Administrative/Environmental Order

AE Order Number Banner

Report Description

This report shows an AE Order Number in Barcode format for purposes of scanning. The Barcode format is Code 39.

App Number: pJXK1610238792

1RP - 4241

LINN OPERATING, INC.

8/23/2016

July 19, 2011

Mr. Geoffery Leking Oil Conservation Division – District 1 New Mexico Energy, Minerals and Natural Resources Department 1625 North French Drive Hobbs, New Mexico 88240

Re:	Soil Abatement Completion Report Scharb 9 Battery 2	JUL 20 2011
	API Well Number 30-025-28195 Unit F, Section 9, Township 19S, Range 35E Lea County, New Mexico	RECEIVED

Dear Mr. Leking:

On behalf of LINN Operating, Inc. (LINN), SKA Consulting, L.P. (SKA) has completed abatement activities associated with historical saltwater releases at the Scharb 9 Battery 2 location. The enclosed report documents the abatement activities.

If you have any questions regarding the report, please do not hesitate to contact me at (713) 266-6056 or <u>mike.schultz@skaconsulting.com</u>.

Sincerely,

SKA CONSULTING, L.P.

Willit

Mike Schultz, P.E. Vice President and Partner

Enclosure

Cc: Daniel Frick, LINN Operating, Inc. w/o enclosure

RECEIVED OCD

G:\2009\12009-0003\Letters\12009-0003.L02.doc

HOBBS OCD

JUL 20 2011

Ska

Consulting Engineers, Scientists, and Geologists

RECEIVED

Soil Abatement Completion Report Scharb 9 Tank Battery 2 API Well Number 30-025-28195 Unit F, Section 9, Township 19S, Range 35E Lea County, New Mexico

Prepared for:

Linn Operating, Inc. 600 Travis Street, Suite 5100 Houston, Texas 77002

June 2011

Project No. 12009-0003

SKA Consulting, LP 1515 Witte Rd., Suite 150 Houston, Texas 77080 P: 713.266.6056 F: 713.266.0996 www.skaconsulting.com

SOIL ABATEMENT COMPLETION REPORT **SCHARB 9 TANK BATTERY 2** API WELL NUMBER 30-025-28195 UNIT F, SECTION 9, TOWNSHIP 19S, RANGE 35E LEA COUNTY, NEW MEXICO

SKA PROJECT NO. 12009-0003

Prepared for:

LINN OPERATING, INC. 600 TRAVIS STREET, SUITE 5100 HOUSTON, TEXAS 77002

JUL 20 2011

HOBBS OCD

RECEIVED

Prepared by:

SKA CONSULTING, L.P. 1515 WITTE ROAD, SUITE 150 **HOUSTON, TEXAS 77080**

Prepared by:

il lehry

Reviewed by:

SCOTT K. LEAFE PRESIDENT

MIKE SCHULTZ, P.E. **PROJECT MANAGER**

Signature

June 2011

TEXAS REGISTERED ENGINEERING FIRM NO. F-005009 TEXAS REGISTERED GEOSCIENCE FIRM NO. 50011

Table of Contents

1.0	Executive Summary	1
2.0	Introduction	
	2.1 Site Background	2
	2.2 Surface Topography	2
	2.3 Geological Setting	
	2.4 Hydrogeology	
3.0	Site Investigation Activities	4
	3.1 Sample Collection and Analysis	4
	3.2 Soil Analytical Result Evaluation	4
4.0	Abatement Activities	5
	4.1 Soil Abatement	
	4.2 Site Restoration	5
5.0	Conclusions	6

List of Figures

Figure 1 – Site Vicinity and Topographic Map Figure 2 – Site Plan and Sample Location Map

List of Tables

 Table 1 – Summary of Field Screening Results for Chloride Concentrations

 Table 2 – Summary of Soil Analytical Results

List of Appendices

Appendix 1 - Release Notification and Corrective Action Form

Appendix 2 – References

Appendix 3 – Field Analytical Report Forms (Rio Services)

Appendix 4 - Laboratory Analytical Reports and Chain-of-Custody Documents

Appendix 5 – Photographs

1.0 Executive Summary_

SKA Consulting, L.P. (SKA) was retained by Linn Operating, Inc. (Linn) to conduct the soil abatement at the Scharb 9 Tank Battery 2 (Site) located at Unit F, Section 9, Township 19 South, Range 35 East in Lea County, New Mexico. See *Figure 1* for a Site Vicinity and Topographic Map. The Site American Petroleum Institute (API) well number is 30-025-28195. The Site is located on private land owned by Mr. Chris Northcutt.

On July 9, 2010, Linn discovered a historical release of produced saltwater. The source of the release is not well documented, though impacted soil was observed around the heater treater, tanks, pumps and wellhead. The existing tank battery was moved and re-built to the west of the impacted area. On December 17, 2010, the release was reported to the New Mexico Energy, Minerals, and Natural Resources Department, Oil Conservation Division (OCD). According to the Release Notification, the proposed abatement plan was to remove the upper 4 feet of impacted soil and to line the excavation with a composite geotextile and high-density polyethylene (HDPE) liner, backfill, and seed. This preliminary abatement plan was denied by the OCD. SKA and Linn representatives met with the OCD on January 18, 2011 and discussed a revised abatement plan that involved excavation of the upper 10 feet of impacted soil, placement of a compacted clay liner, backfilling, replacement of topsoil, and seeding. The OCD approved the revised abatement plan on February 9, 2011.

SKA implemented the approved abatement plan and initially hauled off impacted soil stockpiled by Linn's initial abatement contractor, Rio Services (Rio). Because the chloride concentration of the stockpiled impacted soil was less than 1,000 milligrams per kilogram (mg/kg), the impacted soil could be landfarmed at the nearest approved disposal facility, Lazy Ace Land Farm, near Eunice, New Mexico. In accordance with the approved abatement plan, SKA continued the excavation to an ultimate depth of 10 feet below ground surface (ft-bgs). The excavation was backfilled to a depth of 8 ft-bgs with clay obtained from the Lazy Ace Land Farm. The clay was graded and machine compacted with a trackhoe. The excavation was further backfilled up to 2 ft-bgs using native caliche obtained on site. The upper two feet of the excavation was backfilled using topsoil obtained from the Lazy Ace Land Farm and approved by the landowner. After backfilling, the excavated area and other adjacent disturbed areas were reseeded.

SKA has developed the following conclusions based on the completed abatement activities at the Site:

- Chloride-impacted soil to a depth of 10 ft-bgs has been successfully removed from the Site;
- The chloride-impacted soil was properly disposed off-site at the Lazy Ace Land Farm;
- A 2-foot thick clay liner was installed to limit infiltration of rainfall at the affected area; and,
- The Site was properly backfilled, restored with topsoil, and seeded.

SKA on behalf of Linn, requests concurrence from the OCD that no further abatement actions are needed at the Site.

SKA Consulting, L.P Houston, Texas

2.0 Introduction

The Site is located at Unit F, Section 9, Township 19 South, Range 35 East in Lea County, New Mexico. This Site is about 20 miles west of Hobbs, New Mexico and consists of an oil/gas production well, heater treater and tank battery. The adjacent property in all directions is native grassland prairie. References cited in this section and in the remainder of this report are contained in *Appendix 2*.

2.1 Site Background

On December 17, 2010, Linn reported a historical release of produced saltwater to the New Mexico Energy, Minerals, and Natural Resources Department, Oil Conservation Division (OCD). The Release Notification and Corrective Action form is provided in *Appendix 1*. The source of the release is not well documented, though impacted soil was observed around the heater treater, tanks, pumps and wellhead. The existing tank battery was moved and re-built to the west of the impacted area. According to the Release Notification, the proposed abatement plan was to remove the upper 4 feet of impacted soil and to line the excavation with a composite geotextile and high-density polyethylene (HDPE) liner, backfill, and seed. This preliminary abatement plan was denied by the OCD. SKA and Linn representatives met with the OCD on January 18, 2011 and discussed a revised abatement plan that involved excavation of the upper 10 feet of impacted soil, placement of a compacted clay liner, backfilling, replacement of topsoil, and seeding. The OCD approved the revised abatement plan on February 9, 2011.

2.2 Surface Topography

According to *Geology and Ground-Water Conditions in Southern Lea County, New Mexico*, the Site is located just south of the Llano Estacado which is an extension of the southern High Plains. The Llano Estacado is a smooth plateau about 100 to 300 feet higher in elevation than the surrounding region which gently slopes to the southeast at 10 to 20 feet per mile. The western and southern edge of the Llano Estacado is Mescalero Ridge which forms the western boundary of Lea County. Mescalero Ridge is actually an escarpment of the Llano Estacado with the Pecos River valley to the west.

The Site is depicted on the USGS Ironhouse Draw 7.5-minute topographic quadrangle at approximately 3,830 feet above mean sea level (*Figure 1*). Regional drainage appears to be generally to the southeast on the USGS quadrangle map toward the Pecos River. The Llano Estacado plateau is evident north and east of the Site as the topography becomes much flatter and the USGS quadrangle map notes many depressions and playa features.

SKA Consulting, L.P Houston, Texas

2.3 Geologic Setting

According to *Geology and Ground-Water Conditions in Southern Lea County, New Mexico*, the surface geology of the Site is generally Quaternary alluvium. The Site lies in a geological transition area between the Llano Estacado and the Laguna Valley south of Mescalero Ridge. The Laguna Valley is a vast sand dune area with sand deposits and dunes up to 40 feet thick. The surface topography of the Site area, with its well-developed drainage pattern, illustrates this geological transition between the elevated Llano Estacado plateau and the near featureless Laguna Valley.

According to a *Soil Survey for Lea County, New Mexico*, the dominant soil type at the Site is the Kimbrough gravelly loam. This soil typically develops on 0 to 3 percent slopes between 3,600 to 4,200 feet elevation in areas with 12 to 15 inches of annual precipitation. Kimbrough gravelly loam is derived from calcareous alluvium and calcareous eolian deposits. This soil is characteristically well drained, but with a very low available water capacity. A typical soil profile finds cemented material below 6 inches.

2.4 Hydrogeology

According to *Geology and Groundwater Conditions in Southern Lea County, New Mexico*, the principal aquifer underlying southern Lea County is the High Plains Aquifer locally known as the Ogallala Formation. The Ogallala Formation is generally an unconfined aquifer with saturated thicknesses ranging up to 200 feet. Recharge occurs primarily through direct infiltration of precipitation and runoff collected in playas and arroyos. The regional groundwater flow direction in the Ogallala Formation is to the southeast, though exploitation of the Ogallala may shift the local groundwater flow direction. Water quality in the Ogallala is generally suitable for most uses, though the water is often hard. Specific conductance in most of the aquifer is less than 1,000 micromhos/centimeter, corresponding to a total dissolved solids concentration of about 300 mg/L. Higher concentrations of dissolved solids have been observed in areas of increased water elevation decline.

The Site lies south of the southern boundary of the Ogallala Formation along the Mescalero Ridge escarpment. In this area, groundwater moves generally south from the Ogallala into the Quaternary alluvium in the Laguna Valley. Depths to groundwater in this area have been reported as 25-40 ft-bgs.

SKA Consulting, L.P Houston, Texas 12009-0003 June 2011

3.0 Site Assessment Activities

The site activities and results discussed in this section include those of Rio Services and SKA.

