District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

MAR 2 6 2019

)

NMOCD

	DICTDICT III
Responsible Party: Enduring Resources	OGRID: 372286
Contact Name: Chad Snell	Contact Telephone: 505-444-0586
Contact email: csnell@enduringresources.com	Incident # (assigned by OCD): ncs1831938444 NCS 190 0 85 059
Contact mailing address: 200 Energy Court	Farmington, New Mexico 87401
	PCS 1826341898

Location of Release Source

Latitude <u>36. 144262</u>

(NAD 83 in decimal degrees to 5 decimal places)

Site Name: NEU 2207 16B	Site Type: Recycling Facility
Date Release Discovered: 12/26/2018	API# (if applicable) 3RF-28

Unit Letter	Section	Township	Range	County
В	16	22N	7W	Sandoval

Surface Owner: State Federal Tribal Private (Name:

Nature and Volume of Release

l(s) Released (Select all that apply and attach calculations or specific	justification for the volumes provided below)
Volume Released (bbls)	Volume Recovered (bbls)
Volume Released (bbls): 20 bbls	Volume Recovered (bbls): None
Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Volume Released (bbls)	Volume Recovered (bbls)
Volume Released (Mcf)	Volume Recovered (Mcf)
Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
	Volume Released (bbls) Volume Released (bbls): 20 bbls Is the concentration of dissolved chloride in the produced water >10,000 mg/l? Volume Released (bbls) Volume Released (bbls)

Cause of Release

On 12/26/18, a treated water tank at the NEU 2207 16B overflowed, resulting in a 16 bbl produced water release. The water pooled in a bermed area, and ran towards the corner of the pad. No water left the NEU 2207 16B Pad Site. Confirmation sampling for the release took place with the NMOCD on 1/10/2019.

Smith, Cory, EMNRD

From: Sent: To: Subject: Smith, Cory, EMNRD Monday, April 8, 2019 2:42 PM 'Chad Snell' NEU2207-16B incedent#nCS190850599

Chad,

OCD has approved the Closure report received 3/26/19 for the NEU 16B. The C-141 will be scanned into the 3RF-28 Online File.

Please note Enduring is responsible to remediate the elevated chlorides one the facility is P&A'ed or when the area is no longer needed for the exploration of oil and gas.

NCS1900850599 NEU 16B @ FCS1826342224

General Incident Information

Site Name:	NEU 16B
Well:	
Facility:	[fCS1826342224] NEU 2207-16B WATER RECYCLING FACILITY
Operator:	[372286] ENDURING RESOURCES, LLC
Status:	Closure Approved
Type:	Produced Water Release
District:	Aztec
Incident Location:	B-16-28N-07W Lot: 0 FNL 0 FEL
Lat/Long:	36.144262,-107.576376 NAD83

Thanks,

Cory Smith Environmental Specialist Oil Conservation Division Energy, Minerals, & Natural Resources 1000 Rio Brazos, Aztec, NM 87410 (505)334-6178 ext 115 cory.smith@state.nm.us

From: Chad Snell <<u>CSnell@enduringresources.com</u>> Sent: Tuesday, February 26, 2019 6:51 AM To: Smith, Cory, EMNRD <<u>Cory.Smith@state.nm.us</u>>

Form C-141 Page 2	State of New Mexico Oil Conservation Division	Incident IDDistrict RPFacility IDApplication ID
Was this a major release as defined by 19.15.29.7(A) NMAC? Yes No If YES, was immediate no	If YES, for what reason(s) does the responsible party	
	Initial Response	
The responsible p	party must undertake the following actions immediately unless they	could create a safety hazard that would result in injury
 The impacted area has Released materials has All free liquids and residues 	ease has been stopped. s been secured to protect human health and the environ we been contained via the use of berms or dikes, absor ecoverable materials have been removed and managed above have <u>not</u> been undertaken, explain why:	bent pads, or other containment devices.

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:	Title:		
Signature:		Date:	
email:	Telephone:		
OCD Only			
Received by:		Date:	

Form C-141 Page 3 State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?		
Did this release impact groundwater or surface water?		
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No	
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No	
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No	
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No	
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No	
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No	
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No	
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No	
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No	
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No	
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🛛 No	

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.

Field data

- Data table of soil contaminant concentration data
- \boxtimes Depth to water determination
- Determination of water sources and significant watercourses within 1/2-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Form C-141	State of New Mexico	Incident ID
Oil Conservat	Oil Conservation Division	District RP
0		Facility ID
		Application ID
public health or the enviro failed to adequately inves addition, OCD acceptance and/or regulations. Printed Name: Signature:	onment. The acceptance of a C-141 report by the O tigate and remediate contamination that pose a threa e of a C-141 report does not relieve the operator of r	Title:
OCD Only		

Form C-141 Page 5 State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be	pe included in the plan.
 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation poin Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29. Proposed schedule for remediation (note if remediation plan times) 	12(C)(4) NMAC
Deferral Requests Only: Each of the following items must be co	nfirmed as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around p deconstruction.	roduction equipment where remediation could cause a major facility
Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human healt	h, the environment, or groundwater.
I hereby certify that the information given above is true and complete rules and regulations all operators are required to report and/or file which may endanger public health or the environment. The accept liability should their operations have failed to adequately investigat surface water, human health or the environment. In addition, OCD responsibility for compliance with any other federal, state, or local	e and remediate contamination that pose a threat to groundwater, acceptance of a C-141 report does not relieve the operator of
Printed Name:	Title:
Signature:	Date:
email:	Telephone:
OCD Only	
Received by:	Date:
Approved Approved with Attached Conditions of	
Signature:	Date:

Form C-141 Page 6 State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Name: Chad Snell Title: HSE TECH
Signature: Date: D
email: <u>csnell@enduringresources.com</u> Telephone: <u>(505)444-0586</u>
OCD Only
Received by: <u>OCD</u> Date: <u>3/2/2/19</u>
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations. Closure Approved by: Date: $\frac{4/8/19}{14/8/19}$ Date: $\frac{4/8/19}{16}$ Title: Environment Approved Spec.
A Supprese Chilosiles must Be Remediated At P3A OR
A Substree Chilosils must Be Remediated At P3A OR When No Longer IN USE.

NEU 2207 16B Remediation Narrative

12/26/2018

On this day a treated water tank at the NEU 2207 16B overflowed resulting in a 16 bbl produced water spill. The water pooled in a bermed area and ran towards the south east corner of the pad. No water had left the pad. The spill was calculated by using Enduring Resources calculation tool.

12/27/2018

Enduring Resources notified the NMOCD that confirmation sampling would take place on December 31st 2018 at 9:00am. See attached *"Email Notification"*.

12/31/2018

Confirmation sampling was postponed until a later date due to bad weather. See attached "Email Notification".

1/3/2019

NMOCD was notified via email that confirmation sampling would take place on January 7th 2019 at 9:00 am. See attached *"Email Notification"*.

1/7/2019

NMOCD canceled confirmation sampling due to road conditions and bad weather. See attached "Email Notification".

1/8/2019

NMOCD was notified that confirmation sampling would take place on January 10th 2019 starting at 9:00am. See attached *"Email Notification"*.

1/10/2019

Confirmation sampling activities took place with Cory Smith of the NMOCD on site to witness sampling event. A total of eight, five point composite samples were taken from the spill area, also an additional composite sample was taken outside of the fence to ensure the spill did not reach areas outside of Enduring's location. Samples were sent in for analysis of BTEX, TPH (GRO/DRO/ORO).

1/11/2019

Pace Analytical notified Enduring personnel that one sample jar ("Section 3") had broken during shipment.

1/14/2019

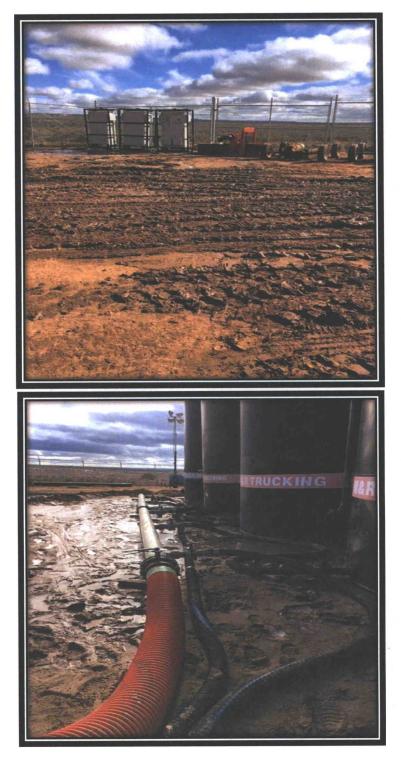
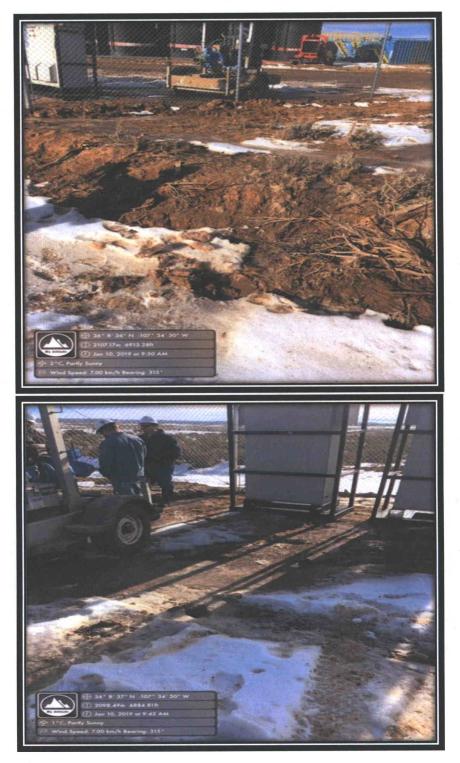
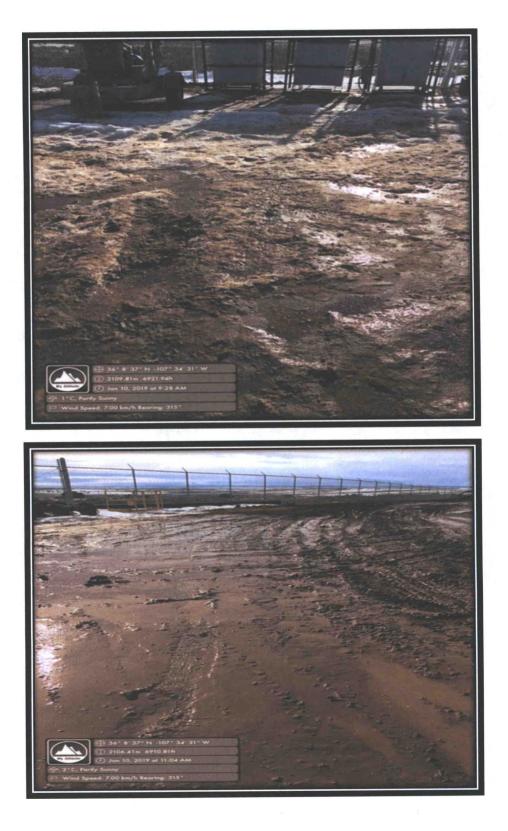
Cory Smith of the NMOCD was contacted with the NMOCD by phone and followed by email of the situation that the sample jar had broken during shipment. He approved the resample of the section. See attached *"Email Notification"*

