OIL CONSERVATION COMMISSION P. O. BOX 2088

SANTA FE, NEW MEXICO 87501

January 16, 1970

Mr. Robert N. Enfield P. O. Box 807 Roswell, New Mexico 88201

Administrative Order TX-32

Dear Mr. Enfield:

Reference is made to your request for approval of the completion of your Hudson Federal Well No. 1, located in Unit O of Section 30, Township 18 South, Range 33 East, Lea County, New Mexico, as a tubingless completion, to produce gas from the Queen formation through 4½ inch casing.

It is my understanding that although the well was completed in May of 1963, no pipeline connection could be obtained until now. Further, that although the gas does have a high nitrogen content, no liquids are produced which would cause production through the casing to be inefficient or impractical.

Pursuant to the authority granted me by Rule 107 d (4), you are hereby authorized to produce the subject well as described above. The Commission does reserve the right however to rescind this order if it appears that conditions have changed which render casing production inadvisable.

Very truly yours,

A. L. PORTER, Jr. Secretary-Director

ALP/DSN/og

cc: Oil Conservation Commission - Hobbs Well File (Santa Pe OCC) ROBERT N. ENFIELD

OIL PROPERTIES
P. O. BOX 807

ROSWELL. NEW MEXICO 88201

November 26, 1969

505 622-5552

TXissued che for cc

Mr. D. S. Nutter NEW MEXICO OIL CONSERVATION COMMISSION P. O. Box 2088 Santa Fe, New Mexico 87501

Re: R

Robert N. Enfield #1 Hudson-Federal, located 660' FSL & 1980' FEL, Sec. 30, T18S, R33E, Lea County, New Mexico

Dear Dan:

As discussed with you earlier this week, I would like to apply for an exception to Rule 107D-2, so I would be allowed to produce this dry gas well as a tubingless completion through μ_2^{lg} casing.

This well was completed May 1, 1963 as a dry gas well with a high nitrogen content and for the last six years we have been unable to secure a pipeline connection. Phillips Petroleum is presently in the area and has offered me a connection on this well. I am attaching hereto the latest test we have made on this well by Coleman Engineering Company of Hobbs and a recent C-122 which is being filed with your Hobbs office showing that this well makes absolutely no liquids of any kind whatsoever and due to the high nitrogen content has a low economic value to its gas.

It is requested that the Oil Conservation Commission grant me administrative approval to produce this well through μ_2 casing as a tubingless completion. If there is any further information you need, please advise.

Yours very truly,

Robert N. Enfield

RNE*pms Encl.

COLEMAN PETROLEUM ENGINEERING COMPANY

PHONE EXPRESS 3-3813

P. O. BOX 1829

HOBBS, NEW MEXICO

DEC 1 1969

NOVEMBER 17, 1969

ROBERT N. ENFIELD. P. O. Box 807 ROSWELL. NEW MEXICO.

RE: UNDESIGNATED PENROSE QUEEN HUDSON FEDERAL, No. 1 4-POINT BACK PRESSURE TEST & GAS SAMPLE & ANALYSIS

GENTLEMEN:

IN COMPLIANCE WITH YOUR INSTRUCTIONS, A 4-POINT BACK PRESSURE TEST WAS CONDUCTED, AND THE ABSOLUTE OPEN FLOW POTENTIAL WAS CALCULATED TO BE 1390 MCF/D. THE AVERAGE GAS PRODUCTION WAS RECORDED AS 815.7 MCF/D WITH 0.00 BO/D.

THE SAMPLE TAKEN DURING TEST YIELDED COMPONENT PERCENTAGES

AS FOLLOWS:

CARBON DIOXIDE	NIL	, 1
NI TROGEN AND THE SECOND SECOND	55,62	٠,
OXYGEN	0.00	
HYDROGEN SULFIDE	0.00	
METHANE TO THE STATE OF THE STA	35.97	
ETHANE SERVICE AND	2.65	
PROPANE	2.08	;
I SO BUTANE . THE STATE OF THE	0.31	
NORMAL BUTANE	0.68	
ISO PENTANE	0.30	
NORMAL PENTANE	0.34	
HEXANE PLUS	2.05	::'
TOTAL :	100.00	
CALCULATED SP. G	0.8960)
CALCULATED OF O		

CALCULATED BTU SAT DRY CALCULATED BTU SAT WET

VERY TRULY YOURS

COLEMAN PETROLEUM ENG. CO.

