DELINEATION PROPOSAL

NORTH MONUMENT GRAYBURG SAN ANDRES UNIT #603 NMOCD 1RP# 1019 8.31.06 **EPI REF: 240014**

UL-C (NE¹/₄ OF THE NW¹/₄) OF SECTION 20 T19S R37E ~2 MILES NORTH-NORTHWEST OF MONUMENT LEA COUNTY, NEW MEXICO LATITUDE: N 32° 39' 04.30" LONGITUDE: W 103° 16' 33.43"

AUGUST 2006

PREPARED BY:

C. CO. Ob LOBULT RD C. CO. Ob LOBULT RD C. CO. O LOBULT RD ADIAC STOLE RD ADIAC STOLE SA **ENVIRONMENTAL PLUS, INC. 2100 AVENUE O EUNICE, NEW MEXICO 88231**

Distribution List

Apache Corporation – North Monument Grayburg San Andres Unit #603

NMOCD 1RP# 1019; EPI Ref: 240014

Name	Title	Company or Agency	Mailing Address	e-mail
Larry Johnson	Environmental Engineer	NMOCD – Hobbs	1625 French Drive Hobbs, NM 88240	larry.johnson@state.nm.us
Mike Warren	Senior Production Foreman	Apache Corporation - Monument	17 Hess Lane Monument, NM 88262	mike.warren@apachecorp.com
Jimmy Cooper	Landowner	1	Box 55 Monument, NM 88256	1
File	1	Environmental Plus, Inc.	P.O. Box 1558 Eunice, NM 88231	jstegemoller@envplus.net

North Monument Grayburg San Andres Unit #603 240014

••••

STANDARD OF CARE

Delineation Proposal North Monument Grayburg San Andres Unit #603 NMOCD 1RP # 1019 (EPI Ref. #240014)

The information provided in this report was collected consistent with the New Mexico Oil Conservation Division (NMOCD) *Guidelines for Remediation of Leaks, Spills and Releases* (August 13, 1993), the NMOCD *Unlined Surface Impoundment Closure Guidelines* (February, 1993) and Environmental Plus, Inc. (EPI) *Standard Operating Procedures and Quality Assurance/Quality Control Plan.* The conclusions are based on field observations and laboratory analytical reports as presented in the report. Recommendations follow NMOCD guidance and represent the professional opinions of EPI staff. These opinions were derived using currently accepted geologic, hydrogeologic and engineering practices at this time and location. The report was prepared or reviewed by a certified or registered professional with a background in engineering, environmental and/or natural sciences.

This report was prepared by:

Ategemole Jason/Stegemoller

Environmental Scientist

Ingust 31, 2006

This report was reviewed by:

mean

David Duncan Civil Engineer

<u>9|3]]06</u>

Table of Contents

1.0	Project Synopsis	iv
2.0	Site and Release Information	. 1
3.0	NMOCD Site Ranking	.2
4.0	Excavation Soil Information	.3
5.0	Sampling Information	.4
6.0	Analytical Results	.5
7.0	Discussion	.6
8.0	Conclusion and Recommendations	.7

FIGURES

Figure 1: Area Map Figure 2: Site Location Map Figure 3: Site Map Figure 4: Sample Location Map Figure 5: Proposed Soil Boring Location Map

TABLES

Table 1: Well DataTable 2: Summary of Soil Sample Analytical Results

APPENDICES

Appendix I: Laboratory Analytical Reports and Chain-of-Custody Forms Appendix II: Project Photographs Appendix III: Informational Copy of Initial NMOCD C-141 Form

1.0 PROJECT SYNOPSIS

Site Specific:

- Company Name: Apache Corporation
- Facility Name: North Monument Grayburg San Andres Unit #603
- ◆ *Project Reference:* NMOCD 1RP # 1019; EPI # 240014
- Company Contacts: Mike Warren
- ♦ Site Location: WGS84 N32° 39' 04.30"; W103° 16' 33.43"
- Legal Description: Unit Letter-C, (NE¼ of the NW¼), Section 20, T 19S, R 37E
- General Description: Approximately 2-miles north-northwest of Monument, New Mexico
- *Elevation:* 3,680-ft amsl
- Land Ownership: Jimmy T. Cooper
- EPI Personnel: Project Consultant Jason Stegemoller

Release Specific:

- **Product Released:** Injection Water
- ♦ Volume Released: 85 barrels Volume Recovered: 60 barrels
- ♦ Time of Occurrence: July 16, 2006 a.m. Time of Discovery: July 16, 2006 @ 08:45 hrs
- ♦ *Release Source*: Plug blew out on injection line
- ♦ Initial Surface Area Affected: ~ 42,770 square feet

Remediation Specific:

- ♦ Final Vertical extent of contamination: unknown
- **Depth to Ground Water:** Approximately 50-ft bgs (based on an average depth of wells nearest the release site)
- Water wells within 1,000-ft: None
- Private domestic water sources within 200-ft: None
- Surface water bodies within 1,000-ft: None at the point of release; however an ephemeral pond resides approximately 75-feet south of the southernmost point of the flowpath.
- ♦ NMOCD Site Ranking Index: 20 points
- Remedial goals for Soil: TPH 100 mg/Kg; BTEX 50 mg/Kg; Benzene 10 mg/Kg; Chloride and sulfate residuals may not be capable of impacting groundwater above NMWQCC groundwater standards of 250 mg/L and 600 mg/L, respectively.
- ♦ **RCRA Waste Classification:** Exempt
- *Remediation Option Selected:* Not applicable
- **Disposal Facility:** Not applicable
- Volume disposed: Not applicable
- Project Completion Date: Ongoing

2.0 SITE AND RELEASE INFORMATION

- 2.1 Describe the land use and pertinent geographic features within 1,000 feet of the site. Land surrounding the area is rangeland in native grasses utilized for livestock grazing along with oilfield operations.
- 2.2 Identify and describe the source or suspected source(s) of the release. Plug on injection line blew out.
- 2.3 What is the volume of the release? (if known): <u>approximately 85</u> barrels of <u>injection</u> water
- 2.4 What is the volume recovered? (if any): approximately 60 barrels

2.5 When did the release occur? (if known): July 16, 2006

2.6 / Geological Description

The United States Geological Survey (USGS) Ground-Water Report 6, "Geology and Ground-water Conditions in Southern Lea County, New Mexico," A. Nicholson and A. Clebsch, 1961, describes the near surface geology of southern Lea County as "an intergrade of the Quaternary Alluvium (QA) sediments, i.e., fine to medium sand, with the mostly eroded Cenozoic Ogallala (CO) formation. Typically, the QA and CO formations in the area are capped by a thick interbed of caliche and generally overlain by sandy soil."

The release site is located in the Laguna Valley physiographic subdivision, described by Nicholson & Clebsch as an area that "is a vast sand dune area, stable or semi-stable over most of the area, but which drifts locally. The surface is very irregular and has no drainage features except at the edges of several playas."

2.7 Ecological Description

The area is typical of the Upper Chihuahuan Desert Biome consisting primarily of sandy soil covered with short semi-arid grasses, interspersed with Honey Mesquite and forbs. Mammals represented include Orrd's and Merriam's Kangaroo Rats, Deer Mouse, White Throated Wood Rat, Cottontail Rabbit, Black Tailed Jackrabbit, Mule Deer, Bobcat, Red Fox and Coyote. Reptiles, amphibians and birds are numerous and typical of the area. A survey of Listed, Threatened or Endangered species was not conducted.

2.8 Area Groundwater

The unconfined groundwater aquifer at this site is projected to be ~ 50 feet (ft) bgs based on water depth data obtained from the New Mexico State Engineers Office and the United States Geological Survey data base (reference *Table 2*).

2.9 Area Water Wells

There are no wells within a 1,000-foot radius of the site. (reference *Table 1* and *Figure 2*).

2.10 Area Surface Water Features

There are no surface water features within a 1,000-foot radius of the point of release (reference *Figure 2*). However, an ephemeral pond resides approximately 75-feet south of the southernmost portion of the flowpath.

1

3.0 <u>NMOCD SITE RANKING</u>

Contaminant delineation and remedial work done at this site indicate chemical parameters of the soil and physical parameters of the groundwater were characterized consistent with the characterization and remediation/abatement goals and objectives set forth in the following New Mexico Oil Conservation Division (NMOCD) publications:

- Guidelines for Remediation of Leaks, Spills and Releases (August 13, 1993)
- Unlined Surface Impoundment Closure Guidelines (February, 1993)
- <u>Pit and Below-Grade Tank Guidelines (November, 2004)</u>

Acceptable thresholds for contaminants/constituents of concern (CoC) were determined based on the NMOCD Ranking Criteria as follows:

- Depth to Groundwater (i.e., distance from the lower most acceptable concentration to ground-water);
- Wellhead Protection Area (i.e., distance from fresh water supply wells);
- Distance to Surface Water Body (i.e., horizontal distance to all down gradient surface water bodies).

Based on the proximity of the site to protectable area water wells, surface water bodies, and depth to groundwater from the lower most contamination, the NMOCD ranking score for the site is twenty points with the soil remedial goals highlighted in the Site Ranking table presented below:

1. GROUND	WATER	2. WELLHEAD PROTECTION AREA	3. DISTANCE TO SURFACE WATER
Depth to GW <50 fe	et: 20 points	If <1,000' from water source, or <200' from	<200 horizontal feet: 20 points
Depth to GW 50 to 9 10 points	99 feet:	private domestic water source: 20 points	
Depth to GW >100 f	eet: 0 points	If >1,000' from water source, or >200' from private domestic water source: <i>0 points</i>	n >1,000 horizontal feet: <i>0 points</i>
Site Rank (1+2+3) =	20 + 0 + 0 = 2	0 points	
	Total Site	Ranking Score and Acceptable Remedial	Goal Concentrations
Parameter	20 (or > 10	0
Benzene ¹	10 p	ppm 10 ppm	10 ppm
BTEX ¹	50 p	opm 50 ppm	50 ppm
ТРН	100	ppm 1,000 ppm	5,000 ppm

¹ A field soil vapor headspace measurement of 100 ppm can be substituted in lieu of laboratory analyses for benzene and BTEX.

4.0 EXCAVATED SOIL INFORMATION

4.1 Was soil excavated for off-site treatment or disposal? 🛛 🖾 Yes 🗌 No

Date excavated: July 25 through August 3, 2006

Total volume removed: Approximately 1,344-cubic yards

- 4.2 Indicated soil treatment type:
- Disposal
 Land Treatement
 Composting/Biopiling
 Other ()

Name and location of treatment/disposal facility: Sundance Services, Eunice, New Mexico

5.0 SAMPLING INFORMATION

5.1 Briefly describe the field screening methods used to distinguish contaminated from uncontaminated soil.

Organic Vapor Concentrations – A portion of each soil sample was placed in a polyethylene bag and allowed sufficient time and temperature for organic vapors to volatilize. The detector portion of a Photoionization Detector equipped with a 10.6 electron volt lamp was placed in the bag to analyze organic vapor concentration.

Chloride Concentrations – A La Motte Chloride Test Kit was utilized for field chloride concentration analyses.

5.2 Briefly describe the soil analytical sampling and handling procedures used.

Soil samples collected from the excavation were collected utilizing hand and/or mechanical excavation equipment to gather the sample from at least 6-inches below/within the surface of the excavation.

Upon collection of each sample, a portion was immediately placed in a laboratory provided container, labeled and set on ice for transport to an independent laboratory for quantification of total petroleum hydrocarbons (TPH), benzene, toluene, ethylbenzene and total xylenes (BTEX), chloride and sulfate concentrations.

5.3 Discuss sample locations and provide rationale for their locations.

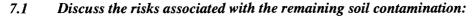
Soil samples were collected on July 25, 26 and 31 and August 1 and 2, 2006 from 26 locations within the excavation area utilizing a backhoe. Soil samples were collected at a depth of 1-ft bgs. Soil sample locations were chosen to provide the best representative example of soil within the excavation floor (reference *Figure 4*).

4

6.0 ANALYTICAL RESULTS

6.1 Describe the vertical and horizontal extent and magnitude of soil contamination.

Laboratory analyses of the excavation soil samples indicated BTEX constituent concentrations were non-detectable (ND) at or above laboratory analytical method detection limits (MDL). TPH was reported as ND at or above laboratory analytical MDL, with the exception of the collected from BH-21 (6"). Analytical results of BH-21 (6") indicated TPH concentrations were 71 mg/Kg, below the NMOCD remedial threshold of 100 mg/Kg. Reported chloride concentrations ranged from 126 to 2,110 mg/Kg. Sulfate concentrations ranged from 17.6 to 2,380 mg/Kg (reference *Table 1* and *Figure 4*).


6.2 Is surface soil contamination present at the site (i.e., soil in the uppermost two feet that is visibly stained, contaminated at greater than 10 ppm (PID) or hydrocarbon saturated)?

🗌 yes 🛛 no

If yes, attach a site map identifying extent(s) of surface soil contamination.

Visibly stained soil was excavated and transported to Sundance Services for disposal.

7.0 <u>DISCUSSION</u>

Laboratory analytical results indicated TPH and BTEX constituent concentrations were below NMOCD remedial thresholds. Chloride residuals exist below the current excavation floor. Based on depth to groundwater (approximately 50- ft bgs), chloride residuals remaining in the excavation floor may be capable of impacting groundwater above NMWQCC groundwater standards.