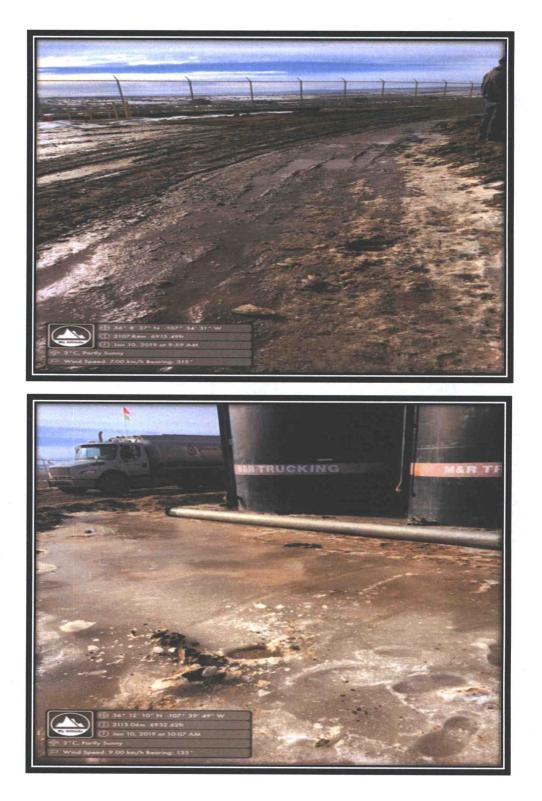
1/18/2019

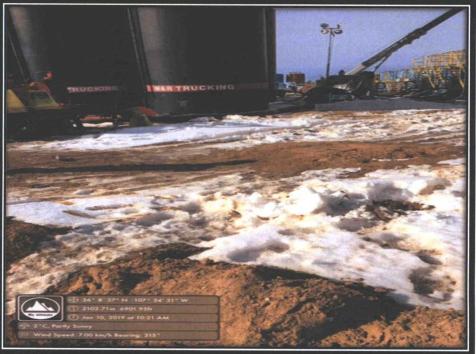
Returned results were below regulatory standards for this location See attached *"Analytical Report"*. Location was ranked by a cathodic that was drilled at the North Escavada 329H, determining ground water to be approximately 295 Ft. below surface of location of release. This set the standards to 50 ppm BTEX, 10 ppm Benzene, 1,000 ppm GRO+DRO, 2,500 ppm TPH (GRO/DRO/ORO), and 20,000 ppm Chlorides. No remediation is required at this time. See attached *"Depth to ground water proof"*.

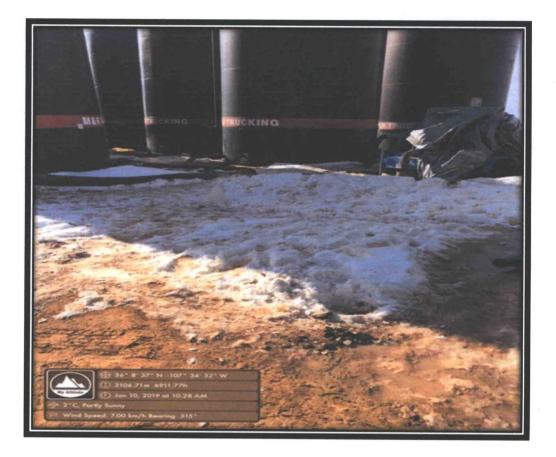
There are areas of the release that did not meet the 600 mg/kg reclamation requirement, however these areas are currently in use for the exploration and production of oil and gas. Once the areas are no longer in use or at final abandon, Enduring Resources will return to the impacted areas and ensure the area is remediated per 19.15.29 NMAC.

