
Administrative/Environmental Order

AE Order Number Banner

Report Description

This report shows an AE Order Number in Barcode format for purposes of scanning. The Barcode format is Code 39.

App Number: pLWJ1008848341

1RP - 2190

SOUTHWEST ROYALTIES INC

7/27/2016

PLW JOO88 48341

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW 🛦 Suite F-142 🛦 Albuquerque, NM 87104 🛦 505.266.5004 🛦 Fax: 505.266.0745

July 27, 2009

Mr. Geoffrey R. Leking New Mexico Oil Conservation Division 1625 North French Drive Hobbs, New Mexico 88240

RECEIVED

JUL 2 7 2009 HOBBSOCD

RE: Southwest Royalties, Inc., Wyatt "A" Federal Tank Battery Release Site: T-17-S, R-33-E, Section 34, Unit C, Lea County, New Mexico, Lease No. 94189, Termination Request

Dear Mr. Leking:

On behalf of Southwest Royalties, Inc. (SW Royalties), R.T. Hicks Consultants, Ltd. is submitting this request for closure of the regulatory file associated with the recent release (1R-2190-0) at the Wyatt "A" Federal Tank Battery Release Site regulatory file. The investigation demonstrated that neither chloride nor hydrocarbons are present in the concentrations quantities that represent a threat to fresh water, human health or the environment. However, during abandonment of the battery and surface restoration, the operator will conduct additional investigations as required by regulatory mandates in force at the time.

Background and Site Characteristics

On Saturday morning, of May 23, 2009 a release of 100 bbls of fluid occurred from a hole in the south oil tank (300 bbl capacity) at the SW Royalties Wyatt "A" Federal Tank Battery. Fluid from the release was contained within the firewall except for a very small volume that leaked from around some piping at the southern end of the facility. A vacuum truck was used to recover 50 bbls of fluid from the firewall for a net loss of 50 bbls. Both the NMOCD and the BLM were notified via phone and fax on the afternoon of the release.

The Wyatt "A" Federal battery is located approximately 0.5 miles north of the Mescalero Ridge at T-17-S, R-33-E, Section 34, Unit C, in western Lea County, New Mexico (North 32° 47' 49.1" latitude and West 103° 39' 9.3" longitude, Plate 1).

The surface soil is described as a loam or gravelly loam within the Kimbrough-Lea Complex, according to the USDA Soil Survey. A sieve analysis of the top meter of soil from the background boring supports this description and with a fine grain sand component.

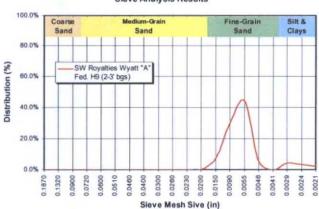


Plate 1 is geologic map of the area. The Wyatt "A" Federal site is located on the surface outcrop of the Tertiary Ogallala formation which is exposed to the northeast of the cap rock escarpment. The Ogallala Formation generally consists of semi-consolidated fine-grained calcareous sand, capped with a thick layer of caliche and is approximately 250 feet thick in this area. The Ogallala overlies the red clay and shale beds of the Triassic Dockum Group.

Depth to ground water at the site is approximately 150 to 160 feet below the surface according to the most recent USGS measurements taken from nearby wells northeast of the cap rock escarpment (see Plate 2). The ground water gradient is to the southeast at approximately 0.002 ft/ft. The background chloride concentration of the ground water based on the few published measurements that are available (Plate 3) is less than 50 mg/L.

Field Program

On June 3, 2009 Hicks Consultants investigated the release then prepared a site map, and recovered soil samples according to the NMOCD guidelines. Nine hand auger borings were installed to determine the hydrocarbon and chloride concentrations within the spill area (See Plate 4). Six of the soil borings (H-3 to H-8) encountered auger refusal at a depth of one foot or less due to a hard caliche layer. Soil borings H-1 (10 feet south of the source area) encountered the caliche layer at a depth of three feet and H-2 (source area) was advanced to a depth of nine feet but did not encounter the caliche layer. In addition, a background boring (H-9) located 35 feet northeast of the source area, was advanced to a depth of three feet and did not encounter the caliche layer. Laboratory analyses of chloride, benzene, toluene, ethylbenzene, xylenes, and total petroleum hydrocarbons were performed on at lease one sample from each auger boring. Attachment A provides a copy of the laboratory report and chain of custody documents.

Results

A summary of the laboratory results from the June 3, 2009 soil sampling event are provided on Table 1. Plate 4 is a site map that indicates the extent of the spill area and the location of the hand auger borings.

Although the presence of hard caliche limited our ability to easily determine the vertical extent of impact to soil at all

Table 1 Wyatt "A" Federal Tank Battery Laboratory Data - Soil Samples										
Sample Location	Depth (feet)	Sample Date	Chloride (mg/kg)	PID (ppm)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	BTEX (mg/kg)	
H-1	2-3	6/3/09	2,370		< 0.058	0.240	3.17	10.7	14.1	
H-2	1-2	6/3/09	373	1,646	1.904	41.1	19.0	70.5	133	
	8-9	6/3/09	187	81	< 0.001	< 0.002	< 0.001	< 0.001	< 0.005	
H-3	0-1	6/3/09	23.7	**	< 0.056	4.581	14.2	31.8	50.6	
H-4	0-0.5	6/3/09	4,520		0.292	1.218	0.252	0.252	2.01	
H-5	0-1	6/3/09	5,670		0.102	1.698	5.62	12.0	19.4	
H-6	0-0.5	6/3/09	1,330		2.329	3.167	17.3	30.8	53.5	
H-7	0-0.5	6/3/09	315	**	0.120	17.9	31.4	56.7	106	
H-8	0-0.25	6/3/09	1,400		< 0.005	0.014	0.013	0.033	0.065	
H-9	2-3	6/3/09	<5.39		< 0.001	< 0.002	< 0.001	< 0.001	< 0.005	
Fire Wall	Comp	6/3/09	4,120		< 0.001	0.005	0.014	0.035	0.054	
2006 NME	D Soil	-	Com/Ind Ex	oosure	25.8	252	128	82		
Screening	Guideline	s	Protect GW	(DAF 20)	0.0201	21.7	20.2	2.06	-	
Site Specif	fic GW Pro		vels (DAF 120)		0.121	130	121	12.4	-	

Bold red or blue text values indicate conc. that exceed the 2006 NMED screening guidelines.

Bold text values indicate concentrations that exceed the calculated site specific remediation levels

locations with sampling, site data permit a reasonable estimate of the vertical impact from the 50-barrel release. The following calculation shows this estimate:

Depth of Impact =	Volume of Release/Area of Release Footprint
	Porosity
Depth of Impact =	280 cubic feet of produced water/5,800 square feet 0.30

Average Depth of Impact = 2 inches

This calculation presents the average depth of impact from the 100-barrel spill (50 barrels net release) and does not consider the impact of historic releases.

Although chloride and hydrocarbon concentrations in the soil exceed the recommended levels listed in the NMOCD 1993 Guidelines, the guidelines state that procedures may deviate from the guidelines "if is can be shown that the proposed procedure will either remediate, remove, isolate or control contaminants in such a manner that fresh waters, public health and the environment will not be impacted." We belive this plan meets this criteria.

Demonstration of Compliance with NMOCD Rules: Chloride Concentrations

Title 19, Chapter 15, Part 30.9 of the NMAC states "The responsible person shall abate the vadose zone so that water contamination in the vadose zone will not with reasonable probability contaminate ground water or surface water, in excess of the standards in Subsection B and C of the 19.15.30.9 NMAC, through leaching, percolation or other transport mechanisms, or as the water table elevation fluctuates." We believe that impairment of surface water is not an issue at this site, therefore only the ground water standard for chloride (250 mg/L) is addressed herein. Because contact with chloride in soil does not pose a threat to human health, the discussion herein is restricted to the threat posed to ground water quality.

We used the AMIGO tool (HYDRUS-1D model) to determine if the nonsaturated chloride transport through the vadose zone would cause the underlying ground water to exceed the criteria established by NMOCD Rules. The input to the model employed field data from the site, nearby locations, and conservative input data for parameters that were not measured at or near the site. As explained in Attachment B, the model employed a conservative estimate of the depth of chloride impact.

The results of the simulation indicate that a maximum ground water chloride concentration of 225 mg/l (below standards) will occur in the years 2086 to 2090 (77 years from the release date) if no further corrective actions are taken. Attachment B provides an explanation of the data used and results from the

simulation at the Wyatt "A" Federal site. Additional information concerning the AMIGO tool can be found at <u>www.rthicksconsult.com</u>.

The site data and our evaluation permit a conclusion that chloride "in the vadose zone will not with reasonable probability contaminate ground water or surface water, in excess of the standards in Subsection B and C of the 19.15.30.9 NMAC, through leaching, percolation or other transport mechanisms, or as the water table elevation fluctuates."

Demonstration of Compliance With NMOCD Rules: Hydrocarbon Concentrations

The NMED has provided soil screening guidelines for petroleum-related contaminants in a document dated October 2006. These include soil screening levels (SSLs) for benzene, toluene, ethylbenzene, and xylenes designed to protect residential and commercial receptors that may be directly exposed to the <u>soil</u>. None of the hydrocarbon concentrations in the soil at the Wyatt "A" Federal site exceed these levels as shown on Table 1. From these data we conclude that hydrocarbons in soil do not pose a threat to human health.

The October 2006 guidelines also include screening levels for soil protective of the ground water relative to the human health standards listed in 20.6.2.3103 of the NMAC under conditions where the soil is directly exposed to the ground water (Dilution-Attenuation Factor or DAF = 1) and also conditions where the soil is not directly exposed to ground water (DAF = 20). A June 2006 NMED guidance document, that describes the calculation of SSLs, recommends the calculation of SSLs using the site specific aquifer characteristics, spill size, and recharge rate where appropriate. Using the protocols described in the NMED document, we calculated a DAF of 120 for the Wyatt "A" Federal site, as shown on Table 1. Hydrocarbon concentrations from the auger boring samples collected at the site exceed the DAF₁₂₀ SSLs for benzene (H-2, H-4, and H-6) and xylenes (H-2, H-3, H-6, and H-7).

The SSLs provided by and calculated from the June 2006 guidance document do not take into account the liquid-phase advection, biodegradation of hydrocarbons solid-phase sorption, vapor-phase diffusion, and three-phase equilibration that occurs as hydrocarbon contaminates migrate through the vadose zone. Therefore we used the VLEACH vadose zone model to determine if the benzene and xylenes would cause the underlying ground water to exceed the regulatory standard. The input to the model employed field data from the site, nearby locations, and conservative input data for parameters that were not measured at or near the site.

The results of the simulation indicate that a <u>maximum</u> ground water benzene concentration of 0.00017 mg/l (below standards) will occur in 400 years and a maximum ground water xylene concentration of 0.00385 mg/l (below standards) will occur in 700 years if no further corrective actions are taken.