3.1 Sample Collection and Analysis

On July 9, 2010, Linn reported a release of produced saltwater to the OCD associated with historical activities around the heater treater, tanks, pumps and wellhead at the Site. Linn had an excavation contractor, Rio Services (Rio), mobilize to the Site and conduct test pit sampling at 6 locations in the contaminated area. The test pits were initially advanced on October 14, 2010 to a depth of 1 foot. Later on November 18-19, 2010, the test pits were advanced further to a maximum depth of 20 ft-bgs at TP1. The test pits were further advanced on December 14-16, 2010. The test pit locations are shown on the Site Plan and Sample Location Map (*Figure* 2). During test pit excavation, soil samples were selected and field screened by Rio for chloride concentrations. The chloride field screening method is not known. Rio's field screening data is provided in Table 1. Rio's Field Analytical Report Forms are provided in Appendix 3. In addition, one soil sample from each test pit was sent to Xenco Laboratories in Odessa, Texas for analysis of benzene, toluene, ethylbenzene, and total xylenes concentrations by Environmental Protection Agency (EPA) Method 8021B; total petroleum hydrocarbons (TPH) by EPA Method SW8015 Modified; and, for chloride concentrations by EPA Method E300. Laboratory data are summarized in Table 2 and laboratory analytical reports are provided in Appendix 4.

3.2 Soil Analytical Result Evaluation

The depth to groundwater is less than 50 ft-bgs in neighboring windmill wells, so the site received the OCD's most stringent ranking in accordance with the OCD's *Guidelines for the Remediation of Leaks, Spills, and Releases.* Therefore, the required soil cleanup levels were:

Benzene: 10 mg/kg Total BTEX: 50 mg/kg TPH: 100 mg/kg

The OCD default cleanup level for chloride concentrations in soil is 250 mg/kg.

All of the soil samples analyzed in the laboratory reported contaminant concentrations below their respective applicable OCD cleanup levels. However, chloride concentrations in many soil samples field screened by Rio exceeded the OCD default cleanup level for chloride concentrations as shown in *Table 1*.

4.0 Soil Abatement Activities

The field-screened soil assessment performed by Rio indicated that the Site had seen releases of saltwater that are probably historical in nature. These releases had impacted soil with elevated chloride concentrations above the OCD default chloride cleanup of 250 mg/kg.

4.1 Soil Abatement

Based on the field-screened chloride concentration data summarized in *Table 1*, Rio excavated the upper 4 feet of soil in the larger excavation area to the east of the new tank battery location. Rio also excavated the upper 2 feet of soil in the smaller excavation area south of the new tank battery. These excavated soils were stockpiled on site pending OCD approval of the excavation activities. The proposed abatement plan was to remove the upper 4 feet of impacted soil and to line the excavation with a composite geotextile and high-density polyethylene (HDPE) liner, backfill, and seed. OCD denied the proposed abatement plan on December 17, 2010. SKA and Linn representatives met with the OCD on January 18, 2011 and discussed a revised abatement plan that involved excavation of the upper 10 feet of impacted soil, placement of a compacted clay liner, backfilling, replacement of topsoil, and seeding. The OCD approved the revised abatement plan on February 9, 2011.

SKA implemented the approved abatement plan and collected composite soil samples of the soil stockpile. These samples exhibited chloride concentrations of less than 1,000 mg/kg so the soil was eligible for landfarming. The stockpiled soil was hauled and disposed at the Lazy Ace Land Farm, near Eunice, New Mexico. SKA continued the excavation to an ultimate depth of 10 ft-bgs. Additional excavated soil was also disposed of at the Lazy Ace Land Farm. Photographs of the soil abatement activities are provided in *Appendix 5*.

4.2 Site Restoration

The excavation was backfilled to a depth of 8 ft-bgs with clay obtained from the Lazy Ace Land Farm. The clay was graded and machine compacted with a trackhoe. The excavation was further backfilled up to 2 ft-bgs using native caliche obtained from the landowner's on site pit. The upper two feet of the excavation was backfilled using topsoil obtained from the Lazy Ace Land Farm and approved by the landowner. After backfilling, the excavated area and other adjacent disturbed areas were reseeded.

5.0 Conclusions

SKA has developed the following conclusions based on the completed abatement activities at the Site:

- Chloride-impacted soil to a depth of 10 ft-bgs has been successfully removed from the Site;
- The chloride-impacted soil was properly disposed off-site at the Lazy Ace Land Farm;
- A 2-foot thick clay liner was installed to limit infiltration of rainfall at the affected area; and,
- The Site was properly backfilled, restored with topsoil, and seeded.

SKA on behalf of Linn, requests concurrence from the OCD that no further abatement actions are needed at the Site.

FIGURES

Figure 1 Site Vicinity and Topographic Map

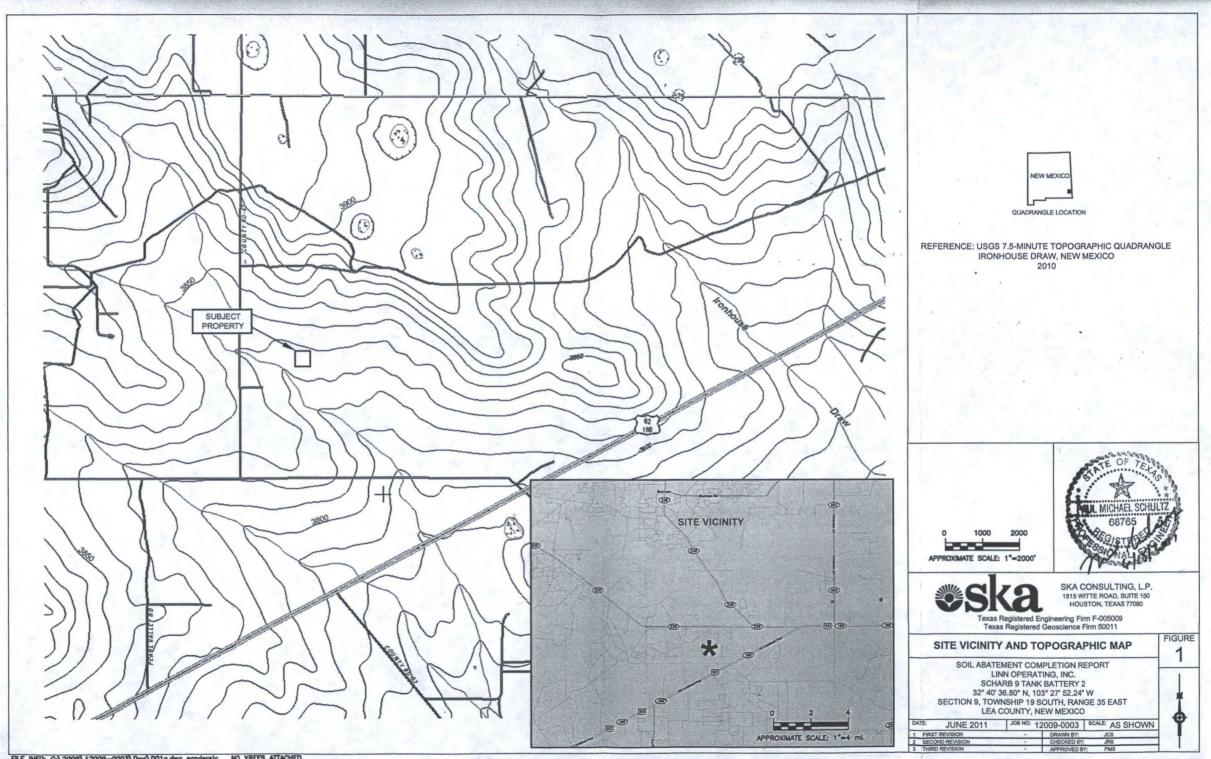
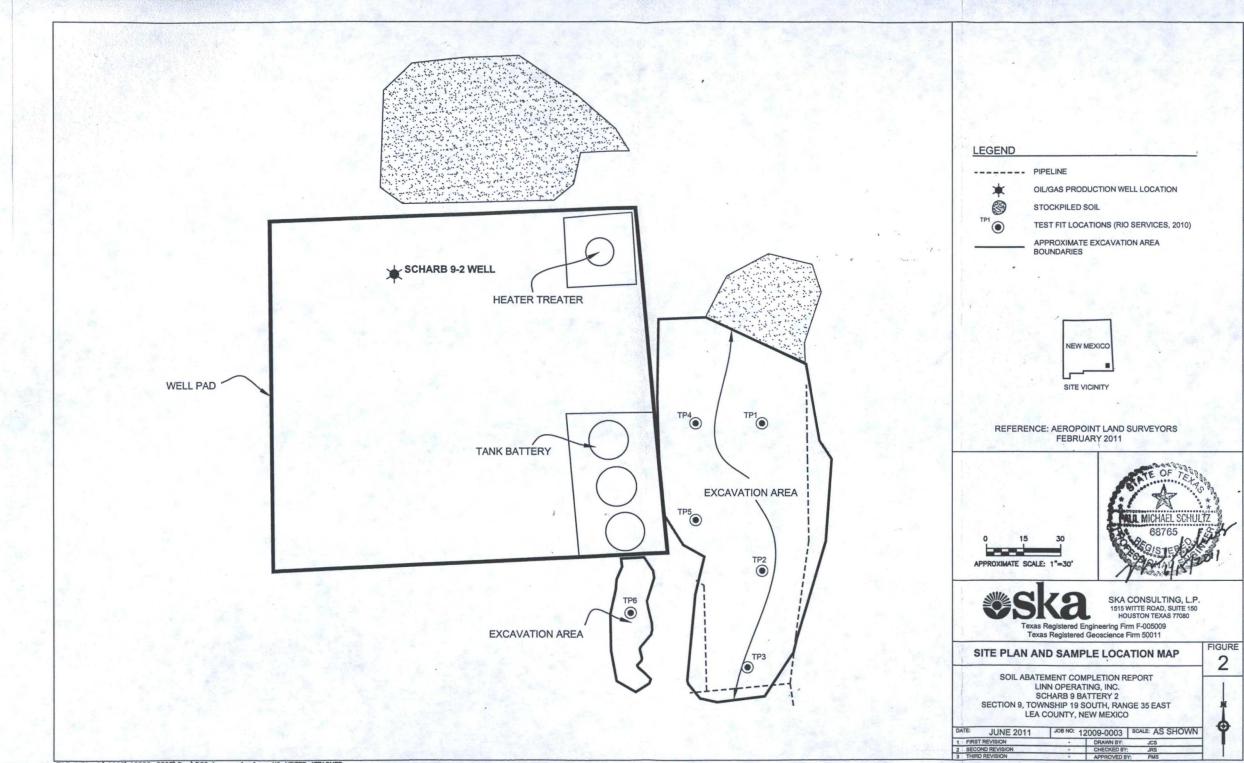



Figure 2 Site Plan and Sample Location Map

Tables

Table 1 Summary of Field Screening Results for Chloride Concentrations

TABLE 1

SUMMARY OF FIELD SCREENING RESULTS FOR CHLORIDE CONCENTRATIONS SCHARB 9 TANK BATTERY 2 UNIT F, SECTION 9, TOWNSHIP 10 SOUTH, RANGE 35 EAST, LEA COUNTY, NEW MEXICO

Sample	Sample Location										
Depth (ft-bgs)	Background	TP1	TP2	TP3	TP4	TP5	TP6				
Surface	146	-	- 10.0	-	-	-	-				
1	-	5,878	4,937	540	730	690	285				
1.5	-	767	-	-		· •	-				
2	139	678	349	513	270	834	149				
3	-	532	- 2005	586	-	526	-				
4	-	-	- 41 (24)	651	-	-	-				
5	-	-	547	284	-	-	-				
6	-	-	488	509	-	577	-				
6.5	-	-	-	-	438	-	-				
7	-	-	-	-	-	-	-				
7.5		-			326	-	-				
8	-	-	-	460	-	459	-				
8.5	-	-	-	-	376	-	-				
9	-	-	1219	-	-	-	-				
9.5	-	-		-	509	-	-				
10	-	457	-	111	-	241	-				
10.5	-	-	-	-	460	-	-				
11	-	-	-	-	-	-	-				
11.5	-	-	-	-	111	-	-				
12	-	-	668	-	-	-	-				
14	-	-	644	1.4	-	-	-				
16	-	451	642	-	-		-				
18	-	208	184	-	-	-	-				
20	-	240			-	-	-				

NOTES:

1. "ft-bgs" represents feet below ground surface.

