN LTD

Project: NORTH HOBBS UNIT Site: SEC. 33, T18S, R38E


Well: NHU 33-693 Wellpath: NHU 33-693 Design: NHU 33-693

Azimuths to Grid North True North: -0.63° Magnetic North: 6.27°

Magnetic Field Strength; 48369.2snT Dip Angle: 60.58° Date: 6/10/2016 Model: IGRF2015

140		-		Course		Subsea							Dogleg
MD	INC	J.	AZI	Length	TVD	Depth	N/-S	E/-W	Х	Υ	Lat	Long	Severity
	0	0	o	0	0	3652.6	0	0	861764.8	620982.1	L 32- 42'	5.9 103- 9' 2	6.
19	97	1.1	216	197	196.9879	3455.612	-1.5299	-1.1115	861763.7	620980.6	32-42'	5.9 103- 9' 2	6. 0.50
37	78	4.4	143.9	181	377.7852	3274.815	-8.5485	1.9595	861766.8	620973.5	32-42'	5.9 103-9' 2	6. 2.3
55	9	10.8	143.6	181	557.102	3095.498	-27.8279	16.1283	861780.9	620954.3	32-42'	5. 7 1 03- 9' 2	6. 3.54
74	11	14.8	135.3	182	734.558	2918.042	-58.0904	42.6108	861807.4	620924	32-42'	5.4 103- 9' 2	5. 2.4
90)5	18.8	138.5	164	891.5299	2761.07	-92.7858	74.8686	861839.7	620889.3	32-42'	5.0 103- 9' 2	5. 2.
108	35	24.9	134.6	180	1058.529	2594.071	-141.164	121.1142	861885.9	620840.9	32-42'	4.5 103- 9' 2	4. 3.4
126	55	29.1	136.5	180	1218.877	2433.723	-199.547	178.2513	861943.1	620782.5	32-42'	3.9 103- 9' 2	4. 2.3
144	15	34.63	136.96	180	1371.691	2280.909	-268.732	243.338	862008.1	620713.3	32-42	3.3 103- 9' 2	3. 3.0
155	55	34.41	136.83	110	1462.323	2190.277	-314.244	285.9346	862050.7	620667.8	32-42'	2.8 103- 9' 2	3. 0.2
175	64	36.7	141.4	199	1624.239	2028.361	-401.752	361.526	862126.3	620580.3	32-42'	1.9 103- 9' 2	2. 1.7
193	34	40.39	140.96	180	1764.997	1887.603	-489.114	431.8395	862196.6	620493	32-42'	1.1103-912	1. 2.0
213	13	42.28	142.54	179	1899.398	1753.202	-581.965	504.998	862269.8	620400.1	32-42'	0.1 103- 9' 2	0. 1.2
229	3	40.3	138.02	180	2034.67	1617.93	-673.329	580.784	862345.6	620308.8	32-41'	59. 103 9' 1	9. 1.99
247	73	38.02	133.89	180	2174.255	1478.345	-755.058	659.6937	862424.5	620227	32-41'	58.103-9'1	8. 1.9
265	3	38.19	135.25	180	2315.896	1336.704	-833.008	738.8196	862503.6	620149.1	. 32-41'	57. 103- 9' 1	7. ~ 0.48
283	33	39.24	135.78	180	2456,342	1196.258	-913.329	817.7013	862582.5	620068.8	32-41'	56. 103- 9' 1	6. 0.6
301	.2	37.88	136.17	179	2596.309	1056.291	-993.551	895.2459	862660.1	619988.5	32-41'5	56. 103- 9' 1	6. 0.7
319	2	36.12	136.18	180	2740.058	.912.5421	-1071.7	970.2548	862735.1	619910.4	32-41'	55. 103- 9' 1	5. 0.98
337	2	34.67	136.88	180	2886.787	765.8133	-1147.35	1041.987	862806.8	619834.7	' 32 - 41' 5	54. 103- 9' 1	4. 0.84
355	2	32.96	137.1	180	3036.332	616.2678	-1220.6	1110.318	862875.1	619761.5	32-41'5	53. 103– 9' 1	3. 0.95
373	2	30.17	137.93	180	3189.686	462.9137	-1290.06	1173.968	862938.8	619692	32-41'	53. 103- 9' 1	2. 1.5
391	.2	25.75	139.07	180	3348.638	303.9625	-1353.2	1229.919	862994.7	619628.9	32-41'	52. 103 - 9' 1	2. 2.47
409	2	22.9	140.44	180	3512.642	139.9578	-1409.76	1277.85	863042.7	619572.3	32-41'	51. 103- 9' 1	1. 1.6
427	2	21.18	141.84	180	3679.483	-26.8831	-1462.33	1320.248	863085.1	619519.8	32-41'5	51. 103- 9' 1	1.
445	2	19.03	140.83	180	3848.505	-195.905	-1510.65	1358.879	863123.7	619471.4	32-41'5	50. 103- 9' 1	0. 1.2:
463	2	14.77	132.99	180	4020.714	-368.114	-1549.07	1394.219	863159	619433	32-41'5	50. 103- 9' 1	0. 2.68
481	.2	11.07	133.4	180	4196.127	-543.527	-1576.6	1423.568	863188.4	619405.5	32-41'5	50. 103- 9' 9	.9 2.06
499	2	11.21	134.42	180	4372. 7 35	-720.135	-1600.72	1448.62	863213.4	619381.4	32-41'4	19. 103– 9′ 9	.6 0.13
517	2	11.03	136.66	180	4549.357	-896.757	-1625.49	1472.935	863237.7	619356.6	32-41'4	19. 103- 9' 9	.3 0.26
535	1	11.25	136.74	179	4724.984	-1072.38	-1650.66	1496.653	863261.5	619331.4	32-41'4	19. 103- 9' 9	.0 0.12
553	1	11.34	140.08	180	4901.5	-1248.9	-1677.02	1520.043	863284.9	619305.1	32-41'4	19. 103 - 9' 8	.7 0.37
566	6	11.43	141.8	135	5033.844	-1381.24	-1697.71	1536.832	863301.6	619284.4	32-41'4	19. 103 - 9' 8	.5 0.26
5733	.5	11.43	141.8	67.5	5100.005	-1447.4	-1708.22	1545.104	863309.9	619273.9	32-41'4	48. 103 - 9' 8	.4 (
574	0	11.43	141.8	6.5	5106,376	-1453 78	-1709.23	1545.901	863310.7	619272.8	32-41'4	48, 103 9' 8	.4 (

.

.

District 1
1625 N. French Dr., Hobbs, NM 88240
Phone: (573) 393-6161 Fax: (575) 393-0720
District II.
811 S. First St., Artesia, NM 88210
Phone: (573) 748-1231 Fax: (575) 748-9720
District III.
1000 Rio Brazon Road, Artec, NM 87410
Phone: (303) 334-6178 Fax: (505) 334-6170
District IV.
1220 S. St. Francis Dr., Santa Fc, NM 87505
Phone: (305) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

☐ AMENDED REPORT

WO# 160521WL (KA)

WELL	I OCATION AN	ACREAGE	E DEDICATION PL	AT
WELL	LUCATION AIN	<i>J AUNEAUE</i>	DEDICATION FL	/t /

	API Number			•	l Code				Pool Name			
30-0	<u> 25 -</u>	- 4	3282 31920				ubbs,	Grayby	19-5a	n An	dnes	
Prope	erty Code		_	N			Name S G/SA				и	'ell Number 693
OGE	RID No.					Operato.					1	Elevation
1574	984			00	CCIDENT	AL I	PERMIAN	LTD.			3	636.1
					Surfa		ocation					
UL or lot no.	1 1		wnship	Range		Lot Ida	Feet from the	North/South line	Feet from the	East/W		County
	33	18	SOUTH	38 EAST, N.	. М. Р. М.		1880	SOUTH	1298'	WES	ST	LEA
				Bottom Ho				From Surfac	e			
UL or lat no.	1 1		wuship	Range		Lot Ida	Feet from the	North/South line		East/W	- 1	County
0	33	18	SOUTH	38 EAST, N.	М. Р. М.		220'	SOUTH	2542'	EAS	ST	LEA
Dedicated	Acres	Join	t or infili	Consolidation Code	Order No.							
No allowa	ible wil	l be a	ssigned to	this completion u	ntil all intere	ests ha	ve been con	solidated or a	non-standard	unit has	been appi	oved by the
division.												-
			<u> </u>							PERATOR	CEPTIFIC	ATTON
							1					
	•								1	-		f hereis is true and
				,	,		'		ll .	the best of my bu		eg, and that this unleased mineral
									i -		_	gon kale location or
			•				1			_		rnuni le a contract
										er of such a mine		
<u> </u>			-	— — 			`		voltatary po	oling agreement	ar a computary	pooling order
									Acrety(ove o	ward by the divi	irsian	. ,
) cupe	ACE LOCATION			1		(Capi	WON	ascl	Lefille
			NEW	MEXICO EAST					Signature	<u> </u>		Date /
			Y=620	0982.08 US FT			!		1401	ZIL F	400 A	<u> </u>
			LONG.:	N 32.7016632° W 103.1573210°					Printed Nam	1 - Ho	oda (DXY. Com
							1		E-mail Add	CS		2277 601 1
			· <i> </i>				_					
			d	V	GRID AZ = 1 2213.9	<u>37-26 2</u> N	<u>e1</u>		SUR	VEYOR CE	RTIFICAT	ron
			V	Λ,					I hereby	cerefy trans	Pell fection	on thown on this
1	298'			/	BOTTOM HOLE NEW MEXICO	D EAST	ION		plat was made by	ptpited fryfu nie ôf wletig	field notesta nv morestisti	Ricinal shaves Ricinal the
			K.	/ I	NAD 19 Y=619338,50 X=863247.90		:		same is t	nte in julgari ucana comi us	(15079)	of my prejide.
				/ I	LAT.: N 32.6 LONG.: W 103.	971010 152560	2			ほんし	(100, 2	181
<u></u>			∥` _				 		Date of S	WAY A	21, 2 016	\ <u>\s\</u>
				$\overline{}$			1		Signature	and Seal of nal Surveyor	Fecialis	M.
		<u>`</u>	3	<u> </u>			l		Professio	nal Surveyor	SOUNT	
		0		<u> </u>						_		,
				_ _			İ		00	$ \wedge$	11	1

2542

--220

District 1 1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Rd., Aztec, NM 87410

1220 S. St. Francis Dr., Sonta Fe, NM 87505

API Number

Joint or Infill

Consolidation Code

Order No.

