Administrative/Environmental Order

AE Order Number Banner

Report Description

This report shows an AE Order Number in Barcode format for purposes of scanning. The Barcode format is Code 39.

App Number: pVF1726437775

3RP - 1054

WILLIAMS FOUR CORNERS, LLC

9/21/2017

3R-1054

Williams Lowery Tank Battery

Remediation Plans

September 2017

State of New Mexico **Energy Minerals and Natural Resources**

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

OIL CONS. DIV DIST. 3

Form C-141 Revised August 8, 2011

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Release Notification and Corrective Action

	OPERATOR Initial Report (Subsequent) Final Report
Name of Company Williams Four Corners LLC	Contact Aaron Galer
Address 1755 Arroyo Drive, Bloomfield, NM 87413	Telephone No. 505-584-6746
Facility Name Lowery Tank Battery	Facility Type Storage Tank
Surface Owner State of New Mexico Lands Mineral O	wner API No.

Surface Owner State of New Mexico Lands Mineral Owner

LOCATION OF RELEASE

Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County
I	16	26N	6W					Rio Arriba

Latitude <u>36.484182° N</u> Longitude <u>107.465462° W</u>

NATURE OF RELEASE

Torres C Dalarse Das devel Wester	V-1	Values Deserved TI-1-	Values Deserved Thelesser
Type of Release Produced Water	Volume of Release Unknown	Volume Recovered Unknown	
Source of Release Below-grade tank	Date and Hour of Occurrence 03/26/2013; 9:00 AM	Date and Hour of Discovery 03/26/2013; 9:00 AM	
Was Immediate Notice Given?	If YES, To Whom?		
🗌 Yes 🗌 No 🖾 Not Required	,		
By Whom?	Date and Hour		
Was a Watercourse Reached?	If YES, Volume Impacting the Wat	tercourse.	crcourse.
🗌 Yes 🖾 No			
If a Watercourse was Impacted, Describe Fully.*			
Describe Cause of Problem and Remedial Action Taken.*	1	· · · · · · · · · · · · · · · · · · ·	1 A in the Colorest land
During removal/replacement of a below-grade tank from the location, hyd the below-grade tank was performed to determine the extent of hydrocarb			
below-grade tank was performed to determine the extent of hydrocarb	on impacts. No remedial action has ta	ken place at the location. The replacement	en place at the location. The replacement
below-grade tank has not been instaned at this time.			
9/12/2017 Update: Please see the attached Remediation Plan and Condition	ons of Approval as requested		
9/12/2017 Opuale. I lease see the attached Kennediation I fail and Condition	ins of Approval, as requested.		
Describe Area Affected and Cleanup Action Taken.*			
The investigation findings are documented in the attached Investigation R	eport. Additional actions are proposed	d as documented in the attached	as documented in the attached
Supplemental Site Investigation & Corrective Action Work Plan. It should			
	5	5 5	5
9/12/2017 Update: Please see the attached Remediation Plan and Condition	ons of Approval, as requested.		
I hereby certify that the information given above is true and complete to the			
regulations all operators are required to report and/or file certain release n			
public health or the environment. The acceptance of a C-141 report by the			
should their operations have failed to adequately investigate and remediat			
or the environment. In addition, NMOCD acceptance of a C-141 report d	oes not relieve the operator of respons	sibility for compliance with any other	bility for compliance with any other
federal, state, or local laws and/or regulations.			
1 al il	OIL CONSERV	NATION DIVISION	ATION DIVISION
Signature:		(Λ)	
Printed Name: Mitch Morris	Approved by Environmental Specialis	st an com	1 an com
	QL Is		
Title: Environmental Specialist	Approval Date: ALDON	Expiration Date:	Expiration Date:
	piper		
E-mail Address: Mitch.Morris@williams.com	Conditions of Approval:		
		Attached 📉	Attached IX
Date: 9/12/2017 Phone: 505-632-4708			
Attach Additional Sheets If Necessary	NJK1331055	RKS	RKS
	1. 20.001000		

From: Fields, Vanessa, EMNRD [mailto:Vanessa.Fields@state.nm.us]
Sent: Monday, September 11, 2017 3:52 PM
To: Galer, Aaron <<u>Aaron.Galer@Williams.com</u>>
Cc: Smith, Cory, EMNRD <<u>Cory.Smith@state.nm.us</u>>
Subject: [EXTERNAL] RE: Lowery Tank Battery Status

Aaron,

Aaron,

OCD has approved Williams proposed delineation plan for the lowery Tank Battery received via email 8/29/17 with the following conditions of approval. These conditions of approval will be attached to the hard copy when received.

Conditions of Approval:

- Following the NMOCD Guidelines for Remediation's of Leaks, Spills and Releases the remediation's levels for soils at the Lowery Tank Battery are as follows 10 mg/kg Benzene, 50 mg/kg BTEX and 100 mg/kg TPH
 - Williams will fully delineate the release both horizontally and vertically. Boreholes that exceeded 100ppm OVM or exhibit heavy staining and/or apparent hydrocarbon impacts will be considered impacted until sampled.
 - Delineation must be completed by November 11, 2017.
 - Horizontal delineation of soil impacts must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C6 thru C36). Soil sampling must be both within the impacted area and beyond.
 - Vertical delineation of soil impacts must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C6 thru C36), Vertical characterization samples should be taken at depth intervals no greater than five feet apart. Lithologic description of encountered soils must also be provided. At least ten vertical feet of soils with contaminant concentrations at or below the sites closure standards must be demonstrated as existing above the water table.

- Composite sampling will not be allowed for delineation
- Field screening and assessment techniques are acceptable (headspace, titration, EC [include algorithm for validation purposes], EM, etc.), but the sampling and assay procedures must be clearly defined. Copies of field notes are highly desirable. A statistically significant set of split samples must be submitted for confirmatory laboratory analysis, including the laterally farthest and vertically deepest sets of soil samples. Make sure there are at least two soil samples submitted for laboratory analysis from each borehole or test pit (highest observed contamination and deepest depth investigated).
- Within 30 days of completion of delineation Williams will submit to the OCD a delineation report and proposed alternative remediation plan.

Please let me know if you have any questions.

Thank you,

Vanessa Fields Environmental Specialist Oil Conservation Division Energy, Minerals, & Natural Resources 1000 Rio Brazos, Aztec, NM 87410 (505)334-6178 ext 119 Cell: (505) 419-0463 vanessa.fields@state.nm.us

From: Galer, Aaron [mailto:Aaron.Galer@Williams.com] Sent: Tuesday, August 29, 2017 9:45 AM To: Fields, Vanessa, EMNRD <<u>Vanessa.Fields@state.nm.us</u>> Subject: RE: Lowery Tank Battery Status

Good morning Vanessa,

I am taking over the project management duties for the Lowery Tank Battery. Have you had a chance to review the attached report, specifically section 8 which describes our delineation plan?

From: Fields, Vanessa, EMNRD [mailto:Vanessa.Fields@state.nm.us]
Sent: Friday, August 11, 2017 8:50 AM
To: Webre, Matt <<u>Matt.Webre@Williams.com</u>>
Cc: Smith, Cory, EMNRD <<u>Cory.Smith@state.nm.us</u>>; Perrin, Charlie, EMNRD

<<u>charlie.perrin@state.nm.us</u>>; Powell, Brandon, EMNRD <<u>Brandon.Powell@state.nm.us</u>> **Subject:** Lowery Tank Battery Status

Good morning Matt,

Could you provide the OCD with a status update on the Lowery Tank Battery?

Thank you,

Vanessa Fields Environmental Specialist Oil Conservation Division Energy, Minerals, & Natural Resources 1000 Rio Brazos, Aztec, NM 87410 (505)334-6178 ext 119 Cell: (505) 419-0463 vanessa.fields@state.nm.us

Environmental Affairs 188 County Road 4900 Bloomfield, NM 87413 505/632-4600 505/632-4781 Fax

July 9, 2015

Mr. Jonathan D. Kelly New Mexico Oil Conservation Division Energy, Minerals, & Natural Resources 1000 Rio Brazos Aztec, NM 87410

RE: Interim Corrective Action and Supplemental Environmental Site Investigation Report Lowery Tank Battery Rio Arriba County, New Mexico

Dear Mr. Kelly:

Attached is a copy of the Interim Corrective Action and Supplemental Environmental Site Investigation Report for the Williams Four Corners LLC Lowery Tank Battery for your review.

If you have an questions or concerns please contact me at <u>kelsey.christiansen@williams.com</u> or at (505) 632-4606.

Sincerely,

Lelang Christian

Kelsey Christiansen Environmental Specialist

INTERIM CORRECTIVE ACTION and SUPPLEMENTAL ENVIRONMENTAL SITE INVESTIGATION REPORT

Property:

Lowery Tank Battery NE ¼ SE ¼ Sec 16, T26N, R6W Rio Arriba County, New Mexico

June 16, 2015 Apex Project No. 7030413G001

Prepared for:

Williams Four Corners LLC 188 Road 4900 Bloomfield, New Mexico 87413 Attn: Mr. Matt Webre, P.G.

Prepared by:

urm

Kyle Summers, CPG Branch Manager / Senior Geologist

Elizabeth Scaggs, P.G. Division Manager

Apex TITAN, Inc., a subsidiary of Apex Companies, LLC 606 S Rio Grande, Unit A, Aztec, NM 87410 T 505.334.5200 F 505.334.5204 www.apexcos.com

TABLE OF CONTENTS

1.0	INTRO 1.1 1.2 1.3 1.4	DUCTION Site Description and Background Objectives Site Ranking Standard of Care & Limitations	1 5 5
2.0	CORR 2.1 2.2	ECTIVE ACTION Excavation Sampling Program Gravity-Induced Application System	7
3.0	SITE II 3.1 3.2	NVESTIGATION Soil Borings Investigation Sampling Program	10
4.0	LABO 4.1 4.2	RATORY ANALYTICAL PROGRAM Laboratory Analytical Methods Quality Assurance/Quality Control (QA/QC)	13
5.0	SITE C 5.1	CHARACTERIZATION Geology & Hydrogeology	
6.0	DATA 6.1 6.2	EVALUATION Excavation Confirmation Samples Soil Boring Samples	15
7.0	FINDI	NGS	20
8.0	8.1 8.2 8.3 8.4 8.5	OSED DELINEATION Proposed Soil Boring Program Proposed Soil Sampling Program Optional Monitoring Well Installation Proposed Groundwater Sampling Program Proposed Laboratory Analytical Program	21 21 22 22 24
	8.6	Supplemental Environmental Site Investigation Report	24

LIST OF FIGURES

Figure 1: Topographic Map	2
Figure 2: Site Vicinity Map	3
Figure 3: Site Map	4
Figure 4: Excavation Extents and Sample Locations	8
Figure 5A: Benzene Remediation Action Level Exceedance Map	17
Figure 5B: Total BTEX Remediation Action Level Exceedance Map	18
Figure 5C: TPH Remediation Action Level Exceedance Map	19
Figure 6: Potential Soil Boring Location Map	23

LIST OF TABLES

Table 1: Soil Analytical Summary	. 11
Table 2: Data Qualifier Flags	. 13

LIST OF APPENDICES

Appendix A:	Executed C-138
Appendix B:	Photographic Documentation
Appendix C:	Southwest Geoscience and Apex Soil Boring Logs
Appendix D:	Laboratory Analytical Reports & Chain of Custody Documentation

INTERIM CORRECTIVE ACTION and SUPPLEMENTAL ENVIRONMENTAL SITE INVESTIGATION REPORT

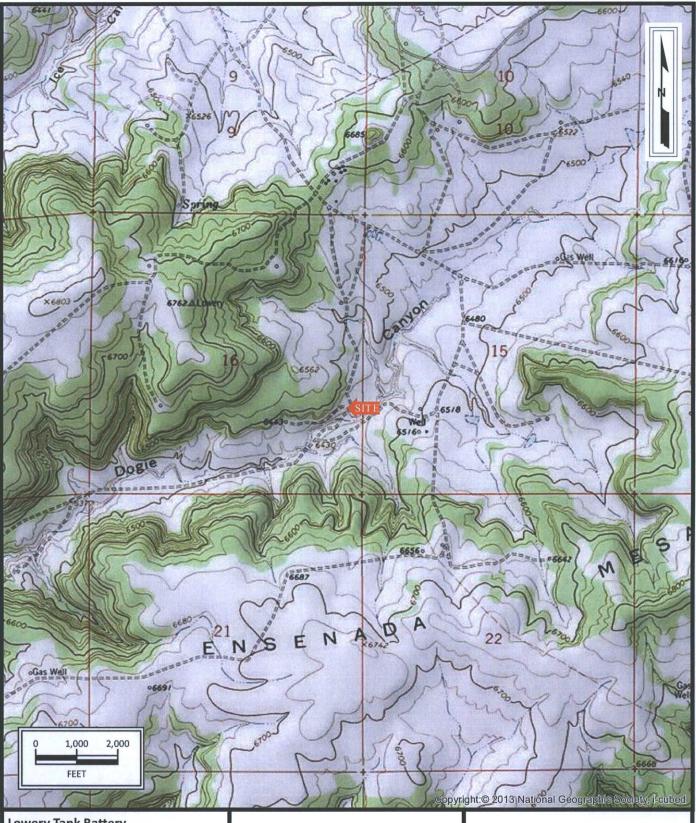
Lowery Tank Battery

NE ¼ SE ¼ Sec 16, T26N, R6W Rio Arriba County, New Mexico

Apex Project No. 7030413G001

1.0 INTRODUCTION

1.1 Site Description and Background


The Williams Four Corners LLC (Williams) Lowery Tank Battery is located in the NE ¼ of the SE ¼ of Section 16, Township 26 North, Range 6 West (36.48418 N, 107.46542 W), in Rio Arriba County, New Mexico, referred to hereinafter as the "Site". The property on which the Site is located is owned by the State of New Mexico and comprised primarily of native canyon rangeland periodically interrupted by oil and gas gathering and production facilities. The Site currently consists of one (1) 400-barrel (bbl) condensate/produced water tank, one (1) below grade tank (estimated at 250 bbl), two (2) small field-support tanks containing glycol and methanol, and related appurtenances, all situated within a lined secondary containment.

During 2013, while moving a below-grade tank (BGT) at the Williams Lowery Tank Battery, soil impacted by operations associated with natural gas gathering was observed underlying the tank. The observed impact is believed to be the result of a historic unlined pit.

A limited environmental site investigation was performed during March 2013 to further evaluate the extent of hydrocarbon impact to the substrate. Analytical results from the investigative soil samples identified elevated concentrations of constituents of concern (COCs) in soils at the Site. It appears that historically released liquids have drained down to the underlying bedrock and followed this surface away from the source area, affecting overlying subsurface soils in the process. These activities and associated results are described in the *Limited Site Investigation – Lowery Tank Battery*, revised September 3, 2013 - Southwest Geoscience (now Apex TITAN, Inc.).

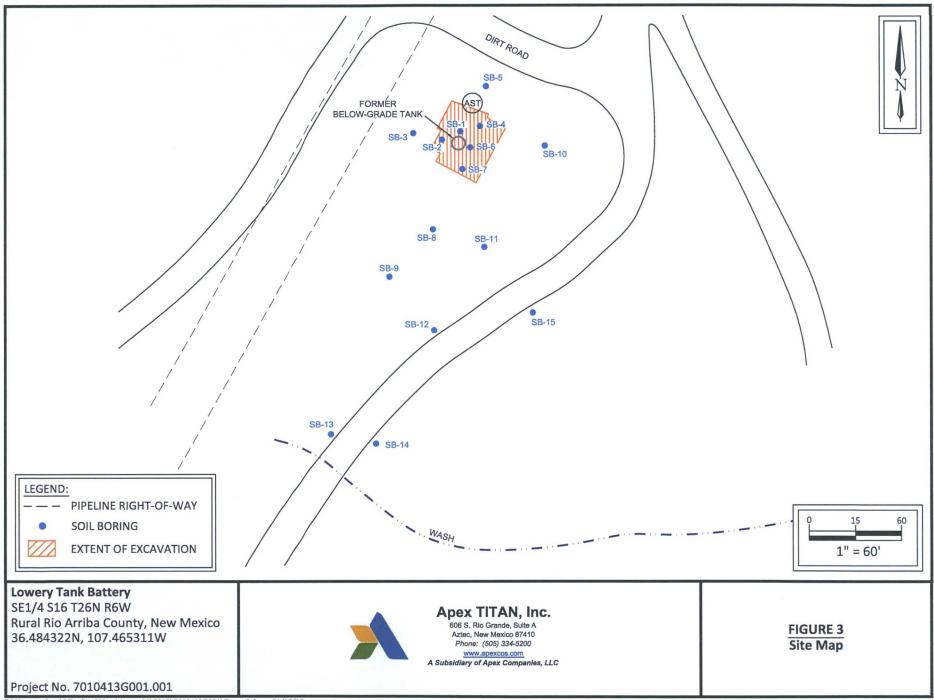
A topographic map is included as Figure 1, a 2012 aerial photograph of the Site vicinity is included as Figure 2. Figure 3 is a Site Map, indicating the approximate location of the BGT, as well as the locations of all soil borings advanced during site investigation activities to date.

1

Lowery Tank Battery SE1/4 S16 T26N R6W Rural Rio Arriba County, New Mexico 36.484322N, 107.465311W

Apex TITAN, Inc. 606 South Rio Grande, Suite A Aztec, NM 87410 Phone: (505) 334-5200 www.apexcos.com A Subsidiary of Apex Companies, LLC FIGURE 1 Topographic Map Gonzales Mesa, NM Quadrangle 1963

Project No. 7030413G001.001


Lowery Tank Battery SE1/4 S16 T26N R6W Rural Rio Arriba County, New Mexico 36.484322N, 107.465311W

Apex TITAN, Inc. 606 South Rio Grande, Suite A Aztec, NM 87410 Phone: (505) 334-5200 www.apexcos.com A Subsidiary of Apex Companies, LLC

FIGURE 2 Site Vicinity Map

Project No. 7030413G001.001

Z:\Houston South\Drafting\New Mexico 04\2013\7010413G001\Figure 3.dwg 04/15/15

1.2 Objectives

In accordance with the October 2, 2013 *Proposed Supplemental Environmental Site Investigation and Corrective Action Work Plan* – Southwest Geoscience, and with input from the New Mexico Energy, Minerals, and Natural Resources Department (EMNRD) New Mexico Oil Conservation Division (OCD) District 3, the objectives of the interim corrective action and supplemental environmental investigation activities included:

- 1.) Further evaluating the magnitude and extent of COCs in the on-site soil;
- 2.) Reducing the volume of affected material in the source area by physical removal of accessible impacted soil; and
- 3.) Treating soils in-situ with a chemical oxidizer, utilizing a gravity-induced application system and down-gradient injection points.

The in-situ chemical oxidation has not yet been initiated. The Geoprobe[®] rig was unable to advance the larger probes required to install the injection points which, in turn, are required for a portion of the chemical application. Treatment options will be re-evaluated after delineation activities have been completed.