2. "-" represents not analyzed.

Concentrations in bold and highlighted yellow exceed the NM OCD Default Chloride 3. Remediation Action Level of 250 mg/kg. Table 2 Summary of Soil Analytical Results

TABLE 2 SUMMARY OF SOIL ANALYTICAL RESULTS SCHARB 9 TANK BATTERY 2 UNIT F, SECTION 9, TOWNSHIP 10 SOUTH, RANGE 35 EAST, LEA COUNTY, NEW MEXICO

SAM	PLE DAT	A	ANIONS			BTEX			ТРН			
Sample Name	Sample Depth (ft-bgs)	Sample Date	Chloride SW90506 mg/kg	Buest Buest Buest Method 8021B mg/kg	euennou Method 8021B mg/kg	Ethylbenzene Method 8021B mg/kg	Method Modfal) Mg/kg	Lotal BTEX Wethod 8021B mg/kg	C ₆ -C ₁₂ Gasoline poutaw 5108MS Fydrocarbons	Motter Manual Motter Mydrocarbons	C ₂₈ -C ₃₅ Oil Poutage Say/bu Hydrocarbons	Motto Betroleum Hydrocarbons Mg/Kg
TP1 20 ft	20	12/14/10	91.3	<0.0011	< 0.0023	< 0.0011	<0.0011	< 0.0011	<17.0	<17.0	<17.0	<17.0
TP2 18 ft	18	12/15/10	17.1	<0.0011	<0.0022	< 0.0011	< 0.0011	<0.0011	<16.9	<16.9	<16.9	<16.9
TP3 10 ft	10	12/14/10	7.65	< 0.0011	<0.0021	< 0.0011	<0.0011	<0.0011	<15.9	20.1	<15.9	21.0
TP4 11.5 ft	11.5	12/14/10	69.9	< 0.0011	<0.0023	<0.0011	<0.0011	< 0.0011	<17.1	<17.1	<17.1	<17.1
TP5 10 ft	10	12/15/10	19.3	<0.0011	<0.0022	<0.0011	<0.0011	<0.0011	<16.5	<16.5	<16.5	<16.5
TP6 2 ft	2	12/14/10	7.22	<0.0011	< 0.0021	<0.0011	<0.0011	<0.0011	<15.9	19.5	<15.9	19.5
					REGULATOP	RYSTANDAR	RDS					
NM OCD Def Action L	fault Ren evels for		250	10	-	-	-	50	-	-	-	100

NOTES:

"-" represents not analyzed.

"--" represents not applicable.

"mg/kg" represents milligrams per kilogram.

"<0.0023" indicates the analyte was NOT detected at or above the specified sample detection limit (SDL).

Concentrations in bold exceed their specified SDLs.

Concentrations in bold and highlighted yellow exceed the NM OCD Default Remediation Action Level.

Appendices

Appendix 1 Release Notification and Corrective Action Form

District 1 1625 N. French Dr., Hobbs, NM 88240 District II	State of New Mexico Energy Minerals and Natural Resources	Form C-141 Revised October 10, 2003
1301 W. Grand Avenue, Artesia, NM 88210 <u>District III</u> 1000 Rio Brazos Road, Aztec, NM 87410 <u>District JV</u> 1220 S. St. Francis Dr., Santa Fe, NM 87505	Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505	Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form
Re	elease Notification and Corrective Acti	on
	OPERATOR	M Initial Papart D Final Papart

	OPERA		🛛 lı	nitial Report		Rep	
Name of Company – Linn Energy	Contact - A	Ibert Valero					
Address – 2651 JBS Parkway, Bldg. 4 Ste F Odessa, TX 7976							
Facility Name – Scharb 9 #2 Battery	Facility Type – Battery						
Surface Owner - State Mineral Own	er		Leas	e No.			
Chris Northeult			Lotas	0110.			
LOCAT	ION OF RE						
Unit Letter Section Township Range 9 19S 35E Feet from the No.	orth/South Line	Feet from the	East/West Lir	Lea			
Latitude_32° 40.615		-	W	-			
	RE OF REL	and the second se	1 11 1				
Type of Release - Historical Source of Release - Unknown		Release - Unkno	and the second second second second second	ne Recovered - nd Hour of Dis		0	
ource of Release - Officiowi	Unknown	iour of Occurrent	- Date a	IN HOUL OF LAS	covery - /-9-	0	
Was Immediate Notice Given?	red If YES, To	Whom?					
3y Whom?	Date and H						
Was a Watercourse Reached?	If YES, Vo	olume Impacting	the Watercourse				
Describe Cause of Problem and Remedial Action Taken.* Historical impacted soil is present around the heater treater, tanks, pur site was delineated to the following criteria. The ranking criteria for t points; Depth to Groundwater – 20 points (GW = 24' on SEO Data). IPH Method 8015M – 100 ppm; Chloride – 250 ppm; BTEX 8021B -	he site is as follo Total ranking for	ws: Surface Body the site is 20 poin	of Water - 0 po	ints; Wellhead	Protection - 0)	
Historical impacted soil is present around the heater treater, tanks, pur site was delineated to the following criteria. The ranking criteria for the points; Depth to Groundwater – 20 points (GW = 24' on SEO Data). TPH Method 8015M – 100 ppm; Chloride – 250 ppm; BTEX 8021B – Describe Area Affected and Cleanup Action Taken.* Attached is a plat map, field analysis and lab conformations of the del Due to the hard rock, Linn Energy proposes to remediate the site with upproved disposal. At the four foot depth the entire site will be layere Above the poly liner another layer of Geotextile felt and sand will be in urrounding area. The site will be re-seeded with a custom seed mixtu	he site is as follo Total ranking for – 50 ppm and Ber ineation. a risk based clos d with 2" of clear installed. The sit are approved by t	ws: Surface Body the site is 20 poin nzene – 0.2 ppm. ure. Linn proposs n sand, then a 4 oo e will then be bac he landowner. Du	of Water – 0 po hts. The followi cs to excavate 4' z. Geotextile Lir kfilled with clea ue to the hard ro	of impacted so er, then a 40 m n native soil an ck, low level of	Protection - C s for the samp bil and haul to il poly liner. d contoured to f chlorides bel	an the	
Historical impacted soil is present around the heater treater, tanks, puri ite was delineated to the following criteria. The ranking criteria for t points; Depth to Groundwater – 20 points (GW = 24' on SEO Data). TPH Method 8015M – 100 ppm; Chloride – 250 ppm; BTEX 8021B – Describe Area Affected and Cleanup Action Taken.* Mttached is a plat map, field analysis and lab conformations of the del Due to the hard rock, Linn Energy proposes to remediate the site with pproved disposal. At the four foot depth the entire site will be layere Above the poly liner another layer of Geotextile felt and sand will be i urrounding area. The site will be re-seeded with a custom seed mixtu and the poly liner to be installed, Linn Energy feels that the groundwa hereby certify that the information given above is true and complete egulations all operators are required to report and/or file certain relea: ublic health or the environment. The acceptance of a C-141 report by hould their operations. In addition, NMOCD acceptance of a C-141 report	he site is as follo Total ranking for - 50 ppm and Ber ineation. a risk based closs d with 2" of clear installed. The sit are approved by t ter will be protect to the best of my se notifications a y the NMOCD m diate contaminati	ws: Surface Body the site is 20 poin nzenc – 0.2 ppm. ure. Linn propose n sand, then a 4 or e will then be bac he landowner. Do ted from contamin knowledge and u nd perform correc arked as "Final R on that pose a thre e the operator of r	of Water – 0 ponts. The following the follow	of impacted so erer, then a 40 m n native soil an ck, low level of risk based clos ursuant to NMC releases which relieve the oper ter, surface wat r compliance w	Protection - C s for the samp il and haul to il poly liner. d contoured tt c chlorides bel- sure. DCD rules and may endanger ator of liability ter, human hea ith any other	an the ow 4	
Historical impacted soil is present around the heater treater, tanks, puri ite was delineated to the following criteria. The ranking criteria for t points; Depth to Groundwater – 20 points (GW = 24' on SEO Data). TPH Method 8015M – 100 ppm; Chloride – 250 ppm; BTEX 8021B – Describe Area Affected and Cleanup Action Taken.* Mttached is a plat map, field analysis and lab conformations of the del Due to the hard rock, Linn Energy proposes to remediate the site with pproved disposal. At the four foot depth the entire site will be layere Above the poly liner another layer of Geotextile felt and sand will be i urrounding area. The site will be re-seeded with a custom seed mixtu and the poly liner to be installed, Linn Energy feels that the groundwa hereby certify that the information given above is true and complete egulations all operators are required to report and/or file certain relear. ublic health or the environment. The acceptance of a C-141 report by hould their operations have failed to adequately investigate and rement or the environment. In addition, NMOCD acceptance of a C-141 report by hould their operations and operators.	he site is as follo Total ranking for - 50 ppm and Ber ineation. a risk based closs d with 2" of clear installed. The sit are approved by t ter will be protect to the best of my se notifications a y the NMOCD m diate contaminati	ws: Surface Body the site is 20 poin nzenc – 0.2 ppm. ure. Linn propose n sand, then a 4 or e will then be bac he landowner. Do ted from contamin knowledge and u nd perform correc arked as "Final R on that pose a thre e the operator of r	of Water – 0 points. The following the follo	of impacted so erer, then a 40 m n native soil an ck, low level of risk based clos ursuant to NMC releases which relieve the oper ter, surface wat r compliance w	Protection - C s for the samp il and haul to il poly liner. d contoured tt c chlorides bel- sure. DCD rules and may endanger ator of liability ter, human hea ith any other	an the ow 4	
Additional impacted soil is present around the heater treater, tanks, puri- dite was delineated to the following criteria. The ranking criteria for the points; Depth to Groundwater – 20 points (GW = 24' on SEO Data). TPH Method 8015M – 100 ppm; Chloride – 250 ppm; BTEX 8021B – Describe Area Affected and Cleanup Action Taken.* Attached is a plat map, field analysis and lab conformations of the del Due to the hard rock, Linn Energy proposes to remediate the site with pproved disposal. At the four foot depth the entire site will be layere Above the poly liner another layer of Geotextile felt and sand will be in aurounding area. The site will be re-seeded with a custom seed mixtuand the poly liner to be installed, Linn Energy feels that the groundwa hereby certify that the information given above is true and complete egulations all operators are required to report and/or file certain relear. unbiold their operations have failed to adequately investigate and remet or the environment. In addition, NMOCD acceptance of a C-141 report by hould their operations have failed to adequately investigate and remet or the environment. In addition, NMOCD acceptance of a C-141 report by hould their operations and or regulations.	he site is as follo Total ranking for – 50 ppm and Ber ineation. a risk based closs d with 2" of clear installed. The sit are approved by t ter will be protect to the best of my se notifications and y the NMOCD m diate contamination rt does not reliev	ws: Surface Body the site is 20 poin nzenc – 0.2 ppm. ure. Linn propose n sand, then a 4 or e will then be bac he landowner. Do ted from contamin knowledge and u nd perform correc arked as "Final R on that pose a thre e the operator of r	of Water – 0 ponts. The following the follow	of impacted so erer, then a 40 m n native soil an ck, low level of risk based clos ursuant to NMC releases which relieve the oper ter, surface wat r compliance w	Protection - C s for the samp il and haul to il poly liner. d contoured tt c chlorides bel- sure. DCD rules and may endanger ator of liability ter, human hea ith any other	an the the y	
Historical impacted soil is present around the heater treater, tanks, pur site was delineated to the following criteria. The ranking criteria for the points; Depth to Groundwater – 20 points (GW = 24' on SEO Data). TPH Method 8015M – 100 ppm; Chloride – 250 ppm; BTEX 8021B – Describe Area Affected and Cleanup Action Taken.* Attached is a plat map, field analysis and lab conformations of the del Due to the hard rock, Linn Energy proposes to remediate the site with approved disposal. At the four foot depth the entire site will be layere Above the poly liner another layer of Geotextile felt and sand will be is surrounding area. The site will be re-seeded with a custom seed mixtu- and the poly liner to be installed, Linn Energy feels that the groundwa hereby certify that the information given above is true and complete egulations all operators are required to report and/or file certain relear- ublic health or the environment. The acceptance of a C-141 report bhould their operations have failed to adequately investigate and reme- or the environment. In addition, NMOCD acceptance of a C-141 repor- dereral, state, or local laws and/or regulations.	he site is as follo Total ranking for – 50 ppm and Ber ineation. a risk based closs d with 2" of clear installed. The sit are approved by t ter will be protect to the best of my se notifications a y the NMOCD m diate contaminati rt does not reliev	ws: Surface Body the site is 20 poin nzene – 0.2 ppm. ure. Linn propose n sand, then a 4 o e will then be bac he landowner. Du ted from contamin knowledge and u nd perform correc arked as "Final R on that pose a thru e the operator of r OIL CONS District Supervise	of Water – 0 pc hts. The followi es to excavate 4' z. Geotextile Lir kfilled with clear ue to the hard ro- nation using this inderstand that p tive actions for r- eport" does not re- eat to ground was responsibility for SERVATIO or:	of impacted so erer, then a 40 m n native soil an ck, low level of risk based clos ursuant to NMC releases which in relieve the oper relieve the oper recompliance w N DIVISIO	Protection - C s for the samp il and haul to il poly liner. d contoured tt c chlorides bel- sure. DCD rules and may endanger ator of liability ter, human hea ith any other	an the ow 4	
Alistorical impacted soil is present around the heater treater, tanks, puri ite was delineated to the following criteria. The ranking criteria for the points; Depth to Groundwater – 20 points (GW = 24' on SEO Data). TPH Method 8015M – 100 ppm; Chloride – 250 ppm; BTEX 8021B – Describe Area Affected and Cleanup Action Taken.* Mttached is a plat map, field analysis and lab conformations of the del Due to the hard rock, Linn Energy proposes to remediate the site with pproved disposal. At the four foot depth the entire site will be layere Above the poly liner another layer of Geotextile felt and sand will be i urrounding area. The site will be re-seeded with a custom seed mixtu and the poly liner to be installed, Linn Energy feels that the groundwa hereby certify that the information given above is true and complete egulations all operators are required to report and/or file certain relear. ublic health or the environment. The acceptance of a C-141 report by hould their operations have failed to adequately investigate and remet or the environment. In addition, NMOCD acceptance of a C-141 report by hould their operations and or regulations.	he site is as follo Total ranking for – 50 ppm and Ber ineation. a risk based closs d with 2" of clear installed. The sit are approved by t ter will be protect to the best of my se notifications and y the NMOCD m diate contamination rt does not reliev	ws: Surface Body the site is 20 poin nzenc – 0.2 ppm. ure. Linn propose n sand, then a 4 o. e will then be bac he landowner. D ted from contamin knowledge and u nd perform correc arked as "Final R on that pose a thru e the operator of r <u>OIL CONS</u> District Supervise e:	of Water – 0 ponts. The following the follow	of impacted so erer, then a 40 m n native soil an ck, low level of risk based clos ursuant to NMC releases which in relieve the oper relieve the oper recompliance w N DIVISIO	Protection - C s for the samp il and haul to il poly liner. d contoured tt c chlorides bel- sure. DCD rules and may endanger ator of liability ter, human hea ith any other	an the ow 4	

