Administrative/Environmental Order

AE Order Number Banner

Report Description

This report shows an AE Order Number in Barcode format for purposes of scanning. The Barcode format is Code 39.

App Number: pJXK1610238792

1RP - 4241

LINN OPERATING, INC.

8/23/2016

HOBBS OCD

JUL 21 2011

RECEIVED

July 19, 2011

Mr. Geoffery Leking Oil Conservation Division – District 1 New Mexico Energy, Minerals and Natural Resources Department 1625 North French Drive Hobbs, New Mexico 88240

Re: Soil Abatement Completion Report Scharb 9 Battery 2 API Well Number 30-025-28195 Unit F, Section 9, Township 19S, Range 35E Lea County, New Mexico

Dear Mr. Leking:

On behalf of LINN Operating, Inc. (LINN), SKA Consulting, L.P. (SKA) has completed abatement activities associated with historical saltwater releases at the Scharb 9 Battery 2 location. The enclosed report documents the abatement activities.

If you have any questions regarding the report, please do not hesitate to contact me at (713) 266-6056 or <u>mike.schultz@skaconsulting.com</u>.

Sincerely,

SKA CONSULTING, L.P.

Willit

Mike Schultz, P.E. Vice President and Partner

Enclosure

Cc: Daniel Frick, LINN Operating, Inc. w/o enclosure

G:\2009\12009-0003\Letters\12009-0003.L02.doc

SKA Consulting, L.P. • 1515 Witte Road, Suite 150 • Houston, Texas 77080 • 713.266.6056 phone • 713-266-0996 fax

Soil Abatement Completion Report Scharb 9 Tank Battery 2 API Well Number 30-025-28195 Unit F, Section 9, Township 19S, Range 35E Lea County, New Mexico

Prepared for:

Linn Operating, Inc. 600 Travis Street, Suite 5100 Houston, Texas 77002

June 2011

Project No. 12009-0003

SKA Consulting, LP 1515 Witte Rd., Suite 150 Houston, Texas 77080 P: 713.266.6056 F: 713.266.0996 www.skaconsulting.com

SOIL ABATEMENT COMPLETION REPORT **SCHARB 9 TANK BATTERY 2** API WELL NUMBER 30-025-28195 UNIT F, SECTION 9, TOWNSHIP 19S, RANGE 35E LEA COUNTY, NEW MEXICO

SKA PROJECT NO. 12009-0003

Prepared for:

LINN OPERATING, INC. 600 TRAVIS STREET, SUITE 5100 HOUSTON, TEXAS 77002

Prepared by:

SKA CONSULTING, L.P. 1515 WITTE ROAD, SUITE 150 HOUSTON, TEXAS 77080

Prepared by:

Millug-ignature

Reviewed by:

SCOTT K. LEAFE PRESIDENT

MIKE SCHULTZ, P.E. PROJECT MANAGER

Signature

June 2011

TEXAS REGISTERED ENGINEERING FIRM NO. F-005009 TEXAS REGISTERED GEOSCIENCE FIRM NO. 50011

Table of Contents

1.0	Executive Summary	1
2.0	Introduction	2
	2.1 Site Background	
	2.2 Surface Topography	
	2.3 Geological Setting	3
	2.4 Hydrogeology	
3.0	Site Investigation Activities	
	3.1 Sample Collection and Analysis	4
	3.2 Soil Analytical Result Evaluation	
4.0	Abatement Activities	
	4.1 Soil Abatement	5
	4.2 Site Restoration	5
5.0	Conclusions	6

List of Figures

Figure 1 – Site Vicinity and Topographic Map Figure 2 – Site Plan and Sample Location Map

List of Tables

Table 1 – Summary of Field Screening Results for Chloride Concentrations Table 2 – Summary of Soil Analytical Results

List of Appendices

Appendix 1 - Release Notification and Corrective Action Form

Appendix 2 - References

Appendix 3 - Field Analytical Report Forms (Rio Services)

Appendix 4 - Laboratory Analytical Reports and Chain-of-Custody Documents

Appendix 5 - Photographs

SKA Consulting, L.P Houston, Texas

1.0 Executive Summary_

SKA Consulting, L.P. (SKA) was retained by Linn Operating, Inc. (Linn) to conduct the soil abatement at the Scharb 9 Tank Battery 2 (Site) located at Unit F, Section 9, Township 19 South, Range 35 East in Lea County, New Mexico. See *Figure 1* for a Site Vicinity and Topographic Map. The Site American Petroleum Institute (API) well number is 30-025-28195. The Site is located on private land owned by Mr. Chris Northcutt.

On July 9, 2010, Linn discovered a historical release of produced saltwater. The source of the release is not well documented, though impacted soil was observed around the heater treater, tanks, pumps and wellhead. The existing tank battery was moved and re-built to the west of the impacted area. On December 17, 2010, the release was reported to the New Mexico Energy, Minerals, and Natural Resources Department, Oil Conservation Division (OCD). According to the Release Notification, the proposed abatement plan was to remove the upper 4 feet of impacted soil and to line the excavation with a composite geotextile and high-density polyethylene (HDPE) liner, backfill, and seed. This preliminary abatement plan was denied by the OCD. SKA and Linn representatives met with the OCD on January 18, 2011 and discussed a revised abatement plan that involved excavation of the upper 10 feet of impacted soil, placement of a compacted clay liner, backfilling, replacement of topsoil, and seeding. The OCD approved the revised abatement plan on February 9, 2011.

SKA implemented the approved abatement plan and initially hauled off impacted soil stockpiled by Linn's initial abatement contractor, Rio Services (Rio). Because the chloride concentration of the stockpiled impacted soil was less than 1,000 milligrams per kilogram (mg/kg), the impacted soil could be landfarmed at the nearest approved disposal facility, Lazy Ace Land Farm, near Eunice, New Mexico. In accordance with the approved abatement plan, SKA continued the excavation to an ultimate depth of 10 feet below ground surface (ft-bgs). The excavation was backfilled to a depth of 8 ft-bgs with clay obtained from the Lazy Ace Land Farm. The clay was graded and machine compacted with a trackhoe. The excavation was further backfilled up to 2 ft-bgs using native caliche obtained on site. The upper two feet of the excavation was backfilled using topsoil obtained from the Lazy Ace Land Farm and approved by the landowner. After backfilling, the excavated area and other adjacent disturbed areas were reseeded.

SKA has developed the following conclusions based on the completed abatement activities at the Site:

- Chloride-impacted soil to a depth of 10 ft-bgs has been successfully removed from the Site;
- The chloride-impacted soil was properly disposed off-site at the Lazy Ace Land Farm;
- A 2-foot thick clay liner was installed to limit infiltration of rainfall at the affected area; and,
- The Site was properly backfilled, restored with topsoil, and seeded.

SKA on behalf of Linn, requests concurrence from the OCD that no further abatement actions are needed at the Site.

SKA Consulting, L.P Houston, Texas 12009-0003 June 2011

G:\2009\12009-0003\Reports\12009-0003.R01.doc

2.0 Introduction

The Site is located at Unit F, Section 9, Township 19 South, Range 35 East in Lea County, New Mexico. This Site is about 20 miles west of Hobbs, New Mexico and consists of an oil/gas production well, heater treater and tank battery. The adjacent property in all directions is native grassland prairie. References cited in this section and in the remainder of this report are contained in *Appendix 2*.

2.1 Site Background

On December 17, 2010, Linn reported a historical release of produced saltwater to the New Mexico Energy, Minerals, and Natural Resources Department, Oil Conservation Division (OCD). The Release Notification and Corrective Action form is provided in *Appendix 1*. The source of the release is not well documented, though impacted soil was observed around the heater treater, tanks, pumps and wellhead. The existing tank battery was moved and re-built to the west of the impacted area. According to the Release Notification, the proposed abatement plan was to remove the upper 4 feet of impacted soil and to line the excavation with a composite geotextile and high-density polyethylene (HDPE) liner, backfill, and seed. This preliminary abatement plan was denied by the OCD. SKA and Linn representatives met with the OCD on January 18, 2011 and discussed a revised abatement plan that involved excavation of the upper 10 feet of impacted soil, placement of a compacted clay liner, backfilling, replacement of topsoil, and seeding. The OCD approved the revised abatement plan on February 9, 2011.

2.2 Surface Topography

According to *Geology and Ground-Water Conditions in Southern Lea County, New Mexico*, the Site is located just south of the Llano Estacado which is an extension of the southern High Plains. The Llano Estacado is a smooth plateau about 100 to 300 feet higher in elevation than the surrounding region which gently slopes to the southeast at 10 to 20 feet per mile. The western and southern edge of the Llano Estacado is Mescalero Ridge which forms the western boundary of Lea County. Mescalero Ridge is actually an escarpment of the Llano Estacado with the Pecos River valley to the west.

The Site is depicted on the USGS Ironhouse Draw 7.5-minute topographic quadrangle at approximately 3,830 feet above mean sea level (*Figure 1*). Regional drainage appears to be generally to the southeast on the USGS quadrangle map toward the Pecos River. The Llano Estacado plateau is evident north and east of the Site as the topography becomes much flatter and the USGS quadrangle map notes many depressions and playa features.

SKA Consulting, L.P Houston, Texas

2.3 Geologic Setting

According to *Geology and Ground-Water Conditions in Southern Lea County, New Mexico*, the surface geology of the Site is generally Quaternary alluvium. The Site lies in a geological transition area between the Llano Estacado and the Laguna Valley south of Mescalero Ridge. The Laguna Valley is a vast sand dune area with sand deposits and dunes up to 40 feet thick. The surface topography of the Site area, with its well-developed drainage pattern, illustrates this geological transition between the elevated Llano Estacado plateau and the near featureless Laguna Valley.

According to a *Soil Survey for Lea County, New Mexico*, the dominant soil type at the Site is the Kimbrough gravelly loam. This soil typically develops on 0 to 3 percent slopes between 3,600 to 4,200 feet elevation in areas with 12 to 15 inches of annual precipitation. Kimbrough gravelly loam is derived from calcareous alluvium and calcareous eolian deposits. This soil is characteristically well drained, but with a very low available water capacity. A typical soil profile finds cemented material below 6 inches.

2.4 Hydrogeology

According to *Geology and Groundwater Conditions in Southern Lea County, New Mexico*, the principal aquifer underlying southern Lea County is the High Plains Aquifer locally known as the Ogallala Formation. The Ogallala Formation is generally an unconfined aquifer with saturated thicknesses ranging up to 200 feet. Recharge occurs primarily through direct infiltration of precipitation and runoff collected in playas and arroyos. The regional groundwater flow direction in the Ogallala Formation is to the southeast, though exploitation of the Ogallala may shift the local groundwater flow direction. Water quality in the Ogallala is generally suitable for most uses, though the water is often hard. Specific conductance in most of the aquifer is less than 1,000 micromhos/centimeter, corresponding to a total dissolved solids concentration of about 300 mg/L. Higher concentrations of dissolved solids have been observed in areas of increased water elevation decline.