1.3 Site Ranking

In accordance with the EMNRD OCD *Guidelines for Remediation of Leaks, Spills and Releases*, Apex Titan, Inc. (Apex) utilized the general site characteristics to determine the appropriate "ranking" for the Site. The ranking criteria and associated scoring are provided in the following table:

Rankin	Ranking Score		
	<50 feet	20	
Depth to Groundwater	50 to 99 feet	10	10
	>100 feet	0	
Wellhead Protection Area <1,000 feet from a water 	Yes	20	
source, or; <200 feet from private domestic water source.	No	0	0
Distance to Surface Water	<200 feet	20	
Body	200 to 1,000 feet	10	20
Body	>1,000 feet	0	
Total Rar	30		

Based on Apex's evaluation of the scoring criteria and currently available data, the Site would earn a maximum Total Ranking Score of "30". This ranking is based on the following:

• A soil boring advanced adjacent to Dogie Canyon Wash reached a total depth of 44 feet below grade surface (bgs) without encountering groundwater. The depth to groundwater based on available information is estimated to be greater than 50

feet bgs at the Site. However, the depth to groundwater in this area may fluctuate seasonally, and will be further evaluated as more information is available.

- The nearest water well identified by a search of the New Mexico Water Rights Reporting System is located over 3,000 meters away from the Site.
- The Dogie Canyon Wash is less than 200 feet from the Site.

Based on a Total Ranking Score of 30, cleanup goals for soil located at the Site include: 10 milligrams per kilogram (mg/Kg) for benzene, 50 mg/Kg for total benzene, toluene, ethylbenzene, and xylenes (BTEX), and 100 mg/Kg for total petroleum hydrocarbon (TPH).

1.4 Standard of Care & Limitations

The services of Apex were performed in accordance with standards customarily provided by a firm rendering the same or similar services in the area during the same time period. Apex makes no warranties, expressed or implied, as to the services performed hereunder. Additionally, Apex does not warrant the work of third parties supplying information used in the report (e.g. laboratories, regulatory agencies, or other third parties). This scope of services was performed in accordance with the scope of work agreed with the client.

Findings, conclusions and recommendations resulting from these services are based upon information derived from the on-Site activities and other services performed under this scope of work and it should be noted that this information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, or not present during these services, and Apex cannot represent that the Site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during this scope of services. Environmental conditions at other areas or portions of the Site may vary from those encountered at actual sample locations. Apex's findings and recommendations are based solely upon data available to Apex at the time of these services.

This report has been prepared for the exclusive use of Williams Four Corners LLC, and any authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the Site) is prohibited without the expressed written authorization of Williams Four Corners LLC and Apex. Any unauthorized distribution or reuse is at the client's sole risk. Notwithstanding the foregoing, reliance by authorized parties will be subject to the terms, conditions and limitations stated in the proposal, the report, and Apex's Agreement. The limitation of liability defined in the agreement is the aggregate limit of Apex's liability to the client.

2.0 CORRECTIVE ACTION

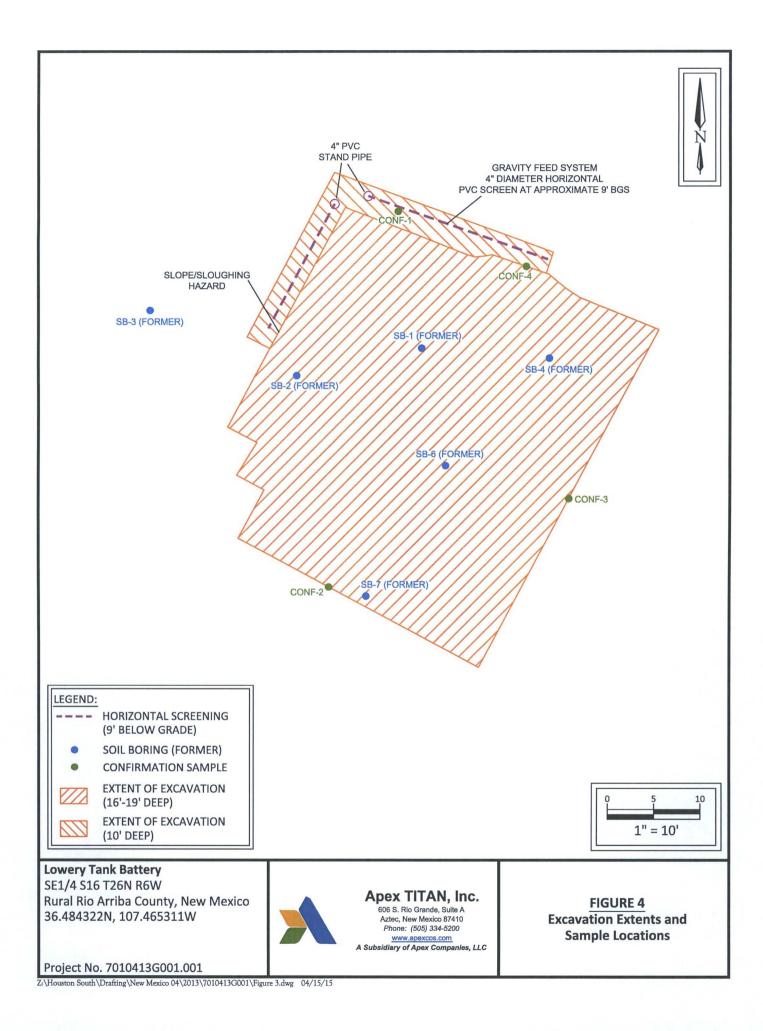
Following discussions with local EMNRD OCD District 3 personnel, Williams initiated the removal of accessible source area affected soils. During November 2013, 954 cubic yards of soil was removed from the presumed historical pit area by excavation and subsequently transported to the Envirotech, Inc. Landfarm near Hilltop, New Mexico for disposal/treatment. Graham Stanke (Williams) and Johnathan Kelly (OCD - District 3) were present during the excavation activities, and Kyle Summers, an Apex environmental professional, provided environmental support.

The lithology encountered during the execution of corrective action activities consisted primarily of silty sands and silty clays. The overall average surface expression of the excavation measured approximately 37 feet long by 35 feet wide, with a total depth ranging from 16 to 19 feet bgs. The floor of the excavation was relatively flat, however the surrounding grade varied considerably.

The executed Form C-138 is provided in Appendix A. The excavation was backfilled with clean/unaffected fill and contoured to surrounding grade to facilitate the re-installation of the BGT system.

Figure 4 depicts the extents of the excavation and the corresponding confirmation sample locations and pertinent former soil boring locations. Photographic documentation of the field activities is included in Appendix B.

2.1 Excavation Sampling Program


To assist in determining the lateral limits of excavation and to identify target sampling zones, Apex screened head-space samples of Site soils with a photoionization detector (PID) fitted with a 10.6 eV lamp.

Apex's confirmation sampling program included the collection of four (4) final confirmation samples (Conf-1 through Conf-4) for laboratory analysis. Samples Conf-1 and Conf-2 were collected from potholes north and south of the early excavation at depths of approximately 12 feet to 13 feet bgs to assess potential lateral migration. The excavation was eventually extended to these locations, and they were ultimately utilized as extent samples for the excavation with approval from the OCD field representative. Samples Conf-3 and Conf-4 were collected from areas of the north and east sidewalls exhibiting possible staining. Samples were collected based on relative PID readings or other evidence of potential impact (and/or based on OCD field representative input), with consideration of pertinent soil boring data.

Due to the slope and the potential sloughing hazards, a final confirmation sample was not collected from the west wall (topographically upgradient). However, data from former soil boring SB-3 (located approximately 13 feet beyond the western excavation limits) and the associated analytical samples demonstrated no evidence of adverse impact from the ground surface to its total depth of 28 feet bgs.

Prior data from numerous former soil borings within the excavation footprint confirm that the soils at and below the floor of the excavation in the vicinity of the historic release exceed regulatory standards, and as such were not re-sampled.

7

The confirmation soil samples were collected and placed in laboratory prepared glassware, labeled/sealed using the laboratory supplied labels, and placed on ice in a cooler, which was secured with a custody seal. The sample cooler and completed chainof-custody form were relinquished to Hall Environmental Analysis Laboratory (HEAL) in Albuquerque, New Mexico, for analysis.

2.2 Gravity-Induced Application System

To facilitate the projected in-situ application of a chemical oxidizer, a gravity-induced application system was installed immediately up-gradient (topographically) of the presumed historical source area.

Subsequent to backfilling the remediation excavation, two (2) trenches were installed at approximately 90 degrees to each other at the northern corner of the former excavation. Within the trenches, 4-inch diameter schedule-40 polyvinyl chloride (PVC) .020" machine-slotted well screen was placed horizontally (20 feet long on the northeast trench and 15 feet long on the northwest trench), at an approximate depth of 9 feet bgs, each with a blank PVC riser to the surface (see Figure 4). To allow the flow of chemical oxidizer while deterring an influx of sediment, the horizontal well screens were enveloped in a bed of pea gravel that is wrapped by a geotextile fabric. The trenches were then backfilled and contoured to surrounding grade.

The gravity-induced application system has not yet been utilized. It is part of an in-situ treatment system that includes down-gradient injection points that have not been installed. The full area of the hydrocarbon soil impact at the Site has not been fully delineated and treatment options will be re-evaluated after delineation activities have been completed.

3.0 SITE INVESTIGATION

3.1 Soil Borings

Apex's supplemental investigation activities were conducted on March 10, 2014 by Mr. Kyle Summers, an Apex environmental professional. Johnathan Kelly, (OCD - District 3) was present to witness three (3) of the four (4) soil boring advancements. As part of the approved scope of work, four (4) soil borings (SB-12 through SB-15) were advanced topographically down-gradient of the apparent source area to further define the lateral extent of the affected soil plume. Soil borings were advanced utilizing a direct push Geoprobe[®] rig.

Soil boring samples were collected continuously utilizing four-foot long core barrel samplers to the termination depth of each soil boring. Soil samples were observed to document soil lithology, color, moisture content, and visual and olfactory evidence of petroleum hydrocarbons. Field headspace analysis was conducted by placing a portion of each soil sample into a plastic ziplock bag. The plastic bag was sealed to permit the collection of any volatized gases. The air above the sample, the headspace, was then evaluated using a PID capable of detecting volatile organic compounds (VOCs). The PID was calibrated utilizing an isobutylene standard prior to use in the field.

The lithology encountered during the advancement of the soil borings generally included alternating silty sands and silty clays from the surface to the terminus of the boring. The borings were terminated at probe refusal in silty clay (SB-12, SB-14, SB-15) or sandstone (SB-13). Lithologic descriptions are presented on the soil boring logs included in Appendix C.

Petroleum hydrocarbon odors were detected in the field in soil samples collected from soil borings SB-12, SB-14, and SB-15. The PID readings from soil borings SB-12 through SB-15 ranged from below instrument detection to 1,242 parts per million (ppm) at depths ranging from the surface up to 44 feet bgs. Only soils collected from depths greater than 25 feet bgs exhibited evidence of hydrocarbon impact. Significant petroleum hydrocarbon odors and/or PID readings were not detected in the soil samples collected from soil boring SB-13. Field screening results are presented on soil boring logs included in Appendix C.

Groundwater was not encountered during the advancement of soil borings SB-12 through SB-15.

3.2 Investigation Sampling Program

Apex's soil sampling program involved submitting up to two (2) soil samples from each soil boring for laboratory analysis. Soil samples were collected from the zone exhibiting the highest PID reading, from a change in lithology, or from the bottom of the boring, based on the field professional's judgment. Soil sample intervals and analytical results are presented on Table 1, which also includes data from the initial Site investigation.

TABLE 1Lowery Tank BatterySOIL ANALYTICAL SUMMARY

Sample I.D.	Date	Sample Depth	Benzene	Toluene	Ethylbenzene	Xylenes	Total BTEX	TPH GRO	TPH DRO	ТРН	Chloride
		(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	by 8015 (mg/kg)	by 8015 (mg/kg)	by 418.1 (mg/kg)	(mg/kg)
Resources De	Entergy, Mine epartment, Oil Remediation Ad	Conservation	10	NE	NE	NE	50	1(00	100	250
				Sc	il Boring Data	from 2013	SSI		San Mada San San		
	3.26.13	8.0	3.4	180	23	260	466	4,700	520	1,600	35
SB-1	3.26.13	30.0	65	330	24	240	659	8,700	600	9,000	140
	3.26.13	38.0	3.3	39	6	56	104	1,600	250	1,200	71
SB-2	3.26.13	10.0	<0.97	9.1	6.9	59	75	1,700	1,000	3,000	46
5D-2	3.26.13	26.0	<4.9	100	15	150	265	3,800	540	4,200	8.2
	3.26.13	6.0	<0.047	<0.047	<0.047	< 0.094	<0.235	<4.7	<9.9	<20	53
SB-3	3.26.13	16.0	<0.048	<0.048	<0.048	<0.096	<0.24	<4.8	<9.7	<20	27
	3.26.13	28.0	<0.048	<0.048	<0.048	<0.096	<0.24	<4.8	<9.9	<20	13
SB-4	3.26.13	18.0	<0.47	1.7	1.5	16	19.2	430	400	1,000	140
00-4	3.26.13	39.5	83	420	37	370	910	13,000	890	12,000	130
SB-5	3.26.13	32.0	<0.049	<0.049	<0.049	<0.097	<0.244	<4.9	<9.9	23	<7.5
30-3	3.26.13	36.0	<0.048	<0.048	<0.048	<0.096	<0.24	<4.8	9.8	29	<7.5
SB-6	3.26.13	18.0	<2.4	38	12	130	180	2,500	660	2,800	43
30-0	3.26.13	36.0	19	160	14	160	353	4,300	530	4,300	<15
SB-7	3.27.13	34.0	<0.048	<0.048	<0.048	< 0.097	<0.241	<4.8	<9.7	<20	59
SD-1	3.27.13	40.0	<0.047	<0.047	<0.047	< 0.094	<0.235	<4.7	14	35	22
SB-8	3.27.13	42.0	<0.047	1.0	0.33	3.1	4.4	89	58	200	<7.5
00-0	3.27.13	44.0	1.0	32	3.8	45	82	800	140	810	<7.5

				SC	TABL Lowery Tan DIL ANALYTIC	ik Battery					
Sample I.D.	Date	Sample Depth (feet)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	Total BTEX (mg/kg)	TPH GRO by 8015 (mg/kg)	TPH DRO by 8015 (mg/kg)	TPH by 418.1 (mg/kg)	Chloride (mg/kg)
Resources De	Entergy, Mine epartment, Oil Remediation Ac	Conservation	10	NE	NE	NE	50	1	100		250
			Server and Server	So	il Boring Data	from 2013	SSI	and the set		No B. Sola of	
SB-9	3.27.13	38.0	<0.046	<0.046	<0.046	<0.093	<0.231	<4.6	<10	<20	16
SB-10	3.27.13	36.0	<0.48	4.0	<0.97	8.8	12.8	220	64	130	<1.5
SB-11	3.27.13	32.0	<0.24	1.1	<0.47	2.9	4.0	82	15	34	<7.5
30-11	3.27.13	36.0	15	93	7.8	80	196	2,600	260	1,400	7.9
				So	il Boring Data	from 2014	SSI				
SB-12	3.10.14	32.0	13	85	7.3	76	181	2,600	130	2,400	<7.5
SB-13	3.10.14	20.0	<0.049	<0.049	<0.049	<0.098	<0.245	<4.9	<9.9	<20	<7.5
SB-14	3.10.14	34.0	11	57	5.1	51	124	1,900	210	2,000	<7.5
3D-14	3.10.14	44.0	<0.047	<0.047	<0.047	<0.095	<0.236	<4.7	<10	<20	11.0
SB-15	3.10.14	34.0	55	290	24	250	619	9,000	1,100	11,000	<7.5
OD-10	3.10.14	40.0	<0.047	<0.047	<0.047	<0.095	<0.0236	6.7	<10	110	<7.5
				Exc	avation Confir	mation San	nples				
Conf-1	11.14.13	12-13	<0.049	<0.049	< 0.049	<0.098	<0.245	<4.9	<9.9	NA	NA
Conf-2	11.15.13	12-13	<0.048	<0.048	<0.048	<0.097	<0.241	<4.8	<10	NA	NA
Conf-3	11.18.13	12-13	<0.048	<0.048	<0.048	<0.096	<0.240	<4.8	<10	NA	NA
Conf-4	11.18.13	12-13	<0.047	<0.047	<0.047	<0.094	<0.235	<4.7	<9.9	NA	NA

Note: Concentrations in **bold** and/or yellow exceed the applicable OCD Remediation Action Level

Note: Samples in light blue were subsequently removed by excavation

NE = Not Established

NA=Not Analyzed

4.0 LABORATORY ANALYTICAL PROGRAM

4.1 Laboratory Analytical Methods

The soil samples collected from the corrective action excavation and investigative soil borings were analyzed for TPH Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) utilizing Environmental Protection Agency (EPA) SW-846 Method 8015, and benzene, toluene, ethylbenzene and xylenes (collectively BTEX) utilizing EPA SW-846 Method 8021. Soil samples collected from the soil borings were also analyzed for TPH utilizing EPA Method 418.1, and chlorides utilizing EPA Method 300. Laboratory analytical results are summarized in Table 1. The executed chain-of-custody form and laboratory data sheets are provided in Appendix D.

4.2 Quality Assurance/Quality Control (QA/QC)

All non-disposable sampling equipment was cleaned using an Alconox[®] wash and potable water rinse prior to the beginning of the project and before the collection of each sample.

Soil samples were collected and placed in laboratory prepared glassware, sealed with custody tape and placed on ice in a cooler, which was secured with a custody seal. The sample coolers and completed chain-of-custody forms were relinquished to HEAL for standard turnaround.

HEAL performed the analyses of samples under an adequate and documented quality assurance program to meet the project and data quality objectives. The laboratory's quality assurance program is generally consistent the quality standards outlined in the National Environmental Laboratory Accreditation Program, as amended. In addition, the data generated by HEAL meet the intralaboratory performance standards for the selected analytical method and the performance standards are sufficient to meet the bias, precision, sensitivity, representativeness, comparability, and completeness, as specified in the project data quality objectives. Sample results that resulted in Data Qualifier (DQ) flags are listed in the following table:

		ble 2 Ilifier Flags
Sample ID	Data Qualifier Flag	Comments/Reactions
SB-15 (34')	SW-846 Method 8015 TPH Diesel Range Spike Recovery was outside the accepted recovery limits.	The surrogate recovery of "0" renders the accuracy of the analytical result questionable. However, the similarity of the combined GRO and DRO fraction concentrations when compared with the 418.1 TPH result (which exhibited no data qualifier flags) indicates the value should be suitable as an estimated value.
SB-15 (34')	SW-846 Method 8015 TPH Gasoline Range Spike Recovery was outside the accepted recovery limits.	The TPH GRO data is suitable for use as an estimated value. The surrogate recovery was slightly outside the accepted "high" limit of 129% with a recovery of 135%. The 418.1 TPH concentration (with no qualifier flags) correlates acceptably with the combined DRO/GRO fractions from the SW-846 Method 8015.

5.0 SITE CHARACTERIZATION

5.1 Geology & Hydrogeology

According to the New Mexico Bureau of Geology and Mineral Resources (Geologic Map of New Mexico 2003), the Site overlies the Eocene age San Jose geologic formation. The San Jose geologic formation contains a mixture of clastic sedimentary rocks varying from siltstone to conglomerate, dominated by rocks containing sand-sized particles. The lithology encountered at the Site during the advancement of soil borings consisted of silty sand deposits derived from erosion of the parent San Jose formation which comprises the surrounding hilltops and mesas. Based on the available soil boring samples, these alluvia generally consist of brown to olive silty sands and silty clays from the ground surface to at least 44 feet bgs.