- EXCAVATE TO CLEAN TEOPPREY YORM, NMOCO-HUBBS, 12/17/10

Appendix 2 References

REFERENCES

SKA Consulting, L.P. does not warrant the data of regulatory agencies or other third parties supplying information used in the preparation of this report. Documents and commercial information services used in the preparation of this report, as listed below, are all current as most recently published.

- Soil Survey of Lea County, New Mexico, Natural Resources Conservation Service, May 17, 2011
- *Guidelines for the Remediation of Leak, Spills, and Releases, New Mexico Oil Conservation Division, Santa Fe, New Mexico, August 13, 1993, pg 5.*
- Ironhouse Draw, New Mexico 7.5 Minute Quadrangle Map, United States Geological Survey, 2010
- Geology and Ground-Water Conditions in Southern Lea County, New Mexico, State Bureau of Mines and Mineral Resources, Socorro, New Mexico, 1961

Appendix 3 Field Analytical Report Forms (Rio Services)

Rio Services

P O Box 69139 Odessa, TX 79769 Phone (432) 530-2803 Fax (432) 530-2890

Field Analytical Report Form

Client Linn Energy

Analyst Logan Anderson / Bobby Steadham

Site Scharb 9 #2

Sample ID	Date	Depth	418.1 TPH / PPM	CI/PPM	PID / PPM	GPS
TP1	10-14-10	1'		5,878		
TP1	11-18-10	1' 6"		767		
TP1	11-18-10	2'		678	() 	
TP1	11-19-10	3'		532		
TP1	11-19-10	10'	See Start	457		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
TP1	12-16-10	16'		451		
TP1	12-16-10	18'		208		
TP1	11-19-10	20'		240		
TP1	11-19-10	20'	an na stal	187		
			2.5	Mar 1		A CALLER S
TP2	10-14-10	1'		4,937	the start of the	and the second
TP2	11-18-10	2'		349		
TP2	11-19-10	5'		547		
TP2	11-19-10	6'		488		
TP2	12-15-10	9'		1,219		
TP2	12-15-10	12'		668		
TP2	12-15-10	14'		644		

Analyst Notes

Rio Services

P O Box 69139 Odessa, TX 79769 Phone (432) 530-2803 Fax (432) 530-2890

Field Analytical Report Form

Client_Linn Energy

Analyst Logan Anderson

Site Scharb 9 #2

Sample ID	Date	Depth	418.1 TPH / PPM	CI / PPM	PID / PPM	GPS
TP2	12-15-10	16'	2.125.5	642		
TP2	12-15-10	18'		184		
			ALS.			
TP3	10-14-10	1'	21	540		
TP3	11-19-10	2'		513		
TP3	11-19-10	3'		586		No. 1
TP3	11-19-10	4'	de-	651		
TP3	11-19-10	5'		284		
TP3	12-14-10	6'	- Section	509	1	
TP3	12-14-10	8'	- * William	460		
TP3	12-14-10	10'		111	See and all	
	der-				1997 (1772 (M	
TP4	10-14-10	1'		730	E	
TP4	11-18-10	2'	1 to the store	270		
TP4	12-14-10	6.5'		438		
TP4	12-14-10	7.5'		326		
TP4	12-14-10	8.5'		376		

Analyst Notes

Rio Services

P O Box 69139 Odessa, TX 79769 Phone (432) 530-2803 Fax (432) 530-2890

Field Analytical Report Form

Client Linn Energy

Analyst Logan Anderson

Site Scharb 9 #2

Sample ID	Date	Depth	418.1 TPH / PPM	Cl / PPM	PID / PPM	GPS
TP4	12-14-10	9.5'		509		
TP4	12-14-10	10.5'		460		
TP4	12-14-10	11.5'		111		
					State of the	
TP5	10-14-10	1'		690		8 - A.S.
TP5	11-18-10	2'		834		
TP5	11-18-10	3'		526		
TP5	12-15-10	6'		577		
TP5	12-15-10	8'		459		
TP5	12-15-10	10'		241		
						1-1 1 C #
TP6	10-14-10	1'		285		
TP6	11-19-10	2'		149		
						- 1.000 A
Background	10-14-10	Surface	- 3.2	146		
Background	11-19-10	2'		139		

Analyst Notes

Appendix 4 Laboratory Analytical Reports

Analytical Report 400704

for Rio Services

Project Manager: Logan Anderson

Linn Energy

16-DEC-10

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-10-6-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330) Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370) Xenco-Boca Raton (EPA Lab Code: FL01273): Florida(E86240),South Carolina(96031001), Louisiana(04154), Georgia(917) North Carolina(444), Texas(T104704468-TX), Illinois(002295), Florida(E86349)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757), California(06244CA), Texas(104704435-10-2), Nevada(NAC-445A), DoD(65816) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

Final 1.000

16-DEC-10

Project Manager: Logan Anderson Rio Services P.O. Box 69139 Odessa, TX 79769

Reference: XENCO Report No: 400704 Linn Energy Project Address: Scharb 9 #2 Battery

Logan Anderson:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 400704. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 400704 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

BO TR

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 400704

Rio Services, Odessa, TX Linn Energy

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
TP1	S	Dec-14-10 14:30	20 ft	400704-001
TP3	S	Dec-14-10 15:40	10 ft	400704-002
TP4	S	Dec-14-10 14:20	11.5 ft	400704-003
TP6	S	Dec-14-10 16:00	2 ft	400704-004

CASE NARRATIVE

Client Name: Rio Services Project Name: Linn Energy

Project ID: Work Order Number: 400704 Report Date: 16-DEC-10 Date Received: 12/15/2010

Sample receipt non conformances and Comments: None

Sample receipt Non Conformances and Comments per Sample:

None
Analytical Non Conformances and Comments:

Batch: LBA-836181 BTEX by EPA 8021B SW8021BM

Batch 836181, 1,4-Difluorobenzene recovered below QC limits . Matrix interferences is suspected; data confirmed by re-analysis Samples affected are: 400704-003,400704-001.