JOE A. COLEMAN

Ту	e Test										Test Date				
ļ] Initia	1	•		Annual			X Spe	cial	11-1	2-69	l	•	
Company Conn					ection										
R	OBERT	N. E	NFIE	LD				None					·	<u> </u>	
Poc						Form	tion	D	0		,		Unit	40	
	NDESIG			Total Depth	· · · ·		.		OSE C		N Elevation				
1	-3-196		İ	4349	<u>.</u>			Plug Back	עו		37521	DE		DSON	EDERAL
	- 3- 30 . Size	∀1.		d 404:		t At		Perloratio	nei Oo	السند			Well N		COERAL
	1/211	9.5	J	4.090	4	3301	4		330	To	HOLE 434	91		_No.1	
The	. Sino	Wt.		d		At .		Perloratio			·····		Unit	Sec.	Twp. Rge.
	-					-		from		То			0	30	18 33
Typ	e Well – Sing			•	.О. М	luitiple			Packer 6	ol Al Noni	<u>.</u>		County	LEA	
Elen	ducing Thru	\$	INGI	rote Temp. °F		Magn A	haugi	Temp. *F				·	State	LEA	<u></u>
1	ASING	.		• 433(60		5			3.2	NEW MEXICO		
	L	- H - 1	72	Go		% CO 2		% N 2	 	% H ₂ S		tover		Run	Тарв
4	340'			0.89	5		. 00		5, 62			x .		· - ·	
			Fl	OW DAT	<u> </u>		<u> </u>			ING E		C	ASING	DATA	Duration
NO.	Prover Line	x	Orifice	Press.		Diff	,	Temp.	Pres	TWG	Temp.	Pre	•	Temp.	of
	Size		Size	p.s.i.g.	_	hw		•F	p.s.i.	<u> </u>	•F	p.s.	1.9.	• F	Flow
SI	2 15	161	1/2	210	-			1 E	142 74		75	- 			6YEARS
2.	2 13/	/64 /64	1/2	210 180	+	-		45	84.	-					1.0
3.	$\frac{2}{2}$, $\frac{12}{12}$	764 764	1/2	1.52				38	989						1.0
4.	2 10	764	1/2	102				34	11	11	_			-	1.0
5.	2 23/	64	1/2	225		_		40	37.	5	_	_		_	
						RAT	ΕO	FFLOW	CALCUL	ATIO	NS				100
	Coeffic	clent			_	Pres	sure		v Temp.	1	Gravity	`	Super	F	Rate of Flow
NO.	(24 Hc	out)	~	─VhwPm		F	 m	F	actor Ft.		Factor Fa		mpress. tor, Fpv		Q, McId
 	4 279	5	┼	<u> </u>		223.	<u>"</u>	1 1	71.5	1 0)56		23	104	
2.	4 27		 			193			017)56		20		5.6
3	4.279	}				165.	2	1.1	022)56		17	77	
4.	4.279)		-		115.	2	1.1	026)56	_	•	53	4.1
5.	4,279	9				238.	2	1.	020)56)27	1112	7.5
NO.	Pi	Temp	.•R	Tr		Z	Gas	Liquid Hy	drocarbon	Ratio _	DR:	Y GAS	····		Mcf/bbl.
1.	0 37	50.5		1 42		955	!	.I. Gravity	-	-	arbons —	206	- : · -	T	Deg.
2.	0.37	503		1.42 1.41	_	961 961		cific Gravit	-		·) <u>896</u> ****	,	<u>_ </u>	<u> </u>
3.	0.27	498		1.40		966		cilic Gravi icai Press		601			P.S.I		P.S.I.A.
4.	0.19	494		1.39		-		ical Tempe		3.56				. Р.	R
5.	0.40	<u> </u>		1.40	0.9	909			<u>.</u>						
P _C	1668		782		- 2	5.2		P _c 2		1.9	972	/2\ \	Pc2	٦,	1.821
- 2	Pt ²		*	805.0	1 9	- R _v ²	(1)	₽2 - R	, - -		······································	\2'	₽² – R	n	
2		897 <u>.</u>	(-5)	1008.4	 	74.5			4	,			•	· -	
3		1171	5	1371 7	14	$\frac{74.3}{11.2}$	• • •	٦ ,	P ₂ 2]n_	14	13	•		
4	-	1 31 4	1,2	1727.1	10.	55.8	AOI	- Q -	₽ ² P ² = R ²	- -					ŧ
5								· L.	J				``		
Abo	olute Open F	Tlow 1	390)				Maid	€ 15.025	Angle	of Slone	• <u>48</u> 0	38'	Slope	0.881
~~a		1P @			40	110			RESSU			LATION	ıs	3.00	-,
Неп	narks: A Bi	ir w	7-3	70) 43	40	<u> </u>	U	FOR P	N F 3 3 U	<u> </u>		1 0	<u>, , , , , , , , , , , , , , , , , , , </u>		
_							<u> </u>		Ch	21	D. C	Rema			
Арр	roved By Co	mmission	12	Conduc		-			Colculate				Checker		C1444
				COLE	MAI	N PE	Γ. E	NG.CO	JOE.	Α.	COLE	MAN	JOE .	A. COL	_EMAN

