District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

NMOCD

Responsible Party

Dis. Jan	0.0	44 -			_
\$ /8	1.00	3 6		3M 41	
9.65	2,870) /		ч
TOWN THE PERSON	91.0		ð 16.	_U =	м

Responsible Party: Enterprise Field Services, LLC	OGRID: 151618
Contact Name: Thomas Long	Contact Telephone: 505-599-2286
Contact email:tjlong@eprod.com	Incident # (assigned by OCD): NCS1812053469/3R-1066
Contact mailing address: 614 Reilly Ave, Farmington, NM 87401	3RP-1066

			Location	of Release S	Source	pcs 1812057508
Latitude 36.6	977342		Longitude	-107.8574196		(NAD 83 in decimal degrees to 5 decimal places)
Site Name Ba	aca Gas C	om A#1A CH		Site Type	Natural (Gas Gathering Pipeline
Date Release	Discovered	: 3/31/2018 at 5:09	p.m.	Serial Nu	mber (if app	licable): N/A
Unit Letter	Section	Township	Range	Cou	inty	
F	26	29N	10W	San	Juan	
Crude Oil		Volume Released		calculations or specif		a for the volumes provided below) c Recovered (bbls)
				calculations or specif		
			` '			,
☐ Produced	Water	Volume Released	ed (bbls)		Volume Recovered (bbls)	
		Is the concentrate produced water >		of dissolved chloride in the ,000 mg/l?		☐ No
	te	Volume Released	d (bbls): 5-7 BBLs		Volume	Recovered (bbls): None
Natural G	as	Volume Released	d (Mcf): 13.10 MC	F	Volume	Recovered (Mcf): None
Other (de	scribe)	Volume/Weight	Released (provide	units):	Volume	e/Weight Recovered (provide units)
A#1A CH well contaminant refeet long by 2 transported to 2018. No cor	I tie. Enterp mass was re 3 feet wide o a New Me otaminants o	orise confirmed the emoved by mechan by 10.5 feet deep. xico Oil Conservation	release and isolate ical excavation in A Approximately 35 on Division approve	ed, depressurized April 2018. The 8 cubic yards of ed land farm faci	d, locked ou final excava hydrocarbo lity. A grou	natural gas liquids on the Baca Gas Com ut and tagged out the pipeline. The soil ation dimensions measured approximately 50 in impacted soil were excavated and indwater investigation was completed in August ands were identified. A third party investigation

Form C-141 Page 2

State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.
□ A scaled site and sampling diagram as described in 19.15.29.11 NMAC
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)
☐ Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)
□ Description of remediation activities
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.
Printed Name: Jon E. Fields Title: Director, Field Environmental
Signature: Date: 1/-7-18
email: jefields@eprod.com Telephone: (713) 381-6684
OCD Only
Received by: Date: 1/16/19
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: Date: Date: Title: Fourier mental Spec.
Printed Name: Con Title: Environmental Spec.

CORRECTIVE ACTION REPORT

Property:

Baca Gas Com A #1A CH NW 1/4, S28 T26N R10W San Juan County, New Mexico

July 24, 2018 Apex Project No. 725040112424

Prepared for:

Enterprise Field Services, LLC 614 Reilly Avenue Farmington, NM 87401 Attn: Mr. Thomas Long

Prepared by:

Ranee Deechilly Project Scientist

Kyle Summers, CPG

Branch Manager / Senior Geologist

TABLE OF CONTENTS

1.0	INTRO 1.1 1.2	DUCTION Site Description & Background Project Objective	1
2.0		ANKING	
3.0	RESPO 3.1 3.2 3.3	Soil Excavation Activities Soil and Water Sampling Program Soil and Water Laboratory Analytical Methods	2
4.0	DATA 4.1 4.2	EVALUATION	4
5.0	FINDIN	NGS AND RECOMMENDATIONS	5
6.0	STANI	DARD OF CARE, LIMITATIONS, AND RELIANCE	3
LIST	OF AP	PENDICES	
Арр	endix A	Figures Figure 1 – Topographic Map Figure 2 – Site Vicinity Map Figure 3 – Site Map with Soil Analytical Results Figure 4 – Site Map with Water Analytical Results	
Арр	endix B	Executed C-138 Solid Waste Acceptance Form	
Арр	endix C	: Photographic Documentation	
Арр	endix D	Tables Table 1 – Soil Analytical Summary Table 2 – Water Analytical Summary	
Арр	endix E	: Laboratory Data Sheets & Chain of Custody Documentation	

CORRECTIVE ACTION REPORT

Baca Gas Com A #1A CH NW 1/4, S26 T29N R10W San Juan County, New Mexico

Apex Project No. 725040112424

1.0 INTRODUCTION

1.1 Site Description & Background

The Baca Gas Com A #1A CH release site, referred to hereinafter as the "Site", is located within the Enterprise Field Services, LLC (Enterprise) pipeline right-of-way (ROW) in the northwest (NW) ¼ of Section 26, Township 29 North, Range 10 West, in San Juan County, New Mexico (36.6977342N,107.8574196W). The Site is located on private land. The surrounding properties are private acreages, periodically interrupted by oil and gas production and gathering facilities, including the Enterprise natural gas gathering pipeline ROW which transects the area from approximately north to south.

On March 31, 2018, a release of natural gas was discovered at the Site. Enterprise subsequently isolated and locked the line out of service. The surface expression of the release was characterized by soil discoloration at the ground surface. On April 6, 2018, Enterprise initiated excavation activities to facilitate the repair of the pipeline, and to remediate potential petroleum hydrocarbon impact resulting from the release. The pipeline was subsequently repaired and placed back in service.

A Topographic Map depicting the location of the Site is included as Figure 1, and a Site Vicinity Map is included as Figure 2 in Appendix A.

1.2 Project Objective

The primary objective of the corrective action was to reduce constituent of concern (COC) concentrations in the on-Site soils to below the New Mexico Energy, Minerals, and Natural Resources Department (EMNRD), Oil Conservation Division (OCD) Remediation Action Levels (RALs) using the New Mexico EMNRD OCD's Guidelines for Remediation of Leaks, Spills and Releases as guidance.

2.0 SITE RANKING

In accordance with the New Mexico ENMRD OCD's *Guidelines for Remediation of Leaks, Spills and Releases*, Apex TITAN, Inc. (Apex) utilized the general site characteristics obtained during the implementation of corrective action activities and information available from the New Mexico Office of the State Engineer (OSE) to determine the appropriate "ranking" for the Site. The ranking criteria and associated scoring are provided in the following table.

Rank	Ranking Criteria							
	<50 feet	20						
Depth to Groundwater	50 to 99 feet	10	20					
	>100 feet	0						
Wellhead Protection Area • <1,000 feet from a water	Yes	20						
source, or; <200 feet from private domestic water source.	No	0	0					
Distance to Surface Water	<200 feet	20						
Distance to Surface Water Body	200 to 1,000 feet	10	10					
Body	>1,000 feet 0							
Total R	anking Score		30					

Based on Apex's evaluation of the scoring criteria, the Site would earn a maximum Total Ranking Score of "30". The ranking is based on the following information:

- Ten (10) water wells were identified within a mile of the Site on the OSE Water Right Reporting System (WRRS) database. Subsurface water was encountered during excavation activities at approximately 10.5 feet below grade surface (bgs). This information supports a ranking score of "20" for depth to groundwater.
- No water source wells (municipal/community wells) were identified within 1,000 feet of the Site. No private domestic water sources were identified within 200 feet of the Site. These proximities result in a wellhead/water source protection area ranking score of "0".
- The release point is located approximately 522 feet south of a potential wetland area and approximately 1,541 feet southwest of the San Juan River. This information supports a distance to surface water ranking score of "10".

3.0 RESPONSE ACTIONS

3.1 Soil Excavation Activities

On March 31, 2018, a release of natural gas was discovered at the Site. Enterprise subsequently isolated and locked the line out of service. The surface expression of the release was characterized by soil discoloration at the ground surface. On April 6, 2018, Enterprise initiated excavation activities to facilitate the repair of the pipeline, and to remediate potential petroleum hydrocarbon impact resulting from the release. The pipeline was subsequently repaired and placed back in service. During the pipeline and earthwork activities, Foutz & Bursum Construction CO Inc, provided heavy equipment and labor support, and Apex provided environmental consulting support.

On April 6, 2018, two (2) composite soil samples (S-1 and S-2) were collected from the sidewalls at the ends of the pipe chase. On April 11, 2018, six (6) composite soil samples (S-3 through S-8) were collected from the remaining sidewalls and base of the excavation for laboratory analysis. Subsequent laboratory analytical results indicated that soils associated with composite soil samples S-3 and S-8 exhibited COC concentrations above New Mexico EMRND OCD RALs. The east sidewall and base in the southern portion of the excavation were further excavated, and two (2) composite soil samples (S-9 and S-10) were collected for laboratory analysis on April 13, 2018. Subsurface water was encountered in the southern portion of the excavation and one (1) water sample (W-1) was collected for laboratory analysis. Subsequent laboratory analytical results indicate that water associated with water sample W-1 exhibits benzene concentrations

above the New Mexico Water Quality Control Commission (WQCC) Groundwater Quality Standards (GQSs). Over the next three (3) days, while the excavation remained open, water was removed from the excavation utilizing a vacuum truck and disposed of at a New Mexico EMNRD OCD approved facility. The excavation remained opened until April 19, 2018.

A representative from the New Mexico EMNRD OCD was on-Site during the final sampling event conducted on April 13, 2018.

The final excavation measured approximately 50 feet long by 23 feet wide at the maximum extents. The maximum depth of the excavation measured approximately 10.5 feet bgs.

The lithology encountered during the completion of corrective action activities consisted of unconsolidated silty sand, silty clay, clay, and sand.

A total of approximately 358 cubic yards of petroleum hydrocarbon affected soils were transported to the Envirotech, Inc. (Envirotech) landfarm near Hilltop, New Mexico for disposal/remediation. The executed C-138 solid waste acceptance form is provided in **Appendix B**. A total of approximately 16 barrels (bbls) of potentially impacted groundwater were transported to Basin Disposal, Inc. near Aztec, NM for disposal. The excavation was backfilled with imported fill and contoured to surrounding grade.

Figure 3 is a map with soil sample locations that depicts the approximate dimensions of the excavation with respect to the pipeline. **Figure 4** is a map with the water sample location. (**Appendix A**). Photographic documentation of the field activities is included in **Appendix C**.

3.2 Soil and Water Sampling Program

Apex field screened soil samples from the excavation utilizing a photoionization detector (PID) fitted with a 10.6 eV lamp and a calibrated Dexsil PetroFLAG® hydrocarbon analyzer system to guide excavation extents.

Apex's soil sampling program included the collection of ten (10) composite soil samples (S-1 through S-10) from the excavation for laboratory analysis.

A water sample (W-1) was collected from the open excavation and was submitted for laboratory analysis to evaluate the potential for groundwater impact at the Site.

The samples were collected and placed in laboratory prepared glassware, labeled/sealed using the laboratory supplied labels and custody seals, and stored on ice in a cooler. The samples were relinquished to the courier for Hall Environmental Analysis Laboratory of Albuquerque, New Mexico, under proper chain-of-custody procedures.

3.3 Soil and Water Laboratory Analytical Methods

The composite soil samples were analyzed for benzene, toluene, ethylbenzene and total xylenes (BTEX) using Environmental Protection Agency (EPA) SW-846 Method #8021/8260, total petroleum hydrocarbon (TPH) gasoline range organics (GRO), diesel range organics (DRO), and motor oil/lube oil range organics (MRO) using EPA SW-846 Method #8015, and chlorides using EPA Method #300.0.

The water sample was analyzed for volatile organic compounds (VOCs) using EPA Method #8260.

Laboratory analytical results are summarized in **Table 1** and **Table 2**, included in **Appendix D**. Due to the extensive list of VOC analytes, **Table 2** includes only results for analytes that exceeded the laboratory practical quantitation limit (PQL). The executed chain-of-custody forms and laboratory data sheets are provided in **Appendix E**.

4.0 DATA EVALUATION

The Site is subject to regulatory oversight by the New Mexico EMNRD OCD. To address activities related to condensate releases, the New Mexico EMNRD OCD utilizes the *Guidelines for Remediation of Leaks, Spills and Releases* as guidance, in addition to the New Mexico EMNRD OCD rules, specifically New Mexico Administrative Code 19.15.29 *Release Notification*. These guidance documents establish investigation and abatement action requirements for sites subject to reporting and/or corrective action.

4.1 Soil Samples

Apex compared the BTEX and TPH concentrations or laboratory PQLs associated with the composite soil samples (S-1, S-2, S-4 through S-7, S-9, and S-10) to the New Mexico EMNRD OCD *RALs* for sites having a total ranking score of "30". Soils associated with composite soil samples S-3 and S-8 were removed by excavation and transported to Envirotech landfarm for disposal/remediation and are not included in the following discussion.

- The laboratory analyses of the composite soil samples collected from soils remaining in place do not indicate benzene concentrations above the laboratory PQLs, which are below the New Mexico EMNRD OCD RAL of 10 milligrams per kilogram (mg/kg).
- The laboratory analyses of composite soil samples S-1, S-2, and S-10 collected from soils remaining in place indicate total BTEX concentrations ranging from 0.12 mg/kg (S-2) to 1.4 mg/kg (S-10), which are below the New Mexico EMNRD OCD RAL of 50 mg/kg. The laboratory analyses of the remaining composite collected from soils remaining in place do not indicate total BTEX concentrations above the laboratory PQLs, which are below the New Mexico EMNRD OCD RAL of 50 mg/kg.
- The laboratory analysis of composite soil sample S-10 collected from soils remaining in place indicates a combined TPH GRO/DRO/MRO concentration of 14 mg/kg, which is below the New Mexico EMNRD OCD RAL of 100 mg/kg. The laboratory analyses of the remaining composite soil samples collected from soils remaining in place do not indicate combined TPH GRO/DRO/MRO concentrations above the laboratory PQLs, which are below the New Mexico EMNRD OCD RAL of 100 mg/kg for a Site ranking of "30".
- The laboratory analyses of the composite soil samples collected from soils remaining in place indicate chloride concentrations ranging from below the laboratory PQLs to 480 mg/kg (S-1).

Laboratory analytical results are summarized in **Table 1** in **Appendix D**. The executed chain-of-custody forms and laboratory data sheets are provided in **Appendix E**.

4.2 Water Sample

Apex compared constituent concentrations or laboratory PQLs associated with the subsurface water sample collected from the open excavation to the New Mexico WQCC GQSs.

- The water sample exhibited a benzene concentration of 27 micrograms per liter (μg/L), which exceeds New Mexico WQCC GQS of 10 μg/L.
- The water sample exhibited a toluene concentration of 10 μg/L, which is below the New Mexico WQCC GQS of 750 μg/L.
- The water sample exhibited an ethylbenzene concentration of 8.2 μg/L, which is below the New Mexico WQCC GQS of 750 μg/L.
- The water sample exhibited a total xylenes concentration of 100 μg/L, which is below the New Mexico WQCC GQS of 620 μg/L.
- The water sample exhibited a 1,2,4 trimethlybenzene and 1,3,5 trimethlybenzne concentration of 17 μg/L and 7.8 μg/L, respectively, which are not quantified under the New Mexico WQCC GQSs.

The results of the water sample analyses are summarized in **Table 2** of **Appendix D**. The executed chain-of-custody forms and laboratory data sheets are provided in **Appendix E**.

5.0 FINDINGS AND RECOMMENDATIONS

The Baca Gas Com A #1A CH release site is located within the Enterprise pipeline ROW in the NW ½ of Section 26, Township 29 North, Range 10 West, in San Juan County, New Mexico. The Site is located on private land. The surrounding properties are private acreages, periodically interrupted by oil and gas production and gathering facilities, including the Enterprise natural gas gathering pipeline ROW which transects the area from approximately north to south.

On March 31, 2018, a release of natural gas was discovered at the Site. Enterprise subsequently isolated and locked the line out of service. The surface expression of the release was characterized by soil discoloration at the ground surface. On April 6, 2018, Enterprise initiated excavation activities to facilitate the repair of the pipeline, and to remediate potential petroleum hydrocarbon impact resulting from the release. The pipeline was subsequently repaired and placed back in service.

- The primary objective of the corrective action was to reduce COC concentrations in the on-Site soils to below the New Mexico EMNRD OCD RALs using the New Mexico EMNRD OCD's Guidelines for Remediation of Leaks, Spills and Releases as guidance.
- The lithology encountered during the completion of corrective action activities consisted of unconsolidated silty sand, silty clay, clay, and sand.
- The final excavation measured approximately 50 feet long by 23 feet wide at the maximum extents. The maximum depth of the excavation measured approximately 10.5 feet bgs.
- Prior to backfilling, ten (10) composite samples soil samples were collected from the excavation for laboratory analyses. Based on soil analytical results, soils remaining in

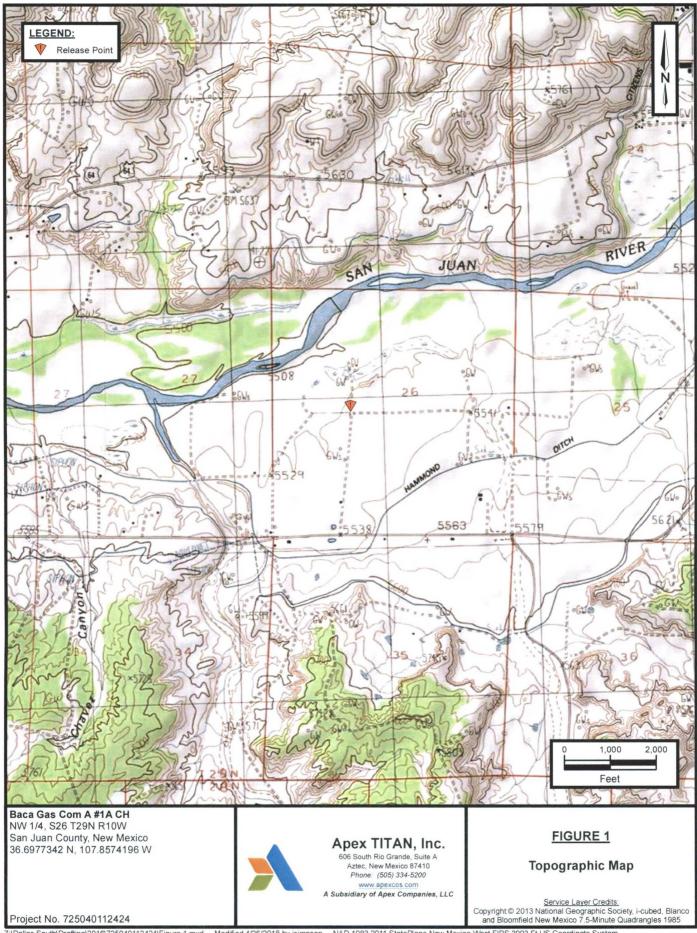
place do not exhibit COC concentrations above the New Mexico EMNRD OCD RALs for a Site ranking of "30".

- One (1) water sample was collected from the open excavation for laboratory analysis.
 Based on analytical results, the water sample exhibited COC concentrations above the New Mexico WQCC GQSs.
- A total of approximately 358 cubic yards of petroleum hydrocarbon affected soils were transported to the Envirotech landfarm near Hilltop, New Mexico for disposal/remediation. A total of approximately 16 bbls of potentially impacted groundwater were transported to Basin Disposal, Inc. near Aztec, NM for disposal. The excavation was backfilled with imported fill and contoured to surrounding grade.

Based on field observations and laboratory analytical results, no additional corrective action with respect to soil impact appears warranted at this time. However, further groundwater evaluation is warranted.

6.0 STANDARD OF CARE, LIMITATIONS, AND RELIANCE

Apex's services were performed in accordance with standards customarily provided by a firm rendering the same or similar services in the area during the same time period. Apex makes no warranties, expressed or implied, as to the services performed hereunder. Additionally, Apex does not warrant the work of third parties supplying information used in the report (e.g. laboratories, regulatory agencies, or other third parties). This scope of services was performed in accordance with the scope of work agreed with the client.


Findings, conclusions and recommendations resulting from these services are based upon information derived from the on-Site activities and other services performed under this scope of work and it should be noted that this information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, or not present during these services, and Apex cannot represent that the Site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during this scope of services. Environmental conditions at other areas or portions of the Site may vary from those encountered at actual sample locations. Apex's findings and recommendations are based solely upon data available to Apex at the time of these services.

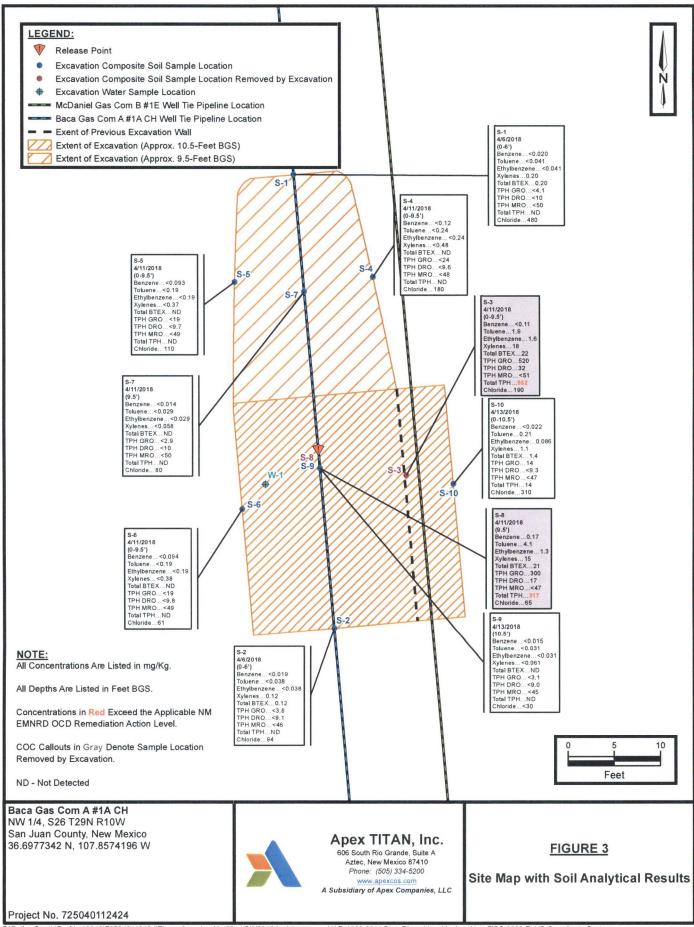
This report has been prepared for the exclusive use of Enterprise, and any authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the Site) is prohibited without the expressed written authorization of Enterprise and Apex. Any unauthorized distribution or reuse is at the client's sole risk. Notwithstanding the foregoing, reliance by authorized parties will be subject to the terms, conditions and limitations stated in the proposal, the report, and Apex's Agreement. The limitation of liability defined in the agreement is the aggregate limit of Apex's liability to the client.

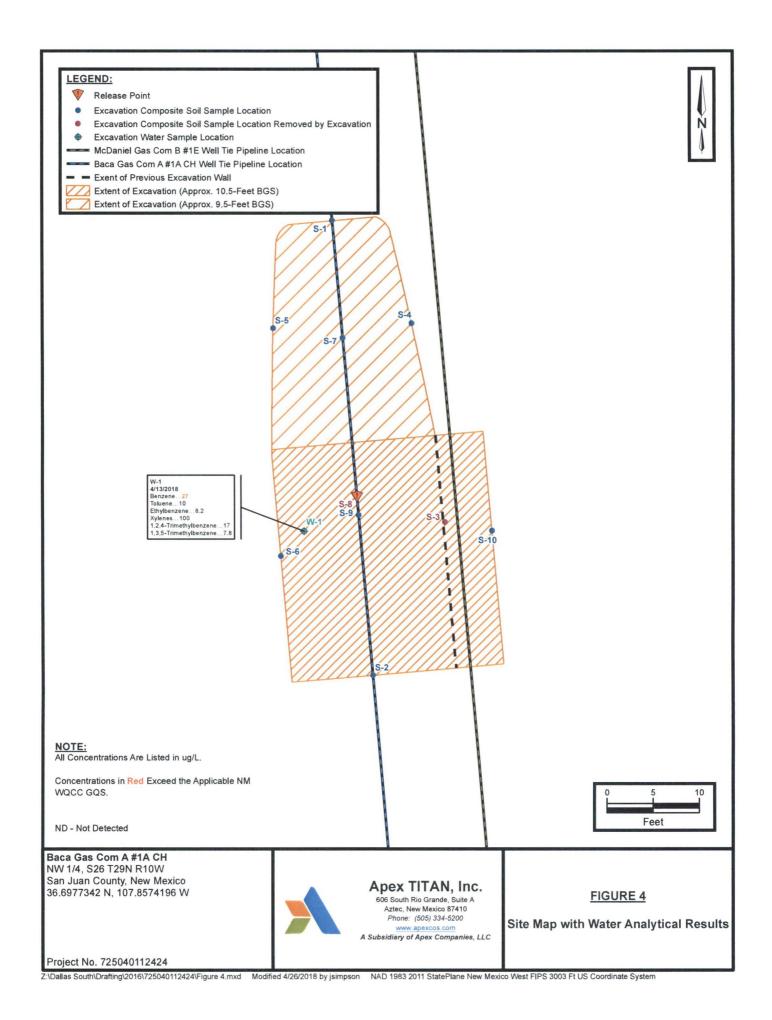
APPENDIX A

Figures

Baca Gas Com A #1A CH NW 1/4, S26 T29N R10W San Juan County, New Mexico 36.6977342 N, 107.8574196 W

Apex TITAN, Inc. 606 South Rio Grande, Suite A Aztec, New Mexico 87410 Phone: (505) 334-5200


www.apexcos.com
A Subsidiary of Apex Companies, LLC


FIGURE 2

Site Vicinity Map

Service Layer Credits: Esri, HERE, Garmin, © OpenStreetMap contributors, Aerial Photograph 2017

Project No. 725040112424

APPENDIX B

Executed C-138 Solid Waste Acceptance Form

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 1625 N. French Dr., Hobbs, NM 88240 <u>District III</u> 811 S. First St., Artesia, NM 88210 <u>District III</u> 1000 Rio Brazos Road, Aztec, NM 87410 <u>District IV</u> 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources 97257-0907 Revised August 1, 2011

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

*Surface Waste Management Facility Operator and Generator shall maintain and make this documentation available for Division inspection.