The Site lies south of the southern boundary of the Ogallala Formation along the Mescalero Ridge escarpment. In this area, groundwater moves generally south from the Ogallala into the Quaternary alluvium in the Laguna Valley. Depths to groundwater in this area have been reported as 25-40 ft-bgs.

SKA Consulting, L.P Houston, Texas

3.0 Site Assessment Activities

The site activities and results discussed in this section include those of Rio Services and SKA.

3.1 Sample Collection and Analysis

On July 9, 2010, Linn reported a release of produced saltwater to the OCD associated with historical activities around the heater treater, tanks, pumps and wellhead at the Site. Linn had an excavation contractor, Rio Services (Rio), mobilize to the Site and conduct test pit sampling at 6 locations in the contaminated area. The test pits were initially advanced on October 14, 2010 to a depth of 1 foot. Later on November 18-19, 2010, the test pits were advanced further to a maximum depth of 20 ft-bgs at TP1. The test pits were further advanced on December 14-16, 2010. The test pit locations are shown on the Site Plan and Sample Location Map (Figure 2). During test pit excavation, soil samples were selected and field screened by Rio for chloride concentrations. The chloride field screening method is not known. Rio's field screening data is provided in Table 1. Rio's Field Analytical Report Forms are provided in Appendix 3. In addition, one soil sample from each test pit was sent to Xenco Laboratories in Odessa, Texas for analysis of benzene, toluene, ethylbenzene, and total xylenes concentrations by Environmental Protection Agency (EPA) Method 8021B; total petroleum hydrocarbons (TPH) by EPA Method SW8015 Modified; and, for chloride concentrations by EPA Method E300. Laboratory data are summarized in Table 2 and laboratory analytical reports are provided in Appendix 4.

3.2 Soil Analytical Result Evaluation

The depth to groundwater is less than 50 ft-bgs in neighboring windmill wells, so the site received the OCD's most stringent ranking in accordance with the OCD's *Guidelines for the Remediation of Leaks, Spills, and Releases.* Therefore, the required soil cleanup levels were:

Benzene: 10 mg/kg Total BTEX: 50 mg/kg TPH: 100 mg/kg

The OCD default cleanup level for chloride concentrations in soil is 250 mg/kg.

All of the soil samples analyzed in the laboratory reported contaminant concentrations below their respective applicable OCD cleanup levels. However, chloride concentrations in many soil samples field screened by Rio exceeded the OCD default cleanup level for chloride concentrations as shown in *Table 1*.

SKA Consulting, L.P Houston, Texas

4.0 Soil Abatement Activities

The field-screened soil assessment performed by Rio indicated that the Site had seen releases of saltwater that are probably historical in nature. These releases had impacted soil with elevated chloride concentrations above the OCD default chloride cleanup of 250 mg/kg.

4.1 Soil Abatement

Based on the field-screened chloride concentration data summarized in *Table 1*, Rio excavated the upper 4 feet of soil in the larger excavation area to the east of the new tank battery location. Rio also excavated the upper 2 feet of soil in the smaller excavation area south of the new tank battery. These excavated soils were stockpiled on site pending OCD approval of the excavation activities. The proposed abatement plan was to remove the upper 4 feet of impacted soil and to line the excavation with a composite geotextile and high-density polyethylene (HDPE) liner, backfill, and seed. OCD denied the proposed abatement plan on December 17, 2010. SKA and Linn representatives met with the OCD on January 18, 2011 and discussed a revised abatement plan that involved excavation of the upper 10 feet of impacted soil, placement of a compacted clay liner, backfilling, replacement of topsoil, and seeding. The OCD approved the revised abatement plan on February 9, 2011.

SKA implemented the approved abatement plan and collected composite soil samples of the soil stockpile. These samples exhibited chloride concentrations of less than 1,000 mg/kg so the soil was eligible for landfarming. The stockpiled soil was hauled and disposed at the Lazy Ace Land Farm, near Eunice, New Mexico. SKA continued the excavation to an ultimate depth of 10 ft-bgs. Additional excavated soil was also disposed of at the Lazy Ace Land Farm. Photographs of the soil abatement activities are provided in *Appendix 5*.

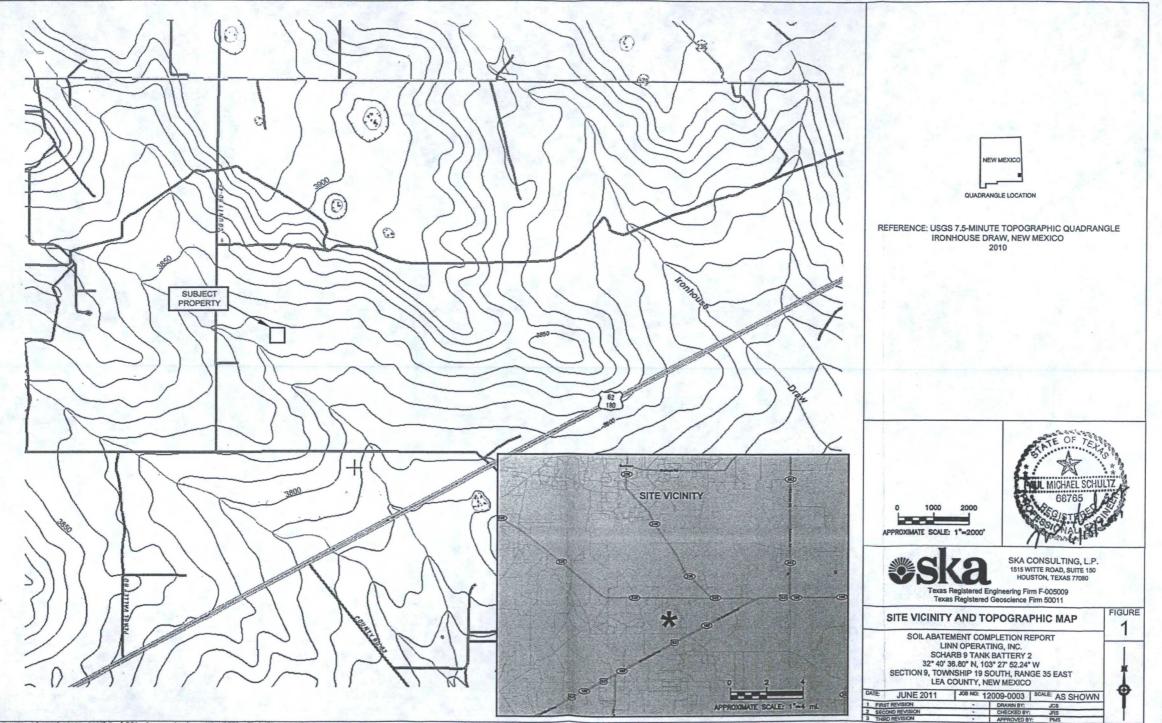
4.2 Site Restoration

The excavation was backfilled to a depth of 8 ft-bgs with clay obtained from the Lazy Ace Land Farm. The clay was graded and machine compacted with a trackhoe. The excavation was further backfilled up to 2 ft-bgs using native caliche obtained from the landowner's on site pit. The upper two feet of the excavation was backfilled using topsoil obtained from the Lazy Ace Land Farm and approved by the landowner. After backfilling, the excavated area and other adjacent disturbed areas were reseeded.

SKA Consulting, L.P Houston, Texas 12009-0003 June 2011

G:\2009\12009-0003\Reports\12009-0003.R01.doc

5.0 Conclusions


SKA has developed the following conclusions based on the completed abatement activities at the Site:

- Chloride-impacted soil to a depth of 10 ft-bgs has been successfully removed from the Site;
- The chloride-impacted soil was properly disposed off-site at the Lazy Ace Land Farm;
- A 2-foot thick clay liner was installed to limit infiltration of rainfall at the affected area; and,
- · The Site was properly backfilled, restored with topsoil, and seeded.

SKA on behalf of Linn, requests concurrence from the OCD that no further abatement actions are needed at the Site.

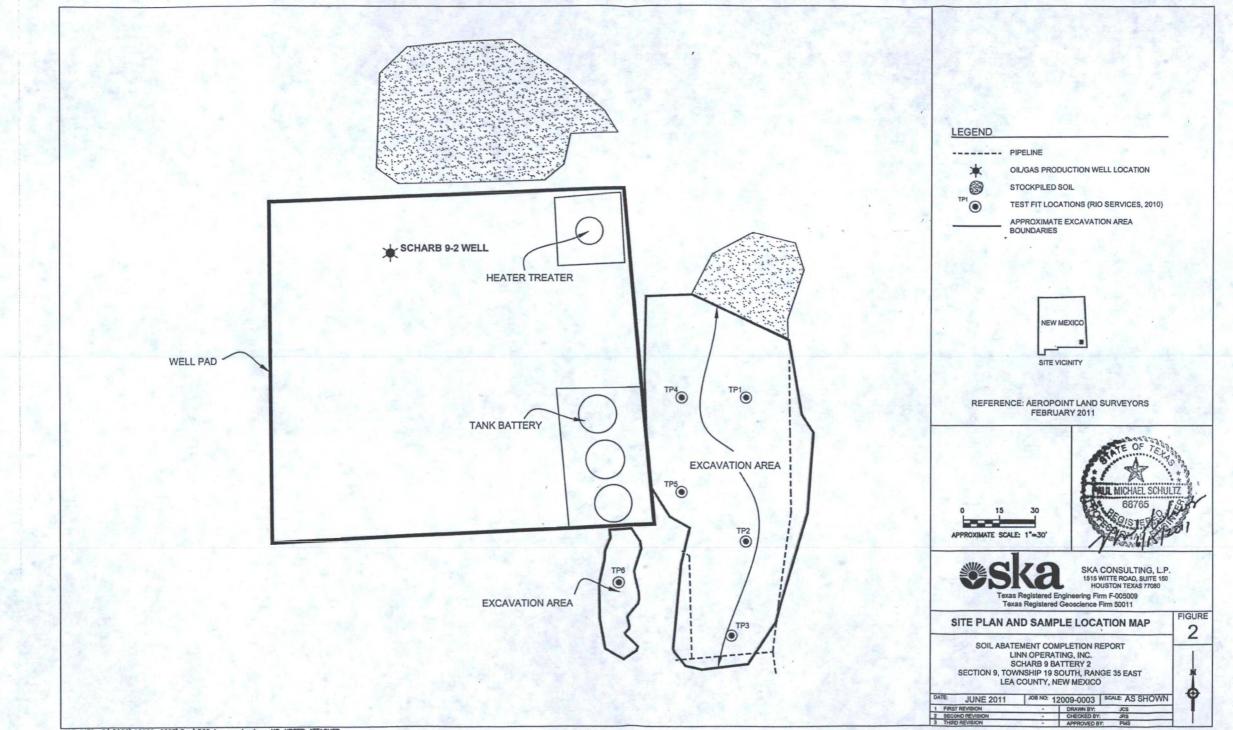

FIGURES

Figure 1 Site Vicinity and Topographic Map

FILE INFO: G:\2009\12009-0003\Dwg\D01a.dwg sandersjc NO XREFS ATTACHED

Figure 2 Site Plan and Sample Location Map

FILE INFO: G:\2009\12009-0003\Dwg\D02.dwg sandersjc NO XREFS ATTACHED

Tables

Table 1 Summary of Field Screening Results for Chloride Concentrations

TABLE 1

SUMMARY OF FIELD SCREENING RESULTS FOR CHLORIDE CONCENTRATIONS SCHARB 9 TANK BATTERY 2 UNIT F, SECTION 9, TOWNSHIP 10 SOUTH, RANGE 35 EAST, LEA COUNTY, NEW MEXICO