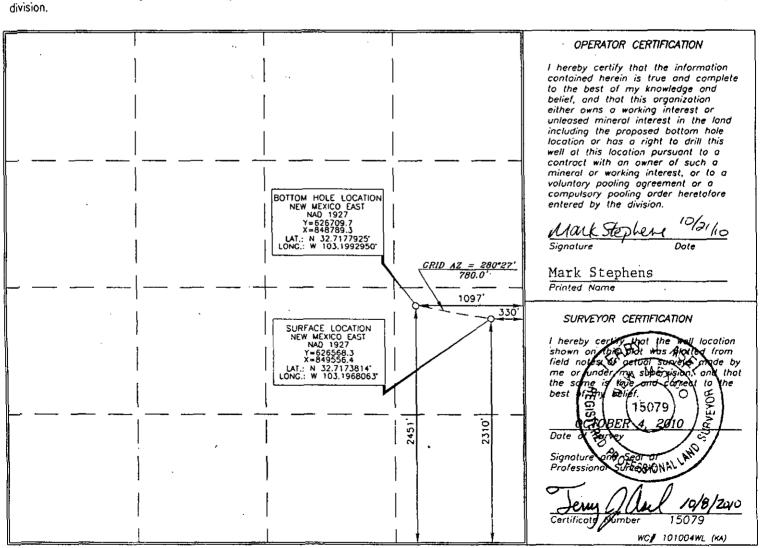
District IV

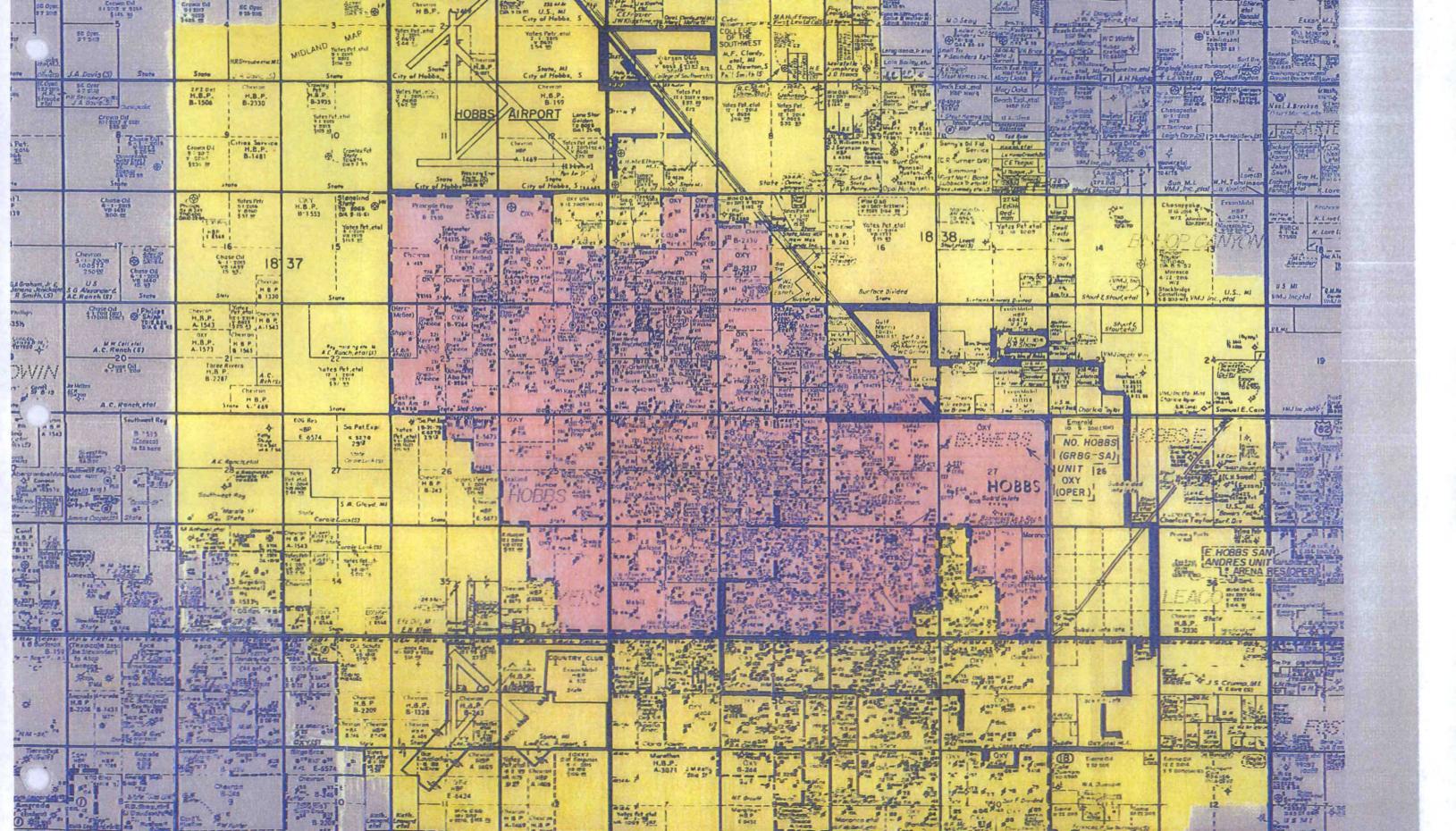
Dedicated Acres

40

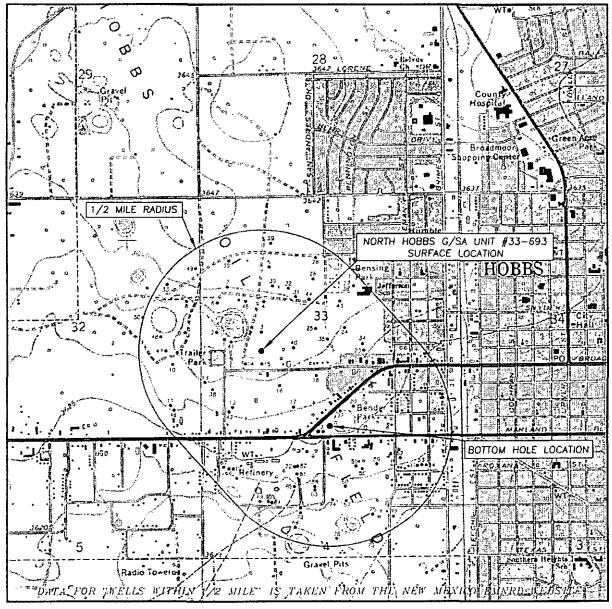
State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION

1220 South St. Francis Dr. Santa Fe, NM 87505


Form C-102 Revised October 12, 2005 Submit to Appropriate District Office State Lease- 4 Copies Fee Lease-3 Copies


AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT Pool Code Pool Name


30	025	5-05492	Hobbs; Grayburg-San Andres						
Prop	erty Cod	le	P	roperty I	Name				Well Number
19	520		NORTH HO	BBS	G/SA U	NIT		ļ	431
OG	RID No.		0	perator	Nome		-		Elevation
157	984		OCCIDENTA.	L PE	RMIAN I	LTD.			3658.6
			Surface Location					· ·	
UL or lot no.	Section	Township	Range	Lot idn	Feet from the	North/South line	Feet from the	East/West line	County
I	25	18 SOUTH	37 EAST, N.M.P.M.		2310'	SOUTH	330'	EAST	LEA
			Bottom Hole Location If Different From Surface				· · · · · · · · · · · · · · · · · · ·		
UL or lot no.	Section	Township	Range ·	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
1	25	18 SOUTH	37 EAST, N.M.P.M.		2451'	SOUTH	1097	EAST	LEA

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

OCCIDENTAL PERMIAN LTD. PAGE 1 OF 3 NHU 33-693 1/2 MILE RADIUS MAP

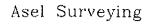
SCALE: 1'' = 2000'

CONTOUR INTERVAL: 10'

SEE PAGE 2 & 3 OF 3 FOR WELL NAMES

SEC. <u>33</u>	TWP. <u>18-S</u> RGE. <u>38-E</u>	
SURVEY	N.M.P.M.	
2011AF1	11,145,1 ,141,	_

COUNTY____LEA


DESCRIPTION 1880' FSL & 1298' FWL

ELEVATION 3636.1'

OPERATOR OCCIDENTAL PERMIAN LTD.

LEASE NORTH HOBBS G/SA UNIT #33-693

U.S.G.S. TOPOGRAPHIC MAP HOBBS WEST, N.M.

P.O. BOX 393 - 310 W. TAYLOR HOBBS, NEW MEXICO - 575-393-9146

Mr. McMillan,

Within the attached AOR, there have been no new wells drilled since May, 2014.

Thank you,

Conor McGinnis - Production Engineer

Date: 6/29/2016

NHU 33-693 1/2 MILE WELL LIST PAGE 2 OF 3

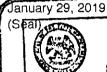
Point	Well
1	Legacy State A 33 #12
2	NHU #131
3	NHU #33-231
4	NHU #221
5	NHU #222
6	NHU #121
7	NHU #123
8	NHU #32-42 <u>1</u>
9	NHU #32-431
10	NHU #32-542
11	NHU #32-441
12	NHU #33-141
13	NHU #33-142
14	NHU #33-513
15	NHU #33-232
16	NHU #33-524
17	NHU #33-241
18	NHU #33-234
19	SHU #16
20	NHU #33-341
21	NHU #33-342
22	SHU #17
23	NHU #33-331
24	NHU #534
25	NHU #233
26	NHU #523
27	NHU #321
28	NHU #213
29	NHU #33-521
30	NHU #33-511
31	NHU #33-949
32	NHU #33-948
33	NHU #32-424
34	Conoco State #3
35	NHU #33-535
36 27	NHU #33-545 NHU #33-734
37 20	
38	NHU #33-844
39	NHU #33-526
40	D.H. Marker Conoco State #2
41	Conoco State #8
42	Conoco State #9
43	Conoco State #11

PAGE 3 OF 3

- 44 State G #3
- 45 State G #4
- 46 State 32 #7
- 47 State 32 #8
- 48 State 32 #10
- 49 NHU #32-422
- 50 NHU #32-423 & NHU #33-341
- 51 SHU #19
- 52 SHU COOP #4
- 53 SHU #218
- 54 SHU #246
- 55 SHU #18
- 56 BYERS B #34
- 57 SHU #217
- 58 SHU #221
- 59 SHU #224
- 60 SHU #230
- 61 PRE-ONGARD WELL #11Y
- 62 SHU COOP #3
- 63 SHU #216
- 64 SHU #220
- 65 SHU #229
- 66 PRE-ONGARD WELL #7
- 67 SHU COOP #2
- 68 SHU #215
- 69 SHU #32
- 70 SHU #130
- 71 SHU #231
- 72 SHU #243
- 73 SHU #33
- 74 SHU #131
- 75 SHU #232
- 76 SHU #233
- 77 SHU #132

Affidavit of Publication

STATE OF NEW MEXICO COUNTY OF LEA


1, Todd Bailey, Editor of the Hobbs News-Sun, a newspaper published at Hobbs, New Mexico, solemnly swear that the clipping attached hereto was published in the regular and entire issue of said newspaper, and not a supplement thereof for a period of 10 issue(s).

> Beginning with the issue dated June 02, 2016 and ending with the issue dated June 12, 2016.

Sworn and subscribed to before me this 12th day of June 2016.

Business Manager

My commission expires

OFFICIAL SEAL **GUSSIE BLACK** Notary Public State of New Mexico My Commission Expires 1-29-19

nie newspaper is ddiy qualified to publish legal notices or advertisements within the meaning of Section 3, Chapter 167, Laws of 1937 and payment of fees for said

LEGAL NOTICE June 2 through June 17, 2016

June 2 trio NOTICE OF APPLICATION TO DRILL

Occidental Permian Ltd.
P.O. Box 4294 Houston TX
77210-4294 is applying to
the City of Hobbs for a
permit to drill an injection
well. The applicant proposes
to drill North Hobbs well. The applicant proposes to drills North: Hobbs: Grayburg/San Andres Unit Well No. 33-893 located in the Southwest quarter, old Section 33. Township 18. South, Range 38 East, Lea County NM: Comments: grisvances or request for an appeal may be made in writing to Mr. Kevin Robinson, Development Director, City of Hobbs: 200 E. Broadway, St., Hobbs, NM. 8 8 2 4 0. Add | tional information may be obtained by contacting Mr. Scott Hodges; Occidental Permian Ltd., at (575) 397-821.11017. W. Stanolind Rd. Hobbs: NM. 88240.

67111848

00175850

APRIL HOOD OCCIDENTAL PERMIAN 5 GREENWAY PLAZA, STE 110 HOUSTON, TX 77046

NHU 33-693 1/2 MILE WELL LIST PAGE 2 OF 2

Point	Well
1	Legacy State A 33 #12
2	NHU #131
3	NHU #33-231
4	NHU #221
5	NHU #222
6	NHU #121
7	NHU #123
8	NHU #32-421
9	NHU #32-431
10	NHU #32-542
11	NHU #32-441
12	NHU #33-141
13	NHU #33-142
14	NHU #33-513
15	NHU #33-232
16	NHU #33-524
17	NHU #33-241
18	NHŲ #33-234
19	SHU #16
20	NHU #33-341
21	NHU #33-342
22	SHU #17
23	NHU #33-331
24	NHU #534
25	NHU #233
26	NHU #523
27	NHU #321 .
28	NHU #213
29	NHU #33-521
30	NHU #33-511
31	NHU #33-949
32	NHU #33-948
33	NHU #32-424
34	Conoco State #3
35	NHU #33-535
36	NHU #33-545
37	NHU #33-734
38	NHU #33-844
39	NHU #33-526
40	D.H. Marker Conoco State #2
41	Conoco State #8
42	Conoco State #9
43	Conoco State #11
44	State G #3
45	State G #4
46	State 32 #7
47	State 32 #8
48	State 32 #10
49	NHU #32-422
__ 50	NHU #32-423 & NHU #33-341

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION COMMISSION

APPLICATION OF OCCIDENTAL PERMIAN LTD TO AMEND ORDER NO. R-6199-B TO EXPAND THE NORTH HOBBS GRAYBURG-SAN ANDRES UNIT PHASE I TERTIARY RECOVERY PROJECT, TO MODIFY CERTAIN OPERATING REQUIREMENTS, AND TO CERTIFY THIS EXPANSION FOR THE RECOVERED OIL TAX RATE PURSUANT TO THE NEW MEXICO ENHANCED OIL RECOVERY ACT, LEA COUNTY, NEW MEXICO.

CASE NO. 15103 ORDER NO. R-6199-F

ORDER OF THE COMMISSION

This case comes before the New Mexico Oil Conservation Commission ("Commission") on the application of Occidental Permian Ltd. ("Oxy") to amend Order No. R-6199-B, as amended. The Commission, having conducted a hearing on March 13, 2014, at Santa Fc, New Mexico, and having considered the testimony and the record in the case, enters the following findings, conclusions and order:

THE COMMISSISION FINDS THAT:

- 1. Due public notice has been given, and the Commission has jurisdiction of this case and its subject matter.
- 2. On October 3, 1979, the Commission entered Orders No. R-6198 and R-6199 in Case Nos. 6652 and 6653 that statutorily unitized the North Hobbs Unit and approved a pressure maintenance project by the injection of water into the Grayburg and San Andres formations underlying the following acreage in Lea County, New Mexico:

TOWNSHIP 18 SOUTH, RANGE 37 EAST, NMPM

Section 13: W/2, SE/4

Section 14: All

Section 23: All

Section 24: All

Section 25: All

Section 26: E/2 NE/4, NW/4 NE/4

Section 36: E/2, E/2 NW/4

TOWNSHIP 18 SOUTH, RANGE 38 EAST, NMPM

Section 17: S/2 NW/4, SW/4

NE/4 and S/2 Section 18: Section 19: All Section 20: Section 21: SW/4, W/2 SE/4, SE/4 SE/4 Section 27: All Section 28: All Section 29: All Section 30: All Section 31: All Section 32: All W/2, NE/4, W/2 SE/4, and NE/4 SE/4 Section 33: E/2, E/2 NW/4 Section 34:

- 3. On October 22, 2011, the Energy, Minerals and Natural Resources Department Oil Conservation Division ("Division") entered Order No. R-6199-B authorizing a carbon dioxide gas tertiary recovery project within a portion of the North Hobbs Unit called the "Phase I Area" by injection of carbon dioxide (CO2), produced water, and produced gas through certain existing wells and yet to be drilled wells in the quarter-quarter sections identified on Exhibits A and B to that Order.
- 4. Since the entry of Order No. R-6199-B, the Division has approved additional injection wells in the Phase I area of the North Hobbs Unit through various administrative and hearing orders.
- 5. Oxy is the current operator of the North Hobbs Unit and now seeks the following relief from the Commission as provided in an Application filed with the Commission on February 11, 2014 ("Application"):
 - (a) to expand the approved geographic area for the carbon dioxide gas tertiary recovery injection project to include the following acreage:

TOWNSHIP 18 SOUTH, RANGE 37 EAST, NMPM

Section 13: W/2, SE/4
Section 14: All
Section 23: All
Section 24: All
Section 25: All

Section 26: E/2 NE/4, NW/4 NE/4

Section 36: E/2, E/2 NW/4

TOWNSHIP 18 SOUTH, RANGE 38 EAST, NMPM

Section 17: S/2 NW/4, SW/4 Section 18: NE/4 and S/2

Section 19: All Section 20: All

Section 21: SW/4, W/2 SE/4, SE/4 SE/4

Section 28: All

Section 29: All Section 30: All Section 31: All Section 32: All

Section 33: W/2, NE/4, W/2 SE/4, and NE/4 SE/4

- (b) to expand the injection authority to include new wells in the quarterquarter sections identified on Exhibit A to the Application and the existing producing or temporarily abandoned wells identified on Exhibit B to the Application;
- (c) to confirm that the well limitation for quarter-quarter sections set forth in NMAC 19.15.15.9(A) does not apply to active tertiary recovery projects, such as the North Hobbs Unit project;
- (d) to grant an exception to NMAC 19.15.15.13(A) (unorthodox well locations) to allow wells to be closer than 10 feet to a quarter-quarter section line or subdivision inner boundary within the North Hobbs Unit area;
- (e) to grant an exception to the notice requirements set forth in NMAC 19.15.26.8.C and 19.15.26.8.F to allow for administrative approval of additional injection wells in the expanded North Hobbs Unit area without notice and hearing;
- (f) to provide that for any injection well covered by this application that does not commence injection within 5 years after approval of this request, Oxy may submit within a period no more than twelve months and no less than sixty days before injection operations commence in the well either (i) a statement certifying that there have been no substantive changes to the information furnished in support of this application concerning the status or construction of any well that penetrates the injection interval within the one half (1/2) mile area of review around the injection well; or (ii) a statement describing any substantive changes;
- (g) to eliminate the existing limiting gas-oil ratio of 6,000 cubic feet of gas per barrel of oil and to provide that no limiting gas-oil ratio or oil allowable applies to this expanded enhanced oil recovery project;
- (h) to modify the packer setting depth required by R-6199-B Ordering Paragraph (3) to allow for the packer to be set anywhere above the uppermost injection perforations or easing shoe, provided the packer is set below the top of the Grayburg Formation;

- to provide a five-year frequency for mechanical integrity tests for temporarily abandoned wells equipped with real-time pressure monitoring devices pursuant to NMAC 19.15.25.13.E; and
 - (j) to certify the approved expansion of the tertiary recovery project for the recovered oil tax rate pursuant to the New Mexico Enhanced Oil Recovery Act, Sections 7-29A-1 to 7-29A-5 NMSA 1978 (Laws 1992, Chapter 38, Section 1 through 5) ("Recovery Act") and the rules of the Commission, 19.15.6 NMAC ("Rules").
- 6. At the hearing, upon the request of Oxy, the Commission adopted and took notice of the record from Case No. 14981, which resulted in Order No. R-4934-F approving a tertiary recovery project in the adjacent South Hobbs Project Area. The Commission also noted that several persons had filed written notices of appearance in this proceeding including Cornelia England, Gerald Carl Golden, Sharon Aileen Mehs. (Lee) and Thomas R. Mehs.
- 7. Oxy presented five witnesses in support of its Application: Jerad Brockman, Oxy's project manager with expertise in oil and gas production engineering; Randy Stillwell, a senior geologic advisor for Oxy with expertise in petroleum geology; Scott Hodges, Oxy's operations supervisor; Kelley Montgomery, Oxy's regulatory consultant with expertise in oil and gas production engineering; and Pat Sparks, Oxy's petroleum landman with expertise in petroleum land matters. Oxy's witnesses provided testimony and presented exhibits addressing the following topics:
 - (a) Oxy's current operations and facilities within the Phase I area of the North Hobbs Unit and the planned expansion of gas injection operations;
 - (b) The injection and production well patterns in the expanded Phase I Area, the need to exceed four wells per forty acre spacing unit, and the potential need to locate wells closer than ten fect to the quarter-quarter section lines;
 - (c) The capital costs and projected timeline for installation of key components of the expansion of gas injection in the Phase I area;
 - (d) The production history of the North Hobbs Unit and the additional oil anticipated from the Phase I area expansion project;
 - The need for additional flexibility in the packer setting depth than what is currently allowed by Order No. R-6199-B;
 - (f) The geology underlying the North Hobbs Unit, the location of the fresh water zones and the impermeable barriers that exist between the injection interval and the fresh water zones;

- (g) The gas injection facilities and pressure control devices Oxy utilizes in the Phase I area;
- (h) The supervisory control and data acquisition (SCADA) system Oxy utilizes to provide real time monitoring of pressures, temperature, water content, H2S levels and gas content in the North Hobbs Unit;
- (i) How Oxy monitors for H2S releases in the existing and proposed expanded Phase I area;
- Oxy's mechanical integrity program for the design, engineering, construction and maintenance of CO2 and produced gas injection facilities for enhanced oil recovery projects like the North Hobbs Unit;
- (k) The NACE Standard MRO175 set forth in NMAC 19.15.11.14 and Oxy's compliance with that standard for the injection facilities in the existing and proposed expanded Phase I Area;
- The additional corrosion inhibition and mitigation efforts Oxy will utilize for the installation, construction and maintenance of the injection facilities in the proposed expanded Phase I Area;
- (m) Oxy's downhole corrosion mitigation efforts, including the use of corrosion resistant tubing, packers and inert packer fluid in the annulus of wells in the existing and proposed expanded Phase I Area;
- (n) The time frame for mechanical integrity tests for temporarily-abandoned wells under NMAC 19.15.25.12 and the absence of a need for more frequent testing for wells equipped with real-time pressure monitoring devices;
- (o) The location of existing gas injection wells in the Phase I Area and the proposed locations for the expansion efforts;
- (p) The condition of the existing injection wells and design plans for additional injection wells in the Phase I Area;
- (q) Oxy's plans to add additional cement behind the production casing across the fresh water zone in the North Hobbs Unit Well No. 231 (API No. 30-025-07545) in the SE/4 NW/4 (Unit F) of Section 33 of Township 18 South, Range 38 East, prior to using this well for gas injection;
- (r) The area of review analysis conducted by Oxy and the conditions of the wells within the area of review;

- (s) The extensive knowledge of the wells within the area of review, the amount of time and effort devoted to the area of review analysis, and the absence of a need to update the area of review analysis for any injection wells that commence injection over the next five years;
- (t) The methodology, time frame and effort involved to ascertain the parties entitled to notice of the hearing on Oxy's application; and
- (u) The parties notified of the hearing either by certified mail or by newspaper publication.
- 8. The Division's Environmental Bureau has approved a hydrogen sulfide contingency plan that covers the North Hobbs Unit Area.
- 9. The geologic evidence establishes the following with respect to the Grayburg and San Andres formations underlying the North Hobbs Unit:
 - (a) These formations consist of a layered, anticlinal structure that acts as a natural trapping mechanism for oil, as well as any injected fluids.
 - (b) These formations are separated from the fresh water zones by over 3,500 feet.
 - (c) The upper portion of the Grayburg formation consists of 150 to 200 feet of impermeable anhydrite and limestone.
 - (d) Various additional layers of impermeable anhydrite, salt, shale and limestone exist between these injection formations and the fresh water zones.
 - (e) No geologic faults or other natural means exist in this area by which injected fluids could communicate with the shallower fresh water zones.
- 10. With respect to the existing wells and the proposed injection wells within the area of review for the expanded Phase I Area of the North Hobbs Unit, the evidence establishes that:
 - (a) The existing injection wells in the expanded Phase I Area of the North Hobbs Unit are sufficiently cased and cemented to prevent the migration of injection fluids out of the proposed injection interval. Nonetheless, Oxy intends to add additional cement behind the production casing across the fresh water zone for the North Hobbs Unit Well No. 231 (API No. 30-025-07545) in the SE/4 NW/4 (Unit F) of Section 33 of Township 18 South, Range 38 East, prior to using this well for gas injection.

- (b) Oxy's design for additional injection wells in the expanded Phase I Area of the North Hobbs Unit will provide sufficient easing and cement to prevent the migration of injection fluids out of the proposed injection interval.
- 11. The evidence demonstrates it is prudent to expand the geographic area for the tertiary recovery operations in the Grayburg and San Andres formations underlying the North Hobbs Unit as proposed by Oxy and that expansion of the Phase I Area of the North Hobbs Unit will result in the recovery of additional oil that may otherwise not be recovered and wasted.
- 12. The evidence presented to the Commission demonstrates that Oxy's proposed expansion of the tertiary recovery operations in the Grayburg and San Andres formations underlying the North Hobbs Unit will not pose an unreasonable threat to groundwater, the public health or the environment.
- 13. Oxy's request to expand the geographic area for the injection of CO2, water, and produced gases in the North Hobbs Unit should be approved.
- 14. The well limitation for quarter-quarter sections set forth in NMAC 19.15.15.9(A) does not apply to active tertiary recovery projects and Oxy should be allowed to locate wells closer than 10 feet to a quarter-quarter section line or subdivision inner boundary within the North Hobbs Unit.
- 15. Based on the extensive area of review analysis performed by Oxy, and the previous reviews conducted by Oxy and the Division in connection with previous applications to expand the injection authority in the Phase I Area of the North Hobbs Unit, the Commission finds it is unnecessary to update the existing area of review analysis for a period of five years. However, if any well commences injection operations more than five years after the date of this order, Oxy should submit a statement to the Division that there have been no substantive changes to the area-of-review information submitted, or a statement describing any substantive changes.
- 16. Pursuant to NMAC 19.15.25.13.E, and based on the evidence presented on Oxy's SCADA system and proposed real time pressure monitoring devices, the Commission finds it is appropriate to conduct mechanical integrity tests on temporarily-abandoned wells equipped with real-time pressure monitoring devices once every five years.
- 17. The geologic and other evidence presented demonstrates Oxy should be allowed to set packers in injection wells in the North Hobbs Unit anywhere above the uppermost injection perforations or casing shoes, so long as the packer is set below the top of the Grayburg formation.

- 18. With respect to Oxy's request that its proposed expanded injection authority qualify for the recovered oil tax rate pursuant to the New Mexico Enhanced Oil Recovery Act, the evidence establishes that:
 - (a) Oxy's planned enhanced oil recovery project in the expanded Phase I Area of the North Hobbs Unit should result in the recovery of an additional 54 million barrels of oil that may otherwise not be recovered, thereby preventing waste.
 - (b) The proposed expanded Phase I Area of the North Hobbs Unit has been depleted to the point that it is prudent to apply enhanced recovery techniques to maximize the ultimate recovery of crude oil;
 - (c) The application is economically and technically reasonable and has not been prematurely filed; and
 - (d) The proposed tertiary recovery project meets all of the criteria for certification as a qualified "enhanced oil recovery project" under the Recovery Act and the Rules. NMSA 1978, Section 7-29A-4; NMAC 19.15.6.8.E.
- 19. The proposed tertiary recovery project in the expanded Phase I Area of the North Hobbs Unit will prevent waste, protect correlative rights, and should be approved with certain conditions.

THE COMMISSION CONCLUDES THAT:

- 1. The Commission is empowered to regulate and permit the injection of natural gas or of any other substance into any pool in this state for the purpose of repressuring, cycling, pressure maintenance, secondary or any other enhanced recovery operations. NMSA 1978, Section 70-2-12(B)(14). The Commission has a further statutory duty to prevent waste and protect correlative rights. NMSA 1978, Section 70-2-11(A).
- 2. Oxy has provided substantial evidence to support the approval of the authority to inject CO2, and produced water and produced gases into the North Hobbs Project Area subject to the conditions provided in this Order, which conditions are necessary to prevent waste and protect correlative rights and public health and the environment.
- 3. The Commission and the Division have the authority to certify "enhanced recovery projects" that are eligible for a "recovered oil tax rate" under the Enhanced Oil Recovery Act, NMSA 1978, Sections 7-29A-1 to -5 (1992) and under the Rules, 19.15.6 NMAC. The North Hobbs Grayburg-San Andres Unit Pressure Maintenance Project, as described by this Order, meets the requirements for certification as an enhanced recovery project and a tertiary recovery project under the Recovery Act and the Rules. The North

Hobbs Project Area shall be designated as the area to be affected by the enhanced recovery project.

IT IS THEREFORE ORDERED THAT:

- (1) The provisions of this Order shall govern the tertiary recovery project described herein. The provisions of Orders No. R-6199-B, R-6199-C, R-6199-D and R-6199-E remain applicable to the ongoing operations in the North Hobbs Unit, except to the extent that they are inconsistent with this Order.
- (2) Oxy is authorized to expand the geographic area of the current tertiary recovery project in the Phase I Area of the North Hobbs Unit by the injection of CO2, water, and produced gases into the Grayburg and San Andres formations underlying the following acreage:

TOWNSHIP 18 SOUTH, RANGE 37 EAST, NMPM

Section 13: W/2, SE/4

Section 14: All

Section 23: All

Section 24: All

Section 25: All

Section 26: E/2NE/4, NW/4 NE/4

Section 36: E/2, E/2 NW/4

TOWNSHIP 18 SOUTH, RANGE 38 EAST, NMPM

Section 17: S/2 NW/4, SW/4

Section 18: NE/4 and S/2

Section 19: All

Section 20: All

Section 21: SW/4, W/2 SE/4, SE/4 SE/4

Section 28: All

Section 29: All

Section 30: All

Section 31: All

Section 32: All

Section 33: W/2, NE/4, W/2 SE/4, and NE/4 SE/4

- (3) The injection of CO2, water and produced gases is authorized for the wells and locations identified on Exhibits "A" and "B" attached to this Order. Application for approval of additional injection wells in the expanded Phase I Area of the North Hobbs Unit shall be filed in accordance with NMAC 19.15.26.8 and may be approved administratively by the Division Director without notice and hearing.
- (4) For any injection well or location identified on Exhibits "A" or "B" to this Order in which tertiary injection operations commence more than five years after the date of this Order, the operator shall submit to the Division either: (i) a statement certifying that there have been no substantive changes in the information furnished in support of the

subject application concerning the status or construction of any well that penetrates the injection interval within the one half (1/2) mile area of review around the injection well; or (ii) a statement describing any substantive changes. This statement shall be submitted to the Division's Santa Fe office within a period no more than twelve months and no less than sixty days before injection operations commence in the well.