The major aquifer underlying the Site vicinity is listed as the Colorado Plateaus Aquifer, which is made up of four smaller aquifers, the Uinta-Animas, the Mesa Verde, the Dakota-Glen, and the Coconino-De Chelly. The Uinta-Animas is the shallowest of these aquifers, and is present in the San Juan Basin. The general composition of the aquifers is moderately to well-consolidated sedimentary rocks of an age ranging from Permian to Tertiary. Each aquifer is separated from the others by an impermeable confining unit. Two of the confining units are completely impermeable and cover the entire area of the aquifers. The other two confining units are less extensive and are thinner. These units allow water to flow between the principal aquifers.

The initial groundwater-bearing units (GWBU) encountered in the Largo Canyon area are typically composed of unconsolidated to moderately consolidated silty sands located in or near the drainage channels. The initial GWBU at the Site was not encountered during investigation activities.

6.0 DATA EVALUATION

The Site is subject to regulatory oversight by the New Mexico EMNRD OCD. To address activities related to condensate releases, the New Mexico EMNRD OCD utilizes the *Guidelines for Remediation of Leaks, Spills and Releases* as guidance, in addition to the OCD rules, specifically New Mexico Administrative Code (NMAC) 19.15.29 and NMAC 19.15.30. These guidance documents establish investigation and abatement action requirements for sites subject to reporting and/or corrective action.

6.1 Excavation Confirmation Samples

Apex compared the BTEX and TPH concentrations associated with the final confirmation samples (Conf-1 through Conf-4) collected from the excavated area to the OCD *Remediation Action Levels* for sites having a total ranking score of "30".

Total Petroleum Hydrocarbons

The laboratory analyses of the confirmation samples (Conf-1 through Conf-4) collected from soils remaining in place at the excavation sidewalls do not indicate combined TPH GRO/DRO concentrations above the laboratory reporting limits (RLs), which are below the OCD *Remediation Action Level* for a Site ranking of "30".

Benzene

The laboratory analyses of confirmation samples (Conf-1 through Conf-4) collected from soils remaining in place at the excavation sidewalls do not indicate benzene concentrations above the laboratory RLs, which are below the OCD *Remediation Action Level.*

Total BTEX

The laboratory analyses of the confirmation samples (Conf-1 through Conf-4) collected from soils remaining in place at the excavation sidewalls do not indicate total BTEX concentrations above the laboratory RLs, which are below the OCD *Remediation Action Level.*

Confirmation sample results and pertinent supporting soil boring analytical results from the 2013 *Limited Site Investigation* are provided in Table 1.

Due to the slope and potential sloughing hazards, a final confirmation sample was not collected from the west wall. However, data from former soil boring SB-3 (located approximately 13 feet beyond the western excavation limits) demonstrated no indications of adverse impact from the ground surface to its total depth of 28 feet bgs.

Prior data from numerous former soil borings (SB-1, SB-2, SB-4, and SB-6) within the excavation footprint confirm that the soils at and below the floor of the excavation in the vicinity of the historic release exceed regulatory standards.

6.2 Soil Boring Samples

Apex compared the BTEX and TPH concentrations associated with the soil boring samples to the OCD *Remediation Action Levels* for sites having a total ranking score of "30".

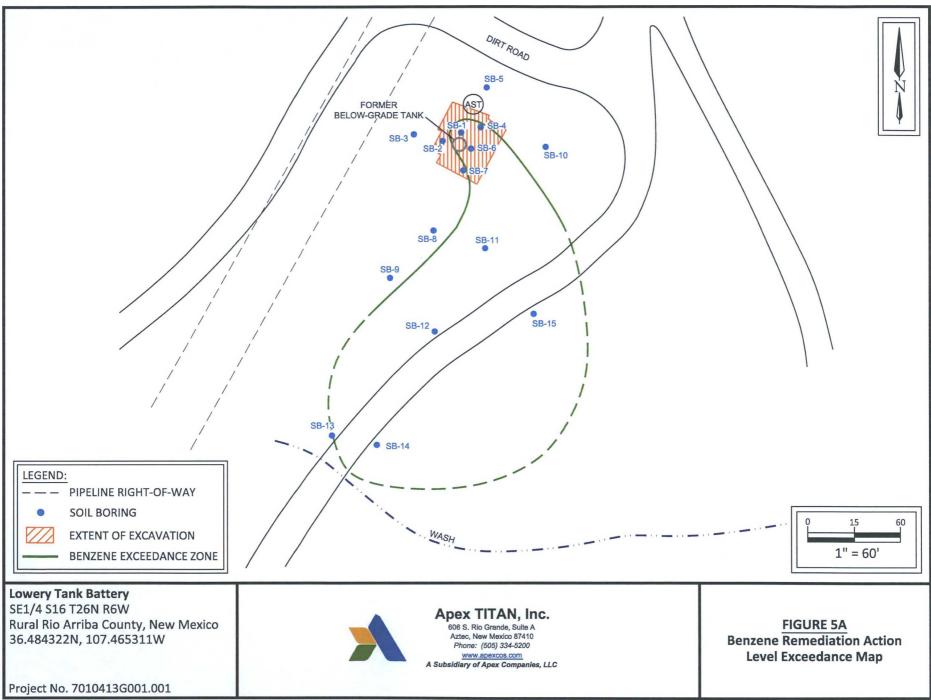
Total Petroleum Hydrocarbons

Soil samples collected from soil borings SB-12, SB-14, and SB-15 exhibited combined TPH GRO/DRO and/or TPH 418.1 concentrations ranging from below the laboratory RLs to 11,000 mg/kg. Each of these soil borings exhibited TPH concentrations in at least one sampling interval that exceeded the OCD's *Remediation Action Level* of 100 mg/Kg for a Site ranking of "30".

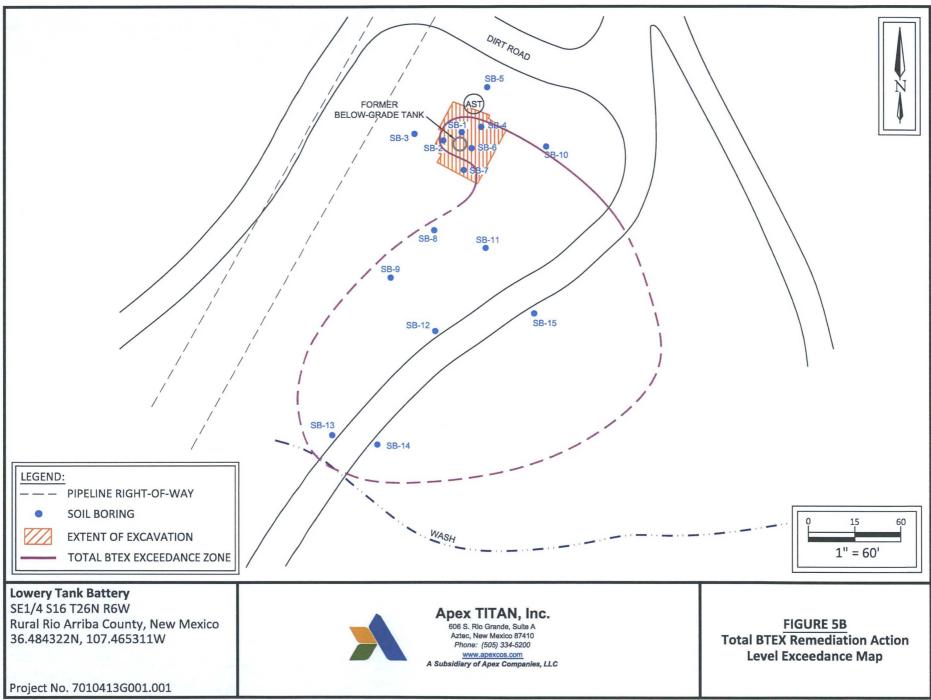
The soil sample collected from soil boring SB-13 did not exhibit TPH GRO/DRO or TPH 418.1 concentrations above the laboratory RLs which are below the OCD's *Remediation Action Level* of 100 mg/Kg for a Site ranking of "30". Soil boring SB-13 was terminated at a depth of 20 feet bgs, due to probe refusal (sandstone).

Benzene

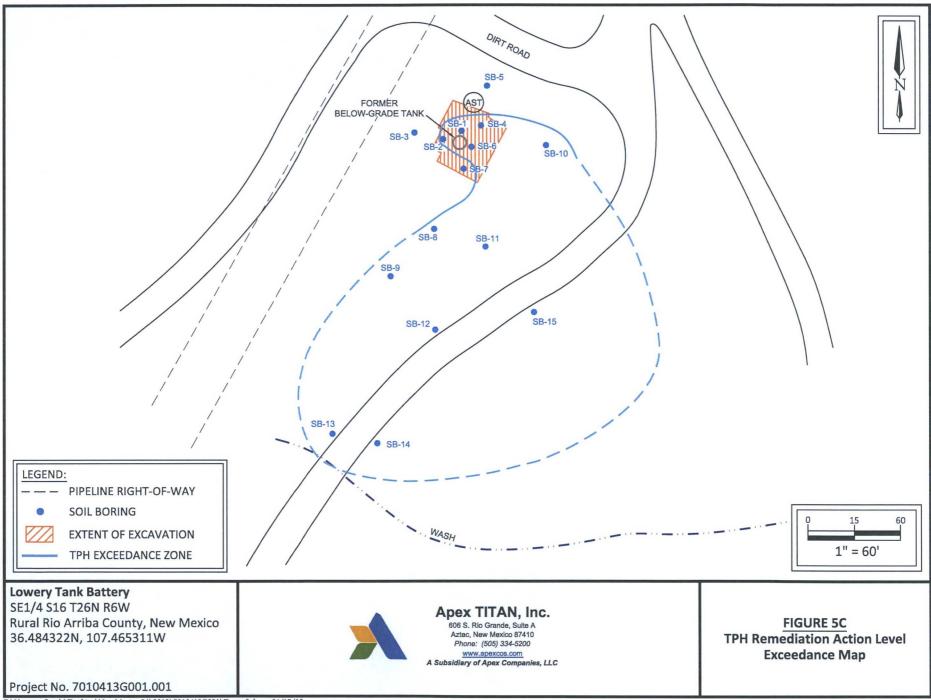
Soil samples collected from soil borings SB-12, SB-14, and SB-15 exhibited benzene concentrations ranging from below the laboratory RLs to 55 mg/kg. Each of these soil borings exhibited benzene concentrations in at least one sampling interval that exceeded the OCD's *Remediation Action Level* of 10 mg/Kg.


The soil sample collected from soil boring SB-13 did not exhibit benzene concentrations above the laboratory RLs which are below the OCD's *Remediation Action Level* of 10 mg/Kg. Soil boring SB-13 was terminated at a depth of 20 feet bgs, due to probe refusal (sandstone).

Total BTEX


Soil samples collected from soil borings SB-12, SB-14, and SB-15 exhibited total BTEX concentrations ranging from below the laboratory RLs to 619 mg/kg. Each of these soil borings exhibited total BTEX concentrations in at least one sampling interval that exceeded the OCD's *Remediation Action Level* of 50 mg/Kg.

The soil sample collected from soil boring SB-13 did not exhibit total BTEX concentrations above the laboratory RLs which are below the OCD's *Remediation Action Level* of 50 mg/Kg. Soil boring SB-13 was terminated at a depth of 20 feet bgs, due to probe refusal (sandstone).


The results of soil sample analyses are summarized in Table 1. Figures 5A (benzene), 5B (total BTEX), and 5C (TPH) provide a visual depiction of the estimated OCD *Remediation Action Level* Exceedance Zones in soil, based on available information.

Z:\Houston South\Drafting\New Mexico 04\2013\7010413G001\Figure 3.dwg 04/15/15

Z:\Houston South\Drafting\New Mexico 04\2013\7010413G001\Figure 3.dwg 04/15/15

Z:\Houston South\Drafting\New Mexico 04\2013\7010413G001\Figure 3.dwg 04/17/15

7.0 FINDINGS

The Williams Lowery Tank Battery is located in the NE ¼ of the SE ¼ of Section 16, Township 26 North, Range 6 West, in Rio Arriba County, New Mexico. The property on which the Site is located is owned by the State of New Mexico and comprised primarily of native canyon rangeland periodically interrupted by oil and gas gathering and production facilities. The Site currently consists of one (1) 400 bbl condensate/produced water tank, one (1) below grade tank (estimated at 250 bbl), two (2) small field-support tanks containing glycol and methanol, and related appurtenances, all situated within a lined secondary containment.

During November 2013, 954 cubic yards of soil was removed from the presumed historical pit area by excavation and subsequently transported to the Envirotech, Inc. Landfarm near Hilltop, New Mexico for disposal/treatment.

On March 10, 2014 Apex advanced four (4) soil borings topographically down-gradient of the apparent source area to further define the lateral extent of the affected soil plume. Soil borings were advanced utilizing a direct push Geoprobe[®] rig.

The soil samples collected from the corrective action excavation and investigative soil borings were analyzed for TPH GRO/DRO utilizing EPA SW-846 Method 8015, and BTEX) utilizing EPA SW-846 Method 8021. Soil samples collected from the soil borings were also analyzed for TPH utilizing EPA Method 418.1, and chlorides utilizing EPA Method 300.

The initial groundwater-bearing unit at the Site was not encountered during investigation activities.

The laboratory analyses of the confirmation samples collected from soils remaining in place at the excavation sidewalls do not indicate combined TPH GRO/DRO or BTEX concentrations above the OCD *Remediation Action Levels*.

Prior data from numerous former soil borings (SB-1, SB-2, SB-4, and SB-6) within the excavation footprint confirm that the soils at and below the floor of the excavation in the vicinity of the historic release exceed regulatory standards.

Soil samples collected from soil borings SB-12, SB-14, and SB-15 exhibited COC concentrations in at least one sampling interval that exceeded the OCD's *Remediation Action Level.* Affected soils appear to be present predominantly at depth greater than 25 feet bgs.

8.0 PROPOSED DELINEATION

Based on the results of Site investigation activities to date, Williams proposes to perform additional delineation activities at the Site to further evaluate the vertical and horizontal extent of hydrocarbon impact.

8.1 Proposed Soil Boring Program

Up to eight (8) soil borings will be advanced on-Site utilizing a hollow-stem auger drilling rig. The soil borings will be advanced at select locations topographically down-gradient from the previously installed soil borings SB-1 through SB-15. The soil borings will be advanced to a minimum estimated depth of 45 feet bgs, five (5) to ten (10) feet below the initial water table (if encountered), or auger refusal. If an identifiable confining layer is encountered during soil boring advancement, the boring will not extend through the unit, or will be plugged back to the unit. Sandstone is anticipated at most locations at approximately 40 to 45 feet bgs. Potential soil boring locations are presented on Figure 6. Actual locations and the number of soil borings advanced may vary, depending on field conditions and observations, and New Mexico State Land Office (NMSLO) approvals.

Reusable sampling and drilling equipment will be decontaminated using an Alconox® wash and potable water rinse prior to commencement of the project and between the advancement of each soil boring.

Soil samples will be collected continuously using core barrels to document lithology, color, relative moisture content and visual or olfactory evidence of impairment. In addition, the samples will be scanned with a PID to evaluate the presence of VOCs.

Any investigation-derived waste will be stored in 55-gallon steel drums pending characterization. Affected materials will be transported to an OCD-approved facility for disposal/treatment.

8.2 Proposed Soil Sampling Program

Apex's investigative soil sampling program will consist of the following:

- 1) Collection of up to three (3) soil samples from each of the soil borings from any of the following locations:
 - a) the zone exhibiting the highest concentration of VOC's based on visual, olfactory or PID evidence,
 - b) from the capillary fringe zone,
 - c) from a change in lithology, or
 - d) from the bottom of the boring.

The soil samples will be collected in laboratory prepared glassware and placed on ice in a cooler, which will be secured with a custody seal. The samples will be transported HEAL with a completed chain-of-custody form.

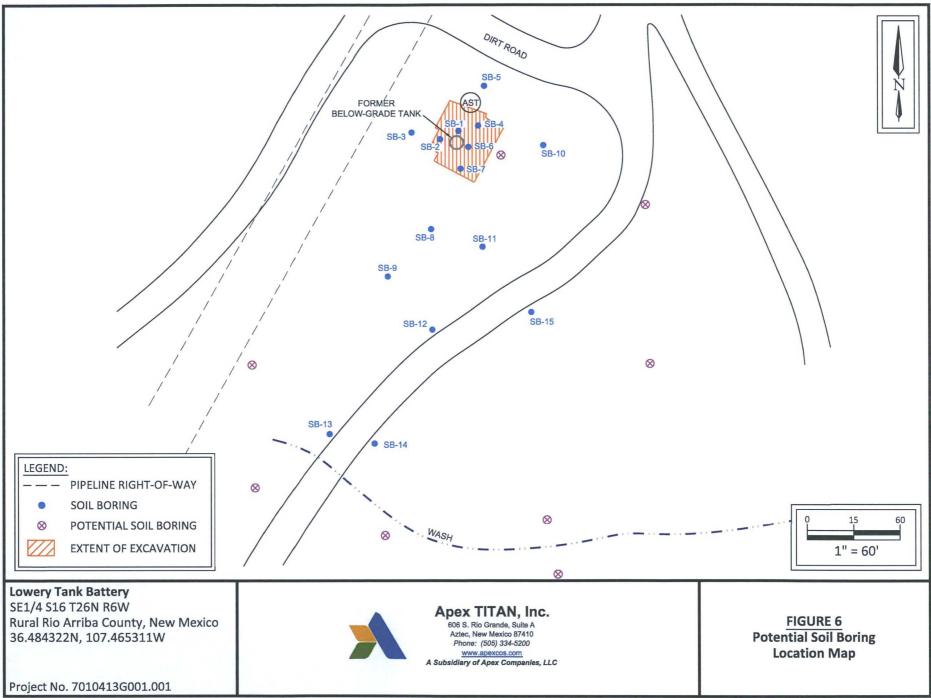
8.3 Optional Monitoring Well Installation

In the event that groundwater is encountered prior to the vertical delineation of hydrocarbon soil impact, one or more monitoring wells may be installed. The installation of monitoring wells would, in part, be dependent on the ability to obtain approvals from the New Mexico Office of the State Engineer and NMSLO. If installed, the appropriate monitoring well permit fees and paperwork would be submitted as soon as practicable following the installation(s).

Monitoring wells would be completed as follows:

- Installation of 10 to 20 feet of 2-inch diameter, machine slotted (0.010 inch) schedule 40 PVC well screen assembly with a threaded bottom plug;
- Installation of schedule 40 riser pipe to surface;
- Addition of graded silica sand for annular sand pack around the well screen from the bottom of the well to two feet above the top of the screen;
- Placement of two feet of hydrated bentonite pellets above the sand;
- Addition of cement/bentonite slurry to the surface; and
- Installation of an above-grade steel riser with an integrated padlock hasp.

The sampling and monitoring wells will be developed by surging and removing groundwater until the fluid appears free of fine-grained sediment.


8.4 Proposed Groundwater Sampling Program

If one (1) or more monitoring wells is installed, one (1) groundwater sample will be collected from each monitoring well utilizing low-flow or bailer sampling techniques to evaluate potential COCs in on-site groundwater. Based on these results, a separate groundwater investigation may be warranted.