Sample			Sam	ple Locatio	n	13 3 3 6	The Star
Depth (ft-bgs)	Background	TP1	TP2	TP3	TP4	TP5	TP6
Surface	146	-	-		-	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	-
1	-	5,878	4,937	540	730	690	285
1.5	- 6	767	-	-	-	-	-
2	139	678	349	513	270	834	149
3		532		586	-	526	1973 - 1
4	-	-	-	651	-	-	-
5	-		547	284			-
6	-		488	509	-	577	-
6.5	-	-			438		-
7	-	-	-	-			-
7.5	-	-	-		326	-	-
8	-	-	- 28	460	-	459	-
8.5	-	-		10-27	376	0	-
9	-	-	1219	-	-	- 3 - 3	- 1
9.5	-	-			509		
10	B	457		111		241	-
10.5	-	-			460	- 12	
11	-	-		-	-		
11.5	-		-	-	111	- 3	-
12		-	668	(10) - S. (1)	-		-
14	-	-	644		-	-	-
16	-	451	642	-	-	-	-
18	-	208	184	1	-		-
20	-	240	2.4	10.0	-	-	-

NOTES:

1. "ft-bgs" represents feet below ground surface.

2. "-" represents not analyzed.

Concentrations in bold and highlighted yellow exceed the NM OCD Default Chloride 3. Remediation Action Level of 250 mg/kg. Table 2 Summary of Soil Analytical Results

IABLE 2
SUMMARY OF SOIL ANALYTICAL RESULTS
SCHARB 9 TANK BATTERY 2
UNIT F, SECTION 9, TOWNSHIP 10 SOUTH, RANGE 35 EAST, LEA COUNTY, NEW MEXICO

SAMPLE DATA		LE DATA ANIONS BTEX			BTEX		TTB:	ТРН				
Sample Name	Sample Depth (ft-bgs)	Sample Date	Method SW90506 mg/kg	Buestie Buesti	Method 8021B mg/kg	Method 8021B mg/kg	Xylenes (total) Method Bug/kg	Method 8021B mg/kg	Ce-C ₁₂ Gasoline poutad frange Hydrocarbons	Manual C ₁₂ -C ₂₈ Diesel C ₁₂ -C ₂₈ Diesel Poytange Hydrocarbons	C2a-C3s Oil C2a-C3s Oil poutabe Kange Hydrocarbons	pottal Petroleum Hydrocarbons Mg/kg
TP1 20 ft	20	12/14/10	91.3	< 0.0011	< 0.0023	<0.0011	< 0.0011	< 0.0011	<17.0	<17.0	<17.0	<17.0
TP2 18 ft	18	12/15/10	17.1	<0.0011	<0.0022	< 0.0011	< 0.0011	< 0.0011	<16.9	<16.9	<16.9	<16.9
TP3 10 ft	10	12/14/10	7.65	<0.0011	<0.0021	< 0.0011	< 0.0011	< 0.0011	<15.9	20.1	<15.9	21.0
TP4 11.5 ft	11.5	12/14/10	69.9	< 0.0011	< 0.0023	< 0.0011	< 0.0011	< 0.0011	<17.1	<17.1	<17.1	<17.1
TP5 10 ft	10	12/15/10	19.3	<0.0011	<0.0022	< 0.0011	<0.0011	< 0.0011	<16.5	<16.5	<16.5	<16.5
TP6 2 ft	2	12/14/10	7.22	<0.0011	<0.0021	<0.0011	<0.0011	< 0.0011	<15.9	19.5	<15.9	19.5
					REGULATOR	RY STANDAR	RDS					
NM OCD Det Action L	fault Ren evels for	A CONTRACTOR OF	250	10	-	-	-	50	-	-	-	100

NOTES:

"-" represents not analyzed.

"--" represents not applicable.

"mg/kg" represents milligrams per kilogram. "<0.0023" indicates the analyte was NOT detected at or above the specified sample detection limit (SDL).

Concentrations in bold exceed their specified SDLs.

Concentrations in bold and highlighted yellow exceed the NM OCD Default Remediation Action Level.

Appendices

Appendix 1 Release Notification and Corrective Action Form

District I 1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Avenue, Artesia, NM 88210			D	State e Energy Minera	of New Mer ls and Natur		Form C-14 Revised October 10, 200			
District III OOil Conse 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 Sout					ervation Di ath St. Fran Fe, NM 87	cis Dr.		Submit 2 Copies to appropria District Office in accordan- with Rule 116 on bac side of for		
			Rel	ease Notificati	on and C	orrective A	ction		V Carlos	
					OPERA	TOR		itial Report	Final Rep	
Name of C	ompany -	Linn Energy			Contact - /	Albert Valero		100 L. 10 L. 10		
Address - 2	2651 JBS F	Parkway, Blo	lg. 4 Ste	F Odessa, TX 79761	Telephone	No 432-366-	1557			
Facility Na	me - Scha	rb 9 #2 Batte	ery		Facility Ty	pe - Battery		1. 1. 1. 1.		
Surface Ov	mer - State	8		Mineral Owne	r		Leas	e No.		
	Chr	is Nor-	then	LOCATI	ON OF RE	FASE		11.1	1	
Unit Letter F	Section 9	Township 19S	Range 35E		th/South Line	Feet from the	East/West Lin	e County Lea		
Type of Rele				atitude <u>32° 40.615'</u> NATUR	E OF REL		wn Volum	e Recovered - nd Hour of Di	Unknown scovery – 7-9-10	
Source of Re					Unknown					
	ate Notice (Yes 🛛	No 🗌 Not Require	IF YES, TO	Whom?				
Source of Re Was Immedi By Whom?			Yes 🛛	No 🗌 Not Require	d If YES, To Date and I	lour				
Was Immedi		thed?	Yes 🛛		d If YES, To Date and I		the Watercourse.			

points; Depth to Groundwater - 20 points (GW = 24' on SEO Data). Total ranking for the site is 20 point TPH Method 8015M - 100 ppm; Chloride - 250 ppm; BTEX 8021B - 50 ppm and Benzene - 0.2 ppm.

Describe Area Affected and Cleanup Action Taken.* Attached is a plat map, field analysis and lab conformations of the delineation. Due to the hard rock, Linn Energy proposes to remediate the site with a risk based closure. Linn proposes to excavate 4' of impacted soil and haul to an approved disposal. At the four foot depth the entire site will be layered with 2" of clean sand, then a 4 oz. Geotextile Liner, then a 40 mil poly liner. Above the poly liner another layer of Geotextile felt and sand will be installed. The site will then be backfilled with clean native soil and contoured to the surrounding area. The site will be re-seeded with a custom seed mixture approved by the landowner. Due to the hard rock, low level of chlorides below 4' and the poly liner to be installed, Linn Energy feels that the groundwater will be protected from contamination using this risk based closure.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

OIL CONSERVATION DIVISION					
Approved by District Supervisor:	DE	Name of Street of Street of Street			
Approval Date:	Expiration	Date:			
Conditions of Approval:		Attached			
	Approved by District Supervisor: Approval Date:	Approved by District Supervisor:			

ets II Neces

- EXCAVATE TO CLICAN MEDDRIVEY JUNIOR HOBES, 12/17/10

Appendix 2 References

REFERENCES

SKA Consulting, L.P. does not warrant the data of regulatory agencies or other third parties supplying information used in the preparation of this report. Documents and commercial information services used in the preparation of this report, as listed below, are all current as most recently published.

Soil Survey of Lea County, New Mexico, Natural Resources Conservation Service, May 17, 2011

Guidelines for the Remediation of Leak, Spills, and Releases, New Mexico Oil Conservation Division, Santa Fe, New Mexico, August 13, 1993, pg 5.

Ironhouse Draw, New Mexico 7.5 Minute Quadrangle Map, United States Geological Survey, 2010

Geology and Ground-Water Conditions in Southern Lea County, New Mexico, State Bureau of Mines and Mineral Resources, Socorro, New Mexico, 1961 Appendix 3 Field Analytical Report Forms (Rio Services)

Rio Services

P O Box 69139 Odessa, TX 79769 Phone (432) 530-2803 Fax (432) 530-2890

Field Analytical Report Form

Client Linn Energy

Analyst Logan Anderson / Bobby Steadham

Site Scharb 9 #2

Sample ID	Date	Depth	418.1 TPH / PPM	Cl/PPM	PID / PPM	GPS
TP1	10-14-10	1'	- 原語	5,878		
TP1	11-18-10	1' 6"		767		
TP1	11-18-10	2'		678		
TP1	11-19-10	3'		532		
TP1	11-19-10	10'		457		
TP1	12-16-10	16'	1.6	451		
TP1	12-16-10	18'		208	and the	
TP1	11-19-10	20'	- 54	240		
TP1	11-19-10	20'		187		
TP2	10-14-10	1'		4,937		
TP2	11-18-10	2'		349		
TP2	11-19-10	5'	1.	547		and the second second
TP2	11-19-10	6'		488		Star & St
TP2	12-15-10	9'		1,219		
TP2	12-15-10	12'		668		
TP2	12-15-10	14'		644		

Analyst Notes

Rio Services

P O Box 69139 Odessa, TX 79769 Phone (432) 530-2803 Fax (432) 530-2890

Field Analytical Report Form

Client Linn Energy

Analyst Logan Anderson

Site Scharb 9 #2

Sample ID	Date	Depth	418.1 TPH / PPM	CI/PPM	PID / PPM	GPS
TP2	12-15-10	16'		642		
TP2	12-15-10	18'		184		
TP3	10-14-10	1'		540		
TP3	11-19-10	2'		513		
TP3	11-19-10	3'		586		
TP3	11-19-10	4'		651		
TP3	11-19-10	5'		284		
TP3	12-14-10	6'		509		
TP3	12-14-10	8'		460		
TP3	12-14-10	10'		111		
TP4	10-14-10	1'		730		
TP4	11-18-10	2'		270		
TP4	12-14-10	6.5'		438		
TP4	12-14-10	7.5'	1.1.1	326		
TP4	12-14-10	8.5'		376		