- (5) The well limitation for quarter-quarter sections set forth in NMAC 19.15.15.9(A) does not apply to active tertiary recovery projects and Oxy is authorized to locate wells closer than 10 feet to a quarter-quarter section line or subdivision inner boundary within the North Hobbs Unit.
- (6) No limiting gas oil ratio or oil allowable applies to this enhanced oil recovery project.
- (7) The injection wells or pressurization system within the expanded Phase I Area of the North Hobbs Unit shall be equipped with a pressure control device or acceptable substitute that will limit the surface injection pressure to no more than:

1100 psig for injection of water;

1250 psig for injection of CO2; and

1770 psig for injection of produced gases.

- (8) The Division Director may administratively authorize an increase in surface injection pressure upon a showing by the operator that such higher pressure will not result in the fracturing of the injection formation or confining strata.
- (9) The operator shall take all necessary steps to ensure that the injected gases and fluids enter only the Grayburg and/or San Andres formations and are not permitted to escape to other formations or to the surface from injection, production, or plugged and abandoned wells.
- (10) A one-way automatic safety value shall be installed at the surface of all injection wells to prevent flow-back of the injected gas during an emergency, start-up or shut-down operations.
- (11) Injection shall be accomplished through fiberglass-lined tubing and a nickel plated packer. The packer shall be set as close as practical to the uppermost injection perforations or casing shoe (of any open hole completion), so long as the packer set point remains below the top of the Grayburg formation.
- (12) The casing-tubing annulus shall be filled with an inert packer fluid containing biocide and corrosion inhibitors. A gauge or approved leak-detection device shall be attached to the annulus in order to determine leakage in the casing, tubing or packer.
- (13) The operator shall use a special type of cement on all new injection wells that is designed to withstand the corrosive environment. The cement design shall contain

more than three percent (3%) tricalcium aluminate (C3A) in this High Sulfate Resistance (HSR) environment.

- (14) The operator is not required to run a cement bond log on a producing well cach time the rods and/or tubing are pulled from the well. However, prior to placing any well on injection, a cement bond log shall be run on said well and copies of all cement bond logs shall be sent to the Division's Hobbs District Office. If any well is found to have inadequate casing cement bond, such measures as may be necessary to prevent leakage or migration of fluids within the wellbore shall be taken before placing the well on injection.
- (15) Prior to commencing injection operations, the casing in each of the injection wells within the expanded Phase I Area of the North Hobbs Unit shall be pressure tested throughout the interval from the surface down to the proposed packer setting depth to assure the integrity of such casing.
- (16) A mechanical integrity test shall be conducted on all injection wells once every two years.
- (17) Pursuant to NMAC 19.15.25.13.E, a mechanical integrity test shall be conducted on all temporarily-abandoned wells equipped with real-time pressure monitoring devices once every five years.
- (18) Injection operations shall be conducted in a closed loop system, and the trucking of fluids is not allowed.
- (19) Oxy shall not commence gas injection operations in the North Hobbs Unit Well No. 231 (API No. 30-025-07545) in the SE/4 NW/4 (Unit F) of Section 33 of Township 18 South, Range 38 East, until Oxy adds additional cement behind the production easing across the fresh water zone and provides a cement bond log to the Division's Hobbs District office.
- (20) The operator shall immediately notify the supervisor of the Division's Hobbs District Office of the failure of any tubing, casing or packer in any of the injection wells, or the leakage of water, oil or gas from or around any producing or plugged and abandoned well within the project area, and shall promptly take all steps necessary to correct such failure or leakage.
- (21) Oxy shall maintain recorded data from its SCADA system for the North Hobbs Unit for inspection by the Division for a reasonable period of time to be determined and agreed upon through consultation between Oxy and the Division's Hobbs District Office.
- (22) The hydrogen sulfide contingency plan for the North Hobbs Unit shall be reviewed and amended as necessary pursuant to NMAC 19.15.11.9.F.

- (23) The North Hobbs Grayburg-San Andres Unit Pressure Maintenance Project is hereby certified as an enhanced oil recovery project and as a tertiary recovery project pursuant to the Recovery Act and Rules, and the expanded Phase I Area of the North Hobbs Unit is designated as the area to be affected by the enhanced oil recovery project. To be eligible for the recovered oil tax credit, the operator shall advise the Division of the date and time CO2 injection commences within the expanded Phase I Area and at that time the Division will certify the project to the New Mexico Taxation and Revenue Department.
- (24) At such time as a positive production response occurs, and within seven years from the date the project was certified to the New Mexico Taxation and Revenue Department, the applicant must apply to the Division for certification of a positive production response pursuant to the Recovery Act, NMSA 1978, Section 7-29A-3 and NMAC 19.15.6.8.E. This application shall identify the area benefiting from enhanced oil recovery operations and the specific wells eligible for the recovered oil tax rate. The Division may review the application administratively or set it for hearing. Based upon the evidence presented, the Division will certify to the New Mexico Taxation and Revenue Department those wells that are eligible for the recovered oil tax rate. Pursuant to NMAC 19.15.6.8.F, Oxy must also report annually to the Division to confirm that the project remains a viable enhanced oil recovery project.
- (25) Jurisdiction of this case is retained for the entry of such further orders as the Commission may deem necessary.

DONE at Santa Fe, New Mexico, on this 22nd day of May, 2014.

STATE OF NEW MEXICO
OIL CONSERVATION COMMISSION

ROBERT BALCH, Member

TERRY WARNELL Member

JAMI BAILEY, Chair

SEAL

Exhibit A
List of Proposed Project injectors by Qtr/Qtr Section

		Surface Location					
Well Name	API Number	Section	Unit Letter	Range	Location	Intection interval	Proposed Injectant
		100,000					
TBD	TBD	14	A	18-5 ; 37-€	TBO	3698' - 4500'	Produced Gas/CO2/Water
CBT	TBD	14 .	6	18-5; 37-E	780	3698' - 4500'	Produced Gas/CO2/Water
TBD	TEO	14	C	18-5; 37-E	TBD	3698' - 4500'	Produced Gas/CO2/Water
TBO	TSD	14	D	18-5; 37-E	TBD	3698' - 4500'	Produced Gas/CD2/Water
TBO	TED	14	E	18-5; 37-E	TBD	3698' - 4500'	Produced Gas/CO2/Water
780	TED	14	F	18·5; 37·£	TBD	3698' - 4500'	Produced Gas/CD2/Water
TED	TBD	14	G	18-5; 37-E	TBD	369E' + 4500'	Produced Gas/CO2/Water
TBO	TBO	14	н	18-5 ; 37-E	180	3698' - 4500'	Produced Gas/CD2/Water
TBD	TBO	14	-	18-5; 37-E	180	3698* - 4500*	Produced Gas/EO2/Water
180	TBD	14	1	18-5 ; 37-E	TBD	3698' - 4500'	Produced Gas/EQ2/Water
TBO	TBD	14	K	18-5 : 37-€	TBD	3698' - 4500'	Produced Gas/CO2/Water
TBC	TBD	14	L .	18-5 ; 37-E	TBD	3698' - 4500'	Produced Gas/CO2/Water
TAC	TBD	14	М	18-5 ; 37-6	TBD	3698' - 4500'	Produced Gas/CD2/Water
TBO	TBD	14	N	18-5; 37-8	teo	3698' - 4500'	Produced Gas/CO2/Water
160	TBD	14	0	18-5; 37-E	T80	3698' - 4500'	Produced Gas/CO2/Water
TBO	TBD	14 ,	Р	18·S; 37·E	T80	3698' · 4500'	Produced Gas/CO2/Water
,TBO	TBD	23	· A	18-5 : 37-E	180	- 3698' - 4500'	Produced Gas/CO2/Water
TBO	TBD	23	В	18-S; 37-E	TED	3698' - 4500'	Produced Gas/CO2/Water
780	TBD	23	С	18-5: 37-E	TBD	3698" - 4500"	Produced Gas/CO2/Water
780	TEO	23	Ð	18-5; 37-E	TBD	3698' - 4500'	Produced Gas/CO2/Water
TED	TBD	23	E	18-5; 37-E	TBO	3698' - 4500'	Produced Gas/CO2/Water
TeD	TBD	23	f	18-5; 37-E	TBD	3698" - 4500"	Produced Gas/CO2/Water
TBD	TBD	23	G	18-5; 37-E	T&D	3698' - 4500'	Produced Gas/CO2/Water
180	TBD	23	н	18-5; 37-£	TBD	3698' - 4500'	Produced Gas/CD2/Water
TBO	TBO	23	-	18-5; 37-F	TOD	3698' - 4500' -	Produced Gas/CO2/Water
TBD	-тво	23	,	18-5 ; 37-E	TBD	3698' - 4500'	Produced Gas/CD2/Water
TBD	TBD	23	ĸ	18-5; 37-E	180	3698' - 4500'	Produced Gas/CO2/Water
TBD	TBD	23	·	18-5; 37-E	TBD	3698' - 4500'	Produced Gas/CO2/Water
TBD	180	23	м	18-5 ; 37-E	TBD	3698' - 4500'	Produced Gas/CO2/Water
TBD	180	23	N	18-5 ; 37-E	TBD	3698' - 4500'	Produced Gas/CD2/Water
18D	TSD	. 23	0	38-5; 37-E	TBD	3598' - 4500'	Produced Gas/CO2/Water
TBO	TBO	23	P	18-5 ; 37-E	18D	3698" - 4500"	Produced Gas/CO2/Water
180	TBO	26	A	28-5 ; 37-€	TBD.	3698' - 4500'	Produced Gas/CO2/Water
TBQ	TBO	26	В	18-5; 37-E	TBD	3698' - 4500'	Produced Gas/CO2/Water
TBO	TBD	26	Н	18-5 ; 37-E	TBD	3698' - 4500'	Produced Gas/CO2/Water
TGO	TBD	13	С	18-5 ; 37-€	TBD 1	3698' - 4500'	Produced Gas/CO2/Water
TBD	TBD	13	D	18:5;37:E	TOD	3698' - 4500'	Produced Gas/CO2/Water
TBD	TBD	13	E .	18-5:37-€	180	3698' - 4500'	Produced Gas/CO2/Water
TED	TBO	. 13	F	18-5 ; 37-E	TBD	3698' - 4500'	Produced Gas/CO2/Water
TBD	TBO	13	1	18-5 ; 37-€	180	3698' - 4500'	Produced Gas/CO2/Water
* #BD	TBO	13-	J	18-5;37-€	TBD	3698' - 4500'	Produced Gas/CO2/Water
TBD	TBD	13	K	18-5 : 37-€	TBD	3698' - 4500'	Produced Gas/CO2/Water
TAD	TRD	13		18-5; 37-£	780	3698' - 4500'	Produced Gas/CO2/Water