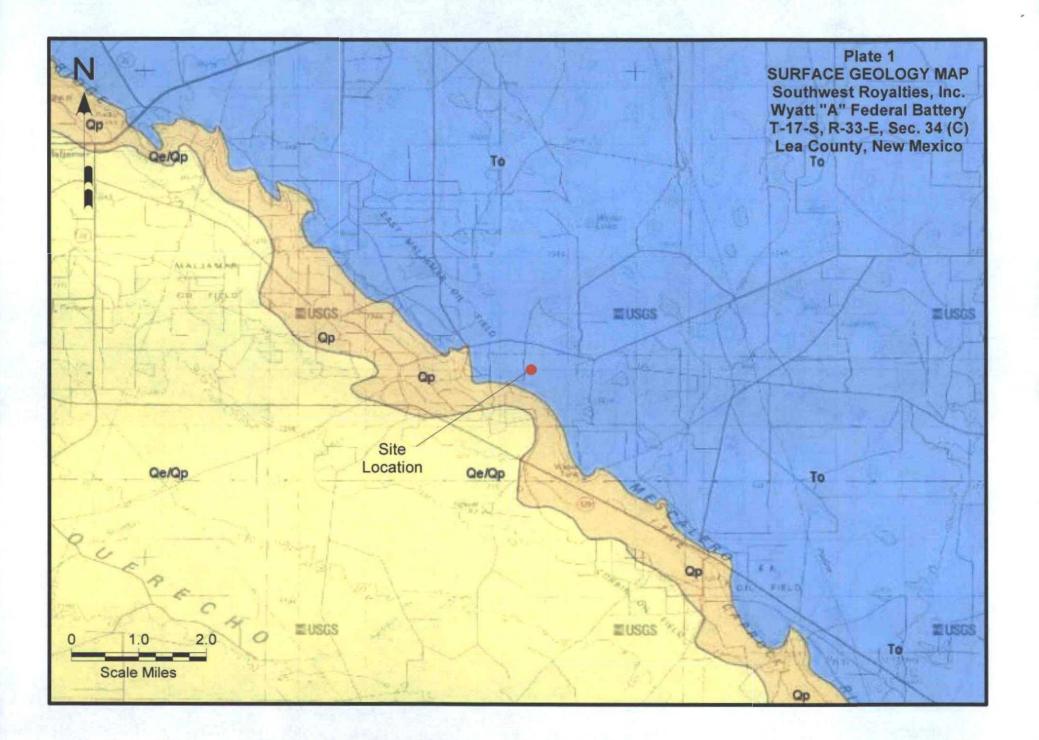
Like the method used to calculate SSLs, the VLEACH model does not take into account the natural biological degradation of the hydrocarbons; therefore this prediction is highly conservative of ground water quality. Attachment C provides an explanation of the data used and results from the simulation at the Wyatt "A" Federal site. A detailed description of the model and a free windows-based program download is available from the USEPA at http://www.epa.gov/ada/csmos/models/vleach.html.

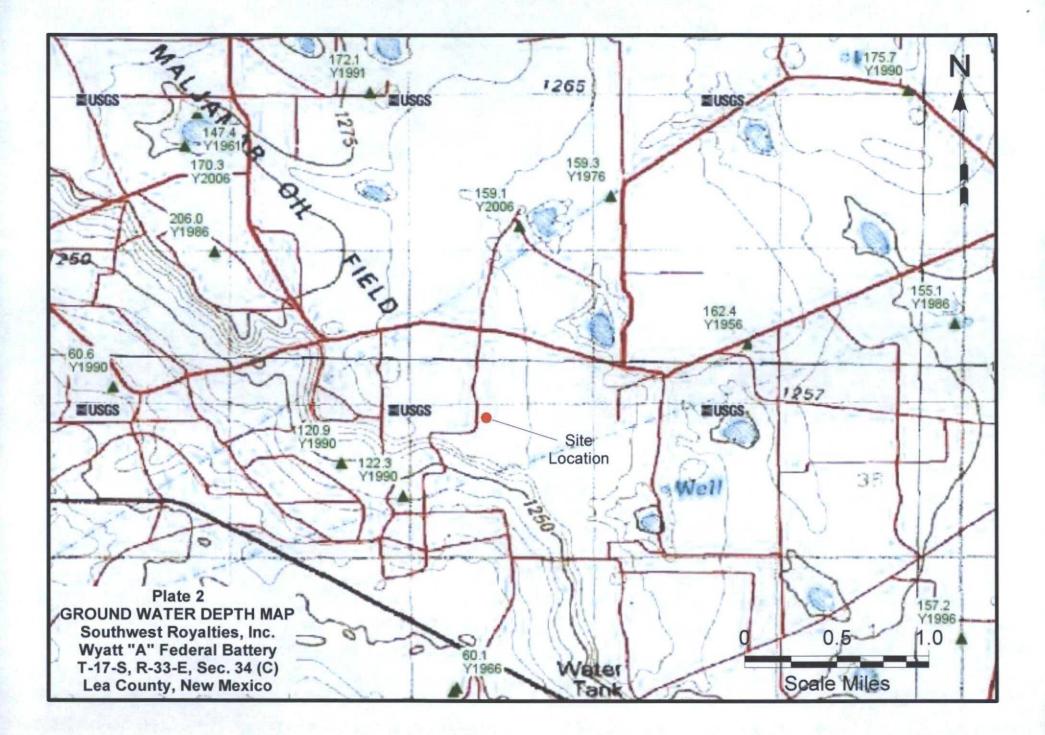
The site data and our evaluation permit a conclusion that regulated hydrocarbons "in the vadose zone will not with reasonable probability contaminate ground water or surface water, in excess of the standards in Subsection B and C of the 19.15.30.9 NMAC, through leaching, percolation or other transport mechanisms, or as the water table elevation fluctuates."

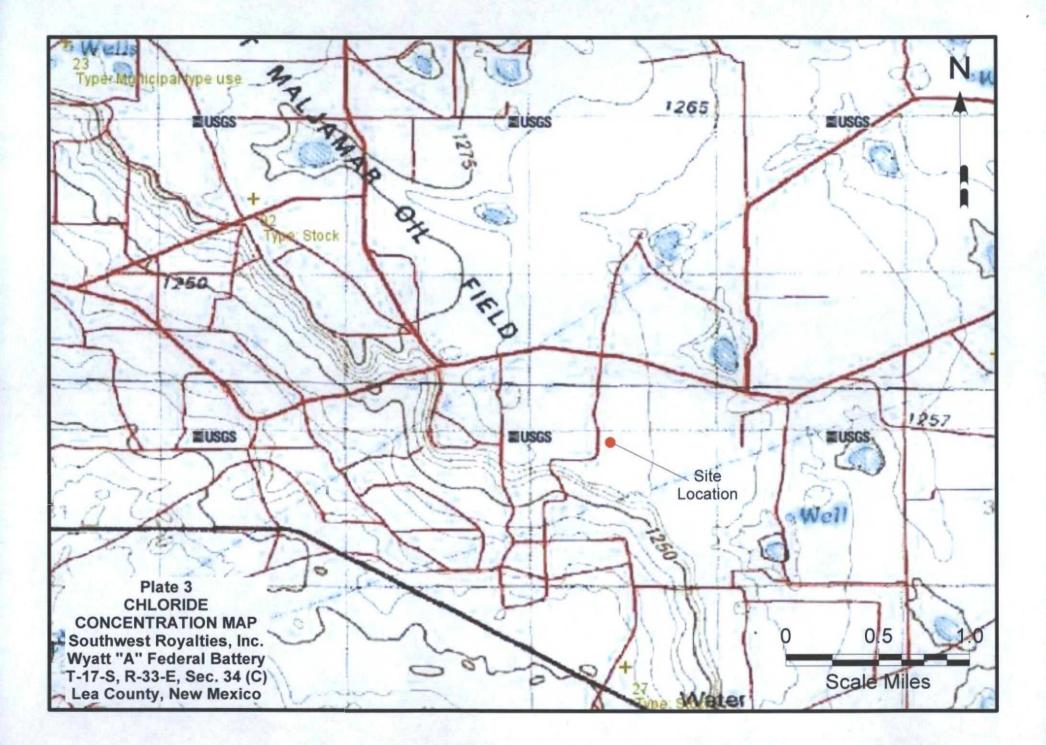
Recommendations

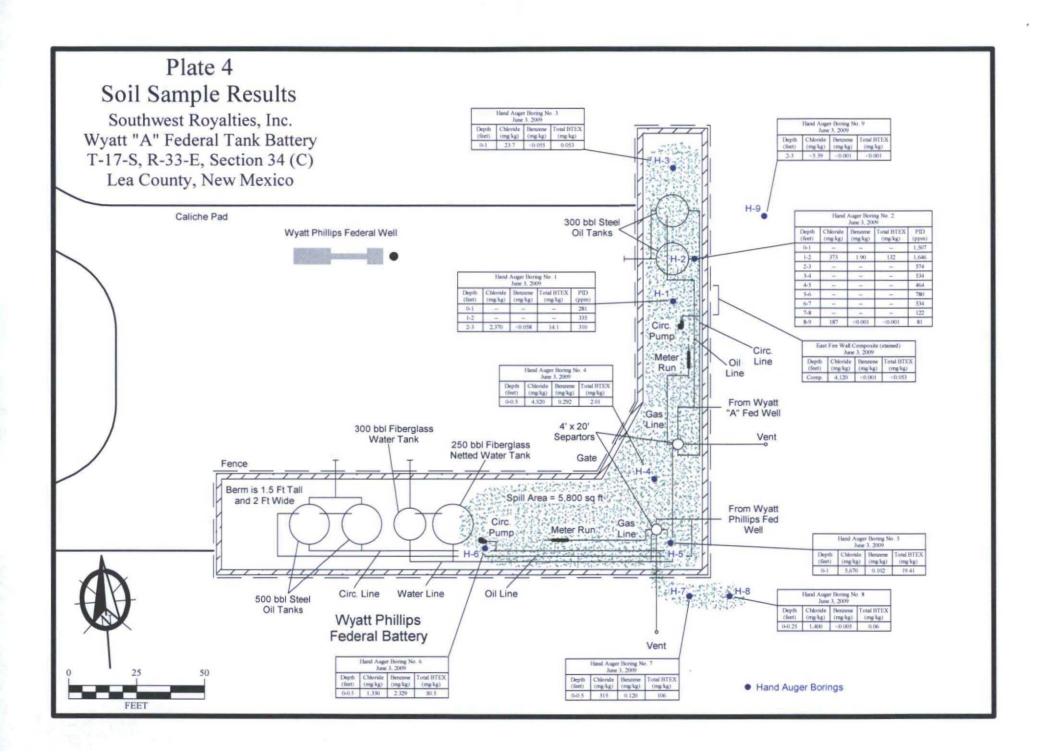
Based on the results of the soil sampling and vadose zone modeling, we conclude that this site is in compliance with the mandates of Title 19, Chapter 15, Part 29 of the NMAC such that the remaining chloride- and hydrocarbon-impacted soil associated with the 100-barrel release does not and will not endanger public health or the environment.