Analyst Notes

Rio Services

P O Box 69139 Odessa, TX 79769 Phone (432) 530-2803 Fax (432) 530-2890

Field Analytical Report Form

Client Linn Energy

Analyst Logan Anderson

Site Scharb 9 #2

Sample ID	Date	Depth	418.1 TPH / PPM	CI / PPM	PID / PPM	GPS
TP4	12-14-10	9.5'		509		
TP4	12-14-10	10.5'		460		
TP4	12-14-10	11.5'	1	111		
TP5	10-14-10	1'		690		
TP5	11-18-10	2'		834		
TP5	11-18-10	3'	-	526		
TP5	12-15-10	6'		577		18. 18
TP5	12-15-10	8'		459		1400
TP5	12-15-10	10'		241		
TP6	10-14-10	1'		285		
TP6	11-19-10	2'		149		
			1			
Background	10-14-10	Surface		146		
Background	11-19-10	2'		139		

Analyst Notes

Appendix 4 Laboratory Analytical Reports

Analytical Report 400704

for

Rio Services

Project Manager: Logan Anderson

Linn Energy

16-DEC-10

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-10-6-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330) Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370) Xenco-Boca Raton (EPA Lab Code: FL01273): Florida(E86240),South Carolina(96031001), Louisiana(04154), Georgia(917) North Carolina(444), Texas(T104704468-TX), Illinois(002295), Florida(E86349)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757), California(06244CA), Texas(104704435-10-2), Nevada(NAC-445A), DoD(65816) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code:AZ000989): Arizona (AZ0758)

Final 1.000

16-DEC-10

sonelad #

Project Manager: Logan Anderson Rio Services P.O. Box 69139 Odessa, TX 79769

Reference: XENCO Report No: 400704 Linn Energy Project Address: Scharb 9 #2 Battery

Logan Anderson:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 400704. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 400704 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

ATA

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

nelao

Sample Cross Reference 400704

Rio Services, Odessa, TX Linn Energy

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id	
TP1	S	Dec-14-10 14:30	20 ft	400704-001	
TP3	S	Dec-14-10 15:40	10 ft	400704-002	
TP4	S	Dec-14-10 14:20	11.5 ft	400704-003	
TP6	S	Dec-14-10 16:00	2 ft	400704-004	

CASE NARRATIVE

Client Name: Rio Services Project Name: Linn Energy

Project ID: Work Order Number: 400704 Report Date: 16-DEC-10 Date Received: 12/15/2010

Sample receipt non conformances and Comments: None

Sample receipt Non Conformances and Comments per Sample:

None

Analytical Non Conformances and Comments:

Batch: LBA-836181 BTEX by EPA 8021B SW8021BM

Batch 836181, 1,4-Difluorobenzene recovered below QC limits . Matrix interferences is suspected; data confirmed by re-analysis Samples affected are: 400704-003,400704-001.

Certificate of Analysis Summary 400704 Rio Services, Odessa, TX Project Name: Linn Energy

Project Id:

Contact: Logan Anderson Project Location: Scharb 9 #2 Battery Date Received in Lab: Wed Dec-15-10 12:51 pm

Report Date: 16-DEC-10 Project Manager: Brent Barron II

					Project Manager:	Brent Barron, II
	Lab Id:	400704-001	400704-002	400704-003	400704-004	
Analysis Requested	Field Id:	TP1	TP3	TP4	TP6	
Analysis Requested	Depth:	20 ft	10 ft	11.5 ft	2 ft	
	Matrix:	SOIL	SOIL	SOIL	SOIL	
	Sampled:	Dec-14-10 14:30	Dec-14-10 15:40	Dec-14-10 14:20	Dec-14-10 16:00	
Anions by E300	Extracted:					
	Analyzed:	Dec-15-10 14:05	Dec-15-10 14:05	Dec-15-10 14:05	Dec-15-10 14:05	
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	and a second
Chloride		91.3 4.20	7.65 4.20	69.9 4.20	7.22 4.20	
BTEX by EPA 8021B	Extracted:	Dec-15-10 13:40	Dec-15-10 13:40	Dec-15-10 13:40	Dec-15-10 13:40	
	Analyzed:	Dec-16-10 01:33	Dec-16-10 02:58	Dec-16-10 03:20	Dec-16-10 03:41	
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	
Benzene	Units/RL.	ND 0.0011	ND 0.0011	ND 0.0011	ND 0.0011	
Toluene		ND 0.0023	ND 0.0021	ND 0.0023	ND 0.0021	
Ethylbenzene		ND 0.0011	ND 0.0011	ND 0.0011	ND 0.0011	
m p-Xylenes		ND 0.0023	ND 0.0021	ND 0.0023	ND 0.0021	Later children in the second
o-Xylene	N. 8	ND 0.0011	ND 0.0011	ND 0.0011	ND 0.0011	
Total Xylenes	State State	ND 0.0011	ND 0.0011	ND 0.0011	ND 0.0011	and the second second second
Total BTEX	Contraction and a	ND 0.0011	ND 0.0011	ND 0.0011	ND 0.0011	
Percent Moisture	Extracted:					
	Analyzed:	Dec-16-10 08:30	Dec-16-10 08:30	Dec-16-10 08:30	Dec-16-10 08:30	
	Units/RL:	% RL	% RL	% RL	% RL	
Percent Moisture		12.0 1.00	5.22 1.00	11.6 1.00	5.78 1.00	-
TPH By SW8015 Mod	Extracted:	Dec-15-10 13:50	Dec-15-10 13:50	Dec-15-10 13:50	Dec-15-10 13:50	
	Analyzed:	Dec-16-10 09:25	Dec-16-10 09:44	Dec-16-10 10:03	Dec-16-10 10:22	
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	
C6-C12 Gasoline Range Hydrocarbons	Child ALA	ND 17.0	ND 15.9	ND 17.1	ND 15.9	
C12-C28 Diesel Range Hydrocarbons		ND 17.0	20.1 15.9	ND 17.1	19.5 15.9	
C28-C35 Oil Range Hydrocarbons		ND 17.0	ND 15.9	ND 17.1	ND 15.9	
Total TPH		ND 17.0	20.1 15.9	ND 17.1	19.5 15.9	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron, II

Odessa Laboratory Manager

Final 1.000

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.

JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit

PQL Practical Quantitation Limit

* Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

4143 Greenbriar Dr, Stafford, Tx 77477 9701 Harry Hines Blvd, Dallas, TX 75220 5332 Blackberry Drive, San Antonio TX 78238 2505 North Falkenburg Rd, Tampa, FL 33619 5757 NW 158th St, Miami Lakes, FL 33014 12600 West I-20 East, Odessa, TX 79765 842 Cantwell Lane, Corpus Christi, TX 78408 Phone Fax (281) 240-4200 (281) 240-4280 (214) 902 0300 (214) 351-9139 (210) 509-3335 (210) 509-3334 (813) 620-2000 (813) 620-2033 (305) 823-8500 (305) 823-8555 (432) 563-1800 (432) 563-1713 (361) 884-0371 (361) 884-9116

Final 1.000

Project Name: Linn Energy

Work Orders : 400704, Lab Batch #: 836181 Sam	ple: 591409-1-BKS / Bk	S Bate	Project I h: 1 Matrix	D: x:Solid		
Units: mg/kg Date Analyz	zed: 12/15/10 23:46	SL	RROGATE R	ECOVERY	STUDY	12
BTEX by EPA 802 Analytes	1B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0275	0.0300	92	80-120	
4-Bromofluorobenzene		0.0295	0.0300	98	80-120	
Lab Batch #: 836181 Samj	ple: 591409-1-BSD / BS	D Bate	h: 1 Matrix	x:Solid	2.182	al de la se
Units: mg/kg Date Analyz	ed: 12/16/10 00:07	SU	RROGATE R	ECOVERY	STUDY	also the
BTEX by EPA 802 Analytes	1B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0285	0.0300	95	80-120	
4-Bromofluorobenzene	1.1.1.1	0.0284	0.0300	95	80-120	
Lab Batch #: 836181 Samp	ole: 591409-1-BLK / BL	K Batc	h: 1 Matrix	: Solid	a second	4.1
Units: mg/kg Date Analyz	ed: 12/16/10 01:11	SU	RROGATE R	ECOVERY	STUDY	1997
BTEX by EPA 8021 Analytes	1B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0241	0.0300	80	80-120	Res S
4-Bromofluorobenzene		0.0294	0.0300	98	80-120	1.448
Lab Batch #: 836181 Samp	le: 400704-001 / SMP	Batc	h: 1 Matrix	:Soil		
Units: mg/kg Date Analyz	ed: 12/16/10 01:33	SU	RROGATE R	ECOVERY S	STUDY	10
BTEX by EPA 8021 Analytes	IB	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0230	0.0300	77	80-120	**
4-Bromofluorobenzene		0.0295	0.0300	98	80-120	
Lab Batch #: 836181 Samp	le: 400704-001 S / MS	Bate	h: 1 Matrix	:Soil	mart in the second	2011
Units: mg/kg Date Analyze	ed: 12/16/10 01:54	SU	RROGATE R	ECOVERY S	STUDY	1.1
BTEX by EPA 8021 Analytes	В	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0263	0.0300	88	80-120	200
4-Bromofluorobenzene		0.0281	0.0300	94	80-120	1.01

* Surrogate outside of Laboratory QC limits
 ** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.