Low-flow refers to the velocity with which groundwater enters the pump intake and that is imparted to the formation pore water in the immediate vicinity of the well screen. It does not necessarily refer to the flow rate of water discharged at the surface which can be affected by flow regulators or restrictions. Water level drawdown provides the best indication of the stress imparted by a given flow-rate for a given hydrological situation. The objective is to pump in a manner that minimizes stress (drawdown) to the system to the extent practical taking into account established site sampling objectives. Flow rates on the order of 0.1 to 0.5 liters per minute (L/min) will be maintained during the sampling activities using dedicated sampling equipment.

The utilization of low-flow minimal drawdown techniques enables the isolation of the screened interval groundwater from the overlying stagnant casing water. The pump intake is placed within the screened interval such that the groundwater pumped is drawn in directly from the formation with little mixing of casing water or disturbance to the sampling zone.

The monitoring wells will be purged until produced groundwater is consistent in color, clarity, pH, and conductivity. The general goal for stabilization of the monitored groundwater parameters of pH, temperature, and conductivity is three (3) consecutive readings at five (5) minute intervals that demonstrate less than 10% variation.

Z:\Houston South\Drafting\New Mexico 04\2013\7010413G001\Figure 3.dwg 04/16/15

The groundwater samples will be collected in laboratory prepared glassware and placed on ice in a cooler, which will be secured with a custody seal. The samples will be transported to HEAL with a completed chain-of-custody form.

8.5 Proposed Laboratory Analytical Program

The soil and/or groundwater samples collected during the investigation will be analyzed for BTEX utilizing EPA SW-846 Method 8021.

8.6 Supplemental Environmental Site Investigation Report

Upon completion of supplemental site investigation activities and receipt of the analytical results, a Supplemental Environmental Site Investigation Report will be prepared that will include documentation of the field activities, tabular data summaries, a site plan detailing pertinent site features, laboratory analytical reports, an evaluation of sampling results and recommendations concerning further action.

APPENDIX A

Executed C-138

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

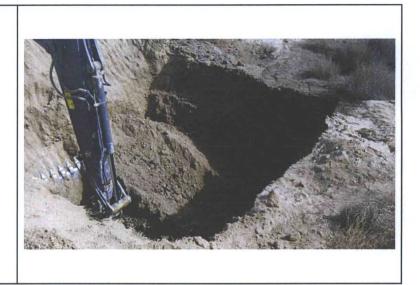
Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-138 Revised August 1, 2011

*Surface Waste Management Facility Operator and Generator shall maintain and make this documentation available for Division inspection.

	REQUEST FOR APPROVAL TO ACCEPT SOLID WASTE
1.	Generator Name and Address: Williams Four Corners LLC., 188 Country Road 4900, Bloomfield, NM 87413
2.	Originating Site: Lowery Tank Battery
3.	Location of Material (Street Address, City, State or ULSTR): 190 County Road 4980, Bloomfield, San Juan County, New Mexico Unit I, Section 16, Township 26N, Range 6W
4.	Source and Description of Waste: Source/Description: Produced water/condensate release from below-grade tank located at field gathering tank battery/Soil impacted from release.
Est	imated Volume 350 yd ³ / bbls Known Volume (to be entered by the operator at the end of the haul) 954 (yd ³) bbls
5.	GENERATOR CERTIFICATION STATEMENT OF WASTE STATUS
cer	Graham Stahnke Grepresentative or authorized agent for Williams Four Corners LLC do hereby ify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 alatory determination, the above described waste is: (Check the appropriate classification)
	RCRA Exempt: Oil field wastes generated from oil and gas exploration and production operations and are not mixed with non- exempt waste. Operator Use Only: Waste Acceptance Frequency Monthly Weekly Per Load
	RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardous by characteristics established in RCRA regulations, 40 CFR 261.21-261.24, or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous. (Check the appropriate items)
	MSDS Information 🔲 RCRA Hazardous Waste Analysis 🔲 Process Knowledge 🔲 Other (Provide description in Box 4)
	GENERATOR 19.15.36.15 WASTE TESTING CERTIFICATION STATEMENT FOR LANDFARMS
I. C	Graham Stahnke Area representative for Williams Four Corners LLC authorize Envirotech, Inc. to
	nplete the required testing/sign the Generator Waste Testing Certification.
1	Kandu Running, representative for Envirotech, Inc do hereby certify that
rep	resentative samples of the oil field waste have been subjected to the paint filter test and tested for chloride content and that the samples
hav	e been found to conform to the specific requirements applicable to landfarms pursuant to Section 15 of 19.15.36 NMAC. The results
	he representative samples are attached to demonstrate the above-described waste conform to the requirements of Section 15 of 15.36 NMAC.
	Transporter: ple F Construction, Enviratech
OCI	Permitted Surface Waste Management Facility
Nam	e and Facility Permit #: Envirotech Remediation Facility Permit # NM-01-0011
	ddress of Facility: Hilltop, New Mexico
M	lethod of Treatment and/or Disposal:
	Evaporation Injection Treating Plant Z Landfarm Landfill Other
Was	te Acceptance Status:
PRIN	IT NAME: Kendra Running TITLE: Waste Cooking for DATE: 11/13/13
SIG	VATURE: Kendua Runna TELEPHONE NO.: Envirotech, Inc
	V

APPENDIX B

Photographic Documentation



SITE PHOTOGRAPHS

Lowery Tank Battery

Photograph 1

View of early stages of excavation facing south.

Photograph 2

View of early stages of excavation.

Photograph 3

View of excavation facing south.

SITE PHOTOGRAPHS

Lowery Tank Battery

Photograph 4 View of excavation facing north.

Photograph 5

View excavation floor facing north.

Photograph 6

View of gravity-induced application system facing south during pea gravel application.

APPENDIX C

Southwest Geoscience and Apex Soil Boring Logs

Description Transver Uset controls SOIL BORING LOG Project Leartion Rio Arrise Conney NM Soil Boring Nambers Soil Boring Nambers Data Standa 3/26/2013 Data Standa Soil Boring Nambers OH JOCOD Data Standa Market Notes Defining Complexity Earth Work Defining Complexity NA Standa Diritic Complexity NA Standa Diritic Complexity NA Standa Diritic Complexity NA Deck Hole Diritic Phole Standa Complexity Geologine K. Summers Standa Diritic Complexity NA Standa Diritic Complexity Standa Complexity Standa Diritic Complexity Standa Complexity Standa Dirit	Client:	Williams Four Corners							1
Date Complete Date Complete Date Complete Date Complete L Truitlo Denting Methods Direct Push Coologies K Summers Sampler Types NA SOIL CLASSIFICATION SULTY CLAY, Dark Brown Grades to Dark Olive Brown, Slightly Most, Hydrocarbon Odor SILTY SAND, Olive Gray, Slightly Moist, Hydrocarbon Odor CLAY, Olive Gray, Slightly Moist, Hydrocarbon Odor SILTY SAND, Olive State State State State State State State Stat	Project: Project Lo Project Ma	Lowery Tank cation: Rio Arriba County, NM mager: K. Summers	Project	t Numbe			L BOI	RINC	SB-1 0413G001
Boring Methods Direct Path Screens Size: NA Geologies K. Summers CROUNDWATER DEPTH Screens Size: NA Sampler Type: NA Screens Size: NA Suffice Completion: Screens Size: Screens Size: NA Suffice Completion: Screens Size: Screens Size: Screens Size: Suffice Completion: Screensize: Screens Siz	Date Com	pleted: 3/26/2013	Appro	ved by:	STRU	UCT	ION IN	VFOR	KS
0 1 0 0 0 5 1 1 1 1 1 10 SILTY CLAY, Dark Brown Grades to Dark Olive Brown, Slightly 0 1 1 10 SAND, Olive Gray, Slightly Moist, Hydrocarbon Odor 10 10 10 46 10 SAND, Olive Gray, Slightly Moist, Hydrocarbon Odor 10 10 46 373 10 SILTY SAND, Olive Gray, Slightly Moist, Hydrocarbon Odor 10 10 46 376 20 SILTY SAND, Olive Gray, Slightly Moist, Hydrocarbon Odor 10 10 46 376 30 SILTY SAND, Olive Gray, Slightly Moist, Hydrocarbon Odor 10 10 46 376 30 SILTY SAND, Olive Gray, Grades to Purple @ 38 ft bgs, Silt @ 34 - 38 ft 30 10 10 10 33 CLAY, Olive Gray, Grades to Purple @ 38 ft bgs, Silt @ 34 - 38 ft 30 10 10 11 33 Silphtly Moist, Hydrocarbon Odor 10 10 10 10 10 34 Silphtly Moist, Hydrocarbon Odor 10 10 10 10 10	Boring Me Geologist: Bore Hole	thod: Direct Push K. Summers <u>GROUNDWATER DEPTH</u> Diamter: 2.5" Depth at Completion	Well Diameter:NAScreen Size:NACasing Length:NA						NA NA NA
FILL FILL SILTY CLAY, Dark Brown Grades to Dark Olive Brown, Slightly Moist, Hydrocarbon Odor IN IN SAND, Olive Gray, Slightly Moist, Hydrocarbon Odor IN IN SILTY SAND, Olive Gray, Slightly Moist, Hydrocarbon Odor IN SILTY SAND, Olive Gray, Slightly Moist, Hydrocarbon Odor IN IN CLAY, Olive Gray, Grades to Purple @ 38 ft bgs, Silt @ 34 - 38 ft IN IN IN	MONITORING WELL CONSTRUCTION DETAIL	SOIL CLASSIFICATION	STRATUM	DEPTH	SAMPLE NUMBER	SAMPLE INTERVAL	GROUNDWATER	PID (ppm)	COMMENTS
SILTY SAND, Olive Gray, Slightly Moist, Hydrocarbon Odor SILTY SAND, Olive Gray, Slightly Moist, Hydrocarbon Odor CLAY, Olive Gray, Grades to Purple @ 36 ft bgs, Silt @ 34 - 38 ft bgs, Slightly Moist, Hydrocarbon Odor CLAY, Olive Gray, Grades to Purple @ 36 ft bgs, Silt @ 34 - 38 ft bgs, Slightly Moist, Hydrocarbon Odor This herio and here does in the here of the set	-	FILL		0			%0	0	
10- 10- 10- 399 13- 360 277 15- 373 15- 373 15- 376 15- 376 15- 376 15- 376 15- 376 15- 376 15- 376 15- 376 15- 376 16- 376 17- 377 376 376 376 376 377 376 378 376 379 376 370 376 376 376 377 377 380 376 390 390 390 390 391 392 392 393 393 393 394 394 395 395 396 595 396 592 396 592 395 5	5	SILTY CLAY, Dark Brown Grades to Dark Olive Brown, Slightly Moist, Hydrocarbon Odor		5	6-8		%0		
15- - - 373 20- - - 373 20- - - - 376 30- - - - - - 30- - - - - - - 30- - <t< td=""><td></td><td>SAND, Olive Gray, Slightly Moist, Hydrocarbon Odor</td><td></td><td>10</td><td></td><td></td><td>100%</td><td></td><td></td></t<>		SAND, Olive Gray, Slightly Moist, Hydrocarbon Odor		10			100%		
20 31 21 31 30 31 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 33 30 33 30 33 30 33 30 33 30 33 30 33 30 33 30 33 30 33 30 33 31 32 32 33 33 34 34 35 35 35 36 35 37 35 38 35 39 35 36 35 37 36 38 36						+	-	373	
25- 30- 30- 30- 35- 35- 35- 35- 35- 35- 35- 35	20	SILTY SAND, Olive Gray, Slightly Moist, Hydrocarbon Odor		20		+	_	376	
30 -	 25			25		$\left \right $	_	478	
35 510 3638 510 548 548 Bottom of Boring @ 38 ft bgs	- - 30			30	29-30		100%	557	
	- - 35			35	36-38			510	Bottom of Boring @ 38 ft bas
NOTE: This log is not to be used outside the original report. Southwest Geoscience				l				210	South of Doring C D0 it bgs
	NOTE:	This log is not to be used outside the original report.					SG	EO	hwest

Client: Project: Project Loc Project Mar Date Started Date Started Date Comp Drilling Con Driller: Boring Met Geologist: Bore Hole I Sampler Ty	nager: K. Summers G & SAMPLING INFORMATION d: 3/26/2013 oleted: 3/26/2013 mpany: Earth Worx L. Trujillo chod: Direct Push K. Summers <u>GROUNDWATER DEP</u> Diamter: 2.5" Depth at Completion	Well D Screen <u>CH</u> Screen Casing	Numbe By: ved by: <u>CON</u> iameter	umber er: STR : :				NG LOG SB-2 0413G001 RDH KS ORMATION NA NA NA NA NA
MONITORING WELL CONSTRUCTION DETAIL	SOIL CLASSIFICATION	STRATUM	DEPTH	SAMPLE NUMBER	SAMPLE INTERVAL	RECOVERY	GROUNDWATER DEPTH	(udd) COMMENTS
	SILTY CLAY, Moderate Yellowish Brown, Dry, Hydrocarbon Odor @ 9 - 26 ft bgs			9-10		100% 50% 50% 50% 50% 50% 50%		6
NOTE: 7	This log is not to be used outside the original report.		CCACCULTORY SERVICE AND IN THE			S	OL	athwest

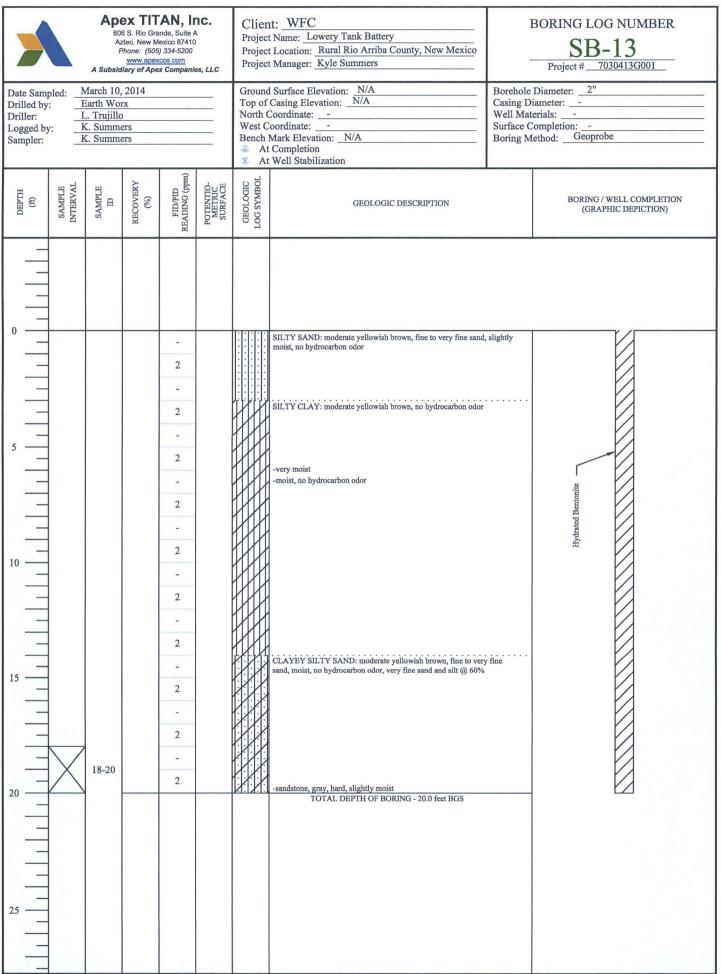
Client: Project:	Williams Four Corners Lowery Tank				SO	IL B	ORI	ING LOG
Project Loo Project Ma Date Starte Date Comp Drilling Co Driller: Boring Met Geologist: Bore Hole Sampler To	nager: K. Summers IG & SAMPLING INFORMATION ed: 3/26/2013 pleted: 3/26/2013 ompany: Earth Worx L. Trujillo thod: Direct Push K. Summers <u>GROUNDWATER DEPTH</u> Diamter: 2.5"	Soil Boring Number: Project Number: Drawn By: Approved by: <u>WELL CONSTRUCTION IN</u> Well Diameter: Screen Size: Screen Length: Casing Length: Surface Completion:				INF	SB-3 0413G001 RDH KS <u>FORMATION</u> NA NA NA NA NA NA	
MONITORING WELL CONSTRUCTION DETAIL	SOIL CLASSIFICATION	STRATUM	DEPTH	SAMPLE NUMBER	SAMPLE INTERVAL	RECOVERY	GROUNDWATER DEPTH	(uidd) CII COMMENTS
⁰────	SILTY SAND, Moderate Yellowish Brown, Dry to Slightly Moist,	111	0					
-	Slight Musty Odor @ 6 ft bgs		_			50%		9
- 5					-	_		
-			-	5-6		50%		87
-			Ŧ			_		
10-			10			50%		10
-			+		-	_		
-			+			100%		9
15			15	15-16				4
-			+			50%		2
20—			20-		-	_		
_			-			100%		1
-			-					1
25 —			25			100%		5
	SILTY CLAY, Moderate Yellowish Brown, Slightly Moist, No Odor			27-28		-		5 Bottom of Boring @ 28 ft bgs
NOTE: 7	This log is not to be used outside the original report.		101420-071-071-071-071-071-071-071-071-071-07		_	S	Ol	uthwest

Client:	Williams Four Corners				SOI	IB	ORI	NG	LOG
Project: Project Los	Lowery Tank cation: Rio Arriba County, NM				501	LD	ORI	ING	100
Project Ma									SB-4
DRILLIN	IG & SAMPLING INFORMATION	Project	0413G001						
Date Starte		Drawn					RDH KS		
Date Comp	pleted: 3/26/2013		ved by:		IOT				
Drilling Co		WELL	CON:	STRU	JCI	101	N IN	FOR	MATION
Driller:	L. Trujillo thod: Direct Push		iameter	:					NA
Boring Me Geologist:		Screen	Length						NA NA
Bore Hole			g Length						NA
Sampler Tr	ype: NA 👳 Depth at Stabilization	Surfac	e Comp	letior	1:				NA
MONITORING WELL CONSTRUCTION DETAIL	SOIL CLASSIFICATION	STRATUM	DEPTH	SAMPLE NUMBER	SAMPLE INTERVAL	RECOVERY	GROUNDWATER DEPTH	PID (ppm)	COMMENTS
			0						
	SAND, Moderate Yellowish Brown, Moist, No Odor		+			%		2	
			Ţ			50%			
		initial filt	+					•	
5—	SANDY CLAY & SAND, Dark Yellowish Brown, Moist, No Odor		5			50%		4	
		1/1/1	Ţ			50			
		1///	+					1	
10-		1//	10			100%		1	
		11/	+			10		1	
		1///	İ						
			+			100%		1	
15 —		1/1	15			1(606	
	SAND & CLAYEY SAND, Olive Brown, Moist, Hydrocarbon Odor	111	Ţ	18.10		9		945	
		111	+	17-18		100%		945	
20		111	20					671	
			+			%		537	
			Ţ			100%			
			+					465	
25-			25			100%		525	
		111	+			10		487	
		111	1						
30—		111	30-			100%		457	
	SAND, Moderate Yellowish Brown, Slightly Moist, Hydrocarbon		+			1		450	
	Odor		Ŧ			%		408	
						100%		400	
35-			35-					414	
			+			100%		367	
	CLAY & SANDY CLAY, Olive Gray, Moist, Hydrocarbon Odor	11/1	1	38.5-39.5		10		610	Bottom of Boring @ 39.5 ft
	J	the had	1						
NOTE:	This log is not to be used outside the original report.	NAMES & STOCKED AND AND AND AND AND AND AND AND AND AN				S	O GI	ut	hwest
	Contraction of the second s						_		