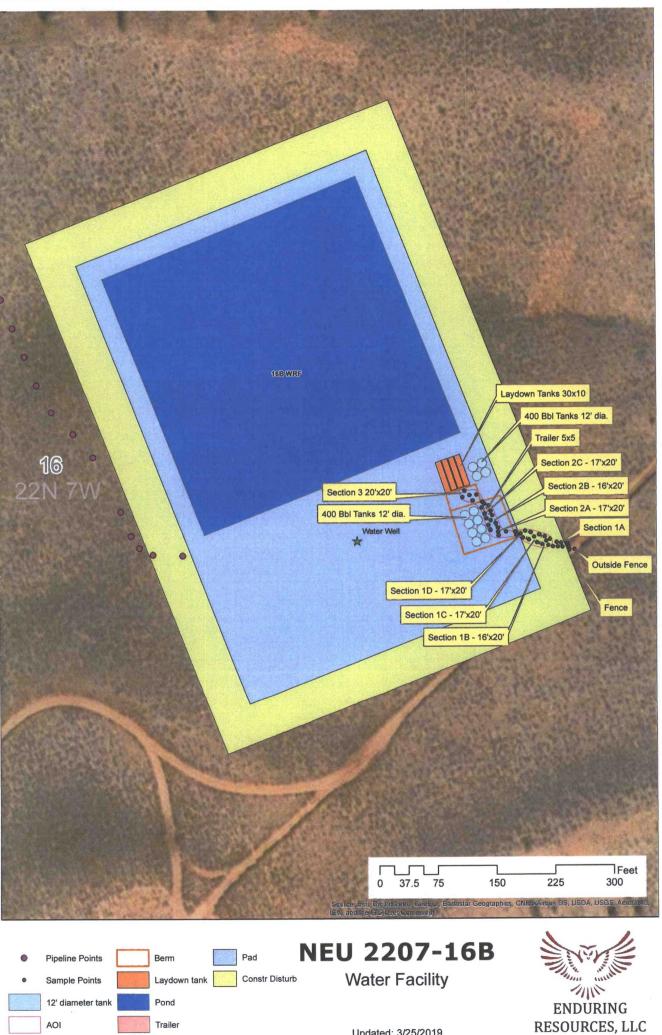
Photos: Impacted area


Photo: Sampling photos



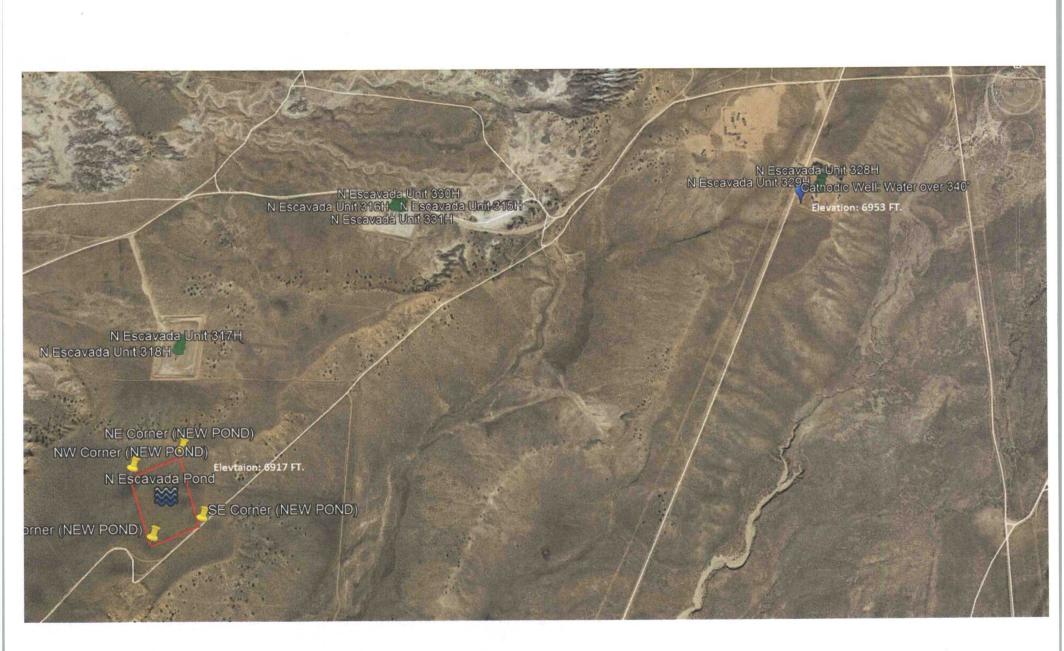


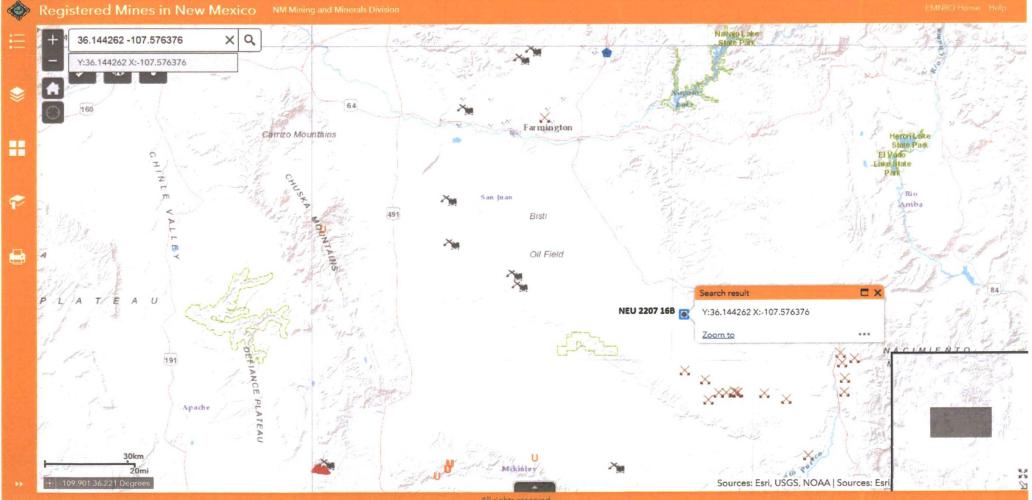


NELL 16B rwinkler 20190306

Updated: 3/25/2019

NEU 2207 16B Sample Results Table

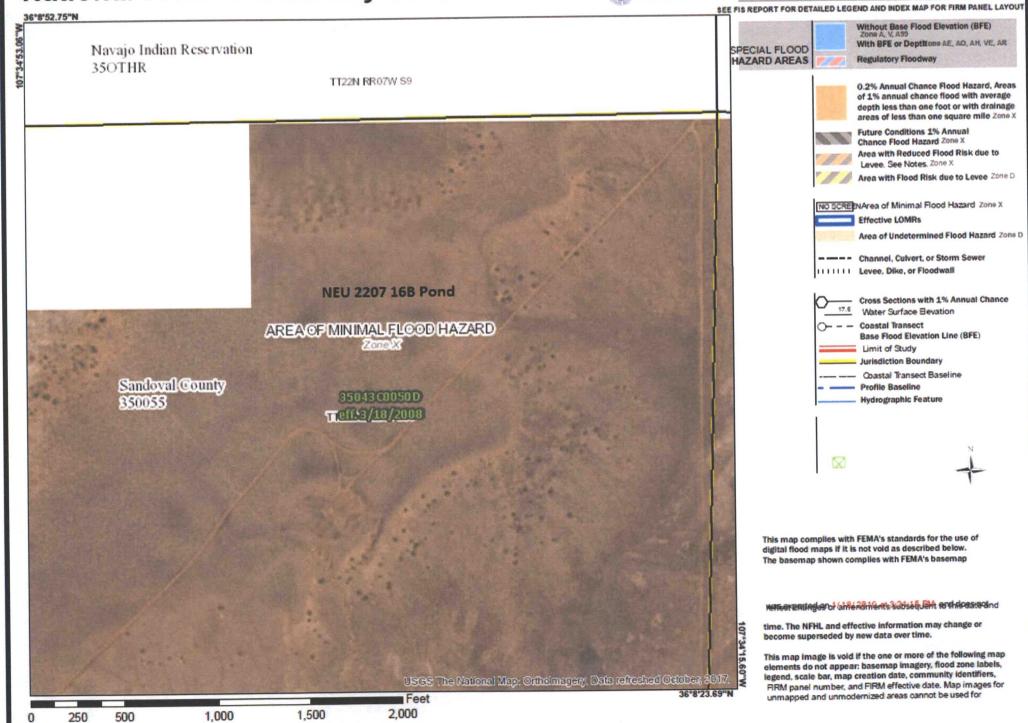

Sample Name	Description	Date	Time	DRO	GRO	DRO+ GRO	ORO	Total TPH	Benzene	Toluene	Ethylbenzen	Xylenes	Total BTEX	Chlorides
The second second		Contraction of the		NA	NA	1000	NA	2500	10	NA	NA	NA	50	20,000
STANDARD	>100 feet to GW	NA	NA	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Outside Fence	Composite	1/10/2019	9:20 AM	37	< 0.128	37	7.13	44.1	< 0.000641	< 0.00641	< 0.000641	<0.00192	<0.009612	292
Section 1A	Composite	1/10/2019	9:25 AM	11.4	< 0.124	11.52	16.1	27.6	< 0.000620	< 0.00620	< 0.00620	< 0.00186	< 0.0093	395
Section 1B	Composite	1/10/2019	9:30 AM	27.1	<0.124	27.22	23.5	50.7	< 0.000622	< 0.00622	<0.000622	<0.00187	<0.009334	125
Section 1C	Composite	1/10/2019	9:35 AM	156	2.58	158.6	12.8	171.4	< 0.000636	< 0.00636	0.0044	0.0193	0.030696	563
Section 1D	Composite	1/10/2019	9:40 AM	20.2	< 0.128	20.33	22.4	42.7	< 0.000640	< 0.00640	< 0.000640	< 0.00192	< 0.0096	332
Section 2A	Composite	1/10/2019	10:25 AM	<4.95	0.143	5.093	<4.95	10.0	0.00516	< 0.00619	0.00391	0.015	0.03026	661
Section 2B	Composite	1/10/2019	10:30 AM	25	<0.122	25.12	24.4	49.5	0.000826	< 0.00609	<0.000609	0.00229	0.009815	1110
Section 2C	Composite	1/10/2019	10:21 AM	<4.8	<0.120	<4.92	6.01	10.9	<.000600	<.00600	<.000600	<0.00180	0.007875	1360
Section 3	Composite	1/14/2019	9:30 AM	28.4	<0.129	28.52	11.7	40.2	<0.000643	< 0.00643	<0.000643	0.00298	0.010696	997


CLOSURE SAMPLES

		Fund Hed Dritting Log	
Company: WPX E	nemer .	Well: North Estanda 15 329H	Date: 10-12-2016
Location Sic/0722	NPW	Sant Awing Mexico	Rig: Stary#1
Ground Bed Depth:	340'	Water Depth:	Diemeter: /0"
Fuel: 88 gdl.		Latitude: 36,465 22-	Longitude: -107.56754
DEPTH	FO	RMATION	OTHER
0-60	Sand Stone,	Shale, Sund w/ Shale w/ Sund	PUC:
60-100	Sand Stone,	Shale, Sand w/ Shaleyw/ Sand	
100-140	Sead Stone, 1	Shale, Sand w Shale w/ Sand	-
140-190	Sand Stons, I	Shele, Sand w/ Shule w/ Sand	
190-250	Sand Stone, 1	Shale, Sand w/ Shale w/ Sand	
250-300	Sand Stone, 8	Bale, Sand w Shale w/ Sand	-
300-340	Sand Stone	Italo, Sand w/ Shale w/ Sand	
	Sand Stone, 2	ibalo, Sand w/ Shale w/ Sand	
Reserves and a second se	Sand Stone, S	inale, Sand w/ Shale w/ Sand	10
·	Sand Stone, S	ibalo, Sand w/ Shalo w/ Sand	Server State Supervise Server States and States States

		GROU	NDWATER DEPTH LOG
Company:	WPX Energ	v	Locution: North Escurds, 47-4-3-2911 Luit/Lang: 31-1465-22/-107.576175-4 Elevation:
Probe type	n Ameraell		
Cusing Inst	talkation Me		Punta
Required	lest Depths	30, 55, 8	105° unless otherwise requested
Date	Time	Depth	Comments
10-12-16	Dan	30'	drilled 30'
	llam	30'	tested NO water
	11:30	55'	utilled to SS'
	0540	55'	tested No water
	1:45	105'	willed to 105'
	1.2145	105'	tested ND water set 60' cesimy
1013-16	\$130an	1051	No water 0
	11:45	340'	-Phished anode bed
	1		

Ground Bod Drilling Los



All rights reserved

National Flood Hazard Layer FIRMette

National Wetlands Inventory surface waters and wetlands 💀 GET DATA a. ELEGEND BASEMAPS > + ++ -🔠 Feet MAP LAYERS > 00 0 ☑ Wetlands 00 -C Riparian 00 C Riparian Mapping Areas 00 Data Source O Source Type O Image Scale O Image Year Areas of Interest 0 00 FWS Managed Lands 00 Historic Wetland Data 1:9,028 36.146 | -107.594 esri USDA FSA | Esri, HERE, Garmin, IPC | U.S. Fish and Wildlife Service, National Standards and Support Tea...

Chad Snell

From:Chad SnellSent:Friday, November 16, 2018 7:35 AMTo:'Smith, Cory, EMNRD'; Fields, Vanessa, EMNRDCc:John Dockter; James McDanielSubject:RE: NEU2207-16B incedent#nCS1831938444

Cory,

Yes, lets schedule for Tuesday the 20th at 9:00am.

From: Smith, Cory, EMNRD <Cory.Smith@state.nm.us> Sent: Thursday, November 15, 2018 3:23 PM To: Chad Snell <CSnell@enduringresources.com>; Fields, Vanessa, EMNRD <Vanessa.Fields@state.nm.us> Cc: John Dockter <JDockter@enduringresources.com>; James McDaniel <JMcDaniel@enduringresources.com> Subject: RE: NEU2207-16B incedent#nCS1831938444

Chad,

Any chance we can do Tuesday the 20th? Our office is going to be short staffed and I wont be able to make sampling Wednesday.

Cory Smith Environmental Specialist Oil Conservation Division Energy, Minerals, & Natural Resources 1000 Rio Brazos, Aztec, NM 87410 (505)334-6178 ext 115 cory.smith@state.nm.us

From: Chad Snell <<u>CSnell@enduringresources.com</u>> Sent: Thursday, November 15, 2018 3:20 PM To: Smith, Cory, EMNRD <<u>Cory.Smith@state.nm.us</u>>; Fields, Vanessa, EMNRD <<u>Vanessa.Fields@state.nm.us</u>> Cc: John Dockter <<u>JDockter@enduringresources.com</u>>; James McDaniel <<u>JMcDaniel@enduringresources.com</u>> Subject: [EXT] NEU2207-16B incedent#nCS1831938444

Cory/Vanessa,

Please accept the following email as the required notification for confirmation soil sampling at the NEU2207-16B Recycling facility incident# nCS1831938444. Sample activities will be performed at 9:00am Wednesday November 21th.

Thanks.

Chad Snell HSE Tech Enduring Resources (505) 444-0586.

Chad Snell

From:	Smith, Cory, EMNRD <cory.smith@state.nm.us></cory.smith@state.nm.us>
Sent:	Monday, January 14, 2019 1:55 PM
To:	Chad Snell
Cc:	James McDaniel; John Dockter
Subject:	RE: NEU 2207 16B NCS1900850599
Follow Up Flag:	Follow up

Flagged

Chad,

Flag Status:

OCD approves Enduring's sampling, please include this approval in your final C-141.

Cory Smith Environmental Specialist Oil Conservation Division Energy, Minerals, & Natural Resources 1000 Rio Brazos, Aztec, NM 87410 (505)334-6178 ext 115 cory.smith@state.nm.us

From: Chad Snell <CSnell@enduringresources.com> Sent: Monday, January 14, 2019 1:44 PM To: Smith, Cory, EMNRD <Cory.Smith@state.nm.us> Cc: James McDaniel <JMcDaniel@enduringresources.com>; John Dockter <JDockter@enduringresources.com> Subject: [EXT] NEU 2207 16B NCS1900850599

Cory,

As discussed this morning you were not able to witness a resample of one of the sample locations at the NEU 2207 16B pond that was sampled on Thursday January 10th 2019. The reason for a resample was one of the sections, "Section3" (next to laydown tanks) had broken during transport to the lab. The new sample was taken today Monday 1/14/2019. If you have any question please let me know.

Thank you.

Chad Snell HSE Tech Enduring Resources (505) 444-0586.