COLEMAN PETROLEUM ENGINEERING COMPANY

PHONE EXPRESS 3-3613 P. O. BOX 1829 HOBBS, NEW MEXICO

BOTTOM HOLE PRESSURE RECORD

be from no	LL INDOSCIAL REGOL		
OPERATOR ROBERT N. ENFIELD FIELD UNDESIGNATED FORMATION PENROSE (LEASE HUDSON FEDERAL WELL NO. 1 COUNTY LEA STATE NEW MEXICO DATE 11-12-69 TIME 11:00 AM Status SHUT IN Test depth 4330' Time S. IG YEARS Last test date INITIAL Tub Pres 1429DWT BHP last test Cas. Pres. — BHP change — Elev. 3752'DF Fluid top NONE Datum (-578')** Water top — NONE	GAS Depth 0 1000 2000 3000 4000 4330 4340(-578) * EXTRAP	Pressure 1429 1475 1525 1575 1625 1654	, 088 (, 088) E
Temp. @ 92°F Run by WEAVER Cal. No. A4586N Chart No. 1	** MID Po	INT OF CASING	PERFORATIONS
0 1000	2000	3000	40

0 .	1000	Pressure 2000	3000	4000
1104			Ans.	
20.C0				
5 4330				

COMPANY ROBERT N. ENFIELD DEC 1 1969 WELL HUDSON FEDERAL, No. 1 LOCATION UNIT O SEC. 30 18 s 33 E COUNTY LEA COUNTY NEW MEXICO NOVEMBER 12, 1969 DATE Q-MCFD

Q_ = 1900 MCFD, LOG Q_ = 3,27875 Q_ = 250 MCFD, LOG Q_ = 2.39794 N = 0.88081 = 0.881

COLEMAN PETROLEUM ENGINEERING COMPANY DEC 1 1969

611 GRIMES P O. BOX 1829 HOBBS. NEW MEXICO

BOTTOM HOLE PRESSURE RECORD

OPERATOR ROBERT N ENFIELD			
FIELD UNDESIGNATED FORMATION PENROSE GA	S Depth	Pressure	Gradient
LEASE HUDSON FEDERAL WELL NO. 1	Ø	1122	-
COUNTY LEA STATE NEW MEXICO	1000	1155	. 033
DATE 11-13-69 TIME 11:00 AM	2000	1186	. 031
Status FLOWING ON Test depth 4330'	3000	1224	. 0 38
XXXXXXI10/64"CH Last test date	4000	1271	. 047
Tub Pres.1122 BHP last test -	433 0		.0 88
Cas. Pres BHP change	4340(-578)	1301* **	(.088)
Elev. 3752 DF Fluid top FLOWING	* EVEDADOLA	TED PRESSURE	•
Datum_ (-578)** Water top		OF CASING P	ED EOD AT LONG
Temp. @ 920F Run by WEAVER	MID LOIMI	OF CASING I	EKT OKATIONS
Cal. No.A4586N Chart No. 1			

^	4.000	Pressure		
	1000	2000	3000	4000
1000				
2000				
4 3 30				
4330				