Project Name: Linn Energy

Vork Orders : 400704, Lab Batch #: 836181	Sample: 400704-001 SD / M	SD Batc	Project I h: 1 Matri			
Units: mg/kg Dat	e Analyzed: 12/16/10 02:15	SU	RROGATE R	ECOVERY	STUDY	1
BTEX by El		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0262	0.0300	87	80-120	199
4-Bromofluorobenzene	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0.0275	0.0300	92	80-120	No. 14
Lab Batch #: 836181	Sample: 400704-002 / SMP	Batc	h: 1 Matrix	c: Soil	1.4.62	
Units: mg/kg Dat	e Analyzed: 12/16/10 02:58	SU	RROGATE R	ECOVERY	STUDY	Pre St.
BTEX by El Analy		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0251	0.0300	84	80-120	Sec. 2
4-Bromofluorobenzene	20.2	0.0288	0.0300	96	80-120	1.19
Lab Batch #: 836181	Sample: 400704-003 / SMP	Batc	h: 1 Matrix	:Soil	1915 120	
Units: mg/kg Date	e Analyzed: 12/16/10 03:20	SU	RROGATE R	ECOVERY	STUDY	1
BTEX by EF		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0233	0.0300	78	80-120	**
4-Bromofluorobenzene		0.0300	0.0300	100	80-120	
Lab Batch #: 836181	Sample: 400704-004 / SMP	Batc	h: 1 Matrix	:Soil	1	
Units: mg/kg Date	e Analyzed: 12/16/10 03:41	SU	RROGATE R	ECOVERY	STUDY	See.
BTEX by EP Analyt		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0240	0.0300	80	80-120	1
4-Bromofluorobenzene	1	0.0288	0.0300	96	80-120	1.1.1
Lab Batch #: 836178	Sample: 591413-1-BKS / BK	S Bate	h: 1 Matrix	:Solid	in here	125
	Analyzed: 12/15/10 14:48		RROGATE R	ECOVERY	STUDY	1.18
TPH By SW8 Analyt		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	14	72.2	99.5	73	70-135	1-21-55
o-Terphenyl		49.2	49.8	99	70-135	11.83

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Project Name: Linn Energy

Work Orders: 400704, Lab Batch #: 836178 Sample: 591413-1-BSD / B3	SD Bate	Project I th: 1 Matrix	ID: x:Solid		
Units: mg/kg Date Analyzed: 12/15/10 15:07	SU	RROGATE R	ECOVERY	STUDY	6.93
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	76.6	100	77	70-135	VRS 2
o-Terphenyl	38.9	50.2	77	70-135	h.st is
Lab Batch #: 836178 Sample: 591413-1-BLK / Bl	LK Bate	h: 1 Matrix	x:Solid	1.44	and the
Units: mg/kg Date Analyzed: 12/15/10 15:25	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	74.8	100	75	70-135	
o-Terphenyl	38.9	50.0	78	70-135	1875
Lab Batch #: 836178 Sample: 400704-001 / SMP Units: mg/kg Date Analyzed: 12/16/10 09:25	Bate SU	h: 1 Matrix RROGATE R		STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	73.9	99.5	74	70-135	14.15
o-Terphenyl	38.1	49.8	77	70-135	
Lab Batch #: 836178 Sample: 400704-002 / SMP	Batc	h: 1 Matrix	:Soil	13.4.5.5	an ar an
Units: mg/kg Date Analyzed: 12/16/10 09:44	SU	RROGATE R	ECOVERY	STUDY	11 4
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	77.4	100	77	70-135	3155
o-Terphenyl	39.5	50.2	79	70-135	11.158
Lab Batch #: 836178 Sample: 400704-003 / SMP	Batc	h: 1 Matrix	c:Soil		in the second
Units: mg/kg Date Analyzed: 12/16/10 10:03	SU	RROGATE R	ECOVERY	STUDY	1.2010
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	76.6	101	76	70-135	Autoria
o-Terphenyl	39.8	50.3	79	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.

Project Name: Linn Energy

Vork Orders : 400704 Lab Batch #: 836178 Units: mg/kg	4, Sample: 400704-004 / SMP Date Analyzed: 12/16/10 10:22	Project ID: MP Batch: 1 Matrix: Soil SURROGATE RECOVERY STUDY										
	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags						
1-Chlorooctane		75.6	99.9	76	70-135	18.12						
o-Terphenyl	2	39.0	50.0	78	70-135	in the						
Lab Batch #: 836178 Units: mg/kg	Sample: 400678-004 S / MS Date Analyzed: 12/16/10 12:14	Bate	h: 1 Matrix		STUDY							
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags						
1-Chlorooctane		74.9	99.8	75	70-135	12.1						
o-Terphenyl		38.9	49.9	78	70-135	1.18						
Lab Batch #: 836178	Sample: 400678-004 SD / M	SD Batc	h: 1 Matrix	:Soil	1	and a						
Units: mg/kg	Date Analyzed: 12/16/10 12:32	SU	RROGATE R	ECOVERY	STUDY	6.08						
TPH	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags						
1-Chlorooctane		72.2	99.5	73	70-135	Series						
o-Terphenyl	and the second second second	39.2	49.8	79	70-135	35.34						

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.

BS / BSD Recoveries

Project Name: Linn Energy

Work Order #: 400704 Analyst: SEE	Da	Date Prepared: 12/15/2010				Project ID: Date Analyzed: 12/15/2010									
Lab Batch ID: 836181 San	nple: 591409-1-BKS	Batch	#: 1				I	Matrix: S	Solid						
Units: mg/kg		BLANH	K/BLANK	SPIKE / E	BLANK S	LANK SPIKE DUPLICATE RECOVERY STUDY									
BTEX by EPA 80211 Analytes	B Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag				
Benzene	ND	0.1004	0.1032	103	0.0996	0.1003	101	3	70-130	35					
Toluene	ND	0.1004	0.0912	91	0.0996	0.0896	90	2	70-130	35					
Ethylbenzene	ND	0.1004	0.0915	91	0.0996	0.0895	90	2	71-129	35	1.1				
m_p-Xylenes	ND	0.2008	0.1791	89	0.1992	0.1743	88	3	70-135	35					
o-Xylene	ND	0.1004	0.0913	91	0.0996	0.0893	90	2	71-133	35					
Analyst: LATCOR Lab Batch ID: 836094 San Units: mg/kg	D: nple: 836094-1-BKS	Batch			BLANK S	PIKE DUP	1	Matrix: S	San	DY					
Anions by E300 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag				
Chloride	<0.420	10.0	8.76	88	10	8.88	89	1	75-125	20					

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: Linn Energy

Work Order #: 400704 Analyst: BEV		Da	te Prepared	: 12/15/20	10				ect ID: alyzed: 1	2/15/2010		
Lab Batch ID: 836178	Sample: 591413-1-BKS		Batch #	: 1				1	Matrix: S	Solid		
Units: mg/kg		BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY										
TPH By SW80	15 Mod San	Blank nple Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	A State of the		[B]	[C]	[D]	[E]	Result [F]	[G]		200	denerit a	
C6-C12 Gasoline Range Hydroc	arbons	<50.0	995	977	98	1000	1030	103	5	70-135	35	
C12-C28 Diesel Range Hydroca	rbons	<50.0	995	881	89	1000	1020	102	15	70-135	35	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Final 1.000

XENCO	Form 3 - MS R	ecove	ries			OF COROSSA HI OFIC
	roject Name: Linn Energy	y				inelac
Work Order #: 400704						
Lab Batch #: 836094			Pro	ject ID	:	
Date Analyzed: 12/15/2010	Date Prepared: 12/1	5/2010	А	nalyst: I	ATCOR	
QC- Sample ID: 400673-002 S	Batch #: 1		N	fatrix: S	Soil	
Reporting Units: mg/kg	MATH	RIX / MA	TRIX SPIKE	RECO	VERY STU	UDY
Inorganic Anions by EPA	300 Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag

[A]

230

[B]

200

398

84

75-125

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference [E] = 200*(C-A)/(C+B) All Results are based on MDL and Validated for QC Purposes

Analytes

Chloride

BRL - Below Reporting Limit

Form 3 - MS / MSD Recoveries

Project Name: Linn Energy

Work Order #: 400704 **Project ID:** Lab Batch ID: 836181 QC- Sample ID: 400704-001 S Batch #: Matrix: Soil 1 Date Prepared: 12/15/2010 Date Analyzed: 12/16/2010 Analyst: SEE Reporting Units: mg/kg MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY Parent Spiked Sample Spiked Duplicate Spiked Control Control **BTEX by EPA 8021B** Sample Spike Result Sample Spike Spiked Sample Dup. RPD Limits Limits Flag Result Added [C] %R Added Result [F] %R % %R %RPD Analytes [A] [B] [D] [E] [G] Benzene ND 0.1146 0.1072 94 0.1125 0.1041 93 3 70-130 35 0.0951 ND 0.1146 83 0.1125 0.0941 84 70-130 35 Toluene 1 Ethylbenzene ND 0.1146 0.0953 83 0.1125 0.0927 82 3 71-129 35 0.2291 81 0.2250 0.1811 80 2 70-135 35 m p-Xylenes ND 0.1851 83 35 o-Xylene ND 0.1146 0.0952 0.1125 0.0938 83 1 71-133 Lab Batch ID: 836178 QC- Sample ID: 400678-004 S Batch #: Matrix: Soil 1 Date Prepared: 12/15/2010 Analyst: BEV Date Analyzed: 12/16/2010 Reporting Units: mg/kg MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY Parent Control Spiked Sample Spiked Duplicate Spiked Control TPH By SW8015 Mod Sample Spiked Sample RPD Spike Result Sample Spike Dup. Limits Limits Flag Result Added %R Added %R % %R %RPD [C] Result [F] Analytes [A] [G] [B] [D] [E] 1070 100 3 70-135 35 C6-C12 Gasoline Range Hydrocarbons <16.1 1080 1100 102 1070 855 79 1070 819 77 4 70-135 35 C12-C28 Diesel Range Hydrocarbons <16.1 1080

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*((C-F)/(C+F)) Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Work Order #: 400704

Sample Duplicate Recovery

Project Name: Linn Energy

Lab Batch #: 836094 Date Analyzed: 12/15/2010 14:05 QC- Sample ID: 400673-002 D Reporting Units: mg/kg	Date Prepared: 12/15/2010 Batch #: 1 SAMPLE /		Project I lyst:LATC trix: Soil DUPLIC	COR	OVERY
Anions by E300 Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride	230	224	3	20	Mar Lar
Lab Batch #: 836104 Date Analyzed: 12/16/2010 08:30 QC- Sample ID: 400673-001 D Reporting Units: %	Date Prepared: 12/16/2010 Batch #: 1 SAMPLE /		lyst: JLG rix: Soil DUPLIC	ATE REC	OVERY
Percent Moisture Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Percent Moisture	2.97	3.25	9	20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit V