Page 1 of 4

Exhibit A
List of Proposed Project Injectors by Qtr/Qtr Section

List of Proposed Project Injectors by Qtr/Qtr Section								
	[<u> </u>	Surface	Location	,			
Well Name API NUT	API Number	Section	Unit Letter	Township & Range	Footage Location	Injection interval	Proposed Injectant	
and a sault	APT NUMBER	360001	OM: Settle:	- Address	- Lacottoni	111101111111111		
TBO	180	13	М	18-5 ; 37-E	TBD	3698' - 4500'	Produced Gas/CO2/Water	
180	180	13	N	18·S; 37·E	TBO	3698' - 4500'	Produced Gas/CO2/Water	
TBD	180	13	0	18-5 ; 37 E	TBD	3698' - 4500'	Produced Gas/CO2/Water	
TBD	TBD	13	Þ	18-5;37-E	TBD	3696' - 4500'	Produced Gas/CO2/Water	
TBD	180	24	A	18-5;37-E	180	3698' - 4500'	Produced Gas/CO2/Water	
TBD	180	24	В	18-S ; 37-E	180	3698' - 4500'	Produced Gas/CO2/Water .	
TBD	180	24	Ċ	18-S; 37-E	TBD	3698' - 4500'	Produced Gas/CO2/Water	
TBD	180	24	· 0	18-5; 37-E	780	3698' - 4500'	Produced Gas/CO2/Water	
TBO	160	24	E	18-5 ; 37-E	TãO	3698' - 4500'	Produced Gas/CO2/Water	
TBD	160	24	F	18-5; 37-E	TBD	3698' - 4500'	Produced Gas/CO2/Water	
TBD	180	74	G	18-5 ; 37-E	TBO	3698' - 4500'	Produced Gas/CO2/Water	
TBD	:80	24	Н	18-5 ; 37-E	780	3698' - 4500'	Produced Gas/CD2/Water	
TBD	180	24	1	18-5 : 37 E	180	3698' - 4500'	Produced Gas/CD2/Water	
180	1B0	24	J	18-5; 37 E	TBD	3698" - 4500"	Produced Gas/CO2/Water	
TBD	180	24	ĸ	18-5 : 17-E	TBD	3698' - 4500'	Produced Gas/CO2/Water	
TBD	(180	24	L	18-5; 37-E	TBD	3698' - 4500'	Produced Gas/CO2/Water	
TBD	180	24	м	18-5 ; 37-E	TBD	3698' - 4500'	Produced Gas/CO2/Water	
TBD	180	24	N	18-5 ; 37-E	TOD	3698 • 4500	Produced Gas/CO2/Water	
180	TBD	24	0	18-5 ; 37-E	TBD	3698' - 4500'	Produced Gas/CO2/Water	
TBD	180	24	P	18-5;37-E	TBC	3698' - 4500'	Produced Gas/CO2/Water	
TBD	180	25	A	18-5;37 E	160	3698' - 4500'	Produced Gas/CO2/Water	
TBD	1BD	25	В	18-5;37-E	TBD	3698' - 4500'	Produced Gas/CO2/Water	
ТВО	TAD	25	c	18-5; 37-E	TOD	3698' - 4500'	Produced Gas/CO2/Water	
TBD	180	25	D	18-5;37-E	TBD	3698' - 4500'	Produced Gas/CD2/Water	
TBO	(80	25	£	18-5; 37-E	TBO	3698' - 4500'	Produced Gas/CO2/Water	
C87	180	25	F	18-5; 37-€	TBD	3698' - 4500'	Produced Gas/CD2/Water	
TBD	TâD	25	Ģ	18-5:37-E	TBD	3698' - 4500'	Produced Gas/CO2/Water	
TBD	180	25	н	LB-S ; 37-E	TBD	3698' - 4500'	Produced Gas/CO2/Water	
180	180	25	1	18-5;37 €	T80	3698' - 4500'	Produced Gas/CO2/Water	
160	190	25	1	18-5;37-€	TBO	3698' - 4500"	Produced Gas/CO2/Water	
160	TBO	25	ĸ	18-5; 37-E	160	3698' - 4500'	Produced Gas/CO2/Water -	
TED	, IBO	75	t''	18-5;37-€	TBD	3698' - 4500'	Produced Gas/CO2/Water	
TBO	YBO	25	м	18-5;37-E	TBD	3698' - 4500'	Produced Gas/CO2/Water	
TBO	TBO	75	N	18-5; 37-E	TOD	3698' - 4500'	Produced Gas/CO2/Water	
TBD	180	25	٥	18-5;37-E	TBD	3598' - 4500'	Produced Gas/C02/Water	
T80	760	25	P	18-5;37-E	780	3698' - 4500'	Produced Gas/CO2/Water	
180	180	36	, A	18·5; 37·F	TBO	3698' - 4500'	Produced Gas/CO2/Water	
180	TBD	36	A	18·5; 37-E	18D	3698" - 4500"	Produced Gas/CO2/Water	
TBD	TBQ	36	С.	18-5; 37-E	TED	3698' - 4500'	Produced Gas/CO2/Water	
TBD	TSD	36	F	18-5 ; 37-£	TED	3698" - 4500"	Produced Gas/CO2/Water	
T B-D	T&D	36	G	18-5; 37-E	TÉO	3698' - 4500'	Produced Gas/CO2/Water	
TBO	TBD	36 *	н	18-5; 37-E	TBD	3698' - 4500'	Produced Gas/CO2/Water	
TBD	T6D	36	i .	18-5 ; 37-£	TBD	, 3698' - 4500'	Produced Gas/CD2/Water	

Page 2 of 4

Exhibit A
List of Proposed Project Injectors by Qtr/Qtr Section

	·		Surface	Location			
				Township &	Footage	1	
Well Name	API Number	Section	Unit Letter	Range	Location	Injection Interval	Proposed Injectant
מפר	TBO	. 36	,	18-5 ; 37-€	180	3698' - 4500'	Produced Gas/CO2/Water
180	TBD	18	м	18-5;38 €	TBD	3698' - 4500'	Produced Gas/CO3/Water
TBO	TBO	18	N	18-5 ; 38-E	TBD	3698' - 4500'	Produced Gas/CD2/Water
TBO	TBO	18	0	18-5 ; 38-E	TBD	3698' 4500'	Produced Gas/CO2/Water
TBD	TBD	18	P	.18-5 ; 38 E	TBO	3698' - 4500'	Produced Gas/CO2/Water
TBD	TBD	19	Α	18-5;38-€	TBO	3698' - 4500'	Produced Gas/CO2/Water
TBD	TBD	19	В	18-5; 38-E	100	3698' - 4500'	Produced Gas/CO2/Water
TBD	TAD	19	c	18-5 : 38-E	TOO	3698' - 4500'	Produced Gas/CO2/Water
750	rad	19	Ò	18-5;38-E	Tag	3698' - 4500'	Produced Gas/CO2/Water
TBD	TBD	19	E	18 5 ; 38 E	TBO	3698' - 4500"	Produced Gas/CO3/Water
TBD	TBD)9	ŧ	18-5;38-E	TBD	3698' - 4500'	Produced Gas/CO2/Water
TBD	TBD	19	G	18-5; 35-E	, TBD	3698' - 4500'	Produced Gas/CO2/Water
TBD	TBD	19	н	18-5 : 38-E	160	3698' - 4500'	Produced Gas/CO2/Water
TBD	TBD	19	K	18-5;38-€	TBD	3698" - 4500"	Produced Gas/CO2/Water
TBD	TBO	19	L	18-5;38-E	TBD	3698' - 4500'	Produced Gas/CO2/Water
TBD	TBO	30	D	18-5 ; 30-f.	TBD	3698' - 4500'	Produced Gas/CO2/Water
TBG	TBD	30	£	18-5 ; 38-E	TBD	3698" - 4500"	Produces Gas/CO2/Water
TBD	180	30	F	18-5 : 38-€	TBD	3698' - 4500'	Produced Gas/CO3/Water
180	180	30	- 1	18-5 ; 38-F	780	3698' - 4500'	Produced Gas/CO2/Water
TBO	CBT	30	1	18-5; 30-E	TAD	3698' - 4500'	Produced Gas/CO2/Water
TBD	TBO	30	K	18 5 ; 38-E	160	3698' - 4500'	Produced Gas/CO2/Water
FBO	TBD	30	L	18-5;38-€	TBD	3698' - 4500'	Produced Gas/CO2/Water
TBD	TBD	30	м	18-5; 38-F	TBD	3698' - 4500'	Produced Gas/CO2/Water
TBD	TBO	30	N	18-5 ; 38-E	TBO	3698' - 4500"	Produced Gas/CO2/Water
TBD	TBO	30	0	18-5; 38-£	TED	3698' - 4500"	Purchased CO2/Water
TOD	TEO	30 .	Р	18-5 ; 38-E	TBD	3698' - 4500'	Purchased CO2/Water
TBÔ	TBO	31	٨	18-5; 38-E	780	3698' - 4500'	Purchased CO2/Water
TBD	тво	31	В	18-5;38-€	TBD	3698' - 4500'	Purchased CO2/Water
TBO	ТВО	31	Ç	18-5;38-E	TBD	3698" - 4500"	Produced Gas/CO1/Water
TBC	TOO	31	Ð	18-5:38-€	180	3698' - 4500'	Produced Gas/CO2/Water
TRD	TBD	31	E	18 5 ; 38 E	TBD	3698' - 4500'	Produced Gas/CO2/Water
TED	TBD	31		18-5; 38-E	TBD	3698' - 4500'	Produced Gas/CO2/Water
reb .	TBD	31	G	18-5 : 38-E	TBD	3698' - 450C'	Purchased CO2/Water
TBD	TED	31	14	18-5 ; 38-E	TAD	3698' - 4500'	Purchased CO2/Water
TBD	160	31	ı	18-5; 38-E	TBD	3698 - 4500	Purchased CO2/Water
TBD	TBO	31	1	18-5;30-E	TBD	3698' - 4500'	Purchased CO2/Water
TBO	190	31	K	18-5;38-€	TBD	3698' - 4500'	Produced Gas/CO2/Water
TBD	TĐD	31	L	18-5 ; 38-£	TBO	3698' - 4500'	Produced Gas/CO2/Water
TBD	TBD	31	М	18-5;38-E	TBO	3698' - 4500'	Purchased CO2/Water
TED	TBD	31	N	18-5; 38-E	TBD	3698' - 4500'	Purchased CO2/Water
TÉD	TBD	31	0	18-5; 38-F	TEC	3698' - 4500'	Purchased CO2/Water
TBD	TBD	31	ρ	18-5; 38-E	160	3698' - 4500"	Purchased CO2/Water
180	TBD	17	E	18-5; 38-E	780	3698' - 4500'	Purchased CO2/Water

Page 3 of 4

Exhibit A

List of Proposed Project Injectors by Qtr/Qtr Section

Well Name API Number	i	Surface	Location	- 1		1	
	API Number	Section	Unit Letter	Township & Range	Location	tojection interval	Proposed injectant
147 . A. A. A	MOTOR WITH THE	FERR CALL	ALL THE STATE OF T	HARLE LINE A	والأسريد المفالد	TANK MANUAL MENTAL PROPERTY OF THE	Many of an overland hundre
TBO .	TEO	17	к	18-5;38 E	TBD	3696' - 4500'	Purchased CO2/Water
TBD	TED	Ų,	. i . r	18-5; 38-E	TBO	3698' - 4500'	Purchased CO2/Water
TBD	TBD '	* 17	м	18-5 ; 38-E	DBT	3698' - 4500'	Purchased CO2/Water
TBD	TBD	17	N	18-5;38-E	TBD	3698' - 4500'	Purchased CO2/Water
TBD .	TBD	20	c	18-5 ; 38-E	TBD	3698' - 4500'	Purchased CO2/Water
TBD	TBD	30	D	18-5 ; 38-E	TBD	3698' - 4500'	Produced Gas/CO2/Water
, TBD	TBQ	20	E	18-5;38-€	TBD	3698' - 4500'	Produced Gas/CO2/Water
TBD	TBO	20	F	18-5;38-E	TED	3698' - 4500'	Purchased CO2/Water
TBD	TBD	70	Ļ	18-5;38-€	TBC	3698' - 4500'	Produced Gas/CO2/Water
NHU-29A	TBD	29	_	10-5 ; 38-E	TBO	3698' - 4500'	Purchased CO2/Water
NHU-28A	7BD	28	K	18-5 ; 38-E	TEO	3693' - 4500'	Purchased CO2/Water
NHU-288	TBD	28		18-5 ; 38-E	тво	3698' - 4590'	Purchased CO2/Water

Page 4 of 4

Exhibit 8
List of Proposed Project Injectors (Existing Wells)

	1	1		Surface Loca	tion ·		!	•
Well Name	API Number	Section	Unit	Township &	Footage Location	Current Status	Injection Interval	Proposed Injectant
NHU 28-232	30-025-07421	28	×	18-5 ; 38-€	1325' Fst & 1325' FWL	Water Injector	3698" - 4500"	Purchased CO2/Wate
NHU 78-232	30-025-28882	28	×	18-5;38-€	2300 FSL & 1350 FWL	Water Injector	3698' - 4500"	Purchased CO2/Water
NHU 33-422	30-025-28268	33	Н	18-5; 38-E	2181 FNL & 498 FEL	Water Injector	3698' - 4500"	Purchased CO2/Wate
NHU 33-432	30-025-28269	33	_	18-5; 38-E	1842 FSL & 1029 FEL	Water injector	3698' - 4500'	Purchased CO2/Water
NHU 32-431	30-075-07537	32		16-5; 38-E	2310 FSL & 330 FEL	Water Injector	3698' - 4500'	Purchased CO2/Wate
MHU 32-432	30-025-26974	32	•	18-5; 38-E	1400 FSL & 1300 FEL	Water Injector	3698' - 4500'	Purchased CO2/Water
NHU 32-132	30-025-27139	32	ī	18-5; 38-E	1400 FSL & 1300 FWL	Water Injector	3698' - 4500"	Purchased CO2/Wate
NHU 32-142	30-025-28265	32	м	18-5; 38 E	610 FSL & 1210 FWL	Water Injector	3698' - 4500'	Purchased CO2/Wate
NHU 32-341	30-025-07539	32	0	18 \$; 38 E	330 FSL & 2310 FEL	Water Injector	3698' - 4500'	Purchased CD2/Wate
NHU 32-342	35-025-28266	32	0	18-5 ; 38-E	457 FSL & 1437 FEL	Water Injector	3698' - 4500'	Purchased CO2/Wate
NHU 33-342	30-025-28267	33	۰	18-5; 38-E	125 FSL & 2730 FWL	Water Injector	3698' - 4500'	Purchased CO2/Wate
NHU 31-441	30-025-07498	31	P	18-5 ; 38-E	330 FSL & 330 FEL	TA	3698' - 4500'	Purchased CO2/Wate
NHU 33-142	30-025-28411	33	М	18-5 ; 38-E	1250 FSL & 185 FWL	Water Injector	3698' - 4500'	Purchased CO2/Wate
NHU 33-312	30-025-29199	33	В	18-5 ; 38-€	151 FNL & 1702 FEL	Water Injector	3698 - 4500	Purchased CO?/Wate
NHU 33-211	30-025-07564	33	C	18-5; 38-£	330 FNL & 2310 FWR	Water Injector	3698' - 4500'	Purchased CO2/Wate
NHU 33-212	30-025-29026	33	C	18-5; 38-E	205 FNL & 1420 FWL	Water Injector	1698' - 4500'	Purchased CO2/Wate
r - 133-222	30-025-26975	33	- 7	18-5;38-E	1520 FNL & 1470 FWL	Water Injector	3598' - 4500'	Purchased CO2/Wate
N., 33-322	30-025-27169	33	G	18-5; 38-E	1435 FNL & 1670 FEL	Water Injector	3698" - 4500"	Purchased CO2/Wate
NHU 33-323	30-025-28952	33	G	18-5;38-€	2525 FML & 1453 FEL	Producer	3698" - 4500"	Purchased CO2/Wate
NHU 33-534	30-025-34373	33	1	18-5 ; 38-E	2415 FSL & 2200 FEL	Water Injector	3698' - 4500'	Purchased CO2/Wate
NHQ 33-231	30-025-07545	33	F	18-5 ; 3A-E	2310 FSL & 1320 FWL	Water Injector	3698' - 4500'	Purchased CO2/Wate
NHU 33-232	30-025-27169	33	К	18-5 : 38-F	1435 FNL & 1670 FEL	Water Injector	3698' - 450D'	Purchased CO2/Wat