Form C-138

REOUEST FOR APPROVAL TO ACCEPT SOLID WASTE

The gold of the following to the object to object the first to	
1. Generator Name and Address: Enterprise Field Services, LLC, 614 Reilly Avenue, Farmington, NM 87401 Invoice Information: PM: ME Eddleman Non AFE: N36112 Pay Key: CM22355	
2. Originating Site: Baca GC A#1A CH Pipeline	
3. Location of Material (Street Address, City, State or ULSTR): UL Section 26 T29N 10W; 36.6977,-107.8574 April 2018	
4. Source and Description of Waste: Hydrocarbon impacted soils associated with a release from a natural gas pipeline.	
Estimated Volume50yd³ bbls Known Volume (to be entered by the operator at the end of the haul)358yd³ bbls	
5. GENERATOR CERTIFICATION STATEMENT OF WASTE STATUS	
I, Thomas Long representative or authorized agent for Enterprise Field Services, LLC do hereby COMPANYNAME certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 19 regulatory determination, the above described waste is: (Check the appropriate classification)	988
RCRA Exempt: Oil field wastes generated from oil and gas exploration and production operations and are not mixed with not exempt waste. Operator Use Only: Waste Acceptance Frequency Monthly Per Load	n-
☐ RCRA Non-Exempt: Oil field waste which is non-hazardous that does not exceed the minimum standards for waste hazardou characteristics established in RCRA regulations, 40 CFR 261.21-261.24, or listed hazardous waste as defined in 40 CFR, part 261, subpart D, as amended. The following documentation is attached to demonstrate the above-described waste is non-hazardous.(Ch the appropriate items)	
☐ MSDS Information ☐ RCRA Hazardous Waste Analysis ☐ Process Knowledge ☐ Other (Provide description in Box 4)	
GENERATOR 19.15.36.15 WASTE TESTING CERTIFICATION STATEMENT FOR LANDFARMS	
1, 4-6-18, representative for Enterprise Field Services, LLC authorize Envirotech, Inc. to complete the required Generator Signature testing/sign the Generator Waste Testing Certification.	
I,	oles
5. Transporter: TBD 5 weazea, Deherrera, 31 Sarvices, Yuccq	
OCD Permitted Surface Waste Management Facility Name and Facility Permit #: Envirotech, Inc. Soil Remediation Facility * Permit #: NM 01-0011 Address of Facility: Hilltop, NM	
Method of Treatment and/or Disposal: ☐ Evaporation ☐ Injection ☐ Treating Plant ☒ Landfarm ☐ Landfill ☐ Other	
Waste Acceptance Status: APPROVED DENIED (Must Be Maintained As Permanent Recor	d)
PRINT NAME: Greg Grabtree TITLE: Environmental Manager DATE: 4/10/19	7
SIGNATURE: TELEPHONE NO.: 505-632-0615 Surface Waste Management Facility Authorized Agent	

APPENDIX C

Photographic Documentation

Photograph 1

View of the source area and in-process excavation activities, facing southeast.

Photograph 2

View of the in-process excavation activities, facing south.

Photograph 3

View of the in-process excavation activities, facing southeast.

Photograph 4

View of the in-process excavation activities, facing northwest.

Photograph 5

View of the final excavation, facing northwest.

Photograph 6

View of the final excavation, facing northeast.

APPENDIX D

Tables

TABLE 1 Baca Gas Com A #1A CH SOIL ANALYTICAL SUMMARY

Sample I.D.	Date	Sample Type C- Composite G - Grab	Sample Depth (feet)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH MRO (mg/kg)	Total Combined TPH (mg/kg)	Chloride (mg/kg)
		Natural Resources , Remediation Action		10	NE	NE	NE	50				100	NE
					Excava	tion Composite Soil	Samples Remov	ed by Excavation		Andrew Colonia, British			
S-3	04.11.18	С	0 to 9.5	<0.11	1.9	1.6	18	22	520	32	<51	552	190
S-8	04.11.18	С	9.5	0.17	4.1	1.3	15	21	300	17	<47	317	65
						Excavation Con	nposite Soil San	ples					
S-1	04.06.18	С	0 to 6	<0.020	<0.041	<0.041	0.20	0.20	<4.1	<10	<50	ND	480
S-2	04.06.18	С	0 to 6	<0.019	<0.038	<0.038	0.12	0.12	<3.8	<9.1	<46	ND	94
S-4	04.11.18	С	0 to 9.5	<0.12	<0.24	<0.24	<0.48	ND	<24	<9.6	<48	ND	180
S-5	04.11.18	С	0 to 9.5	< 0.093	<0.19	<0.19	< 0.37	ND	<19	<9.7	<49	ND	110
S-6	04.11.18	С	0 to 9.5	<0.094	<0.19	<0.19	<0.38	ND	<19	<9.8	<49	ND	61
S-7	04.11.18	С	9.5	<0.014	<0.029	<0.029	<0.058	ND	<2.9	<10	<50	ND	80
S-9	04.13.18	С	10.5	< 0.015	< 0.031	<0.031	<0.061	ND	<3.1	<9.0	<45	ND	<30
S-10	04.13.18	С	0 to 10.5	<0.022	0.21	0.086	1.1	1.4	14	<9.3	<47	14	310

Note: Concentrations in **bold** and yellow exceed the applicable NM EMNRD OCD Remediation Action Level

ND = Not Detected above the Practical Quantitation Limits

NE = Not established

mg/kg = milligram per kilogram

TABLE 2 Baca Gas Com A #1A CH WATER ANALYTICAL SUMMARY- Volatile Organic Compounds

Sample I.D.	Date	Benzene	Toluene	Ethylbenzene	Xylenes	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
New Mexico Water Qualit Commission Groundwat Standards	ACCORDING TO THE PARTY OF THE P	10	750	750	620	NE	NE
	Excavation Water Samples						
W-1	04.13.18	27	10	8.2	100	17	7.8

Note: Concentrations in bold and yellow exceed the applicable NM WQCC GQS

Note: 1,2,4-Trimethylbenzene and 1,3,5-Trimethylbenzene are not priority pollutants under the federal Clean Water Act (CWA) or the NM WQCC.

μg/L = micrograms per liter

NE = Not Established

Appendix E

Laboratory Data Sheets & Chain of Custody Documentation

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

OrderNo.: 1804393

April 10, 2018

Kyle Summers
APEX TITAN
606 S. Rio Grande Suite A
Aztec, NM 87410
TEL: (903) 821-5603

FAX

RE: Baca GC A 1A CH

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 2 sample(s) on 4/7/2018 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report

Lab Order 1804393

Date Reported: 4/10/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: APEX TITAN

Client Sample ID: S-1

Project: Baca GC A 1A CH

Collection Date: 4/6/2018 1:30:00 PM

Lab ID: 1804393-001

Matrix: MEOH (SOIL) Received Date: 4/7/2018 11:40:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: MRA
Chloride	480	30	mg/Kg	20	4/9/2018 12:25:41 PM	37490
EPA METHOD 8015M/D: DIESEL RANG	GE ORGANICS				Analyst	t: TOM
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	4/9/2018 9:54:35 AM	37481
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	4/9/2018 9:54:35 AM	37481
Surr: DNOP	101	70-130	%Rec	1	4/9/2018 9:54:35 AM	37481
EPA METHOD 8015D: GASOLINE RAN	IGE				Analyst	t: NSB
Gasoline Range Organics (GRO)	ND	4.1	mg/Kg	1	4/9/2018 9:49:02 AM	37472
Surr: BFB	110	15-316	%Rec	1	4/9/2018 9:49:02 AM	37472
EPA METHOD 8021B: VOLATILES					Analyst	t: NSB
Benzene	ND	0.020	mg/Kg	1	4/9/2018 9:49:02 AM	37472
Toluene	ND	0.041	mg/Kg	1	4/9/2018 9:49:02 AM	37472
Ethylbenzene	ND	0.041	mg/Kg	1	4/9/2018 9:49:02 AM	37472
Xylenes, Total	0.20	0.082	mg/Kg	1	4/9/2018 9:49:02 AM	37472
Surr: 4-Bromofluorobenzene	90.6	80-120	%Rec	1	4/9/2018 9:49:02 AM	37472

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 7
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Analytical Report

Lab Order **1804393**

Date Reported: 4/10/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: APEX TITAN

Client Sample ID: S-2

Project: Baca GC A 1A CH

Collection Date: 4/6/2018 1:40:00 PM

Lab ID: 1804393-002

Matrix: MEOH (SOIL) Received Date: 4/7/2018 11:40:00 AM

Analyses	Result	PQL Qua	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	MRA
Chloride	94	30	mg/Kg	20	4/9/2018 12:38:06 PM	37490
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS				Analyst	: TOM
Diesel Range Organics (DRO)	ND	9.1	mg/Kg	1	4/9/2018 10:16:47 AM	37481
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	4/9/2018 10:16:47 AM	37481
Surr: DNOP	96.0	70-130	%Rec	1	4/9/2018 10:16:47 AM	37481
EPA METHOD 8015D: GASOLINE RAN	GE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	3.8	mg/Kg	1	4/9/2018 10:12:35 AM	37472
Surr: BFB	101	15-316	%Rec	1	4/9/2018 10:12:35 AM	37472
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.019	mg/Kg	1	4/9/2018 10:12:35 AM	37472
Toluene	ND	0.038	mg/Kg	1	4/9/2018 10:12:35 AM	37472
Ethylbenzene	ND	0.038	mg/Kg	1	4/9/2018 10:12:35 AM	37472
Xylenes, Total	0.12	0.076	mg/Kg	1	4/9/2018 10:12:35 AM	37472
Surr: 4-Bromofluorobenzene	90.0	80-120	%Rec	1	4/9/2018 10:12:35 AM	37472

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 7
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#:

1804393

10-Apr-18

Client:

APEX TITAN

Project:

Baca GC A 1A CH

Sample ID MB-37490

SampType: mblk

TestCode: EPA Method 300.0: Anions

Client ID: **PBS** Batch ID: 37490

RunNo: 50408

Prep Date: 4/9/2018 Analysis Date: 4/9/2018

SeqNo: 1634764

Units: mg/Kg

Result **PQL**

HighLimit

%RPD

%RPD

RPDLimit

Qual

Qual

Analyte Chloride

ND 1.5

Sample ID LCS-37490

4/9/2018

SampType: Ics

TestCode: EPA Method 300.0: Anions

Client ID: LCSS Batch ID: 37490

RunNo: 50408

SPK value SPK Ref Val %REC LowLimit

SeqNo: 1634765

Units: mg/Kg

RPDLimit

Analyte

Prep Date:

Analysis Date: 4/9/2018

PQL SPK value SPK Ref Val %REC LowLimit Chloride 1.5 15.00 92.0

HighLimit

110

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

В Analyte detected in the associated Method Blank

E Value above quantitation range

Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

Sample container temperature is out of limit as specified

Page 3 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#:

Page 4 of 7

1804393

10-Apr-18

Client: Project:	APEX TI										
Sample ID	MB-37481	SampTy	/pe: M E	BLK	Test	tCode: EF	A Method	8015M/D: Die	esel Range	e Organics	
Client ID:	PBS	Batch	ID: 37	481	R	RunNo: 50	0391				
Prep Date:	4/9/2018	Analysis Da	ate: 4/	9/2018	9	SeqNo: 10	633386	Units: mg/K	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range O	rganics (DRO)	ND	10								
	Organics (MRO)	ND	50	10.00		07.0	70	100			
Surr: DNOP		9.7		10.00		97.2	70	130			
Sample ID	LCS-37481	SampTy	pe: LC	s	Tes	tCode: EF	A Method	8015M/D: Di	esel Rango	e Organics	
Client ID:	LCSS	Batch	ID: 37	481	F	RunNo: 50	0391				
Prep Date:	4/9/2018	Analysis Da	ate: 4	9/2018	S	SeqNo: 10	633402	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range O	rganics (DRO)	45	10	50.00	0	91.0	70	130			
Surr: DNOP		4.4		5.000		88.1	70	130			
Sample ID	MB-37471	SampTy	/pe: MI	BLK	Tes	tCode: El	PA Method	8015M/D: Di	esel Range	e Organics	
Client ID:	PBS	Batch	ID: 37	471	F	RunNo: 50	0391				
Prep Date:	4/6/2018	Analysis Da	ate: 4	/9/2018		SeaNo: 1		Units: %Re	С		
Analyte		Result	PQL		SPK Ref Val	% DEC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP		9.9	FUL	10.00	SFR Rei Vai	98.9	70	130	70KFD	KFDLIIIII	Quai
0 1 10		0 7									
Sample ID		SampTy						8015M/D: Di	esel Range	e Organics	
Client ID:			ID: 37			RunNo: 5					
Prep Date:	4/6/2018	Analysis Da	ate: 4	/9/2018	S	SeqNo: 1		Units: %Re	С		
Analyte		Result	PQL		SPK Ref Val		LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP		4.3		5.000		86.2	70	130			
Sample ID	1804393-001AMS	SampTy	ype: M	S	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID:	S-1	Batch	ID: 37	481	F	RunNo: 5	0391				
Prep Date:	4/9/2018	Analysis Da	ate: 4	/9/2018	5	SeqNo: 1	634132	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range C	rganics (DRO)	48	9.8	49.07	1.997	93.9	55.8	125			
Surr: DNOP		4.7		4.907		95.9	70	130			
Sample ID	1804393-001AMSE) SampTy	ype: M	SD	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID:	S-1	Batch	ID: 37	481	F	RunNo: 5	0391				
Prep Date:	4/9/2018	Analysis Da	ate: 4	/9/2018	5	SeqNo: 1	634133	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
		Result									

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#:

1804393

10-Apr-18

Client:

APEX TITAN

Baca GC A 1A CH Project:

Sample ID 1804393-001AMSD

SampType: MSD

TestCode: EPA Method 8015M/D: Diesel Range Organics

Client ID:

Batch ID: 37481

RunNo: 50391

Prep Date: 4/9/2018 Analysis Date: 4/9/2018

SeqNo: 1634133

Analyte

PQL SPK value SPK Ref Val %REC

Units: mg/Kg

RPDLimit

Qual

Result

70

LowLimit

HighLimit

0

%RPD

Surr: DNOP

4.5

4.789

94.4

130

0

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank В

E Value above quantitation range

J Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Detection Limit

P

Sample container temperature is out of limit as specified

Page 5 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#:

1804393

10-Apr-18

Client:

APEX TITAN

Project:

Baca GC A 1A CH

Sample ID MB-37472	SampT	ype: ME	BLK	Test	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Client ID: PBS	Batch	ID: 374	472	R	RunNo: 5	0404				
Prep Date: 4/6/2018	Analysis D	ate: 4/	9/2018	S	SeqNo: 1	634431	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	5.0								
Surr: BFB	890		1000		88.7	15	316			

Sample ID LCS-37472	SampT	ype: LC	S	Test	Code: El	PA Method	8015D: Gaso	oline Rang	е	
Client ID: LCSS	Batch	ID: 37	472	R	tunNo: 5	0404				
Prep Date: 4/6/2018	Analysis D	ate: 4/	9/2018	S	eqNo: 1	634432	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	29	5.0	25.00	0	115	75.9	131			
Surr: BFB	1100		1000		106	15	316			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

Page 6 of 7

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: **1804393**

10-Apr-18

Client: APEX TITAN
Project: Baca GC A 1A CH

Sample ID MB-37472	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: PBS	Batch	n ID: 37	472	R	RunNo: 5	0404				
Prep Date: 4/6/2018	Analysis D	Date: 4/	9/2018	S	SeqNo: 1	634466	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenzene	0.86		1.000		85.9	80	120			

Sample ID LCS-37472	SampT	ype: LC	S	Tes	tCode: El	PA Method	8021B: Volat	tiles		
Client ID: LCSS	Batch	n ID: 37	472	F	RunNo: 5	0404				
Prep Date: 4/6/2018	Analysis D	oate: 4/	9/2018	S	SeqNo: 1	634467	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.94	0.025	1.000	0	94.3	77.3	128			
Toluene	0.93	0.050	1.000	0	92.8	79.2	125			
Ethylbenzene	0.91	0.050	1.000	0	91.2	80.7	127			
Xylenes, Total	2.8	0.10	3.000	0	93.0	81.6	129			
Surr: 4-Bromofluorobenzene	0.91		1.000		90.6	80	120			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 7 of 7

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

Sample Log-In Check List TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Client Name	APEX AZT	EC	Work Order Nun	nber:	1804393	3		RoptNo	y 1	
Received By	: Andy Free	eman	4/7/2018 11:40:00) AM		and	4			
Completed B	•		4/9/2018 7:27:09	АМ		T 6	4.6	_		
•			4/9/18	7.101						
Reviewed By			7 7 75							
-	ENM									
Chain of C										
1. Is Chain o	of Custody comp	lete?		,	Yes 🗸	No		Not Present		
2. How was	the sample deliv	ered?		9	Client					
Log In										
	tempt made to d	cool the samples	?	,	Yes 🗸	No		NA 🗌		
4. Were all s	amples received	at a temperatur	e of >0° C to 6.0°C	,	Yes 🗸	Nυ		NA 🗌		
5. Sample(s)	in proper conta	ner(s)?		,	Yes 🗸	No				
C. C. Winland	a a a sa la continua a d	lan indiana da band	-10	,	res 🗸	No				
		or indicated test								
_		and ONG) prope	ny preserved?		res 🔽	No				
8. Was prese	ervative added to	battles?		,	es 🗌	No	M	NA 🗌		
9. VOA vials	have zero heads	space?		Υ.	es 🗆	No		No VOA Vials		
		ers received brok	en?		Yes 🗌	No	V		a	/
, , , , , ,								# of preserved bottles checked	0110	
11. Does pape	erwork match bo	ttle labels?		,	es V	No		for nH:	MIST	
(Note disc	repancies on cha	ain of custody)							or > 12 unless noted)
12. Are matric	es correctly iden	itified on Chain o	f Custody?)	es 🗸	No		Adjusted		
	what analyses w				res 🗸	No				
	olding times able			`	es 🗸	No	_	Checked by:		
(ii no, nou	fy customer for a	sumonzation.)					/			
Special Hai	ndling (if app	olicable)								
15. Was clien	t notified of all d	iscrepancies with	this order?		Yes	No		NA 🗸		
Pen	son Notified:		Dat	e: [
Ву	Whom:		Via	: "	eMail	Phone	Fax	In Person		
Reg	arding									
Clie	nt Instructions	patentiferinantellitentiferintellisinakinikinik								
16. Additions	ıl remarks:									
17. Cooler In	nformation									
Cooler		Condition	Seal Intact Seal No	Se	al Date	Signed	Ву			
1	3.4		es	-		-				

																		CHAIN	OF C	USTODY RECO	RD
	A	,				Laboratory					ntal rorte	74		Analy Requi	ESTED	///	17	//	//	Lab use only Due Date:	
ĮΑ	PEX					Address:	490	1 He	aw k	cins	NE)			1 12	1/	/	/ / /	/ /	Temp. of goolers 3, 9	7 .
Offic	e Locatio	n				Albuqu	lerg	ue,1	VM	8	7109		_		/ 18	II	11		/	when received [C"]:	(
6	06 S. P	io Corar	de	Su	iteA	Contact:									12	1 /	1-1	III	1	1 2 3 4 5	
A	2+06/1	VM 8	74	10		Phone:	505	- 3	45	39	75				W	(-/-)		1 /	/	Page 1 of 1	
Proje	ect Mana	ger k	Su	ma	ier	PO/SO#:		ee	004	es					7 9	11	/	I I I			
Samp	ler's Name	Deechi	1			Sampler's Sign	ature	人						BIEF	TPH GROPES IN Chlorides FOLS	//.	//				
Proj. 1		2424	1	Bac		+FIA CH			No/T	ype of	Containe	ers		BIL	En Chie			//	100	→07	
Matrix		Time	C	G		arks of Sample(s)	Per Had	End Depth	Ş	95	250	398	Q.		171	//	11	/ /		4393	
-				b			De 33	D _e	>	Q-		5 7	_	_/_	$\Box\Box$	1-1-	1-1-			mple ID (Lab Use Only)	_
		1330			5-							1		XX	X				_	- 90	
S	4/6/18	1340	X		5-2	-						-		XX	X				-	-003	
			-																		
								_	The second secon	-	1										
									-												
					•							-									-
Turn a	round time	□ Nor	mal	2	5% Rush	_] 50% Rush _ ≦	100%	Rush	5.	AME	DAY						L L				\dashv
m	2 Dolm	(Signature)		u	0 18 15	Time: Receiv	ed by:	(Signa	ture)		4	ate:		Time: /520 Time:	NOTES:			om Lon		5	
	to to	NOD LO	^	_		700 Receiv	and by	Comme	C C	-	4	/7// late:	ž.	//40 Time:	_			- N3			
neiirio	uisiied by i	(aignature			Jale.	me. receiv	red by 2	ęoigna	ure)			ate:		ime:		1 4 4 1 /	200	- 143	10112		
Relinq	uished by I	(Signature)				Time: Receiv		(Signa	ture)			ate:		Time:	SAM	EDAY		(Coc	Seal on Jan	2
Matrix Contain		V - Wastewal A - 40 ml via			W - Water A/G - Amber / C	S - Soil SD - So or Glass 1 Liter		- Liquic 50 ml -	A Glass v	- Air B	ag outh			coal tube istic or othe	SL · sludge	0-0	il				

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

April 13, 2018

Kyle Summers
APEX TITAN
606 S. Rio Grande Unit A
Aztec, NM 87410
TEL: (903) 821-5603

FAX

RE: Baca GC A 1A CH OrderNo.: 1804630

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 6 sample(s) on 4/12/2018 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

4901 Hawkins NE

Albuquerque, NM 87109

Hall Environmental Analysis Laboratory
4901 Hawkins NE
Albuquerque, NM 87109
TEL: 505-345-3975 FAX: 505-345-4107
Website: www.hallenvironmental.com

Workorder Sample Summary

WO#: **1804630** *13-Apr-18*

CLIENT: APEX TITAN
Project: Baca GC A 1A CH

Lab SampleID	Client Sample ID	Tag No	Date Collected	Date Received	Matrix
1804630-001	S-3		4/11/2018 9:30:00 AM	4/12/2018 8:15:00 AM	Soil
1804630-001	S-3		4/11/2018 9:30:00 AM	4/12/2018 8:15:00 AM	Soil
1804630-002	S-4		4/11/2018 9:40:00 AM	4/12/2018 8:15:00 AM	Soil
1804630-002	S-4		4/11/2018 9:40:00 AM	4/12/2018 8:15:00 AM	Soil
1804630-003	S-5		4/11/2018 9:50:00 AM	4/12/2018 8:15:00 AM	Soil
1804630-003	S-5		4/11/2018 9:50:00 AM	4/12/2018 8:15:00 AM	Soil
1804630-004	S-6		4/11/2018 10:00:00 AM	4/12/2018 8:15:00 AM	Soil
1804630-004	S-6		4/11/2018 10:00:00 AM	4/12/2018 8:15:00 AM	Soil
1804630-005	S-7		4/11/2018 10:10:00 AM	4/12/2018 8:15:00 AM	Soil
1804630-005	S-7		4/11/2018 10:10:00 AM	4/12/2018 8:15:00 AM	Soil
1804630-006	S-8		4/11/2018 10:20:00 AM	4/12/2018 8:15:00 AM	Soil
1804630-006	S-8		4/11/2018 10:20:00 AM	4/12/2018 8:15:00 AM	Soil

Lab Order 1804630

Date Reported: 4/13/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: APEX TITAN

Client Sample ID: S-3

Project: Baca GC A 1A CH

Collection Date: 4/11/2018 9:30:00 AM

Lab ID: 1804630-001

Matrix: SOIL

Received Date: 4/12/2018 8:15:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	MRA
Chloride	190	30	mg/Kg	20	4/12/2018 12:18:15 PM	37569
EPA METHOD 8015D MOD: GASOLIN	NE RANGE				Analyst	: AG
Gasoline Range Organics (GRO)	520	21	mg/Kg	5	4/12/2018 10:17:01 AM	M50506
Surr: BFB	94.5	70-130	%Rec	5	4/12/2018 10:17:01 AM	M50506
EPA METHOD 8015M/D: DIESEL RAI	NGE ORGANICS				Analyst	TOM
Diesel Range Organics (DRO)	32	10	mg/Kg	1	4/12/2018 2:27:41 PM	37568
Motor Oil Range Organics (MRO)	ND	51	mg/Kg	1	4/12/2018 2:27:41 PM	37568
Surr: DNOP	95.7	70-130	%Rec	1	4/12/2018 2:27:41 PM	37568
EPA METHOD 8260B: VOLATILES S	HORT LIST				Analyst	: AG
Benzene	ND	0.11	mg/Kg	5	4/12/2018 10:17:01 AM	S50506
Toluene	1.9	0.21	mg/Kg	5	4/12/2018 10:17:01 AM	S50506
Ethylbenzene	1.6	0.21	mg/Kg	5	4/12/2018 10:17:01 AM	S50506
Xylenes, Total	18	0.43	mg/Kg	5	4/12/2018 10:17:01 AM	S50506
Surr: 4-Bromofluorobenzene	95.3	70-130	%Rec	5	4/12/2018 10:17:01 AM	S50506
Surr: Toluene-d8	98.3	70-130	%Rec	5	4/12/2018 10:17:01 AM	S50506