	vironmental Lab of Tex		5										st I-	20 1	N OI East 9765		UST	TOD	Y RI	ECO	DRD	AM	ND .	F	ho	YSIS me: 4 x: 4	432-	-563	3-18	00				
	Project Manager:	Logan Anders	on			and the second			1		200		_	-	1		_		Pro	ject	Nar	ne:	(_i	10	, E	14	0	Y		5	_		_
	Company Name	Rio Services					1999 - C			_										Pr	ojec	t #:												
	Company Address:	P O Box 6913	9											_			_		P	roje	ct L	oc:	4	Sel	44	- 6	4	7	#;	>	Bn	4	ry	
	City/State/Zip:	Odessa, TX 7	9769													_) #:			_									
	Telephone No:	432-381-5700	N				Fax No:		432	2-53	0-28	90			1		_	Re	port	For	mat		X	Star	ndai	rd		Пт	IRR	P	[PDE	S
	Sampler Signature:	7	te	<u>.</u>			e-mail:		log	jan	_rio	ser	vice	s@	yah	00.0	om	1	_ ,	_														
(lab use	only)																		-	-	-	-	TC	LP:	Ar	halyze	Fo	r:	-	-			-	
	R#: 400704	1															_	-	1			_	TOT					_					72 hrs	
	R#: 900 100	1									Presi	ervat	tion &	# of	Conta	ainers		Mat adpr	her	9 80158	TX 1006		ity)		Pb Hg Se			TEX 8260					odule) (24) 48,	
AB # (lab use only)	FIE	LD CODE		Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of Containers	Ice	HNO3	HCI	H ₂ SO ₄	NaOH	Na ₂ S ₂ O ₃	None	Other (Specify)	DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solk	VP=Non-Potable Specify	TPH: 418.1 (8015M)	22	Cations (Ca, Mg, Na, K)	Anions CJ SO4, Alkalinity)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Ph Hg Se	Volatites	Semivolatiles	BTEX 60219 6030 or BTEX 8260	RCI	N.O.R.M.			RUSH TAT (Pre-Schedu	Standard TAT
	TPI @ 20.	().	20.20.00		20'	12-14-10	2:30P	-	1	X								5		X	-	-	X		~	-		X	-	2			X	-
	TP 3 @ 10'	Land Su	13-124	10	10'	12-14-10	3:40P		1	y	1							5		X			X					X		1		-	X	
alt.	T140 11.5'		1. 6.4	7.4	11.5	12-14-10	2:208	2	1	Y		122						5		X	1		X		1			X	T			-	X	
	TPEC 2'		1.1		2'	12-14-10	4:008	1	1	X	-							S	1944 1944	X	10		X				-	X	-	-	-		X	
		1000																										+		1	+	+	t	
	Contraction	ander der De Anique St	122.0				- 5																				-		-	-	+		+	
1					100					-									13							\vdash	+	+	+	+	+	-	+	
Special	Instructions:				17		II						1							1						mme ners li			-		CY	2	N	
Relinqui	shed by	2	Date 12-15-10		ime S/P	Received by:											Da	te	Γ	Time	•	Lab	els (tody	on ca	onta	Heads ainer(s on cor	s) ntair	ner(s	5)		A B	D.M. M.	zzgzzgzz	2
Relinqui	shed by:		Date		ime	Received by:											Da	te		Time	B	San	hple	Han	nd D	Delive	Rer	2	DHL	-	Pere	Nº.	N N	tar
Relinqui	shed by:		Date	Т	ime	Received by EL	undock									12	Dat	te ()		Time) 	Ten	nper	atur	e Ul	402 pon R	Ci lece	las	SS			4.6		

XENCO Laboratories Atlanta, Boca Raton, Corpus Christi, Dallas Houston, Miami, Odessa, Philadelphia Phoenix, San Antonio, Tampa

Document Title: Sample Receipt Checklist Document No .: SYS-SRC Revision/Date: No. 01, 5/27/2010 Effective Date: 6/1/2010 Page 1 of 1

Prelogin / Nonconformance Report - Sample Log-In

Data/Time: 12-15 10 12:51	
Lab 10 #: 400704	和 主义的
Initials: XM	

Sample Receipt Checklist

1. Samples on ice?			Blue	Water	No	Service 1
2. Shipping containe	r in good condition?		Yes	No	None	222.8
3. Custody seals inta	act on shipping contain	er (cooler) and bottles?)	Tes	No	N/A	100
4. Chain of Custody	present?		Yes	No		Sec. 1
5. Sample instruction	ns complete on chain o	f custody?	Tes	No		
6. Any missing / extr	a samples?		Yes	(No)		
7. Chain of custody	signed when relinquish	ed / received?	Yes	No		
8. Chain of custody	agrees with sample lab	el(s)?	Cres	No		
9. Container labels k	gible and intact?		(Yes)	No		
10. Sample matrix / p	properties agree with cl	nain of custody?	Yes	No .		
11. Samples in prope	er container / bottle?		Yes	No		
12. Samples property	y preserved?		Yes	No	N/A	
13. Sample containe	r intact?		(Yes)	No	Care and	Sec. 1
14. Sufficient sample	amount for indicated	test(s)?	(Yes)	No		
15. All samples recei	ived within sufficient he	old time?	(Yes)	No		1.1.1
16. Subcontract of s	ample(s)?		Yes	(No)	N/A	Rec.
17. VOC sample have	e zero head space?	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Yes	No	(N/A)	
18. Cooler 1 No.	Cooler 2 No.	Cooler 3 No.	Cooler 4 N	0.	Cooler 5 No.	Blast ra
Ibs 4 (°C lbs	°C Ibe	°C lbs	00	lbs	00

Nonconformance Documentation

Contact:	Contacted by:		Date/Time:	
Regarding:		a film and the		
C. A. Carles M. C.	Mar march 2	1989 St. 199		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Corrective Action Taken:	and the state	· · · · · · · · · · · · · · · · · · ·		Sec. Sec.
and here with the		Mary Mary Strategy	States and a	an felling

Check all that apply: Cooling process has begun shortly after sampling event and out of temperature condition acceptable by NELAC 5.5.8.3.1.a.1. □Initial and Backup Temperature confirm out of temperature conditions □Client understands and would like to proceed with analysis

Analytical Report 400790

for

Rio Services

Project Manager: Logan Anderson

Scharb 9 # 2

16-DEC-10

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-10-6-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330) Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370) Xenco-Boca Raton (EPA Lab Code: FL01273): Florida(E86240),South Carolina(96031001), Louisiana(04154), Georgia(917) North Carolina(444), Texas(T104704468-TX), Illinois(002295), Florida(E86349)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757), California(06244CA), Texas(104704435-10-2), Nevada(NAC-445A), DoD(65816) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code:AZ000989): Arizona (AZ0758)

Final 1.000

16-DEC-10

Project Manager: Logan Anderson Rio Services P.O. Box 69139 Odessa, TX 79769

Reference: XENCO Report No: 400790 Scharb 9 # 2 Project Address: Linn Operating

Logan Anderson:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 400790. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 400790 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

AND

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Final 1.000

K	1	(
Lab	ora	toria	-

Sample Cross Reference 400790

Rio Services, Odessa, TX Scharb 9 # 2

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
TP 2 @ 18'	S	Dec-15-10 14:15	18 ft	400790-001
TP 5 @ 10'	S	Dec-15-10 13:00	10 ft	400790-002

CASE NARRATIVE

Client Name: Rio Services Project Name: Scharb 9 # 2

Project ID: Work Order Number: 400790 Report Date: 16-DEC-10 Date Received: 12/15/2010

Sample receipt non conformances and Comments: None

Sample receipt Non Conformances and Comments per Sample:

None

Certificate of Analysis Summary 400790 Rio Services, Odessa, TX Project Name: Scharb 9 # 2

Project Id:

Contact: Logan Anderson Project Location: Linn Operating Date Received in Lab: Wed Dec-15-10 05:16 pm Report Date: 16-DEC-10 Project Manager: Brent Barron II

					Project Manager:	Brent Barron, II	
Analysis Requested	Lab Id: Field Id: Depth: Matrix: Sampled:	400790-001 TP 2 @ 18' 18 ft SOIL Dec-15-10 14:15	400790-002 TP 5 @ 10' 10 ft SOIL Dec-15-10 13:00				
Anions by E300	Extracted: Analyzed: Units/RL:	Dec-16-10 08:23 mg/kg RL	Dec-16-10 08:23 mg/kg RL	\$			
Chloride	AND SHE SHE	17.1 4.74	19.3 4.62		4		
BTEX by EPA 8021B	Extracted: Analyzed: Units/RL:	Dec-15-10 17:20 Dec-16-10 11:27 mg/kg RL	Dec-15-10 17:20 Dec-16-10 11:48 mg/kg RL				5.9.
Benzene	and the shells	ND 0.0011	ND 0.0011	San Same	a spin a started		Cart Land Cart
Toluene	a set the de	ND 0.0022	ND 0.0022	and the second second		and the second second	No. Contraction
Ethylbenzene		ND 0.0011	ND 0.0011	Contraction to be a			Contra Martin Contra
m_p-Xylenes	Contraction of the second	ND 0.0022	ND 0.0022	and the second	de la secondada	1940 - Japan	C.S. Market Street
o-Xylene	12.2.15	ND 0.0011	ND 0.0011	Service States	and the second second	and the second second	Sala and
Total Xylenes	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ND 0.0011	ND 0.0011	New York Street	mar and the	S. S. Yashield	1.8.36
Total BTEX	and the Martin	ND 0.0011	ND 0.0011	1			
Percent Moisture	Extracted: Analyzed: Units/RL:	Dec-16-10 11:52 % RL	Dec-16-10 11:52 % RL				
Percent Moisture	and a state of the	11.3 1.00	9.15 1.00				
TPH By SW8015 Mod	Extracted: Analyzed: Units/RL:	Dec-16-10 08:30 Dec-16-10 15:21 mg/kg RL	Dec-16-10 08:30 Dec-16-10 15:39 mg/kg RL				
C6-C12 Gasoline Range Hydrocarbons		ND 16.9	ND 16.5				
C12-C28 Diesel Range Hydrocarbons	a share the second	ND 16.9	ND 16.5				
C28-C35 Oil Range Hydrocarbons	2.1. S. 1	ND 16.9	ND 16.5			1	
Total TPH	St. J. Solution	ND 16.9	ND 16.5			The second second second	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron, II

Odessa Laboratory Manager

Final 1.000

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.

JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit

PQL Practical Quantitation Limit

* Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

4143 Greenbriar Dr, Stafford, Tx 77477 9701 Harry Hines Blvd, Dallas, TX 75220 5332 Blackberry Drive, San Antonio TX 78238 2505 North Falkenburg Rd, Tampa, FL 33619 5757 NW 158th St, Miami Lakes, FL 33014 12600 West 1-20 East, Odessa, TX 79765 842 Cantwell Lanc, Corpus Christi, TX 78408

Phone	rax
(281) 240-4200	(281) 240-4280
(214) 902 0300	(214) 351-9139
(210) 509-3334	(210) 509-3335
(813) 620-2000	(813) 620-2033
(305) 823-8500	(305) 823-8555
(432) 563-1800	(432) 563-1713
(361) 884-0371	(361) 884-9116

Final 1.000

Project Name: Scharb 9 # 2

Work Orders: 400790, Lab Batch #: 836181 Sample: 59.	1409-1-BKS / BKS	Batc	Project I h: 1 Matrix							
Units: mg/kg Date Analyzed: 12/	/15/10 23:46	SURROGATE RECOVERY STUDY								
BTEX by EPA 8021B Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorobenzene		0.0275	0.0300	92	80-120	100.050				
4-Bromofluorobenzene		0.0295	0.0300	98	80-120					
Lab Batch #: 836181 Sample: 591	1409-1-BSD / BSD	Bate	h: 1 Matrix	c:Solid	10022					
Units: mg/kg Date Analyzed: 12/	/16/10 00:07	SU	RROGATE R	ECOVERY	STUDY	12714				
BTEX by EPA 8021B Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorobenzene	1. 1. 1. 1. 1.	0.0285	0.0300	95	80-120	Service of the servic				
4-Bromofluorobenzene		0.0284	0.0300	95	80-120	day 14				
Lab Batch #: 836181 Sample: 591	409-1-BLK / BLK	Batcl	h: 1 Matrix	Solid	N. S.	129/191				
Units: mg/kg Date Analyzed: 12/	16/10 01:11	SU	RROGATE R	ECOVERY S	STUDY					
BTEX by EPA 8021B Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorobenzene		0.0241	0.0300	80	80-120	612185				
4-Bromofluorobenzene		0.0294	0.0300	98	80-120	as a fait				
Lab Batch #: 836181 Sample: 400	0704-001 S / MS	Batch	n: 1 Matrix	:Soil	1 Say Po					
Units: mg/kg Date Analyzed: 12/	16/10 01:54	SU	RROGATE R	ECOVERY S	STUDY	5912				
BTEX by EPA 8021B Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorobenzene	5.55 Bis 80	0.0263	0.0300	88	80-120	Elent				
4-Bromofluorobenzene		0.0281	0.0300	94	80-120	14.2°23				
Lab Batch #: 836181 Sample: 400	704-001 SD / MSD	Batch	: 1 Matrix	:Soil						
Units: mg/kg Date Analyzed: 12/1	16/10 02:15	SUI	RROGATE R	ECOVERY S	STUDY	1999				
BTEX by EPA 8021B Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorobenzene	A STATE	0.0262	0.0300	87	80-120					
4-Bromofluorobenzene		0.0275	0.0300	92	80-120	200 A				

* Surrogate outside of Laboratory QC limits
 ** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Project Name: Scharb 9 # 2

Work Orders : 400790, Lab Batch #: 836181 Sample: 400790-001 / SMP	Bate	Project l							
Units: mg/kg Date Analyzed: 12/16/10 11:27	SURROGATE RECOVERY STUDY								
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorobenzene	0.0249	0.0300	83	80-120					
4-Bromofluorobenzene	0.0304	0.0300	101	80-120	1				
Lab Batch #: 836181 Sample: 400790-002 / SMP	Bate	h: 1 Matri	x:Soil	10. EV					
Units: mg/kg Date Analyzed: 12/16/10 11:48	SU	RROGATE R	ECOVERY	STUDY	a starl				
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorobenzene	0.0244	0.0300	81	80-120	1.28				
4-Bromofluorobenzene	0.0298	0.0300	99	80-120	1.00				
Lab Batch #: 836230 Sample: 591448-1-BKS / BH	CS Bate	h: 1 Matrix	s:Solid	Sec. 1					
Units: mg/kg Date Analyzed: 12/16/10 14:24	SU	RROGATE R	RECOVERY STUDY						
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooctane	72.9	99.6	73	70-135	25.0				
o-Terphenyl	42.1	49.8	85	70-135	1.1.1				
Lab Batch #: 836230 Sample: 591448-1-BSD / BS	D Batc	h: 1 Matrix	:Solid	1992 (P. 19	100				
Units: mg/kg Date Analyzed: 12/16/10 14:42	SU	RROGATE R	ECOVERY S	STUDY	a la berge				
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooctane	72.8	99.6	73	70-135					
o-Terphenyl	38.1	49.8	77	70-135					
Lab Batch #: 836230 Sample: 591448-1-BLK / BL									
Units: mg/kg Date Analyzed: 12/16/10 15:01	SU	RROGATE R	ECOVERY S	STUDY					
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooctane	72.7	99.7	73	70-135	STREE-S				
o-Terphenyl	35.9	49.9	72	70-135	A BIL				

* Surrogate outside of Laboratory QC limits
 ** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Project Name: Scharb 9 # 2

Work Orders : 400790, Lab Batch #: 836230 Sample: 400790-001 / SMP	Bate	Project I th: 1 Matrix			
Units: mg/kg Date Analyzed: 12/16/10 15:21		RROGATE R		STUDY	1
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	72.5	99.8	73	70-135	ALLAS.
o-Terphenyl	37.4	49.9	75	70-135	
Lab Batch #: 836230 Sample: 400790-002 / SMP	Bate	h: 1 Matrix	x:Soil	Sec. A	
Units: mg/kg Date Analyzed: 12/16/10 15:39	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	74.6	99.8	75	70-135	500
o-Terphenyl	38.4	49.9	77	70-135	1212 (2)
Lab Batch #: 836230 Sample: 400790-002 S / MS	Batc	h: 1 Matrix	: Soil	in the second	10.2
Units: mg/kg Date Analyzed: 12/16/10 15:57	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	71.3	100	71	70-135	5
o-Terphenyl	36.8	50.2	73	70-135	Sec.
Lab Batch #: 836230 Sample: 400790-002 SD / MS	D Batc	h: 1 Matrix	c: Soil	See. 19	1
Units: mg/kg Date Analyzed: 12/16/10 16:16	SU	RROGATE R	ECOVERY S	STUDY	ker la
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	70.6	101	70	70-135	GILCE,
o-Terphenyl	39.9	50.3	79	70-135	Lage St

* Surrogate outside of Laboratory QC limits
 ** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.

BS / BSD Recoveries

Project Name: Scharb 9 # 2

Work Order #: 400790 Analyst: SEE	D	ate Prepare	d: 12/15/20	10				ect ID: alyzed: 1	2/15/2010		
Lab Batch ID: 836181 S	ample: 591409-1-BKS	Batch	#: 1				1	Matrix: S	Solid		
Units: mg/kg		BLANH	K/BLANK	SPIKE / E	BLANK S	PIKE DUPI	LICATE F	RECOVE	ERY STUD	PΥ	
BTEX by EPA 802 Analytes	1B Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	ND	0.1004	0.1032	103	0.0996	0.1003	101	3	70-130	35	
Toluene	ND	0.1004	0.0912	91	0.0996	0.0896	90	2	70-130	35	
Ethylbenzene	ND	0.1004	0.0915	91	0.0996	0.0895	90	2	71-129	35	1.
m_p-Xylenes	ND	0.2008	0.1791	89	0.1992	0.1743	88	3	70-135	35	637-
o-Xylene	ND	0.1004	0.0913	91	0.0996	0.0893	90	2	71-133	35	1.21
Analyst: LATCOR Lab Batch ID: 836214 S Units: ^{mg/kg}	ample: 836214-1-BKS	Batch	Martin States		BLANK S	PIKE DUP	1	Matrix: S		DΥ	
Anions by E300 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	ND	10.0	9.52	95	10	9.56	96	0	75-125	20	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: Scharb 9 # 2

Work Order #: 400790 Analyst: BEV Lab Batch ID: 836230	Sample: 591448-1-BKS	Da	te Prepare Batch	d: 12/16/20	10			Date An	ect ID: alyzed: 1 Matrix: S	12/16/2010 Solid		
Units: mg/kg		2.3.1	BLANK	BLANK	SPIKE / E	BLANK S	PIKE DUPI	LICATE F	RECOVI	ERY STUD	Y	1.111
TPH By SW80 Analytes	15 Mod	Blank ple Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydroca	arbons	ND	996	1020	102	996	969	97	5	70-135	35	
C12-C28 Diesel Range Hydrocar	bons	ND	996	919	92	996	893	90	3	70-135	35	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

XENCO	Form 3	3 - MS R	lecove	ries			ALLO IN ACCORDAN	
	oject Name: S	Scharb 9 # 2	2	1. A.			nelaò	
Work Order #: 400790								
Lab Batch #: 836214				Pr	oject ID			
Date Analyzed: 12/16/2010	Date	Date Prepared: 12/16/2010 An				Analyst: LATCOR		
QC- Sample ID: 400790-001 S		Batch #: 1		1				
Reporting Units: mg/kg		MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	ЛDY	
Inorganic Anions by EPA 3 Analytes	600	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag	

17.1

113

124

95

75-125

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference [E] = 200*(C-A)/(C+B) All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Chloride

Form 3 - MS / MSD Recoveries

Project Name: Scharb 9 # 2

Work Order #: 400790

Lab Batch ID: 836181 Date Analyzed: 12/16/2010	QC- Sample ID: Date Prepared:				tch #: alyst:	1 Matrix SEE	: Soil					
Reporting Units: mg/kg	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY											
BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag	
Benzene	ND	0.1146	0.1072	94	0.1125	0.1041	93	3	70-130	35		
Toluene	ND	0.1146	0.0951	83	0.1125	0.0941	84	1	70-130	35		
Ethylbenzene	ND	0.1146	0.0953	83	0.1125	0.0927	82	3	71-129	35		
m_p-Xylenes	ND	0.2291	0.1851	81	0.2250	0.1811	80	2	70-135	35	Par- IS	
o-Xylene	ND	0.1146	0.0952	83	0.1125	0.0938	83	1	71-133	35		
Lab Batch ID: 836230 Date Analyzed: 12/16/2010	QC- Sample ID: Date Prepared:				tch #: alyst:	l Matrix BEV	:: Soil					
Reporting Units: mg/kg	2	N	1ATRIX SPIK	E/MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY			
TPH By SW8015 Mod Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Fla	
C6-C12 Gasoline Range Hydrocarbons	ND	1110	1060	95	1110	1060	95	0	70-135	35		
C12-C28 Diesel Range Hydrocarbons	ND	1110	836	75	1110	822	74	2	70-135	35		

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference RPD = $200^{\circ}[(C-F)/(C+F)]$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit **Project ID:**

Sample Duplicate Recovery

Project Name: Scharb 9 # 2

Work	Order #:	400790

Lab Batch #: 836214 Date Analyzed: 12/16/2010 08:23 QC- Sample ID: 400790-001 D Reporting Units: mg/kg	Date Prepared: 12/16/201 Batch #: 1 SAMPLE		Project I alyst: LATC trix: Soil DUPLIC	COR	OVERY
Anions by E300 Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride	17.1	16.3	5	20	1. 26
Lab Batch #: 836162 Date Analyzed: 12/16/2010 11:52 QC- Sample ID: 400790-001 D Reporting Units: %	Date Prepared: 12/16/2010 Batch #: 1 SAMPLE		lyst: JLG trix: Soil DUPLIC	ATE REC	OVERY
Percent Moisture Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Percent Moisture	11.3	11.5	1	20	12