2638 Faudree Odessa, Texas 79765-8538 561-5579

Number Cases OXY Date Sampled To/24/2013 Employee # To/24/2013 To/24/2013 Employee # To/24/2013 To/	Company:	Nalco	Comp	any		,			
Date Run: 10/31/2013 Lab Ref #: 27-022 Analyzed by: GR	Lease:	_	Lane Offi	ce			Date Sampled	10/24/2	
Hydrogen Sulfide	Date Run:						Employee #:	27-022	
Hydrogen Sulfide CO2 NOT ANALYZED Dissolved Oxygen CO2 NOT ANALYZED Dissolved Oxygen CO2 NOT ANALYZED Dissolved Oxygen CO2 Dissolved Oxygen Dissolved					Dissolved (Gases			
Carbon Dioxide (CO2) NOT ANALYZED Dissolved Oxygen (O2) NOT ANALYZED Cations Cations Cations Cations Cations Cations Cations Cations Magnesium (Mg++) 21.03 12.20 1.72 Sodium (Ma++) NOT ANALYZED .00 27.50 .00 Anions Anions Anions Anions Anions Anions Anions Anions Anions Anions Anions Anions Anions Anions Anions Anions Anions Anions Anions Anio							- -	•	•
Calcium (Ca++) 57.89 20.10 2.88 Magnesium (Mg++) 21.03 12.20 1.72 Sodium (Na+) 116.11 23.00 5.05 Barium (Ba++) NOT ANALYZED .00 27.50 .00 Anions Anions Anions	Carbon Dioxid	e	(CO2)				.00	16.00	.00.
Calcium (Ca++) 57.89 20.10 2.88 Magnesium (Mg++) 21.03 12.20 1.72 Sodium (Na+) 116.11 23.00 5.05 Barium (Ba++) NOT ANALYZED .00 27.50 .00 Manganese (Mn+) .00 27.50 .00 Strontium (Sr++) NOT ANALYZED .00 27.50 .00 Anions Anions Anions					Cations				
Magnesium (Mg++) 21.03 12.20 1.72 Sodium (Na+) 116.11 23.00 5.05 Barium (Ba++) NOT ANALYZED .00 27.50 .00 Manganese (Mn+) .00 27.50 .00 Strontium (Sr++) NOT ANALYZED .00 27.50 .00 Anions Hydroxyl (OH-) .00 17.00 .00 Carbonate (CO3=) .00 30.00 .00 BiCarbonate (HCO3-) .342.16 61.10 5.60 Sulfate (SO4=) .56.00 48.80 1.15 Chloride (CI-) 103.11 35.50 2.90 Total Iron (Fe) 0 18.60 .00 Total Iron (Fe) 0 18.60 .00 Total Iron (Fe) Specific Gravity 60/60 F. 1.000 CasO4 Solubility @ 80 F. 19.15MEq/L, CaSO4 scale is unlikely CasO3 Scale Index<	Calcium		(Ca++)		Cunons		57.89	20.10	2.88
Sodium (Na+) NOT ANALYZED NOT			. ,				21.03	12.20	1.72
Manganese Strontium (Mn+) (Sr++) NOT ANALYZED 27.50 .00 Anions Hydroxyl (OH-) (C3=) .00 17.00 30.00 .00 Carbonate (C03=) .00 30.00 30.00 .00 BiCarbonate (HC03-) 342.16 61.10 5.60 56.00 48.80 1.15 Chloride (S04=) 56.00 48.80 1.15 1.15 Chloride (Cl-) 103.11 35.50 2.90 2.90 Total Iron (Fe) (C1-) 0 18.60 5.00 .00 Total Dissolved Solids (C3) (C3) (C3) (C3) (C3) (C3) (C3) (C3)	-		. –				116.11	23.00	5.05
Strontium Stro	Barium		(Ba++)		NOT ANAL	YZED			
Anions Hydroxyl (OH-) .00 17.00 .00 Carbonate (CO3=) .00 30.00 .00 BiCarbonate (HCO3-) 342.16 61.10 5.60 Sulfate (SO4=) 56.00 48.80 1.15 Chloride (CI-) 103.11 35.50 2.90 Total Iron (Fe) 0 18.60 .00 Total Dissolved Solids 696.30 230.95 .00 .00 Total Hardness as CaCO3 230.95 .00 .00 .00 .00 pH 7.600 Specific Gravity 60/60 F. 1.000 .00	Manganese		(Mn+)				.00	27.50	.00.
Hydroxyl (OH-) .00 17.00 .00 Carbonate (CO3=) .00 30.00 .00 BiCarbonate (HCO3-) 342.16 61.10 5.60 Sulfate (SO4=) 56.00 48.80 1.15 Chloride (Cl-) 103.11 35.50 2.90 Total Iron (Fe) 0 18.60 .00 Total Dissolved Solids 696.30 230.95 .00 Conductivity MICROMHOS/CM 976 976 1.000 PH 7.600 Specific Gravity 60/60 F. 1.000 CaSO4 Solubility @ 80 F. 19.15MEq/L, CaSO4 scale is unlikely CaCO3 Scale Index 70.0 280 100.0 .070 130.0 .580 80.0 150 110.0 .310 140.0 .580	Strontium		(Sr++)		NOT ANAL	YZED.			
Carbonate (CO3=) .00 30.00 .00 BiCarbonate (HCO3-) 342.16 61.10 5.60 Sulfate (SO4=) 56.00 48.80 1.15 Chloride (CI-) 103.11 35.50 2.90 Total Iron (Fe) 0 18.60 .00 Total Dissolved Solids 696.30 .00 .00 Total Hardness as CaCO3 230.95 .00 .00 Conductivity MICROMHOS/CM 976 .00 .00 PH 7.600 Specific Gravity 60/60 F. 1.000 CaSO4 Solubility @ 80 F. 19.15MEq/L, CaSO4 scale is unlikely CaCO3 Scale Index .00 .070 130.0 .580 80.0 150 110.0 .310 140.0 .580					Anions				
BiCarbonate (HCO3-) 342.16 61.10 5.60 Sulfate (SO4=) 56.00 48.80 1.15 Chloride (CI-) 103.11 35.50 2.90 Total Iron (Fe) 0 18.60 .00 Total Dissolved Solids 696.30 .00 .00 Total Hardness as CaCO3 230.95 .00 .00 Conductivity MICROMHOS/CM 976 .00 .00 PH 7.600 Specific Gravity 60/60 F. 1.000 CaSO4 Solubility @ 80 F. 19.15MEq/L, CaSO4 scale is unlikely CaCO3 Scale Index .00 .070 130.0 .580 80.0 150 110.0 .310 140.0 .580									
Sulfate (SO4=) 56.00 48.80 1.15 Chloride (Cl-) 103.11 35.50 2.90 Total Iron (Fe) Total Dissolved Solids Total Hardness as CaCO3 Conductivity MICROMHOS/CM 696.30 230.95 976 230.95 976 1.000 pH 7.600 Specific Gravity 60/60 F. 1.000 CaSO4 Solubility @ 80 F. 19.15MEq/L, CaSO4 scale is unlikely CaCO3 Scale Index 70.0 280 100.0 .070 130.0 .580 80.0 150 110.0 .310 140.0 .580									
Chloride (CI-) 103.11 35.50 2.90 Total Iron (Fe) Total Dissolved Solids Total Hardness as CaCO3 Conductivity MICROMHOS/CM 696.30 230.95 230.95 976 1.000 pH 7.600 Specific Gravity 60/60 F. 1.000 CaSO4 Solubility @ 80 F. 19.15MEq/L, CaSO4 scale is unlikely CaCO3 Scale Index 70.0 -280 100.0 .070 130.0 .580 80.0150 110.0 .310 140.0 .580			•	-					
Total Iron (Fe) 0 18.60 .00 Total Dissolved Solids 696.30 Total Hardness as CaCO3 230.95 Conductivity MICROMHOS/CM 976 pH 7.600 Specific Gravity 60/60 F. 1.000 CaSO4 Solubility @ 80 F. 19.15MEq/L, CaSO4 scale is unlikely CaCO3 Scale Index 70.0280 100.0 .070 130.0 .580 80.0150 110.0 .310 140.0 .580			•						= -
Total Dissolved Solids 696.30 Total Hardness as CaCO3 230.95 Conductivity MICROMHOS/CM 976 pH 7.600 Specific Gravity 60/60 F. 1.000 CaSO4 Solubility @ 80 F. 19.15MEq/L, CaSO4 scale is unlikely CaCO3 Scale Index 70.0 280 100.0 .070 130.0 .580 80.0 150 110.0 .310 140.0 .580	Chloride	•	(CI-)				103.11	35.50	2.90
CaSO4 Solubility @ 80 F. 19.15MEq/L, CaSO4 scale is unlikely CaCO3 Scale Index 70.0280 100.0 .070 130.0 .580 80.0150 110.0 .310 140.0 .580	Total Dissolved Total Hardness	s as Ca(03				696.30 230.95	18.60	.00
CaCO3 Scale Index 70.0280 100.0 .070 130.0 .580 80.0150 110.0 .310 140.0 .580	рН	7.600	ı			Specif	ic Gravity 60/	60 F.	1.000
70.0 280 100.0 .070 130.0 .580 80.0 150 110.0 .310 140.0 .580	CaSO4 Solubilit	y @ 80	F.	19.	15MEq/L,	CaSO4	scale is unlike	ly	
70.0 280 100.0 .070 130.0 .580 80.0 150 110.0 .310 140.0 .580	CaCO3 Scale Ind	ex							
80.0150 110.0 .310 140.0 .580			280	100.0	.070	130.	.0 .5	80	
5515 1070 12010 1310 1010	90.0		070	120.0	.310			310	

2638 Faudrée Odessa, Texas 79765-8538 561-5579

Company:	Nalco Co	mpany					
Well Number: Lease: Location:	Section 13 V OXY	Vind Mill W	fell		Sample Temp: Date Sampled: Sampled by:	70 10/24/20 Bobby H	
Date Run: Lab Ref #:	10/31/2013 13-nov-n728	598			Employee #: Analyzed by:	27-022 GR	
			Dissolved C	Gases			
Dudana Culti	d. (1126	٠,			Mg/L	Eq. Wt.	MEq/L .00
Hydrogen Sulfi Carbon Dioxide Dissolved Oxyg	(CO	2)	NOT ANA NOT ANA		.00	16.00	.00
			Cations				
Calcium	(Ca+	-+)	•		85.87	20.10	4.27
Magnesium	(Mg-	•			8.59	12.20	.70
Sodium	(Na+	-)			19.63	23.00	.85
Barium	(Ba+	+)	NOT ANA	YZED			
Manganese	(Mn-	+)			.01	27.50	.00
Strontium	(Sr+	+)	NOT ANA	.YZED			
			Anions				
Hydroxyl	(OH-	•			.00	17.00	.00
Carbonate	(CO3	•			.00	30.00	.00
BiCarbonate	(HCC	•			232.18	61.10	3.80
Sulfate	(SO ²	•			44.00	48.80	.90
Chloride	(CI-)				40.04	35.50	1.13
Total Iron Total Dissolved Total Hardness Conductivity M	as CaCO3	CM			0 430.32 249.89 642	18.60	.00
рН	7.410			Specific	Gravity 60/60) F.	1.000
CaSO4 Solubilit	y @ 80 F.	18.	.38MEq/L <i>,</i>	CaSO4 s	cale is unlikely		
CaCO3 Scale Inde	ex .						
70.0	468	100.0	118	130.0	.39	2	
80.0	338	110.0	.122	140.0	.392	2	
90.0	118	120.0	.122	150.0	.622	2	

2638 Faudree Odessa, Texas 79765-8538 561-5579

Company:	Nalco	Comp	any					
Well Number: Lease: Location:	Smith OXY	Irrigation	Systen	n		Sample Temp Date Sampled Sampled by:		
Date Run: Lab Ref #:	10/31/ 13-nov	2013 /-n72699 ·				Employee #: Analyzed by:	27-022 GR	
				Dissolved (Gases			
						Mg/L	Eq. Wt.	MEq/L
Hydrogen Sulfi		(H2S)				.00	16.00	.00
Carbon Dioxide Dissolved Oxyg		(CO2) (O2)		NOT ANA				
		, ,		Cations				
Calcium		(Ca++)		Cunima		191.67	20.10	9.54
Magnesium		(Mg++)				35.97	12.20	2.95
Sodium		(Na+)				102.74	23.00	4.47
Barium		(Ba++)		NOT ANA	LYZED			
Manganese		(Mn+)				.03	27.50	.00
Strontium		(Sr++)		NOT ANA	LYZED	-		
				Anions				
Hydroxyl		(OH-)				.00	17.00	.00
Carbonate		(CO3=)				.00	30.00	.00
BiCarbonate		(HCO3-)			268.84	61.10	4.40
Sulfate		(504=)				124.00	48.80	2.54
Chloride		(Cl-)				355.39	35.50	10.01
Total Iron		(Fe)				0	18.60	.00
Total Dissolved	l Solids					1,078.64		
Total Hardness				·		626.65		
Conductivity M	ICROM	HOS/CM				1,825		
рH	7.730)			Specifi	ic Gravity 60/	60 F.	1.001
CaSO4 Solubilit	у @ 80	F.	16.	80MEq/L,	CaSO4	scale is unlike	ely	
CaCO3 Scale Inde	ex							
70.0		265	100.0	.615	130.	0 1.1	.25	
80.0		395	110.0	.855	140.	0 1.1	.25	
90.0		615	120.0	.855	150.	0 1.3	355	