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 12
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1804630

Client Sample ID: S-4

Date Reported: 4/13/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: APEX TITAN

 Project:
 Baca GC A 1A CH
 Collection Date: 4/11/2018 9:40:00 AM

 Lab ID:
 1804630-002
 Matrix: SOIL
 Received Date: 4/12/2018 8:15:00 AM

PQL Qual Units **Analyses** Result **DF** Date Analyzed Batch **EPA METHOD 300.0: ANIONS** Analyst: MRA Chloride 4/12/2018 12:30:40 PM 37569 180 30 mg/Kg **EPA METHOD 8015D MOD: GASOLINE RANGE** Analyst: AG Gasoline Range Organics (GRO) 24 4/12/2018 10:40:06 AM M50506 ma/Ka 5 Surr: BFB 108 %Rec 5 4/12/2018 10:40:06 AM M50506 70-130 **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: TOM Diesel Range Organics (DRO) ND 9.6 4/12/2018 2:49:50 PM 37568 mg/Kg 1 Motor Oil Range Organics (MRO) ND 48 mg/Kg 4/12/2018 2:49:50 PM 37568 Surr: DNOP 98.7 70-130 %Rec 4/12/2018 2:49:50 PM 37568 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: AG Benzene ND 0.12 mg/Kg 5 4/12/2018 10:40:06 AM \$50506 Toluene ND 0.24 4/12/2018 10:40:06 AM \$50506 mg/Kg 5 Ethylbenzene ND 0.24 4/12/2018 10:40:06 AM S50506 mg/Kg 5 ND Xylenes, Total 0.48 5 4/12/2018 10:40:06 AM \$50506 mg/Kg Surr: 4-Bromofluorobenzene 109 70-130 %Rec 5 4/12/2018 10:40:06 AM \$50506 Surr: Toluene-d8 90.1 70-130 %Rec 4/12/2018 10:40:06 AM \$50506

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 3 of 12
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1804630

Date Reported: 4/13/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: APEX TITAN

Client Sample ID: S-5

Project: Baca GC A 1A CH

Collection Date: 4/11/2018 9:50:00 AM

Lab ID: 1804630-003

Matrix: SOIL Received Date: 4/12/2018 8:15:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	MRA
Chloride	110	30	mg/Kg	20	4/12/2018 12:43:04 PM	37569
EPA METHOD 8015D MOD: GASOLINE	RANGE				Analyst	AG
Gasoline Range Organics (GRO)	ND	19	mg/Kg	5	4/12/2018 11:03:09 AM	M50506
Surr: BFB	110	70-130	%Rec	5	4/12/2018 11:03:09 AM	M50506
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS				Analyst	TOM
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	4/12/2018 3:11:46 PM	37568
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	4/12/2018 3:11:46 PM	37568
Surr: DNOP	97.4	70-130	%Rec	1	4/12/2018 3:11:46 PM	37568
EPA METHOD 8260B: VOLATILES SHO	RT LIST				Analyst	AG
Benzene	ND	0.093	mg/Kg	5	4/12/2018 11:03:09 AM	S50506
Toluene	ND	0.19	mg/Kg	5	4/12/2018 11:03:09 AM	S50506
Ethylbenzene	ND	0.19	mg/Kg	5	4/12/2018 11:03:09 AM	S50506
Xylenes, Total	ND	0.37	mg/Kg	5	4/12/2018 11:03:09 AM	S50506
Surr: 4-Bromofluorobenzene	110	70-130	%Rec	5	4/12/2018 11:03:09 AM	S50506
Surr: Toluene-d8	97.1	70-130	%Rec	5	4/12/2018 11:03:09 AM	S50506

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 4 of 12
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1804630

Date Reported: 4/13/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: APEX TITAN

Client Sample ID: S-6

Project: Baca GC A 1A CH

Collection Date: 4/11/2018 10:00:00 AM

Lab ID: 1804630-004

Matrix: SOIL

Received Date: 4/12/2018 8:15:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: MRA
Chloride	61	30	mg/Kg	20	4/12/2018 12:55:29 PM	37569
EPA METHOD 8015D MOD: GASOLINE	RANGE				Analyst	: AG
Gasoline Range Organics (GRO)	ND	19	mg/Kg	5	4/12/2018 11:26:11 AM	M50506
Surr: BFB	104	70-130	%Rec	5	4/12/2018 11:26:11 AM	M50506
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS	;			Analyst	: TOM
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	4/12/2018 2:28:27 PM	37568
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	4/12/2018 2:28:27 PM	37568
Surr: DNOP	88.8	70-130	%Rec	1	4/12/2018 2:28:27 PM	37568
EPA METHOD 8260B: VOLATILES SHO	RT LIST				Analyst	: AG
Benzene	ND	0.094	mg/Kg	5	4/12/2018 11:26:11 AM	S50506
Toluene	ND	0.19	mg/Kg	5	4/12/2018 11:26:11 AM	S50506
Ethylbenzene	ND	0.19	mg/Kg	5	4/12/2018 11:26:11 AM	S50506
Xylenes, Total	ND	0.38	mg/Kg	5	4/12/2018 11:26:11 AM	S50506
Surr: 4-Bromofluorobenzene	105	70-130	%Rec	5	4/12/2018 11:26:11 AM	S50506
Surr: Toluene-d8	97.5	70-130	%Rec	5	4/12/2018 11:26:11 AM	S50506

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 5 of 12
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1804630

Date Reported: 4/13/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: APEX TITAN

Client Sample ID: S-7

Project: Baca GC A 1A CH

Collection Date: 4/11/2018 10:10:00 AM

Lab ID: 1804630-005

Matrix: SOIL Received Date: 4/12/2018 8:15:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: MRA
Chloride	80	30	mg/Kg	20	4/12/2018 1:07:54 PM	37569
EPA METHOD 8015D MOD: GASOLIN	E RANGE				Analyst	: AG
Gasoline Range Organics (GRO)	ND	2.9	mg/Kg	1	4/12/2018 11:49:18 AM	M50506
Surr: BFB	115	70-130	%Rec	1	4/12/2018 11:49:18 AM	M50506
EPA METHOD 8015M/D: DIESEL RAN	GE ORGANICS				Analyst	: TOM
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	4/12/2018 2:53:02 PM	37568
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	4/12/2018 2:53:02 PM	37568
Surr: DNOP	89.3	70-130	%Rec	1	4/12/2018 2:53:02 PM	37568
EPA METHOD 8260B: VOLATILES SH	IORT LIST				Analyst	: AG
Benzene	ND	0.014	mg/Kg	1	4/12/2018 11:49:18 AM	S50506
Toluene	ND	0.029	mg/Kg	1	4/12/2018 11:49:18 AM	S50506
Ethylbenzene	ND	0.029	mg/Kg	1	4/12/2018 11:49:18 AM	S50506
Xylenes, Total	ND	0.058	mg/Kg	1	4/12/2018 11:49:18 AM	S50506
Surr: 4-Bromofluorobenzene	116	70-130	%Rec	1	4/12/2018 11:49:18 AM	S50506
Surr: Toluene-d8	87.9	70-130	%Rec	1	4/12/2018 11:49:18 AM	S50506

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 6 of 12
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1804630

Date Reported: 4/13/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: APEX TITAN Client Sample ID: S-8

 Project:
 Baca GC A 1A CH
 Collection Date: 4/11/2018 10:20:00 AM

 Lab ID:
 1804630-006
 Matrix:
 SOIL
 Received Date: 4/12/2018 8:15:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	MRA
Chloride	65	30	mg/Kg	20	4/12/2018 1:20:19 PM	37569
EPA METHOD 8015D MOD: GASOLIN	IE RANGE				Analyst	: AG
Gasoline Range Organics (GRO)	300	15	mg/Kg	5	4/12/2018 12:12:23 PM	M50506
Surr: BFB	90.1	70-130	%Rec	5	4/12/2018 12:12:23 PM	M50506
EPA METHOD 8015M/D: DIESEL RAN	IGE ORGANICS				Analyst	: TOM
Diesel Range Organics (DRO)	17	9.4	mg/Kg	1	4/12/2018 3:17:46 PM	37568
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	4/12/2018 3:17:46 PM	37568
Surr: DNOP	90.0	70-130	%Rec	1	4/12/2018 3:17:46 PM	37568
EPA METHOD 8260B: VOLATILES SH	ORT LIST				Analyst	: AG
Benzene	0.17	0.077	mg/Kg	5	4/12/2018 12:12:23 PM	S50506
Toluene	4.1	0.15	mg/Kg	5	4/12/2018 12:12:23 PM	S50506
Ethylbenzene	1.3	0.15	mg/Kg	5	4/12/2018 12:12:23 PM	S50506
Xylenes, Total	15	0.31	mg/Kg	5	4/12/2018 12:12:23 PM	S50506
Surr: 4-Bromofluorobenzene	90.7	70-130	%Rec	5	4/12/2018 12:12:23 PM	S50506
Surr: Toluene-d8	94.5	70-130	%Rec	5	4/12/2018 12:12:23 PM	S50506

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 7 of 12
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: **1804630**

13-Apr-18

Client: APEX TITAN
Project: Baca GC A 1A CH

Sample ID MB-37569 SampType: mblk TestCode: EPA Method 300.0: Anions

Client ID: PBS Batch ID: 37569 RunNo: 50515

Prep Date: 4/12/2018 Analysis Date: 4/12/2018 SeqNo: 1638842 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride ND 1.5

Sample ID LCS-37569 SampType: Ics TestCode: EPA Method 300.0: Anions

Client ID: LCSS Batch ID: 37569 RunNo: 50515

Prep Date: 4/12/2018 Analysis Date: 4/12/2018 SeqNo: 1638843 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 15 1.5 15.00 0 99.4 90 110

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

Page 8 of 12

P Sample pH Not In Range

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#:

1804630

13-Apr-18

Client: APEX TITAN
Project: Baca GC A 1A CH

Sample ID LCS-37536 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: LCSS Batch ID: 37536 RunNo: 50494 Prep Date: 4/11/2018 Analysis Date: 4/12/2018 SegNo: 1637376 Units: %Rec Analyte Result POI SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Surr: DNOP 4.2 5.000 83.5 70 130

Sample ID MB-37536 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: Batch ID: 37536 RunNo: 50494 Prep Date: 4/11/2018 Analysis Date: 4/12/2018 SeqNo: 1637377 Units: %Rec Analyte Result SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Surr: DNOP 9.4 10.00 94.1 70 130

Sample ID LCS-37568 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: LCSS Batch ID: 37568 RunNo: 50494 Prep Date: 4/12/2018 Analysis Date: 4/12/2018 SeqNo: 1637385 Units: mg/Kg SPK value SPK Ref Val Analyte Result PQL %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 47 50.00 10 94.2 70 130 Surr: DNOP 4.2 5.000 85.0 70 130

Sample ID MB-37568 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: PBS Batch ID: 37568 RunNo: 50494 Prep Date: 4/12/2018 Analysis Date: 4/12/2018 SeqNo: 1637386 Units: mg/Kg SPK value SPK Ref Val Analyte Result PQL %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) ND 10 ND Motor Oil Range Organics (MRO) 50

Surr: DNOP 9.3 10.00 93.4 70 130

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

Page 9 of 12

P Sample pH Not In Range

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1804630**

13-Apr-18

Client: APEX TITAN
Project: Baca GC A 1A CH

Project:	Baca GC	A IA CH											
Sample ID	100ng lcs	SampT	ype: LC	S4	Test	Code: EF	A Method	8260B: Volat	iles Short	List			
Client ID:	BatchQC	Batch	ID: \$5	0506	R	tunNo: 50	0506						
Prep Date:		Analysis D	ate: 4/	12/2018	S	eqNo: 10	637632	Units: mg/Kg					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene		1.1	0.025	1.000	0	113	80	120					
Toluene		1.1	0.050	1.000	0	107	80	120					
Ethylbenzene		1.1	0.050	1.000	0	112	80	120					
Xylenes, Total		3.3	0.10	3.000	0	109	80	120					
Surr: 4-Brom	nofluorobenzene	0.46		0.5000		91.8	70	130					
Surr: Toluen	e-d8	0.50		0.5000		99.9	70	130					
Sample ID	rb	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	8260B: Volat	tiles Short	List			
Client ID:	PBS	Batch	ID: S5	0506	F	RunNo: 50	0506						
Prep Date:		Analysis D	ate: 4/	12/2018	S	SeqNo: 1	637639	Units: mg/K	(g				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene		ND	0.025										
Toluene		ND	0.050										
Ethylbenzene		ND	0.050										
Xylenes, Total		ND	0.10										
Surr: 4-Bron	nofluorobenzene	0.51		0.5000		102	70	130					
Surr: Toluen	ie-d8	0.47		0.5000		94.8	70	130					
Sample ID	1804630-003ams	SampT	ype: MS	64	Tes	tCode: El	PA Method	8260B: Vola	tiles Short	List			
Client ID:	S-5	Batch	ID: S5	0506	F	RunNo: 5	0506						
Prep Date:		Analysis D	ate: 4/	12/2018	8	SeqNo: 1	638834	Units: mg/k	(g				
Analyte		Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene		4.2	0.093	3.701	0	112	80	120					
Toluene		4.0	0.19	3.701	0.03227	106	80	120					
Ethylbenzene		4.2	0.19	3.701	0.02487	112	80	120					
Xylenes, Total		12	0.37	11.10	0.2217	110	80	120					
	nofluorobenzene	1.7		1.851		93.7	70	130					
Surr: Toluer	ne-do	1.9		1.851		101	70	130					
Sample ID	1804630-003amsc	I SampT	ype: MS	SD4	Tes	tCode: El	PA Method	8260B: Vola	tiles Short	List			
Client ID:	S-5	Batch	ID: S5	0506	F	RunNo: 5	0506						
Prep Date:		Analysis D	ate: 4/	12/2018	5	SeqNo: 1	638835	Units: mg/k	nits: mg/Kg				
Analyte		Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene		4.2	0.093	3.701	0	114	80	120	1.39	0			
Toluene		3.8	0.19	3.701	0.03227	102	80	120	4.27	0			
Ethylbenzene		3.9	0.19	3.701	0.02487	105	80	120	6.24	0			
Xylenes, Total		11	0.37	11.10	0.2217	101	80	120	8.26	0			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

Page 10 of 12

P Sample pH Not In Range

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: 1804630

13-Apr-18

Client: APEX TITAN
Project: Baca GC A 1A CH

Sample ID 1804630-003ar	4630-003amsd SampType: MSD4 TestCode: EPA Method 8260B: Vol							tiles Short	List	
Client ID: S-5	Batcl	n ID: \$5	0506	R	RunNo: 5	0506				
Prep Date:	ep Date: Analysis Date: 4/12/2018 SeqNo: 1638835 Units: mg/Kg									
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Bromofluorobenzene	1.6		1.851		86.7	70	130	0	0	
Surr: Toluene-d8	1.8		1 851		94.8	70	130	0	0	

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 11 of 12

Hall Environmental Analysis Laboratory, Inc.

WO#: 1804630

13-Apr-18

Client:	APEX TITAN
Project:	Baca GC A 1A CH

Project:	Baca GC	A 1A CH									
Sample ID 2.5	iug gro lcs	SampTy	pe: LC	S	Test	tCode: E	PA Method	8015D Mod:	Gasoline I	Range	
Client ID: LC	ss	Batch	D: M 5	0506	R	RunNo: 5					
Prep Date:		Analysis Da	te: 4/	12/2018	S	SeqNo: 1	637614	Units: mg/l	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Or	rganics (GRO)	27	5.0	25.00	0	110	70	130			
Surr: BFB		500		500.0		100	70	130			
Sample ID rb		SampTy	pe: ME	BLK	Tes	tCode: E	PA Method	8015D Mod:	Gasoline	Range	
Client ID: PB	BS	Batch	ID: M 5	0506	F	RunNo: 5	0506				
Prep Date:		Analysis Da	te: 4/	12/2018	S	SeqNo: 1	637615	Units: mg/l	⟨g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Or	rganics (GRO)	ND	5.0								
Surr: BFB		510		500.0		102	70	130			
Sample ID 180	04630-002ams	SampTy	pe: MS	3	Tes	tCode: E	PA Method	8015D Mod:	Gasoline	Range	
Client ID: S-4	4	Batch	ID: M5	50506	F	RunNo: 5	0506				
Prep Date:		Analysis Da	te: 4/	12/2018	8	SeqNo: 1	638822	Units: mg/l	⟨ g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Or	rganics (GRO)	130	24	120.0	0	112	64.7	142			
Surr: BFB		2300		2399		97.3	70	130			
Sample ID 18	04630-002amsd	SampTy	pe: MS	SD	Tes	tCode: E	PA Method	8015D Mod:	Gasoline	Range	
Client ID: S-4	4	Batch	ID: M5	50506	F	RunNo: 5	0506				
D D.4-		Analysis Da	te: 4/	12/2018	5	SeqNo: 1	638823	Units: mg/l	Кg		
Prep Date:											
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
	rganics (GRO)	Result 130	PQL 24	SPK value 120.0	SPK Ref Val	%REC 104	LowLimit 64.7	HighLimit 142	%RPD 6.75	RPDLimit 20	Qual

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Page 12 of 12

- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: APEX AZTEC	Work Order Number:	1804630		RcptNo:	1
Received By: Anne Thorne	4/12/2018 8:15:00 AM		anne Am	– ,	
Completed By: Anne Thorne	4/12/2018 8:54:52 AM		arne Ham		
Reviewed By:	4/12/14				
Chain of Custody					x ====================================
1. Is Chain of Custody complete?		Yes 🗹	No 🗌	Not Present	
2. How was the sample delivered?		Courier			
l on In					
Log In 3. Was an attempt made to cool the samples	3?	Yes 🗸	No 🗆	NA 🗆	
4. Were all samples received at a temperature	re of >0° C to 6.0°C	Yes 🗸	No 🗆	NA 🗆	
Sample(s) in proper container(s)?		Yes 🗸	No 🗆		
	*				
6. Sufficient sample volume for indicated test	(s)?	Yes 🗹	No 🗌		
7. Are samples (except VOA and ONG) proper	erly preserved?	Yes 🗸	No 🗆		
8. Was preservative added to bottles?		Yes	No 🗸	NA .	
9. VOA vials have zero headspace?		Yes	No 🗆	No VOA Vials	
10. Were any sample containers received broi	ken?	Yes	No 🗹	# of preserved	
**				bottles checked	
11. Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes 🗸	No 🗆	for pH: (<2 or	>12 unless noted)
12. Are matrices correctly identified on Chain of	of Custody?	Yes 🗸	No 🗆	Adjusted?	
13. Is it clear what analyses were requested?	•	Yes 🗹	No 🗌		
14. Were all holding times able to be met?		Yes 🗸	No 🗆	Checked by:	
(If no, notify customer for authorization.)				-	
Special Handling (if applicable)					
15. Was client notified of all discrepancies wit	h this order?	Yes	No 🗌	NA 🗹	
Person Notified:	Date	THE RESERVE OF THE PARTY OF THE		(2)	
By Whom:	Via:	eMail P	hone Fax	_ In Person	
Regarding:				AND A THE STATE OF	
Client Instructions:	HE MISSOR MERCHANISTON OF THE PROPERTY OF THE				
16. Additional remarks: CUS+e	odu Seals 1	ntact	on Sa	1 Jars/A	~ U4/12/18
17. Cooler Information				/	•
		eal Date	Signed By		
2 1.3 Good Y	es	L			

																				CHAI	N OF	CUST	ODY R	ECORD
,							Hall	Env	mn	mon	tal			AN	ALY	SIS			//			/	use only Date:	
4						Laboratory:						my		RE	QUE	STI	ED / W		//			/		
A	PEX					Address:											Slass			//	//		5-LF.	
	e Locatio																10	/ /	/ /	////	/ /		received (C	
			10	Siir	te A	_Albingu	7	AIF	eer	nai	n						\ \frac{1}{2}	/ /	//	//		1 2	2 3	4 5
	ztec/N					Phone:						5-				_/	7 /	//	/ /	/ /		Page.		f_/
	ect Mana				ners	PO/SO#: _										TE	\$ /						'	'
Samp	er's Name					Sampler's Signa									Í	7 5	95	/ /	//	' / /	/			
R	unee	Deech	11/9	f		Buch	W	1							BIEV	1	Chandes they was	/ /	/ /					
Proj. N	lo.		Proje	ect Na	ame				No/Ty	pe of C	Contair	ners			M	A	14		/ /					
72	25046	112424	Bo	aca	GC A#	1A CH	,								/	17	9/	//		/ /				
Matrix	Date	Time	CoEp	Grab	Identifying Ma	arks of Sample(s)	Start	End	VOA	A/G	250 ml	Glass	P/0		/ ,		//	/ /	//		Lab	Sample II) (Lab Use	Only)
S	4/11/18	930	X		5-	3						1		X	7	1						ROH	46	0-01
S	4/11/18	940	X		S-	4						1		X	X	4				04/12		AT	-	202
S	4/11/18		X		S-	5) -		X	X	+								003
S	4/11/18	1000	X		5-	6						1.		X	X	X.								ay
S	4 11/18	1010	X		S-	7						1.		X	X	X							٠	205
5	4/11/18	1020	L			-8						1.		X	X	X							-	200
~																								
						× × × × × × × × × × × × × × × × × × ×																		
						MAS	_																	
										_									1					
	round time	□ Nor		<u></u> 2	25% Rush		100%			M	30	AY				_								
Reting	titshed by	(Signature)		C		Time: Receiv	ed by:	(Signa	(ure)	te	1	Date //i/	18	13	ime:	- 1	NOTES:	PM-	Ton	n Long	\			
Reling	uished by ((Signature)	5	L	Plate!	Time: Receiv	ed by:	(Signa	ture)	1		Date 4//	- 1		ime:	-		Pay 1	cey-	n Long) 223	55		
Reling	uished by (\sim				Time: Receiv	ed by:	(Signa	ture)			Date			ime:					- N3			Mnc	
Rélina	uished by ((Signature)			Date:	Time: Recelv	ed by:	(Signa	ture)	-	+	Date		Т	ime:	۱,	SAME						Cod	1000
																		-					00	كالمال
Matrix Contain		V - Wastewa A - 40 ml via			W - Water A/G - Amber / C	S - Soil SD - Sol or Glass 1 Liter	lid L	- Liquid 250 ml -	Glass w	- Air Ba	ag outh	C·	Char	coal to	ube r othe		L - sludge	0 - 0	Dil					

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

April 17, 2018

Kyle Summers APEX TITAN 606 S. Rio Grande Unit A Aztec, NM 87410

TEL: (903) 821-5603

FAX

RE: Baca GC A 1A CH OrderNo.: 1804745

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 2 sample(s) on 4/14/2018 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1804745

Date Reported: 4/17/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: APEX TITAN Client Sample ID: S-9

 Project:
 Baca GC A 1A CH
 Collection Date: 4/13/2018 10:30:00 AM

 Lab ID:
 1804745-001
 Matrix: MEOH (SOIL)
 Received Date: 4/14/2018 11:30:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	MRA
Chloride	ND	30	mg/Kg	20	4/16/2018 10:46:06 AM	37613
EPA METHOD 8015D MOD: GASOLINE	RANGE				Analyst	AG
Gasoline Range Organics (GRO)	ND	3.1	mg/Kg	1	4/16/2018 11:51:55 AM	37595
Surr: BFB	113	70-130	%Rec	1	4/16/2018 11:51:55 AM	37595
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS	;			Analyst	TOM
Diesel Range Organics (DRO)	ND	9.0	mg/Kg	1	4/16/2018 10:02:57 AM	37610
Motor Oil Range Organics (MRO)	ND	45	mg/Kg	1	4/16/2018 10:02:57 AM	37610
Surr: DNOP	83.4	70-130	%Rec	1	4/16/2018 10:02:57 AM	37610
EPA METHOD 8260B: VOLATILES SHO	RT LIST				Analyst	AG
Benzene	ND	0.015	mg/Kg	1	4/16/2018 11:51:55 AM	37595
Toluene	ND	0.031	mg/Kg	1	4/16/2018 11:51:55 AM	37595
Ethylbenzene	ND	0.031	mg/Kg	1	4/16/2018 11:51:55 AM	37595
Xylenes, Total	ND	0.061	mg/Kg	1	4/16/2018 11:51:55 AM	37595
Surr: 4-Bromofluorobenzene	114	70-130	%Rec	1	4/16/2018 11:51:55 AM	37595
Surr: Toluene-d8	88.8	70-130	%Rec	1	4/16/2018 11:51:55 AM	37595

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1804745

Date Reported: 4/17/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: APEX TITAN

Project: Baca GC A 1A CH

Lab ID: 1804745-002

Client Sample ID: S-10

Collection Date: 4/13/2018 10:40:00 AM

Matrix: MEOH (SOIL) Received Date: 4/14/2018 11:30:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	MRA
Chloride	310	30	mg/Kg	20	4/16/2018 10:58:31 AM	37613
EPA METHOD 8015D MOD: GASOLIN	IE RANGE				Analyst	: AG
Gasoline Range Organics (GRO)	14	4.5	mg/Kg	1	4/16/2018 12:14:59 PM	37595
Surr: BFB	105	70-130	%Rec	1	4/16/2018 12:14:59 PM	37595
EPA METHOD 8015M/D: DIESEL RAM	IGE ORGANICS				Analyst	: TOM
Diesel Range Organics (DRO)	ND	9.3	mg/Kg	1	4/16/2018 10:25:01 AM	37610
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	4/16/2018 10:25:01 AM	37610
Surr: DNOP	80.6	70-130	%Rec	1	4/16/2018 10:25:01 AM	37610
EPA METHOD 8260B: VOLATILES SH	HORT LIST				Analyst	: AG
Benzene	ND	0.022	mg/Kg	1	4/16/2018 12:14:59 PM	37595
Toluene	0.21	0.045	mg/Kg	1	4/16/2018 12:14:59 PM	37595
Ethylbenzene	0.086	0.045	mg/Kg	1	4/16/2018 12:14:59 PM	37595
Xylenes, Total	1.1	0.089	mg/Kg	1	4/16/2018 12:14:59 PM	37595
Surr: 4-Bromofluorobenzene	106	70-130	%Rec	1	4/16/2018 12:14:59 PM	37595
Surr: Toluene-d8	86.3	70-130	%Rec	1	4/16/2018 12:14:59 PM	37595

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: 1804745

17-Apr-18

Client: APEX TITAN
Project: Baca GC A 1A CH

Sample ID MB-37613 SampType: mblk TestCode: EPA Method 300.0: Anions

Client ID: PBS Batch ID: 37613 RunNo: 50586

Prep Date: 4/16/2018 Analysis Date: 4/16/2018 SeqNo: 1641514 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride ND 1.5

Sample ID LCS-37613 SampType: Ics TestCode: EPA Method 300.0: Anions

Client ID: LCSS Batch ID: 37613 RunNo: 50586

Prep Date: 4/16/2018 Analysis Date: 4/16/2018 SeqNo: 1641515 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 14 1.5 15.00 0 93.7 90 110

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 4 of 9

Hall Environmental Analysis Laboratory, Inc.