Certificate of Analysis Summary 400704

Rio Services, Odessa, TX Project Name: Linn Energy

Project Id:

Contact: Logan Anderson Project Location: Scharb 9 #2 Battery Date Received in Lab: Wed Dec-15-10 12:51 pm

Report Date: 16-DEC-10

				The second second	Project Manager:	Brent Barron, II
	Lab Id:	400704-001	400704-002	400704-003	400704-004	
Analysis Requested	Field Id:	TP1	TP3	TP4	TP6	
may sis requested	Depth:	20 ft	10 ft	11.5 ft	2 ft	
	Matrix:	SOIL	SOIL	SOIL	SOIL	
	Sampled:	Dec-14-10 14:30	Dec-14-10 15:40	Dec-14-10 14:20	Dec-14-10 16:00	
Anions by E300	Extracted:					
	Analyzed:	Dec-15-10 14:05	Dec-15-10 14:05	Dec-15-10 14:05	Dec-15-10 14:05	
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	
Chloride	1	91.3 4.20	7.65 4.20	69.9 4.20	7.22 4.20	
BTEX by EPA 8021B	Extracted:	Dec-15-10 13:40	Dec-15-10 13:40	Dec-15-10 13:40	Dec-15-10 13:40	
	Analyzed:	Dec-16-10 01:33	Dec-16-10 02:58	Dec-16-10 03:20	Dec-16-10 03:41	
	Units/RL:	mg/kg RL	mg/kg RL			
Benzene	Unus/AL:	ND 0.0011	ND 0.0011	mg/kg RL ND 0.0011	mg/kg RL ND 0.0011	
Toluene		ND 0.0023	ND 0.0021	ND 0.0023	ND 0.0011	
Ethylbenzene		ND 0.0011	ND 0.0011	ND 0.0011	ND 0.0021	
m p-Xylenes	and the second s	ND 0.0023	ND 0.0021	ND 0.0023	ND 0.0021	
o-Xylene		ND 0.0011	ND 0.0011	ND 0.0011	ND 0.0011	
Total Xylenes	A LOUIS AND AND A	ND 0.0011	ND 0.0011	ND 0.0011	ND 0.0011	
Total BTEX	No. 1 State	ND 0.0011	ND 0.0011	ND 0.0011	ND 0.0011	
Percent Moisture	Extracted:			ST (2 3.43) 7		
	Analyzed:	Dec-16-10 08:30	Dec-16-10 08:30	Dec-16-10 08:30	Dec-16-10 08:30	
	Units/RL:	% RL	% RL	% RL	% RL	
Percent Moisture		12.0 1.00	5.22 1.00	11.6 1.00	5.78 1.00	
TPH By SW8015 Mod	Extracted:	Dec-15-10 13:50	Dec-15-10 13:50	Dec-15-10 13:50	Dec-15-10 13:50	
	Analyzed:	Dec-16-10 09:25	Dec-16-10 09:44	Dec-16-10 10:03	Dec-16-10 10:22	
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	
C6-C12 Gasoline Range Hydrocarbons		ND 17.0	ND 15.9	ND 17.1	ND 15.9	
C12-C28 Diesel Range Hydrocarbons	We share the	ND 17.0	20.1 15.9	ND 17.1	19.5 15.9	
C28-C35 Oil Range Hydrocarbons	and the hard	ND 17.0	ND 15.9	ND 17.1	ND 15.9	
Total TPH		ND 17.0	20.1 15.9	ND 17.1	19.5 15.9	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron, II

Odessa Laboratory Manager

Page 5 of 17

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.

JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit

PQL Practical Quantitation Limit

* Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
842 Cantwell Lane, Corpus Christi, TX 78408	(361) 884-0371	(361) 884-9116
, , , , , , , , , , , , , , , , , , , ,		

Final 1.000

Project Name: Linn Energy

/ork Orders : 400704, Lab Batch #: 836181	Sample: 591409-1-BKS / B	KS Bate	Project I h: 1 Matrix			
Units: mg/kg Date	Analyzed: 12/15/10 23:46	SU	RROGATE R	ECOVERY S	STUDY	
BTEX by EP Analyt		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	and the second second	0.0275	0.0300	92	80-120	1.
4-Bromofluorobenzene	11000	0.0295	0.0300	98	80-120	2.50
Lab Batch #: 836181	Sample: 591409-1-BSD / B	SD Bate	h: 1 Matrix	:Solid	a hafter all	a starte
Units: mg/kg Date	Analyzed: 12/16/10 00:07	SU	RROGATE R	ECOVERY S	STUDY	
BTEX by EP Analyt		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0285	0.0300	95	80-120	V. C.
4-Bromofluorobenzene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0284	0.0300	95	80-120	1.14
Units: mg/kg Date BTEX by EP. Analyte		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene	1	0.0241	0.0300	80	80-120	2013
4-Bromofluorobenzene		0.0294	0.0300	98	80-120	. 7%
Lab Batch #: 836181	Sample: 400704-001 / SMF	Batc	h: 1 Matrix	: Soil	18. J.C.	
Units: mg/kg Date	Analyzed: 12/16/10 01:33	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EP. Analyte		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0230	0.0300	77	80-120	**
4-Bromofluorobenzene	and the second second	0.0295	0.0300	98	80-120	2 NU -
Lab Batch #: 836181	Sample: 400704-001 S / M	S Batc	h: 1 Matrix	c: Soil	1 year	
Units: mg/kg Date	Analyzed: 12/16/10 01:54	SU	RROGATE R	ECOVERY S	STUDY	
BTEX by EPA Analyte		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1.4-Difluorobenzene	a set of the set	0.0263	0.0300	88	80-120	1000
, i Dindorobenzene			and the second sec			

* Surrogate outside of Laboratory QC limits
 ** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.

Project Name: Linn Energy

		RROGATE R	FCOVEDV	TUDY	1.0
Units: mg/kg Date Analyzed: 1	2/16/10 02:15	RROGATE R	ECOVERY	STUDI	1. 11
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0262	0.0300	87	80-120	
4-Bromofluorobenzene	0.0275	0.0300	92	80-120	1
Lab Batch #: 836181 Sample: 4	00704-002 / SMP Batc	h: 1 Matrix	:Soil	26. 29	100
Units: mg/kg Date Analyzed: 12	011	RROGATE R	ECOVERY S	STUDY	1
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0251	0.0300	84	80-120	14.64
4-Bromofluorobenzene	0.0288	0.0300	96	80-120	1
Lab Batch #: 836181 Sample: 4	00704-003 / SMP Batc	h: 1 Matrix	: Soil	S 243	
Units: mg/kg Date Analyzed: 12		RROGATE R	ECOVERY	STUDY	14246
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0233	0.0300	78	80-120	**
4-Bromofluorobenzene	0.0300	0.0300	100	80-120	1983
Lab Batch #: 836181 Sample: 40	00704-004 / SMP Batc	h: 1 Matrix	Soil	A States	1
Units: mg/kg Date Analyzed: 12	2/16/10 03:41 SU	RROGATE R	ECOVERY S	STUDY	5.13
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0240	0.0300	80	80-120	
4-Bromofluorobenzene	0.0288	0.0300	96	80-120	
ab Batch #: 836178 Sample: 59	91413-1-BKS / BKS Batc	h: 1 Matrix	:Solid	Sec. 14	
Units: mg/kg Date Analyzed: 12	2/15/10 14:48 SU	RROGATE R	ECOVERY S	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
I-Chlorooctane	72.2	99.5	73	70-135	182/31
o-Terphenyl	49.2	49.8	99	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.

Project Name: Linn Energy

Inites mades	Data Analyzade 12/15/10 15:07	SU	RROGATE R	ECOVERY	STUDY	191 200
Units: mg/kg	Date Analyzed: 12/15/10 15:07 By SW8015 Mod	Amount	True		Control	2.00
		Found [A]	Amount [B]	Recovery %R [D]	Limits %R	Flags
	Analytes		No. and	1. 1. 1. 1. A.		1.5.15
1-Chlorooctane o-Terphenyl	A ST ST ST	76.6	100	77	70-135	
		38.9	50.2		70-135	
Lab Batch #: 836178	Sample: 591413-1-BLK / BI					And S
Units: mg/kg	Date Analyzed: 12/15/10 15:25	SU	RROGATE R	ECOVERY	STUDY	
	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	Analytes	74.0	100		70-135	
o-Terphenyl		74.8 38.9	100	75	70-135	-
					70-133	
Lab Batch #: 836178	Sample: 400704-001 / SMP	Batc				and all
Units: mg/kg	Date Analyzed: 12/16/10 09:25	SU	RROGATE R	ECOVERY	STUDY	
	y SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	Analytes	72.0	00.5	74	70-135	
o-Terphenyl		73.9	99.5 49.8	74	70-135	
	*				70-135	
Lab Batch #: 836178	Sample: 400704-002 / SMP	Batcl				
Units: mg/kg	Date Analyzed: 12/16/10 09:44	SU	RROGATE R	ECOVERY	STUDY	C. B. M.
	y SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		77.4	100	77	70-135	all'
o-Terphenyl	11 The Bridge B	39.5	50.2	79	70-135	
Lab Batch #: 836178	Sample: 400704-003 / SMP	Batcl	h: 1 Matrix	: Soil	and some	202 P
Units: mg/kg	Date Analyzed: 12/16/10 10:03	SU	RROGATE R	ECOVERY	STUDY	N. Ser S.
три р	y SW8015 Mod	Amount	True	- A	Control	124
	Analytes	Found [A]	Amount [B]	Recovery %R [D]	Limits %R	Flags
1-Chlorooctane	and the second second second	76.6	101	76	70-135	

* Surrogate outside of Laboratory QC limits
** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.

Project Name: Linn Energy

Vork Orders : 400704, Lab Batch #: 836178	Sample: 400704-004 / SMP	Batc	Project I h: 1 Matrix			
Units: mg/kg Date	Analyzed: 12/16/10 10:22	SU	RROGATE R	ECOVERY S	STUDY	
TPH By SW80		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		75.6	99.9	76	70-135	DAC?
o-Terphenyl		39.0	50.0	78	70-135	1.7 5363
Lab Batch #: 836178	Sample: 400678-004 S / MS	Batc	h: 1 Matrix	:Soil	de ste	
Units: mg/kg Date	Analyzed: 12/16/10 12:14	SU	RROGATE R	ECOVERY S	STUDY	(The
TPH By SW80 Analyte		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		74.9	99.8	75	70-135	1. E. K.
o-Terphenyl		38.9	49.9	78	70-135	Sec. 1
Lab Batch #: 836178	Sample: 400678-004 SD / MSI) Bate	h: 1 Matrix	:Soil	al Congo	10-32
Units: mg/kg Date	Analyzed: 12/16/10 12:32	SU	RROGATE R	ECOVERY S	STUDY	28.57
TPH By SW80 Analyte		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	i hroterik	72.2	99.5	73	70-135	11.52
o-Terphenyl		39.2	49.8	79	70-135	

* Surrogate outside of Laboratory QC limits
 ** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.