2638 Faudree Odessa, Texas 79765-8538 561-5579

Company:	Nalco C	Compa	nny					
Well Number: Lease: Location:	NM OCD S	Sprinkle	r System i	Well		Sample Temp Date Sampled Sampled by:		
Date Run: Lab Ref #:	10/31/20 13-nov-n					Employee #: Analyzed by:	27-022 GR	
		•	Diss	solved C	Gases			
				,,,,,,,,,,		Mg/L	Eq. Wt.	MEq/L
Hydrogen Sulf	ide (H	12 S)				.00	16.00	.00
Carbon Dioxid Dissolved Oxy	•	(O2) (O2)		ANA TO				
			(Cations				
Calcium	(C	(a++)				105.89	20.10	5.27
Magnesium	(1	lg++)				12.15	12.20	1.00
Sodium	(N	la+)				54.56	23.00	2.37
Barium	•	a++)	NO	T ANAL	YZED			
Manganese	•	in+)				.02	27.50	.00
Strontium	(S	r++)	NO	T ANAL	YZED			
				Anions				
Hydroxyl	· ·	H-)				.00	17.00	.00
Carbonate	•	:03=)				.00.	30.00	.00
BiCarbonate	•	ICO3-)				268.84	61.10	4.40
Sulfate	•	04=)				54.00	48.80	1.11
Chloride	(C	1-)				111.12	35.50	3.13
Total Iron Total Dissolved Total Hardness	s as CaCO3	3				0 606.58 314.54	18.60	.00
Conductivity M	IICROMHO	S/CM				858		
рн	7.960				Specif	ic Gravity 60/	60 F.	1.000
CaSO4 Solubilit	ty @ 80 F.		18.02M	Eq/L,	CaSO4	scale is unlike	ely	
CaCO3 Scale Ind	'ex							
70.0	.237	' 1	00.0	.587	130	.0 1.0	097	
80.0	.367	' 1	10.0	.827	140	.0 1.0	097	
90.0	.587	' 1	20.0	.827	150	.0 1.3	327	

C-108 Review Checklist: Received 6/17 Add. Request: Reply Date: Suspended: [Ver 15]	
C-108 Review Checklist: Received /// Add. Request: Reply Date: Suspended: [Ver 15]	
ORDER TYPE: WFX PMX / SWD Number: Order Date: Legacy Permits/Orders:	
Well No. 643 Well Name(s): NUNTY HUDDS Ghybung	
API: 30-0 25-43-42 Spud Date: 130 New or Old: (UIC Class II Primacy 03/07/1982)	
5-71410F54 1264 Fat Footages 8-7220754 2542 Ed or Unit 6 Sec 33 Tsp 165 Rge 35 County 6	
Footages 8-7220125 2542 Lot or Unit C Sec 33 Tsp 165 Rge 35 County	
General Location: Pool: SAN And S Pool No.: 31620	
General Location: Hobbs & ity Pool: 5AN Andres Pool No: 31620 April bequestory BLM 100K Map: Hubb Operator: Pennian 6+8 OGRID: 5784 Contact: Hoel: Courdinate;	n
COMPLIANCE RULE 5.9; Total Wells: 67 Inactive: 1 Fincl Assur: 4 Compl. Order? MA IS 5.9 OK? 4 Date: 7-7-246	
WELL FILE REVIEWED Current Status: PNO DOSE A	
WELL DIAGRAMS: NEW: Proposed or RE-ENTER: Before Conv. After Conv. Logs in Imaging:	
Planned Rehab Work to Well:	···
Well Construction Details Sizes (in) Borehole / Pipe Depths (ft) Setting Cement Sizes (in) Source Cement Top and Determination Meth	od
Planned_or Existing_Surface h \$ 1574 1612 Stage Tool 76 Sur Reveluis &	
Planned_or Existing_Interm/Prod 674/7 5724 1350 34 NFLCE/ ViSual	
Planned_or Existing _Interm/Prod	
Planned_or ExistingProd/Liner	
Planned_or ExistingLiner	
Planned_or Existing_OH_PERF_400 11-4565 Completion/Operation Details:	
Injection Lithostratigraphic Units: Depths (ft) Injection or Confining Tops Drilled TD 572 Y PBTD 5678	
Adjacent Unit: Litho, Struc. Por. Queen 3.555 NEW TDNEW PBTD	
Confining Unit: Litho. Struc. Por. 3.4 4164 NEW Open Hole or NEW Perfs (
Proposed Inj Interval TOP: Tubing Size 1 in. Inter Coated? Proposed Inj Interval POTTOM:	len
Proposed Inj Interval BOTTOM: Proposed Packer Depth ft Confining Unit: Litho. Struc. Por. Min. Packer Depth 35co (100-ft limit)	march
Adjacent Unit: Litho. Struc. Por. Proposed Max. Surface Presspsi	,199-1
Proposed Inj Interval BOTTOM: Proposed Inj Interval BOTTOM: Confining Unit: Litho. Struc. Por. Adjacent Unit: Litho. Struc. Por. ADR: Hydrologic and Geologic Information In Inter Coated? Proposed Packer Depth	
POTASH: R-111-P Noticed? BLM Sec Ord WIPP Noticed? Salt/Salado T: B: NW: Cliff House fm	
FRESH WATER: Aquifer 94 Chon Lange Max Depth 370 HYDRO AFFIRM STATEMENT By Qualified Person	
NMOSE Basin: CAPITAN REEF: thru adj (NA) No. Wells within 1-Mile Radius? FW Analysis	
Disposal Fluid: Formation Source(s) / Loud Led H. C Analysis? On Lease Operator Only or Commercial O	
Disposal Int: Inject Rate (Avg/Max BWPD): 44/154 Protectable Waters? Source: System: Closed or Open	
HC Potential: Producing Interval? Formerly Producing? Method: Logs/DST/P&A/Other 2-Mile Radius Pool Map	
AOR Wells: 1/2-M Radius Map? Well List? Total No. Wells Penetrating Interval: Horizontals?	
Penetrating Wells: No. Active Wells 1 Num Repairs? on which well(s)? Diagrams? Part of 12-6	199-1
Penetrating Wells: No. P&A WellsNum Repairs?on which well(s)?Diagrams?	ě.,
NOTICE: Newspaper Date Mineral Owner Surface Owner N. Date	
RULE 26.7(A): Identified Tracts?Affected Persons:N. Date	
Order Conditions: Issues:	

Add Order Cond:_

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)

(R=POD has been replaced, O=orphaned, C=the file is

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (NAD83 UTM in meters) closed)

Ent. Capita Antichiana, Africano, in con-	CiUSEC	POD				ı da	14	l yartiya	i rillingt i	4 4 Teg 12 1	ara areas	Paga da jan		
POD Number	Code	Sub- basin	Count		1 C	5.12543.4	1000 1000	Tws	Rna	t i	r i de la composition de la compositio Composition de la composition de la co			Water Column
L 00101		L	LE	7 div.Tub	ii Male			18\$		675900	3620409* 🦫	127	 	
L 00108	R	L	LΕ	4	2	2	35	18\$	38E	676998	3620531* 🎲	88	48	40
L 00132		L	LE				35	18\$	38E	676316	3620005*	125		•
L 00143 POD2		L	LE	3	1	3	33	18S	38E	672383	3619648* 🚱	108		
L 00195		L	LE		3	4	35	18\$	38E	676518	3619416* 🥋	100	97	3
L 00220		L	LE	4	3	1	35	18S	38E	675798	3620107* 🎲	211	130	81
L 00220 S		L	LE	1	3	1	35	185	38E	676403	3620121* 💨	211	158	53
L 00220 S10		L	LΕ	4	2	4	33	18\$	38E	673791	3619669* 🥋	80		
L 00220 S5		Ļ	LΕ		3	4	34	18S	38E	674908	3619388* 🛟	210	65	145
L 00221		L	LΕ	3	3	1	35	18S	38E	675598	3620107* 🍪	205	170	35
L 00225 POD3		L	LE	1	1	2	35	18S	38E	676395	3620724* 🌏	180	42	138
L 00571		L	LE	3	4	4	35	18\$	38E	676820	3619323* 🊱	105	48	57
L 00571	R	L	LE	3	4	4	35	185	38E	676820	3619323* 🌍	105	48	57
L 00940		L	LE	3	2	1	34	18S	38E	674382	3620490* 🎡	206	133	73
L 00940	R	. Ľ	LΕ	3	2	1	34	18S	38E	674382	3620490* 🍪	206	133	73
L 00941		L	LE	3	2	1	34	18S	38E	674382	3620490* 🎲	205	133	72
L 00941	R	L	LE	3	2	1	34	18\$	38E	674382	3620490*	205	133	72
L 00942		L	LË	3	2	1	34	18S	38E	674382	3620490*	210	133	77
L 00942	R	L	LE	3	2	1	34	18\$	38E	674382	3620490* 🌍	210	133	77
L 00943		L	LE	3	2	1	34	185	38E	674382	3620490* 🚱	206	133	73
L 00943	R	L	LE	3	2	1	34	185	38E	674382	3620490* 🌎	206	133	73
L 00944		L	LE	4	2	1	34	18\$	38E	674382	3620490* 🎲	206	140	66
L 00944	R	L	LE	4	2	1	34	18\$	38E	674382	3620490* 🌄	206	140	66
L 00945		L	LE	4	2	1	34	18S	38E	674582	3620490*	206		
L 01040		L	LE		2	4	35	185	38E	676913	3619827* 💨	. 90	50	40
L 01051		L	LE	1	1	1	35	18\$	38E	675590	3620710* 🍣	171	86	85

(A CLW##### in the POD suffix indicates the POD has been replaced (R=POD has been replaced, O=orphaned,

& no longer serves a water right file.)

(quarters are 1=NW 2=NE 3=SW 4=SE) C=the file is closed)

(quarters are smallest to largest) (NAD83 UTM in meters)

water right file.)	closed)	(quar	ters	ar	e s	small	lest to	largest)	(NAD83	UTM in meters)		(In feet	
POD Number	POD Sub- Code basin C	ounty	· Q	O 16	·Q		Tws	Rng		Y .			Water Column
L 01058	L	LE					18 S		677012	3619726* 🌍	83	56	27
L 01082	L	LE	2	2	1	34	18S	38E	674582	3620690*	135	65	70
L 01101 POD1	L	LE	1	1	1	35	18S	38E	675590	3620710* 🍪	120		
L 01150 POD1	L	LE		1	1	35	18S	38 E	675691	3620611* 🎧	135	65	70
L 01179 POD1	L	LE	3	3	3	35	18\$	38E	675612	3619301*	72	56	16
L 01184 POD1	L	LE				35	18\$	38E	676316	3620005* 🌑	77	66	11
L 01196 POD1	L	LE	4	4	4	33	18\$	38E	673799	3619266* 🊱	100	56	44
L 01228 POD1	Ļ	LE			2	35	18S	38E	676705	3620423* 🌍	120	70	50
L 01229 POD1	. L	LE	4	3	3	35	18S	38E	675812	3619301* 🚱	90	62	28
L 01340	L	ĻΕ		4	1	34	18S	38E	674490	3620188* 🚱	102	80	22
L 01352	L	LE	3	4	1	35	18S	38E	676000	3620114* 🚱	120	80	40
L 01366	L	LE	2	1	4	35	185	38E	676610	3619918* 🏈	80	60	20
L 01367	L	LE	1	1	4	35	18S	38E	676410	3619918* 🌎	90	64	26
L 01420	L	LE	3	3	4	35	18S	38E	676417	3619315* 🚱	105	55	50
L 01451	L	LÉ	3	1	1	35	18S	38E	675590	3620510* 🌎	142	100	42
L 01452	L	LE	3	1	1	35	18S	38E	675590	3620510* 🌎	126	47	79
L 01497	L	LE		4	2	35	18S	38E	676906	3620229* 🚱	85	60	25
L 01512 POD1	L	LE	4	2	3	35	18S	38E	676207	3619711* 🍣	94	65	29
L 01528 POD1	L	LE		3	4	35	18S	38E	676518	3619416* 🚱	85	85	0
L 01635 POD1	L	LE	2	2	2	34	18S	38E	675387	3620703* 🍪	103		
L 01701 POD1	L	LE		4	3	33	18S	38E	672894	3619353*	104	50	54
L 01778	L	LE					188		675605	3619904*	214	70	144
L. 01786 POD1	Ĺ	LE	1				18S		673576	3620676*	104	55	49
L 01805	L	LE		3	1	35	185	38E	675699	3620208* 🚱	211	81	130
L 02007	Ł	LE					18S		675202	3619897*	162	70	92
L 02097 POD2	L	LE					18S		673979	3620683*	214	68	146
L 02150	L	LE	3	4	4	35	185	38E	676820	3619323* 🚱	100		
L 02210	L	LE	3	2	3	35	18\$	38E	676007	3619711* 🚱	113	65	48
L 02223 POD2	L	LE	2	3	2	33	18S	38E	673381	3620265* 🎲	212	60	152