WO#: **1804745**

17-Apr-18

Client:	APEX TITAN
Project:	Baca GC A 1A CH

Project:	Baca GC A	A IA CH									
Sample ID LCS-	37610	SampT	ype: LC	S	Test	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: LCS	S	Batch	h ID: 37 0	610	R	RunNo: 5	0584				
Prep Date: 4/16	6/2018	Analysis D)ate: 4/	16/2018	S	SeqNo: 1	640700	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organic	s (DRO)	48	10	50.00	0	95.0	70	130			
Surr: DNOP		3.6		5.000		71.7	70	130			
Sample ID MB-3	37610	SampT	Гуре: МЕ	BLK	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: PBS		Batch	h ID: 37	610	F	RunNo: 5	0584				
Prep Date: 4/16	6/2018	Analysis D)ate: 4/	16/2018	S	SeqNo: 1	640701	Units: mg/l	⟨g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organic	cs (DRO)	ND	10								
Motor Oil Range Orga	anics (MRO)	ND	50								
Surr: DNOP		8.5		10.00		85.4	70	130			
Sample ID 1804	745-001AMS	SampT	Гуре: М	3	Tes	tCode: E	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: S-9		Batch	h ID: 37	610	F	RunNo: 5	0584				
Prep Date: 4/16	6/2018	Analysis D)ate: 4/	16/2018	S	SeqNo: 1	640863	Units: mg/l	K g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organic	cs (DRO)	43	9.4	46.82	0	91.0	55.8	125			
Surr: DNOP		4.2		4.682		89.8	70	130			
Sample ID 1804	745-001AMSD	Sampl	Гуре: М	SD	Tes	tCode: E	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: S-9		Batcl	h ID: 37	610	F	RunNo: 5	0584				
Prep Date: 4/16	6/2018	Analysis D	Date: 4/	16/2018	5	SeqNo: 1	640864	Units: mg/l	≺g		
								Eliabet Sauta	***	DDD11 11	0 1
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Analyte Diesel Range Organic	cs (DRO)	Result 45	PQL 9.8	SPK value 48.97	SPK Ref Val	%REC 92.9	LowLimit 55.8	HighLimit 125	6.52	RPDLimit 20	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 5 of 9

Hall Environmental Analysis Laboratory, Inc.

WO#: **1804745**

17-Apr-18

Client: APEX TITAN

Project: Baca GC A 1A CH

Project: Baca GC										
Sample ID Ics-37595	SampT	ype: LC	S4	Tes	tCode: El	PA Method	8260B: Volat	iles Short	List	
Client ID: BatchQC	Batch	n ID: 37	595	R	RunNo: 5	0589				
Prep Date: 4/13/2018	Analysis D	ate: 4/	16/2018	S	SeqNo: 1	640790	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.85	0.025	1.000	0	85.4	80	120			
Toluene	0.92	0.050	1.000	0	91.6	80	120			
Ethylbenzene	1.0	0.050	1.000	0	101	80	120			
Xylenes, Total	3.0	0.10	3.000	0	100	80	120			
Surr: 4-Bromofluorobenzene	0.48		0.5000		96.3	70	130			
Surr: Toluene-d8	0.46		0.5000		91.9	70	130			
	0.40		0.3000		91.9	70	130			
Sample ID mb-37595	NAC (1970)	ype: ME		Tes			8260B: Volat	tiles Short	List	
	SampT	ype: ME	BLK			PA Method		tiles Short	List	
Sample ID mb-37595	SampT	n ID: 37	3LK 595	F	tCode: EI	PA Method 0589			List	
Sample ID mb-37595 Client ID: PBS	SampT Batch	n ID: 37	3LK 595 16/2018	F	tCode: El RunNo: 5 SeqNo: 1	PA Method 0589	8260B: Vola		List RPDLimit	Qual
Sample ID mb-37595 Client ID: PBS Prep Date: 4/13/2018	SampT Batch Analysis D	n ID: 37	3LK 595 16/2018	F	tCode: El RunNo: 5 SeqNo: 1	PA Method 0589 640791	8260B: Volat	(g		Qual
Sample ID mb-37595 Client ID: PBS Prep Date: 4/13/2018 Analyte	SampT Batcl Analysis D Result	n ID: 37 Date: 4/	3LK 595 16/2018	F	tCode: El RunNo: 5 SeqNo: 1	PA Method 0589 640791	8260B: Volat	(g		Qual
Sample ID mb-37595 Client ID: PBS Prep Date: 4/13/2018 Analyte Benzene	SampT Batch Analysis D Result ND	PQL 0.025	3LK 595 16/2018	F	tCode: El RunNo: 5 SeqNo: 1	PA Method 0589 640791	8260B: Volat	(g		Qual
Sample ID mb-37595 Client ID: PBS Prep Date: 4/13/2018 Analyte Benzene Toluene	SampT Batcl Analysis D Result ND ND	PQL 0.025 0.050	3LK 595 16/2018	F	tCode: El RunNo: 5 SeqNo: 1	PA Method 0589 640791	8260B: Volat	(g		Qual
Sample ID mb-37595 Client ID: PBS Prep Date: 4/13/2018 Analyte Benzene Toluene Ethylbenzene	SampT Batcl Analysis E Result ND ND	PQL 0.025 0.050	3LK 595 16/2018	F	tCode: El RunNo: 5 SeqNo: 1	PA Method 0589 640791	8260B: Volat	(g		Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 6 of 9

Hall Environmental Analysis Laboratory, Inc.

WO#: **1804745**

17-Apr-18

Client: APEX TITAN
Project: Baca GC A 1A CH

Sample ID Ics-37595	SampT	ype: LC	S	TestCode: EPA Method 8015D Mod: Gasoline Range						
Client ID: LCSS	Batch	Batch ID: 37595 RunNo: 50589								
Prep Date: 4/13/2018	Analysis D	ate: 4/	16/2018	S	eqNo: 1	640768	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	25	5.0	25.00	0	98.8	70	130			
Surr: BFB	500		500.0		100	70	130			

Sample ID mb-37595	SampT	ype: ME	BLK	Test	Code: El	PA Method	8015D Mod:	Range		
Client ID: PBS	Batch	Batch ID: 37595 RunNo: 50589								
Prep Date: 4/13/2018	Analysis D	ate: 4/	16/2018	S	640769	Units: mg/K	g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	5.0								
Surr: BFB	560		500.0		112	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 7 of 9

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: APEX AZTEC	Work Order Nu	mber: 1804745		RcptNo:	1
Received By: Ashley Gallegos	4/14/2018 11:30:	00 AM	A		
Completed By: Ashley Gallegos	4/14/2018 12:17:	50 PM	A		
Reviewed By:	ellicities	Labeled	by:	A-04116	118
Chain of Custody 1. Is Chain of Custody complete?		Yes 🗹	No 🗆	Not Present	
2. How was the sample delivered?		Courier			
2.					
Log In 3. Was an attempt made to cool the samples	?	Yes 🗹	No 🗌	NA 🗆	
4. Were all samples received at a temperature	e of >0° C to 6.0°C	Yes 🗹	No 🗌	NA 🗆	
5. Sample(s) in proper container(s)?		Yes 🗹	No 🗌		
6. Sufficient sample volume for indicated test	(s)?	Yes 🗸	No 🗌		
7. Are samples (except VOA and ONG) prope	rly preserved?	Yes 🗹	No 🗌		
8. Was preservative added to bottles?		Yes	No 🗹	NA 🗆	
9. VOA vials have zero headspace?		Yes 🗆	No 🗆	No VOA Vials	
10. Were any sample containers received broken	en?	Yes 🗆	No 🗹	# of	
11. Does paperwork match bottle labels?		Yes ✓	No 🗆	# of preserved bottles checked for pH:	*
(Note discrepancies on chain of custody)					>12 unless noted)
12. Are matrices correctly identified on Chain of	f Custody?	Yes 🗹	No 📙	Adjusted?	
13. Is it clear what analyses were requested?		Yes 🗹	No 📙	Checked by:	4
14. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🗹	No LJ	Cliecked by.	
Special Handling (if applicable)					
15. Was client notified of all discrepancies with	this order?	Yes	No 🗆	NA 🗹	
Person Notified:	Da	te i	Marie Committee of the		
By Whom:	Via		one 🔲 Fax	n Person	4
Regarding:	Maria 1911 - Carlos 1923 - Paris 1923 - Paris 1924 - Pari	edata di indicessa (T. M.), sono care di Menorino de Peni de ser con ser	CALLEGE OF STREET, STR		
Client Instructions:					
16. Additional remarks: Cushudy	Seals into	on Su	1 Jans	A=0411617	
	Seal Intact Seal No	Seal Date S	ligned By		

					CHAIN OF CU	JSTODY RECORD
	Hall Dh	ni ronment	al ANAL			ab use only
l abores	atory: Analy	or Caborat	REQU	UESTED /	′ / / / / / [[]	Due Date:
APEX Address	ss: 4901 Hay	NY OC ME	= 7	09		Temp. of coolers
	ss: 4401 ftal	NAIS IVE	~	MRO		remp. of coolers when received (C°):
Office Location	buquerque, ct: A.Fr	/VM 8+10	07	[2]		2 3 4 5
1006 S Rin Grande, Suite A Contact						
Aztec, NM 87410 Phone:	: 505-34			trad Toad	/ / / P	ageof
)#:See	endes		B. C. K.		
/1 (s Signature			13 K		
Rance Deechilly This	durill	7	Å	THE FEED DI	' / / / /	
Proj. No. Project Marne	111	No/Type of Container	rs	TRIP (EN)		
725040112424 Baca GC A#			/			
Matrix Date Time C G r Identifying Marks of Samp	Start Depth End Depth	VOA 1 Lt. 250 ml Glass	Jar P/O		/ / / Lab Samp	ple ID (Lab Use Only)
S 413/18 1030 X 3-9			1 X X	X	18047	145-001
S 4/13/18/1040 X S-10			1 1 1	X		-002
			1			
1 TAX	5					
Turn around time Normal 25% Rush 350% Rush	h 5/100% Rush	SAME	DAY			
Relinquished by (Signature) Date: Time: B	Beceived by: (Signat	ure) Di	ate: Time	: NOTES:	DM - Tom Lon	<u></u>
Pelinguished by (Signature), Date: Time: R	Received by (Signat	ure) D	13/18 144°	9	PM - Tom Lon Pay Key - CM 2 Non AFE - N3(7
What 1/00/2 19/15/19/19	A	04/14	H18 1130	j l	Pay Key - CM a	2333
Relinquished by (Signature)	received by: (Signat	ure) Da	ate: Time	SAMEDAY	Non AFE - N3(0112
Relinquished by (Signature) Date: Time: R	Received by: (Signat	ure) Di	ate: Time			Ama S
9						-COC Seal
Watrlx WW - Wastewater W - Water S - Soil St Container VOA - 40 ml vial A/G - Amber / Or Glass 1 Lit			C - Charcoal tube P/O - Plastic or of		O - Oil	on Jas

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

April 17, 2018

Kyle Summers
APEX TITAN
606 S. Rio Grande Unit A
Aztec, NM 87410
TEL: (903) 821-5603

FAX

RE: Baca GC A 1A CH OrderNo.: 1804744

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 1 sample(s) on 4/14/2018 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 4/17/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: APEX TITAN Client Sample ID: W-1

 Project:
 Baca GC A 1A CH
 Collection Date: 4/13/2018 11:30:00 AM

 Lab ID:
 1804744-001
 Matrix: AQUEOUS
 Received Date: 4/14/2018 11:30:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES						Analyst:	DJF
Benzene	27	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
Toluene	10	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
Ethylbenzene	8.2	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
Methyl tert-butyl ether (MTBE)	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
1,2,4-Trimethylbenzene	17	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
1,3,5-Trimethylbenzene	7.8	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
1,2-Dichloroethane (EDC)	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
1,2-Dibromoethane (EDB)	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
Naphthalene	ND	4.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
1-Methylnaphthalene	ND	8.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
2-Methylnaphthalene	ND	8.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
Acetone	ND	20	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
Bromobenzene	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
Bromodichloromethane	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
Bromoform	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
Bromomethane	ND	6.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
2-Butanone	ND	20	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
Carbon disulfide	ND	20	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
Carbon Tetrachloride	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
Chlorobenzene	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
Chloroethane	ND	4.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
Chloroform	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
Chloromethane	ND	6.0	D	µg/L	2	4/16/2018 11:11:51 AM	A5059
2-Chlorotoluene	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
4-Chlorotoluene	ND	2.0	D	µg/L	2	4/16/2018 11:11:51 AM	A5059
cis-1,2-DCE	ND	2.0	D	µg/L	2	4/16/2018 11:11:51 AM	A5059
cis-1,3-Dichloropropene	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
1,2-Dibromo-3-chloropropane	ND	4.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
Dibromochloromethane	ND	2.0	D	µg/L	2	4/16/2018 11:11:51 AM	A5059
Dibromomethane	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
1,2-Dichlorobenzene	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
1,3-Dichlorobenzene	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
1,4-Dichlorobenzene	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
Dichlorodifluoromethane	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
1,1-Dichloroethane	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
1,1-Dichloroethene	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
1,2-Dichloropropane	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
1,3-Dichloropropane	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
2,2-Dichloropropane	ND	4.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 5
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order **1804744**Date Reported: **4/17/2018**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: APEX TITAN

Client Sample ID: W-1

 Project:
 Baca GC A 1A CH
 Collection Date: 4/13/2018 11:30:00 AM

 Lab ID:
 1804744-001
 Matrix: AQUEOUS
 Received Date: 4/14/2018 11:30:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES						Analyst	DJF
1,1-Dichloropropene	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
Hexachlorobutadiene	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
2-Hexanone	ND	20	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
Isopropylbenzene	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
4-Isopropyltoluene	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
4-Methyl-2-pentanone	ND	20	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
Methylene Chloride	ND	6.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
n-Butylbenzene	ND	6.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
n-Propylbenzene	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
sec-Butylbenzene	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
Styrene	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
tert-Butylbenzene	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
1,1,1,2-Tetrachloroethane	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
1,1,2,2-Tetrachloroethane	ND	4.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
Tetrachloroethene (PCE)	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
trans-1,2-DCE	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
trans-1,3-Dichloropropene	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
1,2,3-Trichlorobenzene	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
1,2,4-Trichlorobenzene	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
1,1,1-Trichloroethane	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
1,1,2-Trichloroethane	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
Trichloroethene (TCE)	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
Trichlorofluoromethane	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
1,2,3-Trichloropropane	ND	4.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
Vinyl chloride	ND	2.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
Xylenes, Total	100	3.0	D	μg/L	2	4/16/2018 11:11:51 AM	A5059
Surr: 1,2-Dichloroethane-d4	100	70-130	D	%Rec	2	4/16/2018 11:11:51 AM	A5059
Surr: 4-Bromofluorobenzene	105	70-130	D	%Rec	2	4/16/2018 11:11:51 AM	A5059
Surr: Dibromofluoromethane	100	70-130	D	%Rec	2	4/16/2018 11:11:51 AM	A5059
Surr: Toluene-d8	93.5	70-130	D	%Rec	2	4/16/2018 11:11:51 AM	A5059

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 5
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: **1804744**

17-Apr-18

Client: APEX TITAN
Project: Baca GC A 1A CH

Sample ID rb	SampT	ype: MBLK		Test	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	ID: A5059	1	R	lunNo: 5	0591				
Prep Date:		ate: 4/16/			eqNo: 1		Units: µg/L			
riep bate.	Allalysis D					040774	Office. pg/L			
Analyte	Result		PK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
2,2-Didiliolopiopalie	NU	2.0								

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

I. I. D.

Page 3 of 5

P Sample pH Not In Range

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#:

1804744

17-Apr-18

Client:

APEX TITAN

Project: Baca GC A 1A CH

Sample ID rb	SampTy	pe: MBLK	Tes	stCode: E	PA Method	od 8260B: VOLATILES			
Client ID: PBW	Batch	ID: A50591	F	RunNo: 5	0591				
Prep Date:	Analysis Da	ite: 4/16/2018	:	SeqNo: 1	640774	Units: µg/L			
Analyte	Result	PQL SPK value	e SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	1.0	OF ICTOR Val	70TKLO	LOWLIIIIC	riigiiLiiiii	701 C	THE DEITHE	Quai
Hexachlorobutadiene	ND	1.0							
2-Hexanone	ND	10							
Isopropylbenzene	ND	1.0							
4-Isopropyltoluene	ND	1.0							
4-Methyl-2-pentanone	ND	10							
Methylene Chloride	ND	3.0							
n-Butylbenzene	ND	3.0							
n-Propylbenzene	ND	1.0							
sec-Butylbenzene	ND	1.0							
Styrene	ND	1.0							
tert-Butylbenzene	ND	1.0							
1,1,1,2-Tetrachloroethane	ND	1.0							
1,1,2,2-Tetrachloroethane	ND	2.0							
Tetrachloroethene (PCE)	ND	1.0							
trans-1,2-DCE	ND	1.0							
trans-1,3-Dichloropropene	ND	1.0							
1,2,3-Trichlorobenzene	ND	1.0							
1,2,4-Trichlorobenzene	ND	1.0							
1,1,1-Trichloroethane	ND	1.0							
1,1,2-Trichloroethane	ND	1.0							
Trichloroethene (TCE)	ND	1.0							
Trichlorofluoromethane	ND	1.0							
1,2,3-Trichloropropane	ND	2.0							
Vinyl chloride	ND	1.0							
Xylenes, Total	ND	1.5							
Surr: 1,2-Dichloroethane-d4	9.5	10.00		95.1	70	130			
Surr: 4-Bromofluorobenzene	11	10.00		108	70	130			
Surr: Dibromofluoromethane	10	10.00		100	70	130			
Surr: Toluene-d8	9.4	10.00	0	93.7	70	130			

Sample ID 100ng Ics	SampT	ype: LC	s	Tes	TestCode: EPA Method 8260B: VOLATILES						
Client ID: LCSW	Batch	ID: A5	0591	R	0591						
Prep Date:	Analysis D	ate: 4/	16/2018	SeqNo: 1640776			Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	21	1.0	20.00	0	104	70	130				
Toluene	18	1.0	20.00	0	91.6	70	130				
Chlorobenzene	19	1.0	20.00	0	94.0	70	130				

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

Page 4 of 5

P Sample pH Not In Range

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#:

1804744

17-Apr-18

Client:

APEX TITAN

Project:

Baca GC A 1A CH

Sample ID 100ng Ics	SampT	ype: LC	S	TestCode: EPA Method 8260B: VOLATILES						
Client ID: LCSW	Batch	ID: A5	0591	R	unNo: 50	0591				
Prep Date:	Analysis D	Analysis Date: 4/16/2018 SeqNo: 1640776				640776	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloroethene	20	1.0	20.00	0	99.2	70	130			
Trichloroethene (TCE)	17	1.0	20.00	0	87.5	70	130			
Surr: 1,2-Dichloroethane-d4	9.5		10.00		94.9	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		107	70	130			
Surr: Dibromofluoromethane	9.4		10.00		93.9	70	130			
Surr: Toluene-d8	9.2		10.00		92.2	70	130			

	SampType: MS TestCode: EPA Method 8260B; VOLATILES									
Sample ID 1804744-001a ms	SampT	ype: MS	6	Tes	tCode: El					
Client ID: W-1	Batch	ID: A5	0591	F	RunNo: 5	0591				
Prep Date:	Analysis Date: 4/16/2018			8	SeqNo: 1	640780	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	70	2.0	40.00	27.40	106	60.5	137			D
Toluene	48	2.0	40.00	10.47	94.5	70	130			D
Chlorobenzene	39	2.0	40.00	0	96.6	70	130			D
1,1-Dichloroethene	39	2.0	40.00	0	97.9	70	130			D
Trichloroethene (TCE)	35	2.0	40.00	0	88.5	70	130			D
Surr: 1,2-Dichloroethane-d4	20		20.00		98.1	70	130			D
Surr: 4-Bromofluorobenzene	22		20.00		108	70	130			D
Surr: Dibromofluoromethane	20		20.00		98.7	70	130			D
Surr: Toluene-d8	19		20.00		93.6	70	130			D

Sample ID 1804744-001a msc	SampT	ype: MS	SD.	Tes	Code: El					
Client ID: W-1	Batch	ID: A5	0591	F	RunNo: 50591					
Prep Date:	Analysis D	Analysis Date: 4/16/2018			eqNo: 1	640781	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	67	2.0	40.00	27.40	99.8	60.5	137	3.76	20	D
Toluene	46	2.0	40.00	10.47	89.2	70	130	4.46	20	D
Chlorobenzene	38	2.0	40.00	0	94.0	70	130	2.81	20	D
1,1-Dichloroethene	37	2.0	40.00	0	92.5	70	130	5.73	20	D
Trichloroethene (TCE)	35	2.0	40.00	0	86.4	70	130	2.34	20	D
Surr: 1,2-Dichloroethane-d4	19		20.00		97.4	70	130	0	0	D
Surr: 4-Bromofluorobenzene	21		20.00		107	70	130	0	0	D
Surr: Dibromofluoromethane	20		20.00		97.5	70	130	0	0	D
Surr: Toluene-d8	19		20.00		93.0	70	130	0	0	D

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 5 of 5

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: APEX AZTI	EC Work Order I	Number: 1804744		RcptNo:	1
Received By: Ashley Ga Completed By: Ashley Ga	llegos 4/14/2018 12:1	4:08 PM	A		
Reviewed By:	e upula	Labeled	by:	AT 04/16/17	
Chain of Custody 1. Is Chain of Custody comp 2. How was the sample deliv		Yes ✓ <u>Courier</u>	No 🗀	Not Present 🗌	
Log In 3. Was an attempt made to o	cool the samples?	Yes 🗸	No 🗆	NA 🗆	
4. Were all samples received	at a temperature of >0° C to 6.0°C	Yes 🗸	No 🗆	NA 🗆	
5. Sample(s) in proper conta	iner(s)?	Yes 🗹	No 🗆		
6. Sufficient sample volume f7. Are samples (except VOA8. Was preservative added to	and ONG) properly preserved?	Yes ✓ Yes ✓	No ☐ No ☐ No ☑	NA 🗀	*
VOA vials have zero head: Were any sample contain.		Yes 🗆	No ☐ No ☑	No VOA Vials	
11. Does paperwork match bo (Note discrepancies on ch. 12. Are matrices correctly ider 13. Is it clear what analyses w	itle labels? ain of custody) tifled on Chain of Custody?	Yes 🗹	No 🗆	# of preserved bottles checked for pH:(<2 or Adjusted?	>12 unless noted)
14. Were all holding times able (If no, notify customer for a	e to be met?	Yes 🗸	No 🗆	Checked by:	
Special Handling (if app	olicable)				
Person Notified: By Whom: Regarding:		Yes Date Via: eMail	No Phone Fax	NA ✓	
Client Instructions:	ustudy seals n	ntect on	UDA VIAL	V/ A5041161	\ \{
17. Cooler Information Cooler No Temp °C 1 1.7	Condition Seal Intact Seal Good Yes	No Seal Date	Signed By		