Client: Project: Project Locat Project Mana Date Started: Date Started: Date Comple Drilling Com Driller: Boring Meth Geologist: Bore Hole D	ager: K. Summers S & SAMPLING INFORMATI : 3/26/2013 eted: 3/26/2013 hpany: Earth Worx L. Trujillo lod: Direct Push K. Summers	M	Soil Boring Number: Project Number: Drawn By: Approved by: <u>WELL CONSTRUCTIO</u> Well Diameter: Screen Size:						S LOG SB-5 0413G001 RDH KS MATION NA NA NA NA	
Sampler Typ MONITORING DETAIL DETAIL	soil classi	☑ Depth at Stabilization	Surfac WOLLEY S	e Comp HLJag	SAMPLE NUMBER	SAMPLE INTERVAL	RECOVERY	GROUNDWATER DEPTH	PID (ppm)	NA
	SILTY SAND, Moderate Yellowish Degraded Hydrocarbon Odor @ 24				3031		50% 50% <td></td> <td>- 8 - 9 - 9 - 9 - 9 8 13 - 74 - 90 - 38</td> <td>Bottom of Boring @ 36 ft bgs</td>		- 8 - 9 - 9 - 9 - 9 8 13 - 74 - 90 - 38	Bottom of Boring @ 36 ft bgs
NOTE: T	his log is not to be used outside	the original report.					S	O GI		hwest science

Client: Project: Project Loo	,,,,,,,	Soil Boring Number: SB 6								
Project Ma Date Starte Date Comp Drilling Co Driller: Boring Me Geologist: Bore Hole Sampler Ty	G & SAMPLING INFORMATION rd: 3/26/2013 pleted: 3/26/2013 pompany: Earth Worx L. Trujillo thod: Direct Push K. Summers GROUNDWATER DEPTH Diamter: 2.5"	Drawn By: RDH Approved by: KS WELL CONSTRUCTION INFORMATION Well Diameter: NA Screen Size: NA						0413G001 RDH KS MATION NA NA NA NA		
MONITORING WELL CONSTRUCTION DETAIL	SOIL CLASSIFICATION	STRATUM	DEPTH	SAMPLE NUMBER	SAMPLE INTERVAL	RECOVERY	GROUNDWATER DEPTH	PID (ppm)	COMMENTS	
	SILTY SAND, Moderate Yellowish Brown, Dry, No Odor					50%		- 3		
- 5 - - 10 -	CLAY, Moderate Yellowish Brown, Moist, No Odor		5			100% 50%		- 6 6 343		
- - 15	SILTY SAND, Moderate Yellowish Brown, to Olive Brown, Moist, Hydrocarbon Odor		15			100%		896 1032		
- - 20	SAND & SILTY SAND, Moderate Yellowish Brown, to Olive Brown, Slightly Moist, Hydrocarbon Odor		20	17-18		100% 100%		11111 922 995		
 25 	SILTY/CLAYEY SAND, Light Olive Brown, Moist, No Odor		+ 25 			100%		921 546 651		
- 30 — - - - 35 —			30			100% 100%		415 430 581		
NOTE: 7	This log is not to be used outside the original report.			35-36		S	O		Bottom of Boring @ 36 ft bgs hwest science	

Client: Project:	Williams Four Corners Lowery Tank	SOIL BORING LOG	
Project Lo Project Ma	Rio Arriba County, NM anager: K. Summers VG & SAMPLING INFORMATION ed: 3/27/2013 pleted: 3/27/2013 ompany: Earth Worx L. Trujillo ethod: Direct Push K. Summers GROUNDWATER DEPTH Plaimter: 2.5"	Soil Boring Number:SB-7Project Number:0413G001Drawn By:RDHApproved by:KSWELL CONSTRUCTION INFORMATIONWell Diameter:NAScreen Size:NAScreen Length:NACasing Length:NASurface Completion:NA	
MONITORING WELL CONSTRUCTION DETAIL	SOIL CLASSIFICATION	STRATUM DEPTH DEPTH SAMPLE NUMBER SAMPLE INTERVAL RECOVERY GROUNDWATER DEPTH PID (ppm) PID (ppm) SLUATER	
	SILTY SAND, Moderate Yellowish Brown, Dry, No Odor SAND, Moderate Yellowish Brown, Dry, No Odor SILTY SAND, Moderate Yellowish Brown, Slightly Moist, No Odor SILTY CLAY, Moderate Yellowish Brown, Dry, Hydrocarbon Odor	0 - - - 1 5 - 9001 0 0 10 - 0 0 0 10 - 9001 9001 0 10 - 9001 0 0 10 - 9001 0 0 10 - 9001 1 1 15 - 1 1 1 20 - 9001 9001 22 20 - - - - 20 - 9001 90 12 25 - 9001 90 12 30 - - 56 87 35 - 9001 976 Bottom of Boring @ 40 fm	ft bgs
NOTE:	This log is not to be used outside the original report.	Southwest	


Client: Project:	Williams Four Corners Lowery Tank				SO	IL E	BOR	INC	G LOG
Project Loo Project Ma Date Starte Date Comp Drilling Co Driller: Boring Me Geologist: Bore Hole Sampler Tr	Ration: Rio Arriba County, NM nager: K. Summers G & SAMPLING INFORMATION d: 3/27/2013 obleted: 3/27/2013 ompany: Earth Worx L. Trujillo thod: Direct Push K. Summers GROUNDWATER DEPTH Diamter: 2.5"	Drawn By: RDH Approved by: KS <u>WELL CONSTRUCTION INFORMATION</u> Well Diameter: NA Screen Size: NA					0413G001 RDH KS EMATION NA NA NA NA		
MONITORING WELL CONSTRUCTION DETAIL	SOIL CLASSIFICATION	STRATUM	DEPTH	SAMPLE NUMBER	SAMPLE INTERVAL	RECOVERY	GROUNDWATER DEPTH	PID (ppm)	COMMENTS
	SILTY SAND, Moderate Yellowish Brown, Dry, No Odor SILTY CLAY, Moderate Yellowish Brown, Dry, No Odor SANDY SILT & CLAY, Moderate Yellowish Brown, Sandstone Fragments @ 34 ft bgs, Dry, No Odor			4142		100% 100% 100% 100% 100% 50% 100% 100% 1		3 3 1 3 2 1 1 1 1 1 1 1 1 1 1 1 2 1 0 0 48 99 418 374	Bottom of Boring @ 44 ft bgs
NOTE:	This log is not to be used outside the original report.		noegina ros trivedoencilitzen			S	O GI		hwest science

Client: Project: Project Loo Project Ma Date Starte Date Comp Drilling Co Driller: Boring Me Geologist: Bore Hole Sampler Ty	nager: K. Summers G & SAMPLING INFORMATION d: 3/27/2013 oleted: 3/27/2013 ompany: Earth Worx L. Trujillo thod: Direct Push K. Summers Diamter: 2.5" Depth at Completion	SOIL BORING LOGSoil Boring Number:SB-9Project Number:0413G001Drawn By:RDHApproved by:KSWELL CONSTRUCTION INFORMATIONWell Diameter:NAScreen Size:NAScreen Length:NACasing Length:NASurface Completion:NA						SB-9 0413G001 RDH KS EMATION NA NA NA NA	
MONITORING WELL CONSTRUCTION DETAIL	SOIL CLASSIFICATION	STRATUM	DEPTH	SAMPLE NUMBER	SAMPLE INTERVAL	RECOVERY	GROUNDWATER DEPTH	PID (ppm)	COMMENTS
	SAND & SILTY SAND, Moderate Yellowish Brown, Dry, No Odor WEATHERED SANDSTONE, Moderate Yellowish Brown, Cobbles, Dry, No Odor SILTY CLAY, Moderate Yellowish Brown, Dry, No Odor SILTY CLAY, Red with Gray Mottling, Dry, No Odor SILTY CLAY, Gray, Dry, Slight Hydrocarbon Odor @ 38 ft bgs			37-38		100% 100% 100% 100% 50% 100% 100% 100% 1		1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 148	Bottom of Boring @ 38 ft bgs
NOTE: 7	This log is not to be used outside the original report.	Constant and Constanting of	lints i frille routini			S	G		thwest SCIENCE

Client: Project: Project Lo		SOIL BORING LOG								
Project Ma DRILLIN Date Starte Date Com Drilling Co Driller: Boring Me Geologist: Bore Hole Sampler T	nager: K. Summers IG & SAMPLING INFORMATION ed: 3/27/2013 pleted: 3/27/2013 pompany: Earth Worx L. Trujillo thod: Direct Push K. Summers <u>GROUNDWATER DEPTH</u> Diamter: 2.5" Depth at Completion	Soil Boring Number:SB-10Project Number:0413G001Drawn By:RDHApproved by:KSWELL CONSTRUCTION INFORMATIONWell Diameter:NAScreen Size:NAScreen Length:NACasing Length:NASurface Completion:NA						0413G001 RDH KS RMATION NA NA NA NA		
MONITORING WELL CONSTRUCTION DETAIL	SOIL CLASSIFICATION	STRATUM	DEPTH	SAMPLE NUMBER	SAMPLE INTERVAL	RECOVERY	GROUNDWATER DEPTH PID (ppm)	COMMENTS		
	SILTY SAND, Moderate Yellowish Brown, Dry @ 4 ft bgs, No Odor SILTY CLAY, Moderate Yellowish Brown, Slightly Moist, No Odor					6 100% 100% 75% 100%	1 1 - 1 1 1 0 0 0 0 0 43			
	CLAY, Moderate Brown, Stiff, Slightly Moist, No Odor to Slight Hydrocarbon Odor SAND, Moderate Yellowish Brown, Slightly Moist, Slight Hydrocarbon Odor CLAY & SILTY SANDY CLAY, Moderate Brown, Slightly Moist, Hydrocarbon Odor CLAYEY SAND, Moderate Yellowish Brown to Olive Brown, Moist, Hydrocarbon Odor		25 	35-36		100% 100% 50%	 43 154 117 323 340 143 64 823 	Bottom of Borign @ 36 ft bgs		
NOTE:	This log is not to be used outside the original report.					S	OUI	thwest		

Client: Project: Project Loo Project Max Date Starte Date Starte Date Comp Drilling Co Driller: Boring Met Geologist: Bore Hole Sampler Ty	hager: K. Summers G & SAMPLING INFORMATION d: 3/27/2013 deted: 3/27/2013 mpany: Earth Worx L. Trujillo hod: Direct Push K. Summers Diamter: 2.5"	Drawn By: RDH Approved by: KS <u>WELL CONSTRUCTION INFORMATION</u> Well Diameter: NA Screen Size: NA						SB-11 0413G001 RDH KS EMATION NA NA NA NA	
MONITORING WELL CONSTRUCTION DETAIL	SOIL CLASSIFICATION	STRATUM	DEPTH	SAMPLE NUMBER	SAMPLE INTERVAL	RECOVERY	GROUNDWATER DEPTH	PID (ppm)	COMMENTS
	SILTY SAND, Moderate Yellowish Brown, Dry, No Odor			31-32		100% 100% 100% 50% 100% 100% 100% 100% 1		1 1 0 0 0 0 0 0 0 0 0 0 0 0 11 44 61 73 175 239 829 397 432	Bottom of Boring @ 36 ft bgs
NOTE: 7	This log is not to be used outside the original report.					S	G	ut	hwest

Apex TITAN, Inc. 606 S. Rio Grande, Suite A Aztec, New Mexico B7410 Project Name: Lowery Tank Battery Project Name: Lowery Tank Battery Project Name: L. Trujillo Client: WFC Project Name: L. Trujillo Client: WFC Project Name: Lowery Tank Battery Project Location: Rural Rio Arriba County, New Mexico Project Manager: Kyle Summers	Borehole Diameter: Well Materials:
Logged by: K. Summers Sampler: K. Summers West Coordinate: - Bench Mark Elevation: N/A Image: Ima	Surface Completion: Boring Method:Geoprobe
DEPTH (f) (f) (f) (f) In In In In In (%)	BORING / WELL COMPLETION (GRAPHIC DEPICTION)
0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 10 - 10 - 0 - 0 - 10 - 0 - 10 - 0 - 0 - 0 - 10 - 110 - 12 - 0 - 0 - 0 - 15 - 0 - 16 - 170 - 20 - 170 - 21 - 22 - 131 - 230 - 30 - 30 - 30 - 30 - 31 -	I. modor, i. moist, no ist to dry, no High High High High High High High High

Date Sampled: March Drilled by: Earth V Driller: L. Truj Logged by: K. Surr	tilled by: Earth Worx Top of Casing Elevation: N/A Casing I riller: L. Trujillo North Coordinate: - Well Mi ogged by: K. Summers West Coordinate: - Surface				Borehole Casing D Well Mat Surface C	BORING LOG NUMBER SB-14 Project #7030413G001 Diameter:? erials:? completion:? tethod:Geoprobe	
DEPTH (ft) SAMPLE INTERVAL SAMPLE	RECOVERY (%)	FID/PID READING (ppm)	POTENTIO- METRIC SURFACE	GEOLOGIC	GEOLOGIC DESCRIPTION		BORING / WELL COMPLETION (GRAPHIC DEPICTION)
		- 1 - 2 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - - 1 - - 1 - - - - - - - - - - - - -			SILTY SAND/SILTY CLAY: moderate yellowish brown, fine to sand, moist, no hydrocarbon odor SILTY SAND: moderate yellowish brown, fine to very fine sand, no hydrocarbon odor -very moist @ 10' SILTY CLAY: moderate yellowish brown, moist, apparent fire re (burned brush) SILTY CLAY: dry to slightly moist, no hydrocarbon odor until 2 anhydrite stals -silty layer (0.5' thick) -sandier (24.5-28') -small stains SILTY CLAY: moderate yellowish brown, slightly moist to mois hydrocarbon odor -silt (1' thick at 37'), mostly clay TOTAL DEPTH OF BORING - 44.0 feet BGS	moist, mnants 6.5',	Hydrated Bentonite

Date Sam Drilled by Driller: Logged by Sampler:	: <u> </u>	600 Az F	x ers	nde, Suite A exico 87410) 334-5200 cos.com		Projec Projec Projec Ground Top of North 0 West 0 Bench ≅ At	nt: WFC t Name: Lowery Tank Battery t Location: Rural Rio Arriba County, New Mexico t Manager: Kyle Summers d Surface Elevation: N/A Casing Elevation: N/A Coordinate: - Coordinate: - Mark Elevation: N/A t Completion	BORING LOG NUMBER <u>SB-15</u> Project # _7030413G001 Borehole Diameter: Casing Diameter: Well Materials: Surface Completion: Boring Method: Geoprobe		
DEPTH (ft)	SAMPLE INTERVAL	SAMPLE ID	RECOVERY (%)	FID/PID READING (ppm)	POTENTIO- METRIC SURFACE	CEOLOGIC	GEOLOGIC DESCRIPTION		BORING / WELL COMPLETION (GRAPHIC DEPICTION)	
		32-34		- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2			SILTY SAND: moderate yellowish brown, fine to very fine sand, no hydrocarbon odor SILTY CLAY: moderate yellowish brown, dry to slightly moist, i hydrocarbon odor until 27', anhydrite xtals SILTY CLAY: moderate yellowish brown, slightly moist to mois -hydrocarbon odor	00	Hydrated Bentonite	

APPENDIX D

Laboratory Analytical Reports & Chain of Custody Documentation

HALL ENVIRONMENTAL ANALYSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

November 26, 2013

Kyle Summers Southwest Geoscience 606 S. Rio Grande Unit A Aztec, NM 87410 TEL: (903) 821-5603 FAX

RE: Lowery Tank

OrderNo.: 1311884

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 4 sample(s) on 11/20/2013 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andif

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

		the second second			Date Reported. 11/20/2	
		C	lient Sam	ple ID: Co	onf-1	
			Collection	n Date: 11	/14/2013 1:00:00 PM	
Matrix:	SOIL		Receive	d Date: 11	/20/2013 10:00:00 AM	
Result	RL	Qual	Units	DF	Date Analyzed	Batch
ORGANICS					Analyst	BCN
ND	9.9		mg/Kg	1	11/22/2013 9:44:12 AM	10459
88.4	66-131		%REC	1	11/22/2013 9:44:12 AM	10459
GE					Analyst	RAA
ND	4.9		mg/Kg	1	11/22/2013 1:22:48 PM	10465
92.2	74.5-129		%REC	1	11/22/2013 1:22:48 PM	10465
					Analyst	RAA
ND	0.049		mg/Kg	1	11/22/2013 1:22:48 PM	10465
ND	0.049		mg/Kg	1	11/22/2013 1:22:48 PM	10465
ND	0.049		mg/Kg	1	11/22/2013 1:22:48 PM	10465
ND	0.098		mg/Kg	1	11/22/2013 1:22:48 PM	10465
110	80-120		%REC	1	11/22/2013 1:22:48 PM	10465
	Matrix: Result ORGANICS ND 88.4 GE ND 92.2 ND ND ND ND ND ND ND	Matrix: SOIL Result RL ORGANICS ND 9.9 88.4 66-131 GE ND 4.9 92.2 74.5-129 ND 0.049 ND 0.049	Matrix: SOIL Result RL Qual ORGANICS 9.9 88.4 66-131 BR 66-131 66 66 MD 4.9 92.2 74.5-129 ND 0.049 ND 0.049 ND 0.049 ND 0.049	Client Sam Collection Matrix: SOIL Received Result RL Qual Units ORGANICS ND 9.9 mg/Kg 88.4 66-131 %REC GE ND 4.9 mg/Kg 92.2 74.5-129 %REC ND 0.049 mg/Kg ND 0.049 mg/Kg ND 0.049 mg/Kg ND 0.049 mg/Kg ND 0.049 mg/Kg	Client Sample ID: Collection Date: 11. Matrix: SOIL Received Date: 11. Matrix: SOIL Received Date: 11. Result RL Qual Units DF ORGANICS ND 9.9 mg/Kg 1 88.4 66-131 %REC 1 GE ND 4.9 mg/Kg 1 ND 0.049 mg/Kg 1	Client Sample ID: Conf-1 Collection Date: 11/14/2013 1:00:00 PM Matrix: SOIL Received Date: 11/20/2013 10:00:00 AM Result RL Qual Units DF Date Analyzed ORGANICS Analyst ND 9.9 mg/Kg 1 11/22/2013 9:44:12 AM 88.4 66-131 %REC 1 11/22/2013 9:44:12 AM GE ND 4.9 mg/Kg 1 11/22/2013 1:22:48 PM 92.2 74.5-129 %REC 1 11/22/2013 1:22:48 PM ND 0.049 mg/Kg 1 11/22/2013 1:22:48 PM ND 0.049

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Metho	od Blank
	E	Value above quantitation range	Н	Holding times for preparation or analysis	s exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	Page 1 of 7
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2 for VOA and	FOC only.
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	
	S	Spike Recovery outside accepted recovery limits			

Hall Environmental Analysis Laboratory, Inc.