ANALYTICAL REPORT

January 18, 2019

Enduring Resources

Sample Delivery Group:
Samples Received:
Project Number:
Description:

L1060386 01/11/2019

NEU 2207 16B

Report To:

John Dockter 200 Energy Court Farmington, NM 87401

Entire Report Reviewed By:

Daphne R Richards

Daphne Richards Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
OUTSIDE FENCE L1060386-01	6
SECTION 1:A L1060386-02	7
SECTION 1:B L1060386-03	8
SECTION 1:C L1060386-04	9
SECTION 1:D L1060386-05	10
SECTION 2:A L1060386-06	11
SECTION 2:B L1060386-07	12
SECTION 2:C L1060386-08	13
Qc: Quality Control Summary	14
Total Solids by Method 2540 G-2011	14
Wet Chemistry by Method 9056A	16
Volatile Organic Compounds (GC) by Method 8015/8021	18
Semi-Volatile Organic Compounds (GC) by Method 8015	21
GI: Glossary of Terms	22
Al: Accreditations & Locations	23
Sc: Sample Chain of Custody	24

Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

ACCOUNT: Enduring Resources PROJECT:

SDG: L1060386 DATE/TIME: 01/18/19 15:08

PAGE: 2 of 25

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

TC

Cn

Sr

Qc

GI

A

Sc

OUTSIDE FENCE L1060386-01 Solid			Collected by John Dockter	Collected date/time 01/10/19 09:50	Received date/time 01/11/19 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1223606	1	01/15/19 14:27	01/15/19 14:47	KBC
Wet Chemistry by Method 9056A	WG1222536	1	01/17/19 14:15	01/18/19 10:59	ELN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1223441	1	01/12/19 18:29	01/15/19 17:30	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1222953	1	01/16/19 06:02	01/16/19 12:37	KME
			Collected by	Collected date/time	Received date/time
SECTION 1:A L1060386-02 Solid			John Dockter	01/10/19 09:42	01/11/19 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1223606	1	01/15/19 14:27	01/15/19 14:47	KBC
Wet Chemistry by Method 9056A	WG1222536	1	01/17/19 14:15	01/18/19 11:07	ELN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1223441	1	01/12/19 18:29	01/15/19 17:54	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	W61222953	1	01/16/19 06:02	01/16/19 13:53	KME
			Collected In	Collected data Mar	Decoluted data it
SECTION 1:B L1060386-03 Solid			Collected by John Dockter	Collected date/time 01/10/19 09:28	Received date/time 01/11/19 08:45
Method	Batch	Dilution	Dropagation		hashert
are united	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1223606	1	01/15/19 14:27	01/15/19 14:47	KBC
Wet Chemistry by Method 9056A	WG1222536	1	01/17/19 14:15	01/18/19 11:16	ELN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1223441	1	01/12/19 18:29	01/15/19 18:19	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1222953	1	01/16/19 06:02	01/16/19 13:37	KME
			Collected by	Collected date/time	Received date/time
SECTION 1:C L1060386-04 Solid			John Dockter	01/10/19 09:55	01/11/19 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1223606	1	01/15/19 14:27	01/15/19 14:47	KBC
Wet Chemistry by Method 9056A	WG1222536	1	01/17/19 14:15	01/18/19 11:25	ELN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1224256	1	01/12/19 18:29	01/16/19 14:15	JAH
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1222953	1	01/16/19 06:02	01/16/19 13:22	KME
			Collected by	Collected date/time	Received date/time
SECTION 1:D L1060386-05 Solid			John Dockter	01/10/19 09:59	01/11/19 08:45
Method	Betch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1223606	1	01/15/19 14:27	01/15/19 14:47	KBC
Net Chemistry by Method 9056A	WG1222536	1	01/17/19 14:15	01/18/19 11:34	ELN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1223441	1	01/12/19 18:29	01/15/19 19:07	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1222953	1	01/16/19 06:02	01/16/19 13:06	KME
			Collocted b	Collected detable	Decel and doubt
SECTION 24 LINCODOS OS CONST			Collected by John Dockter	Collected date/time 01/10/19 10:07	Received date/time 01/11/19 08:45
SECTION 2:A L1060386-06 Solid			SALID PACETES	STE 101 13 10703	011113-00/43
lethod	Batch	Dillution	Preparation date/time	Analysis date/time	Analyst
fotal Solids by Method 2540 G-2011	WG1223606	1	01/15/19 14:27	01/15/19 14:47	KBC
Net Chemistry by Method 9056A	WG1222536	1	01/17/19 14:15	01/18/19 11:42	ELN
/olatile Organic Compounds (GC) by Method 8015/8021	WG1223441	1	01/12/19 18:29	01/15/19 19:31	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1222953	1	01/16/19 06:02	01/16/19 11:23	KME
,		×		V	i sini B

L1060386

01/18/19 15:08

3 of 25

Enduring Resources

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

Тс

Cn

Sr

Qc

GI

AI

Sc

SECTION 2:B L1060386-07 Solid			Collected by John Dockter	Collected date/time 01/10/19 10:13	Received date/time 01/11/19 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	(and) of
Total Solids by Method 2540 G-2011	WG1223608	1	01/15/19 14:09	01/15/19 14:22	KBC
Wet Chemistry by Method 9056A	WG1222536	1	01/17/19 14:15	01/18/19 11:51	ELN
volatile Organic Compounds (GC) by Method 8015/8021	WG1223441	1	01/12/19 18:29	01/15/19 19:55	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1222953	1	01/16/19 06:02	01/16/19 12:52	KME
			Collected by	Collected date/time	Received date/time
SECTION 2:C L1060386-08 Solid			John Dockter	01/10/19 10:21	01/11/19 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1223608	1	01/15/19 14:09	01/15/19 14:22	KBC.
Wet Chemistry by Method 9056A	WG1224912	5	01/17/19 14:00	01/18/19 08:27	ELN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1223441	1	01/12/19 18:29	01/15/19 20:20	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1222953	1	01/16/19 06:02	01/16/19 11:37	KME

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Dapline R Richards

Daphne Richards Project Manager

ACCOUNT: Enduring Resources PROJECT:

SDG: L1060386 DATE/TIME: 01/18/19 15:08

PAGE: 5 of 25

OUTSIDE FENCE Collected date/time: 01/10/19 09:50

SAMPLE RESULTS - 01

ONE LAB, NATIONWIDE.

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	78.0		1	01/15/2019 14:47	WG1223606	

Wet Chemistry by Method 9056A

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Chloride	292		12.8	1	01/18/2019 10:59	WG1222536

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		QC
Benzene	ND		0.000641	1	01/15/2019 17:30	WG1223441	
Toluene	ND		0.00641	1	01/15/2019 17:30	WG1223441	⁷ Gl
Ethylbenzene	ND		0.000641	1	01/15/2019 17:30	WG1223441	G
Total Xylene	ND		0.00192	1	01/15/2019 17:30	WG1223441	and a local state of the
TPH (GC/FID) Low Fraction	ND		0.128	1	01/15/2019 17:30	WG1223441	ÂI
(S) a,a,a-Trifluorotoluene(FID)	93.4		77.0-120		01/15/2019 17:30	WG1223441	
(S) a,a,a-TriRuorotoluene(PID)	10,2		72.0-128		01/15/2019 17:30	WG1223441	°Sc

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	37.3		5.13	1	01/16/2019 12:37	WG1222953
C28-C40 Oil Range	7.13		5.13	1	01/16/2019 12:37	WG1222953
(S) o-Terphenyl	73.2		18.0-148		01/16/2019 12:37	WG1222953

- p	
² Tc	
³ Ss	
⁴ Cn	
⁵ Sr	
⁶ Qc	
⁷ Gl	
⁸ Al	

SECTION 1:A Collected date/time: 01/10/19 09:42

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	dy No			date / time	
Total Solids	80.7		1	01/15/2019 14:47	WG1223606

Wet Chemistry by Method 9056A

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Chloride	395		12.4	1	01/18/2019 11:07	WG1222536

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	10
Analyte	mg/kg		mg/kg		date / time		Č
Benzene	ND		0.000620	1	01/15/2019 17:54	WG1223441	
Toluene	ND		0.00620	1	01/15/2019 17:54	WG1223441	70
Ethylbenzene	ND		0.000620	1	01/15/2019 17:54	WG1223441	
Total Xylene	ND		0.00186	1	01/15/2019 17:54	WG1223441	R
TPH (GC/FID) Low Fraction	ND		0.124	1	01/15/2019 17:54	WG1223441	A
(S) a,a,a-Trifluorotaiuene(FID)	91.4		77.0-120		01/15/2019 17:54	WG1223441	
(S) a.a.a.Trifluorotoluene(PID)	99.9		72.0-128		01/15/2019 17:54	WG1223441	995

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	11.4		4.96	1	01/16/2019 13:53	WG1222953	
C28-C40 Oll Range	16.1		4.96	1	01/16/2019 13:53	WG1222953	
(S) o-Terphenyl	73.8		18.0-148		01/16/2019 13:53	WG1222953	

SECTION 1:B Collected date/time: 01/10/19 09:28

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

rotar bonac by mouroe	LOIOOL	.0.11				
	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	80			date / time		
Total Solids	80.4		1	01/15/2019 14:47	WG1223606	

Wet Chemistry by Method 9056A

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Chloride	125		12.4	1	01/18/2019 11:16	WG1222536

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		D (
Benzene	ND		0.000622	1	01/15/2019 18:19	WG1223441	L
Toluene	ND		0.00622	1	01/15/2019 18:19	WG1223441	7
Ethylbenzene	ND		0.000622	1	01/15/2019 18:19	WG1223441	0
Total Xylene	ND		0.00187	1	01/15/2019 18:19	WG1223441	August and Inc.
TPH (GC/FID) Low Fraction	ND		0.124	1	01/15/2019 18:19	WG1223441	2
(S) a,a,a-Trifluorotaluene(FID)	93.5		77.0-120		01/15/2019 18:19	WG1223441	and the host
(S) a,a,a-Trifluorotoluene(PID)	101		72.0-128		01/15/2019 18:19	WG1223441	9

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	27.1		4.98	1	01/16/2019 13:37	WG1222953
C28-C40 Oil Range	23.5		4.98	1	01/16/2019 13:37	WG1222953
(S) o-Terphenyl	75.2		18.0-148		01/16/2019 13:37	WG1222953

Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

SECTION 1:C Collected date/time: 01/10/19 09:55

SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

To

Ss

Сп

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	9%			date / time	
Total Solids	78.7		1	01/15/2019 14:47	WG1223606

Wet Chemistry by Method 9056A

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Chloride	563		12.7	1	01/18/2019 11:25	WG1222536

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis		Batch	
Analyte	mg/kg		mg/kg		date / time			
Benzene	ND		0.000636	1	01/16/2019 14:15		WG1224256	
Toluene	ND		0.00636	1	01/16/2019 14:15		WG1224256	
Ethylbenzene	0.00440	<u>V3</u>	0.000636	1	01/16/2019 14:15		WG1224256	
Total Xylene	0.0193	V3	0.00191	1	01/16/2019 14:15		WG1224256	
TPH (GC/FID) Low Fraction	2.58	V3	0.127	1	01/16/2019 14:15		WG1224256	
(S) a,a,a-Trifluorataluene(FID)	97.1		77.0-120		01/16/2019 14:15		WG1224256	
(S) a.a.a.Trifluorotoluene(PID)	94.8		72.0-128		01/16/2019 14:15		WG1224256	

Sample Narrative:

L1060386-04 WG1224256: Previous run also had low IS/SURR recovery. Matrix effect.