										(CHAIN OF CUSTODY RECORD
	t	tall E	nuiro	nne	nta/		ANALYSIS	1			Lab use only Due Date:
	Laboratory:	Ana	4515	Lab	orat	on	REQUEST	ED /		/ / /	
APEX	Address: _t		- 4			,			//	//	Temp. of coolers
Office Location	Albugu	ergul	INM	1 8	5710	9_			//	/ /	when received (C°): /-7
606 S. Rio Grande, Suite A	Contact:	A	Free	nan	,			7/			1 2 3 4 5
ArteCINM 87410	Phone: _S						7	7 / /		/ / /	Page 1 of)
Project Manager K.Summes	PO/SO#:						_/	//		//	/ /
							1 3	/ /	/ /	/ /	/ /
Ranee Deechilly	Sampler's Signa	ell)				83,60	///	/ /	///	/ /
Proj. No. Project Name			No/T	ype of (Containers		1 %	/ / /		/ / /	/
725040112424 Baca GC	AHIA C	#] //	//	//	//	/
	rks of Sample(s)	Start Depth End	Depth	A/G	250 ml Glass	P/O					Lab Sample ID (Lab Use Only)
W 4/B/8/180 W-			3				X				1804744-001
			-								
			+	-							
						+		-			
	TOPS		+	-		+					
			-					-			
				1							
		100% Rus ed by: (Si		SA	MEI	JA!		NOTES:			
M13/18 14	149 1/ 10	KA	110	Lb	4	te: 3/18	1445		Pr	M-TO	m long
Relinguished by (Signature) Date:	Time: Receive	by: (Sig	gnature)		Da 04	te: HIS	Time:		Pa	my Rey	m long - CM 22355
Relinquished by (Signature)		ed by: (Sig	nature)			te:	Timo:	SAME D	1	on AF	E- N36112
Relinquished by (Signature) Date:	īme: Receive	ed by: (Sig	gnature)		Da	te:	Time:	שטיווע			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
Matrix WW - Wastewater W - Water S Container VOA - 40 ml vial A/G - Amber / O	S - Soil SD - Solid Glass 1 Liter		quid A	- Air Ba			rcoal tube Stastic or other	SL - sludge	0 - 0	Oil	

ENVIRONMENTAL SITE INVESTIGATION / CLOSURE REPORT

Property:

Baca Gas Com A #1A CH NW 1/4, S28 T26N R10W San Juan County, New Mexico

October 12, 2018 Apex Project No. 725040112424

Prepared for:

Enterprise Field Services, LLC 614 Reilly Avenue Farmington, NM 87401 Attn: Mr. Thomas Long

Prepared by:

Ranee Deechilly Project Scientist

Kyle Summers, CPG

Branch Manager / Senior Geologist

TABLE OF CONTENTS

1.0	1.1 1.2	Site	Description	& Background
2.0	CLOS	SURE	CRITERIA.	1
3.0	SITE 3.1			Temporary Sample Well Installations
4.0	GROU 4.1 4.2 4.3 4.4	Gro Gro Gro	undwater Sa undwater La undwater Fl	IPLING3ampling Program3aboratory Analytical Program3ow Direction3ata Evaluation4
5.0	FIND	INGS	AND RECO	MMENDATIONS4
6.0	STAN	IDAF	RD OF CARE	, LIMITATIONS, AND RELIANCE5
LIST	OF AP	PENI	DICES	
Арре	endix A	(Fig	ures): Figure 1 Figure 2 Figure 3 Figure 4 Figure 5	Topographic Map Site Vicinity Map Site Map Groundwater Gradient Map (August 2018) Site Map with Groundwater Analytical Results
Арре	endix B	3 :	Soil Boring/Te	emporary Sampling Well Logs
Арре	endix C	(Tab	oles): Table 1 Table 2	Groundwater Analytical Summary Groundwater Elevations
Appe	ndix D	:	Laboratory Da	ata Sheets & rody Documentation

ENVIRONMENTAL SITE INVESTIGATION / CLOSURE REPORT

Baca Gas Com A #1A CH NW 1/4, S26 T29N R10W San Juan County, New Mexico

Apex Project No. 725040112424

1.0 INTRODUCTION

1.1 Site Description & Background

The Baca Gas Com A #1A CH release site, referred to hereinafter as the "Site", is located within the Enterprise Field Services, LLC (Enterprise) pipeline right-of-way (ROW) in the northwest (NW) ¼ of Section 26, Township 29 North, Range 10 West, in San Juan County, New Mexico (36.6977342N,107.8574196W). The Site is located on private land. The surrounding properties are private acreages, periodically interrupted by oil and gas production and gathering facilities, including the Enterprise natural gas gathering pipeline ROW which transects the area from approximately north to south.

On March 31, 2018, a release of natural gas was discovered at the Site. During April 2018, corrective action activities were implemented to repair the pipeline and to remediate petroleum hydrocarbon impact resulting from the release. During removal of petroleum hydrocarbon-affected soils, subsurface water was encountered at the base of the excavation. A water sample collected from the open excavation exhibited a benzene concentration above the applicable New Mexico Water Quality Control Commission (WQCC) Groundwater Quality Standard (GQS). Following soil remediation at the Site, the New Mexico Energy, Minerals and Natural Resources (EMNRD) Oil Conservation Division (OCD) requested a groundwater investigation to determine if groundwater is, in fact, adversely affected. Details of the corrective action pertaining to petroleum hydrocarbon-affected soils and the excavation water sample are provided in the *Corrective Action Report – Baca Gas Com A#1A CH* (Apex TITAN, INC. (Apex)) dated July 24,2018.

The Site location is depicted on **Figure 1** of **Appendix A** which was reproduced from a portion of a United States Geological Survey (USGS) 7.5-minute series topographic map. A **Site Vicinity Map**, created from an aerial photograph, is provided as **Figure 2**, a **Site Map** that depicts the soil boring/well locations is included as **Figure 3** (**Appendix A**) and a groundwater gradient map is included as **Figure 4** (**Appendix A**).

1.2 Project Objectives

The primary objectives of the environmental site investigation (ESI) was to evaluate the magnitude and extent of dissolved phase constituents of concern (COCs), if present, in the initial groundwater bearing unit at the Site.

2.0 CLOSURE CRITERIA

The Site is subject to regulatory oversight by the New Mexico EMNRD OCD. To address activities related to condensate releases (which were applicable at the time of this release and corrective action), the New Mexico EMNRD OCD utilized the *Guidelines for Remediation of Leaks, Spills and Releases* as guidance, in addition to the New Mexico EMNRD OCD rules in place at that time, specifically New Mexico Administrative Code (NMAC) 19.15.29 *Release Notification*. These guidance documents established investigation and abatement action requirements for sites

subject to reporting and/or corrective action. Additionally, the New Mexico EMNRD OCD utilizes the New Mexico WQCC GQSs (NMAC 20.6.2) to evaluate baseline groundwater conditions.

In accordance with the NMAC 20.6.2 *Groundwater and Surface Water Protection*, closure criteria for groundwater at the Site include:

- 10 micrograms per liter (μg/L) for benzene,
- 750 μg/L for ethylbenzene,
- 750 μg/L for toluene, and
- 620 μg/L for total xylenes.

Soil remediation and closure activities are detailed in the Corrective Action Report – Baca Gas Com A#1A CH (Apex) dated July 24,2018.

3.0 SITE INVESTIGATION

3.1 Soil Boring and Temporary Sample Well Installations

During August 2018, a hand auger was utilized to advance a total of five (5) soil borings (TSW-1 through TSW-5) in the immediate vicinity of the release to a maximum total depth of approximately 12 feet below grade surface (bgs) (approximately two (2) feet into the shallow aquifer).

The New Mexico ENMRD OCD did not require additional analytical soil samples as part of the ESI (the soil borings were located within the footprint of the backfilled soil remediation excavation). During completion of each soil boring a trained Apex professional documented the subsurface lithology and constructed a continuous profile of the soil column from the ground surface to the boring terminus. Soil samples from each boring location were visually inspected and classified in the field. Soil samples were observed to document soil lithology, color, moisture content, and visual and olfactory evidence of potential petroleum hydrocarbon impact. A field headspace analysis was conducted on each available soil sample interval by placing the portion of the sample designated for field screening into a plastic Ziploc® bag. The plastic bag was sealed, and the sample allowed to volatilize. The air above the sample, the headspace, was then evaluated using a photoionization detector (PID) capable of detecting volatile organic compounds (VOCs). The PID was calibrated using an isobutylene standard prior to use in the field. Detailed lithologic descriptions and field screening results are presented on the soil boring/temporary sampling well logs which are provided in **Appendix B**.

Subsequent to advancement, the five (5) soil borings were completed as temporary sampling wells. The temporary sampling wells were completed using the following methodology:

- Installation of five (5) feet of one (1) inch inside diameter, 0.010-inch machine slotted poly vinyl chloride (PVC) well screen with a threaded bottom cap;
- Installation of one (1) inch inside diameter, threaded flush joint PVC riser pipe to the ground surface;
- Addition of pre-sieved 10/20 grade annular silica sand pack from the bottom of the soil boring to approximately one (1) foot above the top of the well screen;

The temporary sampling wells were developed by surging and removing groundwater with a disposable bailer until the fluid appeared relatively free of fine-grained sediment.

4.0 GROUNDWATER SAMPLING

4.1 Groundwater Sampling Program

On August 14, 2018, Apex collected groundwater samples for laboratory analysis from the five (5) temporary sampling wells.

Prior to sample collection, Apex gauged the depth to fluids in each of the designated sampling wells using an interface probe capable of detecting non-aqueous phase liquid (NAPL). NAPL was not detected at the temporary sampling well locations.

The temporary sampling wells were purged until effectively dry, utilizing a disposable bailer. Subsequent to the completion of the purging process and the recovery of groundwater to static or near static levels, groundwater samples were collected from each sampling well utilizing the disposable bailer.

The groundwater samples were collected and placed in laboratory prepared glassware, labeled/sealed using the laboratory supplied labels and custody seals, and stored on ice in a cooler. The samples were relinquished to the courier for Hall Environmental Analysis Laboratory of Albuquerque, New Mexico, under proper chain-of-custody procedures.

Subsequent to the collection of groundwater samples, each of the temporary sampling wells were plugged utilizing hydrated bentonite.

4.2 Groundwater Laboratory Analytical Program

Groundwater samples were analyzed for VOCs utilizing Environmental Protection Agency (EPA) SW-846 Method 8260. Groundwater sample containers were pre-preserved with mercuric chloride (HgCl₂).

A summary of the analytes, sample type, and EPA-approved methods is presented in the following table:

Analytes	Sample Type	No. of Samples	EPA Method
VOCs	Groundwater	5	SW-846 8260

Groundwater analytical results are summarized in **Table 1** (**Appendix C**). Due to the extensive list of VOC analytes, **Table 1** includes only results for analytes that exceeded the laboratory practical quantitation limit (PQL).

4.3 Groundwater Flow Direction

Each of the temporary sampling wells was surveyed for relative top-of-casing (TOC) elevations utilizing a self-leveling laser level (grade level). The groundwater flow direction at the Site is primarily to the northwest, with an apparent gradient across the Site of approximately 0.015 feet per foot (ft/ft).

Groundwater measurements collected during the sampling event are presented with relative TOC elevations in **Table 2 (Appendix C)**.

4.4 Groundwater Data Evaluation

Apex compared constituent concentrations or laboratory PQLs associated with the groundwater samples collected from the Site temporary sampling wells (TSW-1 through TSW-5) to the New Mexico WQCC GQSs.

- The groundwater samples collected from temporary sampling wells TSW-1 and TSW-2 exhibited benzene concentrations of 1.2 μg/L and 1.0 μg/L, respectively, which are below the New Mexico WQCC GQS of 10 μg/L. The groundwater samples collected from the remaining temporary sampling wells did not exhibit benzene concentrations above the laboratory PQLs, which are below the New Mexico WQCC GQS of 10 μg/L.
- The groundwater samples collected from the temporary sampling wells did not exhibit toluene concentrations above the laboratory PQLs, which are below the New Mexico WQCC GQS of 750 µg/L.
- The groundwater sample collected from temporary sampling well TSW-2 exhibited a
 ethylbenzene concentration of 8.4 μg/L, which is below the New Mexico WQCC GQS of
 750 μg/L. The groundwater samples collected from the remaining temporary sampling
 wells did not exhibit ethylbenzene concentrations above the laboratory PQLs, which are
 below the New Mexico WQCC GQS of 750 μg/L.
- The groundwater samples collected from temporary sampling wells TSW-1, TSW-2, and TSW-5 exhibited total xylenes concentrations ranging from 2.5 μg/L (TSW-1) to 120 μg/L (TSW-2), which are below the New Mexico WQCC GQS of 620 μg/L. The groundwater samples collected from the remaining temporary sampling wells did not exhibit total xylene concentrations above the laboratory PQLs, which are below the New Mexico WQCC GQS of 620 μg/L.
- The groundwater sample collected from temporary sampling wells TSW-2 exhibited 1,2,4 trimethlybenzene, 1,3,5 trimethlybenzene, Isopropylbenzene, and n-Propylbenzene concentrations of 18 μg/L, 12 μg/L, 1.9 μg/L, and 1.1 μg/L respectively, which are not quantified under the New Mexico WQCC GQSs. The groundwater samples collected from the remaining temporary sampling wells did not exhibit 1,2,4 trimethlybenzene, 1,3,5 trimethlybenzene, Isopropylbenzene, and n-Propylbenzene concentrations above the laboratory PQLs.

No data qualifier flags were associated with the groundwater analytical results. The results of the water sample analyses are summarized in **Table 1** of **Appendix C**. The executed chain-of-custody forms and laboratory data sheets are provided in **Appendix D**.

5.0 FINDINGS AND RECOMMENDATIONS

During August 2018, Apex performed an ESI at the Site. As part of the investigation activities, five (5) soil borings were advanced utilizing a hand auger and completed as temporary sampling wells (TSW-1 through TSW-5). The primary objectives of the ESI was to evaluate the magnitude and extent of dissolved phase COCs, if present, in the initial groundwater bearing unit at the Site.

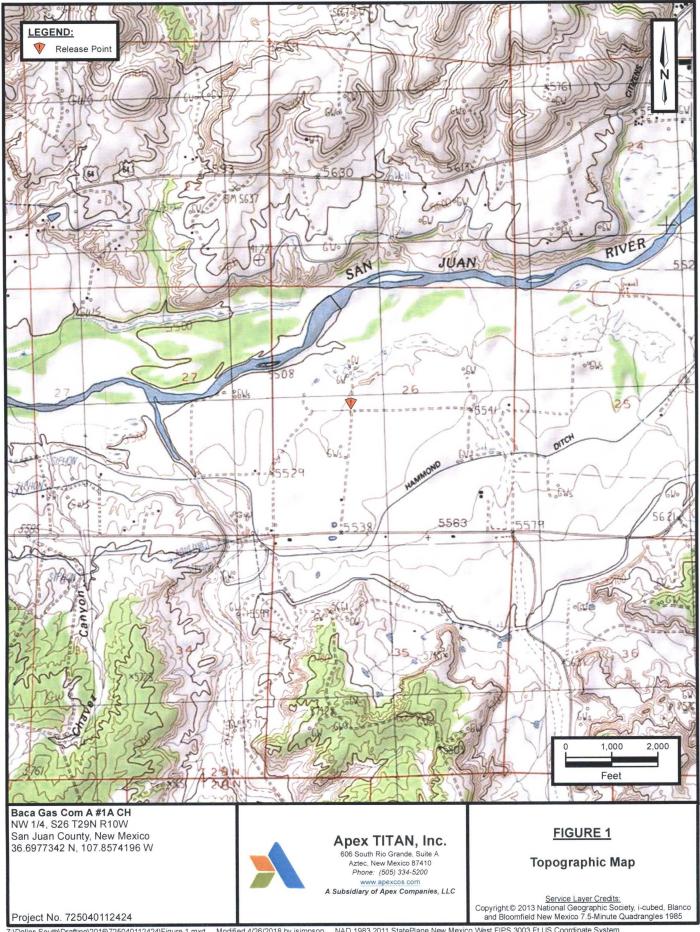
 The groundwater samples collected from the temporary sampling wells did not exhibit VOC constituent concentrations above the applicable New Mexico WQCC GQSs.

 Based on field measurements, the groundwater flow direction at the Site is primarily to the northwest, with an approximate gradient of 0.015 ft/ft across the Site.

Based on laboratory analytical results, no additional investigation or corrective action appears warranted at this time

6.0 STANDARD OF CARE, LIMITATIONS, AND RELIANCE

Apex's services were performed in accordance with standards customarily provided by a firm rendering the same or similar services in the area during the same time period. Apex makes no warranties, expressed or implied, as to the services performed hereunder. Additionally, Apex does not warrant the work of third parties supplying information used in the report (e.g. laboratories, regulatory agencies, or other third parties). This scope of services was performed in accordance with the scope of work agreed with the client.


Findings, conclusions and recommendations resulting from these services are based upon information derived from the on-Site activities and other services performed under this scope of work and it should be noted that this information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, or not present during these services, and Apex cannot represent that the Site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during this scope of services. Environmental conditions at other areas or portions of the Site may vary from those encountered at actual sample locations. Apex's findings and recommendations are based solely upon data available to Apex at the time of these services.

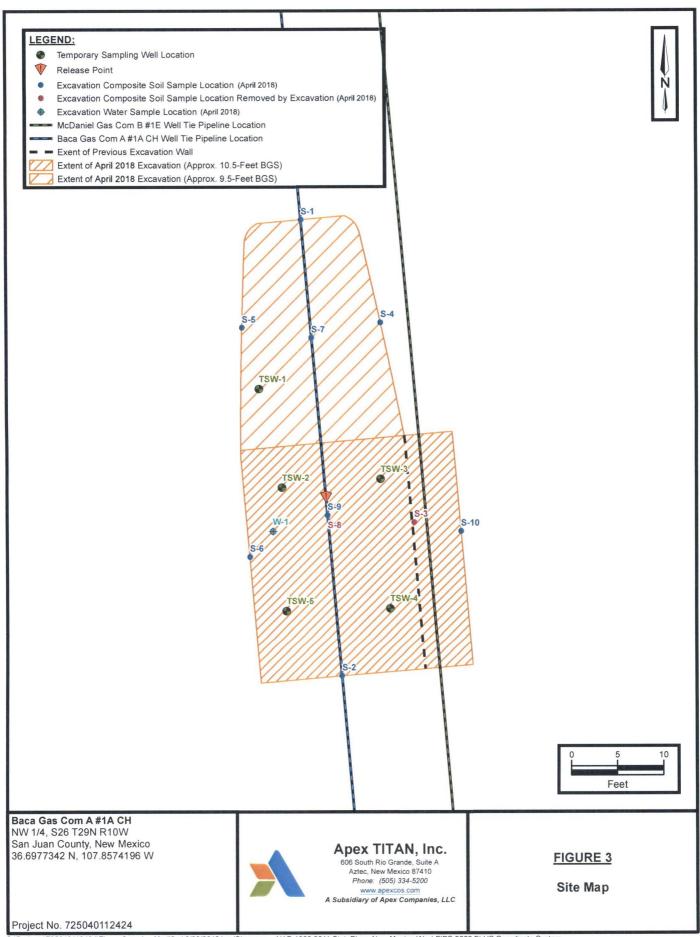
This report has been prepared for the exclusive use of Enterprise, and any authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the Site) is prohibited without the expressed written authorization of Enterprise and Apex. Any unauthorized distribution or reuse is at the client's sole risk. Notwithstanding the foregoing, reliance by authorized parties will be subject to the terms, conditions and limitations stated in the proposal, the report, and Apex's Agreement. The limitation of liability defined in the agreement is the aggregate limit of Apex's liability to the client.

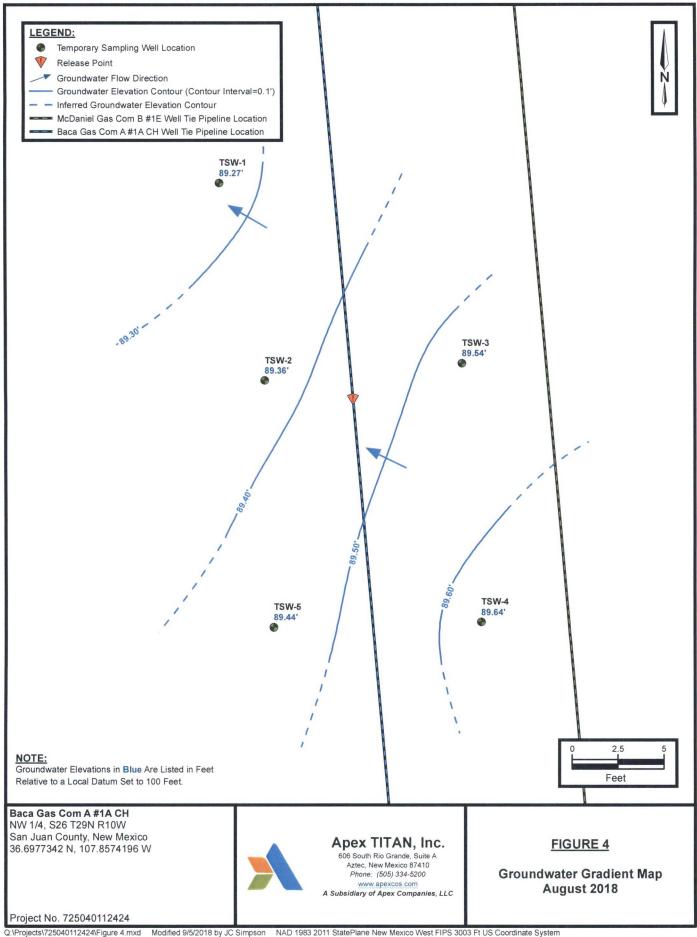
APPENDIX A

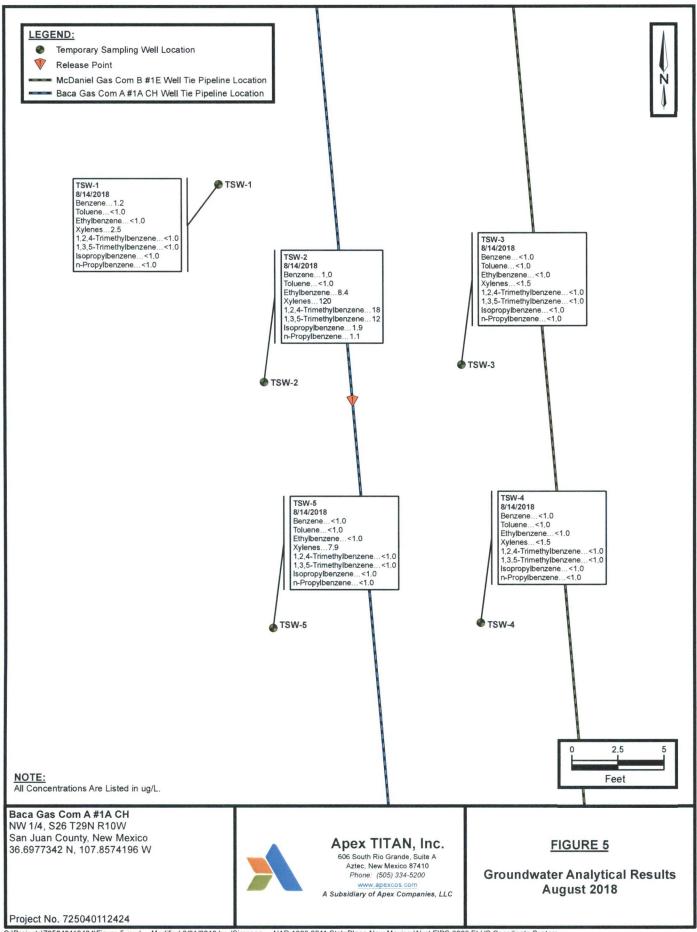
Figures

Baca Gas Com A #1A CH NW 1/4, S26 T29N R10W San Juan County, New Mexico 36.6977342 N, 107.8574196 W

Apex TITAN, Inc. 606 South Rio Grande, Suite A Aztec, New Mexico 87410 Phone: (505) 334-5200


www.apexcos.com
A Subsidiary of Apex Companies, LLC


FIGURE 2


Site Vicinity Map

Service Layer Credits: Esri, HERE, Garmin, © OpenStreetMap contributors, Aerial Photograph 2017

Project No. 725040112424

APPENDIX B
Soil Boring/Temporary Sampling Well Logs

Baca Gas Com A #1A CH Soil Boring/Monitoring Well Apex TITAN, Inc. NW 1/4, S26 T29N R10W 606 South Rio Grande, Suite A Aztec, New Mexico 87410 San Juan County, New Mexico TSW-1 36.6977342 N, 107.8574196 W Phone: (505) 334-5200 www.apexcos.com A Subsidiary of Apex Companies, LLC Project No. 725040112424 Date Sampled 8/6/2018 Ground Surface Elevation: N/A Borehole Diameter: Drilled by: N/A Top of Casing Elevation: N/A Casing Diameter: Driller: N/A North Coordinate: N/A Well Materials: 0.010" SCH40 PVC R. Deechilly West Coordinate: Logged by: N/A Surface Completion: Temp/Plugged Sampler Bench Mark Elevation: N/A N/A Boring Method: Hand Auger Project Manager: K. Summers Groundwater Depth Observed During Drilling: Groundwater Elevation Depth (Feet BGS) PID Value (ppm) Geologic Symbol Recovery (%) Sample ID Sample Interval Geologic Boring/Well Completion Description (Graphic Depiction) BACKFILL, Silty Sand Hydrated Bentonite Backfill 3/6/2018 V 1.5 SILTY CLAY Transitiong to Sand, Dark Yellowish Brown, Moist, No Odo SAND, Dark Yellowish Brown, Wet, No Odor 0.9 100% SANDY SILTY CLAY, Dark Yellowish Brown, Wet, No Odor 0.0 Bottom of Boring at 12 Feet BGS