- 7.2 Discuss the risks associated with the impacted groundwater: Chloride residuals remaining in the soil may be capable of impacting local groundwater above the NMWQCC groundwater standard of 250 mg/L.
- 7.3 Discuss other concerns not mentioned above: NA

8.0 CONCLUSIONS AND RECOMMENDATIONS

8.1 Recommendation for the site:

] Site Closure

Additional Groundwater Monitoring

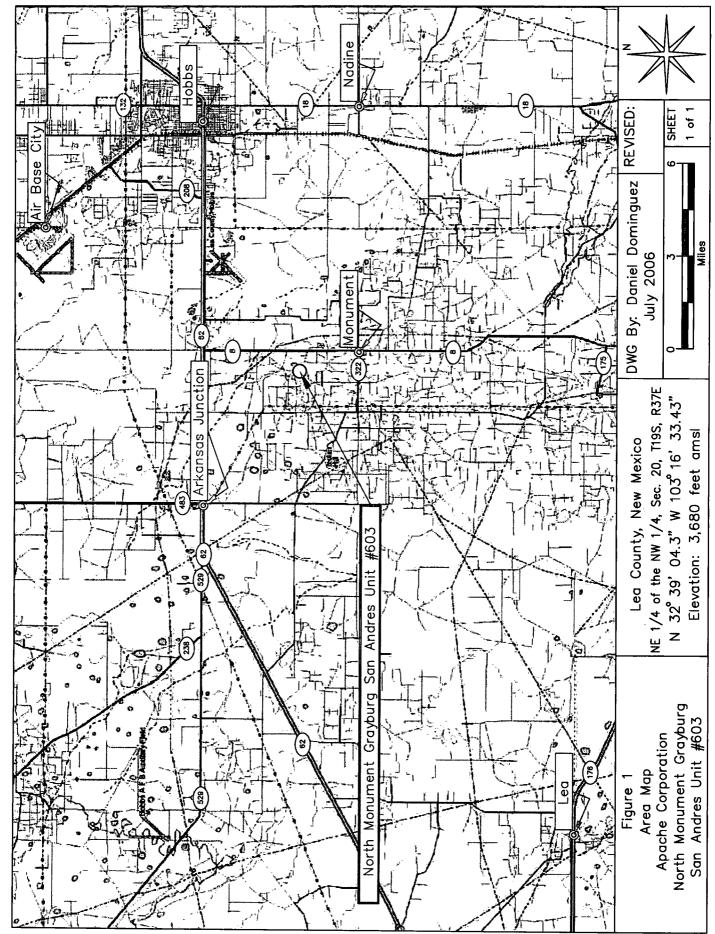
Corrective Action

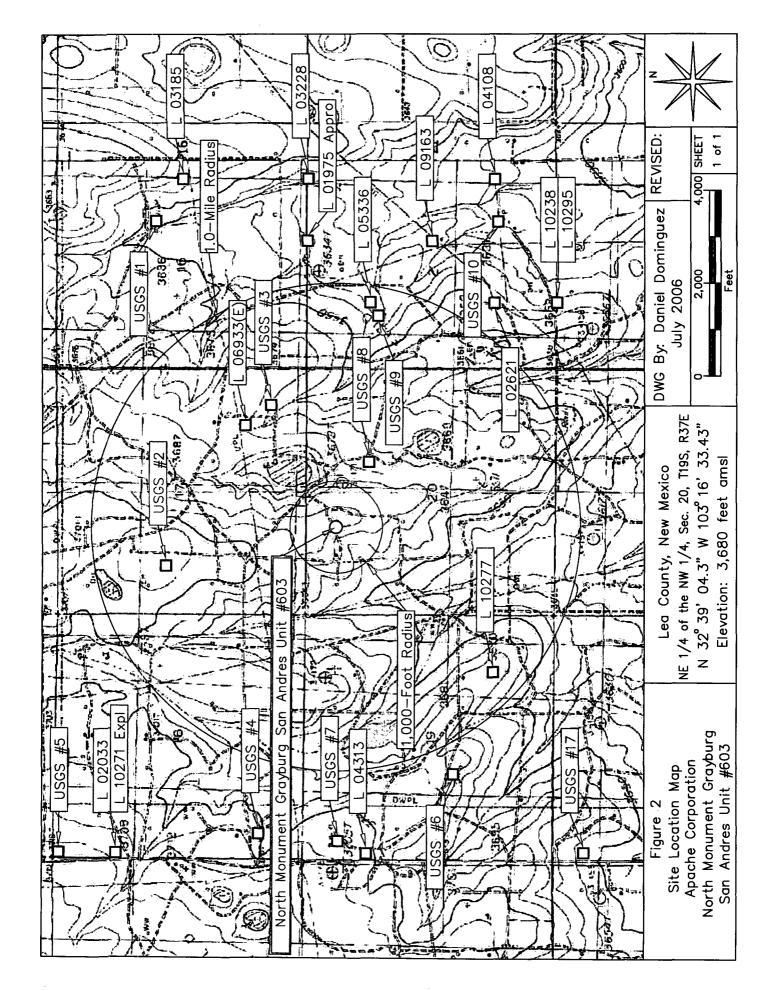
8.2 Base the recommendation above on <u>Guidelines for Remediation of Leaks, Spills and</u> <u>Releases (August 13, 1993)</u>. Describe below how you applied the policy to support your recommendation. If closure is recommended, please summarize significant site investigative events and describe how site specific risk issues have been adequately addressed or minimized to acceptable low risk levels.

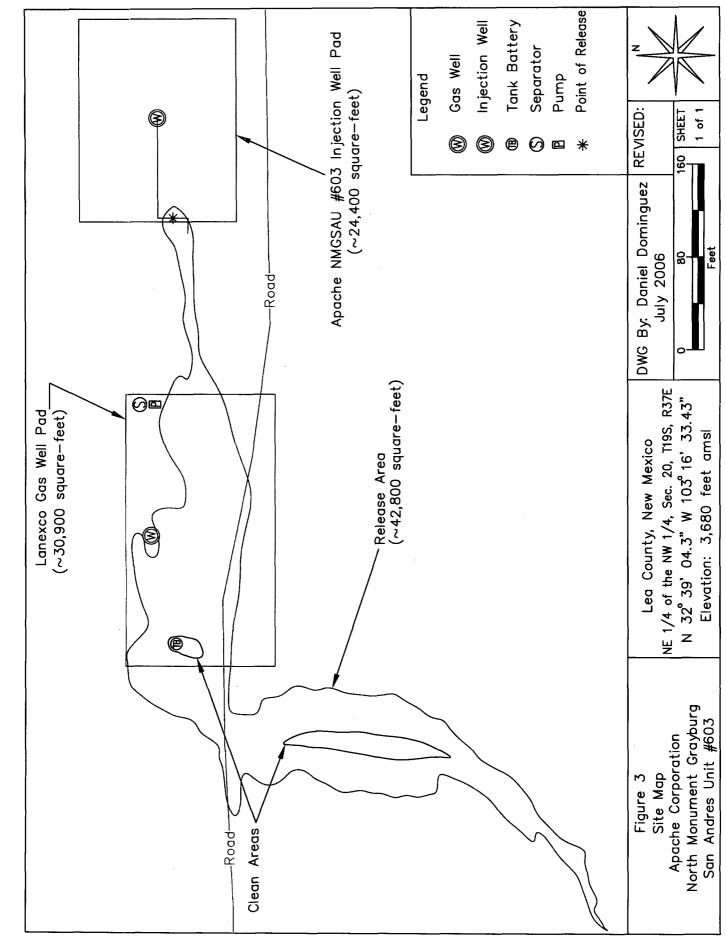
Approximately 1,344 cubic yards of impacted soil were removed from an excavation area of approximately 42,770 square feet to a depth of 1-ft bgs in the pasture area and 6-inches bgs on the caliche well pad and road. Excavated soil was transported to Sundance Services for disposal.

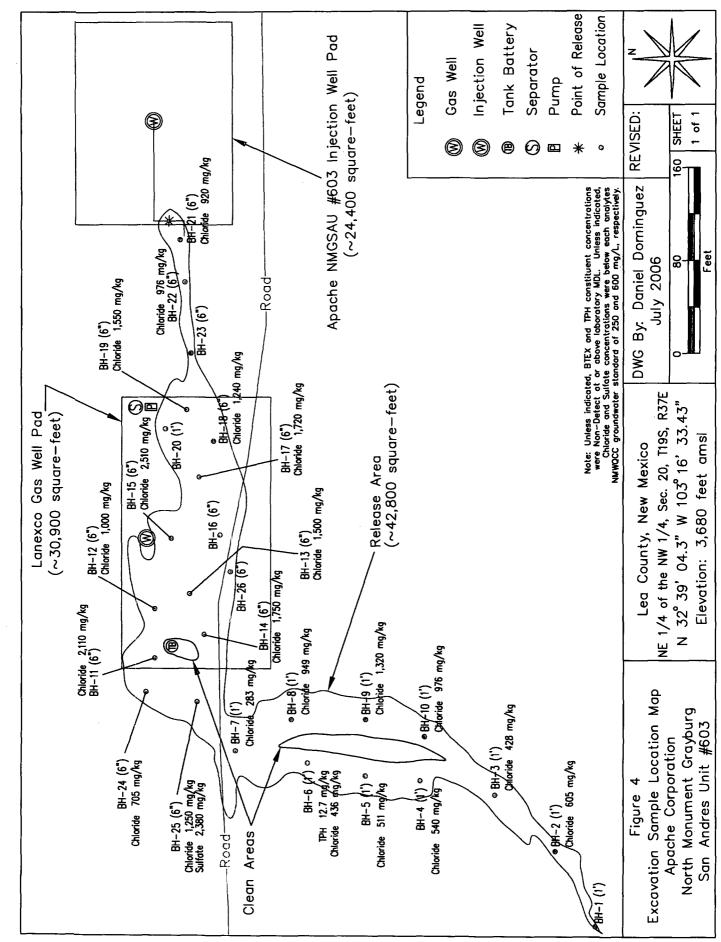
Laboratory analytical results of soil samples collected by EPI personnel from the excavation floor indicate TPH and BTEX constituent concentrations were below each analytes' respective NMOCD remedial threshold. Chloride concentrations at 1-ft bgs were in excess of the remediation goal of 250 mg/Kg in 21 of 26 sample locations. Reported sulfate concentrations were below the 600 mg/Kg remedial goal in all sample locations, except sample BH-25 (6").

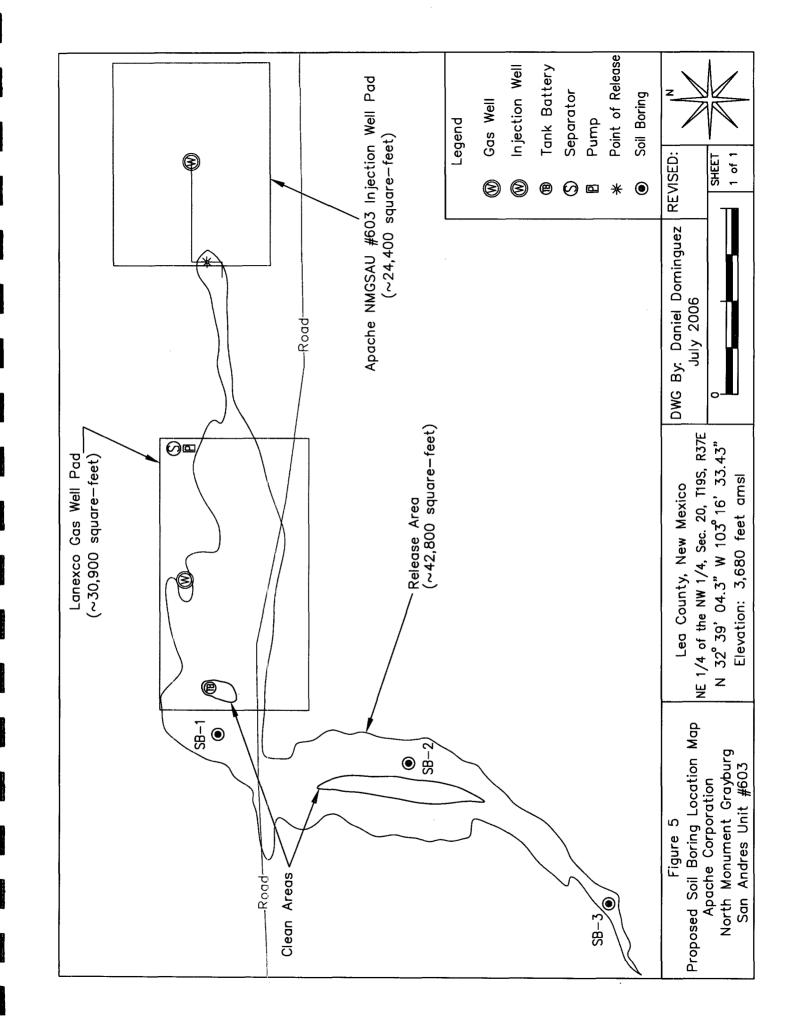
8.3 If additional groundwater monitoring is recommended, indicate the proposed monitoring schedule and frequency. Conduct quarterly monitoring until the NMOCD responds to this report. NA


8.4 If corrective action is recommended, provide a conceptual approach.


Based on laboratory analyses, chloride impacted soil remains below 1-ft bgs. Laboratory analyses of soil samples collected from the excavation floor indicate TPH and BTEX constituents were below each analytes' respective NMOCD remedial threshold.


Environmental Plus, Inc., on behalf of Apache, recommends three soil borings be advanced to delineate the vertical extent of chloride impacted soil. One soil boring shall be advanced west of the Lanexco Gas Well Pad (i.e., where injection water pooled during the initial release). The remaining two soil borings shall be advanced in the flowpath area of the pasture (reference *Figure 5*).


FIGURES


N

TABLES

TABLE 1

<u>Well Data</u>

Apache Corporation - North Monument Grayburg San Andres Unit #603 (Ref. # 240014)

Well Number	Diversion ^A	Owner	Use	Twsp	Rng	b b b cos	Latitude	I.ongitude	Date	Surface Flourion ^B	Depth to Water
											(ft bgs)
, 01975 APPRO	3	0 & W DRLG. CO.	PRO	19S	37E	16 4 3	N32° 39' 10.30"	W103° 15' 21.56"	12-Feb-53	3,638	20
03185	e	CARPER DRILLING CO.	PRO	19S	37E 1	16 24	N32° 39' 36.37"	W103° 15' 6.16"	24-Apr-56	3,668	45
03228	3	MAKIN DRILLING COMPANY	PRO	19S	37E 1	16 44	N32° 39' 10.26"	W103° 15' 6.14"	18-Jun-56	3,641	42
06933 (E)	0	GULF OIL CORPORATION	PRO	19S	37E 1	17 423	N32° 39' 23.47"	W103° 16' 7.86"	12-Apr-72	3,678	65
02033	0	MONUMENT WATER USERS	DOM	19S	37E 1	111181	N32° 39' 50.42"	W103° 17' 55.35"	12-Sep-47	3,717	35
, 10271 EXPL	0	INC. SNYDER RANCHES	EXP	19S	37E 1	18 111	N32° 39' 50.42"	W103° 17' 55.35"	13-Jul-92	3,717	70
, 04313	3	MCVAY AND STAFFORD DRILLING CO	PRO	19S	37E 1	19 11	N32° 38' 58.03"	W103° 17' 55.36"	23-Oct-59	3,704	52
, 10277	3	INC. SNYDER RANCHES	STK	19S	37E 1	19 422	N32° 38' 31.48"	W103° 17' 9.65"	10-Jul-92	3,678	40
02621	3	LA MANCE DRILLING COMPANY	PRO	19S	37E 2	21 323	N32° 38' 31.20"	W103° 15' 37.02"	14-Sep-54	3,642	40
04108	3	R.H. HUSTON	PRO	19S	37E 2	21 42	N32° 38' 31.15"	W103° 15' 6.17"	01-Apr-59	3,619	22
05336	0	GULF OIL CORPORATION	PRO	19S	37E 21	1 1 2 4	N32° 38' 57.29"	W103° 15' 37.00"	15-Feb-64	3,639	30
09163	3	LEROY LOTT	DOM	19S	37E 2	21 232	N32° 38' 44.21"	W103° 15' 21.58"	16-Apr-83	3,632	47
10238	3	W. S. ISRAEL	DOM	19S	37E 21	1343	N32° 38' 18.16"	W103° 15' 37.03"	19-Mar-92	3,637	30
10295	3	TERRY ISRAEL	DOM	19S	37E 2	21 343	N32° 38' 18.16"	W103° 15' 37.03"	29-Oct-92	3,637	30
JSGS #1				19S	37E 1	16 233			08-Mar-91	3,648	26.94
JSGS #2				19S	37E 1	17 134			27-Feb-96	3,706	62.54
ISGS #3				19S	37E 1	17 431			24-Apr-91	3,670	36.96
USGS #4				19S	37E 1	18 331			18-Mar-54	3,701	51.93
JSGS #5				19S	37E 1	18 111			22-Feb-91	3,716	63.87
JSGS #6				19S	37E 1	19 321			21-Feb-91	3,670	58.43
JSGS #7				19S	37E 1	19 113			06-Mar-96	3,702	57.31
JSGS #8				19S	37E 2	20 2 3 1			19-Apr-68	3,662	47.85
JSGS #9				19S	37E 21	1 132			29-Feb-96	3,640	24.13
JSGS #10				19S	37E 2	21 431			09-Jan-86	3,614	16.19
JSGS #17				19S	37E 3	30 111			11-Feb-66	3,654	26.88