While we recommend termination of the regulatory file associated with this release, we also understand that the subsurface caliche limited our ability to easily determine the vertical extent of any historic releases associated with this site. We do not recommend a boring or trenching sampling program at this site to gain additional sample data as such sampling requires penetration of the caliche layer and could create a conduit to deeper penetration of a future release at the battery. We understand that the BLM (as the mineral owner) will require restoration of the site when the use of the battery is permanently terminated. At that time, we recommend a full characterization of the vertical extent of historic impairment.


Please contact me or Mr. Randy Wiley of Southwest Royalties (806-495-5284) if you have any questions concerning this submission. Thank you for your time and consideration.


Sincerely, R.T Hicks Consultants, Ltd.


l. 1 httlesh


Dale T Littlejohn Geologist

Copy: Randy Willey Matt Swierc

JUL 2 7 2009

ATTACHMENT A Laboratory Reports and Chain-of-Custody Documentation From June 2009 Characterization

Analytical Report 334495

for

R.T. Hicks Consultants, LTD

Project Manager: Dale Littlejohn

SW Royalties: Wyatt "A" Fed Bat L-179-0609

16-JUN-09

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215-08B-TX - Odessa/Midland, TX T104704400-08-TX Corpus Christi, TX T104704370-08-TX - Dallas, TX T104704295-08-TX

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Miramar, FL E86349 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

> North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

16-JUN-09

Project Manager: Dale Littlejohn R.T. Hicks Consultants, LTD 901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

Reference: XENCO Report No: 334495 SW Royalties: Wyatt "A" Fed Bat Project Address: Lea Co., New Mexico

Dale Littlejohn:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 334495. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 334495 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

347

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Sample Cross Reference 334495

R.T. Hicks Consultants, LTD, Albuquerque, NM

SW Royalties: Wyatt "A" Fed Bat

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
H-1 (2-3 Ft)	S	Jun-03-09 10:12	2 - 3 ft	334495-001
H-2 (1-2 Ft)	S	Jun-03-09 10:35	1 - 2 ft	334495-002
H-2 (8-9 Ft)	S	Jun-03-09 11:25	8 - 9 ft	334495-003
H-3 (0-1 Ft)	S	Jun-03-09 11:50	0 - 1 ft	334495-004
East Fire Wall Composite	S	Jun-03-09 12:00		334495-005
H-4 (3-6 In)	S	Jun-03-09 12:15	3 - 6 In	334495-006
H-5 (0-1 Ft)	S	Jun-03-09 12:25	0 - 1 ft	334495-007
H-6 (0-6 In)	S	Jun-03-09 12:35	0 - 6 In	334495-008
H-7 (0-6 In)	S	Jun-03-09 12:45	0 - 6 In	334495-009
H-8 (0-3 In)	S	Jun-03-09 12:55	0 - 3 In	334495-010
H-9 Background (2-3 Ft)	S	Jun-03-09 13:15	2 - 3 ft	334495-011

CASE NARRATIVE

Client Name: R.T. Hicks Consultants, LTD Project Name: SW Royalties: Wyatt "A" Fed Bat

Project ID: L-179-0609 Work Order Number: 334495 Report Date: 16-JUN-09 Date Received: 06/04/2009

Sample receipt non conformances and Comments: None

Sample receipt Non Conformances and Comments per Sample:

None

Analytical Non Conformances and Comments:

Batch: LBA-761207 TPH by EPA 418.1 None

Batch: LBA-761287 Inorganic Anions by EPA 300 None

Batch: LBA-761289 Percent Moisture None

Batch: LBA-761404 TPH by SW8015 Mod None

Batch: LBA-761507 BTEX-MTBE EPA 8021B SW8021BM

Batch 761507, 4-Bromofluorobenzene recovered below QC limits; Data not confirmed by reanalysis. Samples affected are: 531422-1-BLK,334495-006. Matrix interference is suspected in sample surrogate failures.

SW8021BM

Batch 761507, Ethylbenzene, Toluene, m,p-Xylenes, o-Xylene recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Samples affected are: 334495-006. The Laboratory Control Sample for Toluene, m,p-Xylenes, Ethylbenzene, o-Xylene is within laboratory Control Limits

CASE NARRATIVE

Client Name: R.T. Hicks Consultants, LTD Project Name: SW Royalties: Wyatt "A" Fed Bat

Project ID: L-179-0609 Work Order Number: 334495 Report Date: 16-JUN-09 Date Received: 06/04/2009

Batch: LBA-761510 BTEX-MTBE EPA 8021B SW8021BM

Batch 761510, 4-Bromofluorobenzene recovered below QC limits; Data not confirmed by reanalysis. Matrix interference is suspected in sample surrogate failures. Samples affected are: 531420-1-BLK,334451-002 SD,334495-011.

Bath 761510, 4-Bromofluorobenzene recovered above QC limits; Data not confirmed by reanalyses. Matrix interference is suspected in sample surrogate failures. Samples affected are: 334495-004

Batch: LBA-761515 BTEX-MTBE EPA 8021B SW8021BM

Batch 761515, 1,4-Difluorobenzene recovered below QC limits . Matrix interferences is suspected; data confirmed by re-analysis. Samples affected are: 334495-002,334495-009,334495-007. 4-Bromofluorobenzene recovered below QC limits; QC Data not confirmed by re-analysis. Samples affected are: 531430-1-BLK.

4-Bromofluorobenzene recovered above QC limits.Matrix interferences is suspected; data confirmed by re-analysis. Samples affected are: 334495-001

SW8021BM

Batch 761515, Ethylbenzene, m,p-Xylenes, o-Xylene recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Samples affected are: 334495-002, -010, -009, -001, -007. The Laboratory Control Sample for m,p-Xylenes, Ethylbenzene, o-Xylene is within laboratory Control Limits

CASE NARRATIVE

Client Name: R.T. Hicks Consultants, LTD Project Name: SW Royalties: Wyatt "A" Fed Bat

Project ID: L-179-0609 Work Order Number: 334495 Report Date: 16-JUN-09 Date Received: 06/04/2009

Batch: LBA-761769 BTEX-MTBE EPA 8021B SW8021BM

Batch 761769, 1,4-Difluorobenzene recovered below QC limits . Matrix interferences is suspected; data confirmed by re-analysis
Samples affected are: 334495-008 D,334495-008.
4-Bromofluorobenzene recovered below QC limits. Matrix interferences is suspected; Data confirmed by re-analysis. Samples affected are: ,334495-008 D,334495-008.
4-Bromofluorobenzene recovered below QC limits; QC Data not confirmed by re-analysis. Samples affected are: 531580-1-BLK

Batch: LBA-762322 FOC by ASTM D2974C None

Certificate of Analysis Summary 334495

R.T. Hicks Consultants, LTD, Albuquerque, NM

Project Name: SW Royalties: Wyatt "A" Fed Bat

Date Received in Lab: Thu Jun-04-09 09:39 am

Report Date: 16-JUN-09

Project Id: L-179-0609 Contact: Dale Littlejohn Project Location: Lea Co., New Mexico

oject Location: Lea Co., New Mexico								Project Ma	nager:	Brent Barron	П		
	Lab Id:	334495-	001	334495-	002	334495-	003	334495-		334495-	1	334495-0	006
	Field Id:	H-1 (2-3	(Ft)	H-2 (1-2	5, 45, 45 C	H-2 (8-9	1.00	H-3 (0-1	Et)	East Fire Wall	Composite	H-4 (3-6	
Analysis Requested	Depth:	2-3 f	555.X	1-2 6	50. IC	8-9 ft		0-1 f				3-6 In	Seaw
	Matrix:	SOIL		SOIL	· · · · ·	SOIL	· · · ·	SOIL				SOIL	
								07076319		SOIL			
	Sampled:	Jun-03-09	10:12	Jun-03-09	10:35	Jun-03-09	11:25	Jun-03-09	11:50	Jun-03-09	12:00	Jun-03-09	12:15
Anions by EPA 300	Extracted:												
	Analyzed:	Jun-04-09	13:36	Jun-04-09	13:36	Jun-04-09	13:36	Jun-04-09	13:36	Jun-04-09	13:36	Jun-04-09	13:36
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		2370	58.4	373	11.8	187	11.2	23.7	5.59	4120	52.7	4520	107
BTEX by EPA 8021B	Extracted:	Jun-08-09	10:30	Jun-08-09	10:30	Jun-07-09	13:00	Jun-07-09	13:00	Jun-07-09	13:00	Jun-07-09	13:30
DIER by BIR 60210	Analyzed:	Jun-08-09	15:02	Jun-08-09	18:59	Jun-07-09	16:41	Jun-07-09	22:25	Jun-07-09	16:19	Jun-08-09	05:11
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		ND	0.0582	1.904	0.2929	ND	0.0011	ND	0.0555	ND	0.0010	0.2916	0.1064
Toluene		0.2403	0.1164	41.08	0.5857	ND	0.0022	4.581	0.1110	0.0046	0.0021	1.218	0.2128
Ethylbenzene		3.174	0.0582	18.98	0.2929	ND	0.0011	14.18	0.0555	0.0136	0.0010	0.2522	0.1064
m,p-Xylenes		6.762	0.1164	51.49	0.5857	ND	0.0022	21.94	0.1110	0.0231	0.0021	0.2522	0.2128
o-Xylene		3.913	0.0582	19.05	0.2929	ND	0.0011	9.886	0.0555	0.0118	0.0010	ND	0.1064
Total Xylenes		10.675	0.0582	70.54	0.2929	ND	0.0011	31.826	0.0555	0.0349	0.0010	0.2522	0.1064
Total BTEX		14.0893	0.0582	132.504	0.2929	ND	0.0011	50.587	0.0555	0.0531	0.0010	2.014	0.1064
Percent Moisture	Extracted:						_						
I ci cent moisture	Analyzed:	Jun-05-09	08:55	Jun-05-09 08:55		Jun-05-09 08:55		Jun-05-09	08:55	Jun-05-09 08:55		Jun-05-09 08:55	
	Units/RL:	%	RL	9%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		14.41	1.00	15.31	1.00	10.41	1.00	10.59	1.00	5.13	1.00	6.96	1.00
TPH By SW8015 Mod	Extracted:	Jun-04-09	10:34	Jun-04-09	10:34	Jun-04-09	10:34						
IFH By Swould Mou	Analyzed:	Jun-05-09	01:45	Jun-05-09	02:08	Jun-05-09	02:31						
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL						
C6-C12 Gasoline Range Hydrocarbons	C THIS ALD.	325	87.6	1180	88.6	19.7	16.7						
C12-C28 Diesel Range Hydrocarbons		1080	87.6	2210	88.6	64.5	16.7						
C28-C35 Oil Range Hydrocarbons		202	87.6	339	88.6	21.0	16.7						
Total TPH		1607	87.6	3729	88.6	105.2	16.7						

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented.

Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron

Odessa Laboratory Director

Certificate of Analysis Summary 334495

R.T. Hicks Consultants, LTD, Albuquerque, NM

Project Name: SW Royalties: Wyatt "A" Fed Bat

Project Id: L-179-0609 Contact: Dale Littlejohn Project Location: Lea Co., New Mexico

Date Received in Lab: Thu Jun-04-09 09:39 am Report Date: 16-JUN-09

ofter Docation. Dea confirm intento								Project Man	nager:	Brent Barron,	П		
	Lab Id:	334495-0	01	334495-0	02	334495-0	03	334495-0	04	334495-0	05	334495-00	06
Analysis Requested	Field Id:	H-1 (2-3	Ft)	H-2 (1-2	Ft)	H-2 (8-9	Ft)	H-3 (0-1	Ft)	East Fire Wall C	omposite	H-4 (3-6 I	n)
Analysis Requested	Depth:	2-3 ft		1-2 ft		8-9 ft		0-1 ft				3-6 In	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Jun-03-09 1	0:12	Jun-03-09 1	0:35	Jun-03-09 1	1:25	Jun-03-09 1	1:50	Jun-03-09 1	2:00	Jun-03-09 1	2:15
TPH by EPA 418.1	Extracted: Analyzed:	Jun-04-09	16:27	Jun-04-09 1	6:27	Jun-04-09	16:27	Jun-04-09 1	6:27	Jun-04-09 1	6:27	Jun-04-09 1	6:27
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
TPH, Total Petroleum Hydrocarbons		3590	11.7	10600	11.8	291	11.2	5840	11.2	3060	10.5	32700	107

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron

Odessa Laboratory Director

Certificate of Analysis Summary 334495

R.T. Hicks Consultants, LTD, Albuquerque, NM

Project Name: SW Royalties: Wyatt "A" Fed Bat

Date Received in Lab: Thu Jun-04-09 09:39 am

Project Id: L-179-0609 Contact: Dale Littlejohn P

Contact: Dale Littlejohn					Report Date:	16-JUN-09
oject Location: Lea Co., New Mexico					Project Manager:	
	Lab Id:	334495-007	334495-008	334495-009	334495-010	334495-011
	Field Id:	H-5 (0-1 Ft)	H-6 (0-6 In)	H-7 (0-6 In)	H-8 (0-3 ln)	H-9 Background (2-3 Ft)
Analysis Requested	Depth:	0-1 ft	0-6 In	0-6 In	0-3 In	2-3 ft
		and the second second				
	Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL
	Sampled:	Jun-03-09 12:25	Jun-03-09 12:35	Jun-03-09 12:45	Jun-03-09 12:55	Jun-03-09 13:15
Anions by EPA 300	Extracted:					
Amons by DIA 500	Analyzed:	Jun-04-09 13:36				
	Units/RL:	mg/kg RL				
Chloride		5670 117	1330 26.9	315 10.8	1400 26.5	ND 5.39
BTEX by EPA 8021B	Extracted:	Jun-08-09 10:30	Jun-09-09 14:50	Jun-08-09 10:30	Jun-08-09 10:30	Jun-07-09 13:00
BIEA Dy EFA 8021B	Analyzed:	Jun-08-09 16:28	Jun-09-09 23:29	Jun-08-09 17:33	Jun-08-09 16:50	Jun-07-09 17:24
	Units/RL:	mg/kg RL				
Benzene	UNIIS/KL:	0.1020 0.0583	2.329 1.073	0.1195 0.1076	ND 0.0053	ND 0.0011
Toluene		1.698 0.1166	3.167 2.147	17.89 0.2152	0.0138 0.0106	ND 0.0022
Ethylbenzene		5.621 0.0583	17.28 1.073	31.43 0.1076	0.0134 0.0053	ND 0.0011
m,p-Xylenes		8.403 0.1166	28.85 2.147	38.58 0.2152	0.0224 0.0106	ND 0.0022
o-Xylene		3.573 0.0583	1.900 1.073	18.09 0.1076	0.0105 0.0053	ND 0.0011
Total Xylenes		11.976 0.0583	30.75 1.073	56.67 0.1076	0.0329 0.0053	ND 0.0011
Total BTEX		19.397 0.0583	53.526 1.073	106.1095 0.1076	0.0601 0.0053	ND 0.0011
FOC by ASTM D2974C	Extracted: Analyzed: Units/RL:					Jun-15-09 12:02 % RL
Fraction Organic Carbon	1					1.43 0.010
Percent Moisture	Extracted: Analyzed:	Jun-05-09 08:55				
	Units/RL:	% RL				
Percent Moisture		14.20 1.00	7.03 1.00	7.45 1.00	5.72 1.00	7.26 1.00
TPH by EPA 418.1	Extracted: Analyzed: Units/RL:	Jun-04-09 16:27 mg/kg RL				
TPH, Total Petroleum Hydrocarbons		28500 58.3	66400 108	12300 10.8	5760 10.6	109 10.8

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented.

Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron

Odessa Laboratory Director

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- BRL Below Reporting Limit.
- **RL** Reporting Limit
- * Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
842 Cantwell Lane, Corpus Christi, TX 78408	(361) 884-0371	(361) 884-9116

Project Name: SW Royalties: Wyatt "A" Fed Bat

Vork Orders : 334495		25 B		D:L-179-060)9	
Lab Batch #: 761507 Units: mg/kg	Sample: 531422-1-BKS / Bl Date Analyzed: 06/08/09 01:16	And the second se	RROGATE R		STUDY	
	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0312	0.0300	104	80-120	-
4-Bromofluorobenzene		0.0269	0.0300	90	80-120	
Lab Batch #: 761507	Sample: 531422-1-BSD / BS	SD Ba	tch: 1 Mati	rix: Solid		
Units: mg/kg	Date Analyzed: 06/08/09 01:38	SU	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0315	0.0300	105	80-120	_
4-Bromofluorobenzene		0.0277	0.0300	92	80-120	1
Lab Batch #: 761507	Sample: 531422-1-BLK / BI	K Ba	tch: 1 Mati	rix: Solid		
Units: mg/kg	Date Analyzed: 06/08/09 02:20	SU	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0267	0.0300	89	80-120	
4-Bromofluorobenzene		0.0187	0.0300	62	80-120	*
Lab Batch #: 761507	Sample: 334495-006 / SMP	Ba	tch: 1 Mate	rix: Soil		
Units: mg/kg	Date Analyzed: 06/08/09 05:11	SU	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0243	0.0300	81	80-120	
4-Bromofluorobenzene		0.0236	0.0300	79	80-120	*
Lab Batch #: 761507	Sample: 334710-007 S / MS	Ba	tch: Matu	ix: Soil		
Units: mg/kg	Date Analyzed: 06/08/09 06:58	SU	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0304	0.0300	101	80-120	
4-Bromofluorobenzene		0.0257	0.0300	86	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: SW Royalties: Wyatt "A" Fed Bat

ork Orders : 334495	5, Sample: 334710-007 SD / N			D:L-179-060 ix: Soil	9	
Lab Batch #: 761507 Units: mg/kg	Date Analyzed: 06/08/09 07:19		RROGATE R	and a second of	STUDY	
	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1400	Analytes		0.0200		00.100	
1,4-Difluorobenzene 4-Bromofluorobenzene		0.0306	0.0300	102	80-120 80-120	
					80-120	_
Lab Batch #: 761510	Sample: 531420-1-BKS / B			ix: Solid		
Units: mg/kg	Date Analyzed: 06/07/09 14:53	st	JRROGATE R	ECOVERYS	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0319	0.0300	106	80-120	
4-Bromofluorobenzene		0.0266	0.0300	89	80-120	
Lab Batch #: 761510	Sample: 531420-1-BSD / B	SD Ba	tch: 1 Matr	ix: Solid		
Units: mg/kg	Date Analyzed: 06/07/09 15:15		RROGATE R		STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0318	0.0300	106	80-120	
4-Bromofluorobenzene		0.0272	0.0300	91	80-120	
Lab Batch #: 761510	Sample: 531420-1-BLK / B	LK Ba	itch: 1 Matr	ix: Solid		
Units: mg/kg	Date Analyzed: 06/07/09 15:58		RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0272	0.0300	91	80-120	
4-Bromofluorobenzene		0.0140	0.0300	47	80-120	*
Lab Batch #: 761510	Sample: 334495-005 / SMP	Ba	tch: 1 Matr	ix: Soil		
Units: mg/kg	Date Analyzed: 06/07/09 16:19	SU	RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluorobenzene		0.0259	0.0300	86	80-120	
1,4-Dimuorobenzene						

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: SW Royalties: Wyatt "A" Fed Bat

ork Orders : 334495 Lab Batch #: 761510	5, Sample: 334495-003 / SMP	Batch		ID: L-179-060 rix: Soil	19	
Units: mg/kg	Date Analyzed: 06/07/09 16:41	SUR	ROGATE R	RECOVERY	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0252	0.0300	84	80-120	
4-Bromofluorobenzene		0.0271	0.0300	90	80-120	
Lab Batch #: 761510	Sample: 334495-011 / SMP	Batch		rix: Soil		
Units: mg/kg	Date Analyzed: 06/07/09 17:24	SUR	ROGATE R	RECOVERY	STUDY	_
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0267	0.0300	89	80-120	
4-Bromofluorobenzene		0.0211	0.0300	70	80-120	
Lab Batch #: 761510	Sample: 334495-004 / SMP	Batch	h: 1 Mati	rix: Soil	· · · ·	
Units: mg/kg	Date Analyzed: 06/07/09 22:25			RECOVERY	STUDY	
	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0244	0.0300	81	80-120	
4-Bromofluorobenzene		0.0477	0.0300	159	80-120	*
Lab Batch #: 761510	Sample: 334451-002 S / MS	Batch	h: 1 Mate	rix: Soil		
Units: mg/kg	Date Analyzed: 06/08/09 00:12	SUR	ROGATE R	RECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0311	0.0300	104	80-120	
4-Bromofluorobenzene		0.0295	0.0300	98	80-120	
Lab Batch #: 761510	Sample: 334451-002 SD / MS	SD Batel	h: 1 Matr	rix: Soil		
Units: mg/kg	Date Analyzed: 06/08/09 00:34	SUR	ROGATE R	RECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
	ranaly cos					
1,4-Difluorobenzene		0.0312	0.0300	104	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: SW Royalties: Wyatt "A" Fed Bat