BS / BSD Recoveries

Project Name: Linn Energy

Work Order #: 400704 Analyst: SEE Lab Batch ID: 836181 Sample: :	Da 591409-1-BKS	ite Prepare Batch	ed: 12/15/20	10			Date An	ect ID: alyzed: 1 Matrix: 5	12/15/2010 Solid		
Units: mg/kg		BLAN	K /BLANK	SPIKE / I	BLANK S	PIKE DUP	LICATE F	RECOVE	ERY STUD	Y	
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	ND	0.1004	0.1032	103	0.0996	0.1003	101	3	70-130	35	
Toluene	ND	0.1004	0.0912	91	0.0996	0.0896	90	2	70-130	35	1.02
Ethylbenzene	ND	0.1004	0.0915	91	0.0996	0.0895	90	2	71-129	35	1.2
m_p-Xylenes	ND	0.2008	0.1791	89	0.1992	0.1743	88	3	70-135	35	151
o-Xylene	ND	0.1004	0.0913	91	0.0996	0.0893	90	2	71-133	35	and and
Analyst: LATCOR Lab Batch ID: 836094 Sample: 3 Units: mg/kg	D: 836094-1-BKS	Batch	Prest Prest A.		BLANK S	PIKE DUP		Matrix: S	1993 Mar 4 1999	DY	
Anions by E300 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<0.420	10.0	8.76	88	10	8.88	89	1	75-125	20	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: Linn Energy

	.0	IN AC	COA	0.	
0	1	-		140	
C.A.	-	6	h	2	*
AC		1	a		1

Work Order #: 400704 Analyst: BEV	Da	ite Prepare	d: 12/15/20	10			Date Ar		2/15/2010		
Lab Batch ID: 836178 Sample: 591- Units: mg/kg	413-1-BKS	Batch BLANH	and the second second	SPIKE / I	BLANK S	PIKE DUP		Matrix: S	The state	DY	
TPH By SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydrocarbons	<50.0	995	977	98	1000	1030	103	5	70-135	35	
C12-C28 Diesel Range Hydrocarbons	<50.0	995	881	89	1000	1020	102	15	70-135	35	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

XENCO Laboratories	Form 3 - MS R	ecove	ries			SUILED IN ACCORD
Project	Name: Linn Energ	y				
Work Order #: 400704						
Lab Batch #: 836094			Pro	ject ID		
Date Analyzed: 12/15/2010	Date Prepared: 12/1	5/2010	A	nalyst: L	ATCOR	
QC- Sample ID: 400673-002 S	Batch #: 1		N	fatrix: S	oil	
Reporting Units: mg/kg	MATH	RIX / MA	TRIX SPIKE	RECO	VERY ST	UDY
Inorganic Anions by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Analytes	[A]	[B]	1 Sugar		1 miles	19.20%
Chloride	230	200	398	84	75-125	The second

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference $[E] = 200^{*}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS / MSD Recoveries

Project Name: Linn Energy

Control

Limits

%RPD

35

35

35

35

35

Control

Limits

%RPD

35

35

%R

%R

70-135

Flag

Flag

Project ID: Lab Batch ID: 836181 OC- Sample ID: 400704-001 S Batch #: Matrix: Soil 1 Date Prepared: 12/15/2010 Date Analyzed: 12/16/2010 Analyst: SEE Reporting Units: mg/kg MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY Parent Spiked Sample Spiked Duplicate Spiked Control **BTEX by EPA 8021B** Sample Spike Result Sample Spike **Spiked Sample** Dup. RPD Limits Result Added Added [C] %R Result [F] %R % Analytes [A] [G] **[B]** [D] [E] ND 0.1146 0.1072 94 Benzene 0.1125 0.1041 93 3 70-130 ND 0.1146 0.0951 83 0.1125 0.0941 84 1 70-130 Toluene Ethylbenzene ND 0.1146 0.0953 83 0.1125 0.0927 82 3 71-129 2 m_p-Xylenes ND 0.2291 0.1851 81 0.2250 0.1811 80 70-135 o-Xylene ND 0.1146 0.0952 83 0.1125 0.0938 83 1 71-133 QC- Sample ID: 400678-004 S Lab Batch ID: 836178 Batch #: 1 Matrix: Soil Date Prepared: 12/15/2010 Analyst: BEV Date Analyzed: 12/16/2010 Reporting Units: mg/kg **MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY** Parent Spiked Sample Spiked Duplicate Spiked Control **TPH By SW8015 Mod** Sample Spike Result Sample Spike Spiked Sample Dup. RPD Limits Result Added [C] %R Added Result [F] %R % Analytes [A] [B] [D] [E] [G] C6-C12 Gasoline Range Hydrocarbons <16.1 1080 1100 102 1070 1070 100 3 70-135

1080

<16.1

Work Order #: 400704

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*|(C-F)/(C+F)|

C12-C28 Diesel Range Hydrocarbons

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

79

1070

855

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Page 14 of 17

819

77

4

Sample Duplicate Recovery

Project Name: Linn Energy

Work Order #: 400704

Lab Batch #: 836094 Date Analyzed: 12/15/2010 14:05 I QC- Sample ID: 400673-002 D Reporting Units: mg/kg	Date Prepared: 12/15/2010 Batch #: 1 SAMPLE		Project I lyst:LATC trix: Soil DUPLIC	COR	OVERY
Anions by E300 Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride	230	224	3	20	S. Price I.
Lab Batch #: 836104 Date Analyzed: 12/16/2010 08:30 I QC- Sample ID: 400673-001 D	Date Prepared: 12/16/2010 Batch #: 1		lyst: JLG rix: Soil		
Reporting Units: %	SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
Percent Moisture Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Percent Moisture	2.97	3.25	9	20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

Xenco Laboratories

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

The Env	vironmental Lab of Texas													East 9765									Fa	x:	432 432	2-56	3-17	713				
	Project Manager: Logan Ander	son													2			Proj	ect N	am	e:	1	in	n t	Ent	en	y					
	Company Name Rio Services			S.L.	1.143				ŝ		2			1					Proje	ect	#:					280	-			++e		
	Company Address: P O Box 691	39	S.C.			1.1.1.1												Pr	oject	Lo		50	ha	6		9	#.	2	Ba	++	Ly Y	
	City/State/Zip: Odessa, TX 7	9769			1				1		r Si	ř.								PO												
	Telephone No: 432-381-570	A	(12.1		Fax No:	1	432	2-53	0-28	90						Rep	ort I	orm	at:		l Sta	anda				TRF					
	Sampler Signature:	ter			· · · ·	e-mail:		log	an	_rio	ser	vice	s@	yaho	00.C	om			8							-					_	
(lab use	only)																	E		_	-	TCLP	:	nalyz	ze Fo	or:			Т	Т		
ORDE	R#: 400704	9								Prese	ervat	ion &	# of	Conta	iners	Т	Matr	_	28	T	т	TAL	Se			0					48, 72 hrs	
_AB # (lab use only)	FIELD CODE		Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of Containers	Ice	HNO ₃	HCI	H ₂ SO ₄	NaOH	Na ₂ S ₂ O ₃	None		DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid	in-Potable Specify Other	TPH: 418.1 8015M 801 TPH: TX 1005 TX 1006	Co Wo Na	Anions (C) SO4, Alkalinity)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg S	Volatiles	Semivolatiles	BTEX 0218 0030 or BTEX 8260	RCI	N.O.R.M.			RUSH TAT (Pre-Schedule) 20 48,	Standard TAT
	TPI @ 200	ACTIVITY		20'	12-14-10	2:30P		1	X								5	2	X		X					x					X	
	TP 3 @ 10'			10'	12-14-10	3:408		1	Y						-	+	5	ť	×	-	X		-			X				_	X	
-	TI4C 11.5'			11.5	12-14-10	2:208		1	Y				_		-	+	5	_	X	+	X					X			_	+	X	-
	TPG e 2'			2	12-14-10	4:008	-	1	X	-		-	-		+	+	S	-	4	+	X	-	+	\square	\vdash	X	-	-	-	+	X	-
	2000 - 2000 - 2000 7 100 - 2000 - 2000							1				1	1			1		1		1												
													1							-										+	\bot	
1						1. 1. 1. 1. 1. 1.				-			_		+	+	100	+	+	+	+		-	\vdash	\dashv		\neg	-	+	+	+	
169	Constant Constant			10	Projection.										1	1		1		T	+											
Special	Instructions:	Date	Tin	ne	Received by:			1								Date	e	T	ime	S V Li	ampl OCs abels	e Co Free	ontail e of H conta	iners Head ainer	Intac Intac Ispac r(s)	ce?			000	220	zez	Ð
Relinquis	ta	12-15-10 Date		SIP	Received by:					1. A. A.					1	Dat	e	T	ime	C C C S	ustor ampl	dy se dy se e Ha Sam	eals of and [on co on co Delive	ontai ooler rered	r(s)			Feat	Anna box		ar
Relinquis	shed by:	Date	Tin	ne	Received by EL	urdoek	i.e.									Date 15	e -10		ime 51	Т	emp	eratu	ire U	40.	UPS Co Reco	1a ipt	SS			4.6		

Final 1.000

XENCO Laboratories Atlanta, Boca Raton, Corpus Christi, Dallas Houston, Miami, Odessa, Philadelphia Phoenix, San Antonio, Tampa

Document Title: Sample Receipt Checklist Document No .: SYS-SRC Revision/Date: No. 01, 5/27/2010 Effective Date: 6/1/2010 Page 1 of 1

Prelogin / Nonconformance Report - Sample Log-In

Date/Time: 12-15 10 12:51	ins particular states
Lab ID #: 400704	

Sample Receipt Checklist

1. Samples on ice?	Blue	Water	No	1.
2. Shipping container in good condition?	Yes	No	None	
3. Custody seals intact on shipping container (cooler) and bottles?	Tes	No	N/A	
4. Chain of Custody present?	Yes	No		
5. Sample instructions complete on chain of custody?	Tes	No	Sector Sector	
6. Any missing / extra samples?	Yes	(No)		
7. Chain of custody signed when relinquished / received?	Yes	No		1.4.5
8. Chain of custody agrees with sample label(s)?	Cres	No		1
9. Container labels legible and intact?	(Yes)	No		200
10. Sample matrix / properties agree with chain of custody?	Yes	No .		12412
11. Samples in proper container / bottle?	Yes	No		19
12. Samples property preserved?	Yes	No	N/A	a the said
13. Sample container intact?	(Yes)	No		145210
14. Sufficient sample amount for indicated test(s)?	Yes	No		
15. All samples received within sufficient hold time?	(Yes)	No		(second
16. Subcontract of sample(s)?	Yes	(No)	N/A	in the
17. VOC sample have zero head space?	Yes	No	(N/A)	
18. Cooler 1 No. Cooler 2 No. Cooler 3 No.	Cooler 4 N	0.	Cooler 5 No.	112
lbs 4.6 °C lbs °C bs	°C lbs	°C	lbs	°C

Nonconformance Documentation

Contacted by: Date/Time:____ Contact: Regarding: **Corrective Action Taken:**

Check all that apply: Cooling process has begun shortly after sampling event and out of temperature condition acceptable by NELAC 5.5.8.3.1.a.1.