Analytical Report Lab Order 1311884

Date Reported: 11/26/2013

Analytical Report
Lab Order 1311884
Date Reported: 11/26/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Southwest Geoscience			CI	ient Sam	ple ID: Co	onf-2	
Project: Lowery Tank			(Collection	Date: 11	/15/2013 8:45:00 AM	[
Lab ID: 1311884-002	Matrix:	SOIL		Received	l Date: 11	/20/2013 10:00:00 Al	M
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE	ORGANICS					Analys	st: BCN
Diesel Range Organics (DRO)	ND	10		mg/Kg	1	11/22/2013 10:49:36	M 10459
Surr: DNOP	122	66-131		%REC	1	11/22/2013 10:49:36	M 10459
EPA METHOD 8015D: GASOLINE RAN	GE					Analys	st: RAA
Gasoline Range Organics (GRO)	ND	4.8		mg/Kg	1	11/22/2013 1:51:26 PI	M 10465
Surr: BFB	92.7	74.5-129		%REC	1	11/22/2013 1:51:26 PI	M 10465
EPA METHOD 8021B: VOLATILES						Analys	st: RAA
Benzene	ND	0.048		mg/Kg	1	11/22/2013 1:51:26 PI	A 10465
Toluene	ND	0.048		mg/Kg	1	11/22/2013 1:51:26 PI	A 10465
Ethylbenzene	ND	0.048		mg/Kg	1	11/22/2013 1:51:26 PI	A 10465
Xylenes, Total	ND	0.097		mg/Kg	1	11/22/2013 1:51:26 PI	A 10465
Surr: 4-Bromofluorobenzene	111	80-120		%REC	1	11/22/2013 1:51:26 PI	A 10465

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	E	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit Page 2 of 7
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2 for VOA and TOC only.
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	Spike Recovery outside accepted recovery limits		

Hall Environmental Analys	sis Labora	tory, Inc			Date Reported: 11/26/	2013
CLIENT: Southwest Geoscience			Client Sample	e ID: Co	onf-3	
Project: Lowery Tank			Collection I	Date: 11	/18/2013 10:00:00 Al	M
Lab ID: 1311884-003	Matrix:	SOIL	Received I	Date: 11	/20/2013 10:00:00 Al	M
Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE	ORGANICS				Analys	st: BCN
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	11/22/2013 11:11:29 /	AM 10459
Surr: DNOP	93.4	66-131	%REC	1	11/22/2013 11:11:29 /	AM 10459
EPA METHOD 8015D: GASOLINE RAI	NGE				Analys	st: RAA
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	11/22/2013 2:20:01 PI	M 10465
Surr: BFB	90.2	74.5-129	%REC	1	11/22/2013 2:20:01 PI	M 10465
EPA METHOD 8021B: VOLATILES					Analys	st: RAA
Benzene	ND	0.048	mg/Kg	1	11/22/2013 2:20:01 PI	M 10465
Toluene	ND	0.048	mg/Kg	1	11/22/2013 2:20:01 PI	M 10465
Ethylbenzene	ND	0.048	mg/Kg	1	11/22/2013 2:20:01 PI	M 10465
Xylenes, Total	ND	0.096	mg/Kg	1	11/22/2013 2:20:01 PI	M 10465
Surr: 4-Bromofluorobenzene	106	80-120	%REC	1	11/22/2013 2:20:01 PI	M 10465

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit Page 3 of 7
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2 for VOA and TOC only.
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	Spike Recovery outside accepted recovery limits		

Hall Environmental Analysis Laboratory, Inc.

Analytical Report Lab Order 1311884

Hall Environmental Analys		Lab Order 1311884 Date Reported: 11/26/2013				
CLIENT: Southwest Geoscience			Client Samp	le ID: Co	onf-4	
Project: Lowery Tank			Collection	Date: 11	/18/2013 1:10:00 PM	1
Lab ID: 1311884-004	Matrix:	SOIL	Received	Date: 11	/20/2013 10:00:00 A	М
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGI	E ORGANICS				Analy	st: BCN
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	11/22/2013 11:56:52	AM 10459
Surr: DNOP	103	66-131	%REC	1	11/22/2013 11:56:52	AM 10459
EPA METHOD 8015D: GASOLINE RA	NGE				Analy	st: RAA
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	11/22/2013 2:48:38 F	M 10465
Surr: BFB	92.3	74.5-129	%REC	1	11/22/2013 2:48:38 P	M 10465
EPA METHOD 8021B: VOLATILES					Analy	st: RAA
Benzene	ND	0.047	mg/Kg	1	11/22/2013 2:48:38 P	M 10465
Toluene	ND	0.047	mg/Kg	1	11/22/2013 2:48:38 P	M 10465
Ethylbenzene	ND	0.047	mg/Kg	1	11/22/2013 2:48:38 P	M 10465
Xylenes, Total	ND	0.094	mg/Kg	1	11/22/2013 2:48:38 P	M 10465
Surr: 4-Bromofluorobenzene	110	80-120	%REC	1	11/22/2013 2:48:38 P	M 10465

Analytical Report

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	E	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit Page 4 of 7
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2 for VOA and TOC only.
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	Spike Recovery outside accepted recovery limits		

U

Client:Southwest GeoscienceProject:Lowery Tank

Lowery .	1 0000 C			
Sample ID MB-10435	SampType: MBLK	TestCode: EPA Method	8015D: Diesel Range Organ	ics
Client ID: PBS	Batch ID: 10435	RunNo: 14949		
Prep Date: 11/20/2013	Analysis Date: 11/21/2013	SeqNo: 431804	Units: %REC	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPI	DLimit Qual
Surr: DNOP	9.9 10.00	98.6 66	131	
Sample ID LCS-10435	SampType: LCS	TestCode: EPA Method	8015D: Diesel Range Organ	ics
Client ID: LCSS	Batch ID: 10435	RunNo: 14949		
Prep Date: 11/20/2013	Analysis Date: 11/21/2013	SeqNo: 432076	Units: %REC	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPE	DLimit Qual
Surr: DNOP	4.4 5.000	88.5 66	131	
Sample ID MB-10459	SampType: MBLK	TestCode: EPA Method	8015D: Diesel Range Organ	ics
Client ID: PBS	Batch ID: 10459	RunNo: 14949		
Prep Date: 11/21/2013	Analysis Date: 11/21/2013	SeqNo: 432083	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPD	DLimit Qual
Diesel Range Organics (DRO)	ND 10	04.0	104	
Surr: DNOP	8.5 10.00	84.9 66	131	
Sample ID LCS-10459	SampType: LCS	TestCode: EPA Method	8015D: Diesel Range Organ	ics
Client ID: LCSS	Batch ID: 10459	RunNo: 14949		
Prep Date: 11/21/2013	Analysis Date: 11/21/2013	SeqNo: 432084	Units: mg/Kg	
Analyte		SPK Ref Val %REC LowLimit	HighLimit %RPD RPE	DLimit Qual
Diesel Range Organics (DRO)	56 10 50.00	0 111 62.1	127	
Surr: DNOP	4.9 5.000	97.0 66	131	
Sample ID 1311884-001AMS	SampType: MS	TestCode: EPA Method	8015D: Diesel Range Organ	ics
Client ID: Conf-1	Batch ID: 10459	RunNo: 14985		
Prep Date: 11/21/2013	Analysis Date: 11/22/2013	SeqNo: 432659	Units: mg/Kg	
Analyte		SPK Ref Val %REC LowLimit	0	DLimit Qual
Diesel Range Organics (DRO) Surr: DNOP	481050.204.85.020	0 95.8 47.4 95.1 66	148 131	
	4.0 0.020	55.1 00	101	
Sample ID 1311884-001AMS			8015D: Diesel Range Organ	ics
Client ID: Conf-1	Batch ID: 10459	RunNo: 14985		
Prep Date: 11/21/2013	Analysis Date: 11/22/2013	SeqNo: 432680	Units: mg/Kg	
Analyte		SPK Ref Val %REC LowLimit	0	DLimit Qual
Diesel Range Organics (DRO)	50 10 50.15	0 100 47.4	148 4.71	22.7
Surr: DNOP	5.0 5.015	100 66	131 0	0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 5 of 7

26-Nov-13

WO#: 1311884

Client: Southwest Geoscience **Project:** Lowery Tank

Sample ID MB-10	465 Sa	атрТуре: 🛚	IBLK	Test	tCode: El	PA Method	8015D: Gaso	oline Rang	e	
Client ID: PBS		Batch ID: 1	0465	R	RunNo: 1	4998				
Prep Date: 11/21	/2013 Analy	vsis Date:	11/22/2013	S	SeqNo: 4	34062	Units: mg/k	٢g		
Analyte	Res	ult PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organio	cs (GRO)	ND 5.	0							
Surr: BFB	9	20	1000		92.3	74.5	129			
Sample ID LCS-1	0465 Sa	SampType: LCS TestCode: EPA Method				8015D: Gaso	line Rang	e		
Client ID: LCSS		Batch ID: 10465 RunNo: 14998								
Prep Date: 11/21	/2013 Analy	vsis Date:	11/22/2013	S	SeqNo: 4	34063	Units: mg/k	٢g		
Analyte	Res	ult PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organio	cs (GRO)	24 5.	25.00	0	97.3	74.5	126			
Surr: BFB	10	00	1000		100	74.5	129			
Surr: BFB Sample ID 131188		00 ampType: N		Test			129 8015D: Gaso	line Rang	e	
	84-002AMS Sa		IS			PA Method		line Rang	e	
Sample ID 131188	8 4-002AMS Sa	ampType: N	1S 0465	R	tCode: El	PA Method 4998		U	e	
Sample ID 131188 Client ID: Conf-2	8 4-002AMS Sa	ampType: N Batch ID: 1 vsis Date:	1S 0465 11/22/2013	R	tCode: El RunNo: 14 SeqNo: 4	PA Method 4998	8015D: Gasc	U	e RPDLimit	Qual
Sample ID 131188 Client ID: Conf-2 Prep Date: 11/21	84-002AMS Sa 2 /2013 Analy Res	ampType: N Batch ID: 1 vsis Date:	1S 0465 11/22/2013 SPK value	R	tCode: El RunNo: 14 SeqNo: 4	PA Method 4998 34066	8015D: Gaso Units: mg/k	(g		Qual
Sample ID 131188 Client ID: Conf-2 Prep Date: 11/21 Analyte	84-002AMS Sa 2 /2013 Analy Res cs (GRO)	ampType: N Batch ID: 1 vsis Date: ult PQL	1S 0465 11/22/2013 SPK value	R S SPK Ref Val	tCode: El RunNo: 14 SeqNo: 4: %REC	PA Method 4998 34066 LowLimit	8015D: Gasc Units: mg/M HighLimit	(g		Qual
Sample ID 131188 Client ID: Conf-2 Prep Date: 11/21 Analyte Gasoline Range Organio	84-002AMS Sa 2 /2013 Analy Res cs (GRO) 9	ampType: N Batch ID: 1 vsis Date: ult PQL 28 4.4	1S 0465 11/22/2013 SPK value 3 24.20 968.1	R S SPK Ref Val 0	tCode: El RunNo: 14 SeqNo: 4 %REC 115 100	PA Method 4998 34066 LowLimit 76 74.5	8015D: Gaso Units: mg/K HighLimit 156	s RPD	RPDLimit	Qual
Sample ID 131188 Client ID: Conf-2 Prep Date: 11/21 Analyte Gasoline Range Organio Surr: BFB	84-002AMS Sa 2 /2013 Analy Res cs (GRO) 9 84-002AMSD Sa	ampType: N Batch ID: 1 rsis Date: ult PQL 28 4.1 70	1S 0465 11/22/2013 SPK value 3 24.20 968.1 1SD	R S SPK Ref Val 0 Test	tCode: El RunNo: 14 SeqNo: 4 %REC 115 100	PA Method 4998 34066 LowLimit 76 74.5 PA Method	8015D: Gaso Units: mg/M HighLimit 156 129	s RPD	RPDLimit	Qual
Sample ID 131188 Client ID: Conf-2 Prep Date: 11/21 Analyte Gasoline Range Organic Surr: BFB Sample ID 131188	84-002AMS Sa 2 /2013 Analy Res cs (GRO) 9 84-002AMSD Sa 2	ampType: N Batch ID: 1 rsis Date: ult PQL 28 4.4 70 ampType: N	1S 0465 11/22/2013 SPK value 3 24.20 968.1 ISD 0465	R SPK Ref Val 0 Test R	tCode: EI RunNo: 14 SeqNo: 43 %REC 115 100 tCode: EI	PA Method 4998 34066 LowLimit 76 74.5 PA Method 4998	8015D: Gaso Units: mg/M HighLimit 156 129	Gg %RPD Dine Rang	RPDLimit	Qual
Sample ID 131188 Client ID: Conf-2 Prep Date: 11/21 Analyte Gasoline Range Organic Surr: BFB Sample ID 131188 Client ID: Conf-2	84-002AMS Sa 2 /2013 Analy Res cs (GRO) 9 84-002AMSD Sa 2	ampType: M Batch ID: 1 rsis Date: ult PQL 28 4.1 70 ampType: M Batch ID: 1 rsis Date:	1S 0465 11/22/2013 SPK value 3 24.20 968.1 1SD 0465 11/22/2013	R SPK Ref Val 0 Test R	tCode: El RunNo: 14 SeqNo: 4: %REC 115 100 tCode: El RunNo: 14 SeqNo: 4:	PA Method 4998 34066 LowLimit 76 74.5 PA Method 4998 34067	8015D: Gaso Units: mg/K HighLimit 156 129 8015D: Gaso	Gg %RPD Dine Rang	RPDLimit	Qual
Sample ID 131188 Client ID: Conf-2 Prep Date: 11/21 Analyte Gasoline Range Organic Surr: BFB Sample ID 131188 Client ID: Conf-2 Prep Date: 11/21	84-002AMS Sa 2 /2013 Analy Res cs (GRO) 9 84-002AMSD Sa 2 /2013 Analy Res	ampType: M Batch ID: 1 rsis Date: ult PQL 28 4.1 70 ampType: M Batch ID: 1 rsis Date:	1S 0465 11/22/2013 SPK value 3 24.20 968.1 1SD 0465 11/22/2013 SPK value	R SPK Ref Val 0 Test R S	tCode: El RunNo: 14 SeqNo: 4: %REC 115 100 tCode: El RunNo: 14 SeqNo: 4:	PA Method 4998 34066 LowLimit 76 74.5 PA Method 4998 34067	8015D: Gaso Units: mg/k HighLimit 156 129 8015D: Gaso Units: mg/k	Sg %RPD Wine Rang	RPDLimit e	

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- RPD outside accepted recovery limits R
- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Р Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 6 of 7