Lab Batch #: 761515	5, Sample: 531430-1-BKS / BI	KS Ba		D: L-179-060 rix: Solid		
Units: mg/kg	Date Analyzed: 06/08/09 09:30	SU	RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
	Analytes			[D]		
1,4-Difluorobenzene		0.0317	0.0300	106	80-120	
4-Bromofluorobenzene		0.0273	0.0300	91	80-120	
Lab Batch #: 761515	Sample: 531430-1-BSD / BS		item in the second	rix: Solid		
Units: mg/kg	Date Analyzed: 06/08/09 09:51	st	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0315	0.0300	105	80-120	
4-Bromofluorobenzene		0.0268	0.0300	89	80-120	
Lab Batch #: 761515	Sample: 531430-1-BLK / BI	K Ba	tch: 1 Mat	ix: Solid		_
Units: mg/kg	Date Analyzed: 06/08/09 10:34		RROGATE R		STUDY	_
	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
	Analytes			[D]		
1,4-Difluorobenzene		0.0266	0.0300	89	80-120	
4-Bromofluorobenzene		0.0188	0.0300	63	80-120	•
Lab Batch #: 761515	Sample: 334495-001 / SMP	Ba	tch: 1 Mate	ix: Soil		
Units: mg/kg	Date Analyzed: 06/08/09 15:02	SU	RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0241	0.0300	80	80-120	
4-Bromofluorobenzene		0.0389	0.0300	130	80-120	**
Lab Batch #: 761515	Sample: 334495-007 / SMP	Ba	tch: 1 Mate	ix: Soil		
Units: mg/kg	Date Analyzed: 06/08/09 16:28	SU	RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0220	0.0300	73	80-120	**
i, i billioroosiiteile						

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

١

Form 2 - Surrogate Recoveries

Project Name: SW Royalties: Wyatt "A" Fed Bat

Vork Orders: 334495			-	D:L-179-060	9		
Lab Batch #: 761515	Sample: 334495-010 / SMP		RROGATE R	rix: Soil	STUDY		
Units: mg/kg	Date Analyzed: 06/08/09 16:50		1	LUVERI			
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
	Analytes			[D]			
1,4-Difluorobenzene		0.0257	0.0300	86	80-120		
4-Bromofluorobenzene		0.0254	0.0300	85	80-120		
Lab Batch #: 761515	Sample: 334495-009 / SMP	Ba	itch: 1 Mate	rix: Soil			
Units: mg/kg	Date Analyzed: 06/08/09 17:33	SURROGATE RECOVERY STUDY					
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorobenzene		0.0232	0.0300	77	80-120	**	
4-Bromofluorobenzene		0.0361	0.0300	120	80-120		
Lab Batch #: 761515	Sample: 334495-002 / SMP	Ra	tch: 1 Mat	rix: Soil			
Units: mg/kg	Date Analyzed: 06/08/09 18:59		RROGATE R		STUDY		
	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorobenzene		0.0228	0.0300	76	80-120	**	
4-Bromofluorobenzene		0.0287	0.0300	96	80-120		
Lab Batch #: 761515	Sample: 334710-004 S / MS	Ba	tch: 1 Mat	rix: Soil			
Units: mg/kg	Date Analyzed: 06/08/09 19:20	SU	RROGATE R	ECOVERY	STUDY		
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorobenzene		0.0320	0.0300	107	80-120		
4-Bromofluorobenzene		0.0240	0.0300	80	80-120		
Lab Batch #: 761515	Sample: 334710-004 SD / M	SD Ba	tch: 1 Mate	rix: Soil			
Units: mg/kg	Date Analyzed: 06/08/09 19:42	SU	RROGATE R	ECOVERY	STUDY		
BTE	X by EPA 8021B	Amount	True	D	Control	Flags	
		Found [A]	Amount [B]	Recovery %R [D]	Limits %R	riags	
1,4-Difluorobenzene	Analytes		and a second sec	%R		riags	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Project Name: SW Royalties: Wyatt "A" Fed Bat

Lab Batch #: 761769	Sample: 531580-1-BKS / BK	CS Bat	tch: 1 Mat	ix: Solid		
Units: mg/kg	Date Analyzed: 06/09/09 14:54	SU	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes	the second		[D]		
1,4-Difluorobenzene		0.0322	0.0300	107	80-120	
4-Bromofluorobenzene		0.0263	0.0300	88	80-120	_
Lab Batch #: 761769	Sample: 531580-1-BSD / BS	57.745		ix: Solid		
Units: mg/kg	Date Analyzed: 06/09/09 15:15	SU	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0321	0.0300	107	80-120	
4-Bromofluorobenzene		0.0265	0.0300	88	80-120	
	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0275	0.0300	92	80-120	
4-Bromofluorobenzene		0.0168	0.0300	56	80-120	•
Lab Batch #: 761769	Sample: 334495-008 / SMP			ix: Soil		
Units: mg/kg	Date Analyzed: 06/09/09 23:29	SU	RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0238	0.0300	79	80-120	**
4-Bromofluorobenzene		0.0232	0.0300	77	80-120	**
Lab Batch #: 761769	Sample: 334495-008 D / MD) Bat	ch: 1 Mate	ix: Soil		
Units: mg/kg	Date Analyzed: 06/09/09 23:50	SU	RROGATE R	ECOVERYS	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0236	0.0300	79	80-120	**

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: SW Royalties: Wyatt "A" Fed Bat

Vork Orders: 334495				D:L-179-060)9	
Lab Batch #: 761404	Sample: 531366-1-BKS / BH			ix: Solid	0.000 8 1 85 8 7	
Units: mg/kg	Date Analyzed: 06/04/09 21:58	SU	RROGATE R	ECOVERY	STUDY	
TPH	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		97.2	100	97	70-135	
o-Terphenyl		41.0	50.0	82	70-135	
Lab Batch #: 761404	Sample: 531366-1-BSD / BS			ix: Solid		
Units: mg/kg	Date Analyzed: 06/04/09 22:20	SU	RROGATE R	ECOVERY	STUDY	
TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		94.1	100	94	70-135	
o-Terphenyl		39.1	50.0	78	70-135	
Lab Batch #: 761404	Sample: 531366-1-BLK / BI	LK Ba	tch: Matr	ix: Solid		
Units: mg/kg	Date Analyzed: 06/04/09 22:43		RROGATE R	ECOVERY	STUDY	
TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	Analytes	80.0	100	80	70-135	
o-Terphenyl		43.1	50.0	86	70-135	
Lab Batch #: 761404	Sample: 334431-005 S / MS	Ba	tch: 1 Matr	ix: Soil		
Units: mg/kg	Date Analyzed: 06/05/09 01:00		RROGATE R	ECOVERY	STUDY	
TPH	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	Analytes	00.2	100	90	70.125	
o-Terphenyl		90.3 35.5	50.0	71	70-135	_
	Sample: 334431-005 SD / M				10-155	
Lab Batch #: 761404 Units: mg/kg	Date Analyzed: 06/05/09 01:22		tch: 1 Matr	ix: Soil	STUDY	
	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		89.9	100	90	70-135	
o-Terphenyl		36.3	50.0	73	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: SW Royalties: Wyatt "A" Fed Bat

ork Orders : 334495 Lab Batch #: 761404	, Sample: 334495-001 / SMP												
Units: mg/kg	Date Analyzed: 06/05/09 01:45	SU SU	RROGATE RE	ECOVERY	STUDY								
TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags							
1-Chlorooctane		90.2	100	90	70-135								
o-Terphenyl		44.4	50.0	89	70-135								
Lab Batch #: 761404	Sample: 334495-002 / SMP	Ba	tch: 1 Matri	x: Soil									
Units: mg/kg	Date Analyzed: 06/05/09 02:08	SU	RROGATE RE	COVERY	STUDY								
TPHI	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags							
1-Chlorooctane		101	100	101	70-135								
o-Terphenyl		40.8	50.0	82	70-135								
Lab Batch #: 761404	Sample: 334495-003 / SMP	Ba	tch: 1 Matri	x: Soil									
Units: mg/kg	Date Analyzed: 06/05/09 02:31	SU	RROGATE RE	ECOVERY S	STUDY								
ТРН І	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags							
1-Chlorooctane		81.0	100	81	70-135								
o-Terphenyl		41.9	50.0	84	70-135								

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: SW Royalties: Wyatt "A" Fed Bat

Work Order #: 334495		Pi	roject ID:		L-1	79-0609
Lab Batch #: 761287	Sample: 761287	-1-BKS	Matr	ix: Solid		
Date Analyzed: 06/04/2009	Date Prepared: 06/04/2	009	Analy	st: LATCO	OR	
Reporting Units: mg/kg	Batch #: 1	BLANK /	BLANK SPI	KE REC	OVERY	STUDY
Anions by EPA 300	Blank Result	Spike Added	Blank Spike	Blank Spike	Control Limits	Flags
Analytes	[A]	[B]	Result [C]	%R [D]	%R	
Chloride	ND	10.0	9.47	95	80-120	

Blank Spike Recovery [D] = 100*[C]/[B] All results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

BS / BSD Recoveries

Project Name: SW Royalties: Wyatt "A" Fed Bat

Work Order #: 334495							Proj	ect ID: 1	L-179-0609	6	
Analyst: ASA	Da	te Prepare	ed: 06/07/20	09			Date Ar	nalyzed: (06/07/2009		
Lab Batch ID: 761510 Sample: 5314	20-1-BKS	Batch	#: 1					Matrix: S	Solid		
Units: mg/kg		BLANH	K/BLANK	SPIKE / E	BLANK S	PIKE DUPI	LICATE I	RECOVI	ERY STUE	Y	
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	ND	0.1000	0.1114	111	0.1	0.1145	115	3	70-130	35	
Toluene	ND	0.1000	0.1082	108	0.1	0.1111	111	3	70-130	35	
Ethylbenzene	ND	0.1000	0.1134	113	0.1	0.1162	116	2	71-129	35	
m,p-Xylenes	ND	0.2000	0.2291	115	0.2	0.2348	117	2	70-135	35	
o-Xylene	ND	0.1000	0.1081	108	0.1	0.1107	111	2	71-133	35	
Analyst: ASA	Da	te Prepare	d: 06/07/20	09			Date A	nalyzed: (06/08/2009		
Lab Batch ID: 761507 Sample: 5314	22-1-BKS	Batch	#: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K/BLANK	SPIKE / F	BLANK S	PIKE DUP	LICATE I	RECOVI	ERY STUE	Y	
BTEX by EPA 8021B	Blank Sample Result	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	Blk. Spk Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	[A]	[B]	Result [C]	%R [D]	[E]	Duplicate Result [F]	%R [G]	%	%R	%RPD	
Analytes Benzene		[B] 0.1000	Contraction of the second		[E] 0.1		11110	1	70-130	35	
	[A]		[C]	[D]		Result [F]	[G]				
Benzene	[A] ND	0.1000	[C] 0.1052	[D] 105	0.1	Result [F]	[G] 106		70-130	35	
Benzene Toluene	[A] ND ND	0.1000	[C] 0.1052 0.1023	[D] 105 102	0.1	Result [F] 0.1060 0.1030	[G] 106 103		70-130 70-130	35 35	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: SW Royalties: Wyatt "A" Fed Bat