TABLE 2

Summary of Excavation Soil Sample Laboratory Analytical Results

Apache Corporation - North Monument Grayburg San Andres Unit #603 (Ref. #240014)

Sample I.D.	Depth (feet)	Depth PID (feet) analysis	Field Chloride Analysis	Soil Status	Sample Date	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethylbenzene (mg/Kg)	Total Xylenes (mg/Kg)	Total BTEX (mg/Kg)	Carbon C6- C12 Range (mg/Kg)	Carbon C12- C28 Range (mg/Kg)	Carbon C12- Carbon C28- C28 Range C35 Range (mg/Kg) (mg/Kg)	Total TPH (mg/Kg)	Chloride (mg/Kg)	Sulfate (mg/Kg)
BH-1 (1')	1	8.9	240	In Situ	26-Jul-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	126	43.0
BH-2 (1')	1	12.4	096	In Situ	26-Jul-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	605	111
BH-3 (1')	1	0.0	520	In Situ	26-Jul-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	7.91 ^B	<10.0	<10.0	428	63.6
BH-4 (1')	-	18.8	006	In Situ	25-Jul-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	540	151
BH-5 (1')	Ι	18.9	560	In Situ	25-Jul-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	511	98.5
BH-6 (1')	1	4.0	560	In Situ	25-Jul-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	12.7	8.53 ^B	12.7	436	117
BH-7 (1')	1	18.9	500	In Situ	25-Jul-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	283	49.3
BH-8 (1')	1	0.0	1,200	In Situ	26-Jul-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	4.45 ^B	1.98 ^B	<10.0	949	131
('1) 9-HB		0.0	1,760	In Situ	26-Jul-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	1,320	172
BH-10 (1')	-	8.3	800	In Situ	26-Jul-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	976	134
BH-11 (6")	0.5	4.3	2,000	In Situ	31-Jul-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	2,110	281
BH-12 (6")	0.5	4.1	960	In Situ	31-Jul-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	1,000	74.5
BH-13 (6")	0.5	4.3	1,200	In Situ	31-Jul-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	1,500	178
BH-14 (6")	0.5	4.1	1,760	In Situ	31-Jul-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	1,750	216

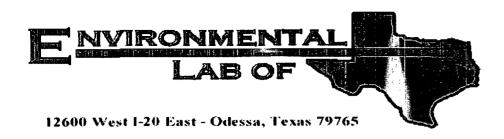
TABLE 2

Summary of Excavation Soil Sample Laboratory Analytical Results

Apache Corporation - North Monument Grayburg San Andres Unit #603 (Ref. #240014)

Sample I.D.	Depth (feet)	Depth PID (feet) analysis	Field Chloride Analysis	Soil Status	Sample Date	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethylbenzene (mg/Kg)	Total Xylenes (mg/Kg)	Total BTEX (mg/Kg)	Carbon C6- C12 Range (mg/Kg)	Carbon C12- C28 Range (mg/Kg)	Carbon C12- Carbon C28- C28 Range C35 Range (mg/Kg) (mg/Kg)	Total TPH (mg/Kg)	Chloride (mg/Kg)	Sulfate (mg/Kg)
BH-15 (6")	0.5	11.1	2,000	In Situ	01-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	2,510	146
BH-16 (6")	0.5	0.0	400	In Situ	01-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	226	84.6
BH-17 (6")	0.5	0.0	1,600	In Situ	01-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	1,720	290
BH-18 (6")	0.5	0.0	1,200	In Situ	01-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	1,240	176
BH-19 (6")	0.5	0.0	1,360	In Situ	01-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	1,550	253
BH-20 (6")	0.5	0.0	160	In Situ	01-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	7.20	21.8
BH-21 (6")	0.5	0.0	1,280	In Situ	02-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	13.4	57.8	<10.0	71.2	920	168
BH-22 (6")	0.5	0.0	1,280	In Situ	02-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	976	121
BH-23 (6")	0.5	0.0	120	In Situ	02-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	60.9	17.6
BH-24 (6")	0.5	18.3	1,440	In Situ	02-Aug-06	<0.0250	<0.0250	<0.0250	0.0361	0.0361	<10.0	<10.0	<10.0	<10.0	705	65.3
BH-25 (6")	0.5	19.5	1,040	In Situ	02-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	1,250	2,380
BH-26 (6")	0.5	0.0	320	In Situ	02-Aug-06	<0.0250	<0.0250	<0.0250	<0.05	<0.125	<10.0	<10.0	<10.0	<10.0	136	151
	IMOCI	D Reme	NMOCD Remedial Thresholds	sholds		10				99				001	250 ^A	600 ^A
		a 0007		1.1.												

Bolded values are in excess of NMOCD Remediation Thresholds


-- =Not Analyzed ^AChloride and Sulfate residuals may not be capable of impacting local groundwater above the NMWQCC standards of 250 mg/L and 650 mg/L respectively. ^B = Estimated value, analyte detected below reporting limit .

APPENDICES

.

APPENDIX I

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY FORM

Analytical Report

Prepared for:

Jason Stegemoller Environmental Plus, Incorporated P.O. Box 1558 Eunice, NM 88231

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Location: UL-C, Sect. 20, T 19 S, R 37 E

Lab Order Number: 6G28008

Report Date: 08/03/06

Environmental Plus, Incorporated P.O. Box 1558 Eunice NM, 88231 Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller Fax: 505-394-2601

ANALYTICAL REPORT FOR SAMPLES

				-
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BH-1 1'	6G28008-01	Soil	2006-07-26 10:15	2006-07-28 10:50
BH-2 1'	6G28008-02	Soil	2006-07-26 10:35	2006-07-28 10:50
BH-3 1'	6G28008-03	Soil	2006-07-26 10:45	2006-07-28 10:50
BH-4 1'	6G28008-04	Soil	2006-07-25 10:20	2006-07-28 10:50
BH-5 1'	6G28008-05	Soil	2006-07-25 10:40	2006-07-28 10:50
BH-6 1'	6G28008-06	Soil	2006-07-25 13:30	2006-07-28 10:50
BH-7 1'	6G28008-07	Soil	2006-07-25 13:45	2006-07-28 10:50
BH-8 1'	6G28008-08	Soil	2006-07-26 13:15	2006-07-28 10:50
BH-9 I'	6G28008-09	Soil	2006-07-26 13:30	2006-07-28 10:50
BH-10 1'	6G28008-10	Soil	2006-07-26 13:45	2006-07-28 10:50

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
BH-1 1' (6G28008-01) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG63119	07/31/06	08/01/06	EPA 8021B	
Toluene	ND	0.0250	U	"	**	н			
Ethylbenzene	ND	0.0250	ч	"	••	"	•*	и	
Xylene (p/m)	ND	0.0250	"	"		"		n	
Xylene (0)	ND	0.0250	"	"	н	н	n	"	
Surrogate: a,a,a-Trifluorotoluene		94.8 %	80-	120	"	"	"	17	
Surrogate: 4-Bromofluorobenzene		88.5 %	80-1	120	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	*1	н	11	"	*	n	
Carbon Ranges C28-C35	ND	10.0	'n	n	"	"	n	n	
Total Hydrocarbons	ND	10.0	"		u	"	"	u	
Surrogate: I-Chlorooctane		113 %	70-	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		111 %	70	130	"	"	"	"	
BH-2 1' (6G28008-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG63119	07/31/06	08/01/06	EPA 8021B	
Toluene	ND	0.0250	н	н	"	"			
Ethylbenzene	ND	0.0250	"	"	"	"	0	"	
Xylene (p/m)	ND	0.0250	"	"	ч	"		"	
Xylene (0)	ND	0.0250	"		"	*	"	"	
Surrogate: a,a,a-Trifluorotoluene		100 %	80	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		83.2 %	80	120	n	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	51	н	"	"	"	
Carbon Ranges C28-C35	ND	10.0	"		"	"	и	"	
Total Hydrocarbons	ND	10.0	"	"	"	н	"	"	
Surrogate: 1-Chlorooctane		114 %	70-	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		111 %	70-	130	"	"	"	"	
BH-3 1' (6G28008-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG63119	07/31/06	08/01/06	EPA 8021B	
Toluene	ND	0.0250			"	"	.,	н	
Ethylbenzene	ND	0.0250	"	*	0	"	"	"	
Xylene (p/m)	ND	0.0250	"		н	"	11	"	
Xylene (0)	ND	0.0250			"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		91.8 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		84.8 %	80-	120	"	"	n	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M	
Environmental Lab of Texas	<u> </u>		The re	sults in this i	report apply to	the samples an	alyzed in accord	ance with the sample.	<u></u> s

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 2 of 14

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
BH-3 1' (6G28008-03) Soil									
Carbon Ranges C12-C28	J [7.91]	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	"	•	*	н	**	**	
Total Hydrocarbons	ND	10.0	"		"	и	"	н	
Surrogate: 1-Chlorooctane		117 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		115 %	70-1	30	"	n	"	"	
BH-4 1' (6G28008-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG63119	07/31/06	08/01/06	EPA 8021B	
Toluene	ND	0.0250		"	"	n		11	
Ethylbenzene	ND	0.0250	n	"	"	"		11	
Xylene (p/m)	ND	0.0250	"	11	п	11	"		
Xylene (0)	ND	0.0250		"	**	н	"	u	
Surrogate: a,a,a-Trifluorotoluene		94.0 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		88.0 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0		н	"	"	"	и	
Carbon Ranges C28-C35	ND	10.0	u	*	**	'n	"	u	
Total Hydrocarbons	ND	10.0		н		"	и	II.	
Surrogate: 1-Chlorooctane		116 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		113 %	70-1	30	"	"	"	"	
BH-5 1' (6G28008-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG63119	07/31/06	08/01/06	EPA 8021B	
Toluene	ND	0.0250		н	"	"	n	11	
Ethylbenzene	ND	0.0250	н	"	"	"	0	"	
Xylene (p/m)	ND	0.0250	"	11	**	"	ч	"	
Xylene (0)	ND	0.0250	"	н		"	n		
Surrogate: a,a,a-Trifluorotoluene		88.2 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		80.0 %	80-1	20	**	**	"	**	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	**		*	н	11	**	
Carbon Ranges C28-C35	ND	10.0	"	"		H	"	"	
Total Hydrocarbons	ND	10.0	н	"	.,		"	"	
Surrogate: 1-Chlorooctane		116 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		113 %	70-1	30	n	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
BH-6 1' (6G28008-06) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60114	08/01/06	08/02/06	EPA 8021B	
Toluene	ND	0.0250	н	"	"	"	"		
Ethylbenzene	ND	0.0250	n	"	"	0		"	
Xylene (p/m)	ND	0.0250	"	11	"	"	"	"	
Xylene (0)	ND	0.0250	"	*1	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		83.2 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		82.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M	
Carbon Ranges C12-C28	12.7	10.0	"	•	"	"	n	"	
Carbon Ranges C28-C35	J [8.53]	10.0	"	"		u	11	"	
Total Hydrocarbons	12.7	10.0	"	"		"	11	"	
Surrogate: I-Chlorooctane		118 %	70-1	30	"	"	и	"	
Surrogate: 1-Chlorooctadecane		115 %	70-1	30	"	"	"	"	
BH-7 1' (6G28008-07) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60114	08/01/06	08/02/06	EPA 8021B	
Toluene	ND	0.0250	"	"	ч		м	"	
Ethylbenzene	ND	0.0250	н	11	"	"	"	"	
Xylene (p/m)	ND	0.0250	11	11	"	"	"		
Xylene (o)	ND	0.0250	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		94.0 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		83.5 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	н	"	"		"	
Carbon Ranges C28-C35	ND	10.0	н	11		"	"	"	
Total Hydrocarbons	ND	10.0		"	11	"	м	17	
Surrogate: 1-Chlorooctane		118 %	70-1	30	"	н	"	"	
Surrogate: 1-Chlorooctadecane		115 %	70-1	30	17	"	"	n	
BH-8 1' (6G28008-08) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60114	08/01/06	08/02/06	EPA 8021B	
Toluene	ND	0.0250	"	11	14	"	"	"	
Ethylbenzene	ND	0.0250	ч	"		"	"	"	
Xylene (p/m)	ND	0.0250	"	"	11	"		"	
Xylene (o)	ND	0.0250	"	"	н	"		"	
Surrogate: a,a,a-Trifluorotoluene		93.0 %	80-1	20	"	"	17	"	
Surrogate: 4-Bromofluorobenzene		84.0 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62817	07/28/06	07/30/06	EPA 8015M	
Environmental Lab of Texas			<i>T</i> 1					ance with the samples	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Environmental Plus, Incorporated P.O. Box 1558	8 - y		Project: Apac lumber: 2400		on. Grayburg	g SA 603	, T.	Fax: 50:	5-394-2601
Eunice NM, 88231			anager: Jason		oller				· .
		0		CC			· .		<u> </u>
			rganics by						
		Environ	mental La	b of Te	exas			· · · · · ·	
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Netes
BH-8 1' (6G28008-08) Soil				Dilution		Trepared	Analyzeu	Method	Notes
	T 1 4 4 1 1								
Carbon Ranges C12-C28	J [4.45] J [1.98]	10.0	mg/kg dry ``	`1	EG62817	07/28/06	07/30/06	EPA 8015M "	
Carbon Ranges C28-C35 Fotal Hydrocarbons	J [1.98] ND	10.0 10.0				"	"		, ¹
-	ND		70:12	<u> </u>	"	"	"		
Surrogate: 1-Chlorooctane		116%	70-130		, · · ·		,,		
Surrogate: 1-Chlorooctadecane		114 %	70-130	,		~			-
BH-9 1' (6G28008-09) Soil									• • •
Benzene	ND	0.0250	mg/kg dry	25	EH60114 [^]	08/01/06	08/02/06	EPA'8021B	• •
Foluene	ND	0.0250	и -	"	•	н	н	•	· *
Ethylbenzene	ND	0.0250	н		۳.	"	н ,	ка н. е	
Kylene (p/m)	ND	0.0250	н.	н	н с.		н	°н	•
Xylene (o)	ND	0.0250		н	"	"	н	. "	
Surrogate: a,a,a-Trifluorotoluene		94.8 %	80-120)	"	"	"	· <i>n</i>	· .
Surrogate: 4-Bromofluorobenzene		85.5 %	80-120)	"	n	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62817	07/28/06	.07/30/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	м			"	*		
Carbon Ranges C28-C35	ND	10.0	"				"		
Fotal Hydrocarbons	ND	10.0	н ,	n	н .	"		м	
Surrogate: 1-Chlorooctane		113 %	70-130)	n 3	"	"	п	:
Surrogate: 1-Chlorooctadecane		110 %	70-130)	"	"	"	"	. · ·
C .		1					· ·	· .	•
BH-10 1' (6G28008-10) Soil			* <mark>1</mark>				1	·	N 1
Benzene	ND	0.0250	mg/kg dry	25	EH60114	08/01/06	08/02/06	EPA 8021B	
Foluene	ND	0.0250	н	, u				11 0	
Ethylbenzene	ND	0.0250	ч.	н		"		н	
Kylene (p/m)	ND	0.0250	• • • •	"	"			н	
Kylene (o)	ND	0.0250	н	. + H	н	"	"		
Surrogate: a,a,a-Trifluorotoluene		90.0 %	80-120) ·	"	"	п.	· • •	
Surrogate: 4-Bromofluorobenzene		81.8 %	80-120		"	"	"	"	
Carbon Ranges C6-C12	ND		mg/kg dry	1	EG62817	07/28/06	, 07/30/06	EPA 8015M	, . i
Carbon Ranges C12-C28	ND	10.0		."	n	u	*	"	
Carbon Ranges C28-C35	ND	10.0	Ħ		" '		"	"	,
Fotal Hydrocarbons	ND	10.0	*11	. "	•	*	н	н ,	
Surrogate: 1-Chlorooctane		117 %	70-130)	"	"	"	"	
Surrogate: 1-Chlorooctadecane		114 %	70-130) [·]	"	"	"	"	
-									
									· . 2
									. •