26-Nov-13

WO#: 1311884

U

Client: Project: Southwest Geoscience Lowery Tank

Sample ID	MB-10465	SampT	ype: ME	BLK	TestCode: EPA Method 8021B: Volatiles						
Client ID:	PBS	Batch	1D: 10	465	F	RunNo: 1	4998				
Prep Date:	11/21/2013	Analysis D	ate: 11	/22/2013	S	SeqNo: 4	34092	Units: mg/Kg			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	0.050								
Toluene		ND	0.050								
Ethylbenzene		ND	0.050								
Xylenes, Total		ND	0.10								
Surr: 4-Bromo	ofluorobenzene	1.1		1.000		111	80	120			
Sample ID	LCS-10465	SampType: LCS			Tes	tCode: El	PA Method	8021B: Volat	tiles		
Client ID:	LCSS	S Batch ID: 10465			F	RunNo: 1	4998				
Prep Date:	11/21/2013	Analysis D	ate: 11	/22/2013	S	SeqNo: 4	34093	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.99	0.050	1.000	0	99.0	80	120			
Toluene		0.97	0.050	1.000	0	96.9	80	120			
Ethylbenzene		1.0	0.050	1.000	0	102	80	120			
Xylenes, Total		3.1	0.10	3.000	0	104	80	120			
Curri A Drome	ofluorobenzene	1.2		1.000		117	80	120			
Sull. 4-DIOIIIC	oliuolobenzene	1.2		1.000		117	00	120			
	1311884-001AMS		ype: MS		Tes			8021B: Volat	iles		
Sample ID		SampT	ype: MS 1D: 10 4	;			PA Method		iles		
Sample ID Client ID:	1311884-001AMS	SampT	ID: 104	465	F	tCode: El	PA Method 1998				
Sample ID Client ID:	1311884-001AMS Conf-1	SampT Batch	ID: 104	465 /22/2013	F	tCode: El RunNo: 14	PA Method 1998	8021B: Volat		RPDLimit	Qual
Sample ID Client ID: Prep Date:	1311884-001AMS Conf-1	SampT Batch Analysis D	ID: 104 ate: 11	465 /22/2013	F	tCode: El RunNo: 14 SeqNo: 43	PA Method 4998 34095	8021B: Volat	íg	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte	1311884-001AMS Conf-1	SampT Batch Analysis D Result	DID: 104 ate: 11	165 / 22/2013 SPK value	F S SPK Ref Val	tCode: El RunNo: 14 SeqNo: 4: %REC	PA Method 1998 34095 LowLimit	8021B: Volat Units: mg/K HighLimit	íg	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Benzene	1311884-001AMS Conf-1	SampT Batch Analysis D Result 1.1	ate: 11 PQL 0.049	465 /22/2013 SPK value 0.9756	F S SPK Ref Val 0	tCode: El RunNo: 14 BeqNo: 4: %REC 113	PA Method 4998 34095 LowLimit 67.3	8021B: Volat Units: mg/K HighLimit 145	íg	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene	1311884-001AMS Conf-1	SampT Batch Analysis D Result 1.1 1.1	ate: 11 PQL 0.049 0.049	465 /22/2013 SPK value 0.9756 0.9756	F S SPK Ref Val 0 0.006585	tCode: El RunNo: 14 SeqNo: 43 %REC 113 110	PA Method 4998 34095 LowLimit 67.3 66.8	8021B: Volat Units: mg/K HighLimit 145 144	íg	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total	1311884-001AMS Conf-1	SampT Batch Analysis D Result 1.1 1.1 1.2	ate: 11 PQL 0.049 0.049 0.049	465 /22/2013 SPK value 0.9756 0.9756 0.9756	F S SPK Ref Val 0 0.006585 0	tCode: El RunNo: 14 GeqNo: 43 %REC 113 110 121	PA Method 4998 34095 LowLimit 67.3 66.8 61.9	8021B: Volat Units: mg/K HighLimit 145 144 153	íg	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromo	1311884-001AMS Conf-1 11/21/2013	SampT Batch Analysis D Result 1.1 1.1 1.2 3.6 1.2	ate: 11 PQL 0.049 0.049 0.049	465 /22/2013 SPK value 0.9756 0.9756 0.9756 2.927 0.9756	F S SPK Ref Val 0 0.006585 0 0 0	tCode: El RunNo: 14 BeqNo: 4: %REC 113 110 121 123 118	PA Method 4998 34095 LowLimit 67.3 66.8 61.9 65.8 80	8021B: Volat Units: mg/K HighLimit 145 144 153 149	íg %RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromo	1311884-001AMS Conf-1 11/21/2013 ofluorobenzene	SampT Batch Analysis D Result 1.1 1.1 1.2 3.6 1.2 SampT	ID: 10/ ate: 11 PQL 0.049 0.049 0.049 0.049 0.049 0.049 0.049	465 /22/2013 SPK value 0.9756 0.9756 0.9756 2.927 0.9756	F SPK Ref Val 0 0.006585 0 0 0	tCode: El RunNo: 14 BeqNo: 4: %REC 113 110 121 123 118	PA Method 4998 34095 LowLimit 67.3 66.8 61.9 65.8 80 PA Method	8021B: Volat Units: mg/K HighLimit 145 144 153 149 120	íg %RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromo Sample ID Client ID:	1311884-001AMS Conf-1 11/21/2013 ofluorobenzene 1311884-001AMSE	SampT Batch Analysis D Result 1.1 1.1 1.2 3.6 1.2 SampT	PQL 0.049 0.049 0.049 0.049 0.049 0.049 0.098 ype: MS	465 /22/2013 SPK value 0.9756 0.9756 0.9756 2.927 0.9756 5D 465	F S SPK Ref Val 0 0.006585 0 0 0 Test F	tCode: El RunNo: 14 SeqNo: 4 30 113 110 121 123 118 tCode: El	PA Method 4998 34095 LowLimit 67.3 66.8 61.9 65.8 80 PA Method 4998	8021B: Volat Units: mg/K HighLimit 145 144 153 149 120	íg %RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromo Sample ID Client ID:	1311884-001AMS Conf-1 11/21/2013 ofluorobenzene 1311884-001AMSE Conf-1	SampT Batch Analysis D Result 1.1 1.1 1.2 3.6 1.2 O SampT Batch	PQL 0.049 0.049 0.049 0.049 0.049 0.049 0.098 ype: MS	465 /22/2013 SPK value 0.9756 0.9756 0.9756 2.927 0.9756 50 465 /22/2013	F S SPK Ref Val 0 0.006585 0 0 0 Test F	tCode: El RunNo: 14 SeqNo: 4: %REC 113 110 121 123 118 tCode: El RunNo: 14	PA Method 4998 34095 LowLimit 67.3 66.8 61.9 65.8 80 PA Method 4998	8021B: Volat Units: mg/K HighLimit 145 144 153 149 120 8021B: Volat	íg %RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromo Sample ID Client ID: Prep Date:	1311884-001AMS Conf-1 11/21/2013 ofluorobenzene 1311884-001AMSE Conf-1	SampT Batch Analysis D Result 1.1 1.1 1.2 3.6 1.2 0 SampT Batch Analysis D Result 0.97	PQL 0.049 0.049 0.049 0.049 0.049 0.098 ype: MS	465 /22/2013 SPK value 0.9756 0.9756 0.9756 2.927 0.9756 50 465 /22/2013	F SPK Ref Val 0 0.006585 0 0 0 Test F S	tCode: El RunNo: 14 SeqNo: 4: %REC 113 110 121 123 118 tCode: El RunNo: 14 SeqNo: 4:	PA Method 4998 34095 LowLimit 67.3 66.8 61.9 65.8 80 PA Method 4998 34096	8021B: Volat Units: mg/K HighLimit 145 144 153 149 120 8021B: Volat Units: mg/K	íg %RPD illes		
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromo Sample ID Client ID: Prep Date: Analyte	1311884-001AMS Conf-1 11/21/2013 ofluorobenzene 1311884-001AMSE Conf-1	SampT Batch Analysis D Result 1.1 1.1 1.2 3.6 1.2 0 SampT Batch Analysis D Result	ype: MS ate: 11 PQL 0.049 0.049 0.049 0.098 ype: MS ate: 11 PQL	465 /22/2013 SPK value 0.9756 0.9756 0.9756 2.927 2.927 0.9756 2.927	F SPK Ref Val 0 0.006585 0 0 0 Test SPK Ref Val	tCode: El RunNo: 14 SeqNo: 4: %REC 113 110 121 123 118 tCode: El RunNo: 14 SeqNo: 4: %REC	PA Method 1998 34095 LowLimit 67.3 66.8 61.9 65.8 80 PA Method 1998 34096 LowLimit	8021B: Volat Units: mg/K HighLimit 145 144 153 149 120 8021B: Volat Units: mg/K HighLimit	íg %RPD iiles íg %RPD	RPDLimit	
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromo Sample ID Client ID: Prep Date: Analyte Benzene	1311884-001AMS Conf-1 11/21/2013 ofluorobenzene 1311884-001AMSE Conf-1	SampT Batch Analysis D Result 1.1 1.1 1.2 3.6 1.2 0 SampT Batch Analysis D Result 0.97	ype: MS PQL 0.049 0.049 0.049 0.049 0.098 ype: MS 1D: 104 ate: 11 PQL 0.049	465 /22/2013 SPK value 0.9756 0.9756 0.9756 2.927 0.9756 2.927 0.9756 2.927 0.9756 2.927 0.9756	F SPK Ref Val 0 0.006585 0 0 0 Test F S SPK Ref Val 0	tCode: El RunNo: 14 SeqNo: 4: %REC 113 110 121 123 118 tCode: El RunNo: 14 SeqNo: 4: %REC 99.1	PA Method 4998 34095 LowLimit 67.3 66.8 61.9 65.8 80 PA Method 4998 34096 LowLimit 67.3	8021B: Volat Units: mg/K HighLimit 145 144 153 149 120 8021B: Volat Units: mg/K HighLimit 145	5g %RPD illes 5g %RPD 12.9	RPDLimit 20	
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromo Client ID: Client ID: Prep Date: Analyte Benzene Toluene	1311884-001AMS Conf-1 11/21/2013 ofluorobenzene 1311884-001AMSE Conf-1	SampT Batch Analysis D Result 1.1 1.1 1.2 3.6 1.2 0 SampT Batch Analysis D Result 0.97 0.96	ype: MS PQL 0.049 0.049 0.049 0.049 0.098 PQL 10: 104 10: 104 0.049 0.049 0.049 0.049 0.049 0.049	465 /22/2013 SPK value 0.9756 0.9756 0.9756 2.927 0.9756 2.927 0.9756 2.927 0.9756 2.927 0.975 0.9775 0.9775 0.9775	F SPK Ref Val 0 0.006585 0 0 0 Tesi F S SPK Ref Val 0 0.006585	tCode: El RunNo: 14 SeqNo: 4 %REC 113 110 121 123 118 tCode: El RunNo: 14 SeqNo: 4 %REC 99.1 97.6	PA Method 4998 34095 LowLimit 67.3 66.8 61.9 65.8 80 PA Method 4998 34096 LowLimit 67.3 66.8	8021B: Volat Units: mg/K HighLimit 145 144 153 149 120 8021B: Volat Units: mg/K HighLimit 145 144	5 %RPD iiles 5 %RPD 12.9 11.9	RPDLimit 20 20	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.

Page 7 of 7

RL Reporting Detection Limit

WO#: 1311884

26-Nov-13

ENVIRONMENTAL ANALYSIS LABORATORY TEL: 505-345-3	4901 Hawkins 1 Albuquerque, NM 871 3975 FAX: 505-345-41 w.hallenvironmental.co	09 Sam	ple Log-In Cł	neck List
Client Name: Southwest Geoscience A Work Order Num	nber: 1311884	1	RcptNo:	1
Received by/date: MATT 11/20/13		÷.		
Logged By: Anne Thorne 11/20/2013 10:00:	00 AM	anne Am		
Completed By: Anne Thome 11/20/2013	1 1	anne Hom	-	
Reviewed By: AT 11/20/13 / IO	11/21/201	3		
Chain of Custody				
1. Custody seals intact on sample bottles?	Yes	No 🗆	Not Present	
2. Is Chain of Custody complete?	Yes 🗹	No 🗌	Not Present	
3. How was the sample delivered?	Courier			
Log In				
4. Was an attempt made to cool the samples?	Yes 🗹	No 🗌	NA 🗆	
5. Were all samples received at a temperature of $>0^{\circ}$ C to 6.0°C	Yes 🗹	No 🗌		
6. Sample(s) in proper container(s)?	Yes 🖌	No 🗌		
7. Sufficient sample volume for indicated test(s)?	Yes 🗹	No 🗆		
8. Are samples (except VOA and ONG) properly preserved?	Yes 🗹	No 🗌	_	
9. Was preservative added to bottles?	Yes	No 🗹	NA 🗌	
10. VOA vials have zero headspace?	Yes	No 🗆	No VOA Vials 🗹	
11. Were any sample containers received broken?	Yes	No 🗹	# of preserved	
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes 🗹	No 🗆	bottles checked for pH:	>12 unless noted)
13. Are matrices correctly identified on Chain of Custody?	Yes 🗹	No 🗌	Adjusted?	
14. Is it clear what analyses were requested?	Yes 🗹	No 🗌		
15. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 🗹	No 🗌	Checked by:	
Special Handling (if applicable)	_	_	_	
16. Was client notified of all discrepancies with this order?	Yes 🗌	No 🗹	. NA 🗌	
Person Notified: Dat By Whom: Via Regarding: Client Instructions:		none 🗌 Fax	In Person	
17. Additional remarks:	/		· · · · · · · · · · · · · · · · · · ·	

18. Cooler Information

	Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
F	1	1.0	Good	Yes			

Page 1 of 1

		CHAIN OF CUSTODY RECORD
CG	F-2	ANALYSIS REQUESTED N C ANALYSIS REQUESTED A A A A A A A A A A A A A
	PS	
Turn aroyind time/ Normal C 25% Rush	50% Rush 100% Rush	
Relinquished by (Signature) Date: Relinquished by (Signature) Date: Matrix WW - Wastewater W - Water	Time: Received by: (Signature) Date Time: Received by: (Signature) Date S - Soil SD - Soild L - Liquid A - Air Bag C	13 1145 Bill Williams For the bill Time: bill Time:

SOUTHWEST GEOSCIENCE • 2351 W. Northwest Hwy., Suite 3321 • Dallas, Texas 75220 • Office: 214-350-5469 • Fax 214-350-2914

HALL ENVIRONMENTAL ANALYSIS LABORATORY

March 20, 2014

Kyle Summers Southwest Geoscience 606 S. Rio Grande Unit A Aztec, NM 87410 TEL: (903) 821-5603 FAX (214) 350-2914

RE: Lowery Tank Battery

OrderNo.: 1403547

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 6 sample(s) on 3/12/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis	Labora	atory, Ir	ıc.		Lab Order 1403547 Date Reported: 3/20/2014
CLIENT: Southwest Geoscience Project: Lowery Tank Battery					mple ID: SB-12 (32") ion Date: 3/10/2014 11:00:00 AM
Lab ID: 1403547-001	Matrix:	SOIL	F	Receiv	ved Date: 3/12/2014 10:00:00 AM
Analyses	Result	RL	Qual U	nits	DF Date Analyzed Batch
EPA METHOD 8015D: DIESEL RANGE O	RGANICS				Analyst: BCN
Diesel Range Organics (DRO)	130	10	r	ng/Kg	1 3/17/2014 7:10:20 PM 12173
Surr: DNOP	107	66-131	0	%REC	1 3/17/2014 7:10:20 PM 12173
EPA METHOD 8015D: GASOLINE RANG	E				Analyst: NSB
Gasoline Range Organics (GRO)	2600	240	r	ng/Kg	50 3/17/2014 10:28:57 PM 12163
Surr: BFB	115	74.5-129	0	%REC	50 3/17/2014 10:28:57 PM 12163
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	13	2.4	r	ng/Kg	50 3/17/2014 10:28:57 PM 12163
Toluene	85	2.4	r	ng/Kg	50 3/17/2014 10:28:57 PM 12163
Ethylbenzene	7.3	2.4	r	ng/Kg	50 3/17/2014 10:28:57 PM 12163
Xylenes, Total	76	4.9	r	ng/Kg	50 3/17/2014 10:28:57 PM 12163
Surr: 4-Bromofluorobenzene	109	80-120	0	%REC	50 3/17/2014 10:28:57 PM 12163
EPA METHOD 300.0: ANIONS					Analyst: JRR
Chloride	ND	7.5	n	ng/Kg	5 3/18/2014 8:36:11 AM 12222
EPA METHOD 418.1: TPH					Analyst: BCN
Petroleum Hydrocarbons, TR	2400	200	n	ng/Kg	10 3/17/2014 12172

Analytical Report

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Meth	od Blank	
	E Value above quantitation range		Н	H Holding times for preparation or analysis excee		
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	Page 1 of 11	
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2.		
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit		
	S	Spike Recovery outside accepted recovery limits				

Hall Environmental Analy	sis Labora	tory, In	с.		Date Reported: 3/20/20	14
CLIENT: Southwest Geoscience Project: Lowery Tank Battery		90U		Date: 3/1	0/2014 12:10:00 PM	
Lab ID: 1403547-002	Matrix:	SOIL	Received	Date: 3/1	2/2014 10:00:00 AM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	E ORGANICS				Analyst	BCN
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	3/14/2014 11:18:44 PM	12173
Surr: DNOP	101	66-131	%REC	1	3/14/2014 11:18:44 PM	12173
EPA METHOD 8015D: GASOLINE RA	ANGE				Analyst	NSB
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	3/17/2014 10:57:30 PM	12163
Surr: BFB	87.3	74.5-129	%REC	1	3/17/2014 10:57:30 PM	12163
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.049	mg/Kg	1	3/17/2014 10:57:30 PM	12163
Toluene	ND	0.049	mg/Kg	1	3/17/2014 10:57:30 PM	12163
Ethylbenzene	ND	0.049	mg/Kg	1	3/17/2014 10:57:30 PM	12163
Xylenes, Total	ND	0.098	mg/Kg	1	3/17/2014 10:57:30 PM	12163
Surr: 4-Bromofluorobenzene	99.6	80-120	%REC	1	3/17/2014 10:57:30 PM	12163
EPA METHOD 300.0: ANIONS					Analyst	: JRR
Chloride	ND	7.5	mg/Kg	5	3/18/2014 9:50:39 AM	12222
EPA METHOD 418.1: TPH					Analyst	BCN
Petroleum Hydrocarbons, TR	ND	20	mg/Kg	1	3/17/2014	12172

Analytical Report Lab Order 1403547

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Meth	od Blank	
	E Value above quantitation range		Н	Holding times for preparation or analysis exceeded		
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	Page 2 of 11	
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2.	1 4ge 2 01 11	
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit		
	S	Spike Recovery outside accepted recovery limits				

Hall Environmental Analys	sis Labora	tory, Inc			Lab Order 1403547 Date Reported: 3/20/20	14		
CLIENT: Southwest Geoscience Project: Lowery Tank Battery Lab ID: 1403547-003	Matrix:	SOIL	Collection I	ple ID: SB-14 (34') n Date: 3/10/2014 1:45:00 PM d Date: 3/12/2014 10:00:00 AM				
Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch		
EPA METHOD 8015D: DIESEL RANGE	ORGANICS				Analyst	BCN		
Diesel Range Organics (DRO)	210	10	mg/Kg	1	3/17/2014 8:16:38 PM	12173		
Surr: DNOP	107	66-131	%REC	1	3/17/2014 8:16:38 PM	12173		
EPA METHOD 8015D: GASOLINE RAM	NGE				Analyst	: NSB		
Gasoline Range Organics (GRO)	1900	240	mg/Kg	50	3/17/2014 11:26:09 PM	12163		
Surr: BFB	112	74.5-129	%REC	50	3/17/2014 11:26:09 PM	12163		
EPA METHOD 8021B: VOLATILES					Analyst	NSB		
Benzene	11	2.4	mg/Kg	50	3/17/2014 11:26:09 PM	12163		
Toluene	57	2.4	mg/Kg	50	3/17/2014 11:26:09 PM	12163		
Ethylbenzene	5.1	2.4	mg/Kg	50	3/17/2014 11:26:09 PM	12163		
Xylenes, Total	51	4.8	mg/Kg	50	3/17/2014 11:26:09 PM	12163		
Surr: 4-Bromofluorobenzene	109	80-120	%REC	50	3/17/2014 11:26:09 PM	12163		
EPA METHOD 300.0: ANIONS					Analyst	JRR		
Chloride	ND	7.5	mg/Kg	5	3/18/2014 10:15:28 AM	12222		
EPA METHOD 418.1: TPH					Analyst	BCN		
Petroleum Hydrocarbons, TR	2000	200	mg/Kg	10	3/17/2014	12172		

Analytical Report

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Meth	Method Blank		
	E Value above quantitation range		Н	H Holding times for preparation or analysis exceed			
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	Page 3 of 11		
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2.	1 age 5 01 11		
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit			
	S	Spike Recovery outside accepted recovery limits					

			101			Date Reported. 3/20/201	4		
CLIENT: Southwest Geoscience Project: Lowery Tank Battery Lab ID: 1403547-004	Matrix:	SOIL	(Collection	Date: 3/1	: SB-14 (44') : 3/10/2014 2:00:00 PM : 3/12/2014 10:00:00 AM			
Analyses	Result		Qual	Units	DF	Date Analyzed	Batch		
EPA METHOD 8015D: DIESEL RANGE	ORGANICS					Analyst:	BCN		
Diesel Range Organics (DRO)	ND	10		mg/Kg	1	3/15/2014 12:02:40 AM	12173		
Surr: DNOP	104	66-131		%REC	1	3/15/2014 12:02:40 AM	12173		
EPA METHOD 8015D: GASOLINE RAM	IGE					Analyst:	NSB		
Gasoline Range Organics (GRO)	ND	4.7		mg/Kg	1	3/17/2014 11:54:43 PM	12163		
Surr: BFB	86.7	74.5-129		%REC	1	3/17/2014 11:54:43 PM	12163		
EPA METHOD 8021B: VOLATILES						Analyst:	NSB		
Benzene	ND	0.047		mg/Kg	1	3/17/2014 11:54:43 PM	12163		
Toluene	ND	0.047		mg/Kg	1	3/17/2014 11:54:43 PM	12163		
Ethylbenzene	ND	0.047		mg/Kg	1	3/17/2014 11:54:43 PM	12163		
Xylenes, Total	ND	0.095		mg/Kg	1	3/17/2014 11:54:43 PM	12163		
Surr: 4-Bromofluorobenzene	99.0	80-120		%REC	1	3/17/2014 11:54:43 PM	12163		
EPA METHOD 300.0: ANIONS						Analyst:	JRR		
Chloride	11	7.5		mg/Kg	5	3/18/2014 10:40:18 AM	12222		
EPA METHOD 418.1: TPH						Analyst:	BCN		
Petroleum Hydrocarbons, TR	ND	20		mg/Kg	1	3/17/2014	12172		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Meth	od Blank
	E	Value above quantitation range	Н	Holding times for preparation or analysi	s exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	Page 4 of 11
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2.	rage 4 01 11
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	
	S	Spike Recovery outside accepted recovery limits			

Hall Environmental Analysis Laboratory, Inc.