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	156		5.09	1	01/16/2019 13:22	WG1222953
C28-C40 Oil Range	12.8		5.09	1	01/16/2019 13:22	WG1222953
(S) o-Terphenyl	83.0		18.0-148		01/16/2019 13:22	WG1222953

SECTION 1:D

SAMPLE RESULTS - 05

ONE LAB. NATIONWIDE.

Collected date/time: 01/10/19 09:59

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	92			date / time		
Total Solids	78.1		1	01/15/2019 14:47	WG1223606	

Wet Chemistry by Method 9056A

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Chloride	332		12.8	1	01/18/2019 11:34	WG1222536

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	15
Analyte	mg/kg		mg/kg		date / time		°G
Benzene	ND		0.000640	1	01/15/2019 19:07	WG1223441	
Toluene	ND		0.00640	1	01/15/2019 19:07	WG1223441	70
Ethylbenzene	ND		0.000640	1	01/15/2019 19:07	WG1223441	G
Total Xylene	ND	<u>J6</u>	0.00192	1	01/15/2019 19:07	WG1223441	
TPH (GC/FID) Low Fraction	ND	J3	0.128	1	01/15/2019 19:07	WG1223441	A
(S) a,a,a-Trifluorotoluene(FID)	91.5		77.0-120		01/15/2019 19:07	WG1223441	2.30 m
(S) a.a.a Trifluorotoluene(PID)	99.7		72.0-128		01/15/2019 19:07	WG1223441	⁹ S

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	20.2		5.12	1	01/16/2019 13:06	WG1222953
C28-C40 Oil Range	22.4		5.12	1	01/16/2019 13:06	WG1222953
(S) o-Terphenyl	66.2		18.0-148		01/16/2019 13:06	WG1222953

SECTION 2:A Collected date/time: 01/10/19 10:07

SAMPLE RESULTS - 06

ONE LAB, NATIONWIDE.

conectee datestime. 01/10/15 10.07

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	96			date / time		
Total Solids	80.8		1	01/15/2019 14:47	WG1223606	

Wet Chemistry by Method 9056A

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Chloride	661		12.4	1	01/18/2019 11:42	WG1222536

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg		date / time		°Q(
Benzene	0.00516		0.000619	1	01/15/2019 19:31	WG1223441	
Toluene	ND		0.00619	1	01/15/2019 19:31	WG1223441	⁷ GI
Ethylbenzene	0.00391		0.000619	1	01/15/2019 19:31	WG1223441	0
Total Xylene	0.0150		0.00186	1	01/15/2019 19:31	WG1223441	TO DELLA LEADER N
TPH (GC/FID) Low Fraction	0.143		0.124	1	01/15/2019 19:31	WG1223441	A
(S) a,a,a-Trifluorataluene(FID)	93.2		77.0-120		01/15/2019 19:31	WG1223441	
(S) a.a.a-Trifluorotoluene(PID)	101		72.0-128		01/15/2019 19:31	WG1223441	°Sc

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	ND		4.95	1	01/16/2019 11:23	WG1222953
C28-C40 Oll Range	ND		4.95	1	01/16/2019 11:23	WG1222953
(S) o-Terphenyl	58.5		18.0-148		01/16/2019 11:23	WG1222953

² Tc	
³ Ss	
⁴ Cn	
⁵ Sr	
⁶ Qc	
⁷ Gl	
⁸ Al	
⁹ Sc	1

SECTION 2:B Collected date/time: 01/10/19 10:13

SAMPLE RESULTS - 07

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

Total Solids by Mean	00201002	.011				
	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	90			date / time		
Total Solids	82.1		1	01/15/2019 14:22	WG1223608	

Wet Chemistry by Method 9056A

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Chloride	1110	13	12.2	1	01/18/2019 11:51	WG1222536

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	ň.
Analyte	mg/kg		mg/kg		date / time		Q
Benzene	0.000826		0.000609	1	01/15/2019 19:55	WG1223441	
Toluene	ND		0.00609	1	01/15/2019 19:55	WG1223441	⁷ GI
Ethylbenzene	ND		0.000609	1	01/15/2019 19:55	WG1223441	G
Total Xylene	0.00229	B	0.00183	1	01/15/2019 19:55	WG1223441	R
TPH (GC/FID) Low Fraction	ND		0.122	1	01/15/2019 19:55	WG1223441	AI
(S) a,a,a-Trifluorotaluene(FID)	92.6		77.0-120		01/15/2019 19:55	WG1223441	1
(S) a.a.a Trifluorotaluene(PID)	100		72.0-128		01/15/2019 19:55	WG1223441	°Sc

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	25.0		4.87	1	01/16/2019 12:52	WG1222953
C28-C40 Oil Range	24.4		4.87	1	01/16/2019 12:52	WG1222953
(S) o-Terphenyl	79.8		18.0-148		01/16/2019 12:52	WG1222953

ACC	OUNT:	
Enduring	Resources	

SAMPLE RESULTS - 08 SECTION 2:C Collected date/time: 01/10/19 10:21

ONE LAB. NATIONWIDE.

Ss

⁴Cn

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ľ
Analyte	%			date / time		5
Total Solids	83.3		1	01/15/2019 14:22	WG1223608	

Wet Chemistry by Method 9056A

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Chloride	1360		60.0	5	01/18/2019 08:27	WG1224912

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	ND		0.000600	1	01/15/2019 20:20	WG1223441	
Toluene	ND		0.00600	1	01/15/2019 20:20	WG1223441	
Ethylbenzene	ND		0.000600	1	01/15/2019 20:20	WG1223441	
Total Xylene	ND		0.00180	1	01/15/2019 20:20	WG1223441	
TPH (GC/FID) Low Fraction	ND		0.120	1	01/15/2019 20:20	WG1223441	
(S) a,a,a-Trifluorotoluene(FID)	92.8		77.0-120		01/15/2019 20:20	WG1223441	
(S) a.o.o-Trifluorotoluene(PID)	100		72.0-128		01/15/2019 20:20	WG1223441	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mgAcg		mg/kg		date / time	
C10-C28 Diesel Range	ND		4.80	1	01/16/2019 11:37	WG1222953
C28-C40 Oli Range	6.01		4.80	1	01/16/2019 11:37	WG1222953
(S) o-Terphenyl	70.8		18.0-148		01/16/2019 11:37	WG1222953

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3376227-1 01/15/1	9 14:47				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	%		%	%	
Total Solids	0.00100				

L1060384-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1060384-03 01/15	/19 14:47 • (DUP)	R3376227-3	01/15/19 14	47		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	79.3	79.3	1	0.120		10

Laboratory Control Sample (LCS)

(LCS) R3376227-2	01/15/19 14:47				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Cn Sr GI A

Sc

Ss

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

Ss

Cn

Sr

GI

AI

Sc

Method Blank (MB)

(MB) R3376221-1 01/1	5/19 14:22				
	MB Result	MB Qualifier	MB MDL	MB RDL	
nalyte	%		%	%	
lotal Solids	0.000				

L1060386-08 Original Sample (OS) • Duplicate (DUP)

(OS) L1060386-08 01/15/19	9 14:22 • (DUP)	R3376221-3	01/15/19 14:	22			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	%	%		%		%	
Total Solids	83.3	83.3	1	0.0510		10	

Laboratory Control Sample (LCS)

(LCS) R3376221-2 01/15/	19 14:22				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1060386-01,02,03,04,05,06,07

ONE LAB. NATIONWIDE

Tc

Ss

Cn

Sr

Method Blank (MB)

	And in case of the local division of the loc	
(MB)	R3376911-1	01/17/19 17:58

1 - 1				
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	4.82	J	0.795	10.0

L1060249-11 Original Sample (OS) • Duplicate (DUP)

(OS) L1060249-11 01/18/19	09:29 • (DUP) I	23376911-7 0	1/18/19 09:3	37			
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	mg/kg	mg/kg		%		%	
Chloride	3530	3290	5	6.88		15	

L1060386-07 Original Sample (OS) • Duplicate (DUP)

L1060386-07 Orig	inal Sample	(OS) • Du	plicate	(DUP)		
(OS) L1060386-07 01/18/	19 11:51 • (DUP) R	3376911-8 01	/18/19 12:0	0		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	1110	924	1	17.9	13	15

Laboratory Control Sample (LCS)

(LCS) R3376911-2 01/17/19	18:07				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	215	108	80.0-120	

L1060249-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1060249-03 01/17/1	9 18:24 • (MS) R	3376911-3 01/1	7/19 18:33 • (MS	SD) R3376911-4	01/17/19 18:42							
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	598	3230	3640	2330	68.6	0.000	1	80.0-120	EV	E J3 V	44.1	15

ACCOUNT: Enduring Resources

SDG: L1060386

DATE/TIME: 01/18/19 15:08

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

TC

Ss

Cn

Sr

GI

Method Blank (MB)

(MB) R3376949-1 01/18/19 07:46

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg	ino addinet	mg/kg	mg/kg
Chloride	5.24	7	0.795	10.0

L1061644-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1061644-01 01/18/19 10:06 • (DUP) R3376949-5 01/18/19 10:16

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	1430	1380	5	3.88		15

L1061910-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1061910-05 01/18/19	9 10:45 • (DUP) R	3376949-6	01/18/19 10:	:55		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	547	572	1	4.47		15

Laboratory Control Sample (LCS)

(LCS) R3376949-2 01/18/19	9 07:58				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	213	106	80.0-120	

L1061642-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1061642-01 01/18/19 09:06 • (MS) R3376949-3 01/18/19 09:16 • (MSD) R3376949-4 01/18/19 09:46													
Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits													
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Chloride	500	1970	2430	2290	93.0	65.8	1	80.0-120	E	E J6	5.75	15	