Analytical Report 400790

for Rio Services

Project Manager: Logan Anderson

Scharb 9 # 2

16-DEC-10

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-10-6-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330) Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370) Xenco-Boca Raton (EPA Lab Code: FL01273): Florida(E86240),South Carolina(96031001), Louisiana(04154), Georgia(917) North Carolina(444), Texas(T104704468-TX), Illinois(002295), Florida(E86349)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757), California(06244CA), Texas(104704435-10-2), Nevada(NAC-445A), DoD(65816) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

Final 1.000

16-DEC-10

Project Manager: Logan Anderson Rio Services P.O. Box 69139 Odessa, TX 79769

Reference: XENCO Report No: 400790 Scharb 9 # 2 Project Address: Linn Operating

Logan Anderson:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 400790. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 400790 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

BOTA

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 400790

Rio Services, Odessa, TX

Scharb 9 # 2

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id	
TP 2 @ 18'	S	Dec-15-10 14:15	18 ft	400790-001	
TP 5 @ 10'	S	Dec-15-10 13:00	10 ft	400790-002	

CASE NARRATIVE

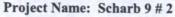
Client Name: Rio Services Project Name: Scharb 9 # 2

Project ID: Work Order Number: 400790 Report Date: 16-DEC-10 Date Received: 12/15/2010

Sample receipt non conformances and Comments: None

Sample receipt Non Conformances and Comments per Sample:

None


Project Id:

Contact: Logan Anderson

Project Location: Linn Operating

Certificate of Analysis Summary 400790

Rio Services, Odessa, TX

Date Received in Lab: Wed Dec-15-10 05:16 pm Report Date: 16-DEC-10 Project Manager: Brent Barron, II

Lab Id: 400790-001 400790-002 Field Id: TP 2 @ 18' TP 5 @ 10' Analysis Requested Depth: 18 ft 10 ft Matrix: SOIL SOIL Sampled: Dec-15-10 14:15 Dec-15-10 13:00 Anions by E300 Extracted: Analyzed: Dec-16-10 08:23 Dec-16-10 08:23 Units/RL: mg/kg RL mg/kg RL Chloride 17.1 4.74 19.3 4.62 **BTEX by EPA 8021B** Extracted: Dec-15-10 17:20 Dec-15-10 17:20 Analyzed: Dec-16-10 11:27 Dec-16-10 11:48 Units/RL: mg/kg RL mg/kg RL Benzene ND 0.0011 ND 0.0011 Toluene ND 0.0022 ND 0.0022 Ethylbenzene ND 0.0011 ND 0.0011 m p-Xylenes ND 0.0022 ND 0.0022 o-Xylene ND 0.0011 ND 0.0011 Total Xylenes ND 0.0011 ND 0.0011 Total BTEX ND 0.0011 ND 0.0011 **Percent Moisture** Extracted: Analyzed: Dec-16-10 11:52 Dec-16-10 11:52 Units/RL: % RL % RL Percent Moisture 11.3 1.00 9.15 1.00 TPH By SW8015 Mod Extracted: Dec-16-10 08:30 Dec-16-10 08:30 Analyzed: Dec-16-10 15:21 Dec-16-10 15:39 Units/RL: mg/kg RL mg/kg RL C6-C12 Gasoline Range Hydrocarbons 16.9 16.5 ND ND C12-C28 Diesel Range Hydrocarbons 16.9 16.5 ND ND C28-C35 Oil Range Hydrocarbons ND 16.9 ND 16.5 Total TPH ND 16.9 ND 16.5

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron, II

Odessa Laboratory Manager

Page 5 of 16

Final 1.000

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.

JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit

PQL Practical Quantitation Limit

* Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

	Phone	Fax
4143 Greenbriar Dr. Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
842 Cantwell Lane, Corpus Christi, TX 78408	(361) 884-0371	(361) 884-9116

Final 1.000

Project Name: Scharb 9 # 2

	Sample: 591409-1-BKS / BK			Solid	TIDY	1
Units: mg/kg	Date Analyzed: 12/15/10 23:46	SU	RROGATE R	ECOVERY	STUDY	12.00
	y EPA 8021B alytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0275	0.0300	92	80-120	the state
4-Bromofluorobenzene		0.0295	0.0300	98	80-120	
Lab Batch #: 836181	Sample: 591409-1-BSD / BS	D Bate	h: 1 Matrix	:Solid	1. N	6254
	Date Analyzed: 12/16/10 00:07	and the second se	RROGATE R	ECOVERY S	STUDY	We BE
BTEX by	v EPA 8021B alytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0285	0.0300	95	80-120	
4-Bromofluorobenzene		0.0284	0.0300	95	80-120	1
	PEPA 8021B alytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0241	0.0300	80	80-120	Sec. A
4-Bromofluorobenzene		0.0294	0.0300	98	80-120	
Lab Batch #: 836181	Sample: 400704-001 S / MS	Batc	h: 1 Matrix	: Soil	1.0.0	
Units: mg/kg	Date Analyzed: 12/16/10 01:54	SU	RROGATE R	ECOVERY S	STUDY	
	EPA 8021B alytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0263	0.0300	88	80-120	441 8
4-Bromofluorobenzene	·····································	0.0281	0.0300	94	80-120	(essi)
ab Batch #: 836181	Sample: 400704-001 SD / M	SD Batc	h: 1 Matrix	: Soil	A March	
Units: mg/kg	Date Analyzed: 12/16/10 02:15	SU	RROGATE R	ECOVERY S	STUDY	
and and the second	EPA 8021B alytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	STALL THE TRANS	0.0262	0.0300	87	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.

Project Name: Scharb 9 # 2

Lab Batch #: 836181 Sample:	400790-001 / SMP	MP Batch: 1 Matrix: Soil SURROGATE RECOVERY STUDY											
Units: mg/kg Date Analyzed:	12/16/10 11:27	SU	RROGATE R	ECOVERY S	STUDY								
BTEX by EPA 8021B Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags							
1,4-Difluorobenzene		0.0249	0.0300	83	80-120	1							
4-Bromofluorobenzene	No. Contraction	0.0304	0.0300	101	80-120								
Lab Batch #: 836181 Sample:	400790-002 / SMP	Batc	h: 1 Matrix	:Soil	14 183								
Units: mg/kg Date Analyzed:	12/16/10 11:48	SU	RROGATE R	ECOVERY S	STUDY	1 mil							
BTEX by EPA 8021B Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags							
1,4-Difluorobenzene		0.0244	0.0300	81	80-120	142.14							
4-Bromofluorobenzene		0.0298	0.0300	99	80-120								
Lab Batch #: 836230 Sample:	591448-1-BKS / BKS	Batc	h: 1 Matrix	: Solid	6 Ro - 76	1.1							
Units: mg/kg Date Analyzed:			RROGATE R	ECOVERY S	STUDY	(63.00)							
TPH By SW8015 Mod Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags							
1-Chlorooctane		72.9	99.6	73	70-135	194							
o-Terphenyl	1	42.1	49.8	85	70-135	and a second							
Lab Batch #: 836230 Sample:	591448-1-BSD / BSD	Batc	h: 1 Matrix	solid		under the							
Units: mg/kg Date Analyzed:	12/16/10 14:42	SU	RROGATE R	ECOVERY S	STUDY								
TPH By SW8015 Mod Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags							
1-Chlorooctane		72.8	99.6	73	70-135	1							
o-Terphenyl		38.1	49.8	77	70-135								
Lab Batch #: 836230 Sample:	591448-1-BLK / BLK	Batcl	h: 1 Matrix	c:Solid									
Units: mg/kg Date Analyzed:	12/16/10 15:01	SU	RROGATE R	ECOVERY S	STUDY	1 Arrit							
TPH By SW8015 Mod Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags							
I-Chlorooctane	The States of	72.7	99.7	73	70-135	1945							
o-Terphenyl		35.9	49.9	72	70-135								

* Surrogate outside of Laboratory QC limits
** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.

Project Name: Scharb 9 # 2

Vork Orders : 400790, Lab Batch #: 836230 Sample: 400790-001 /	SMP Batc	Project I h: 1 Matrix			
Units: mg/kg Date Analyzed: 12/16/10 15:2	-	RROGATE R		STUDY	3.5
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	72.5	99.8	73	70-135	1
o-Terphenyl	37.4	49.9	75	70-135	
Lab Batch #: 836230 Sample: 400790-002 /	SMP Bate	h: 1 Matrix	x:Soil	nian Cal	67 51
Units: mg/kg Date Analyzed: 12/16/10 15:3	39 SU	RROGATE R	ECOVERY	STUDY	1211
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	74.6	99.8	75	70-135	
o-Terphenyl	38.4	49.9	77	70-135	1923
Lab Batch #: 836230 Sample: 400790-002 S	S/MS Batcl	h: 1 Matrix	k:Soil	124	
Units: mg/kg Date Analyzed: 12/16/10 15:5	57 SU	RROGATE R	ECOVERY	STUDY	24.35
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	71.3	100	71	70-135	
o-Terphenyl	36.8	50.2	73	70-135	
Lab Batch #: 836230 Sample: 400790-002 S	SD / MSD Batcl	h: 1 Matrix	:Soil		1.25%
Units: mg/kg Date Analyzed: 12/16/10 16:1	6 SU	RROGATE R	ECOVERY	STUDY	TA-AL
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	70.6	101	70	70-135	
o-Terphenyl	39.9	50.3	79	70-135	1 Parts

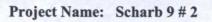
* Surrogate outside of Laboratory QC limits
 ** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

BS / BSD Recoveries

Project Name: Scharb 9 # 2



Work Order #: 400790 Analyst: SEE Lab Batch ID: 836181 Sample:	Da 591409-1-BKS	ite Prepare Batch	ed: 12/15/20	10	Project ID: Date Analyzed: 12/15/2010 Matrix: Solid										
Units: mg/kg		BLAN	K /BLANK	SPIKE / F	BLANK SPIKE DUPLICATE RECOVERY STUDY										
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag				
Benzene	ND	0.1004	0.1032	103	0.0996	0.1003	101	3	70-130	35					
Toluene	ND	0.1004	0.0912	91	0.0996	0.0896	90	2	70-130	35					
Ethylbenzene	ND	0.1004	0.0915	91	0.0996	0.0895	90	2	71-129	35	1000				
m_p-Xylenes	ND	0.2008	0.1791	89	0.1992	0.1743	88	3	70-135	35	in the				
o-Xylene	ND	0.1004	0.0913	91	0.0996	0.0893	90	2	71-133	35	1955				
Analyst: LATCOR Lab Batch ID: 836214 Sample: Units: mg/kg	D: 836214-1-BKS	Batch			BLANK S	PIKE DUP		Matrix: S	1. 1. 1. 1. 1. 1. 1. 1.	DY					
Anions by E300 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag				
Chloride	ND	10.0	9.52	95	10	9.56	96	0	75-125	20					

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Work Order #: 400790 Analyst: BEV	14			d: 12/16/20	10		Project ID: Date Analyzed: 12/16/2010 Matrix: Solid										
Lab Batch ID: 836230 Units: mg/kg	Sample: 591448-1-B	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY															
TPH By SW8015 Mod Analytes		Alod Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag					
C6-C12 Gasoline Range Hydroc	arbons	ND	996	1020	102	996	969	97	5	70-135	35						
C12-C28 Diesel Range Hydrocar	rbons	ND	996	919	92	996	893	90	3	70-135	35						

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Final 1.000

XENCO Laboratories Form 3 - MS Recoveries												
Project Name: Scharb 9 # 2												
Work Order #: 400790												
Lab Batch #: 836214			Pro	ject ID:	:							
Date Analyzed: 12/16/2010	Date Prepared: 12/1	6/2010	A	nalyst: L	ATCOR							
QC- Sample ID: 400790-001 S	Batch #: 1		N	fatrix: S	oil							
Reporting Units: mg/kg	MATH	RIX / MA	TRIX SPIKE	RECO	VERY ST	UDY						
Inorganic Anions by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag						
Chloride	17.1	113	124	95	75-125							