Baca Gas Com A #1A CH Soil Boring/Monitoring Well Apex TITAN, Inc. NW 1/4, S26 T29N R10W 606 South Rio Grande, Suite A Aztec, New Mexico 87410 San Juan County, New Mexico TSW-2 Phone: (505) 334-5200 36.6977342 N, 107.8574196 W www.apexcos.com A Subsidiary of Apex Companies, LLC Project No. 725040112424 8/6/2018 Ground Surface Elevation: Date Sampled: N/A Borehole Diameter: Drilled by: Top of Casing Elevation: N/A N/A Casing Diameter: 1" Driller: North Coordinate: N/A N/A Well Materials: 0.010" SCH40 PVC Logged by: R. Deechilly West Coordinate: N/A Surface Completion: Temp/Plugged Sampler N/A Bench Mark Elevation: N/A Boring Method: Hand Auger Project Manager: K. Summers Groundwater Depth Observed During Drilling: Groundwater Elevation Depth (Feet BGS) PID Value (ppm) Recovery (%) Geologic Symbol Sample ID Sample Interval Boring/Well Completion Geologic Description (Graphic Depiction) BACKFILL, Silty Sand Hydrated Bentonite Backfill 8/6/2018 0.8 0.2 SILTY SAND, Dark Yellowish Brown, Fine to Medium Grained, Wet, No Odor SAND, Dark Yellowish Brown, Fine to Medium Grained, Wet to Saturated at 12 Feet BGS, No Odor 100% Bottom of Boring at 12 Feet BGS

Baca Gas Com A #1A CH Soil Boring/Monitoring Well Apex TITAN, Inc. NW 1/4, S26 T29N R10W 606 South Rio Grande, Suite A Aztec, New Mexico 87410 San Juan County, New Mexico TSW-3 Phone: (505) 334-5200 36.6977342 N, 107.8574196 W www.apexcos.com A Subsidiary of Apex Companies, LLC Project No. 725040112424 Date Sampled: 8/6/2018 Ground Surface Elevation: N/A Borehole Diameter: Top of Casing Elevation: Drilled by: N/A N/A Casing Diameter: Driller: N/A North Coordinate: N/A Well Materials: 0.010" SCH40 PVC Logged by: R. Deechilly West Coordinate: N/A Surface Completion: Temp/Plugged Sampler: Bench Mark Elevation: N/A N/A Boring Method: Hand Auger Project Manager: K. Summers Groundwater Depth Observed During Drilling: Groundwater Elevation Depth (Feet BGS) PID Value (ppm) Geologic Symbol Recovery (%) Sample ID Sample Interval Boring/Well Completion Geologic Description (Graphic Depiction) BACKFILL, Silty Sand -Hydrated Bentonite Backfill 8/6/201 0.3 0.0 100% SILTY SAND, Dark Yellowish Brown, Wet to Saturated, No Odor SANDY SILTY CLAY, Dark Yellowish Brown, Transitioning to Silty Clay 0.0 Wet to Saturated, No Odor Bottom of Boring at 12 Feet BGS

Baca Gas Com A #1A CH Soil Boring/Monitoring Well Apex TITAN, Inc. NW 1/4, S26 T29N R10W 606 South Rio Grande, Suite A Aztec, New Mexico 87410 San Juan County, New Mexico TSW-4 Phone: (505) 334-5200 36.6977342 N, 107.8574196 W www.apexcos.com A Subsidiary of Apex Companies, LLC Project No. 725040112424 8/6/2018 Ground Surface Elevation: Date Sampled: N/A Borehole Diameter: Drilled by: Top of Casing Elevation: N/A N/A Casing Diameter: Driller: N/A North Coordinate: N/A 0.010" SCH40 PVC Well Materials: West Coordinate: Logged by: R. Deechilly N/A Surface Completion: Temp/Plugged Sampler N/A Bench Mark Elevation: N/A Boring Method: Hand Auger K. Summers Project Manager: Groundwater Depth Observed During Drilling: Groundwater Elevation Depth (Feet BGS) PID Value (ppm) Sample ID Recovery (%) Geologic Symbol Sample Interval Boring/Well Completion Geologic Description (Graphic Depiction) BACKFILL, Silty Sand Hydrated Bentonite Backfill _ 2.7 8/6/2018 28 SILTY SAND, Dark Yellowish Brown, Wet, No Odor 100% SANDY SILTY CLAY, Dark Yellowish Brown, Wet to Saturated at 12 Feet BGS, No Odor 3.2 Bottom of Boring at 12 Feet BGS

Baca Gas Com A #1A CH Soil Boring/Monitoring Well Apex TITAN, Inc. NW 1/4, S26 T29N R10W 606 South Rio Grande, Suite A Aztec, New Mexico 87410 San Juan County, New Mexico TSW-5 Phone: (505) 334-5200 36.6977342 N, 107.8574196 W www.apexcos.com A Subsidiary of Apex Companies, LLC Project No. 725040112424 Date Sampled: 8/6/2018 Ground Surface Elevation: N/A Borehole Diameter: Drilled by: Top of Casing Elevation: N/A N/A Casing Diameter: Driller: N/A North Coordinate: N/A Well Materials: 0.010" SCH40 PVC Logged by: R. Deechilly West Coordinate: N/A Surface Completion: Temp/Plugged Sampler: N/A Bench Mark Elevation: N/A Boring Method: Hand Auger Project Manager: K. Summers Groundwater Depth Observed During Drilling: Groundwater Elevation Depth (Feet BGS) PID Value (ppm) Recovery (%) Sample ID Geologic Symbol Sample Interval Geologic Boring/Well Completion Description (Graphic Depiction) BACKFILL, Silty Sand -Hydrated Bentonite Backfill -3/6/2018 V 0.4 0.0 SILTY SAND, Dark Yellowish Brown, Wet, No Odor 100% SANDY SILTY CLAY, Dark Yellowish Brown, Wet to Saturated at 12 Feet BGS, No 0.0 Bottom of Boring at 12 Feet BGS

APPENDIX C

Tables

TABLE 1 Baca Gas Com A #1A CH WATER ANALYTICAL SUMMARY- Volatile Organic Compounds

Sample I.D.	Date	Benzene (+)	Toluene (#9/L)	Ethylbenzene	Aylenes Xylenes	1,2,4-	1,3,5-	五 G Isopropylbenzene (五 G n-Propylbenzene ()
New Mexico Water Quali Commission Groundwat Standards	The state of the s	10	750	750	620	NE	NE	NE	NE
可以证据的证据			Excavati	on Water Sa	mple				
W-1	04.13.18	27	10	8.2	100	17	7.8	<2.0	<2.0
		Tempo	rary Monitor	ing Wells In	stalled by A	pex			
TSW-1	8.14.18	1.2	<1.0	<1.0	2.5	<1.0	<1.0	<1.0	<1.0
TSW-2	8.14.18	1.0	<1.0	8.4	120	18	12	1.9	1.1
TSW-3	8.14.18	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<1.0
TSW-4	8.14.18	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<1.0
TSW-5	8.14.18	<1.0	<1.0	<1.0	7.9	<1.0	<1.0	<1.0	<1.0

Note: Concentrations in bold and yellow exceed the applicable NM WQCC GQS

Note: 1,2,4-Trimethylbenzene, 1,3,5-Trimethylbenzene, Isopropylbenzene, and n-Propylbenzene are not priority pollutants under the federal Clean Water Act (CWA) or the NM WQCC.

μg/L = micrograms per liter

NA = Not Analyzed

NE = Not Established

TABLE 2 Baca Gas Com A #1A Pipeline Release GROUNDWATER ELEVATIONS

Well I.D.	Date	Depth to Product (feet BTOC)	Depth to Water (feet BTOC)	Product Thickness (feet)	Relative TOC Elevations (feet)	Relative Groundwater Elevation (feet)
TSW-1	8.14.18	ND	10.82	ND	100.09	89.27
TSW-2	8.14.18	ND	10.85	ND	100.21	89.36
TSW-3	8.14.18	ND	10.76	ND	100.295	89.54
TSW-4	8.14.18	ND	10.65	ND	100.285	89.64
TSW-5*	8.14.18	ND	10.56	ND	100.00	89.44

^{* =} TSW-5 top of casing was set as an arbitrary datum (100.00')

BTOC - below top of casing

TOC - top of casing

ND - Not Detected

APPENDIX D

Laboratory Data Sheets & Chain of Custody Documentation

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

August 23, 2018

Kyle Summers

APEX TITAN

606 S. Rio Grande Unit A

Aztec, NM 87410

TEL: (903) 821-5603

FAX

RE: Baca Gas Com A 1A OrderNo.: 1808974

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 5 sample(s) on 8/15/2018 for the analyses presented in the following report.

This report is a revised report and it replaces the original report issued August 17, 2018.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman

Laboratory Manager

Only

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1808974**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 8/23/2018

CLIENT: APEX TITAN Client Sample ID: TSW-1

 Project:
 Baca Gas Com A 1A
 Collection Date: 8/14/2018 9:00:00 AM

 Lab ID:
 1808974-001
 Matrix: AQUEOUS
 Received Date: 8/15/2018 6:30:00 AM

Analyses	Result	PQL	Qual U	nits DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	DJF
Benzene	1.2	1.0	μ	g/L 1	8/21/2018 8:33:31 PM	W5360
Toluene	ND	1.0		g/L 1	8/21/2018 8:33:31 PM	W5360
Ethylbenzene	ND	1.0	μ	g/L 1	8/21/2018 8:33:31 PM	W5360
Methyl tert-butyl ether (MTBE)	ND	1.0	μ	g/L 1	8/21/2018 8:33:31 PM	W5360
1,2,4-Trimethylbenzene	ND	1.0	μ	g/L 1	8/21/2018 8:33:31 PM	W5360
1,3,5-Trimethylbenzene	ND	1.0	μ	g/L 1	8/21/2018 8:33:31 PM	W536
1,2-Dichloroethane (EDC)	ND	1.0	μ	g/L 1	8/21/2018 8:33:31 PM	W536
1,2-Dibromoethane (EDB)	ND	1.0	μ	g/L 1	8/21/2018 8:33:31 PM	W536
Naphthalene	ND	2.0	μ	g/L 1	8/21/2018 8:33:31 PM	W536
1-Methylnaphthalene	ND	4.0	μ	g/L 1	8/21/2018 8:33:31 PM	W536
2-Methylnaphthalene	ND	4.0	μ	g/L 1	8/21/2018 8:33:31 PM	W536
Acetone	ND	10		g/L 1	8/21/2018 8:33:31 PM	W536
Bromobenzene	ND	1.0		g/L 1	8/21/2018 8:33:31 PM	W536
Bromodichloromethane	ND	1.0	8.3	g/L 1	8/21/2018 8:33:31 PM	W536
Bromoform	ND	1.0		g/L 1	8/21/2018 8:33:31 PM	W536
Bromomethane	ND	3.0		g/L 1	8/21/2018 8:33:31 PM	W536
2-Butanone	ND	10		g/L 1	8/21/2018 8:33:31 PM	W536
Carbon disulfide	ND	10		g/L 1	8/21/2018 8:33:31 PM	W536
Carbon Tetrachloride	ND	1.0	μ	g/L 1	8/21/2018 8:33:31 PM	W536
Chlorobenzene	ND	1.0	μ	g/L 1	8/21/2018 8:33:31 PM	W536
Chloroethane	ND	2.0		g/L 1	8/21/2018 8:33:31 PM	W536
Chloroform	ND	1.0		g/L 1	8/21/2018 8:33:31 PM	W536
Chloromethane	ND	3.0		g/L 1	8/21/2018 8:33:31 PM	W536
2-Chlorotoluene	ND	1.0		g/L 1	8/21/2018 8:33:31 PM	W536
4-Chlorotoluene	ND	1.0		g/L 1	8/21/2018 8:33:31 PM	W536
cis-1,2-DCE	ND	1.0		g/L 1	8/21/2018 8:33:31 PM	W536
cis-1,3-Dichloropropene	ND	1.0	-	g/L 1	8/21/2018 8:33:31 PM	W536
1,2-Dibromo-3-chloropropane	ND	2.0		g/L 1	8/21/2018 8:33:31 PM	W536
Dibromochloromethane	ND	1.0	1	g/L 1	8/21/2018 8:33:31 PM	W536
Dibromomethane	ND	1.0		g/L 1	8/21/2018 8:33:31 PM	W536
1,2-Dichlorobenzene	ND	1.0		g/L 1	8/21/2018 8:33:31 PM	W536
1,3-Dichlorobenzene	ND	1.0	μ	g/L 1	8/21/2018 8:33:31 PM	W536
1,4-Dichlorobenzene	ND	1.0	μ	g/L 1	8/21/2018 8:33:31 PM	W536
Dichlorodifluoromethane	ND	1.0	μ	g/L 1	8/21/2018 8:33:31 PM	W536
1,1-Dichloroethane	ND	1.0	μ	g/L 1	8/21/2018 8:33:31 PM	W536
1,1-Dichloroethene	ND	1.0	μ	g/L 1	8/21/2018 8:33:31 PM	W536
1,2-Dichloropropane	ND	1.0	μ	g/L 1	8/21/2018 8:33:31 PM	W536
1,3-Dichloropropane	ND	1.0	μ	g/L 1	8/21/2018 8:33:31 PM	W536
2,2-Dichloropropane	ND	2.0	μ	g/L 1	8/21/2018 8:33:31 PM	W536

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 16
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Date Reported: 8/23/2018

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: TSW-1

Project: Baca Gas Com A 1A

CLIENT: APEX TITAN

Collection Date: 8/14/2018 9:00:00 AM

Lab ID: 1808974-001

Matrix: AQUEOUS

Received Date: 8/15/2018 6:30:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES						Analyst	DJF
1,1-Dichloropropene	ND	1.0		μg/L	1	8/21/2018 8:33:31 PM	W5360
Hexachlorobutadiene	ND	1.0		μg/L	1	8/21/2018 8:33:31 PM	W5360
2-Hexanone	ND	10		μg/L	1	8/21/2018 8:33:31 PM	W5360
Isopropylbenzene	ND	1.0		µg/L	1	8/21/2018 8:33:31 PM	W5360
4-Isopropyltoluene	ND	1.0		μg/L	1	8/21/2018 8:33:31 PM	W5360
4-Methyl-2-pentanone	ND	10		μg/L	1	8/21/2018 8:33:31 PM	W5360
Methylene Chloride	ND	3.0		μg/L	1	8/21/2018 8:33:31 PM	W5360
n-Butylbenzene	ND	3.0		μg/L	1	8/21/2018 8:33:31 PM	W5360
n-Propylbenzene	ND	1.0		μg/L	1	8/21/2018 8:33:31 PM	W5360
sec-Butylbenzene	ND	1.0		μg/L	1	8/21/2018 8:33:31 PM	W5360
Styrene	ND	1.0		μg/L	1	8/21/2018 8:33:31 PM	W5360
tert-Butylbenzene	ND	1.0		μg/L	1	8/21/2018 8:33:31 PM	W536
1,1,1,2-Tetrachloroethane	ND	1.0		µg/L	1	8/21/2018 8:33:31 PM	W536
1,1,2,2-Tetrachloroethane	ND	2.0		µg/L	1	8/21/2018 8:33:31 PM	W536
Tetrachloroethene (PCE)	ND	1.0		µg/L	1	8/21/2018 8:33:31 PM	W536
trans-1,2-DCE	ND	1.0		μg/L	1	8/21/2018 8:33:31 PM	W536
trans-1,3-Dichloropropene	ND	1.0		μg/L	1	8/21/2018 8:33:31 PM	W536
1,2,3-Trichlorobenzene	ND	1.0		μg/L	1	8/21/2018 8:33:31 PM	W536
1,2,4-Trichlorobenzene	ND	1.0		μg/L	1	8/21/2018 8:33:31 PM	W536
1,1,1-Trichloroethane	ND	1.0		µg/L	1	8/21/2018 8:33:31 PM	W536
1,1,2-Trichloroethane	ND	1.0		μg/L	1	8/21/2018 8:33:31 PM	W536
Trichloroethene (TCE)	ND	1.0		μg/L	1	8/21/2018 8:33:31 PM	W536
Trichlorofluoromethane	ND	1.0		μg/L	1	8/21/2018 8:33:31 PM	W536
1,2,3-Trichloropropane	ND	2.0		μg/L	1	8/21/2018 8:33:31 PM	W5360
Vinyl chloride	ND	1.0		μg/L	1	8/21/2018 8:33:31 PM	W536
Xylenes, Total	2.5	1.5		μg/L	1	8/21/2018 8:33:31 PM	W5360
Surr: 1,2-Dichloroethane-d4	102	70-130		%Rec	1	8/21/2018 8:33:31 PM	W5360
Surr: 4-Bromofluorobenzene	107	70-130		%Rec	1	8/21/2018 8:33:31 PM	W5360
Surr: Dibromofluoromethane	104	70-130		%Rec	1	8/21/2018 8:33:31 PM	W5360
Surr: Toluene-d8	99.2	70-130		%Rec	1	8/21/2018 8:33:31 PM	W5360

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix D
- Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits Page 2 of 16 J
- P Sample pH Not In Range
- Reporting Detection Limit RL
- Sample container temperature is out of limit as specified

Lab Order **1808974**

Date Reported: 8/23/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: APEX TITAN Client Sample ID: TSW-2

 Project:
 Baca Gas Com A 1A
 Collection Date: 8/14/2018 9:10:00 AM

 Lab ID:
 1808974-002
 Matrix: AQUEOUS
 Received Date: 8/15/2018 6:30:00 AM

Analyses	Result	PQL	Qual Unit	S DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	DJF
Benzene	1.0	1.0	μg/L	1	8/22/2018 1:40:57 PM	W5363
Toluene	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W5363
Ethylbenzene	8.4	1.0	μg/L	1	8/22/2018 1:40:57 PM	W5363
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W5363
1,2,4-Trimethylbenzene	18	1.0	μg/L	1	8/22/2018 1:40:57 PM	W536
1,3,5-Trimethylbenzene	12	1.0	μg/L	1	8/22/2018 1:40:57 PM	W536
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W536
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W536
Naphthalene	ND	2.0	μg/L	1	8/22/2018 1:40:57 PM	W536
1-Methylnaphthalene	ND	4.0	μg/L	1	8/22/2018 1:40:57 PM	W536
2-Methylnaphthalene	ND	4.0	μg/L	1	8/22/2018 1:40:57 PM	W536
Acetone	ND	10	μg/L	1	8/22/2018 1:40:57 PM	W536
Bromobenzene	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W536
Bromodichloromethane	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W536
Bromoform	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W536
Bromomethane	ND	3.0	μg/L	1	8/22/2018 1:40:57 PM	W536
2-Butanone	ND	10	μg/L	1	8/22/2018 1:40:57 PM	W536
Carbon disulfide	ND	10	μg/L	1	8/22/2018 1:40:57 PM	W536
Carbon Tetrachloride	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W536
Chlorobenzene	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W536
Chloroethane	ND	2.0	μg/L	1	8/22/2018 1:40:57 PM	W536
Chloroform	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W536
Chloromethane	ND	3.0	μg/L	1	8/22/2018 1:40:57 PM	W536
2-Chlorotoluene	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W536
4-Chlorotoluene	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W536
cis-1,2-DCE	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W536
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W536
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	8/22/2018 1:40:57 PM	W536
Dibromochloromethane	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W536
Dibromomethane	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W536
1,2-Dichlorobenzene	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W536
1,3-Dichlorobenzene	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W536
1,4-Dichlorobenzene	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W536
Dichlorodifluoromethane	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W536
1,1-Dichloroethane	ND	1.0		1	8/22/2018 1:40:57 PM	W536
1,1-Dichloroethene	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W536
1,2-Dichloropropane	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W536
1,3-Dichloropropane	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W536
2,2-Dichloropropane	ND	2.0	μg/L	1	8/22/2018 1:40:57 PM	W536

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 3 of 16
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1808974

Date Reported: 8/23/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: APEX TITAN Client Sample ID: TSW-2

 Project:
 Baca Gas Com A 1A
 Collection Date: 8/14/2018 9:10:00 AM

 Lab ID:
 1808974-002
 Matrix: AQUEOUS
 Received Date: 8/15/2018 6:30:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	DJF
1,1-Dichloropropene	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W5363
Hexachlorobutadiene	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W5363
2-Hexanone	ND	10	μg/L	1	8/22/2018 1:40:57 PM	W5363
Isopropylbenzene	1.9	1.0	μg/L	1	8/22/2018 1:40:57 PM	W5363
4-Isopropyltoluene	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W5363
4-Methyl-2-pentanone	ND	10	μg/L	1	8/22/2018 1:40:57 PM	W5363
Methylene Chloride	ND	3.0	μg/L	1	8/22/2018 1:40:57 PM	W5363
n-Butylbenzene	ND	3.0	μg/L	1	8/22/2018 1:40:57 PM	W5363
n-Propylbenzene	1.1	1.0	μg/L	1	8/22/2018 1:40:57 PM	W5363
sec-Butylbenzene	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W5363
Styrene	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W5363
tert-Butylbenzene	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W5363
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W5363
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	8/22/2018 1:40:57 PM	W5363
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W5363
trans-1,2-DCE	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W5363
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W5363
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W5363
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W5363
1,1,1-Trichloroethane	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W5363
1,1,2-Trichloroethane	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W5363
Trichloroethene (TCE)	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W5363
Trichlorofluoromethane	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W5363
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/22/2018 1:40:57 PM	W5363
Vinyl chloride	ND	1.0	μg/L	1	8/22/2018 1:40:57 PM	W5363
Xylenes, Total	120	1.5	μg/L	1	8/22/2018 1:40:57 PM	W5363
Surr: 1,2-Dichloroethane-d4	104	70-130	%Rec	1	8/22/2018 1:40:57 PM	W5363
Surr: 4-Bromofluorobenzene	105	70-130	%Rec	1	8/22/2018 1:40:57 PM	W5363
Surr: Dibromofluoromethane	104	70-130	%Rec	1	8/22/2018 1:40:57 PM	W5363
Surr: Toluene-d8	99.3	70-130	%Rec	1	8/22/2018 1:40:57 PM	W5363

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 4 of 16
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order **1808974**

Date Reported: 8/23/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: APEX TITAN Client Sample ID: TSW-3

 Project:
 Baca Gas Com A 1A
 Collection Date: 8/14/2018 9:20:00 AM

 Lab ID:
 1808974-003
 Matrix: AQUEOUS
 Received Date: 8/15/2018 6:30:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES						Analyst	: DJF
Benzene	ND	1.0		µg/L	1	8/22/2018 3:49:57 AM	W5360
Toluene	ND	1.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
Ethylbenzene	ND	1.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
Methyl tert-butyl ether (MTBE)	ND	1.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
1,2,4-Trimethylbenzene	ND	1.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
1,3,5-Trimethylbenzene	ND	1.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
1,2-Dichloroethane (EDC)	ND	1.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
1,2-Dibromoethane (EDB)	ND	1.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
Naphthalene	ND	2.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
1-Methylnaphthalene	ND	4.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
2-Methylnaphthalene	ND	4.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
Acetone	ND	10		μg/L	1	8/22/2018 3:49:57 AM	W5360
Bromobenzene	ND	1.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
Bromodichloromethane	ND	1.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
Bromoform	ND	1.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
Bromomethane	ND	3.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
2-Butanone	ND	10		μg/L	1	8/22/2018 3:49:57 AM	W5360
Carbon disulfide	ND	10		μg/L	1	8/22/2018 3:49:57 AM	W5360
Carbon Tetrachloride	ND	1.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
Chlorobenzene	ND	1.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
Chloroethane	ND	2.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
Chloroform	ND	1.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
Chloromethane	ND	3.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
2-Chlorotoluene	ND	1.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
4-Chlorotoluene	ND	1.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
cis-1,2-DCE	ND	1.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
cis-1,3-Dichloropropene	ND	1.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
1,2-Dibromo-3-chloropropane	ND	2.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
Dibromochloromethane	ND	1.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
Dibromomethane	ND	1.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
1,2-Dichlorobenzene	ND	1.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
1,3-Dichlorobenzene	ND	1.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
1,4-Dichlorobenzene	ND	1.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
Dichlorodifluoromethane	ND	1.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
1,1-Dichloroethane	ND	1.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
1,1-Dichloroethene	ND	1.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
1,2-Dichloropropane	ND	1.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
1,3-Dichloropropane	ND	1.0		μg/L	1	8/22/2018 3:49:57 AM	W5360
2,2-Dichloropropane	ND	2.0		μg/L	1	8/22/2018 3:49:57 AM	W5360

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 5 of 16
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1808974

Date Reported: 8/23/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: APEX TITAN Client Sample ID: TSW-3