ACCOUNT: Enduring Resources PROJECT:

SDG: L1060386 DATE/TIME: 01/18/19 15:08

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method 8015/8021

Method Blank (MB)

9 11:30																
MB Result	MB Qualifier	MB MDL	MB RDL													
mg/kg		mg/kg	mg/kg													
u		0.000120	0.000500													
0.000313	1	0.000150	0.00500													
U		0.000110	0.000500													
U		0.000460	0.00150													
U		0.0217	0.100													
94.8			77.0-120													
104			72.0-128													
	MB Result mg/kg U 0.000313 U U U U 94.8	MB Result MB Qualifier mg/kg U 0.000313 J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J U J J J J J J J U J J J J J J J J J J J J J J J J J J J J J <t< td=""><td>MB Result MB Qualifier MB MDL mg/kg mg/kg U 0.000120 0.000313 J 0.000150 U 0.000100 U 0.000460 U 0.0217 94.8</td><td>MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg mg/kg U 0.000120 0.000500 0.000313 J 0.000150 0.000500 U 0.000110 0.000500 0.000500 U 0.000460 0.00150 0.00150 U 0.00110 0.00150 0.00150 U 0.00127 0.100 0.00150 94.8 77.0-120 0.00120 0.00120</td><td>MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg U 0.000120 0.000500 0.000313 2 0.000150 0.000500 U 0.000110 0.000500 0.000500 U 0.000460 0.00150 0.00150 U 0.0017 0.100 0.00150 U 0.0217 0.100 94.8 77.0-120</td><td>MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg U 0.000120 0.000500 0.000313 0.000150 0.000500 U 0.000110 0.000500 U 0.000460 0.00150 U 0.0017 0.100 94.8 77.0-120</td><td>MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg U 0.000120 0.000500 0.000313 0.000150 0.000500 U 0.000110 0.000500 U 0.000460 0.00150 U 0.00127 0.100 U 0.00110 0.00150 U 0.000460 0.00150 U 0.0217 0.100 94.8 72.0-120</td><td>MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg U 0.000120 0.000500 0.000313 _ 0.000150 0.000500 U 0.000100 0.000500 U 0.000460 0.00150 U 0.0017 0.100 94.8 T2.0-120</td><td>MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg U 0.00120 0.000500 0.000313 0.000150 0.000500 U 0.000100 0.000500 U 0.000460 0.00150 U 0.0010 0.00150 U 0.0010 0.00150 U 0.00170 0.00150 U 0.0217 0.100 94.8 77.0-120</td><td>MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg U 0.000120 0.000500 0.000313 0.000150 0.00500 U 0.000110 0.000500 U 0.000110 0.000500 U 0.000460 0.00150 U 0.000460 0.00150 U 0.0217 0.100 94.8 Y2.0-120</td><td>MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg U 0.00120 0.00500 0.000313 0.000150 0.00500 U 0.000100 0.000500 U 0.000460 0.00150 U 0.00100 0.00150 U 0.00100 0.001500 U 0.000460 0.00150 U 0.00170 0.100 94.8 T7.0-120</td><td>MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg U 0.00120 0.000500 0.000313 0.000150 0.000500 U 0.000100 0.000500 U 0.000100 0.000500 U 0.000460 0.00150 U 0.00100 0.00150 U 0.00100 0.00150 U 0.00170 0.100 94.8 T.0.120</td><td>MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg U 0.00120 0.000500 0.000313 0.000150 0.00500 U 0.000100 0.000500 U 0.000100 0.000500 U 0.000460 0.00150 U 0.00100 0.00150 U 0.00100 0.00150 U 0.00160 0.00150 U 0.00160 0.00150 U 0.0217 0.100 94.8 T2.0-120</td><td>MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg U 0.00120 0.000500 0.000313 0.000150 0.000500 U 0.000100 0.000500 U 0.000100 0.000500 U 0.0004600 0.001500 U 0.00100 0.001500 U 0.00100 0.001500 U 0.00170 0.001500 U 0.001600 0.001500 U 0.00170 0.100 94.8 T.0.120</td><td>MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg U 0.00120 0.000500 0.000313 0.000150 0.00500 U 0.000100 0.000500 U 0.000100 0.000500 U 0.000460 0.00150 U 0.000460 0.00150 U 0.00100 0.00150 U 0.00170 0.00150 U 0.00160 0.00150 U 0.00160 0.00150 U 0.02170 0.100 94.8 T.0.120</td><td>MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg U 0.00120 0.00500 0.000313 0.000150 0.00500 U 0.000100 0.000500 U 0.000460 0.00150 U 0.00100 0.001500 U 0.000460 0.00150 U 0.00100 0.001500 U 0.00100 0.001500 U 0.00100 0.001500 U 0.00160 0.001500 U 0.00170 0.001500 U 0.00160 0.001500 U 0.00170 0.100</td></t<>	MB Result MB Qualifier MB MDL mg/kg mg/kg U 0.000120 0.000313 J 0.000150 U 0.000100 U 0.000460 U 0.0217 94.8	MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg mg/kg U 0.000120 0.000500 0.000313 J 0.000150 0.000500 U 0.000110 0.000500 0.000500 U 0.000460 0.00150 0.00150 U 0.00110 0.00150 0.00150 U 0.00127 0.100 0.00150 94.8 77.0-120 0.00120 0.00120	MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg U 0.000120 0.000500 0.000313 2 0.000150 0.000500 U 0.000110 0.000500 0.000500 U 0.000460 0.00150 0.00150 U 0.0017 0.100 0.00150 U 0.0217 0.100 94.8 77.0-120	MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg U 0.000120 0.000500 0.000313 0.000150 0.000500 U 0.000110 0.000500 U 0.000460 0.00150 U 0.0017 0.100 94.8 77.0-120	MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg U 0.000120 0.000500 0.000313 0.000150 0.000500 U 0.000110 0.000500 U 0.000460 0.00150 U 0.00127 0.100 U 0.00110 0.00150 U 0.000460 0.00150 U 0.0217 0.100 94.8 72.0-120	MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg U 0.000120 0.000500 0.000313 _ 0.000150 0.000500 U 0.000100 0.000500 U 0.000460 0.00150 U 0.0017 0.100 94.8 T2.0-120	MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg U 0.00120 0.000500 0.000313 0.000150 0.000500 U 0.000100 0.000500 U 0.000460 0.00150 U 0.0010 0.00150 U 0.0010 0.00150 U 0.00170 0.00150 U 0.0217 0.100 94.8 77.0-120	MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg U 0.000120 0.000500 0.000313 0.000150 0.00500 U 0.000110 0.000500 U 0.000110 0.000500 U 0.000460 0.00150 U 0.000460 0.00150 U 0.0217 0.100 94.8 Y2.0-120	MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg U 0.00120 0.00500 0.000313 0.000150 0.00500 U 0.000100 0.000500 U 0.000460 0.00150 U 0.00100 0.00150 U 0.00100 0.001500 U 0.000460 0.00150 U 0.00170 0.100 94.8 T7.0-120	MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg U 0.00120 0.000500 0.000313 0.000150 0.000500 U 0.000100 0.000500 U 0.000100 0.000500 U 0.000460 0.00150 U 0.00100 0.00150 U 0.00100 0.00150 U 0.00170 0.100 94.8 T.0.120	MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg U 0.00120 0.000500 0.000313 0.000150 0.00500 U 0.000100 0.000500 U 0.000100 0.000500 U 0.000460 0.00150 U 0.00100 0.00150 U 0.00100 0.00150 U 0.00160 0.00150 U 0.00160 0.00150 U 0.0217 0.100 94.8 T2.0-120	MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg U 0.00120 0.000500 0.000313 0.000150 0.000500 U 0.000100 0.000500 U 0.000100 0.000500 U 0.0004600 0.001500 U 0.00100 0.001500 U 0.00100 0.001500 U 0.00170 0.001500 U 0.001600 0.001500 U 0.00170 0.100 94.8 T.0.120	MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg U 0.00120 0.000500 0.000313 0.000150 0.00500 U 0.000100 0.000500 U 0.000100 0.000500 U 0.000460 0.00150 U 0.000460 0.00150 U 0.00100 0.00150 U 0.00170 0.00150 U 0.00160 0.00150 U 0.00160 0.00150 U 0.02170 0.100 94.8 T.0.120	MB Result MB Qualifier MB MDL MB RDL mg/kg mg/kg mg/kg U 0.00120 0.00500 0.000313 0.000150 0.00500 U 0.000100 0.000500 U 0.000460 0.00150 U 0.00100 0.001500 U 0.000460 0.00150 U 0.00100 0.001500 U 0.00100 0.001500 U 0.00100 0.001500 U 0.00160 0.001500 U 0.00170 0.001500 U 0.00160 0.001500 U 0.00170 0.100

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3375908-1 01/15/1	9 09:29 • (LCSD) R3375908-2	01/15/19 09:54	4						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Benzene	0.0500	0.0455	0.0457	91.1	91.5	76.0-121			0.436	20
Taluene	0.0500	0.0452	0.0452	90.5	90.3	80.0-120			0.136	20
Ethylbenzene	0.0500	0.0486	0.0486	97.2	97.2	80.0-124			0.0284	20
Total Xylene	0.150	0.142	0.142	94.8	94.7	37.0-160			0.0703	20
(S) a,a,a-Trifluoratoluene(FID)				94.0	94.4	77.0-120				
(S) a,a,a-Trifluoratoluene(PID)				102	102	72.0-128				

Laboratory Control Sample (LCS) - Laboratory Control Sample Duplicate (LCSD)

(LCS) R3375908-3 01/15/	19 10:18 • (LCSD) R3375908-4	1 01/15/19 10:42							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	96	%	%			96	%
TPH (GC/FID) Low Fraction	5.50	5.23	5.27	95.0	95.9	72.0-127			0.875	20
(S) a,a,a-Trifluoratoluene(FID)				107	107	77.0-120				
(S) a,a,a-Trifluoratoluene(PID)				113	114	72.0-128				

ONE LAB. NATIONWIDE.