Environmental Lab of Texas 1

~

The results in this report apply to the samples analyzed in accordance with the sample received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 5 of 14

÷

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
BH-1 1' (6G28008-01) Soil									
Chloride	126	5.00	mg/kg	10	EG63104	07/28/06	07/31/06	EPA 300.0	
% Moisture	11.0	0.1	%	1	EG63118		07/31/06	% calculation	
Sulfate	43.0	5.00	mg/kg	10	EG63104		07/31/06	EPA 300.0	
BH-2 1' (6G28008-02) Soil									
Chloride	605	10.0	mg/kg	20	EG63104	07/28/06	07/31/06	EPA 300.0	
% Moisture	11.5	0.1	%	1	EG63118	11	07/31/06	% calculation	
Sulfate	111	10.0	mg/kg	20	EG63104		07/31/06	EPA 300.0	
BH-3 1' (6G28008-03) Soil								_	
Chloride	428	10.0	mg/kg	20	EG63104	07/28/06	07/31/06	EPA 300.0	
% Moisture	3.1	0.1	%	1	EG63118	"	07/31/06	% calculation	
Sulfate	63.6	10.0	mg/kg	20	EG63104	"	07/31/06	EPA 300.0	
BH-4 1' (6G28008-04) Soil									
Chloride	540	10.0	mg/kg	20	EG63104	07/28/06	07/31/06	EPA 300.0	
% Moisture	14.6	0.1	%	1	EG63118	"	07/31/06	% calculation	
Sulfate	151	10.0	mg/kg	20	EG63104	11	07/31/06	EPA 300.0	
BH-5 1' (6G28008-05) Soil									-
Chloride	511	10.0	mg/kg	20	EG63104	07/28/06	07/31/06	EPA 300.0	
% Moisture	16.1	0.1	%	1	EG63118	н	07/31/06	% calculation	
Sulfate	98.5	10.0	mg/kg	20	EG63104	"	07/31/06	EPA 300.0	
BH-6 1' (6G28008-06) Soil									
Chloride	436	10.0	mg/kg	20	EG63104	07/28/06	07/31/06	EPA 300.0	
% Moisture	12.0	0.1	%	1	EG63118	"	07/31/06	% calculation	
Sulfate	117	10.0	mg/kg	20	EG63104	н	07/31/06	EPA 300.0	
BH-7 1' (6G28008-07) Soil									
Chloride	283	10.0	mg/kg	20	EG63104	07/28/06	07/31/06	EPA 300.0	
% Moisture	8.7	0.1	%	1	EG63118	"	07/31/06	% calculation	
Sulfate	49.3	10.0	mg/kg	20	EG63104	"	07/31/06	EPA 300.0	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Environmental Plus, Incorporated P.O. Box 1558 Eunice NM, 88231

ς,

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

;

1

				· · ·	Environ	mental	Lab of T	exas	· · · · _	<u> </u>	<u></u>
Analyte		· ,		esult	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method
BH-8 1' (6G2	28008-08) Soi	il									• • • • • • • • • • • • • • • • • • •
Chloride	.`	3 - sa - 41		949 👊	20.0	mg/kg	· 40	EG63104	07/28/06	07/31/06	EPA 300.0
6 Moisture	i -			5.5	0.1	%) I	EG63118 '		07/31/06	% calculation
Sulfate		. •		131	20.0	mg/kg	40	EG63104	- H	07/31/06	EPA 300.0
BH-9 1' (6G2	28008-09) Soi	il								de L	and a state of the second state
hloride	» · ·		÷	320	· 25.0	mg/kg	50	EG63104	07/28/06	07/31/06	EPA 300.0
% Moisture	an a	1.11.14		6.8	0.1	%	· 1	EG63118 ·	10	07/31/06	% calculation
ulfate	121 e - 2	, ·		172	25.0	mg/kg	50	EG63104	"	07/31/06	EPA 300.0
3H-10 1' (6G	28008-10) Se	oil									e diter suit i dit.
Chloride				976	20.0	mg/kg	40	EG63104	07/28/06	07/31/06	EPA 300.0
6 Moisture	· .	2.1	1	11.2	0.1	%	1	EG63118	N	07/31/06	% calculation
ulfate				134	20.0	mg/kg	40	EG63104	. н	07/31/06	EPA 300.0
											на на страна страна и страна и Страна и страна и стр
· ··· ·	ана стала 19			· ••• •	far i		- ·	 3 e			
· .	1.11			. ·							
							f :	,			
											1997 - 1997 -
•••				·							· · · · · · · · · · · · · · · · · · ·
	a., 1	1						٠			. • • • • •
		1		1.1.1.1.1							۰.
										:	a chairte a tha an
					• •				· ••	• •	
	ε.		,								tor i seco
		·									· · · ·
•·				њ н					•	. ·	 F - 4 27
		`ı `					4				• . • • • • · .
1	· · · . •										

Environmental Lab of Texas
The results in this report apply to the samples analyzed in accordance with the samples
received in the laboratory. This analytical report must be reproduced in its entirety,
with written approval of Environmental Lab of Texas.
Pas

Page 7 of 14

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Organics by GC - Quality Control

Environmental Lab of Texas

Ann 1 An	Dec. 1	Reporting	F F 14	Spike Lavel	Source	0/ DEC	%REC	יזמם	RPD Limit	Note
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG62817 - Solvent Extraction (GC)										
Blank (EG62817-BLK1)				Prepared: 0	07/28/06 Ar	nalyzed: 07.	/30/06			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							_
Carbon Ranges C12-C28	ND	10.0	"							
Carbon Ranges C28-C35	ND	10.0	н							
Total Hydrocarbons	ND	10.0								
Surrogate: 1-Chlorooctane	64.7		mg/kg	50.0		129	70-130			
Surrogate: 1-Chlorooctadecane	64.1		"	50.0		128	70-130			
LCS (EG62817-BS1)				Prepared: 0	07/28/06 Ar	halyzed: 07	/30/06			
Carbon Ranges C6-C12	574	10.0	mg/kg wet	500		115	75-125			
Carbon Ranges C12-C28	417	10.0	**	500		83.4	75-125			
Carbon Ranges C28-C35	ND	10.0	"	0.00			75-125			
Total Hydrocarbons	991	10.0		1000		99.1	75-125			
Surrogate: I-Chlorooctane	62.8		mg/kg	50.0		126	70-130			
Surrogate: 1-Chlorooctadecane	63.4		"	50.0		127	70-130			
Calibration Check (EG62817-CCV1)				Prepared: 0	07/28/06 Ar	nalyzed: 07	/31/06			
Carbon Ranges C6-C12	298		mg/kg	250		119	80-120			
Carbon Ranges C12-C28	228			250		91.2	80-120			
Total Hydrocarbons	526		11	500		105	80-120			
Surrogate: I-Chlorooctane	83.3			100		83.3	70-130		,	
Surrogate: 1-Chlorooctadecane	80.8		"	100		80.8	70-130			
Matrix Spike (EG62817-MS1)	Sou	irce: 6G28008	1-02	Prepared: 0	07/28/06 Ar	nalyzed: 07	/31/06			
Carbon Ranges C6-C12	663	10.0	mg/kg dry	565	ND	117	75-125			
Carbon Ranges C12-C28	501	10.0	11	565	ND .	88.7	75-125			
Carbon Ranges C28-C35	ND	10.0	"	0.00	ND		75-125			
Total Hydrocarbons	1160	10.0		1130	ND	103	75-125			
Surrogate: 1-Chlorooctane	62.2		mg/kg	50.0		124	70-130			
Surrogate: 1-Chlorooctadecane	63.3		"	50.0		127	70-130			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Fax: 505-394-2601 ; : :

a second and a second

Organics by GC - Quality Control **Environmental Lab of Texas**

Analyte	: 4 ¹		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EG62817 - Solvent E	xtraction	(GC)								;	it of	•
Matrix Spike Dup (EG62817-N	MSD1)		So	arce: 6G28008	8-02	Prepared: (07/28/06 A	nalyzed: 07	//30/06	, ² - 2	1 · · ·	·
Carbon Ranges C6-C12			654	10.0	mg/kg dry	565	ND	116	75-125	1.37	20	
Carbon Ranges C12-C28			474	10.0	n	565	. ND	83.9	75-125	5.54	20	· .
Carbon Ranges C28-C35			ND	10.0	۳.,	0.00	ND		75-125		20	
Fotal Hydrocarbons			1130	10.0	**	1130	ND	100	75-125	2.62	20 :	
Surrogate: 1-Chlorooctane		×.,	61.6		mg/kg	50.0		123	70-130			
Surrogate: 1-Chlorooctadecane			64.9		n	50.0		130	70-130			. · · ·
Batch EG63119 - EPA 5030	C (GC)	a si d		ŧ								•
Blank (EG63119-BLK1)	· · · ·	•			· . · · ·	Prepared &	k Analyzed:	07/31/06			1	a *
Benzene			ND	0.0250	mg/kg wet							
Toluene			ND	0.0250	"							
Ethylbenzene			ND	0.0250								
Kylene (p/m)	•		ND	0.0250	•							
Kylene (o)	* *		ND	0.0250	"					· · · ·	• 1	
Surrogate: a,a,a-Trifluorotoluene		· · · · · ·	37.5		ug/kg	40.0		93.8	80-120	1.1.1		
Surrogate: 4-Bromofluorobenzene	ne klas	·· 1	33.3		, "	40.0	1	83.2	80-120			
LCS (EG63119-BS1)	1 - C - G					Prepared &	k Analyzed:	07/31/06		!	. •	
Benzene	· · · ·		1.27	0.0250	mg/kg wet	1.25		102	80-120			• •
Foluene			1.26	0.0250	"	1.25		101	80-120			
Ethylbenzene		•	1.23	0.0250	"	1.25		98.4	80-120	•	1	
Kylene (p/m)	÷		2.74	0.0250	•	2.50		110	80-120		· .	
Xylene (o)		*	1.37	0.0250	R	1.25		110	80-120			
Surrogate: a,a,a-Trifluorotoluene	· · · ·		39.5		ug/kg	40.0		98.8	80-120			
Surrogate: 4-Bromofluorobenzene	· · · .		38.1		"	40.0		95 .2	80-120			·
······											• • •	·
											1 -	• •
	54 A 14	•										

Environmental Lab of Texas 1.1.11

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 9 of 14

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

ſ

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

٦

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EG63119 - EPA 5030C (GC)										
Calibration Check (EG63119-CCV1)				Prepared: (07/31/06 A	nalyzed: 08	3/01/06			
Benzene	51.5		ug/kg	50.0		103	80-120			
Toluene	49.9		"	50.0		99.8	80-120			
Ethylbenzene	51.7			50.0		103	80-120			
Xylene (p/m)	103			100		103	80-120			
Xylene (o)	50.8		t#	50.0		102	80-120			
Surrogate: a,a,a-Trifluorotoluene	35.7		"	40.0		89.2	80-120			
Surrogate: 4-Bromofluorobenzene	33.7		"	40.0		84.2	80-120			
Matrix Spike (EG63119-MS1)	Sour	ce: 6G28008	3-01	Prepared: (07/31/06 A	nalyzed: 08	3/01/06			
Benzene	1.51	0.0250	mg/kg dry	1.40	ND	108	80-120			
Toluene	1.52	0.0250		1.40	ND	109	80-120			
Ethylbenzene	1.47	0.0250	"	1.40	ND	105	80-120			
Xylene (p/m)	3.25	0.0250	"	2.81	ND	116	80-120			
Xylene (0)	1.58	0.0250		1.40	ND	113	80-120			
Surrogate: a,a,a-Trifluorotoluene	38.5		ug/kg	40.0		96.2	80-120			
Surrogate: 4-Bromofluorobenzene	40.9		"	40.0		102	80-120			
Matrix Spike Dup (EG63119-MSD1)	Sour	8-01	Prepared: (
Benzene	1.43	0.0250	mg/kg dry	1.40	ND	102	80-120	5.71	20	
Toluene	1.41	0.0250	87	1.40	ND	101	80-120	7.62	20	
Ethylbenzene	1.35	0.0250	**	1.40	ND	96.4	80-120	8.54	20	
Xylene (p/m)	3.00	0.0250		2.81	ND	107	80-120	8.07	20	
Xylene (o)	1.49	0.0250	н	1.40	ND	106	80-120	6.39	20	
Surrogate: a,a,a-Trifluorotoluene	40.4		ug/kg	40.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	39.2		"	40.0		98.0	80-120			
Batch EH60114 - EPA 5030C (GC)										
Blank (EH60114-BLK1)				Prepared: (08/01/06 A	nalyzed: 08	3/02/06			
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	"							
Ethylbenzene	ND	0.0250	"							
Xylene (p/m)	ND	0.0250	"							
Xylene (0)	ND	0.0250								

Environmental Lab of Texas

Surrogate: a,a,a-Trifluorotoluene

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

88.8

83.0

80-120

80-120

ug/kg

"

40.0

40.0

35.5

33.2

Environmental Plus, Incorporated P.O. Box 1558 Eunice NM, 88231

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 ¹¹Project Manager: Jason Stegemoller

Fax: 505-394-2601

., ÷ :

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	V 1.	• •		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH60114 - E	PA 503	0C (GC)								• we			
LCS (EH60114-BS1)		· .					Prepared:	08/01/06 A	analyzed: 08	3/02/06	· ·		
Benzene		<i>t</i> .		1.20	0.0250	mg/kg wet	1.25		96.0	80-120			1.1
Toluene			:	1.27	0.0250	"	1.25		102	80-120			•
Ethylbenzene			2.0	1.13	0.0250	*	1.25		90.4	80-120			
Xylene (p/m)		:		2.68	0.0250		2.50		107	80-120			
Xylene (o)				1.33	0.0250	"	1.25	••	106	80-120			
Surrogate: a,a,a-Trifluoro	otoluene	• •	· · · · · · · · · · · · · · · · · · ·	41.7	1	ug/kg	40.0		104	80-120	· · · ·		
Surrogate: 4-Bromofluoro	obenzene			38.8		` <i>n</i>	40.0		97.0	80-120			
Calibration Check (E	H60114	-CCV1)	,	· .		•	Prepared: (08/01/06 A	nalyzed: 08	3/02/06		÷ .	
Benzene				53.8		ug/kg	50.0		108	80-120			1
Foluene		${\cal L}^{(1)}({\cal L})$		54.3			50.0		109	80-120			. •
Ethylbenzene		at sign		51.0			50.0		102	80-120			·
Kylene (p/m)		1. A. A.	. '	-110		н	100		110	80-120			2.1877
Kylene (o)				54.8			50.0	Ĩ	110	80-120			
Surrogate: a,a,a-Trifluoro	otoluene			37.1		. "	40.0		92.8	80-120			` •
Surrogate: 4-Bromofluoro	obenzene	•		33.0		"	40.0	* *	82.5	80-120		11.0	• •
Matrix Spike (EH601	14-MS1)	·	Sou	rce: 6G28010	-01	Prepared: ()8/01/06 A	nalyzed: 08	s/02/06	545 [°] - 1	• • • •	·
Benzene	•	° 4 ',		1.43	0.0250	mg/kg dry	1.39	ND	103	80-120			- ,
Foluene (.		1.1	:	1.44	0.0250	"	1.39	ND	104	80-120			
Ethylbenzene				1.37	0.0250	*	1.39	ŃD	98.6	80-120			
Xylene (p/m)	· .	· .		3.09	0.0250	"	2.78	ND	111	80-120			1.11
Kylene (o)	\$, · · `		1.51	0.0250	*	1.39	ND	109	80-120			
Surrogate: a,a,a-Trifluoro	otoluene			38.9		ug/kg	40.0		97.2	80-120	• •	5 ST	s *
Surrogate: 4-Bromofluoro	obenzene	2 e		36.9		n	40.0		<i>92.2</i>	80-120	• .		
Matrix Spike Dup (El	H60114-	MSD1)		Sou	rce: 6G28010	-01	Prepared: ()8/01/06 A	nalyzed: 08	/02/06			14 A.
Benzene				1.30	0.0250	mg/kg dry	1.39	ND	93.5	80-120	9.67	20	
Toluene		• • • •	· · · ·	1.37	0.0250		1.39	ND	98.6	80-120	5.33	20	
				1.29	0.0250		1.39	ND	92.8	80-120	6.06	20	
Ethylbenzene				2.88	0.0250		2.78	ND	104	80-120	6.51	20	
•													
Xylene (p/m)				1.42	0.0250	"	1.39	ND	102	80-120	6.64	20	
Ethylbenzene Xylene (p/m) Xylene (o) Surrogate: a,a,a-Trifluoro	stoluene			1.42	0.0250	" ug/kg	40.0	ND	102 81.8	80-120	6.64	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 11 of 14

۰. ..