Work Order #: 334495							Pro	ect ID:	L-179-0609	6	
Analyst: ASA	Da	te Prepare	ed: 06/08/20	09			- 10 C		06/08/2009		
Lab Batch ID: 761515 Sample: 5314	30-1-BKS	Batch	#: 1					Matrix:	Solid		
Units: mg/kg		BLAN	K/BLANK	SPIKE / I	BLANK S	PIKE DUP	LICATE	RECOVI	ERY STUE	PΥ	
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	ND	0.1000	0.1103	110	0.1	0.1061	106	4	70-130	35	
Toluene	ND	0.1000	0.1067	107	0.1	0.1026	103	4	70-130	35	
Ethylbenzene	ND	0.1000	0.1108	111	0.1	0.1067	107	4	71-129	35	
m,p-Xylenes	ND	0.2000	0.2246	112	0.2	0.2161	108	4	70-135	35	
o-Xylene	ND	0.1000	0.1062	106	0.1	0.1028	103	3	71-133	35	
Analyst: ASA Lab Batch ID: 761769 Sample: 5315 Units: mg/kg		Batch	Total and the		BLANK S	PIKE DUP		Matrix:		OY	
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	ND	0.1000	0.1067	107	0.1	0.1093	109	2	70-130	35	
Toluene	ND	0.1000	0.1032	103	0.1	0.1064	106	3	70-130	35	
Ethylbenzene	ND	0.1000	0.1081	108	0.1	0.1117	112	3	71-129	35	
m,p-Xylenes	ND	0.2000	0.2186	109	0.2	0.2260	113	3	70-135	35	
o-Xylene	ND	0.1000	0.1033	103	0.1	0.1065	107	3	71-133	35	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: SW Royalties: Wyatt "A" Fed Bat

Work Order #: 334495							Proj	ect ID: 1	-179-0609	E.	
Analyst: LATCOR	Da	ate Prepare	ed: 06/04/20	09			Date Ar	nalyzed: (6/04/2009		
Lab Batch ID: 761207 Sample:	: 761207-1-BKS	Batch	#: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K/BLANK	SPIKE / I	BLANK S	PIKE DUP	LICATE I	RECOVE	ERY STUE	PΥ	
TPH by EPA 418.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
TPH, Total Petroleum Hydrocarbons	ND	2500	2540	102	2500	2450	98	4	65-135	35	
Analyst: BHW	Da	ate Prepare	ed: 06/04/20	09			Date A	nalyzed: (6/04/2009		
Lab Batch ID: 761404 Sample	: 531366-1-BKS	Batch	#: 1					Matrix: S	Solid		
Units: mg/kg	1.0	BLAN	K /BLANK	SPIKE / I	BLANK S	PIKE DUP	LICATE I	RECOVI	ERY STUE	PΥ	
TPH By SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydrocarbons	ND	1000	832	83	1000	803	80	4	70-135	35	
C12-C28 Diesel Range Hydrocarbons	ND	1000	1020	102	1000	993	99	3	70-135	35	-

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: SW Royalties: Wyatt "A" Fed Bat

Work Order #: 334495 Lab Batch #: 761287 Date Analyzed: 06/04/2009 QC- Sample ID: 334495-001 S Reporting Units: mg/kg

Project ID: L-179-0609 Date Prepared: 06/04/2009 Batch #: 1 Matrix: Soil MATRIX / MATRIX SPIKE RECOVERY STUDY

Inorganic Anions by EPA 300	Parent Sample Result	Spike	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Analytes	[A]	[B]				
Chloride	2370	1170	3390	87	80-120	

Matrix Spike Percent Recovery $[D] = 100^{+}(C-A)/B$ Relative Percent Difference $[E] = 200^{+}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS / MSD Recoveries

Project Name: SW Royalties: Wyatt "A" Fed Bat

Work Order #: 334495	QC- Sample ID: 334710-007 S				Project II): L-179-	0609				
Lab Batch ID: 761507 Date Analyzed: 06/08/2009	QC- Sample ID: Date Prepared:				tch #: alyst:	1 Matrix ASA	: Soil				
Reporting Units: mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	ND	0.1003	0.0792	79	0.1003	0.0806	80	2	70-130	35	
Toluene	ND	0.1003	0.0599	60	0.1003	0.0569	57	5	70-130	35	X
Ethylbenzene	ND	0.1003	0.0436	43	0.1003	0.0393	39	10	71-129	35	х
m,p-Xylenes	ND	0.2006	0.0817	41	0.2006	0.0717	36	13	70-135	35	х
o-Xylene	ND	0.1003	0.0397	40	0.1003	0.0350	35	13	71-133	35	Х
Lab Batch ID: 761510 Date Analyzed: 06/08/2009	QC- Sample ID: Date Prepared:				tch #: alyst:	l Matrix ASA	: Soil		-		
Reporting Units: mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	ND	0.1000	0.0907	91	0.1000	0.0833	83	9	70-130	35	
Toluene	ND	0.1000	0.0887	89	0.1000	0.0845	85	5	70-130	35	
Ethylbenzene	ND	0.1000	0.0943	94	0.1000	0.0771	77	20	71-129	35	
m,p-Xylenes	ND	0.2000	0.1908	95	0.2000	0.1464	73	26	70-135	35	
o-Xylene	ND	0.1000	0.0901	90	0.1000	0.0788	79	13	71-133	35	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Form 3 - MS / MSD Recoveries

Project Name: SW Royalties: Wyatt "A" Fed Bat

Work Order #: 334495						Project II	D: L-179-	0609			
Lab Batch ID: 761515 Date Analyzed: 06/08/2009	QC- Sample ID: Date Prepared:				tch #: alyst:	l Matrix ASA	k: Soil				
Reporting Units: mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	ND	0.1029	0.0912	89	0.1029	0.0935	91	2	70-130	35	
Toluene	ND	0.1029	0.0742	72	0.1029	0.0761	74	3	70-130	35	
Ethylbenzene	ND	0.1029	0.0587	57	0.1029	0.0610	59	4	71-129	35	х
m,p-Xylenes	ND	0.2059	0.1168	57	0.2059	0.1210	59	4	70-135	35	Х
o-Xylene	ND	0.1029	0.0534	52	0.1029	0.0550	53	3	71-133	35	X
Date Analyzed: 06/04/2009 Reporting Units: mg/kg	Date Prepared:	_				LATCOR	TE REC	OVERY	STUDY		-
TPH by EPA 418.1	Parent Sample Result	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	[A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
TPH, Total Petroleum Hydrocarbons	291	2790	2870	92	2790	3100	101	8	65-135	35	
Lab Batch ID: 761404 Date Analyzed: 06/05/2009	QC- Sample ID: Date Prepared:				tch #: alyst:	l Matrix BHW	k: Soil				
Reporting Units: mg/kg		N	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
TPH By SW8015 Mod	Parent Sample Result	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	[A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
										1	
C6-C12 Gasoline Range Hydrocarbons	18.2	999	809	79	999	780	76	4	70-135	35	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*((C-F)/(C+F)) Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not

ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Sample Duplicate Recovery

Project Name: SW Royalties: Wyatt "A" Fed Bat

Work Order #: 334495

Lab Batch #: 761287 Date Analyzed: 06/04/2009 QC- Sample ID: 334495-001 D Reporting Units: mg/kg		Project ID: L-1 Date Prepared: 06/04/2009 Analyst: LA7 Batch #: 1 Matrix: Soil SAMPLE / SAMPLE DUPLICATE H								
Anions by EPA 300 Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag				
Chloride		2370	2350	1	20					
Lab Batch #: 761769 Date Analyzed: 06/09/2009 QC- Sample ID: 334495-008 D	Date Pro B	atch #: 1	9/2009	Matr	st: ASA ix: Soil					
Reporting Units: mg/kg BTEX by EPA 8021B		SAMPLE / Parent Sample Result [A]	SAMPLE Sample Duplicate Result [B]	RPD	ATE REC Control Limits %RPD	Flag				
Analyte										
Benzene		2.329	1.771	27	35					
Toluene		3.167	3.414	8	35					
Ethylbenzene		17.28	18.50	-	35					
m,p-Xylenes o-Xylene		28.85	30.70	6	35					
Lab Batch #: 762322 Date Analyzed: 06/15/2009 QC- Sample ID: 334495-011 D	Date Pre		5/2009	Analy	st: MOR ix: Soil					
Reporting Units: %		SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY				
FOC by ASTM D2974C Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag				
Fraction Organic Carbon		1.43	1.42	1	25					
Lab Batch #: 761289 Date Analyzed: 06/05/2009 QC- Sample ID: 334495-001 D Reporting Units: %	Date Pro B	atch #: 1	5/2009 SAMPLE	Matr	st: BEV ix: Soil ATE REC	OVERY				
Percent Moisture Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag				
Percent Moisture		14.4	14.3	1	20					

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

2600 West I-20 Eas Ideasa, Taxas 7976		tone: 432-5 Fax: 432-5												CHAI	N OF	CU	\$70	DY A	ECO	RD A	ND	ANJ	AL Y	sis f	HEQ(/E\$T		
Project M	anager: Dale Littlejc	hn						_	_			_	_		Pri	oject	Nar	ne:	SW	Ro	yall	ties	: V	Vyal	tt "/	" F	ed B	Bat
Compar	Name RT Hicks C	onsultan	ts Ltd				_									Pr	ojec	t #:	L-17	9-0	60	9			_			
Company A	ddress: P O Box 76	24														Proje	ct L	oc:	Lea	Co	., N	lew	M	exic	20			
	ate/Zip: Midland, Te		08														PC											
			~~				-			70			-				-			-	-			-		-		-
Teleph	one No: (432) 528-3		Tin		Fax No	× 14:	<u>(2)</u>	085	-45	18	Fai	K)																
Sampler Sig	mature:	alt	hall	typhin								_				-	_		_	-	call	20 F	OF.		_			1
																E	-	to		T	F	T.	Ĩ	Π	T	T	П	
						50			Prasm	rvati	vie.			Matri	x			101	4.	+	+	-						L
				Dekg	Sampled	Containers	24.6.	r -				eoly)			(App)	1005 (Ext. to C36)	ia (Ca. Mg. Na. K)	SON. COB. HOO31	(8015)							head Solids		RUSH TAT (Pre-Schedule
AB # 334496	FIELD	CODE		Date Sampled	Time Sar	No. of Co	100 4 02	HINON	D¥ I	HUBO.	Northe	Other (Sp	Witter	Sudge	Citrar (upo	TPH: TA:NO	Cathoria (Ca	Autoria (O,	19198 - 080 - HHT	T994 (418.1)	Semisgiante	BTEX 80210	NCI	NOAM	Chiarida	Total Disso		RUSH TA
01	H-1 (2-3 Ft)			6/3/09	1012	1	X							>	(-	XX	-	+	X			x			
50	H-2 (1-2 Ft)			6/3/09	1035	1	X			+	-		\square	>			_	-	XX	-	-	X			X	-		
03	H-2 (8-9 Ft)			6/3/09	1125	1	1			+	+		\vdash	>	-		_	-	XX	X		X		-	X	-	\square	
D4	H-3 (0-1 Ft)			6/3/09	1150	1	-		-	+	-		\square	>	-		-	+	+	X	-	X			X	+	\square	
05	East Fire Wall Comp	osite		6/3/09	1200	1	-			+	-	-	\vdash	>	-		-	+	+	X	-	X		-+	X	+	\square	
	H-4 (3-6 in)	-		6/3/09	1215	1	-		-	+	+	-	\vdash	>	-		-	+	+	X	-	X			X	+	\square	
	H-5 (0-1 Ft)			6/3/09	1225	1	1		-	+	-	-		×	-		-	+	+	X	1	X			X	+	+	H
and the second second second	H-6 (0-6 in)			6/3/09	1235	1	1		-	+	+	-	\vdash	X	-	\vdash	-	+	+	X	-	X			X	+	+	
CARD DOT A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER.	H-7 (0-6 in)			6/3/09	1245	1	X		+	+	+		\vdash	X	-		-	+	+	X	-	X	-		×	+	H	H
10 Inacial Instructions	H-8 (0-3 in) Send Invoice to Dawn	o Howard a	at Southwest	6/3/09 t Royalties, In	1255 6 Desta [1 1 Irive	Sto	210	0. M	idiar	I be	X7	9705	X			+	Sam	ola Ci	X		X	ct7	100	X	1	N	-
	(DHoward@claytonw												-					Terry	rator	ine U	pan	Rec	nipt	1	1.0			
alinguished by	atesh	6/4/09	Time 939	Received by:			1						Det	0	Τ	Time		Line	Fallor	yuo	8	- Ma		ile	Se	13		
alinquished by:		Dute	Time	Received by EL	-MA	Va	6	N		1		CR	104)	04	q.	In a	1											