 Project:
 Baca Gas Com A 1A
 Collection Date: 8/14/2018 9:20:00 AM

 Lab ID:
 1808974-003
 Matrix: AQUEOUS
 Received Date: 8/15/2018 6:30:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	DJF
1,1-Dichloropropene	ND	1.0	μg/L	1	8/22/2018 3:49:57 AM	W53606
Hexachlorobutadiene	ND	1.0	μg/L	1	8/22/2018 3:49:57 AM	W53606
2-Hexanone	ND	10	μg/L	1	8/22/2018 3:49:57 AM	W53606
Isopropylbenzene	ND	1.0	μg/L	1	8/22/2018 3:49:57 AM	W53606
4-Isopropyltoluene	ND	1.0	μg/L	1	8/22/2018 3:49:57 AM	W53606
4-Methyl-2-pentanone	ND	10	μg/L	1	8/22/2018 3:49:57 AM	W53606
Methylene Chloride	ND	3.0	μg/L	1	8/22/2018 3:49:57 AM	W53606
n-Butylbenzene	ND	3.0	μg/L	1	8/22/2018 3:49:57 AM	W53606
n-Propylbenzene	ND	1.0	μg/L	1	8/22/2018 3:49:57 AM	W5360
sec-Butylbenzene	ND	1.0	μg/L	1	8/22/2018 3:49:57 AM	W5360
Styrene	ND	1.0	μg/L	1	8/22/2018 3:49:57 AM	W5360
tert-Butylbenzene	ND	1.0	μg/L	1	8/22/2018 3:49:57 AM	W5360
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	8/22/2018 3:49:57 AM	W5360
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	8/22/2018 3:49:57 AM	W5360
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	8/22/2018 3:49:57 AM	W5360
trans-1,2-DCE	ND	1.0	μg/L	1	8/22/2018 3:49:57 AM	W5360
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	8/22/2018 3:49:57 AM	W5360
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	8/22/2018 3:49:57 AM	W5360
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	8/22/2018 3:49:57 AM	W5360
1,1,1-Trichloroethane	ND	1.0	μg/L	1	8/22/2018 3:49:57 AM	W5360
1,1,2-Trichloroethane	ND	1.0	μg/L	1	8/22/2018 3:49:57 AM	W5360
Trichloroethene (TCE)	ND	1.0	μg/L	1	8/22/2018 3:49:57 AM	W5360
Trichlorofluoromethane	ND	1.0	μg/L	1	8/22/2018 3:49:57 AM	W53606
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/22/2018 3:49:57 AM	W53606
Vinyl chloride	ND	1.0	μg/L	1	8/22/2018 3:49:57 AM	W53606
Xylenes, Total	ND	1.5	μg/L	1	8/22/2018 3:49:57 AM	W53606
Surr: 1,2-Dichloroethane-d4	103	70-130	%Red	1	8/22/2018 3:49:57 AM	W53606
Surr: 4-Bromofluorobenzene	101	70-130	%Red	1	8/22/2018 3:49:57 AM	W5360
Surr: Dibromofluoromethane	95.7	70-130	%Red	1	8/22/2018 3:49:57 AM	W53606
Surr: Toluene-d8	97.6	70-130	%Red	1	8/22/2018 3:49:57 AM	W53606

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 6 of 16
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1808974

Date Reported: 8/23/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: APEX TITAN

Client Sample ID: TSW-4

Project: Baca Gas Com A 1A

Collection Date: 8/14/2018 9:30:00 AM

Lab ID: 1808974-004

Matrix: AQUEOUS Received Date: 8/15/2018 6:30:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES						Analyst	DJF
Benzene	ND	1.0		µg/L	1	8/22/2018 4:18:56 AM	W5360
Toluene	ND	1.0		μg/L	1	8/22/2018 4:18:56 AM	W5360
Ethylbenzene	ND	1.0		μg/L	1	8/22/2018 4:18:56 AM	W5360
Methyl tert-butyl ether (MTBE)	ND	1.0		µg/L	1	8/22/2018 4:18:56 AM	W5360
1,2,4-Trimethylbenzene	ND	1.0		μg/L	1	8/22/2018 4:18:56 AM	W536
1,3,5-Trimethylbenzene	ND	1.0		μg/L	1	8/22/2018 4:18:56 AM	W536
1,2-Dichloroethane (EDC)	ND	1.0		μg/L	1	8/22/2018 4:18:56 AM	W536
1,2-Dibromoethane (EDB)	ND	1.0		μg/L	1	8/22/2018 4:18:56 AM	W536
Naphthalene	ND	2.0		μg/L	1	8/22/2018 4:18:56 AM	W536
1-Methylnaphthalene	ND	4.0		µg/L	1	8/22/2018 4:18:56 AM	W536
2-Methylnaphthalene	ND	4.0		µg/L	1	8/22/2018 4:18:56 AM	W536
Acetone	ND	10		μg/L	1	8/22/2018 4:18:56 AM	W536
Bromobenzene	ND	1.0		µg/L	1	8/22/2018 4:18:56 AM	W536
Bromodichloromethane	ND	1.0		μg/L	1	8/22/2018 4:18:56 AM	W536
Bromoform	ND	1.0		μg/L	1	8/22/2018 4:18:56 AM	W536
Bromomethane	ND	3.0		μg/L	1	8/22/2018 4:18:56 AM	W536
2-Butanone	ND	10		μg/L	1	8/22/2018 4:18:56 AM	W536
Carbon disulfide	ND	10		μg/L	1	8/22/2018 4:18:56 AM	W536
Carbon Tetrachloride	ND	1.0		μg/L	1	8/22/2018 4:18:56 AM	W536
Chlorobenzene	ND	1.0		μg/L	1	8/22/2018 4:18:56 AM	W536
Chloroethane	ND	2.0		μg/L	1	8/22/2018 4:18:56 AM	W536
Chloroform	ND	1.0		μg/L	1	8/22/2018 4:18:56 AM	W536
Chloromethane	ND	3.0		µg/L	1	8/22/2018 4:18:56 AM	W536
2-Chlorotoluene	ND	1.0		µg/L	1	8/22/2018 4:18:56 AM	W536
4-Chlorotoluene	ND	1.0		µg/L	1	8/22/2018 4:18:56 AM	W536
cis-1,2-DCE	ND	1.0		µg/L	1	8/22/2018 4:18:56 AM	W536
cis-1,3-Dichloropropene	ND	1.0		µg/L	1	8/22/2018 4:18:56 AM	W536
1,2-Dibromo-3-chloropropane	ND	2.0		μg/L	1	8/22/2018 4:18:56 AM	W536
Dibromochloromethane	ND	1.0		μg/L	1	8/22/2018 4:18:56 AM	W536
Dibromomethane	ND	1.0		μg/L	1	8/22/2018 4:18:56 AM	W536
1,2-Dichlorobenzene	ND	1.0		µg/L	1	8/22/2018 4:18:56 AM	W536
1,3-Dichlorobenzene	ND	1.0		µg/L	1	8/22/2018 4:18:56 AM	W536
1,4-Dichlorobenzene	ND	1.0		μg/L	1	8/22/2018 4:18:56 AM	W536
Dichlorodifluoromethane	ND	1.0		μg/L	1	8/22/2018 4:18:56 AM	W536
1.1-Dichloroethane	ND	1.0		μg/L	1	8/22/2018 4:18:56 AM	W536
1,1-Dichloroethene	ND	1.0		µg/L	1	8/22/2018 4:18:56 AM	W536
1,2-Dichloropropane	ND	1.0		μg/L	1	8/22/2018 4:18:56 AM	W536
1,3-Dichloropropane	ND	1.0		μg/L	1	8/22/2018 4:18:56 AM	W536
2,2-Dichloropropane	ND	2.0		μg/L	1	8/22/2018 4:18:56 AM	W536

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 7 of 16
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order **1808974**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 8/23/2018

CLIENT: APEX TITAN Client Sample ID: TSW-4

 Project:
 Baca Gas Com A 1A
 Collection Date: 8/14/2018 9:30:00 AM

 Lab ID:
 1808974-004
 Matrix: AQUEOUS
 Received Date: 8/15/2018 6:30:00 AM

Analyses	Result	PQL	Qual U	Inits	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES						Analyst	DJF
1,1-Dichloropropene	ND	1.0	μ	ıg/L	1	8/22/2018 4:18:56 AM	W5360
Hexachlorobutadiene	ND	1.0	μ	ıg/L	1	8/22/2018 4:18:56 AM	W5360
2-Hexanone	ND	10	μ	ıg/L	1	8/22/2018 4:18:56 AM	W5360
Isopropylbenzene	ND	1.0	μ	ıg/L	1	8/22/2018 4:18:56 AM	W5360
4-Isopropyltoluene	ND	1.0	μ	ıg/L	1	8/22/2018 4:18:56 AM	W5360
4-Methyl-2-pentanone	ND	10	μ	ıg/L	1	8/22/2018 4:18:56 AM	W5360
Methylene Chloride	ND	3.0	μ	ıg/L	1	8/22/2018 4:18:56 AM	W5360
n-Butylbenzene	ND	3.0	μ	ıg/L	1	8/22/2018 4:18:56 AM	W5360
n-Propylbenzene	ND	1.0	μ	ıg/L	1	8/22/2018 4:18:56 AM	W5360
sec-Butylbenzene	ND	1.0	μ	ıg/L	1	8/22/2018 4:18:56 AM	W5360
Styrene	ND	1.0	μ	ıg/L	1	8/22/2018 4:18:56 AM	W5360
tert-Butylbenzene	ND	1.0	μ	ıg/L	1	8/22/2018 4:18:56 AM	W5360
1,1,1,2-Tetrachloroethane	ND	1.0	μ	ıg/L	1	8/22/2018 4:18:56 AM	W5360
1,1,2,2-Tetrachloroethane	ND	2.0	μ	ıg/L	1	8/22/2018 4:18:56 AM	W5360
Tetrachloroethene (PCE)	ND	1.0	μ	ıg/L	1	8/22/2018 4:18:56 AM	W5360
trans-1,2-DCE	ND	1.0	μ	ıg/L	1	8/22/2018 4:18:56 AM	W5360
trans-1,3-Dichloropropene	ND	1.0	μ	ıg/L	1	8/22/2018 4:18:56 AM	W5360
1,2,3-Trichlorobenzene	ND	1.0	μ	ıg/L	1	8/22/2018 4:18:56 AM	W5360
1,2,4-Trichlorobenzene	ND	1.0	μ	ıg/L	1	8/22/2018 4:18:56 AM	W5360
1,1,1-Trichloroethane	ND	1.0	μ	ıg/L	1	8/22/2018 4:18:56 AM	W5360
1,1,2-Trichloroethane	ND	1.0	μ	ıg/L	1	8/22/2018 4:18:56 AM	W5360
Trichloroethene (TCE)	ND	1.0	μ	ıg/L	1	8/22/2018 4:18:56 AM	W5360
Trichlorofluoromethane	ND	1.0	μ	ıg/L	1	8/22/2018 4:18:56 AM	W5360
1,2,3-Trichloropropane	ND	2.0	μ	ıg/L	1	8/22/2018 4:18:56 AM	W5360
Vinyl chloride	ND	1.0	μ	ıg/L	1	8/22/2018 4:18:56 AM	W5360
Xylenes, Total	ND	1.5	μ	ıg/L	1	8/22/2018 4:18:56 AM	W5360
Surr: 1,2-Dichloroethane-d4	109	70-130	9/	%Rec	1	8/22/2018 4:18:56 AM	W5360
Surr: 4-Bromofluorobenzene	107	70-130	9/	%Rec	1	8/22/2018 4:18:56 AM	W5360
Surr: Dibromofluoromethane	105	70-130	9/	%Rec	1	8/22/2018 4:18:56 AM	W5360
Surr: Toluene-d8	99.6	70-130	9/	%Rec	1	8/22/2018 4:18:56 AM	W5360

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 8 of 16
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1808974

Date Reported: 8/23/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: APEX TITAN Client Sample ID: TSW-5

 Project:
 Baca Gas Com A 1A
 Collection Date: 8/14/2018 9:40:00 AM

 Lab ID:
 1808974-005
 Matrix: AQUEOUS
 Received Date: 8/15/2018 6:30:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES						Analyst	DJF
Benzene	ND	1.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
Toluene	ND	1.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
Ethylbenzene	ND	1.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
Methyl tert-butyl ether (MTBE)	ND	1.0		µg/L	1	8/22/2018 4:48:08 AM	W53606
1,2,4-Trimethylbenzene	ND	1.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
1,3,5-Trimethylbenzene	ND	1.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
1,2-Dichloroethane (EDC)	ND	1.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
1,2-Dibromoethane (EDB)	ND	1.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
Naphthalene	ND	2.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
1-Methylnaphthalene	ND	4.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
2-Methylnaphthalene	ND	4.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
Acetone	ND	10		µg/L	1	8/22/2018 4:48:08 AM	W53606
Bromobenzene	ND	1.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
Bromodichloromethane	ND	1.0		µg/L	1	8/22/2018 4:48:08 AM	W53606
Bromoform	ND	1.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
Bromomethane	ND	3.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
2-Butanone	ND	10		μg/L	1	8/22/2018 4:48:08 AM	W53606
Carbon disulfide	ND	10		µg/L	1	8/22/2018 4:48:08 AM	W53606
Carbon Tetrachloride	ND	1.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
Chlorobenzene	ND	1.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
Chloroethane	ND	2.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
Chloroform	ND	1.0		µg/L	1	8/22/2018 4:48:08 AM	W53606
Chloromethane	ND	3.0		µg/L	1	8/22/2018 4:48:08 AM	W53606
2-Chlorotoluene	ND	1.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
4-Chlorotoluene	ND	1.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
cis-1,2-DCE	ND	1.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
cis-1,3-Dichloropropene	ND	1.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
1,2-Dibromo-3-chloropropane	ND	2.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
Dibromochloromethane	ND	1.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
Dibromomethane	ND	1.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
1,2-Dichlorobenzene	ND	1.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
1,3-Dichlorobenzene	ND	1.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
1,4-Dichlorobenzene	ND	1.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
Dichlorodifluoromethane	ND	1.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
1,1-Dichloroethane	ND	1.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
1,1-Dichloroethene	ND	1.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
1,2-Dichloropropane	ND	1.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
1,3-Dichloropropane	ND	1.0		μg/L	1	8/22/2018 4:48:08 AM	W53606
2,2-Dichloropropane	ND	2.0		μg/L	1	8/22/2018 4:48:08 AM	W53606

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 9 of 16
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1808974

Date Reported: 8/23/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: APEX TITAN Client Sample ID: TSW-5

 Project:
 Baca Gas Com A 1A
 Collection Date: 8/14/2018 9:40:00 AM

 Lab ID:
 1808974-005
 Matrix: AQUEOUS
 Received Date: 8/15/2018 6:30:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	DJF
1,1-Dichloropropene	ND	1.0	μg/L	1	8/22/2018 4:48:08 AM	W53606
Hexachlorobutadiene	ND	1.0	μg/L	1	8/22/2018 4:48:08 AM	W53606
2-Hexanone	ND	10	μg/L	1	8/22/2018 4:48:08 AM	W53606
Isopropylbenzene	ND	1.0	μg/L	1	8/22/2018 4:48:08 AM	W53606
4-Isopropyltoluene	ND	1.0	μg/L	1	8/22/2018 4:48:08 AM	W53606
4-Methyl-2-pentanone	ND	10	μg/L	1	8/22/2018 4:48:08 AM	W53606
Methylene Chloride	ND	3.0	μg/L	1	8/22/2018 4:48:08 AM	W53606
n-Butylbenzene	ND	3.0	μg/L	1	8/22/2018 4:48:08 AM	W53606
n-Propylbenzene	ND	1.0	μg/L	1	8/22/2018 4:48:08 AM	W53606
sec-Butylbenzene	ND	1.0	μg/L	1	8/22/2018 4:48:08 AM	W53606
Styrene	ND	1.0	μg/L	1	8/22/2018 4:48:08 AM	W53606
tert-Butylbenzene	ND	1.0	μg/L	1	8/22/2018 4:48:08 AM	W53606
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	8/22/2018 4:48:08 AM	W53606
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	8/22/2018 4:48:08 AM	W53606
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	8/22/2018 4:48:08 AM	W5360
trans-1,2-DCE	ND	1.0	μg/L	1	8/22/2018 4:48:08 AM	W5360
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	8/22/2018 4:48:08 AM	W5360
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	8/22/2018 4:48:08 AM	W5360
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	8/22/2018 4:48:08 AM	W5360
1,1,1-Trichloroethane	ND	1.0	μg/L	1	8/22/2018 4:48:08 AM	W53606
1,1,2-Trichloroethane	ND	1.0	μg/L	1	8/22/2018 4:48:08 AM	W53606
Trichloroethene (TCE)	ND	1.0	μg/L	1	8/22/2018 4:48:08 AM	W53606
Trichlorofluoromethane	ND	1.0	μg/L	1	8/22/2018 4:48:08 AM	W53606
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/22/2018 4:48:08 AM	W53606
Vinyl chloride	ND	1.0	μg/L	1	8/22/2018 4:48:08 AM	W53606
Xylenes, Total	7.9	1.5	μg/L	1	8/22/2018 4:48:08 AM	W53606
Surr: 1,2-Dichloroethane-d4	106	70-130	%Rec	1	8/22/2018 4:48:08 AM	W53606
Surr: 4-Bromofluorobenzene	106	70-130	%Rec	1	8/22/2018 4:48:08 AM	W53606
Surr: Dibromofluoromethane	101	70-130	%Rec	1	8/22/2018 4:48:08 AM	W53606
Surr: Toluene-d8	101	70-130	%Rec	1	8/22/2018 4:48:08 AM	W53606

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 10 of 16
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#:

1808974

23-Aug-18

Client: APEX TITAN
Project: Baca Gas Com A 1A

Sample ID rb	SampT	ype: MBLK	Tes	stCode: E	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	ID: W53606	1	RunNo: 5	53606				
Prep Date:	Analysis D	ate: 8/21/2018		SeqNo: 1	1767669	Units: µg/L			
Analyte	Result		lue SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0							
Toluene	ND	1.0							
Ethylbenzene	ND	1.0							
Methyl tert-butyl ether (MTBE)	ND	1.0							
1,2,4-Trimethylbenzene	ND	1.0							
1,3,5-Trimethylbenzene	ND	1.0							
1,2-Dichloroethane (EDC)	ND	1.0							
1,2-Dibromoethane (EDB)	ND	1.0							
Naphthalene	ND	2.0							
1-Methylnaphthalene	ND	4.0							
2-Methylnaphthalene	ND	4.0							
Acetone	ND	10							
Bromobenzene	ND	1.0							
Bromodichloromethane	ND	1.0							
Bromoform	ND	1.0							
Bromomethane	ND	3.0							
2-Butanone	ND	10							
Carbon disulfide	ND	10							
Carbon Tetrachloride	ND	1.0							
Chlorobenzene	ND	1.0							
Chloroethane	ND	2.0							
Chloroform	ND	1.0							
Chloromethane	ND	3.0							
2-Chlorotoluene	ND	1.0							
4-Chlorotoluene	ND	1.0							
cis-1,2-DCE	ND	1.0							
cis-1,3-Dichloropropene	ND	1.0							
1,2-Dibromo-3-chloropropane	ND	2.0							
Dibromochloromethane	ND	1.0							
Dibromomethane	ND	1.0							
1,2-Dichlorobenzene	ND	1.0							
1,3-Dichlorobenzene	ND	1.0							
1,4-Dichlorobenzene	ND	1.0							
Dichlorodifluoromethane	ND	1.0							
1,1-Dichloroethane	ND	1.0							
1,1-Dichloroethene	ND	1.0							
1,2-Dichloropropane	ND	1.0							
1,3-Dichloropropane	ND	1.0							
2,2-Dichloropropane	ND	2.0							
z,z sionoropropuno	115	2.0							

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

Page 11 of 16

P Sample pH Not In Range

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1808974**

23-Aug-18

Client:

APEX TITAN

Project: Baca Gas Com A 1A

Sample ID rb	SampTy	pe: MBL	_K	Test	Code: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	ID: W53	3606	R	unNo: 5	3606				
Prep Date:	Analysis Da	ate: 8/2	1/2018	S	SeqNo: 1	767669	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	1.0	Of It value	OF ICITED VAL	MICLO	LOWLITTIC	riigiiLiiiit	70111 15	THE DEITHE	Quui
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	10		10.00		103	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		105	70	130			
Surr: Dibromofluoromethane	11		10.00		105	70	130			
Surr: Toluene-d8	10		10.00		101	70	130			

Sample ID 100ng Ics	SampType: LCS			Test	Code: El	ATILES				
Client ID: LCSW	Batch	ID: W5	3606	R	tunNo: 5	3606				
Prep Date:	Analysis D	ate: 8/	21/2018	S	SeqNo: 1	767675	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	99.9	70	130			
Toluene	19	1.0	20.00	0	95.5	70	130			
Chlorobenzene	19	1.0	20.00	0	96.2	70	130			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

Page 12 of 16

P Sample pH Not In Range

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#:

1808974

23-Aug-18

Client:

APEX TITAN

Project:

Baca Gas Com A 1A

Sample ID 100ng Ics	SampT	ype: LC	S	Tes	tCode: EF	PA Method	8260B: VOLA	ATILES		
Client ID: LCSW	Batch	ID: W	3606	F	RunNo: 5	3606				
Prep Date:	Analysis D	ate: 8/	21/2018	S	SeqNo: 1	767675	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloroethene	20	1.0	20.00	0	102	70	130			
Trichloroethene (TCE)	20	1.0	20.00	0	99.1	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		104	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		109	70	130			
Surr: Dibromofluoromethane	10		10.00		102	70	130			
Surr: Toluene-d8	9.4		10.00		94.3	70	130			

Sample ID 1808974-001a ms	SampT	ype: MS	3	Test	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: TSW-1	Batch	ID: W	53606	R	RunNo: 5	3606				
Prep Date:	Analysis D	ate: 8/	21/2018	S	SeqNo: 1	767689	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	22	1.0	20.00	1.207	102	60.5	137			
Toluene	20	1.0	20.00	0	102	70	130			
Chlorobenzene	20	1.0	20.00	0	102	70	130			
1,1-Dichloroethene	24	1.0	20.00	0	119	70	130			
Trichloroethene (TCE)	21	1.0	20.00	0	106	70	130			
Surr: 1,2-Dichloroethane-d4	11		10.00		110	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		104	70	130			
Surr: Dibromofluoromethane	11		10.00		108	70	130			
Surr: Toluene-d8	9.8		10.00		98.0	70	130			

Sample ID 1808974-001a m	isd SampT	ype: MS	SD	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: TSW-1	Batch	ID: W	53606	F	RunNo: 5	3606				
Prep Date:	Analysis D	ate: 8/	21/2018	S	SeqNo: 1	767690	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	1.207	97.2	60.5	137	4.44	20	
Toluene	20	1.0	20.00	0	97.8	70	130	3.99	20	
Chlorobenzene	20	1.0	20.00	0	99.1	70	130	2.67	20	
1,1-Dichloroethene	23	1.0	20.00	0	113	70	130	5.23	20	
Trichloroethene (TCE)	20	1.0	20.00	0	102	70	130	3.95	20	
Surr: 1,2-Dichloroethane-d4	11		10.00		105	70	130	0	0	
Surr: 4-Bromofluorobenzene	11		10.00		106	70	130	0	0	
Surr: Dibromofluoromethane	9.8		10.00		98.4	70	130	0	0	
Surr: Toluene-d8	9.7		10.00		97.4	70	130	0	0	

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

Page 13 of 16

P Sample pH Not In Range

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1808974**

23-Aug-18

Client:

APEX TITAN

Project: Baca Gas Com A 1A

Toluene ND 1.0 Ethyberacene ND 1.0 Hethyl terle (MTBE) ND 1.0 1,3,5-Timethyberacene ND 1.0 1,3,5-Timethyberacene ND 1.0 1,2-Dichromoethane (EDC) ND 1.0 1,2-Dichromoethane (EDB) ND 1.0 Naphthalene ND 2.0 2-Methyhaphthalene ND 4.0 2-Methyhaphthalene ND 1.0 Bromobenzene ND 1.0 Bromodichioromethane ND 1.0 Bromodichioromethane ND 1.0 Bromodemane ND 1.0 Bromodemane ND 1.0 Carbon disulfide ND 1.0 Chlorodenane ND 1.0 Chlorodoluene ND 1.0	Sample ID rb	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Analyte	Client ID: PBW	Batch	ID: W	53638	F	RunNo: 5	3638				
Benzene ND 1.0 Toluene ND 1.0 Ethylherzene ND 1.0 Methyl terbuly eher (MTBE) ND 1.0 1.2,4-Timethylbenzene ND 1.0 1.2,5-Timethylbenzene ND 1.0 1.2,5-Dictonoethane (EDC) ND 1.0 Naphthalene ND 2.0 Naphthalene ND 4.0 Alethynaphthalene ND 4.0 Acetone ND 1.0 Bromobenzene ND 1.0 Bromoderinomethane ND 1.0 Bromoderinomethane ND 1.0 Bromoform ND 1.0 Bromoform ND 1.0 Chlorobrane ND 1.0 Chlorobran	Prep Date:	Analysis D	ate: 8/	22/2018	S	SeqNo: 1	768879	Units: µg/L			
Toluene ND 1.0 Enlybenzene ND 1.0 Hewhyl tert-buyl ether (MTBE) ND 1.0 1.2,4 Trimethylbenzene ND 1.0 1.2,5-Trimethylbenzene ND 1.0 1.2-Dichloroethane (EDB) ND 1.0 1.2-Dichmoethane (EDB) ND 1.0 Naphthalene ND 4.0 2-Methylaphthalene ND 4.0 2-Methylaphthalene ND 1.0 Bromodernzene ND 1.0 Bromofernzene ND 1.0 Bromofernsene ND 1.0 Bromofernsene ND 1.0 Carbon fetrachloride ND 1.0 Carbon fetrachloride ND 1.0 Chlorocherzene ND 1.0 Chlorocherzene ND 1.0 Chlorocholuene ND 1.0 cis-1,2-DCE ND 1.0 Dibromod-Informoderhane ND 1.0 Dibromoderhane N	Analyte		PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Ethybenzene ND 1.0 Methyl terbulyl ether (MTBE) ND 1.0 1.2,4-Trimethybenzene ND 1.0 1.3,5-Trimethybenzene ND 1.0 1.3,5-Trimethybenzene (EDC) ND 1.0 1.2-Dichloroefhane (EDC) ND 1.0 Naphthalene ND 2.0 Naphthalene ND 4.0 Acetone ND 1.0 Bromobenzene ND 1.0 Bromobenzene ND 1.0 Bromodeinromethane ND 1.0 Bromodeinromethane ND 3.0 Carbon Tetrachloride ND 10 Carbon Tetrachloride ND 1.0 Chloroefhane ND 1.0 Chloroefhane ND 3.0 Carbon Tetrachloride ND 1.0 Chloroefhane ND 1.0 Chloroefhane ND 3.0 2-Chlorofoluene ND 1.0 Chloroefhane ND 1.0 Ch	Benzene										
Methyl terbulyl ether (MTBE) ND 1.0 1.2,4-Timethylbenzene ND 1.0 1,2-Dichloroethane (EDC) ND 1.0 1,2-Dichloroethane (EDB) ND 1.0 1,2-Dichmaethane (EDB) ND 1.0 NAphthalene ND 4.0 2-Methylaphthalene ND 4.0 Actoine ND 1.0 Bromobenzene ND 1.0 Bromodelhitoronethane ND 1.0 Bromoform ND 1.0 Bromoform ND 1.0 Bromoferblane ND 1.0 Carbon disulfide ND 1.0 Carbon disulfide ND 1.0 Chloroethane ND 1.0 Chlorodenane ND 1.0 Chlorodenane ND 1.0 Chlorodoluene ND 1.0 Chlorodoluene ND 1.0 Chlorodoluene ND 1.0 Chlorodoluene ND 1.0	Toluene	ND									
1,2,4-Trimethybenzene ND 1.0 1,3,5-Trimethybenzene ND 1.0 1,2,5-Dibromoethane (EDO) ND 1.0 1,2-Dibromoethane (EDB) ND 1.0 Naphthalene ND 2.0 1-Methyhaphthalene ND 4.0 Acetone ND 1.0 Bromobenzene ND 1.0 Bromofichioromethane ND 1.0 Bromoform ND 1.0 Bromoform ND 1.0 Bromoform ND 1.0 Carbon fetrachloride ND 1.0 Chlorothane ND 1.0 Chlorothoune ND 1.0 ci	Ethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene ND 1.0 1,2-Dichroreshane (EDC) ND 1.0 1,2-Dichroreshane (EDB) ND 1.0 Naphthalene ND 2.0 1-Methylaphthalene ND 4.0 Acetone ND 1.0 Bromobanzene ND 1.0 Bromodichroreshane ND 1.0 Bromoferm ND 1.0 Bromoferm ND 1.0 Carbon flerachloride ND 1.0 Carbon flerachloride ND 1.0 Chloroshane ND 1.0 4-Chloroshune ND 1.0 4-Chloroshune ND 1.0 4-Chloroshoune ND 1.0 1,2-Dishomo-S-chloropropane ND 1.0	Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2-Dichloroethane (EDC) ND 1.0 1,2-Dibromoethane (EDB) ND 1.0 Naphthalene ND 2.0 1-Methylnaphthalene ND 4.0 2-Methylnaphthalene ND 1.0 Bromobenzene ND 1.0 Bromodichloromethane ND 1.0 Bromodichloromethane ND 1.0 Bromomethane ND 1.0 Sebutanene ND 1.0 Carbon Sulfide ND 1.0 Chlorobethane ND 1.0 Chloroethane ND 1.0 Chlorofolm ND 1.0 4-Chlorofoluene ND 1.0 4-Chlorofoluene ND 1.0 cis-1,2-DCE ND 1.0 cibromo-S-chloropropane ND 1.0 Dibromomethane ND 1.0 1,2-Dichlorobenzene ND 1.0 1,2-Dichlorobenzene ND 1.0 1,2-Dichlorobenzene ND	1,2,4-Trimethylbenzene	ND	1.0								
1,2-Dibromoethane (EDB) ND 1.0 Naphthalene ND 2.0 1-Methylnaphthalene ND 4.0 2-Methylnaphthalene ND 4.0 Acetone ND 1.0 Bromodenbromethane ND 1.0 Bromodifromethane ND 1.0 Bromomethane ND 3.0 2-Butanone ND 1.0 Carbon disulfide ND 1.0 Chlorobenzene ND 1.0 4-Chlorotoluene ND 1.0 dis-1,2-Dictopropene ND 1.0 si-1,2-Dictopropene ND 1.0 1,2-Dichlorobenzene ND 1.0 1,2-Dichlorobenzene ND 1.0	1,3,5-Trimethylbenzene	ND	1.0								
Naphthalene ND 2.0 1-Methyinaphthalene ND 4.0 2-Methyinaphthalene ND 4.0 Acetone ND 10 Bromodenzene ND 1.0 Bromodenzene ND 1.0 Bromoferm ND 1.0 Bromomethane ND 3.0 2-Butanone ND 10 Carbon disulfide ND 1.0 Chlorosterae ND 1.0 Chlorosterae ND 1.0 Chlorosterae ND 1.0 Chlorosterae ND 1.0 4-Chlorotoluene ND 1.0 4-Chlorotoluene ND 1.0 4-Chlorotoluene ND 1.0 45-1,3-Dichloropropene ND 1.0 1,2-Dibromo-3-chloropropane ND 1.0 Dibromomethane ND 1.0 1,3-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0	1,2-Dichloroethane (EDC)	ND	1.0								
1-Methylnaphthalene ND 4.0 2-Methylnaphthalene ND 4.0 Acetone ND 10 Bromobenzene ND 1.0 Bromodichloromethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 10 Carbon disulfide ND 10 Carbon Tetrachloride ND 1.0 Chlorotehane ND 1.0 Chlorotehane ND 3.0 2-Chlorotolune ND 1.0 4-Chlorothane ND 1.0 4-Chlorotolune ND 1.0 4-Chlorotolune ND 1.0 45-1,2-DCE ND 1.0 dis-1,3-Dichloropropane ND 1.0 Dibromo-3-chloropropane ND 1.0 1,2-Dichlorobenzene ND 1.0 1,3-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 1,1-Dichlorobenzene ND 1.0 </td <td>1,2-Dibromoethane (EDB)</td> <td>ND</td> <td>1.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1,2-Dibromoethane (EDB)	ND	1.0								
2-Methylnaphthalene ND 4.0 Acetone ND 10 Bromodbenzene ND 1.0 Bromodichioromethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 3.0 2-Butanone ND 10 Carbon disulide ND 1.0 Chlorobenzene ND 1.0 Chlorobenzene ND 1.0 Chlorothane ND 1.0 Chlorothaluene ND 1.0 4-Chlorotoluene ND 1.0 4-Chlorotoluene ND 1.0 6is-1,3-Dichloropropene ND 1.0 6is-1,3-Dichloropropene ND 1.0 Dibromombane ND 1.0 Dibromombane ND 1.0 1,2-Dichloropenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 1,1-Dichloropropane ND 1.0 <td>Naphthalene</td> <td>ND</td> <td>2.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Naphthalene	ND	2.0								
Acetone ND 10 Bromobenzene ND 1.0 Bromodichloromethane ND 1.0 Bromomethane ND 3.0 2-Butanone ND 10 Carbon disulfide ND 10 Carbon Tetrachloride ND 1.0 Chlorotehane ND 1.0 Chlorotehane ND 1.0 Chlorotom ND 1.0 Chlorotoluene ND 1.0 4-Chlorotoluene ND 1.0 4-Chlorotoluene ND 1.0 dis-1,3-Dickloropropene ND 1.0 dis-1,3-Dickloropropene ND 1.0 Dibromo-3-chloropropane ND 1.0 1,2-Dichlorobenzene ND 1.0 1,2-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 1,1-Dichlorobenzene ND 1.0 1,1-Dichloropenzene ND 1.0 1,1-Dichloropenzene ND	1-Methylnaphthalene	ND	4.0								
Bromodichloromethane ND 1.0 Bromodichloromethane ND 1.0 Bromoform ND 3.0 2-Butanone ND 10 Carbon disulfide ND 10 Carbon Tetrachloride ND 1.0 Chlorobenzene ND 1.0 Chlorodemane ND 1.0 Chloroform ND 1.0 Chloroformethane ND 3.0 2-Chlorotoluene ND 1.0 4-Chlorotoluene ND 1.0 4-Chlorotoluene ND 1.0 dis-1,2-DCE ND 1.0 dis-1,2-Dickloropropene ND 1.0 Dibromo-3-chloropropane ND 1.0 Dibromomethane ND 1.0 1,2-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 1,1-Dichloropenae ND 1.0 1,1-Dichloropenae ND	2-Methylnaphthalene	ND	4.0								
Bromodichloromethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 3.0 2-Butanone ND 10 Carbon disulfide ND 10 Carbon Tetrachloride ND 1.0 Chlorobenzene ND 1.0 Chlorodethane ND 2.0 Chloromethane ND 3.0 2-Chlorotoluene ND 1.0 4-Chlorotoluene ND 1.0 cis-1,2-DCE ND 1.0 cis-1,2-Dichoropropene ND 1.0 1,2-Dichloropropane ND 1.0 1,2-Dichloromethane ND 1.0 1,3-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 1,1-Dichlorobenzene ND 1.0 1,1-Dichloropropane ND 1.0 1,1-Dichloropropane ND 1.0 1,1-Dichloropropane ND 1.0 1,2-Dichloropropane ND	Acetone	ND	10								
Bromoform ND 1.0 Bromomethane ND 3.0 2-Butanone ND 10 Carbon disulfide ND 10 Carbon Tetrachloride ND 1.0 Chlorobenzene ND 1.0 Chloroform ND 1.0 Chloroformethane ND 3.0 2-Chlorofoluene ND 1.0 4-Chlorofoluene ND 1.0 4-Chlorofoluene ND 1.0 4-Chlorofoluene ND 1.0 6is-1,2-DCE ND 1.0 6is-1,3-Dichloropropene ND 1.0 1,2-Dichromo-3-chloropropane ND 1.0 1,2-Dichloropropane ND 1.0 1,2-Dichlorobenzene ND 1.0 1,3-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 1,1-Dichloroethane ND 1.0 1,1-Dichloroethane ND 1.0 1,1-Dichloroethane ND	Bromobenzene	ND	1.0								
Bromomethane ND 3.0 2-Butanone ND 10 Carbon Tetrachloride ND 1.0 Chlorobenzene ND 1.0 Chlorodethane ND 2.0 Chloroform ND 3.0 2-Chlorotoluene ND 1.0 4-Chlorotoluene ND 1.0 cis-1,2-DCE ND 1.0 cis-1,3-Dichloropropane ND 1.0 1,2-Dibromo-3-chloropropane ND 1.0 1,2-Dibromo-dhoromethane ND 1.0 1,2-Dichlorobenzene ND 1.0 1,3-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 1,1-Dichloroethane ND 1.0 1,1-Dichloroethane ND 1.0 1,1-Dichloropropane ND 1.0 1,2-Dichloropropane ND 1.0 1,1-Dichloropropane ND 1.0 1,2-Dichloropropane	Bromodichloromethane	ND	1.0								
2-Butanone ND 10 Carbon disulfide ND 10 Carbon Tetrachloride ND 1.0 Chlorobenzene ND 1.0 Chloroethane ND 2.0 Chloroform ND 1.0 Chloromethane ND 3.0 2-Chlorotoluene ND 1.0 4-Chlorotoluene ND 1.0 cis-1,2-DCE ND 1.0 cis-1,3-Dichloropropene ND 1.0 Dibromo-3-chloropropane ND 1.0 Dibromomethane ND 1.0 1,2-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 1,4-Dichloromethane ND 1.0 Dichlorodifluoromethane ND 1.0 1,1-Dichloroethene ND 1.0 1,1-Dichloroethene ND 1.0 1,2-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0 1,5-Dichloropropane N	Bromoform	ND	1.0								
Carbon Tetrachloride ND 1.0 Chlorobenzene ND 1.0 Chlorobenzene ND 1.0 Chlorodethane ND 2.0 Chloroform ND 1.0 Chlorodethane ND 3.0 2-Chlorotoluene ND 1.0 4-Chlorotoluene ND 1.0 cis-1,2-DCE ND 1.0 cis-1,3-Dichloropropene ND 1.0 1,2-Dibromo-3-chloropropane ND 1.0 Dibromomethane ND 1.0 1,2-Dichlorobenzene ND 1.0 1,3-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 1,1-Dichloroethane ND 1.0 1,1-Dichloroethane ND 1.0 1,1-Dichloropropane ND 1.0 1,2-Dichloropropane ND 1.0 1,1-Dichloropropane ND 1.0 1,2-Dichloropropane ND 1.0 1,3-Dichloropropane	Bromomethane	ND	3.0								
Carbon Tetrachloride ND 1.0 Chlorobenzene ND 1.0 Chloroethane ND 2.0 Chloromethane ND 1.0 Chloromethane ND 3.0 2-Chlorotoluene ND 1.0 4-Chlorotoluene ND 1.0 cis-1,2-DCE ND 1.0 1,2-Dibromo-3-chloropropene ND 1.0 1,2-Dibromo-3-chloropropane ND 1.0 Dibromoethane ND 1.0 1,2-Dichlorobenzene ND 1.0 1,3-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 1,1-Dichloroethane ND 1.0 1,1-Dichloroethane ND 1.0 1,1-Dichloropropane ND 1.0 1,2-Dichloropropane ND 1.0 1,1-Dichloropropane ND 1.0 1,1-Dichloropropane ND 1.0 1,1-Dichloropropane ND 1.0 1,3-Dichloropropan	2-Butanone	ND	10								
Carbon Tetrachloride ND 1.0 Chlorobenzene ND 1.0 Chloroethane ND 2.0 Chloromethane ND 1.0 Chloromethane ND 3.0 2-Chlorotoluene ND 1.0 4-Chlorotoluene ND 1.0 cis-1,2-DCE ND 1.0 1,2-Dibromo-3-chloropropene ND 1.0 1,2-Dibromo-3-chloropropane ND 1.0 Dibromoethane ND 1.0 1,2-Dichlorobenzene ND 1.0 1,3-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 1,1-Dichloroethane ND 1.0 1,1-Dichloroethane ND 1.0 1,1-Dichloropropane ND 1.0 1,2-Dichloropropane ND 1.0 1,1-Dichloropropane ND 1.0 1,1-Dichloropropane ND 1.0 1,1-Dichloropropane ND 1.0 1,3-Dichloropropan	Carbon disulfide	ND	10								
Chloroethane ND 2.0 Chloroform ND 1.0 Chloromethane ND 3.0 2-Chlorotoluene ND 1.0 4-Chlorotoluene ND 1.0 cis-1,2-DCE ND 1.0 cis-1,3-Dichloropropene ND 1.0 1,2-Dichorob-3-chloropropane ND 1.0 Dibromochloromethane ND 1.0 Dibromomethane ND 1.0 1,3-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 1,1-Dichloroethane ND 1.0 1,1-Dichloroethane ND 1.0 1,2-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0	Carbon Tetrachloride										
Chloroform ND 1.0 Chloromethane ND 3.0 2-Chlorotoluene ND 1.0 4-Chlorotoluene ND 1.0 cis-1,2-DCE ND 1.0 cis-1,3-Dichloropropene ND 1.0 1,2-Dibromo-3-chloropropane ND 1.0 Dibromoethane ND 1.0 1,2-Dichlorobenzene ND 1.0 1,3-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 1,1-Dichloroethane ND 1.0 1,1-Dichloroethane ND 1.0 1,2-Dichloropropane ND 1.0 1,2-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0	Chlorobenzene	ND	1.0								
Chloroform ND 1.0 Chloromethane ND 3.0 2-Chlorotoluene ND 1.0 4-Chlorotoluene ND 1.0 cis-1,2-DCE ND 1.0 cis-1,3-Dichloropropene ND 1.0 1,2-Dibromo-3-chloropropane ND 1.0 Dibromoethane ND 1.0 1,2-Dichlorobenzene ND 1.0 1,3-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 1,1-Dichloroethane ND 1.0 1,1-Dichloroethane ND 1.0 1,2-Dichloropropane ND 1.0 1,2-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0	Chloroethane	ND	2.0								
2-Chlorotoluene ND 1.0 4-Chlorotoluene ND 1.0 cis-1,2-DCE ND 1.0 cis-1,3-Dichloropropene ND 1.0 1,2-Dibromo-3-chloropropane ND 1.0 Dibromoethane ND 1.0 Dibromomethane ND 1.0 1,2-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 1,4-Dichlorodifluoromethane ND 1.0 1,1-Dichloroethane ND 1.0 1,1-Dichloroethane ND 1.0 1,2-Dichloropopane ND 1.0 1,3-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0	Chloroform										
2-Chlorotoluene ND 1.0 4-Chlorotoluene ND 1.0 cis-1,2-DCE ND 1.0 cis-1,3-Dichloropropene ND 1.0 1,2-Dibromo-3-chloropropane ND 1.0 Dibromoethane ND 1.0 Dibromomethane ND 1.0 1,2-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 1,4-Dichlorodifluoromethane ND 1.0 1,1-Dichloroethane ND 1.0 1,1-Dichloroethane ND 1.0 1,2-Dichloropopane ND 1.0 1,3-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0	Chloromethane	ND	3.0								
4-Chlorotoluene ND 1.0 cis-1,2-DCE ND 1.0 cis-1,3-Dichloropropene ND 1.0 1,2-Dibromo-3-chloropropane ND 2.0 Dibromochloromethane ND 1.0 Dibromomethane ND 1.0 1,2-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 1,4-Dichlorodifluoromethane ND 1.0 1,1-Dichloroethane ND 1.0 1,1-Dichloroethene ND 1.0 1,2-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0	2-Chlorotoluene	ND	1.0								
cis-1,3-Dichloropropene ND 1.0 1,2-Dibromo-3-chloropropane ND 2.0 Dibromochloromethane ND 1.0 Dibromomethane ND 1.0 1,2-Dichlorobenzene ND 1.0 1,3-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 1,1-Dichloroethane ND 1.0 1,1-Dichloroethane ND 1.0 1,2-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0	4-Chlorotoluene										
cis-1,3-Dichloropropene ND 1.0 1,2-Dibromo-3-chloropropane ND 2.0 Dibromochloromethane ND 1.0 Dibromomethane ND 1.0 1,2-Dichlorobenzene ND 1.0 1,3-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 1,1-Dichloroethane ND 1.0 1,1-Dichloroethane ND 1.0 1,2-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0	cis-1,2-DCE	ND	1.0								
1,2-Dibromo-3-chloropropane ND 2.0 Dibromochloromethane ND 1.0 Dibromomethane ND 1.0 1,2-Dichlorobenzene ND 1.0 1,3-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 Dichlorodifluoromethane ND 1.0 1,1-Dichloroethane ND 1.0 1,2-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0											
Dibromochloromethane ND 1.0 Dibromomethane ND 1.0 1,2-Dichlorobenzene ND 1.0 1,3-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 Dichlorodifluoromethane ND 1.0 1,1-Dichloroethane ND 1.0 1,1-Dichloroethene ND 1.0 1,2-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0											
1,2-Dichlorobenzene ND 1.0 1,3-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 Dichlorodifluoromethane ND 1.0 1,1-Dichloroethane ND 1.0 1,1-Dichloroethene ND 1.0 1,2-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0											
1,3-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 Dichlorodifluoromethane ND 1.0 1,1-Dichloroethane ND 1.0 1,1-Dichloroethene ND 1.0 1,2-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0	Dibromomethane		1.0								
1,4-Dichlorobenzene ND 1.0 Dichlorodifluoromethane ND 1.0 1,1-Dichloroethane ND 1.0 1,1-Dichloroethene ND 1.0 1,2-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0	1,2-Dichlorobenzene		1.0								
1,4-Dichlorobenzene ND 1.0 Dichlorodifluoromethane ND 1.0 1,1-Dichloroethane ND 1.0 1,1-Dichloroethene ND 1.0 1,2-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0	1,3-Dichlorobenzene	ND	1.0								
1,1-Dichloroethane ND 1.0 1,1-Dichloroethene ND 1.0 1,2-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0	1,4-Dichlorobenzene										
1,1-Dichloroethane ND 1.0 1,1-Dichloroethene ND 1.0 1,2-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0	Dichlorodifluoromethane	ND	1.0								
1,2-DichloropropaneND1.01,3-DichloropropaneND1.0	1,1-Dichloroethane		1.0								
1,3-Dichloropropane ND 1.0	1,1-Dichloroethene	ND									
1,3-Dichloropropane ND 1.0	1,2-Dichloropropane										

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Page 14 of 16

- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: 1808974

23-Aug-18

Client:

APEX TITAN

Project: Baca Gas Com A 1A

Sample ID rb	SampT	/pe: ME	BLK	Test	Code: E	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	ID: W	3638	R	RunNo: 5	3638				
Prep Date:	Analysis Da	ate: 8/	22/2018	S	SeqNo: 1	768879	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	10		10.00		102	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		103	70	130			
Surr: Dibromofluoromethane	9.7		10.00		97.3	70	130			
Surr: Toluene-d8	10		10.00		100	70	130			

Sample ID 100ng Ics	SampT	ype: LC	S	Test	Code: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	ID: W	53638	R	RunNo: 5	3638				
Prep Date:	Analysis D	ate: 8/	22/2018	S	SeqNo: 1	768880	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	103	70	130			
Toluene	20	1.0	20.00	0	102	70	130			
Chlorobenzene	20	1.0	20.00	0	98.7	70	130			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

Page 15 of 16

P Sample pH Not In Range

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: 1808974

23-Aug-18

APEX TITAN Client: Project: Baca Gas Com A 1A

Comple ID 400	ComnT	unai I C	6	Tool	Cada: FI	DA Mathad	8260B: VOL	ATILEC		
Sample ID 100ng Ics	Sampi	ype: LC	5	Test	Code. E	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	ID: W	3638	R	unNo: 5	3638				
Prep Date:	Analysis D	ate: 8/	22/2018	S	eqNo: 1	768880	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloroethene	22	1.0	20.00	0	109	70	130			
Trichloroethene (TCE)	20	1.0	20.00	0	98.5	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		100	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		102	70	130			
Surr: Dibromofluoromethane	9.9		10.00		98.9	70	130			
Surr: Toluene-d8	10		10.00		102	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded H
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits J
- P Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified

Page 16 of 16

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 1EL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Sample Log-In Check List

APEX AZTEC Client Name Work Order Number: 1808974 RcptNo: 1 Received By: Anne Thorne 8/15/2018 6:30:00 AM Ashley Gallegos 8/15/2018 2:38:35 PM Completed By: 8/16/18 Reviewed By: Chain of Custody No Not Present 1. Is Chain of Custody complete? Yes V 2 How was the sample delivered? Courier Log In No 3. Was an attempt made to cool the samples? NA 4. Were all samples received at a temperature of >0° C to 6.0°C NA . Sample(s) in proper container(s)? 6. Sufficient sample volume for indicated test(s)? 7. Are samples (except VOA and ONG) properly preserved? No 🗸 NA 8. Was preservative added to bottles? Yes No VOA Vials 9. VOA vials have zero headspace? No (<2 or >12 unless noted) No V 10. Were any sample containers received broken? Yes # of preserved bottles checked No for pH: 11. Does paperwork match bottle labels? (Note discrepancies on chain of custody) Adjusted? No 12. Are matrices correctly identified on Chain of Custody? 13. Is it clear what analyses were requested? No No 14. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) 15. Was client notified of all discrepancies with this order? Yes No NA V Person Notified: Date By Whom: Via. eMail Phone Fax In Person Regarding Client Instructions Additional remarks. 17. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No Seal Date 1.0 Good

CHAIN	OF	CUSTODY	RECORD
Manager and State of Street in	A COLUMN TWO IS NOT THE OWNER.	THE R. P. LEWIS CO., LANSING, MICH.	the same of the sa

				CHAIN OF CUSTOUT NECOND
=4	+1211	Environmental	Analysis	Lab use only Due Date:
	Laboratory: Lab		REQUESTED	/ / / Due Date:
IAPEX .	Address: 4901 H.	aukins NE		Temp. of coolers /. Q
Office Location Lob S R.O	Albuquerque	NM 87107		Temp. of coolers /. Q when received (C°):
Grande Suit A	Al Duguerque Contact: A. Fize	eman		1 2 3 4 5
Aztec NM 87410	Phone: 505 - 34	5. 3975		Page of
Project Manager K Summars	PO/SO#:			/ / /
Sampler's Name	Sampler's Signature		1 4//////	/ / /
Ched DADON-	Mit			/ / /
Proj. No. Project Name		No/Type of Containers	Brex	(/ /
735040113418 BALA COS	Con A FIA			/ /
Matrix Date Time C G I Identifying Ma	rks of Sample(s)	VOA AVG 11LL 250 ml Glass Jar PVO		Lab Sample ID (Lab Use Only)
W 9/14/18 900 TSW-1		3	X	1808974-001
w 8/14/18 910 TSW-	۵	3	K	-009
W 8/4/18 425 TSW-		3	K	-003
W 8/11/18 930 TSW-		3	*	-004
W 8/14/18 940 TSW-		3	X	-005
1300	3	7		000
			12.	=======================================
				`.
	50% Rush ☐ 100% Rush	D-4. 1	T NOTES	
Relinquished by (Signature) Date:	Time: Received by: (Signa	(ture) 8/14/N	Time: NOTES:	April 3111 Tom Long
Religioushed by (Signature)	Time: Received by: (Signa	ture) Date: 8/14/18	Time:	ali) Intronse
	Time: Received by: (Signa	ture) Date:	135Z (COIA	Kate)
Mister Dales 5/14/18 1	254 Com	05/15/18	0630	#N36112
Refinquished by (Signature) / Date:	Time: Received by: (Signa	ture) Date:	Time: Per KAle chan	April 3111 Tom Long Rate) Enterprise #N36112 22 to 8260 fell 15+\$18/21
Matrix WW - Wastewater W - Water Controller WOA - 40 ml visit A/G - Amber / O	S - Soil SD - Solid L - Liquid		rcoal tube SL - sludge O - Oil	<i>'</i>