TC

Ss

Cn

Sr

GI

AI

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

L1060386-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1060386-05 01/15/19 19:07 • (MS) R3375908-6 01/15/19 21:08 • (MSD) R3375908-7 01/15/19 21:32

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	₩¢	%		%			%	%
Benzene	0.0640	ND	0.0461	0.0459	71,3	71.0	1	10.0-155			0.465	32
Toluene	0.0640	ND	0.0429	0.0425	66.2	65.5	1	10.0-160			1.12	34
Ethylbenzene	0.0640	ND	0.0439	0.0434	68.6	67.9	1	10.0-160			1.11	32
Total Xylene	0.192	ND	0.127	0.128	65.4	65.9	1	10.0-160	J6	JG	0.804	32
(S) a,a,a-Trifluorotoluene(FID)					91.6	93.8		77.0-120				
(S) a,a,a-Trifluorotoluene(PID)					99.4	101		72.0-128				

L1060386-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1060386-05 01/15/1	9 19:07 • (MS) F	3375908-8 0	1/15/19 21:56 • (1	MSD) R33759	08-9 01/15/19	22:21						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	1 <u>1</u>	%		%			%	ж
TPH (GC/FID) Low Fraction	7.04	ND	3.88	1.85	54.3	25.5	1	10.0-151		<u>J3</u>	70.8	28
(S) a,a,a-Trifluarotaluene(FID)					94.5	92.4		77.0-120				
(S) a.a.a.a-Trifluorotoluene(PID)					103	103		72.0-128				

GI

AI

Sc

TC

Ss

Cn

WG1224256 Volatile Organic Compounds (GC) by Method 8015/8021

QUALITY CONTROL SUMMARY

ONE LAB, NATIONWIDE.

Tc

Ss

Cn

Sr

GI

AI

Sc

Method Blank (MB)

(MB) R3376643-3 01/16/1	9 13:31				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	0.000220	1	0.000120	0.000500	
Toluene	0.000226	1	0.000150	0.00500	
Ethylbenzene	U		0.000110	0.000500	
Total Xylene	U		0.000460	0.00150	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a.a.a.Trifluorataluene(FID)	102			77.0-120	
(S) a,a,a-Trifluorataluene(PID)	101			72.0-128	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3376643-1 01/16/19	9 12:02 . (LCSD)) R3376643-2	01/16/19 12:24							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
TPH (GC/FID) Low Fraction	5.50	6.06	6.20	110	113	72.0-127			2.31	20
(S) a,a,o-Trifluorataluene(FID)				110	109	77.0-120				
(S) a,a,a-Trifluoratoluene(PID)				108	106	72.0-128				

Laboratory Control Sample (LCS) - Laboratory Control Sample Duplicate (LCSD)

(LCS) R3376643-4 01/17/1	19 00:02 • (LCSI	D) R3376643-5	5 01/17/19 00:2	4							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.0500	0.0491	0.0529	98.1	106	76.0-121			7.51	20	
Taluene	0.0500	0.0442	0.0473	88.4	94.6	80.0-120			6.77	20	
Ethylbenzene	0.0500	0.0483	0.0520	96.5	104	80.0-124			7.44	20	
Total Xylene	0,150	0.144	0.156	96.1	104	37.0-160			7.61	20	
(S) a,a,a-Trifluorataluene(FID)				102	102	77.0-120					
(S) a.a.a.Trifluorataluene(PID)				101	102	72.0-128					

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Method Blank (MB)

(MB) R3376289-1 01/16/	/19 10:46				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	
(S) o-Terphenyl	87.8			18.0-148	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3376289-2 01/16/	19 10:58 • (LCSI	D) R3376289-3	3 01/16/19 11:11							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	96	%			%	%
Extractable Petroleum Hydrocarbon	50.0	34.8	35.1	69.6	70.2	50.0-150			0.858	20
C10-C28 Diesel Range	50.0	37.8	38.0	75.6	76.0	50.0-150			0.528	20
(S) a-Terphenyl				74.5	74.5	18.0-148				

ACCOUNT: Enduring Resources

⁵Sr [€]Qc 7GI

TC

Ss

Cn

GLOSSARY OF TERMS

ONE LAB. NATIONWIDE.

Tc

Ss

Cn

Sr

QC

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
D	Not detected at the Reporting Limit (or MDL where applicable).
DL	Reported Detection Limit.
DL (dry)	Reported Detection Limit.
lec.	Recovery.
PD	Relative Percent Difference.
DG	Sample Delivery Group.
S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
)	Not detected at the Reporting Limit (or MDL where applicable).
inalyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
imits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Driginal Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Jualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Jncertainty Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
ample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
ample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
ample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
L	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
JG	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
V	The sample concentration is too high to evaluate accurate spike recoveries.
V3	The internal standard exhibited poor recovery due to sample matrix interference. The analytical results will be biased high. BDL results will be unaffected.

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

ordere i roer bento dern			
Alabama	40660	Nebraska	NE-0S-15-05
Alaska	17-026	Nevada	TN-03-2002-34
Arizona	AZ0612	New Hampshire	2975
Arkansas	86-0469	New Jersey–NELAP	TN002
California	2932	New Mexico 1	n/a
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
lorida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina 3	41
Georgia 1	923	North Dakota	R-140
offeb	TN00003	Ohio-VAP	CL0069
linois	200008	Oklahoma	9915
idiana	C-TN-01	Oregon	TN200002
ewe	364	Pennsylvania	68-02979
ansas	E-10277	Rhode Island	LA000356
entucky 16	90010	South Carolina	84004
entucky 2	16	South Dakota	n/a
ouisiana	AI30792	Tennessee 14	2006
ouisiana	LA180010	Texas	T 104704245-17-14
faine	TN0002	Texas ⁵	LAB0152
faryland	324	Utah	TN00003
lassachusetts	M-TN003	Vermont	VT2006
lichigan	9958	Virginia	460132
finnesota	047-999-395	Washington	C847
lississippi	TN00003	West Virginia	233
lissouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA

Third Party Federal Accreditations

A2LA - ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁴ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

PAGE:

23 of 25

-

	Section 188			(astronomic astronomic ast	T				Ana	alysis / Con	ntainer.	/ Preser	vative				Chain o	of Custody	Page_of_
aduring Resources		ourt a	a an or BACINGIOL			Pres Chk											E		
Report to: John Dockter	<u> </u>			r Bendurings	cesources.	on		IMRO)									Mount Phone: Phone:	Letumon Rd Juliet, TN 37122 615-758-5858 800-767-5859 15-758-5859	
and the second				City/State Collected:	and the			MR								24	1	and the state of the	60.221
Description: NEU 2207	Client Project #		1	Lab Project #			TEX)	laRo/DRO/	2			2.9					T		060 386 098
Fax: Collected by (print): John Dockter	Site/Facility ID	#		P.O. H		1	(81	(ako)	rides			New Street					1 Barris	num: ENDF	RESANM
John Deatra Collected by (signature) Adm Docktwo Infimediately Packed on Ice N_YD	Rush? (La Same Day Next Day Two Day Three Da	y5 Day 10 Day		Quote # Date Resu	ults Needed	No; of	2021	8015 (Children			200					TSR: PB: Ship	pped Via:	nne Richards
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	cutt				Sec.						Pr-		Remarks	Sample & flab or
outside Fence	Comp	55	Sales.	1/10/19	9:50am		and the second se	X	1					1		1		all and a second	-01
section 1: A	Comp	-55	and the second	1/10/19	9:42am	11		X	X	-		-		1	-	T	T		-
Section 1: B.	Comp	35		1/10/19	9:28am	T	X	K	X			-		115					•
Section 1. C.	Cump	55		1/10/19	9:55 am	n 1	X	X	X	+		\vdash		1		3.	T	1	
Section 1:D	Comp	55	and an	1/10/19			X	X	X	-	1 10	\vdash		E		1715	1-		12.1
Section 2: A	Comp	59	1	1/10/19		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		+	The Standard Street of Street and	-		H		T			-	the said	4
Section 2:3	Comp	55		1/10/19	10-139m		and the second se	4	X	-		-		1		12.2	-	1	
Section 2:0	Comp	55	-	1/10/19	and the second se	1-1-	X	×	X	-		-		17	RAD	CR	EIN	1: <0.5 mi	RIM
Section 3	Comp	55		y10/19	10:28am	na	YX	×	X	1				IT				V.	
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks:							Re	が行き	pH Flow	w	Tem			Both	tles a	arriv bottl	re intact: les uned: olume sent	
WW - WasteWater DW - Drinking Water OT - Other	Samples retu UPSF	urned via: FedExCd	urier	Contraction of the State of the	Tracking #		4196	3	260	1677		nived	Yes / N	0	VOA		Harad	If Applics	able Checked: Y
Relinquished by : (Signature)	3	Date://IC	0/19	3:10pm	Received by: (Sign		A.						HCL/ TBR ottles Rel	ThieoH eceived:	if p	reserva	ition o	equired by l	Login: Date/Tim
Selinquished by (Signature)		Date:	32		Received by: (Sig		1			No. of Concession, Name of Street, or other	2=1.2%	FE	8		al constant of the later				Conditio
Refinquished by : (Signature)		Date:		Time:	Received for lab	by: (Si	Martine	DA		Date:	19		time: Ol	845	CONTRACT CONTRACT				QC)

and the second second	100 C	1
Troy	1 111194	1 12 22
1107	MULL	iap.
A REAL PROPERTY AND A REAL PROPERTY.	10 March 10 March 20 Ca	0.2504 10.704

Pace Analytical® National Center for Testing & Innovation

Login #: L1060386 Client: ENDRESANM	Date: 1/11/19	Evaluated by: Troy Dunlap
-------------------------------------	---------------	---------------------------

Non-Conformance (check applicable items)

	Sample Integrity	Chain of Custody Clarification		
	Parameter(s) past holding time	Login Clarification Needed	1	If Bushes Container
The second	Temperature not in range	Chain of custody is incomplete	15	If Broken Container:
	Improper container type	Please specify Metals requested.		Insufficient packing material around container Insufficient packing material inside
1	pH not in range. Insufficient sample volume.	Please specify TCLP requested.	X	cooler Improper handling by carrier (FedEx / UPS / Couri
		Received additional samples not listed on coc.		Sample was frozen
	Sample is biphasic.	Sample ids on containers do not match ids on coc	T	
	Vials received with headspace.	Trip Blank not received.		Container lid not intact
X	Broken container	Client did not "X" analysis.	17	If no Chain of Custody: Received by:
1	Broken container:	Chain of Custody is missing	17	Date/Time:
2	Sufficient sample remains		17	Temp./Cont. Rec./pH:
	(in the second		1	Carrier:
	Comment and		1.7	Tracking#

Login Comments: Container for SECTION 3 received broken. Sample could not be salvaged. Sample is mixed with the cooler water.