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

. . .

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

	D 14	Reporting	I Jac it-	Spike	Source	%REC	%REC	RPD	RPD Limit	Noter
Analyte	Result	Limit	Units	Level	Result	%KEC	Limits	KPD	Limit	Notes
Batch EG63104 - General Preparation (WetChem)					<u></u>				
Blank (EG63104-BLK1)				Prepared: 0	7/28/06	Analyzed: 07	7/31/06			
Chloride	ND	0.500	mg/kg							
Sulfate	ND	0.500								
LCS (EG63104-BS1)				Prepared: 0	07/28/06 A	Analyzed: 07	'/31/06			
Sulfate	10.4	0.500	mg/kg	10.0		104	80-120			
Chloride	9.56	0.500	"	10.0		95.6	80-120			
Calibration Check (EG63104-CCV1)				Prepared: 0	07/28/06 A	Analyzed: 07	'/31/06			
Sulfate	10.1		mg/L	10.0		101	80-120			
Chloride	10.1		n	10.0		101	80-120			
Duplicate (EG63104-DUP1)	Sou	rce: 6G21001	-01	Prepared: 0	07/28/06	Analyzed: 07	//31/06			
Sulfate	560	5.00	mg/kg		523			6.83	20	
Chloride	344	5.00	"		320			7.23	20	
Duplicate (EG63104-DUP2)	Sou	rce: 6G28008-	-09	Prepared: 0)7/28/06 <i>A</i>	Analyzed: 07	1/31/06			
Sulfate	177	25.0	mg/kg		172			2.87	20	
Chloride	1350	25.0	9		1320			2.25	20	
Matrix Spike (EG63104-MS1)	Sou	rce: 6G21001-	-01	Prepared: 0)7/28/06 A	Analyzed: 07	'/31/06			
Chloride	452	5.00	mg/kg	100	320	132	80-120			S-0
Sulfate	625	5.00	".	100	523	102	75-125			
Matrix Spike (EG63104-MS2)	Sou	rce: 6G28008-	-09	Prepared: 0	07/28/06	Analyzed: 07	1/31/06			
Sulfate	669	25.0	mg/kg	500	172	99.4	75-125			
Chloride	1890	25.0	"	500	1320	114	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Environmental Plus, Incorporated	•	 	Project:	Apache/ N. Mon. Grayburg SA 603
P.O. Box 1558			Project Number:	240014
Eunice NM, 88231		·	Project Manager:	Jason Stegemoller

Fax: 505-394-2601 .0 1

. .

General Chemistry Parameters by EPA / Standard Methods - Quality Control "Environmental Lab of Texas %REC Reporting Spike Source RPD Analyte Result Limit Level %REC RPD Units Result Limits Limit ٠, Notes **Batch EG63118 - General Preparation (Prep)** 1. 1. Blank (EG63118-BLK1) , Prepared: 07/28/06 Analyzed: 07/31/06 % Moisture ND 0.1 % Duplicate (EG63118-DUP1) Source: 6G21001-01 Prepared: 07/28/06 Analyzed: 07/31/06 % Solids 90.8 % 91.9 1.20 20 Source: 6G28008-03 Duplicate (EG63118-DUP2) Prepared: 07/28/06 Analyzed: 07/31/06 % Solids 97.4 96.9 0.515 % 20 1 10 1 Duplicate (EG63118-DUP3) Source: 6G28013-01 Prepared: 07/28/06 Analyzed: 07/31/06 % Solids 93.9 % 93.5 0.427 20 . **.** . The results in this report apply to the samples analyzed in accordance with the samples Environmental Lab of Texas . received in the laboratory. This analytical report must be reproduced in its entirety, , with written approval of Environmental Lab of Texas. Page 13 of 14 1.2.4 12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Environmental Plus, Incorporated
P.O. Box 1558
Eunice NM, 88231

Project:Apache/ N. Mon. Grayburg SA 603Project Number:240014Project Manager:Jason Stegemoller

Notes and Definitions

S-07 Recovery outside Laboratory historical or method prescribed limits.

J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Report Approved By:

Raland K Juits Date:

e: 8/3/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Delivered by:	Call-	alex the	「観光版		1 - Def 9		100	906	5	44	63 3	-07 2		LAB I.D.		EPI Sampler Name	Project Reference	Location	Facility Name	Client Company	EPI Phone#/Fax#	City, State; Zip	Mailing Address	EPI Project Manager	Company Name	(505) 394-3481 1	2100 Avenue O, Eunice, NM 88231	Environmental Plus ,	• • •
	$\left[\left[\right] \right]$	ATA		10 BH-10 (1')	BH-9 (1')	BH-8 (1')	BH-7 (1')	BH-6 (1')	BH-5 (1')	BH-4 (1')	BH-3 (1')	BH-2 (1')	BH-1 (1')			ē	Ģ		·					ger		AX: (Eunica	nen	
See	Series 2	dory "me 7:30		(1)	[¹]	1)	E)	F)	(1	")	-)	")	7	SAMPLE I.D.		Jacob Melancon	240014	UL-C, Sec 20, T19S, R37E	N. Mon, Grayburg SA 603	Apache Corporation	505-394-3481 / 505-394-2601	Eunice New Mexico 88231	P.O. BOX 1558	Jason Stegemoller	Environmental Plus, Inc.	FAX: (505) 394-2601	e, NM 88231	tal Plus, Inc.	• •
Sample Cool & Intact (Yes) No	C (PRO	Ŭ			6	<u>م</u>	G	୍କ ଜ	G G	о С	G	D G	G	(G)RAB OR (C)OMP.	_			S, R	SA	ŝ	5-394	CO 88		9ř	us, Ir		σ	•	
n å lov	Ceived	Harry		ດ 1		<u> </u>		ц Ц	<u>"</u>	3 1	3 1	3 1		# CONTAINERS	-			37E	ŝ		1-260	3231			៉ុ		P.O. Box 1558. Eunice. NM 88231		
No 1	pived By: (lab staft	and xtra				┢	F	┢	\square					GROUND WATER	┥						3						Sox		
	L into sta	£			T	Γ								WASTEWATER													155		
	6ª	5			-			1			-	-	1	SOIL	5		fi												
Ś	2	U												CRUDE OIL	MATRIX												unic		
ecked By:	b	C												SLUDGE													ຕ໌ 2		
By:						Ļ.	[OTHER:				_									6 M		
		2 77		-					ļ		Ц			ACID/BASE		üni	P	Attn			,11	6					823		
		E-mail I NOTES:		×	×	×	×	X	×	X	Х	×	X		DBESEBV	8	0. B	5	_	1	Щ	5					and a		
with the la	2:5°C	reșults		26-Jui-06	26-Jul-06	26-Jul-06	25-Jul-06	25-Jul-06	25-Jul-06	25-Jui-06	26-Jul-06	26-Jul-06	26-Jul-06	a	V SAMPI ING	Eunice, NM 88231	P.O. Box 1558	Attn: lain Olness		Ę									
	4	to: jstegemoller@envplus.net		13:45	13:30	13:15	13:45	13:30	10:40	10:20	10:45	10:35	10:15	TIME	2 D											C.c.	r		
	462 gloss	nyplu		×	X	X	X	X	Х	×	×	Х	X	BTEX 8021B							 	3.							
	20	s.ne		×	×	X	Ľ	X	×	×	×	×	×	TPH 8015M							_			<u>.</u>		н 1	۰.i		
	×	444		Ě	X	×	×	X	×	X	X	X	X	CHLORIDES (CI)						in the second								2	
	v			Ľ	Ě	X	Ě	X	×	×	×	X	Ň	SULFATES (SO4 [®])				, ʻ		1			,	·		, r. s		ain	
				-			\vdash	\vdash	\vdash					TCLP					*****				· · · ·				<u>ب</u>	of	
							\vdash	Η				. · ·		OTHER >>>			, 	t d						-			1 of 2' 4	hain of Custody	
							Η							РАН											e 1	ł	*	sto	
																												dr A	
														······································							~							Fo	
	· .	· • • •				÷	÷.							· ·														E	

 $= \frac{1}{2} \left\{ \frac{1}{2}$

:

....

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

ent:	EPL
ite/ Time:	7/28/06 10:50
ib ID # :	6918008
tials:	'CK

Sample Receipt Checklist

				Client	nitials
	Temperature of container/ cooler?	Yes	No	2.5 °C	
>	Shipping container in good condition?	res	No		
3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present	
1	Custody Seals intact on sample bottles/ container?	Yes	No	Not Present	
3	Chain of Custody present?	Yes	No		
3	Sample instructions complete of Chain of Custody?	Yes	No		
7	Chain of Custody signed when relinquished/ received?	Fes	No		
3	Chain of Custody agrees with sample label(s)?	Bs	No	ID written on Cont./ Lid	
3	Container label(s) legible and intact?	¥es	No	Not Applicable	
10	Sample matrix/ properties agree with Chain of Custody?	Tes	No		
11	Containers supplied by ELOT?	res	No		
12	Samples in proper container/ bottle?	Fes	No	See Below	
13	Samples properly preserved?	Yes	No	See Below	
14	Sample bottles intact?	Yes	No		
15	Preservations documented on Chain of Custody?	Yes	No		
16	Containers documented on Chain of Custody?	Fes	No		
17	Sufficient sample amount for indicated test(s)?	Ves	No	See Below	
18	All samples received within sufficient hold time?	Yes	No	See Below	
19	VOC samples have zero headspace?	Ves	No	Not Applicable	

Variance Documentation

Contact:	<u></u>	Contacted by:	Date/ Time:	
(egarding:			·	
Corrective Action Taken	:			
	· ·		***************************************	
Sheck all that Apply:		See attached e-mail/ fax		

Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

12600 West I-20 East - Odessa, Texas 79765

Analytical Report

Prepared for: Jason Stegemoller Environmental Plus, Incorporated P.O. Box 1558 Eunice, NM 88231

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Location: UL-C, Sec. 20, T19S, R37E

Lab Order Number: 6H02006

Report Date: 08/08/06

Environmental Plus, Incorporated P.O. Box 1558 Eunice NM, 88231 Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller Fax: 505-394-2601

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BH-11 6"	6H02006-01	Soil	2006-07-31 08:30	2006-08-02 11:15
BH-12 6"	6H02006-02	Soil	2006-07-31 11:40	2006-08-02 11:15
BH-13 6"	6H02006-03	Soil	2006-07-31 13:43	2006-08-02 11:15
BH-14 6"	6H02006-04	Soil	2006-07-31 15:39	2006-08-02 11:15

Environmental Plus, Incorporated P.O. Box 1558 Eunice NM, 88231			Project: Apac Number: 2400 Ianager: Jason	14		g SA 603	••••	Fax: 50	5-394-2601
	··		rganics by	GC	\$				· .
n an	··· ·	Environ	mental La	b of To	exas	÷ .			 .,
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BH-11 6" (6H02006-01) Soil	;			_					
Benzene	ND	0.0250	mg/kg dry	25	EH60402	08/04/06	08/06/06	EPA 8021B	. 1
Toluene	ND	0.0250	"	"	•	n	"	"	
Ethylbenzene	ND	0.0250		**		"	**	"	
Xylene (p/m)	ND	0.0250	•	"	**	"	"	"	
Xylene (o)	ND	0.0250	"	"	"	"	"	u	
Surrogate: a,a,a-Trifluorotoluene		86.8 %	80-12	0	"		"	"	
Surrogate: 4-Bromofluorobenzene		80.2 %	80-12	0	"	n	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH60209	08/02/06	08/02/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"	11	"		"	
Carbon Ranges C28-C35	ND	10.0	*		*	"	*	"	
Total Hydrocarbons	ND	10.0		"	н	м	*1	н	
Surrogate: 1-Chlorooctane		79.8 %	70-13	0	"	"	п —	"	
Surrogate: 1-Chlorooctadecane		70.8 %	70-130	0	"	"	"	"	
BH-12 6'' (6H02006-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60402	08/04/06	08/06/06	EPA 8021B	
Foluene	ND	0.0250	"	"	"	n	"	"	
Ethylbenzene	ND	0.0250	"	и	"	"		н	
Xylene (p/m)	ND	0.0250		N		u		n	
Xylene (o)	ND	0.0250	11	n		"	"	"	
Surrogate: a,a,a-Trifluorotoluene		89.0 %	80-120	0	"	"		"	
Surrogate: 4-Bromofluorobenzene		85.0 %	80-120		"	"	"	"	
Carbon Ranges C6-C12	ND	10.0		1	EH60209	08/02/06	08/02/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"		"	"	"	"	
Carbon Ranges C28-C35	ND	10.0	11		и		н		
Fotal Hydrocarbons	ND	10.0	"	۳	"	11	**	n	
······································		78.4 %	70-130		"	"	"	#	
Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctadecane		78.4 % 71.0 %	70-130		"	"	"	"	
2		/1.0 /0	70-150	,					
BH-13 6" (6H02006-03) Soil							·	<u></u>	
Benzene	ND		mg/kg dry	25	EH60702	08/04/06	08/06/06	EPA 8021B	
Toluene	ND	0.0250	"	н	n	"	ч	11	
Ethylbenzene	ND	0.0250	"	Ħ	"	"	"	"	
Kylene (p/m)	ND	0.0250	۳	"	*	11	"	"	
Kylene (o)	ND	0.0250	H	u 	*	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		96.0 %	80-120	0	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		93.8 %	80-120	0	"	"	"	п	
								EPA 8015M	