TO C

2600 West I-20 East Odessa, Texas 79765												0	HAI	N OF	CU	\$70	DY	REC	0RD	ANE	AN	ALY	SIS	REG	UES	T	
Project Ma	nager: Dale Littlejohn					_		_				-		Pre	oject	t Nat	me:	SV	R	ууа	tie	s: \	Nya	att "	A*	Fed	Ba
Company	Name RT Hicks Consultants	Ltd				_						_			Pr	ojec	t#:	L-1	79-	060	9				_		
Company Ad	dress: P O Box 7624											_		F	Proje	et L	00:	Le	a Co)., I	Vev	N N	lexi	co			
City/Sta	te/Zip: Midland, Texas 79708	3		_								_				PC		_									
Telepho	ne No: (432) 528-3878			Fax No	: (43	32)	689	-45	8 (Fax	0																
Sampler Sign	noturo: Dal7.	Lill	onto																								
															F		Tr	2.8	-	Anal	rze I	For	-		1	-	F
						_	-	Prese	- and Tax		_		Antria	_				TAL	+	+							
AB # 33 W 15	FIELD CODE		Date Sampled	Time Sampled	No. of Containers	100 4 R2 a.C.	1° 1	161	H.SO.	Nore	Other (Specify)	Water	Sol	Other (specify)	TPHE TX-1006 (Eat to C16)	Cations (Ca, Mg, Na, K)	Aniana (Cl. SOI, CO3, HCO3)	TPH - GRO (8015)	TPH - DRU (8015)	Semivolistikos	81EX \$021B	0	LORM	Chloride	Criteriae Brunde Fraction of Organic Carteon (g/g)	RUSH TAT (Pre-Schedide	
STREET, STREET	H-9 Background (2-3 Ft)		6/3/09	1315	3	x			T				X				Ĩ)		X	1		X		X	T
				2				-	-			-	-						1						_		1
					-			+	+	$\left \right $	-	+	+	-	\vdash	-	-	+	+	+	+	+	-		+	+	+
								+	+	H		+	+			-	-	+	+	+	+	+		H	+	+	+
									T			+	t					1	1	t		T			1	+	t
					1			1																			
								+	-		-	+	+	\square		-	-	+	+	+		-			+	+	+
						H		+	-	H	+	+	+	\vdash		+	-	+	+	+	-	-			+	+	+
	Send Invoice to Dawn Howard at !										X 79	705	1						lona				115		P	N	
(DHoward@claytonwilliams.com);	Send re	sults to Dale L	littiejohn at d	ale@	sthie	ckso	onsu	t.co	m									lize				947	30.8			
Wal 7 To	stight 6/4/04 "	Tirro [39	Received by:									Date			Time								~	10	Se	al.	5
ilinguished by:	Date	Time	Received by EL	i II)Y	ula	5	en.	0			ad	Dam Cisi)	04		Ticte												

15

28 of 29

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Client.	RT Hicks Con.	
Date/ Time:	04/04/09 9:39	
Lab ID #	334495	
Initials:	quist	_

Sample Receipt Checklist

Client Initials

#1	Temperature of container/ cooler?	Yes	No	6.0 °C
#2	Shipping container in good condition?	Yes	No	
#3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present
#4	Custody Seals intact on sample bottles/ container?	Yes	No	(Not Present
#5	Chain of Custody present?	(PES)	No	
#6	Sample instructions complete of Chain of Custody?	(Yes)	No	
#7	Chain of Custody signed when relinquished/ received?	CYES	No	
#8	Chain of Custody agrees with sample label(s)?	Yes	No	ID written on Cont./ Lid
#9	Container label(s) legible and intact?	Tes	No	Not Applicable
#10	Sample matrix/ properties agree with Chain of Custody?	Yes	No	
#11	Containers supplied by ELOT?	Yes	No	
#12	Samples in proper container/ bottle?	(Yes)	No	See Below
#13	Samples properly preserved?	Yes	No	See Balow
#14	Sample bottles intact?	Cres	No	
#15	Preservations documented on Chain of Custody?	CYes	No	
#16	Containers documented on Chain of Custody?	Yes	No	
#17	Sufficient sample amount for indicated test(s)?	Yes	No	See Below
#18	All samples received within sufficient hold time?	Yes	No	See Below
#19	Subcontract of sample(s)?	Yes	No	(Not Applicable
#20	the second se	Yes	No	Not Applicable

Page 29 of 29

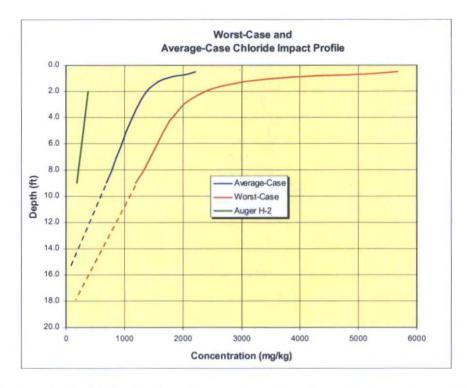
901 Rio Grande Blvd NW 🛦 Suite F-142 🛦 Albuquerque, NM 87104 🛦 505.266.5004 🛦 Fax: 505.266.0745

Input and Results of the AMIGO Simulation Performed at the Southwest Royalties Wyatt "A" Federal Site

The specific parameters used in the simulation at the site are presented in the table below.

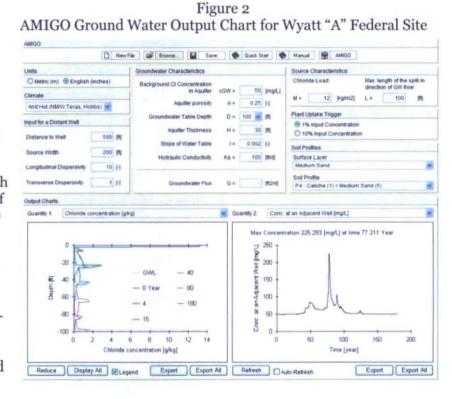
Model Parameter	Value	Source of Value
Climate (non-smoothed)	1946 - 1992	Pearl, NM Station
Input for distant or hypothetical well (ft)	NA	Not Required
Background Chloride in Aquifer (mg/L)	50	NM WAIDS, PTTC (Plate 3)
Aquifer Porosity (unitless)	0.25	Prof. Judgment Conservative Assumption
Groundwater Table Depth (ft)	100	Max. for AMIGO (Plate 2)
Aquifer Thickness (ft)	30	Professional Judgment Conservative Assumption
Slope of Water Table	0.002	Tillery 2008
Hydraulic Conductivity (ft/d)	100	Musharrafieh 1999
Average Chloride Load (kg/m²)	12.0	Worst-Case Profile using Mass-load
Max length of spill in dir. of GW flow (ft)	100	Site Data
Plant Uptake Trigger (%)	1.0	Prof. Judgment Conservative Assumption
Surface Layer	Med. Sand	Background Sample (conservative option)
Soil Profile (caliche - medium sand ratio)	1:5	Nicholson 1961

Table 1 - Parameters Employed in AMIGO tool for the Wyatt "A" Federal Site


Although the actual ground water depth is approximately 150 feet (Plate 2), the AMIGO tool is limited to a maximum depth input of 100 feet, a conservative assumption for this simulation.

Musharrafieh and Chudnoff (1999) predict that the saturated thickness of the aquifer beneath the site will remain at least 100 feet until the year 2040. Data from similar sites show that, unlike hydrocarbons, chloride that enters the upper portion of an aquifer will become distributed throughout the entire saturated thickness within a relatively short travel distance from the source. The arbitrary selection of a 10-foot thick mixing zone (used as a default value for hydrocarbon sites) is unrealistic where the constituent of concern is chloride. In our opinion, a simulation using the 30-foot thickness of the aquifer is conservative for this site.

The average chloride load was calculated in three ways for this simulation. A "most-likely value" for this release was calculated with the assumption that the entire 50 bbls of unrecovered fluid was brine water with a chloride concentration of 250,000 mg/L and was spilled over the 5,800 ft² area. This calculation yielded an average chloride mass load of 4.0 kg/m² but may not take into account chloride-impacted soil from a previous release.


The auger borings located in the areas of the highest surface chloride concentrations could not be advanced to a depth sufficient for vertical delineation. Delineation was achieved, however, at auger hole H-2 at a depth of 9 feet. In order to provide a more conservative value for the simulation, the rate of chloride concentration decline with depth was applied to the "worst-case" and "average-case" surface values as shown in the Figure 1 below:

Attachment B Page 2

The calculation of chloride load using the concentrations from the "average-case" impact profile is 6.5 kg/m^2 and the chloride load using the concentrations from the "worst-case" impact profile is 12 kg/m^2 .

The results of the simulation are shown below on the AMIGO ground water output chart which has been copied directly from the model results screen. It indicates that chloride concentrations in the ground water below the site, using the "worstcase" chloride load, will reach a maximum concentration of 225 mg/L (below standards) in the years between 2086 and 2000 if no further corrective actions are taken. Simulations run using chloride load calculation from spill data and "averagecase" profile (not shown) indicate maximum chloride concentrations in the ground water of 108 and 145 mg/L respectively.

901 Rio Grande Blvd NW 🛦 Suite F-142 🛦 Albuquerque, NM 87104 🛦 505.266.5004 🛦 Fax: 505.266.0745

Input and Results of the VLEACH Simulation Performed at the Southwest Royalties Wyatt "A" Federal Site

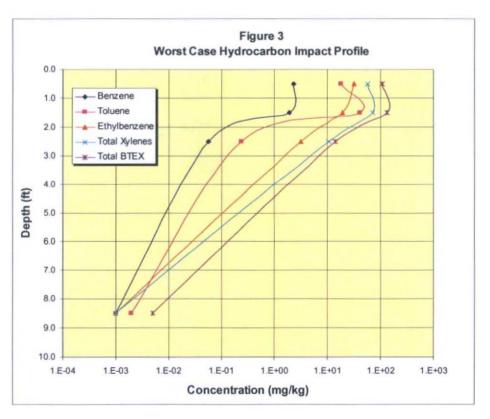
The specific parameters used in the simulation and diffusion to ground water equation at the site are presented in the table and figures below.