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference [E] = 200*(C-A)/(C+B) All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS / MSD Recoveries

Project Name: Scharb 9 # 2

Work Order #: 400790

Lab Batch ID: 836181 Date Analyzed: 12/16/2010	QC- Sample ID: Date Prepared:				tch #: alyst:	1 Matrix SEE	: Soil				
Reporting Units: mg/kg	State State	N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY	- 10 · · · ·	
BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	ND	0.1146	0.1072	94	0.1125	0.1041	93	3	70-130	35	
Toluene	ND	0.1146	0.0951	83	0.1125	0.0941	84	1	70-130	35	
Ethylbenzene	ND	0.1146	0.0953	83	0.1125	0.0927	82	3	71-129	35	()
m_p-Xylenes	ND	0.2291	0.1851	81	0.2250	0.1811	80	2	70-135	35	
o-Xylene	ND	0.1146	0.0952	83	0.1125	0.0938	83	1	71-133	35	1.2
Lab Batch ID: 836230 Date Analyzed: 12/16/2010	QC- Sample ID: Date Prepared:				tch #: alyst:	1 Matrix BEV	: Soil				
Reporting Units: mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA'	TE REC	OVERY	STUDY	a shirth a	575
TPH By SW8015 Mod Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydrocarbons	ND	1110	1060	95	1110	1060	95	0	70-135	35	131
C12-C28 Diesel Range Hydrocarbons	ND	1110	836	75	1110	822	74	2	70-135	35	200

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Project ID:

Sample Duplicate Recovery

Project Name: Scharb 9 # 2

Work Order #: 400790

Lab Batch #: 836214 Date Analyzed: 12/16/2010 08:23 QC- Sample ID: 400790-001 D Reporting Units: mg/kg	Date Prepar Bate		Mat	Project I lyst:LATC trix: Soil DUPLIC		OVERY
Anions by E300 Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride		17.1	16.3	5	20	
Lab Batch #: 836162 Date Analyzed: 12/16/2010 11:52 QC- Sample ID: 400790-001 D	Date Prepar Bate	red: 12/16/2010		lyst: JLG trix: Soil		
Reporting Units: %		SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Percent Moisture Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Percent Moisture	1.	11.3	11.5	1	20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

Xenco Laboratories

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

	mental Lab of Tex	88									-			0 Eas											432- 432-						
De	oject Manager:	LOG	AN A	UNE	720	N	at is		4								3	Pro	ojeci	Nan	ne:	5	HAN	15	9	1	#	2			_
	ompany Name	RIO	SERVI	CE	5	N	1. 1						10				1		Pr	ojeci	:#:_										
				1			Est Mark								-			F	Proje	oct Lo	DC:_	L	NN		0	RG	RAT	TIW	<u>`</u>		
	ompany Address:		426	Ix			199							3.9	H.					PO	#:					-					
	ty/State/Zip:						Fax No:							24	4		R	epor	t Fo	rmat	0	s s	and	ard	1	01	RRP	,		NPDE	S
	elephone No:	Th	St.M	\subset	_		e-mail:		1.			·		20.FV	hat	20	, val		(_0	~							4			19 ³	_
S	ampler Signature		5		1					1							1		F	_	_	TCLI	-	naly	ze Fo	r:	T	T	П		
(lab use onl		20								F	1080	vatio	n & #	of Cor	ntaine	18	M	atrix	8		1	TOTAL		F	H	0				48, 72	1
ORDER #	: 4057	10							Г	T	T	T	T	T	Τ		8	le de	108	1006		8	PH Q4			EX 826				ule) (24)	1
se only)				g Depth	epth	mpled	mpled	P	Containers							pecify)	g Water SL-Stud	rdwater S=Soil/S	418.1 8015M	TX 1005 XT	Cations (Ca, Mg, Na, K)	Anione (CJ) SO4, Alicainnity) SAR / ESP / CFC	s Ag Ba Cd Cr Pb Hg		ites	BTEX 80218/5030 or BTEX 8260				AT (Pre-Schedt	d TAT
AB # (lab use only)	Fil	ELD CODE		Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of (HNOs	Ę	H ₂ SO4	Na S.O.	None	Other (S		L GW = Grow	TPHE 41	TPH	Cations ((Anione (CU) SO4, I	Metals: As Ag Ba	Volatiles	· Semivolatiles	BIEVER	RCI N.O.R.M.			RUSH TAT (Pm	Standard TAT
01	TPZO	and the second se	2:15Pm		B	12-15-10	2:15P~	-	1	X	-	+	+	+	+	+		5	X X		-	X	+	-	X	x	+	+	++	4	7
OZ	TPSR	- 10'	-121		10	12-15-10	1:00 Pm	-	1	X	-	+	+	+	+	+	-	>	T		1	9	+	1	-	4	+	t		T	t
	-		Congo Santa		5	120	erentes 5						1		T							T			Π	1	-	T	\square	-	+
	14.		1.258								-	-	+	-	+	-	-	-	-		-	+	+	+	H	+	+	+	++	+	+
			Contra Contra					-	+	H	-	-	+	+	+	+	-		\vdash	\square	+	+	+	1	H	+	+	T	H	+	t
				-	-			T	T				1		T	T						T	T		Π	T	1	T	\square	1	L
					. V				F				_	-	-	-	-				+	+	-	-	H	+	+	+	++	+	+
Special In	nstructions:					1	1		L			1									Sam	ple C	onta	Iners	nents: intac dspac	t?		1	80	NN	
Relinquisk	ed by: 11		Date,	1	me	Received by:									-	De	ate		Tim	9	Labe	ls on ody s	con	aine on c	n(s) ontain	ner(s	5		S.	N	
Relinquish	et by		12/15/10 Date		me	Received by:			-		1	1		14	1	De	ate		Tim		Samp	y Sar	and npler	Deliv /Clier	vered nt Rep UPS	. ? D	OHL	Fe	100-0000	N N Lone S	itar
Relinquish	ed by:	1 Cart	Date	T	me	Received by EL	ua El	0.0	~			1			1	Da 2 .15	ate 5.1(Tim		Tem	berat	urel	pon	Rece	ipt:			-1.		

XENCO Laboratories Atlanta, Boca Raton, Corpus Christi, Dallas Houston, Miami, Odessa, Philadelphia Phoenix, San Antonio, Tampa Document Title: Sample Receipt Checklist Document No.: SYS-SRC Revision/Date: No. 01, 5/27/2010 Effective Date: 6/1/2010 Page 1 of 1

Prelogin / Nonconformance Report - Sample Log-In

Client: R	10 Service	S	N Paral
Date/Time:	12.15.10	17:16	
Lab ID #:	40070	10	Constant Providence
Initials:	AE	1997	1.000

Contacted by:____

Sample Receipt Checklist

1. Samples on ice?	Blue	Water	No	
2. Shipping container in good condition?	(Yes)	No	None	5.50
3. Custody seals intact on shipping container (cooler) and bottles?	Yes	No	N/A	State 1
4. Chain of Custody present?	Yes	No		
5. Sample instructions complete on chain of custody?	Yes	No		1246 14
6. Any missing / extra samples?	Yes	(No)	With Star	
7. Chain of custody signed when relinquished / received?	Yes	No	Aug Start	1.
8. Chain of custody agrees with sample label(s)?	Yes	No	120112	
9. Container labels legible and intact?	Yes	No	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
10. Sample matrix / properties agree with chain of custody?	Tes,	No		grading.
11. Samples in proper container / bottle?	(Yes)	No	1	R. A.
12. Samples properly preserved?	Yes	No	N/A	124
13. Sample container intact?	Yes	No		300
14. Sufficient sample amount for indicated test(s)?	(Yes	No	1.000	
15. All samples received within sufficient hold time?	(Yes)	No	Ward and a second	Station -
16. Subcontract of sample(s)?	Yes	No	(NA)	12 - 12
17. VOC sample have zero head space?	Yes	No	N/A	1. A. 13
18. Cooler 1 No. Cooler 2 No. Cooler 3 No.	Cooler 4 1	No.	Cooler 5 No.	1. 1. 1. 2
lbs 10.1 °C lbs °C lbs	°C Ib	s o	lbs	°C

Nonconformance Documentation

Contact:____

100

Date/Time:

Regarding:

Corrective Action Taken:

.

Check all that apply:
Cooling process has begun shortly after sampling event and out of temperature condition acceptable by NELAC 5.5.8.3.1.a.1.
Clinitial and Backup Temperature confirm out of temperature conditions
Client understands and would like to proceed with analysis

Appendix 5 Photographs

Photo No. 1: A view to the south showing the preliminary excavation and the re-built tank battery to the right.

Photo No. 2: View to the south showing the completed excavation and the re-built tank battery to the right.

SOIL ABATEMENT COMPLETION REPORT SCHARB 9 TANK BATTERY 2 API WELL NUMBER 30-025-28195 UNIT F, SECTION 9, TOWNSHIP 19S, RANGE 35E LEA COUNTY, NEW MEXICO

Photo No. 3: View to the northwest showing the chloride-contaminated soil being loaded for off-site disposal.

Photo No. 4: View to the west showing the excavation bottom being compacted by the dozer before placement of the clay liner. Note the orange clay liner fill marks on the excavation walls.

SOIL ABATEMENT COMPLETION REPORT SCHARB 9 TANK BATTERY 2 API WELL NUMBER 30-025-28195 UNIT F, SECTION 9, TOWNSHIP 19S, RANGE 35E LEA COUNTY, NEW MEXICO

Photo No. 5: View to the south of red clay liner material being pushed into the excavation by the dozer.

Photo No. 6: View to the southeast showing the excavation backfilled with caliche.

SOIL ABATEMENT COMPLETION REPORT SCHARB 9 TANK BATTERY 2 API WELL NUMBER 30-025-28195 UNIT F, SECTION 9, TOWNSHIP 19S, RANGE 35E LEA COUNTY, NEW MEXICO



Photo No. 7: View to the south showing the restored site with topsoil.

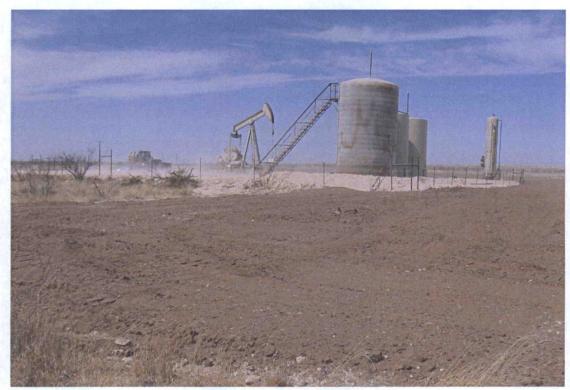


Photo No. 8: View to the northwest of the restored site with topsoil.

SOIL ABATEMENT COMPLETION REPORT SCHARB 9 TANK BATTERY 2 API WELL NUMBER 30-025-28195 UNIT F, SECTION 9, TOWNSHIP 19S, RANGE 35E LEA COUNTY, NEW MEXICO