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BH-13 6" (6H02006-03) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EH60209	08/02/06	08/02/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	"		н	н	р		
Total Hydrocarbons	ND	10.0	"	"	"	"	v	n	
Surrogate: 1-Chlorooctane		79.2 %	70-13	10	"	"	"	"	
Surrogate: 1-Chlorooctadecane		71.4 %	70-13	10	"	"	"	"	

BH-14 6" (6H02006-04) Soil

ND	0.0250	mg/kg dry	25	EH60702	08/04/06	08/06/06	EPA 8021B	
ND	0.0250	"	"	н	"	19	"	
ND	0.0250		н	"	"	"		
ND	0.0250	n		н	"	"	"	
ND	0.0250	u.		"		"	"	
	90.0 %	80-120		"	"	"	"	
	92.8 %	80-120		"	"	n	"	
ND	10.0	mg/kg dry	1	EH60209	08/02/06	08/02/06	EPA 8015M	
ND	10.0	н	"	н			"	
ND	10.0	H	и	"	"		н	
ND	10.0	w	"		11	"	n	
	92.4 %	70-130		"	"	"	"	
	112 %	70-130		"	"	"	"	
	ND ND ND ND ND ND	ND 0.0250 ND 0.0250 ND 0.0250 ND 0.0250 90.0 % 92.8 % ND 10.0 ND 10.0 ND 10.0 ND 10.0 ND 10.0 ND 10.0 ND 10.0	ND 0.0250 " ND 0.0250 " ND 0.0250 " ND 0.0250 " 90.0 % 80-120 92.8 % 80-120 92.8 % 80-120 ND 10.0 mg/kg dry ND 10.0 " ND 10.0 " ND 10.0 " ND 10.0 " ND 10.0 "	ND 0.0250 " " 90.0 % 80-120 92.8 % 80-120 92.8 % 80-120 " " ND 10.0 mg/kg dry 1 ND 10.0 " " ND 10.0 " "	ND 0.0250 " " " 90.0 % 80-120 " " 92.8 % 80-120 " " ND 10.0 mg/kg dry I EH60209 ND 10.0 " " " ND 10.0 " " "	ND 0.0250 " </td <td>ND 0.0250 "<!--</td--><td>ND 0.0250 "<!--</td--></td></td>	ND 0.0250 " </td <td>ND 0.0250 "<!--</td--></td>	ND 0.0250 " </td

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Environmental Plus, Incorporated	•	Project:	Apache/ N. Mon. Grayburg SA 603	· . · ·	Fax: 505-394-2601
P.O. Box 1558		Project Number:	240014		
Eunice NM, 88231	· · · · · ·	Project Manager:	Jason Stegemoller		

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

· _ · _ · _ · _ · _ · _ · _ · _				•		هن			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
BH-11 6'' (6H02006-01) Soil						· · · · · · · · · · · · · · · · · · ·	12 12	and a state of the	
Chloride	2110	50.0	mg/kg	100	EH60204	08/02/06	08/02/06	EPA 300.0	
% Moisture	18.6	0.1	%	1	ЕН60302	08/02/06	08/03/06	% calculation	e.
Sulfate	281	50.0	mg/kg	100	EH60204	08/02/06	08/02/06	EPA 300.0	
BH-12 6'' (6H02006-02) Soil		,							
							· · ·		- · · · ·
Chloride	1000	25.0	mg/kg	50	EH60204	08/02/06	08/02/06	EPA 300.0	
% Moisture	18.5	0.1	%	1	EH60302	08/02/06	08/03/06	% calculation	
Sulfate	74.5	25.0	mg/kg	50	EH60204	08/02/06	08/02/06	EPA 300.0	1.1
BH-13 6'' (6H02006-03) Soil					,				1. 2013
Chloride	1500	25.0	mg/kg	50	EH60204	08/02/06	08/02/06	EPA 300.0	
% Moisture	17.0	0.1	%	1	EH60302	08/02/06	08/03/06	% calculation	2
Sulfate	178	25.0	mg/kg	50	EH60204	08/02/06	08/02/06	EPA 300.0	1. e
								• • •	
BH-14 6" (6H02006-04) Soil	1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -	4	ί γ	. •					
Chloride	1750	50.0	mg/kg	100	EH60204	08/02/06	08/02/06	EPA 300.0	· · · ·
% Moisture	16.5	0.1	%	' 1	EH60302	08/02/06	08/03/06	% calculation	۰.

Environmental Lab of Texas

and a start of the start of the

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 4 of 11

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

٢

Environmental Plus, Incorporated P.O. Box 1558 Eunice NM, 88231 Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller Fax: 505-394-2601

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH60209 - EPA 5030C (GC)										

Blank (EH60209-BLK1)				Prepared & Anal	lyzed: 08/02/06		
Carbon Ranges C6-C12	ND	10.0	mg/kg wet	· · · · · · · · · · · · · · · · · · ·			
Carbon Ranges C12-C28	ND	10.0	н				
Carbon Ranges C28-C35	ND	10.0	"				
Total Hydrocarbons	ND	10.0					
Surrogate: 1-Chlorooctane	64.0		mg/kg	50.0	128	70-130	
Surrogate: 1-Chlorooctadecane	61.1		"	50.0	122	70-130	
LCS (EH60209-BS1)				Prepared & Ana	lyzed: 08/02/06		
Carbon Ranges C6-C12	441	10.0	mg/kg wet	500	88.2	75-125	
Carbon Ranges C12-C28	451	10.0	"	500	90.2	75-125	
Carbon Ranges C28-C35	ND	10.0	"	0.00		75-125	
Total Hydrocarbons	892	10.0	11	1000	89.2	75-125	
Surrogate: 1-Chlorooctane	49.0		mg/kg	50.0	98.0	70-130	
Surrogate: 1-Chlorooctadecane	37.1		"	50.0	74.2	70-130	
Calibration Check (EH60209-CCV1)				Prepared: 08/02/	06 Analyzed: 08	/03/06	
Carbon Ranges C6-C12	210		mg/kg	250	84.0	80-120	
Carbon Ranges C12-C28	271		11	250	108	80-120	
Total Hydrocarbons	481		"	500	96.2	80-120	

Matrix Spike (EH60209-MS1)	Source	e: 6H02009	5-01	Prepared &	Analyzed:	: 08/02/06	
Carbon Ranges C6-C12	466	10.0	mg/kg dry	520	ND	89.6	75-125
Carbon Ranges C12-C28	479	10.0	"	520	ND	92.1	75-125
Carbon Ranges C28-C35	ND	10.0	н	0.00	ND		75-125
Total Hydrocarbons	945	10.0	"	1040	ND	90.9	75-125
Surrogate: 1-Chlorooctane	49.7		mg/kg	50.0		99.4	70-130
Surrogate: 1-Chlorooctadecane	38.3		"	50.0		76.6	70-130

,,

100

100

87.7

75.9

Environmental Lab of Texas

Surrogate: 1-Chlorooctane

Surrogate: 1-Chlorooctadecane

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

70-130

70-130

87.7

75.9

Page 5 of 11

		rganics by	y GC - O	uality Co	ontrol					
		Environ		•						
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit No	otes
Batch EH60209 - EPA 5030C (GC)										_
Matrix Spike Dup (EH60209-MSD1)	Sou	rce: 6H0200	5-01	Prepared &	2 Analyzed	: 08/02/06			· · ·	•
Carbon Ranges C6-C12	470	10.0	mg/kg dry	520	ND	90.4	75-125	0.855	20	
Carbon Ranges C12-C28	484	10.0	"	520	ND	93.1	75-125	1.04	20	
Carbon Ranges C28-C35	ND	10.0	11	0.00	ND		75-125		20	
Total Hydrocarbons	954	10.0	"	1040	ND	91.7	75-125	0.948	- 20	
Surrogate: 1-Chlorooctane	50.5		∖ mg/kg	50.0		101	70-130			
Surrogate: 1-Chlorooctadecane	37.2		"	50.0	· ·	74.4	70-130			
Batch EH60402 - EPA 5030C (GC)	<u>,</u>									
Blank (EH60402-BLK1)		. u	÷ *	Prepared &	Analyzed	: 08/04/06				
Benzene	ND	0.0250	mg/kg wet						,*	,
Toluene	ND	0.0250								
Ethylbenzene	ND	0.0250								
Xylene (p/m)	ND	0.0250	"							
Xylene (o)	ND	0.0250								
Surrogate: a,a,a-Trifluorotoluene	34.6		ug/kg "	40.0		86.5	80-120			
Surrogate: 4-Bromofluorobenzene	36.8		"	40.0		92.0	80-120		с	
LCS (EH60402-BS1)				Prepared &	Analyzed:	08/04/06				
Benzene	1.14	0.0250	mg/kg wet	1.25		91.2	80-120			
Toluene	1.17	0.0250		1.25		93.6	80-120			
Ethylbenzene	1.15	0.0250	"	1.25		92.0	80-120			
Xylene (p/m)	2.57	0.0250	· · ·	2.50		103	80-120	· •		
Xylene (o)	1.28	0.0250		1.25		102	80-120			
Surrogate: a,a,a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene	37.3 39.0		ug/kg "	40.0 40.0		93.2 97.5	80-120 80-120			
surrogaie. +-bromojiuorobenzene	39.0			40.0		¥1.5	00-120			

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Environmental Lab of Texas

Page 6 of 11

Project: Apache/ N. Mon. Grayburg SA 603 Environmental Plus, Incorporated Project Number: 240014 P.O. Box 1558 Eunice NM, 88231 Project Manager: Jason Stegemoller

Fax: 505-394-2601

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH60402 - EPA 5030C (GC)										
Calibration Check (EH60402-CCV1)				Prepared: (08/04/06 A	nalyzed: 08	3/06/06			
Benzene	50.6		ug/kg	50.0		101	80-120			
Toluene	49.6			50.0		99.2	80-120			
Ethylbenzene	48.4		"	50.0		96.8	80-120			
Xylene (p/m)	103		н	100		103	80-120			
Xylene (0)	51.5		"	50.0		103	80-120			
Surrogate: a,a,a-Trìfluorotoluene	37.6		**	40.0		94.0	80-120			
Surrogate: 4-Bromofluorobenzene	39.2		"	40.0		98.0	80-120			
Matrix Spike (EH60402-MS1)	Sour	rce: 6G3101	1-06	Prepared: (08/04/06 A	nalyzed: 08	8/07/06			
Benzene	1.20	0.0250	mg/kg dry	1.28	ND	93.8	80-120			1 / 10 M
Toluene	1.21	0.0250	"	1.28	ND	94.5	80-120			
Ethylbenzene	1.24	0.0250	н	1.28	ND	96.9	80-120			
Xylene (p/m)	2.67	0.0250	"	2.56	ND	104	80-120			
Xylene (0)	1.30	0.0250	*	1.28	ND	102	80-120			
Surrogate: a,a,a-Trifluorotoluene	35.2		ug/kg	40.0		88.0	80-120			
Surrogate: 4-Bromofluorobenzene	36.3		"	40.0		90.8	80-120			
Matrix Spike Dup (EH60402-MSD1)	Sour	rce: 6G3101	1-06	Prepared: (08/04/06 A	nalyzed: 08	8/07/06			
Benzene	1.23	0.0250	mg/kg dry	1.28	ND	96.1	80-120	2.42	20	
Toluene	1.25	0.0250	"	1.28	ND	9 7.7	80-120	3.33	20	
Ethylbenzene	1.25	0.0250	۲	1.28	ND	97.7	80-120	0.822	20	
Xylene (p/m)	2.90	0.0250	н	2.56	ND	113	80-120	8.29	20	
Xylene (o)	1.38	0.0250		1.28	ND	108	80-120	5.71	20	
Surrogate: a,a,a-Trifluorotoluene	40.7		ug/kg	40.0		102	80-120			
Surrogate: 4-Bromo/luorobenzene	39.2		n	40.0		98.0	80-120			
Batch EH60702 - EPA 5030C (GC)										
Blank (EH60702-BLK1)		· · · · · · · · · · · · · · · · · · ·		Prepared:	08/04/06 A	nalyzed: 0	8/06/06			
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	11							
Ethylbenzene	ND	0.0250	ч							
Xylene (p/m)	ND	0.0250	"							
Xylene (o)	ND	0.0250	"							
Surrogate: a,a,a-Trijluorotoluene	37.0		ug/kg	40.0		92.5	80-120			

Environmental Lab of Texas

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

84.8

80-120

Page 7 of 11

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

"

40.0

33.9

Environmental Plus, Incorporated	 4 1	Project:	Apache/ N. Mon. Grayburg SA 603	-	Fax: 505-394-2601
P.O. Box 1558		Project Number:	240014		the second
Eunice NM, 88231		Project Manager:	Jason Stegemoller		