Model Parameter	Value	Source of Value
Benzene & Xylene Chemical Parameters	Chemical Specific	NMED June 2006 Soil Screening Levels Document
Spill Area (ft ²)	5,800	Site Measurement
Groundwater Table Depth (ft)	150	Plate 2
Vadose Zone Soil Bulk Density (g/cm3)	1.5	NMED June 2006 Document
Vadose Zone Porosity (unitless)	0.43	NMED June 2006 Document
Volumetric Water Content (%)	0.26	NMED June 2006 Document
Vadose Zone Soil Organic Content (foc)	0.0015	NMED June 2006 Document
Recharge Rate (ft/year)	0.131	Results of AMIGO Simulation
Benzene & Xylene Concentrations (ug/kg)	Chemical Specific	Worst-Case Hydrocarbon Profile (H-1, H-2, H-6, H-7)
Slope of Water Table	0.002	Tillery 2008
Hydraulic Conductivity (ft/d)	100	Musharrafieh 1999
Max width perpendicular to direction of GW flow (ft)	180	Site Measurement
Aquifer Porosity (unitless)	0.25	Prof. Judgment Conservative Assumption
Mixing zone depth in aquifer	6.6	Prof. Judgment Conservative Assumption

Table 1 – Common Parameters Employed in the VLEACH model

Figure 1 - Actual Input Screens from the VLEACH Model Program for the Benzene Run

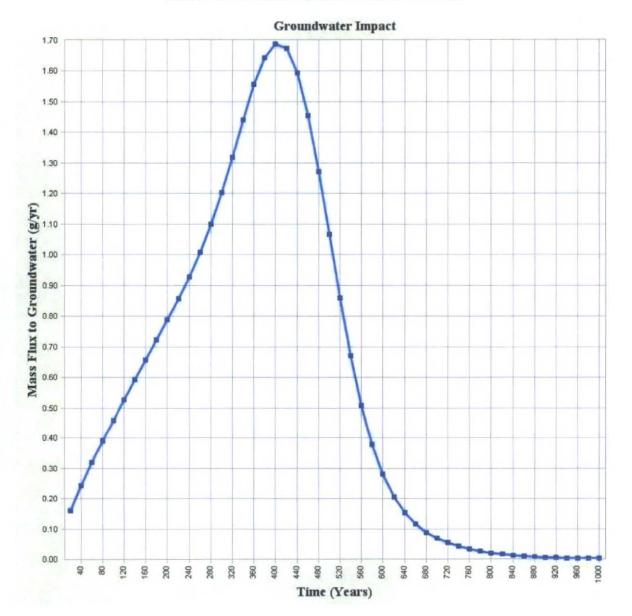
LEACH Mode	el Parameters			Polygon Parameters			
Simulation Parameters			and the second second	Polygon Title Polygon1			
Title Wyatt A Fed - B	enzene contamination scer	vario.		Area of Polygon	Vertical Cell Dimension	Number Of Cells	Height of Polygon
Simulation Time	Time Step	Output Time Interval	Profile Time Interval	5800 Square It	1	150 Cells	150 R
1000	20	200	500				
Years	Yeara	Years	Years	Soil Parameters		and the second second	المحاج فيجب
La				Soil Type Reference	Soil Type Profiles	274221	and the second second
hennic of Parameters		and the second second		Soil Type Name Sa	nd - NM		C C C
Chemical Reference Ch				Dry Bulk Density	Effective Porosity	Volumetric Water Content	Soil Organic Carbo Content
Chemical Name Ber	nzene - NM			1.5	0.43	0.26	0.0015
Diganic Carbon Distribution Coefficient	Henry's Law Constant	Water Solubility	Free Air Diffusion Coefficient	g/cm3	(n)	(Vc)	(loc)
58.9	0.228	1750	0.6307	Boundary Conditions	TRANSPORT OF THE OWNER	The second second	
ml/L	Kh	mg/L	m2/day	Recharge Rale	Concentration of Recharge Water	Upper Boundary Vapor Condition	Lower Boundary Vap Econdition
				0.131	0	0	0
Polygan		والمسجوع والمتراط	and the state of the second of the second of the second second second second second second second second second	It/year	mg/L	mg/L	mgA
Polygon Se Polygon I	elected Num	ber of Polygon(s): 1		Output Options	Initial Contaminant	Concentrations	
		Add New Polygon		Create Groundwater and Soil Contaminant Profile	d Upper Cell L	ower Cell Initial Con 2329	centration [ug/kg]
		View Polygon	1.18 1.19	(Yes C No	2 3	1904	
		Delete Polyaon		Soil Contaminant Profile Time (Years)	8 15	58 50 1	
	~		1000	20			

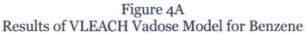

Figure 2 - Actual Input Screens from the VLEACH Model Program for the Xylene Run

LEACH Mod	el Parameters			Polygon Parameters			
Simulation Parameter		and the second se	Contraction of the local division of the loc	Polygon Title Polygon1	11		
	(ylene contamination scena	nio.		Area of Polygon	Vertical Cell Dimension	Number Of Cells	Height of Polygon
				5800	1	150	150
Simulation Time	Time Step	Output Time Interval	Profile Time Interval	Square It	R	Celle	ft
1000	50	200	500				
Years	Years	Years	Years	Soil Parameters	and the second		
10100	Carlo Carlo			Soil Type Reference	Soil Type Profiles		
Chemical Parameters				Soil Type Name Sa	nd - NM		
Chemical Reference Cl	hemical Profiles		2000000	Day Bulk Density	Effective Porosity	Volumetric Water Content	Soil Organic Carbon Content
Chemical Name	lene, Mixture - NM			1.5	0.43	0.26	0.0015
Decanic Carboo		T	Free Air Diffusion	g/cm3	(n)	(Vc)	(foc)
Organic Carbon Distribution Coefficient	Henry's Law Constant	Water Solubility	Coefficient				
200	0.3	161	0.374	Boundary Conditions			
mi/L	Kh	mg/L	m2/day	Recharge Rate	Concentration of Recharge Water	Upper Boundary Vapor Condition	Lower Boundary Vapo Condition
				0.131	0	0	0
Polygan				ft/year	mg/L	mg/L	mg/L
Polygon S	elected Num	ber of Polygon(s) 1					
Palgow1	2			Output Options	Initial Contaminant	Concentrations	and the second second
		Add New Polygon		Create Groundwater and Soil Contaminant Profile	Upper Cell	ower Cell Initial Cor 56700	ncentration (ug/kg)
	19.3	View Polyago		@ Yes C No	2 3	70500	
		Delete Polygon		Soil Contaminant Profile	3 8		
	1.00	ALAPPORT AND	-	Time (Years)	8 1	50 1	

Simulation Time, Time Step, Output Time Interval, and Profile Time Interval were selected to provide the clearest presentation of the results based on the time required to identify the maximum impact to groundwater.

As a conservative measure a "worstcase" hydrocarbon soil profile was constructed by taking the highest concentrations from each sampled depth as shown in Figure 3. The benzene and xylenes values from this profile were assumed to be present across the entire 5,800 ft2 area.


Other conservative measures include the use of a default soil fraction of organic



Attachment C Page 3

content value (0.0015) instead of the value calculated from the site background auger boring (0.0143), and the use of a recharge rate calculated by the AMIGO tool (1.57 in/yr) instead of the recharge rate estimated by Musharrafieh and Chudnoff (0.49 in/yr) in their 1999 report.

The results from the VLEACH modeling relative to this assessment are provided as graphs for each compound that present the subsurface impact as Mass Flux to Ground Water in grams/year (g/yr) as a function of future time as shown below:

Attachment C Page 4

• `

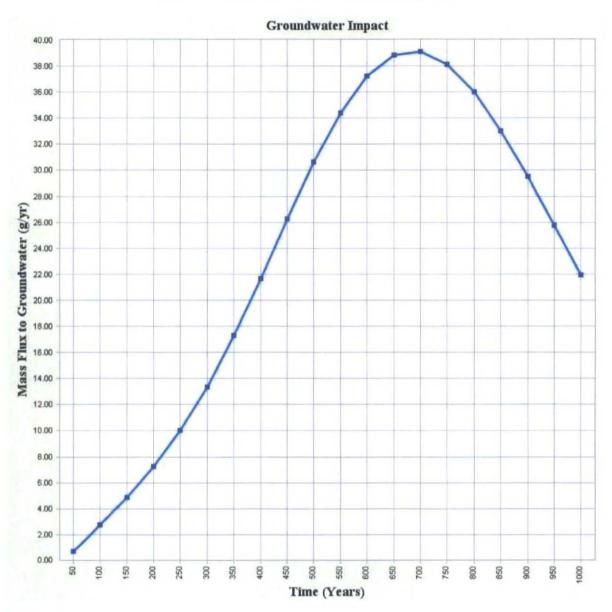


Figure 4B Results of VLEACH Vadose Model for Xylenes

In order to compare the modeled results to NMED ground water standard, the VLEACH output data required a conversion from g/yr to mg/L. This was performed by calculating the annual recharge (flux) volume from the spill area and the annual ground water flow volume below the spill area as shown:

<u>Recharge</u> is defined as: $Flux_{flow}(L/yr) = A \times R \times 29.317$ where,

A = spill area (ft²) R = recharge rate (ft/yr), and 29.317 = conversion factor from ft³ to liters Attachment C Page 5

<u>Groundwater flow</u> is defined as: $GW_{flow}(L/yr) = \left(\frac{k \times i}{\theta_T}\right) \times T_{aq} \times W \times 29.317$ where,

k = hydraulic conductivity of the aquifer (ft/yr)

i = groundwater gradient (ft/ft)

 θ_T = porosity of the aquifer

 T_{aq} = aquifer mixing zone thickness (ft) and,

W = length of the spill area (ft) perpendicular to the ground water gradient direction

The relationship between the annual recharge volume and the annual ground water flow volume was used to calculate the predicted ground water concentration for the initial (year zero) time and the maximum impact year time for each constituent of concern as demonstrated on the table below:

		Initial I	mpact Data			Maximum	Impact Da	ta	NMED
Chemical of Concern	Time (yrs)	Impact (g/yr)	Leachate Conc. (mg/L)	GW Conc. (mg/L)	Time (yrs)	Impact (g/yr)	Leachate Conc. (mg/L)	GW Conc. (mg/L)	Health Standard (mg/L)
Benzene	0	0.1	0.004	0.00001	400	1.69	0.08	0.00017	0.01
Xylenes	0	0	0.00	0.00000	700	39.11	1.76	0.00385	0.62

Bold and highlighted text values indicate concentrations that exceed the NMED Human Health Standards for groundwater.