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

	ICO La ironmental I	.ab of	Texas		es San A	NE	Fai	52				0	2600 dese	sa, 1	st I- Fexa	-20 as 7	Eas 976	t 5		TOD						F	Pho Fax	/S/S ne: 4 :: 4	32-5 32-5	563-4 563-4	1800				
	Company	Name			SER									1								Pr	ojec	:t #:								5			1
	Company		-	- Partie											1						F						N	C	5	5.8		·w.			
	City/State		-	0	AZES	1	×				1													0 #:									36		
	Telephone	e No:	-	K	Ch.	1			Fax No		-												rma		ø	Star	ndan	d	C] TF	RP			NPDE	S
	Sampler S	Signat	ure:	14	25				e-mall	:	10	50	<u>-</u>		10	100	- 54		, C	yah			~	-		0.3	An	alyze	For:		-			Т	٦
(lab use		91													-					1		F		-	TO	LP: AL:	-	+	T	-				72 bre	
ORDE	R#:	100	791	0			1	1		T	Т	F	Pres	ervat	ion &	# 01	Cont	alnen	•	Ma	trix	90158	6			1	35		3260	1				Ci a	1
AB # (lab use only)				CODE		Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Filtered	Total #. of Containers	8	HNOs	HG	H ₂ SO4	NaOH	Na ₂ S ₂ O ₃	None	Other (Specify)	DW=Drinking Watter SL=Studge GW = Groundwater S=SolifSolid	NP-Non-Potable Specify Other	TPH: 418.1 (8015M)	TPH: TX 1005 TX 1006	Cations (Ca, Mg, Na, K)	Anione (C) SO4. Alkalinity)	22	Metals: As Ag Ba Cd Cr Pb Hg	Volatiles Semivolatiles	BIEX 8021 05030 or BIEX 8260	RCI	N.O.R.M.			RUSH TAT (Pre-Schedule) (
01	TF	7		18	7:15Pm	-	B	12-15-10	2:15P~		I	X								5	ALC: NOT THE OWNER OF	X	İ		X	-	-	T	K	T	T	H		P-1	
DZ	and the second se			10'	1.00-		10	12-15-10	1.00 Fr-		1	X			E					5		4			8	-		-	×	F				4	-
																		100	_			_			-	+	+	+	+			_	+	+	+
										+		F	-	F												-	+	Ŧ	T				+	Ŧ	T
-	10000	Shi			Carl Che						L									8.13	_					-	-	-	1		\square	4	+	1	1
Specie	Instruction	16:			See.	1		1																Sam	ple (s Fr	Cont	aine of He	ars Int	tact?	?		- Cool	AN	NZZ	
Relihqu	ished by:	th			Date, 12/,5/10 Date	5.	fime 16 fime fime	Received by: Received by: Received by EL	.OT:										Det Det	8		Time Time		Sam I	ple I by Sa by Co	tand mple	s on d De er/Cli	iconta coole livere ient R UP	er(s) ed tep. ? S	DHL			ALLON LONX		ter
- com refe						1		1 and	en El	0.	~							12	.15	00	11	11	2	GIN	poid	uld	oho	1110	Solpt		1	0.	1.	0	

XENCO Laboratories Atlanta, Boca Raton, Corpus Christi, Dallas Houston, Miami, Odessa, Philadelphia Phoenix, San Antonio, Tampa

Document Title: Sample Receipt Checklist Document No .: SYS-SRC Revision/Date: No. 01, 5/27/2010 Effective Date: 6/1/2010 Page 1 of 1

Prelogin / Nonconformance Report - Sample Log-In

Date/Time:	12.15.10	17:16	
Lab ID #:	40070	10	
Initials:	AE	. A second second	Stale

Sample Receipt Checklist

1. Samples on ice?	Sec. Sugar			Blue	Water	No	Section of		
2. Shipping container	in good condition?		(Yes)	No	None	10 11 12			
3. Custody seals intac	t on shipping container		Yes	No	N/A	19 383			
4. Chain of Custody p	resent?		Yes	No		1. 1984			
5. Sample instructions	complete on chain of c		Yes	No		1000			
6. Any missing / extra	samples?	5	Yes	(No)		24 A.			
7. Chain of custody si	gned when relinquished	0	Yes	No					
8. Chain of custody ag	rees with sample label((Yes)	No	Section 1	Sy they are			
9. Container labels leg	ible and intact?		Yes	No	Section of the	1.5.6			
10. Sample matrix / pr	operties agree with cha		Yes,	No -					
11. Samples in proper	container / bottle?		(Yes)	No	10 2 3 1 1 1 A	-			
12. Samples property	preserved?		Yes	No	N/A				
13. Sample container	intact?	Charles Marchard		Yes	No				
14. Sufficient sample	amount for indicated tes		Yes	No					
15. All samples receiv	ed within sufficient hold		(Yes)	No					
16. Subcontract of sa	mple(s)?		Yes No		(NA)				
17. VOC sample have	zero head space?		(Yes)	No	N/A				
18. Cooler 1 No.	Cooler 2 No.	Cooler 3 No.	0	Cooler 4 No		Cooler 5 No.			
Ibs 10.1	°C lbs	°C lbs	°C	lbs	°C	ibs	°C		

Nonconformance Documentation

Contact:	Contacted by:	Date/Time:
Regarding:		
JAMES		
Corrective Action Taken:		
States and the states and	· · · · · · · · · · · · · · · · · · ·	

Check all that apply:
Cooling process has begun shortly after sampling event and out of temperature condition acceptable by NELAC 5.5.8.3.1.a.1.
Initial and Backup Temperature confirm out of temperature conditions
Client understands and would like to proceed with analysis

Appendix 5 Photographs

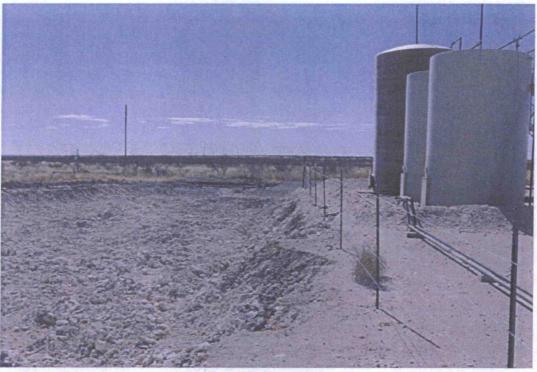


Photo No. 1: A view to the south showing the preliminary excavation and the re-built tank battery to the right.

Photo No. 2: View to the south showing the completed excavation and the re-built tank battery to the right.

SOIL ABATEMENT COMPLETION REPORT SCHARB 9 TANK BATTERY 2 API WELL NUMBER 30-025-28195 UNIT F, SECTION 9, TOWNSHIP 19S, RANGE 35E LEA COUNTY, NEW MEXICO

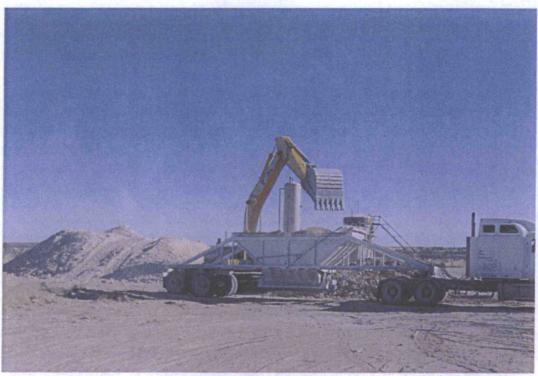


Photo No. 3: View to the northwest showing the chloride-contaminated soil being loaded for off-site disposal.

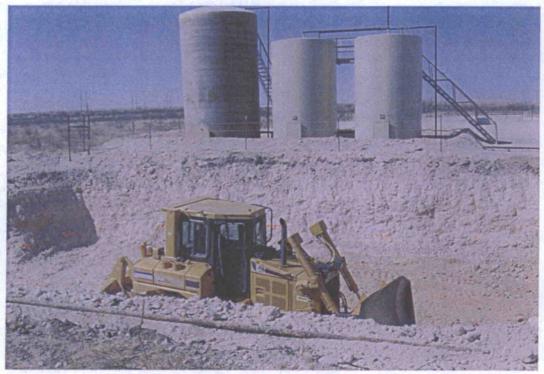


Photo No. 4: View to the west showing the excavation bottom being compacted by the dozer before placement of the clay liner. Note the orange clay liner fill marks on the excavation walls.

SOIL ABATEMENT COMPLETION REPORT SCHARB 9 TANK BATTERY 2 API WELL NUMBER 30-025-28195 UNIT F, SECTION 9, TOWNSHIP 19S, RANGE 35E LEA COUNTY, NEW MEXICO

Photo No. 5: View to the south of red clay liner material being pushed into the excavation by the dozer.

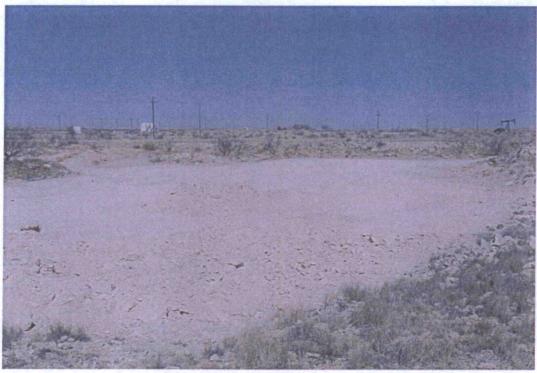


Photo No. 6: View to the southeast showing the excavation backfilled with caliche.

SOIL ABATEMENT COMPLETION REPORT SCHARB 9 TANK BATTERY 2 API WELL NUMBER 30-025-28195 UNIT F, SECTION 9, TOWNSHIP 19S, RANGE 35E LEA COUNTY, NEW MEXICO

Photo No. 7: View to the south showing the restored site with topsoil.

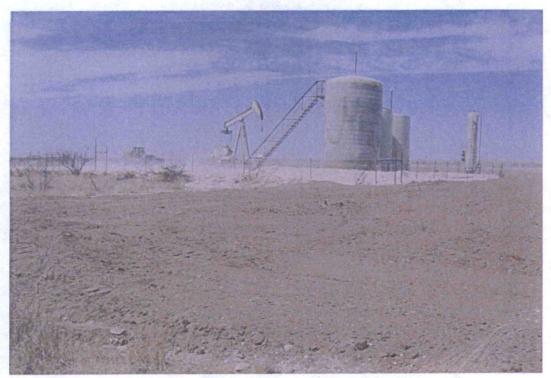


Photo No. 8: View to the northwest of the restored site with topsoil.

SOIL ABATEMENT COMPLETION REPORT SCHARB 9 TANK BATTERY 2 API WELL NUMBER 30-025-28195 UNIT F, SECTION 9, TOWNSHIP 19S, RANGE 35E LEA COUNTY, NEW MEXICO