	Client informed by:	Call	P. U		Press and the second		and the set of the set		北部
	A REAL PROPERTY AND A REAL		Email	X	Voice Mail	X	Date:1/11/19	Time:1704	
1	Login Instant	Client Conta	ct: D			T Skel	A STATE OF THE STA		

Login Instructions:

Notified client sample received broken and unable to analyze

ANALYTICAL REPORT

January 22, 2019

Enduring Resources

Sample Delivery Group: Samples Received: Project Number: Description:

L1061171 01/15/2019

NEU 2207 16B

Report To:

James McDaniel 200 Energy Court Farmington, NM 87401

Entire Report Reviewed By: Naphne R Richards

Daphne Richards Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

Ss

Cn

Sr

Qc

GI

AI

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
SECTION 3 L1061171-01	5
Qc: Quality Control Summary	6
Total Solids by Method 2540 G-2011	6
Wet Chemistry by Method 9056A	7
Volatile Organic Compounds (GC) by Method 8015/8021	8
Semi-Volatile Organic Compounds (GC) by Method 8015	9
GI: Glossary of Terms	10
Al: Accreditations & Locations	11
Sc: Sample Chain of Custody	12

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

SECTION 3 L1061171-01 Solid			Collected by Chad Snell	Collected date/time 01/14/19 09:30	Received date/time 01/15/19 08:30
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	and the second of the second
Total Solids by Method 2540 G-2011	WG1224629	1	01/17/19 13:24	01/17/19 13:45	KDW
Wet Chemistry by Method 9056A	WG1224912	1	01/17/19 14:00	01/18/19 08:56	ELN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1224698	1	01/16/19 16:54	01/17/19 18:06	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1225329	1	01/17/19 21:30	01/18/19 13:31	AAT

ACCOUNT: Enduring Resources PROJECT:

SDG: L1061171

DATE/TIME: 01/22/19 12:47 PAGE: 3 of 12

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Dapine R Richards

Daphne Richards Project Manager

SECTION 3

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Tc

Ss

Cn

Collected date/time: 01/14/19 09:30

Total Solids by Method 2540 G-2011	Total Solids	by Method	2540 G-2011	
------------------------------------	--------------	-----------	-------------	--

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	77.7		1	01/17/2019 13:45	WG1224629	

Wet Chemistry by Method 9056A

							-
And the second se	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Chloride	997		12.9	1	01/18/2019 08:56	WG1224912	

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	ND		0.000643	1	01/17/2019 18:06	WG1224698	
Toluene	ND		0.00643	1	01/17/2019 18:06	WG1224698	
Ethylbenzene	ND		0.000643	1	01/17/2019 18:06	WG1224698	
Total Xylene	0.00298		0.00193	1	01/17/2019 18:06	WG1224698	
TPH (GC/FID) Low Fraction	ND		0.129	1	01/17/2019 18:06	WG1224698	
(S) a,a,a-Trifluorotoluene(FID)	91.8		77.0-120		01/17/2019 18:06	WG1224698	
(S) a,a,a-Trifluorotoluene(PID)	99.0		72.0-128		01/17/2019 18:06	WG1224698	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	28.4		5.15	1	01/18/2019 13:31	WG1225329
C28-C40 Oil Range	11.7		5.15	1	01/18/2019 13:31	WG1225329
(S) o-Terphenyl	83.7		18.0-148		01/18/2019 13:31	WG1225329

ACCOUNT:

Enduring Resources

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

Tc

Ss

⁴Cn

Sr

Q

GI

AI

Sc

Method Blank (MB)

(MB) R3376822-1 01/1	7/19 13:45	Contraction of the second	Access of the later				
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	%		%	%			
Total Solids	0.00100						

L1061142-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1061142-02 01/17/19	13:45 • (DUP) R	3376822-3 (01/17/19 13:4	5		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	71.9	72.2	1	0.294		10

Laboratory Control Sample (LCS)

(LCS) R3376822-2 01/17/1	9 13:45				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

ACCOUNT: Enduring Resources

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1061171-01

Tc

Ss

⁺Cn

Sr

Method Blank (MB)

(MB) R3376949-1 01/18/	19 07:46		and the second second		-
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Chloride	5.24	J	0.795	10.0	

L1061644-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1061644-01 01/18/19 1	10:06 • (DUP) R	3376949-5 01	/18/19 10:1	6		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	1430	1380	5	3.88		15

L1061910-05 Original Sample (OS) • Duplicate (DUP)

L1061910-05 Orig	jinal Sample ((OS) • Dup	licate (DUP)							
5) L1061910-05 01/18	/19 10:45 • (DUP) R	3376949-6	01/18/19 10	/18/19 10:55							
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits					
Analyte	mg/kg	mg/kg		%		%					
Chloride	547	572	1	4.47		15					

Laboratory Control Sample (LCS)

(LCS) R3376949-2 01/18/1	9 07:58				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	213	106	80.0-120	

L1061642-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1061642-01 01/18/19	09:06 • (MS) R	3376949-3 01/	18/19 09:16 • (N	ISD) R3376949	-4 01/18/19 09	:46						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
1 maketa		D			~	2		0			0/	Q/
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			70	70

ACC	OUNT:
Enduring	Resources

DATE/TIME: 01/22/19 12:47

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Tc

Ss

°Cn

Sr

Q

GI

AI

Sc

Volatile Organic Compounds (GC) by Method 8015/8021

Method Blank (MB)

(MB) R3377469-5 01/17/1	9 11:28					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/kg		mg/kg	mg/kg		
Benzene	0.000177	1	0.000120	0.000500		
Toluene	0.000557	Ţ	0.000150	0.00500		
Ethylbenzene	0.000115	<u>J</u>	0.000110	0.000500	*	
Total Xylene	U		0.000460	0.00150		
TPH (GC/FID) Low Fraction	U		0.0217	0.100		
(S) a,a,a-Trifluorotoluene(FID)	94.8			77.0-120		
(S) a.a.a-Trifluorotoluene(PID)	104			72.0-128		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3377469-1 01/17/19	9 09:26 • (LCSD) R3377469-2	01/17/19 09:50							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Benzene	0.0500	0.0473	0.0467	94.6	93.4	76.0-121			1.21	20
Toluene	0.0500	0.0463	0.0456	92.7	91.1	80.0-120			1.72	20
Ethylbenzene	0.0500	0.0493	0.0486	98.5	97.2	80.0-124			1.41	20
Total Xylene	0.150	0.146	0.144	97.5	96.0	37.0-160			1.52	20
(S) a.a.a-Trifluorotoluene(FID)				94.7	94.4	77.0-120				
(S) a,a,a-Trifluorotoluene(PID)				103	102	72.0-128				

Laboratory Control Sample (LCS) - Laboratory Control Sample Duplicate (LCSD)

(LCS) R3377469-3 01/17/	19 10:15 • (LCSD)	R3377469-4	01/17/19 10:39							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
TPH (GC/FID) Low Fraction	5.50	5.38	5.32	97.9	96.7	72.0-127			1.22	20
(S) o,a,a-Trifluorotoluene(FID)				105	105	77.0-120				
(S) a,a,a-Trifluorotoluene(PID)				112	112	72.0-128				

SDG: L1061171

QUALITY CONTROL SUMMARY

Semi-Volatile Organic Compounds (GC) by Method 8015

Method Blank (MB)

(MB) R3376998-1 01/18/	19 12:45	and show it must have been	Line Production of Concerning	1				
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/kg		mg/kg	mg/kg				
C10-C28 Diesel Range	U		1.61	4.00				
C28-C40 Oil Range	U		0.274	4.00				
(S) o-Terphenyl	88.4			18.0-148				

Laboratory Control Sample (LCS) - Laboratory Control Sample Duplicate (LCSD)

(LCS) R3376998-2 01/1	8/19 13:01 • (LCSD) R3376998-3	01/18/19 13:16							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
C10-C28 Diesel Range	50.0	42.6	42.6	85.2	85.2	50.0-150			0.000	20
(S) o-Terphenyl				101	104	18.0-148				

²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

GLOSSARY OF TERMS

Tc

Ss

Cn

Sr

Qc

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
ID	Not detected at the Reporting Limit (or MDL where applicable).
DL	Reported Detection Limit.
DL (dry)	Reported Detection Limit.
ec.	Recovery.
PD	Relative Percent Difference.
DG	Sample Delivery Group.
S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
J	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
imits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Driginal Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
JG	The sample matrix interfered with the ability to make any accurate determination; spike value is low.

SDG: L1061171

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN-03-2002-34
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico 1	n/a
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
daho	TN00003	Ohio-VAP	CL0069
llinois	200008	Oklahoma	9915
ndiana	C-TN-01	Oregon	TN200002
owa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	90010	South Carolina	84004
Kentucky ²	16	South Dakota	n/a
ouisiana	AI30792	Tennessee 14	2006
ouisiana ¹	LA180010	Texas	T 104704245-17-14
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	TN00003
Massachusetts	M-TNO03	Vermont	VT2006
Michigan	9958	Virginia	460132
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA

Third Party Federal Accreditations

A2LA - ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

PAGE:

11 of 12

35

Enduring Resources	Energy car	L	illing Inform ames McI 1 92 Count Aztec, NM	Daniel y Road 310 0		res hk			Analys	S7 CON		Preserva				12065 Lebanon Rd	
Report to: Dames McDania Project Description: NEU 22			Email To: SMcdo	City/State Collected:	ing resource	500-		WRO)								Phone: 615-758-3658 Phone: 800-761-5859 Pas: 615-758-5859	1/7/
Phone: 505-636-9731 Fax: Collected by (print)	Client Project # Site/Facility ID R			Lab Project #			1	DR01								1045 Acctnum: END Template:	RESANM
Collected by (signature);	Same Day		lay	Quote # Date Resul	ts Needed	No. of	Soul Brex	8015 (120	Mulor ides							Prelogin: TSR: 288 - Dapi PB: Shipped Via: Remarks	sample it ilab to
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Kntrs TO	10	80	2		1999						-6
Section 3	come.	55		01-14-19	9:30 km	1	V	6	-	and the second				1			
														-			
														And			
															1 000	Gample Peccie C Seal Present/Int	Checklint act: 2MP
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bloassay	Remarks:				RAD SCRE	738				St. 1			mp	1	000	C Signed/Acturate ttles arrive intac grant bottles used fficient volume Se	ti li -
WW - WasteWater DW - Drinking Water OT - Other	Samples ret	urned via: FedEx(Date:	lourier	Time:	Tracking # U Received by: (Si	l 9	6	326	,0	10	GGG Blank R	eceived:			中的一团	11 ACD1 DA Zero Headspace: reservation Correc	
Relinquished by : (Signature) Relinquished by : (Signature)		J-/4 Date:	-19	12:0000	Received by: (Si	gnatur	e)	2 		Tem C.		1 0.1%	3	Received	oz	preservation required	Con
Relinquished by : (Signature)	2. A.	Date:	-	Time:	Received or fal	b by: (5	ignature	e)		Date	and the second se		Time:	0873		lold	NCF