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a

(R=POD has been replaced, O=orphaned,

C=the file is closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

& no longer serves a water right file.)	clos	ed)							largest)		3 UTM in meters)	(In feet)
POD Number	Čoc	POD Sub- le basin	ng yay Tanggara	"α y 6	1 Ω 4 10	Q (4	Sec	Tws	<u> Ŕ</u> ng	X		Depth Well		Water∄ Column
L 02223 POD3		L	LΕ	4	1	2	35	18\$	38E	676595	3620524*	220	80	140
L 02232		L	LE			3	33	185	38E	672693	3619547* 🚱	112	56	56
L 02264		Ļ	LE			2	33	18\$	38E	673483	3620367* 💨	93	56	37
L 02272		Ļ	LE	4	2	2	33	18\$	38E	673776	3620476*	105	60	45
L 02277		Ļ	LE				35	18\$	38E	676316	3620005*	76	55	21
L 02288		L,	LΕ	3	3	1	35	185	38E	675598	3620107* 🎨	143		
L 02316		L	LE		1	2	33	18S	38E	673275	3620569* 💮	110	46	64
L 02323		L	LE	1	1	2	34	18\$	38E	674784	3620697* 🚱	136	90	46
L 02353		Ļ	LE				35	18\$	38E	676316	3620005* 😽	80	55	25
L 02485		Ļ	LE		2	3	35	18S	38E	676108	3619812* 🚱	126	70	56
L 02512		Ļ	LΕ	1	3	2	33	18S	38E	673181	3620265* 🚱	150	55	95
L 02616		L	LE		2	2	35	185	38E	676899	3620632* 🎲	95	70	25
L 02626		Ļ	LE	1	4	2	35	18S	38E	676805	3620328* 🚱	100	80	20
L 02637		L	LE	1	3	4	35	18\$	38E	676417	3619515* 🌍	65	63	2
L 02836		L	LE	3	3	4	33	18\$	38E	673196	3619259* 🌍	129	53	76
L 02915	R	L	LE	3	3	2	35	185	38E	676403	3620121* 🐠	120		
L 03003		Ļ	LE	4	4	4	35	18S	38E	677020	3619323* 🎲	87	61	26
L 03159		Ĺ	LE	2	2	3	34	185	38E	674597	3619883* 🎲	120	70	50
L 03162		L	LE	4	1	1	35	18\$	38E	675790	3620510* 🍪	126	80	46
L 03299		L	LE	1	4	4	33	185	38E	673599	3619466* 🎨	110	61	49
L 03320		Ĺ	LE	1	4	4	35	18\$	38E	676820	3619523* 🚱	100	52	48
L 03347		L	LE	4	3	4	35	185	38E	676617	3619315* 🍣	110	65	45
L 03348		Ļ	LE	4	3	4	35	18\$	38E	676617	3619315* 🊱	105	65	40
L 03573		L	LE			4	34	18\$	38E	675109	3619589* 💮	98	75	23
L 03675		L	LE	4	4	4	35	18S	38E	677020	3619323* 🚱	100	70	30
L 03858		L	LE	3	3	4	35	18S	38E	676417	3619315* 🎲	100	65	35
L 04244		ĻL	LE	4	4	4	35	18S	38E	677020	3619323* 💨	80	60	20
L 04307		Ĺ	LΕ	4	3	1	35	185	38E	675798	3620107* 🎲	130	65	65
L 04440		L	LE	1	1	3	35	18\$	38E	675605	3619904* 🧓	111	70	41

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a

(R=POD has been replaced, O=orphaned,

C=the file is closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

& no longer serves a water right file.)	C=th	e file is :d)							largest)		3 UTM in meters)		(In feet	:)
POD Number	ni viti	POD Sub- e basin	You Court L	Q 64	Q I 16	Q 3 4	Sec	Tws	Rng	X.	Ý		Depth	Water Column
L 04750		L	LE	4	2	3	33	18S	38E	672986	3619655* 🌍	86	45	41
L 04891		L	LE		1	1	35	18\$	38E	675691	3620611* 🚱	235	90	145
L 05357		L	ĻΕ	3	2	3	34	18S	38E	674397	3619683* 🍪	152	70	82
L 05702 POD1		L	LE	3	2	1	35	18S	38E	675993	3620517* 🚱	220	70	150
L 05702 POD2		. L	LÉ	1	2	1	35	18S	38E	675993	3620717* 😽	220	70	150
L 06078		L	LE		3	1	35	18S	38E	675699	3620208* 🚱	100		
L 06268		L	LE	2	2	2	34	18S	38E	675387	3620703* 😭	125	85	40
L 06574		L	LE	3	3	1	33	18S	38E	672376	3620051* 🚱	120	52	68
L 06675	R	L	LE	3	3	4	35	18S	38E	676417	3619315* 🚱	120	65	55
L 06675 POD2		L	LE		3	4	35	185	38E	676518	3619416* 🚱	150	85	65
L 07388		L	LE			3	35	185	38E	675914	3619603* 🎲	125	58	67
L 07523		L	LE	1	4	4	33	18S	38E	673599	3619466* 🎲	350		
L 07524		L	LE	4	1	1	34	18S	38E	674179	3620483* 🍪	350		
L 07525		L	LE	2	4	3	34	18S	38E	674604	3619480* 🚱	350		
L 07550		L	LE			3	35	18S	38E	675914	3619603* 🚱	140	85	55
L 07836		L	LE		2	3	35	18S	38E	676108	3619812* 🏈	130	95	35
L 08223		L	LE			3	33	18\$	38E	672693	3619547* 🚱	120	52	68
L 08564		L	LE		3	3	33	18S	38E	672492	3619346* 🚱	125	50	75
L 08787		Ĺ	LE		1	3	35	185	38E	675706	3619805* 🚱	137	65	72
L 09852		L	LE	3	2	4	35	18S	38E	676812	3619726* 🚱	138	64	74
<u>L 10116</u>		L	LE		4	4	35	18\$	38E	676921	3619424* 🚱	150	86	64
L 10393		L	LE	1	4	3	35	185	38E	676015	3619508* 🌍	180	92	88
<u>L 10663</u>		L	LE			2	35	18\$	38E	676705	3620423* 🚱	222	55	167
L 10938		L	LE		4	3	33	18\$	38E	672894	3619353* 🚱	183		
L 11274		L	LE	2	1	2	33	18S	38E	673374	3620668* 🌍	230		
L 13158 POD1		L	LE	3	3	2	35	18S	38E	676399	3620057 🌑	142	122	20
L 13158 POD2		L	LE	3	3	2	35	185	38E	676432	3620081 🌏	142	122	20
L 13158 POD3		L	LE	3	3	2	35	18S	38E	676428	3620035 🚱	142	122	20
L 13342 POD1		L	LE	3	3	1	34	18\$	38E	674044	3620065 🍣	100		

(A CLW##### in the POD suffix indicates the POD has been replaced

(R=POD has been replaced, O=orphaned,

& no longer serves a

C=the file is

(quarters are 1=NW 2=NE 3=SW 4=SE)

water right file.) closed)

(quarters are smallest to largest) (NAD83 UTM in meters)

(In feet)

	POD Sub		Q	Q	Q	efekt. Augen					Depth	Depth Water
POD Number Code	basin	County	64	16	:4	Sec	Tws	Rng	X <u>``</u>	7 LL 3 3Y - 3 23	Well	Water Column
L 13342 POD2	L	LĒ	3	3	1	34	18S	38E	674059	3620064 🎡	105	
L 13342 POD3	L	LE	3	3	1	34	18S	38E	674049	3620067 🌑	103	
L 13342 POD4	L	ŁΕ	3	3	1	34	185	38E	674049	3620052 🍣	35	
L 13342 POD5	L	LË	3	3	1	34	18\$	38E	674040	3620048 🌑	35	
L 13342 POD6	Ļ	LĒ	1	1	3	34	18\$	38E	674097	3619973 🎳	35	
L 13342 POD7	L	LE	1	1	3	34	18S	38E	674095	3619970 🌏	35	
L 13342 POD8	L	LE	2	1	3	34	18S	38E	674100	3619967 🌍	45	
L 13342 POD9	L	ĻΕ	2	1	3	34	18S	38E	674103	3619964 🍪	35	
L 13483 POD1	L	LE	1	3	1	35	185	38E	675526	3620329 🍣	140	120 20

Average Depth to Water: 77 feet

Minimum Depth: 42 feet

Maximum Depth: 170 feet

Record Count: 122

PLSS Search:

Section(s): 33-35

Township: 18S

Range: 38E

North Hobbs Unit

C-108 Application

Geologic Information

Injection will occur in the upper-Permian age San Andres formation. In the Hobbs Field the top of the San Andres formation is found at depths ranging from 3950' to over 4300' below the surface. The San Andres formation in the Hobbs area can be over 1300' in thickness down to the underlying Glorieta formation; however, the hydrocarbon accumulation at the Hobbs Field is limited to the upper several hundreds of feet of the San Andres. This upper San Andres formation at Hobbs consists almost entirely of dolomite, with minor amounts of siltstone, shale and limestone. And although the Unitized interval of the Hobbs Field does extend another 100-150' above the San Andres, into the overlying lower Grayburg formation, this interval consists of poorer quality reservoir siltstones and dolomites and is not the focus of current injection operations.

Shallow, underground sources of drinking water in the Hobbs area include the Tertiary age Ogallala and undifferentiated Cretaceous formations, commonly known together as the High Plains aquifer. The Ogallala formation, which consists of unconsolidated sands, silts, clay and gravel, can be found at depths beginning at approximately 40 feet, beneath a hard, semi-impermeable layer of caliche. The undifferentiated Cretaceous formation is found immediately underlying the Ogallala and consists of sandstones interbeddded with shale and limestone. These fresh-water-bearing horizons extend down to an approximate depth of 200-250' which is the top of the Triassic "Red Beds".

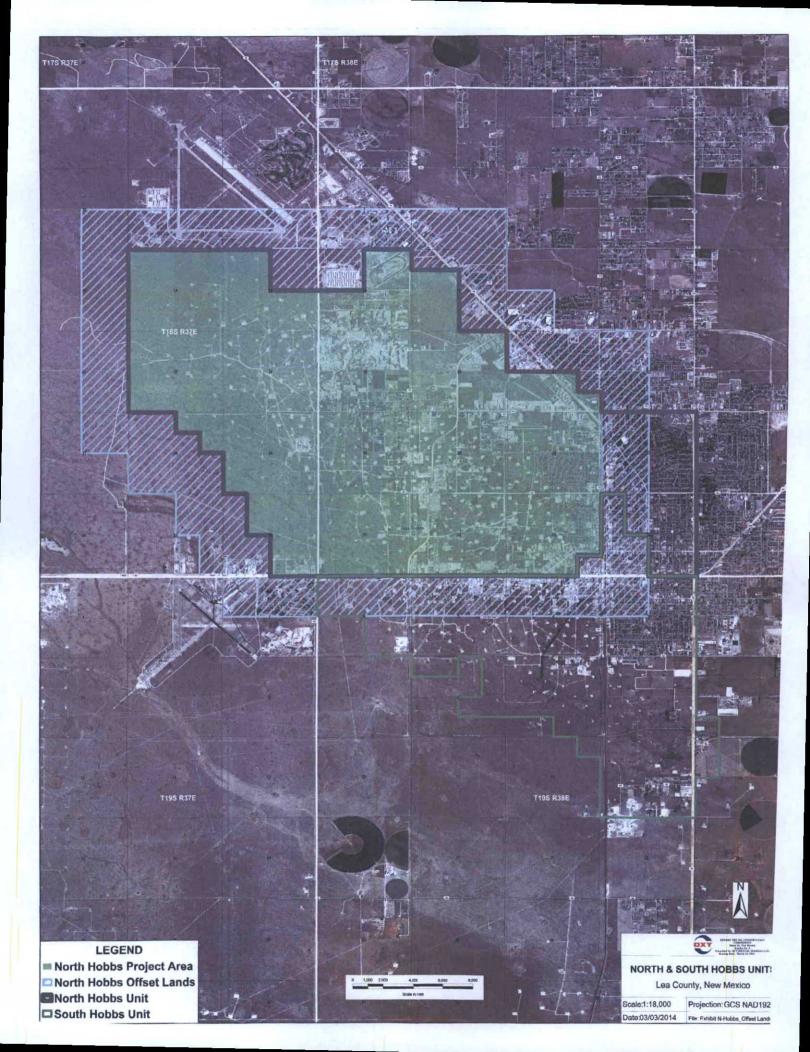
Contamination of these shallow drinking water sources from injection into the deeper San Andres is virtually impossible through natural vertical communication. Immediately overlying the lower Grayburg/San Andres reservoir section at Hobbs is a nearly 200' thick section of impermeable anhydrite and tight limestones of the upper Grayburg formation. Between this barrier and the fresh water zones lies another impermeable zone, a 1000'+ thick section of salt and anhydrite of the Rustler and Salado formations. The top of these formations are found at a depth of approximately 1500 -1600', immediately underlying the Triassic "Red Beds". In addition, there is no geologic evidence to suggest that there are any faults in the Hobbs area that would provide a connection between the San Andres formation and the overlying shallow drinking water sources. There are no underground sources of drinking water found below the proposed injection interval.

I hereby certify that the information presented above is true and correct to the best of my knowledge and belief.

Randy Stilwell

Date

Senior Geologic Advisor


North Hobbs Unit Surface Notice


BEFORE THE OIL CONSERVATION COMMISSION

Santa Fe, New Mexico Exhibit No. 9

Submitted by: OCCIDENTAL PERMIAN LTD. Hearing Date: March 13, 2014

North Hobbs Unit Surface Notice

BEFORE THE OIL CONSERVATION COMMISSION

Santa Fe, New Mexico Exhibit No. 9

Submitted by: OCCIDENTAL PERMIAN LTD.
Hearing Date: March 13, 2014