Analytical Report Lab Order 1403547 Date Reported: 3/20/2014

Hall Environmental Analysis Laboratory, Inc. Lab Order 1403547 Date Reported: 3/20/2014										
CLIENT: Southwest Geoscience			C	lient Samp	le ID: SB	-15 (34')				
Project: Lowery Tank Battery				Collection	Date: 3/1	0/2014 4:00:00 PM				
Lab ID: 1403547-005	Matrix:	SOIL		Received	Date: 3/1	2/2014 10:00:00 AM				
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch			
EPA METHOD 8015D: DIESEL RANGE	ORGANICS					Analyst	BCN			
Diesel Range Organics (DRO)	1100	99		mg/Kg	10	3/17/2014 8:38:44 PM	12173			
Surr: DNOP	0	66-131	S	%REC	10	3/17/2014 8:38:44 PM	12173			
EPA METHOD 8015D: GASOLINE RAM	IGE					Analyst	NSB			
Gasoline Range Organics (GRO)	9000	490		mg/Kg	100	3/18/2014 12:23:15 AM	12163			
Surr: BFB	135	74.5-129	S	%REC	100	3/18/2014 12:23:15 AM	12163			
EPA METHOD 8021B: VOLATILES						Analyst	: NSB			
Benzene	55	4.9		mg/Kg	100	3/18/2014 12:23:15 AM	12163			
Toluene	290	4.9		mg/Kg	100	3/18/2014 12:23:15 AM	12163			
Ethylbenzene	24	4.9		mg/Kg	100	3/18/2014 12:23:15 AM	12163			
Xylenes, Total	250	9.9		mg/Kg	100	3/18/2014 12:23:15 AM	12163			
Surr: 4-Bromofluorobenzene	108	80-120		%REC	100	3/18/2014 12:23:15 AM	12163			
EPA METHOD 300.0: ANIONS						Analyst	JRR			
Chloride	ND	7.5		mg/Kg	5	3/18/2014 11:05:08 AM	12222			
EPA METHOD 418.1: TPH						Analyst	BCN			
Petroleum Hydrocarbons, TR	11000	2000		mg/Kg	100	3/17/2014	12172			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Meth	od Blank
	E	Value above quantitation range	Н	Holding times for preparation or analys	is exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	Page 5 of 11
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2.	14605 01 11
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	
	S	Spike Recovery outside accepted recovery limits			

Analytical Report

Hall Environmental Analysis	Labora	tory, In	IC.		Lab Order 1403547 Date Reported: 3/20/201	4
CLIENT: Southwest Geoscience Project: Lowery Tank Battery Lab ID: 1403547-006	Matrix:	SOIL	Convenien 2	Date: 3/1	-15 (40') 0/2014 4:30:00 PM 2/2014 10:00:00 AM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE C	RGANICS				Analyst:	BCN
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	3/15/2014 12:46:18 AM	12173
Surr: DNOP	104	66-131	%REC	1	3/15/2014 12:46:18 AM	12173
EPA METHOD 8015D: GASOLINE RANG	E				Analyst:	NSB
Gasoline Range Organics (GRO)	6.7	4.7	mg/Kg	1	3/18/2014 12:51:57 AM	12163
Surr: BFB	95.2	74.5-129	%REC	1	3/18/2014 12:51:57 AM	12163
EPA METHOD 8021B: VOLATILES					Analyst:	NSB
Benzene	ND	0.047	mg/Kg	1	3/18/2014 12:51:57 AM	12163
Toluene	ND	0.047	mg/Kg	1	3/18/2014 12:51:57 AM	12163
Ethylbenzene	ND	0.047	mg/Kg	1	3/18/2014 12:51:57 AM	12163
Xylenes, Total	ND	0.095	mg/Kg	1	3/18/2014 12:51:57 AM	12163
Surr: 4-Bromofluorobenzene	98.6	80-120	%REC	1	3/18/2014 12:51:57 AM	12163
EPA METHOD 300.0: ANIONS					Analyst:	JRR
Chloride	ND	7.5	mg/Kg	5	3/18/2014 11:29:58 AM	12222
EPA METHOD 418.1: TPH					Analyst:	BCN
Petroleum Hydrocarbons, TR	110	20	mg/Kg	1	3/17/2014	12172

Analytical Report

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Meth	nod Blank
	E	Value above quantitation range	Н	Holding times for preparation or analys	is exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	Page 6 of 11
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2.	I uge o of ff
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	
	S	Spike Recovery outside accepted recovery limits			

QC SUMMARY REPORT

Client: Southwest Geoscience **Project:** Lowery Tank Battery

Sample ID	MB-12222	SampT	ype: MI	BLK	TestCode: EPA Method 300.0: Anions						
Client ID:	PBS	Batch ID: 12222			R	RunNo: 17414					
Prep Date:	3/18/2014	Analysis D	ate: 3/	18/2014	S	eqNo: 5	01540	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5								
Sample ID	LCS-12222	SampT	ype: LC	s	Test	tCode: El	PA Method	300.0: Anion	s		
Client ID:	LCSS	Batch	1D: 12	222	R	RunNo: 1	7414				
Prep Date:	3/18/2014	Analysis D	ate: 3/	18/2014	S	eqNo: 5	01541	Units: mg/K	g		
						VDEO	1	Link insit	0/ 000	DDDLimit	Qual
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Analyte Chloride		Result 14	PQL 1.5	SPK value 15.00	SPK Ref Val	96.0	LowLimit 90	HighLimit 110	%RPD	RPDLIMIt	Quai
Chloride	1403547-001AMS	14		15.00	0	96.0	90	0		RPDLIMIt	Quai
Chloride Sample ID	1403547-001AMS SB-12 (32")	14 SampT	1.5	15.00	0 Test	96.0	90 PA Method	110		RPDLIMIt	Quai
Chloride Sample ID Client ID:		14 SampT	1.5 ype: Ms 1D: 12	15.00 S 222	0 Test R	96.0 tCode: E	90 PA Method 7414	110	s		Quai
Chloride Sample ID Client ID:	SB-12 (32")	14 SampT Batch	1.5 ype: Ms 1D: 12	15.00 \$ 222 18/2014	0 Test R	96.0 Code: El CunNo: 1 SeqNo: 5	90 PA Method 7414	110 300.0: Anion	s	RPDLimit	Qual
Chloride Sample ID Client ID: Prep Date:	SB-12 (32")	14 SampT Batch Analysis D	1.5 Type: MS 1D: 12 Pate: 3/	15.00 \$ 222 18/2014	0 Test R S	96.0 Code: El RunNo: 1 SeqNo: 5	90 PA Method 7414 01547	110 300.0: Anion Units: mg/K	s		
Chloride Sample ID Client ID: Prep Date: Analyte Chloride	SB-12 (32")	14 SampT Batch Analysis D Result 18	1.5 Type: MS 1D: 12 Pate: 3/ PQL	15.00 222 18/2014 SPK value 15.00	0 Test R S SPK Ref Val 4.746	96.0 tCode: EF tunNo: 1 seqNo: 5 %REC 87.3	90 PA Method 7414 01547 LowLimit 71.3	110 300.0: Anion Units: mg/K HighLimit	s íg %RPD		
Chloride Sample ID Client ID: Prep Date: Analyte Chloride Sample ID	SB-12 (32") 3/18/2014	14 SampT Batch Analysis D Result 18 D SampT	1.5 ype: MS 1D: 12 ate: 3/ PQL 7.5	15.00 3 222 18/2014 SPK value 15.00 3D	0 Test R S SPK Ref Val 4.746 Test	96.0 tCode: EF tunNo: 1 seqNo: 5 %REC 87.3	90 PA Method 7414 01547 LowLimit 71.3 PA Method	110 300.0: Anion Units: mg/K HighLimit 115	s íg %RPD		
Chloride Sample ID Client ID: Prep Date: Analyte Chloride Sample ID Client ID:	SB-12 (32") 3/18/2014 1403547-001AMSI SB-12 (32")	14 SampT Batch Analysis D Result 18 D SampT	1.5 ype: MS 1D: 12 vate: 3/ PQL 7.5 ype: MS 1D: 12	15.00 222 18/2014 SPK value 15.00 3D 222	0 Test S SPK Ref Val 4.746 Test R	96.0 tCode: EF tunNo: 11 seqNo: 50 %REC 87.3 tCode: EF	90 PA Method 7414 01547 LowLimit 71.3 PA Method 7414	110 300.0: Anion Units: mg/K HighLimit 115	s %RPD s		
Chloride Sample ID Client ID: Prep Date: Analyte Chloride Sample ID Client ID:	SB-12 (32") 3/18/2014 1403547-001AMSI SB-12 (32")	14 SampT Batch Analysis D Result 18 D SampT Batch	1.5 ype: MS 1D: 12 vate: 3/ PQL 7.5 ype: MS 1D: 12	15.00 3 222 18/2014 SPK value 15.00 3 5 222 18/2014	0 Test S SPK Ref Val 4.746 Test R	96.0 tCode: EF tunNo: 11 seqNo: 50 %REC 87.3 tCode: EF tunNo: 11 seqNo: 50	90 PA Method 7414 01547 LowLimit 71.3 PA Method 7414	110 300.0: Anion Units: mg/K HighLimit 115 300.0: Anion	s %RPD s		

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- Analyte detected below quantitation limits J
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Р Sample pH greater than 2.
- RL Reporting Detection Limit

Page 7 of 11

20-Mar-14

1403547

WO#:

Client: Southwest Geoscience **Project:** Lowery Tank Battery

Sample ID MB-12172	SampType: MBLK	TestCode: EPA Method	418.1: TPH	
Client ID: PBS	Batch ID: 12172	RunNo: 17320		
Prep Date: 3/13/2014	Analysis Date: 3/17/2014	SeqNo: 498786	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Petroleum Hydrocarbons, TR	ND 20			
Sample ID LCS-12172	SampType: LCS	TestCode: EPA Method	418.1: TPH	
Client ID: LCSS	Batch ID: 12172	RunNo: 17320		
Prep Date: 3/13/2014	Analysis Date: 3/17/2014	SeqNo: 498795	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Petroleum Hydrocarbons, TR	100 20 100.0	0 104 80	120	
Sample ID LCSD-12172	SampType: LCSD	TestCode: EPA Method	418.1: TPH	
Client ID: LCSS02	Batch ID: 12172	RunNo: 17320		
Prep Date: 3/13/2014	Analysis Date: 3/17/2014	SeqNo: 498802	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Petroleum Hydrocarbons, TR	100 20 100.0	0 99.6 80	120 4.19	20

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Р Sample pH greater than 2.
- RL Reporting Detection Limit

20-Mar-14

WO#: 1403547

Page 8 of 11

WO#: 1403547

20-Mar-14

Client: Project:		t Geoscien `ank Batter									
Sample ID	MB-12173	SampT	ype: MI	ЗLK	Tes	tCode: E	PA Method	8015D: Dies	el Range (Organics	
Client ID:	PBS	Batch	ID: 12	173	F	RunNo: 1	7309				
Prep Date:	3/13/2014	Analysis D	ate: 3/	14/2014	5	SeqNo: 4	99649	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range (Surr: DNOP	Organics (DRO)	ND 8.4	10	10.00		83.6	66	131			
Sample ID	1403547-001AMS	SampT	ype: MS	6	Tes	tCode: E	PA Method	8015D: Dies	el Range O	Organics	
Client ID:	SB-12 (32")	Batch	ID: 12	173	F	RunNo: 1	7357				
Prep Date:	3/13/2014	Analysis D	ate: 3/	17/2014	5	SeqNo: 5	00543	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
	Organics (DRO)	370	9.9	49.55	128.9	492	47.4	148			S
Surr: DNOP		5.9		4.955		118	66	131			
Sample ID	1403547-001AMSI	SampT	ype: MS	SD	Tes	tCode: E	PA Method	8015D: Dies	el Range C	Organics	
Client ID:	SB-12 (32")	Batch	ID: 12	173	F	RunNo: 1	7357				
Prep Date:	3/13/2014	Analysis Da	ate: 3/	17/2014	S	SeqNo: 5	00553	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range (Organics (DRO)	340	10	49.75	128.9	429	47.4	148	8.44	22.7	S
Surr: DNOP		5.9		4.975		119	66	131	0	0	
Sample ID	LCS-12173	SampT	ype: LC	S	Tes	tCode: E	PA Method	8015D: Dies	el Range C	Organics	
Client ID:	LCSS	Batch	ID: 12	173	F	RunNo: 1	7357				
Prep Date:	3/13/2014	Analysis Da	ate: 3/	17/2014	S	SeqNo: 5	00720	Units: mg/k	ζg		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
-	Organics (DRO)	50	10	50.00	0	101	60.8	145			
Surr: DNOP		5.0		5.000		99.3	66	131			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 9 of 11

QC SUMMARY REPORT

WO#: 1403547

20-Mar-14

Hall Environmental	Analysis	Laboratory,	Inc.
--------------------	----------	-------------	------

	est Geoscience Tank Battery								
Sample ID MB-12163	SampType:	MBLK	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Client ID: PBS	Batch ID:	12163	F	RunNo: 1	7371				
Prep Date: 3/13/2014	Analysis Date:	S	SeqNo: 5	00261	Units: mg/K	g			
Analyte	Result PQ	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)		5.0							
Surr: BFB	870	1000		87.2	74.5	129			
Sample ID LCS-12163	SampType:	LCS	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Client ID: LCSS	Batch ID:	12163	R	RunNo: 1	7371				
Prep Date: 3/13/2014	Analysis Date:	3/17/2014	S	eqNo: 50	00262	Units: mg/K	g		
Analyte	Result PQ	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	27 5	5.0 25.00	0	108	71.7	134			
Surr: BFB	930	1000		92.7	74.5	129			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 10 of 11

QC SUMMARY REPORT

Client:	Southwest Geoscience				
Project:	Lowery Tank Battery				

Sample ID MB-12163	SampType: MBLK		TestCode: EPA Method 8021B: Volatiles							
Client ID: PBS	Batch	Batch ID: 12163		RunNo: 17371						
Prep Date: 3/13/2014	Analysis D)ate: 3/	17/2014	S	SeqNo: 5	00288	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.050								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenzene	1.0		1.000		102	80	120			
Sample ID LCS-12163	SampT	SampType: LCS TestCode: EPA Method 8021B: Vo			8021B: Volat	iles				
Client ID: LCSS	Batch	n ID: 12	163	F	RunNo: 1	7371				
Prep Date: 3/13/2014	Analysis D	ate: 3/	17/2014	S	eqNo: 5	00289	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.97	0.050	1.000	0	97.4	80	120			
Toluene	0.96	0.050	1.000	0	96.5	80	120			
Ethylbenzene	0.97	0.050	1.000	0	97.5	80	120			
Xylenes, Total	3.0	0.10	3.000	0	98.5	80	120			
Surr: 4-Bromofluorobenzene	1.1		1.000		107	80	120			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- RSD is greater than RSDlimit 0
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits S
- Analyte detected in the associated Method Blank В
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Sample pH greater than 2. Р
- RL Reporting Detection Limit

Page 11 of 11

1403547 20-Mar-14

WO#:

HALL ENVIRONMENTAL ANALYSIS LABORATORY		01 Hawkins NE rque, NM 87105 7: 505-345-4107	Sam	ple Log-In C	heck List	
Client Name: Southwest Geoscience W	ork Order Number: 140	3547		RcptNo:	1	
Received by/date: UM 02	3/12/14	_				
Logged By: Michelle Garcia 3/12	/2014 10:00:00 AM	47	Junul Gon Junul Gon	ue)		
Completed By: Michelle Garcia 3/13.	/2014 12:00:43 PM	-11	Jubill Gan	un		
Reviewed By: 03/13/14						
Chain of Custody				_		
1. Custody seals intact on sample bottles?	Ye		No 🗌	Not Present 🗹		
2. Is Chain of Custody complete?	Ye	s 🖌	No 🗌	Not Present		
3. How was the sample delivered?	Co	urier				
Log In						
4. Was an attempt made to cool the samples?	Ye	es 🗹	No 🗆	NA 🗌		
5. Were all samples received at a temperature of >	0° C to 6.0°C Yes	5	No	NA 🗌		
6. Sample(s) in proper container(s)?	Ye	es 🗹	No 🗌			
7. Sufficient sample volume for indicated test(s)?	Ye	s 🔽	No 🗌			
8. Are samples (except VOA and ONG) properly pre	served? Yes	s 🗹	No 🗌			
9. Was preservative added to bottles?	Ye	s 🗌	No 🗹	NA 🗌		
10.VOA vials have zero headspace?	Ye	s 🗆	No 🗌	No VOA Vials 🗹		
11. Were any sample containers received broken?	Ye	s 🗌	No 🗹 🛛	# of preserved		
12.Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Ye	s 🗹	No 🗆	bottles checked for pH:	>12 unless noted)	
13. Are matrices correctly identified on Chain of Custo	odv? Yes	s 🖌	No 🗆	Adjusted?		
14. Is it clear what analyses were requested?	Yes	s 🔽	No 🗆			
15. Were all holding times able to be met? (If no, notify customer for authorization.)	Ye	5 🔽	No 🗆	Checked by:		
Special Handling (If applicable)						
16. Was client notified of all discrepancies with this or	rder? Yes	s 🗌	No 🗆	NA 🗹		
Person Notified:	Date:					
By Whom:	Via: 🗌 eM	Aail 🗌 Phone	Fax	In Person		
Regarding:	·			······································		
Client Instructions:			·			
17. Additional remarks:						
18. <u>Cooler Information</u> <u>Cooler No</u> Temp °C Condition Seal Int 1 1.2 Good Yes	act Seal No Seal I	Date Sign	ed By		,	
Page 1 of 1						

		CHAIN OF CUSTODY RECORD
		ANALYSIS / / / Lab use only
Couthwest	Laboratory: Hall	REQUESTED / / / / / / / Due Date:
GEOSCIENCE	Address: 17BQ	
Environmental & Hydrogeologic Consultants	Address:	Temp. of coolers when received (C°): /, Z_
1	Contract Tarray	When received (C°): /. Z 1 2 3 4 5
Office Location AZTEC, NM	Contact: FREEMAN	
	Phone:	Pageof
Project Manager KyLE SummERS	PO/SO #: 64136801	79/10/1/1
Sampler's Name AARON BRYANT	Sampler's Signature	
KYLE SUMPERS	Ny 1	
	No/Type of Containers	H A A A A A A A A A A A A A A A A A A A
04136001 LOWRY TA	NK BATTERY 402	
Matrix Date Time C G / m a Identifying N P b	Arks of Sample(s) 방법 말법 VOA A/G 250 P/O	Lab Sample ID (Lab Use Only)
5 3-10-14 1100 X SB-12	2(32')	XXXX 1403547-001
5 3-10-14/210 X SB-1		XXX 002
53-10-14/345 X SR-14		$\lambda \lambda \lambda \lambda$ (03)
5 3-10-14 1400 X S13-14	$(\mathcal{F}_{\mathcal{U}\mathcal{U}})$	
		$\begin{array}{c} \chi \chi \chi \end{array} \qquad 604 \\ \chi \chi \chi \chi \qquad 005 \end{array}$
5 3-10-14/630 X 513-15	$(\overline{4}6^{1})$	XXXX Ode
	NES	
	AB	
Turn around time ANormal 25% Rush	🗅 50% Rush 🛛 100% Rush	
Relibeuished by (Signature) Date:	Time: Received by: (Signature) Date 1415 Austra Celta 3/11	NILS NOTES: 1/1045 4 Corners
Retinquished by (Signature) Date:	Time: / Received by: (Signature) Date	Time:
Relinquished by (Signature) Date:	Time: Received by: (Signature) Date	
(Signature) Date:	Date	· · · · · · · · · · · · · · · · · · ·
Relinquished by (Signature) Date:	Time: Received by: (Signature) Date	: Time:
Matrix WW - Wastewater W - Water Container VOA - 40 ml vial A/G - Amber /		- Charcoal tube SL - sludge O - Oll D - Plastic or other

SOUTHWEST GEOSCIENCE • 2351 W. Northwest Hwy., Suite 3321 • Dallas, Texas 75220 • Office: 214-350-5469 • Fax 214-350-2914