Organics by GC - Quality Control

Environmental Lab of Texas

Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20	LCS (EH60702-BS1) Prepared: 08/04/06 Analyzed: 08/06/06 Benzene 1.19 0.0250 mg/kg wei 1.25 95.2 80-120 Eduybenzene 1.08 0.0250 " 1.25 96.8 80-120 Xylene (p/m) 2.66 0.0250 " 1.25 86.4 80-120 Xylene (p/m) 2.66 0.0250 " 1.25 106 80-120 Xylene (p/m) 2.66 0.0250 " 1.25 105 80-120 Surrogate: <i>a.a.e-Triflucoroluene</i> 39.7 ug/kg 40.0 102 80-120 Surrogate: <i>a.a.e-Triflucoroluene</i> 40.7 " 40.0 102 80-120 Surrogate: <i>a.a.e-Triflucoroluene</i> 40.7 " 50.0 101 80-120 Surrogate: <i>a.a.e-Triflucoroluene</i> 50.4 ug/kg 50.0 98.8 80-120 Staros (inform) 99.8 " 100 98.8 80-120 Surrogate: <i>a.a.e-Triflucoroluene</i> 37.3 " 40.0	LCS (EH60702-BS1) Prepared: 08/06/06 Brazene 1.19 0.0250 mg/k wet 1.25 95.2 80-120 Toluene 1.21 0.0250 " 1.25 96.8 80-120 Killene 1.08 0.0250 " 2.50 106 80-120 Xylene (p'm) 2.66 0.0250 " 2.50 106 80-120 Surrogatic 4. Bromofiluorobourne 39.7 ug/kg 40.0 102 80-120 Surrogatic 4. Bromofiluorobourne 40.7 " 40.0 102 80-120 Calibration Check (EH60702-CCV1) Prepared: 08/04/06 Analyzet: 08/07/06 - Benzene 50.4 ug/kg 50.0 98.8 80-120 Surrogatic: 4.9 " 50.0 98.8 80-120 <th>LCS (EH60702-BS1) Prepared: 08/06/06 Benzene 1.19 0.0250 mg/k wet 1.25 95.2 80-120 Toluene 1.21 0.0250 1.25 86.4 80-120 Steinplenzene 1.08 0.0250 1.25 86.4 80-120 Xylene (p/m) 2.66 0.0250 2.50 1.06 80-120 Surrogate: 3.04 0.0250 1.25 86.4 80-120 Surrogate: 3.04 0.0250 1.25 80-120 80-120 Surrogate: 4.00 1.02 80-120 80-120 80-120 Surrogate: 4.07 4.00 1.02 80-120 80-120 Calibration Check (EH60702-CCV1) Prepared: 08/04/06 Analyzet: 08/07/06 88.8 80-120 Surrogate: 50.4 ug/kg 50.0 97.6 80-120 Surrogate: 60 98.8 80-120 80-120 Surrogate: 60 98.2 80-120 80-120</th> <th>LCS (B169702-BS1) Prepared: 08/04/06 Analyzed: 08/06/06 Breazere 1.19 0.0250 mg/kg wet 1.25 99.2 80.120 EfblyBreazers 1.08 0.0250 " 1.25 86.4 80.120 Sylence (p/m) 2.66 0.0250 " 1.25 1.06 80.120 Sylence (p/m) 2.66 0.0250 " 1.25 1.06 80.120 Sylence (p/m) 2.66 0.0250 " 1.25 80.4 80.120 Sylence (p/m) 2.66 0.0250 " 1.05 80.120 Sylence (p/m) 9.7 wg/kg 50.0 98.2 80.120 Sylence (p/m) 9.8 * 100 99.8 80.120 Sylence (p/m) 9.8 * 100 99.2 80.120 Sylence (p/m) 9.8 * 100 99.4 80.120 Sylence (p/m) 9.8 * 100 99.2 80.120</th> <th>Analyte</th> <th>: I</th> <th>Result</th> <th>Reporting Limit</th> <th>Units</th> <th>Spike Level</th> <th>Source Result</th> <th>%REC</th> <th>%REC Limits</th> <th>RPD</th> <th>RPD Limit</th> <th>Notes</th>	LCS (EH60702-BS1) Prepared: 08/06/06 Benzene 1.19 0.0250 mg/k wet 1.25 95.2 80-120 Toluene 1.21 0.0250 1.25 86.4 80-120 Steinplenzene 1.08 0.0250 1.25 86.4 80-120 Xylene (p/m) 2.66 0.0250 2.50 1.06 80-120 Surrogate: 3.04 0.0250 1.25 86.4 80-120 Surrogate: 3.04 0.0250 1.25 80-120 80-120 Surrogate: 4.00 1.02 80-120 80-120 80-120 Surrogate: 4.07 4.00 1.02 80-120 80-120 Calibration Check (EH60702-CCV1) Prepared: 08/04/06 Analyzet: 08/07/06 88.8 80-120 Surrogate: 50.4 ug/kg 50.0 97.6 80-120 Surrogate: 60 98.8 80-120 80-120 Surrogate: 60 98.2 80-120 80-120	LCS (B169702-BS1) Prepared: 08/04/06 Analyzed: 08/06/06 Breazere 1.19 0.0250 mg/kg wet 1.25 99.2 80.120 EfblyBreazers 1.08 0.0250 " 1.25 86.4 80.120 Sylence (p/m) 2.66 0.0250 " 1.25 1.06 80.120 Sylence (p/m) 2.66 0.0250 " 1.25 1.06 80.120 Sylence (p/m) 2.66 0.0250 " 1.25 80.4 80.120 Sylence (p/m) 2.66 0.0250 " 1.05 80.120 Sylence (p/m) 9.7 wg/kg 50.0 98.2 80.120 Sylence (p/m) 9.8 * 100 99.8 80.120 Sylence (p/m) 9.8 * 100 99.2 80.120 Sylence (p/m) 9.8 * 100 99.4 80.120 Sylence (p/m) 9.8 * 100 99.2 80.120	Analyte	: I	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Benzene 1.19 0.0250 mg/kg wt 1.25 95.2 80-120 Foluene 1.21 0.0250 " 1.25 96.8 80-120 Ethylenzene 1.08 0.0250 " 1.25 96.4 80-120 Kylene (p/m) 2.66 0.0250 " 2.50 106 80-120 Surrogate: 4.00 99.2 80-120 80-120	Benzene 1.19 0.020 mg/kg wei 1.25 59.2 80-120 Foluene 1.21 0.0250 " 1.25 59.2 80-120 Ethylbenzene 1.08 0.0250 " 1.25 56.4 80-120 Skylene (p/m) 2.66 0.6250 " 2.50 106 80-120 Skylene (p/m) 2.66 0.6250 " 2.50 106 80-120 Skylene (p/m) 2.66 0.6200 " 2.50 106 80-120 Skylene (p/m) 2.67 wg/kg 40.0 102 80-120 Skylene (p/m) 50.4 wg/kg 50.0 101 80-120 Calibration Check (EH60702-CCV) " 40.0 102 80-120 Ethylbenzene 49.4 " 50.0 98.8 80-120 Ethylbenzene 49.4 " 50.0 98.8 80-120 Skyrene (p/m) 99.8 " 100 99.2 80-120 Skyrene (p/m) 99.4 8.2 80-120 - -	Beazene 1.19 0.020 mg/kg wet 1.23 9.52 80-120 Toluene 1.21 0.0250 " 1.25 96.8 80-120 Kylene (n'm) 2.66 0.0250 " 1.25 96.8 80-120 Skringelier 1.66 0.0250 " 1.25 105 80-120 Skringelier 2.66 0.0250 " 1.25 105 80-120 Skringelier 3.9.7 reg/kg 40.0 99.2 80-120 Skringelier 40.7 " 40.0 102 80-120 Calibration Check (EH60702-CCV1) Prepared: 08/04/06 Analyzed: 08/07/06 No 98.2 80-120 Setzene 50.4 ug/kg 50.0 98.8 80-120 V Setzene 59.8 " 100 99.8 80-120 V Setzene 49.1 " 40.0 63.2 80-120 V Setzene 50.0 97.4 80-120	Beazene 1.19 0.020 mg/kg wet 1.23 9.52 80-120 Toluene 1.21 0.0250 " 1.25 96.8 80-120 Kylene (n'm) 2.66 0.0250 " 1.25 96.8 80-120 Skringelier 1.66 0.0250 " 1.25 105 80-120 Skringelier 2.66 0.0250 " 1.25 105 80-120 Skringelier 3.9.7 reg/kg 40.0 99.2 80-120 Skringelier 40.7 " 40.0 102 80-120 Calibration Check (EH60702-CCV1) Prepared: 08/04/06 Analyzed: 08/07/06 No 98.2 80-120 Setzene 50.4 ug/kg 50.0 98.8 80-120 V Setzene 59.8 " 100 99.8 80-120 V Setzene 49.1 " 40.0 63.2 80-120 V Setzene 50.0 97.4 80-120	Benarise 1.19 0.0250 mg/kg weil 1.25 95.2 80-120 Tollenie 1.21 0.0250 " 1.25 56.6 80-120 Skiplencane 1.26 0.0250 " 2.50 106 80-120 Skiplencane 1.26 0.0250 " 2.50 105 80-120 Skipencane 1.31 0.0250 " 1.25 105 80-120 Skipencane 40.7 " 40.0 102 80-120 Skipencane 40.7 " 40.0 102 80-170 Calibration Check (EH60702-CCV)) " sp2.4 80-120 * Skipencane 40.4 " 50.0 98.8 80-120 Skipencane 40.4 " 50.0 98.8 80-120 Skipencane 40.4 " 50.0 97.6 80-120 Skipencane 1.27 0.0250 mg/kg who 1.36 ND 99.4 80-120	Batch EH60702 - EPA 5030	C (GC)									• •	
Benzene 1.19 0.0250 mg/kg wet 1.25 95.2 80-120 Toluene 1.21 0.0250 " 1.25 86.4 80-120 Ethylbenzene 1.08 0.0250 " 2.50 106 80-120 Xylene (p'm) 2.66 0.0250 " 1.25 86.4 80-120 Surrogate: a.a. Trifhuorotoluene 39.7 ug/kg 40.0 99.2 80.720 Surrogate: 4.07 " 40.0 102 80-120	Benzene 1.19 0.0250 mg/kg wet 1.25 95.2 80-120 Toluene 1.21 0.0250 " 1.25 66.8 80-120 Ethylbenzene 1.08 0.0250 " 2.50 106 80-120 Skylene (p'm) 2.66 0.0250 " 2.50 106 80-120 Skylene (o) 1.31 0.0250 " 1.25 105 80-120 Skylene (p'm) 2.66 0.0250 " 2.50 106 80-120 Skylene (p'm) 2.66 0.0250 " 2.50 80-120 ************************************	Benzene 1.19 0.0250 mg/kg wet 1.25 95.2 80-120 Toluene 1.21 0.0250 " 1.25 96.8 80-120 Xylene (p'm) 2.66 0.0250 " 2.50 106 80-120 Xylene (p'm) 2.66 0.0250 " 2.50 106 80-120 Surrogate: 4.2n-Tr/fluorolulane 39.7 ug/kg 40.0 99.2 80-120 Surrogate: 4.2n-Tr/fluorolulane 40.7 " 40.0 102 80-120 Calibration Check (EH60702-CCV) Prepared: 08/04/06 Analyzed: 08/07/06 80-120 Benzene 50.4 ug/kg 50.0 98.8 80-120 Yolene (p'm) 99.8 " 100 99.8 80-120 Surrogate: 4.2n monfluorobenzene 37.3 " 40.0 85.5 80-120 Surrogate: 4.2n monfluorobenzene 37.3 " 40.0 85.5 80-120 Surrogate: 4.2n monfluorobenzene 37.4 " 40.0	Benzene 1.19 0.0250 mg/kg wet 1.25 95.2 80-120 Toluene 1.21 0.0250 " 1.25 96.8 80-120 Xylene (p'm) 2.66 0.0250 " 2.50 106 80-120 Xylene (p'm) 2.66 0.0250 " 2.50 106 80-120 Surrogate: 4.2n-Tr/fluorolulane 39.7 ug/kg 40.0 99.2 80-120 Surrogate: 4.2n-Tr/fluorolulane 40.7 " 40.0 102 80-120 Calibration Check (EH60702-CCV) Prepared: 08/04/06 Analyzed: 08/07/06 80-120 Benzene 50.4 ug/kg 50.0 98.8 80-120 Yolene (p'm) 99.8 " 100 99.8 80-120 Surrogate: 4.2n monfluorobenzene 37.3 " 40.0 85.5 80-120 Surrogate: 4.2n monfluorobenzene 37.3 " 40.0 85.5 80-120 Surrogate: 4.2n monfluorobenzene 37.4 " 40.0	Bease 1.9 00250 mg/kg vet 1.25 99.2 80-120 Edbylbaczene 1.21 00250 * 1.25 96.8 80-120 Kylene (v) 1.21 0.0250 * 2.30 106 80-120 Swroget: a cas Prifueronbare 1.97 ge/kg 40.0 99.2 8k.170 Swroget: a cas Prifueronbare 1.97 ge/kg 40.0 101 80-120 Swroget: a cas Prifueronbare 1.07 * 40.0 102 80-120 Beazer: 50.4 ug/kg 50.0 89.22 8k.170 Swroget: A an Prifueronbare 49.4 * 50.0 99.8 80-120 Swroget: A an Prifueronbare 49.4 * 50.0 99.7 80-120 Swroget: A an Prifueronbare 1.27 0.00 99.8 80-120 - Swroget: A Bornofharobecare 37.3 * 40.0 83.2 80-120 Swroget: A Bornofharobecare 1.27 0.0250 *	LCS (EH60702-BS1)		• .•	1 · · ·		Prepared:	08/04/06 A	Analyzed: 08	3/06/06	F		1. ja 🔹
Ethylbenzene 1.08 0.0250 " 1.25 86.4 80-120 Xylexe (p'm) 2.66 0.0250 " 2.50 106 80-120 Xylexe (o) 1.31 0.0250 " 1.25 105 80-120 Surrogate: a.aTrifluorotoluene 39.7 ug/kg 40.0 99.2 80-120 Surrogate: 4-Bromofluorobenzene 40.7 " 40.0 102 80-120 Calibration Check (EH60702-CCV1) Prepared: 08/04/05 Analyzed: 08/07/05 80-120 Edaylbenzene 50.4 ug/kg 50.0 98.2 80-120 Ethylbenzene 99.4 " 50.0 98.8 80-120 Surrogate: a.aTrifluorotoluene 99.4 " 50.0 98.8 80-120 Surrogate: a.aTrifluorotoluene 37.3 " 40.0 99.4 80-120 Surrogate: a.aTrifluorotoluene 34.2 " 100 99.4 80-120 Surrogate: a.aTrifluorotoluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Surrogate: a.aTrifluoro	Ethylbenzene 1.08 0.0250 " 1.25 86.4 80-120 Xylene (p/m) 2.66 0.0250 " 2.50 106 80-120 Surrogate: a.a.a-Trifhuorotoluene 39.7 ug/g 40.0 92.2 80-120 Surrogate: 4-Brondfluorobenzene 40.7 " 40.0 102 80-120 Calibration Check (EH60702-CCV1) Frepared: 08/04/06 Analyzet: 08/07/06 Notalyzet: 08/07/06 Benzene 50.4 ug/g 50.0 101 80-120 Toluene 49.1 " 50.0 98.2 80-120 Sylene (p/m) 99.8 80-120 80-120 100 Sylene (p/m) 99.8 80-120 100 99.8 80-120 Surrogate: a.a.a-Trifhuorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: a.a.a-Trifhuorotoluene 12.7 0.0250 " 1.36 ND 93.4 80-120 Surrogate: a.a.a-Trifhuorotoluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Surrogate: a.a.a-Trifhuorotolue	Ethylhenzene 1.08 0.020 " 1.25 8.64 80-120 Xylene (o) 1.31 0.025 " 1.25 105 80-120 Surrogate: 4.a.a.7t/fluoronolumobenzene 40.7 " 40.0 92.2 80.120 Surrogate: A.a.A.7t/fluoronolumobenzene 40.7 " 40.0 92.2 80.120 Calibration Check (EtH60702-CCV1) Prepared: 08/04/06 AmJzet 0.80.120 " 101 80-120 Benzene 50.4 ug/kg 50.0 98.2 80-120 " " Kylene (p/m) 99.8 " 100 99.8 80-120 " " Strongate: a.a.a.7tr/fluoronolume 49.1 " 50.0 97.6 80-120 " Surrogate: a.a.a.7tr/fluoronolume 37.3 " 40.0 93.2 80-120 " Surrogate: a.a.a.7tr/fluoronolume 37.3 " 40.0 93.4 80-120 " Surrogate: a.a.a.7tr/fluoronolume 127 0.0250 " 1.36 ND 93.4 80-120 " <td< td=""><td>Ethylhenzene 1.08 0.020 " 1.25 8.64 80-120 Xylene (o) 1.31 0.025 " 1.25 105 80-120 Surrogate: 4.a.a.7t/fluoronolumobenzene 40.7 " 40.0 92.2 80.120 Surrogate: A.a.A.7t/fluoronolumobenzene 40.7 " 40.0 92.2 80.120 Calibration Check (EtH60702-CCV1) Prepared: 08/04/06 AmJzet 0.80.120 " 101 80-120 Benzene 50.4 ug/kg 50.0 98.2 80-120 " " Kylene (p/m) 99.8 " 100 99.8 80-120 " " Strongate: a.a.a.7tr/fluoronolume 49.1 " 50.0 97.6 80-120 " Surrogate: a.a.a.7tr/fluoronolume 37.3 " 40.0 93.2 80-120 " Surrogate: a.a.a.7tr/fluoronolume 37.3 " 40.0 93.4 80-120 " Surrogate: a.a.a.7tr/fluoronolume 127 0.0250 " 1.36 ND 93.4 80-120 " <td< td=""><td>Ethylkensene 108 0.0250 125 86.4 89.20 Xylene (o) 131 0.0250 125 106 80.120 Swraget: 4.26-77[floorenhume 97 108 40.0 92.2 80.727 Swraget: 4.26-77[floorenhume 97 108 80.1 101 80-120 Swraget: 4.26-77[floorenhume 91 90.0 101 80-120 101 Swraget: 6.26-77[floorenhume 91.4 90.0 92.2 80-120 101 Swraget: 6.26-77[floorenhume 91.4 90.0 92.8 80-120 101 Swraget: 6.26-77[floorenhume 91.4 92.0 97.8 80-120 101 Swraget: 6.26-77[floorenhume 7.3 90.0 92.8 80-120 101 Swraget: 6.26-77[floorenhume 7.3 90.0 85.5 80-120 101 Swraget: 6.26-77[floorenhume 7.3 90.22 80-120 100 80-120 100 Swraget: 6.26-77[floorenhume 7.3 90.250 136 ND 90.4 80-120 100 80.120 100 80.120</td></td<><td></td><td></td><td>1.19</td><td>0.0250</td><td>mg/kg wet</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></td></td<>	Ethylhenzene 1.08 0.020 " 1.25 8.64 80-120 Xylene (o) 1.31 0.025 " 1.25 105 80-120 Surrogate: 4.a.a.7t/fluoronolumobenzene 40.7 " 40.0 92.2 80.120 Surrogate: A.a.A.7t/fluoronolumobenzene 40.7 " 40.0 92.2 80.120 Calibration Check (EtH60702-CCV1) Prepared: 08/04/06 AmJzet 0.80.120 " 101 80-120 Benzene 50.4 ug/kg 50.0 98.2 80-120 " " Kylene (p/m) 99.8 " 100 99.8 80-120 " " Strongate: a.a.a.7tr/fluoronolume 49.1 " 50.0 97.6 80-120 " Surrogate: a.a.a.7tr/fluoronolume 37.3 " 40.0 93.2 80-120 " Surrogate: a.a.a.7tr/fluoronolume 37.3 " 40.0 93.4 80-120 " Surrogate: a.a.a.7tr/fluoronolume 127 0.0250 " 1.36 ND 93.4 80-120 " <td< td=""><td>Ethylkensene 108 0.0250 125 86.4 89.20 Xylene (o) 131 0.0250 125 106 80.120 Swraget: 4.26-77[floorenhume 97 108 40.0 92.2 80.727 Swraget: 4.26-77[floorenhume 97 108 80.1 101 80-120 Swraget: 4.26-77[floorenhume 91 90.0 101 80-120 101 Swraget: 6.26-77[floorenhume 91.4 90.0 92.2 80-120 101 Swraget: 6.26-77[floorenhume 91.4 90.0 92.8 80-120 101 Swraget: 6.26-77[floorenhume 91.4 92.0 97.8 80-120 101 Swraget: 6.26-77[floorenhume 7.3 90.0 92.8 80-120 101 Swraget: 6.26-77[floorenhume 7.3 90.0 85.5 80-120 101 Swraget: 6.26-77[floorenhume 7.3 90.22 80-120 100 80-120 100 Swraget: 6.26-77[floorenhume 7.3 90.250 136 ND 90.4 80-120 100 80.120 100 80.120</td></td<> <td></td> <td></td> <td>1.19</td> <td>0.0250</td> <td>mg/kg wet</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>	Ethylkensene 108 0.0250 125 86.4 89.20 Xylene (o) 131 0.0250 125 106 80.120 Swraget: 4.26-77[floorenhume 97 108 40.0 92.2 80.727 Swraget: 4.26-77[floorenhume 97 108 80.1 101 80-120 Swraget: 4.26-77[floorenhume 91 90.0 101 80-120 101 Swraget: 6.26-77[floorenhume 91.4 90.0 92.2 80-120 101 Swraget: 6.26-77[floorenhume 91.4 90.0 92.8 80-120 101 Swraget: 6.26-77[floorenhume 91.4 92.0 97.8 80-120 101 Swraget: 6.26-77[floorenhume 7.3 90.0 92.8 80-120 101 Swraget: 6.26-77[floorenhume 7.3 90.0 85.5 80-120 101 Swraget: 6.26-77[floorenhume 7.3 90.22 80-120 100 80-120 100 Swraget: 6.26-77[floorenhume 7.3 90.250 136 ND 90.4 80-120 100 80.120 100 80.120			1.19	0.0250	mg/kg wet			-				
Ethylbenzene 1.08 0.0250 " 1.25 86.4 80-120 Xylene (p/m) 2.66 0.0250 " 2.50 106 80-120 Xylene (o) 1.31 0.0250 " 1.25 105 80-120 Surrogate: a,a.a-Trifhuorotoluene 39.7 wg/kg 40.0 99.2 80-120 Calibration Check (EH60702-CCV1) Prepared: 08/04/06 Analyzet: 08/07/06 80-120	Ethylbenzene 1.08 0.0250 " 1.25 86.4 80-120 Xylene (p/m) 2.66 0.0250 " 2.50 106 80-120 Surrogate: a.aTrifluorotoluene 39.7 ug/g 40.0 92.2 80-120 Surrogate: A.B.OTOCONCONCONCE Veg/g 40.0 102 80-120 Veg/g Calibration Check (EH60702-CCV1) Prepared: 08/04/06 Analyzed: 08/07-00 Veg/g Benzene 50.4 ug/g 50.0 01 80-120 Veg/g 80-120 Stylene (p/m) 99.8 100 98.2 80-120 Veg/g 80-120 Stylene (p/m) 99.8 " 100 99.8 80-120 Stylene (p/m) 99.8 " 100 99.8 80-120 Stylene (p/m) 99.8 " 100 99.8 80-120 Styrengate: a.a.o.Trifluorotoluene 37.3 " 40.0 85.5 80-120 Styrengate: a.a.o.Trifluorotoluene 1.27 0.0250 " 1.36 ND <td>Ethylbenzene 1.08 0.0250 " 1.25 86.4 80.120 Xylene (o) 1.31 0.0250 " 1.25 105 80.120 Surrogut: a.a Trifluoroiolizene 3.7 ykfag 40.0 9.2 80.120 Surrogut: a.a Trifluoroiolizene 40.7 " 40.0 102 80.120 Calibration Check (EH60702-CCV1) Prepared: 08/04/06 Ambred 80.120 </td> <td>Ethylbenzene 1.08 0.0250 " 1.25 86.4 80.120 Xylene (o) 1.31 0.0250 " 1.25 105 80.120 Surrogut: a.a Trifluoroiolizene 3.7 ykfag 40.0 9.2 80.120 Surrogut: a.a Trifluoroiolizene 40.7 " 40.0 102 80.120 Calibration Check (EH60702-CCV1) Prepared: 08/04/06 Ambred 80.120 </td> <td>Ensigners 1.08 0.0250 * 2.50 10.6 80-120 Xytene (o) 1.31 0.0250 * 2.60 0.020 * 2.60 0.020 * 2.60 0.020 * 2.60 0.020 * 2.60 0.020 * 0.02 0.020 * 0.02 0.020 * 0.02 0.020 * 0.020<td>Toluene</td><td>."</td><td>1.21</td><td>0.0250</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	Ethylbenzene 1.08 0.0250 " 1.25 86.4 80.120 Xylene (o) 1.31 0.0250 " 1.25 105 80.120 Surrogut: a.a Trifluoroiolizene 3.7 ykfag 40.0 9.2 80.120 Surrogut: a.a Trifluoroiolizene 40.7 " 40.0 102 80.120 Calibration Check (EH60702-CCV1) Prepared: 08/04/06 Ambred 80.120	Ethylbenzene 1.08 0.0250 " 1.25 86.4 80.120 Xylene (o) 1.31 0.0250 " 1.25 105 80.120 Surrogut: a.a Trifluoroiolizene 3.7 ykfag 40.0 9.2 80.120 Surrogut: a.a Trifluoroiolizene 40.7 " 40.0 102 80.120 Calibration Check (EH60702-CCV1) Prepared: 08/04/06 Ambred 80.120	Ensigners 1.08 0.0250 * 2.50 10.6 80-120 Xytene (o) 1.31 0.0250 * 2.60 0.020 * 2.60 0.020 * 2.60 0.020 * 2.60 0.020 * 2.60 0.020 * 0.02 0.020 * 0.02 0.020 * 0.02 0.020 * 0.020 <td>Toluene</td> <td>."</td> <td>1.21</td> <td>0.0250</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Toluene	."	1.21	0.0250								
Xylene (p/m) 2.66 0.0250 " 2.50 106 80-120 Xylene (o) 1.31 0.0250 " 1.25 105 80-120 Surrogaie: a.a.e.Trifluorotoluene 39.7 ug/kg 40.0 99.2 80-120 Surrogaie: 4.Bromofluorobenzene 40.7 " 40.0 102 80-120 Calibration Check (EH60702-CCV1) Prepared: 08/04/06 Analyzed: 08/07/05 80-120 50.0 98.2 80-120 Eduty benzene 50.4 ug/kg 50.0 98.8 80-120 50.0 98.8 80-120 String air: a.a.e.Trifluorotoluene 37.3 " 40.0 99.8 80-120 50.0 99.8 80-120 Surrogaie: a.a.e.Trifluorotoluene 37.3 " 40.0 93.2 80-120 50.0 50.120	Xylene (p'm) 2.66 0.0250 " 2.50 106 80-120 Xylene (o) 1.31 0.0250 " 1.25 105 80-120 Surrogaie: a.a.o.Trifluoroblenee 39.7 ug/kg 40.0 99.2 80-120 Surrogaie: 4.Bromofluorobenzee 40.7 " 40.0 102 80-120 Calibration Check (EH60702-CCV1) Prepared: 08/04/06 Analyzet: 08/07/06 80-120	Xylenc (p/m) 2.66 0.0250 " 2.50 10.6 80-120 Xylenc (o) 1.31 0.0250 " 1.25 10.5 80-120 Surrogate: a.a.a-Trifluorotolaene 39.7 warka 40.0 99.2 80-120 Surrogate: 4-Bromofluorobenzene 40.7 " 40.0 80-120 - Edibartion Check (EH60702-CCV1) 50.4 warka 50.0 10.1 80-120 Edibartion Check (EH60702-CCV1) 50.4 warka 50.0 98.2 80-120 Toluene 49.1 " 50.0 98.8 80-120 Sylenc (p/m) 99.8 " 100 98.8 80-120 Surrogate: a.a.a-Trifluorotolaene 37.3 " 40.0 93.2 80-120 Surrogate: a.a.a-Trifluorotolaene 77.3 " 40.0 93.2 80-120 Surrogate: a.a.a-Trifluorotolaene 127 0.0250 " 1.36 ND 93.4 80-120 Surrogate: a.a.a-Trifluorotolaene 127 0.0250 " 1.36 ND 93.4 80-120 <td>Xylenc (p/m) 2.66 0.0250 " 2.50 10.6 80-120 Xylenc (o) 1.31 0.0250 " 1.25 10.5 80-120 Surrogate: a.a.a-Trifluorotolaene 39.7 warka 40.0 99.2 80-120 Surrogate: 4-Bromofluorobenzene 40.7 " 40.0 80-120 - Edibartion Check (EH60702-CCV1) 50.4 warka 50.0 10.1 80-120 Edibartion Check (EH60702-CCV1) 50.4 warka 50.0 98.2 80-120 Toluene 49.1 " 50.0 98.8 80-120 Sylenc (p/m) 99.8 " 100 98.8 80-120 Surrogate: a.a.a-Trifluorotolaene 37.3 " 40.0 93.2 80-120 Surrogate: a.a.a-Trifluorotolaene 77.3 " 40.0 93.2 80-120 Surrogate: a.a.a-Trifluorotolaene 127 0.0250 " 1.36 ND 93.4 80-120 Surrogate: a.a.a-Trifluorotolaene 127 0.0250 " 1.36 ND 93.4 80-120 <td>Nylene (p/m) 2.64 0.020 1.25 106 8-1.20 Nylene (p/m) 1.31 0.020 1.25 10.5 30-1.20 Surrogate: 4.40rom/fueroclume 40.7 10.7</td><td>Ethylbenzene</td><td></td><td></td><td></td><td>"</td><td>1.25</td><td></td><td></td><td></td><td></td><td></td><td></td></td>	Xylenc (p/m) 2.66 0.0250 " 2.50 10.6 80-120 Xylenc (o) 1.31 0.0250 " 1.25 10.5 80-120 Surrogate: a.a.a-Trifluorotolaene 39.7 warka 40.0 99.2 80-120 Surrogate: 4-Bromofluorobenzene 40.7 " 40.0 80-120 - Edibartion Check (EH60702-CCV1) 50.4 warka 50.0 10.1 80-120 Edibartion Check (EH60702-CCV1) 50.4 warka 50.0 98.2 80-120 Toluene 49.1 " 50.0 98.8 80-120 Sylenc (p/m) 99.8 " 100 98.8 80-120 Surrogate: a.a.a-Trifluorotolaene 37.3 " 40.0 93.2 80-120 Surrogate: a.a.a-Trifluorotolaene 77.3 " 40.0 93.2 80-120 Surrogate: a.a.a-Trifluorotolaene 127 0.0250 " 1.36 ND 93.4 80-120 Surrogate: a.a.a-Trifluorotolaene 127 0.0250 " 1.36 ND 93.4 80-120 <td>Nylene (p/m) 2.64 0.020 1.25 106 8-1.20 Nylene (p/m) 1.31 0.020 1.25 10.5 30-1.20 Surrogate: 4.40rom/fueroclume 40.7 10.7</td> <td>Ethylbenzene</td> <td></td> <td></td> <td></td> <td>"</td> <td>1.25</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Nylene (p/m) 2.64 0.020 1.25 106 8-1.20 Nylene (p/m) 1.31 0.020 1.25 10.5 30-1.20 Surrogate: 4.40rom/fueroclume 40.7 10.7	Ethylbenzene				"	1.25						
Xylene (o) 1.31 0.020 " 1.25 105 80-120 Surrogate: a.a.e.Trifluorotoluene 39.7 ug/kg 40.0 102 80-120 Calibration Check (EH60702-CCV1) Prepared: 08/04/06 Analyzed: 08/07/06 80-120 Benzene 50.4 ug/kg 50.0 98.2 80-120 Calibration Check (EH60702-CCV1) Prepared: 08/04/06 Analyzed: 08/07/06 80-120 Benzene 50.4 ug/kg 50.0 98.2 80-120 Calibration Check (EH60702-CCV1) Prepared: 08/04/06 Analyzed: 08/07/06 98.8 80-120 Stylene (p/m) 99.8 " 100 99.8 80-120 Sylene (p/m) 99.8 " 100 99.8 80-120 Surrogate: a.a.d-Trifluorotoluene 37.3 " 40.0 85.5 80-120 Surrogate: a.a.d-Trifluorotoluene 37.3 " 40.0 83.5 80-120 Surrogate: a.a.d-Trifluorotoluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Surrogate: a.a.d-Trifluorotoluene 1.27 <th< td=""><td>Xylene (o) 1.31 0.020 " 1.25 105 80-120 Surrogate: a. a. a. Trifluorotoluene 39.7 ug/kg 40.0 102 80-120 Surrogate: 4-Bronofluorobenzene 40.7 " 40.0 102 80-120 Calibration Check (EH60702-CCVI) Prepared: 08/04/06 Analyzed: 08/04/06 Analyzed: 08/04/06 Analyzed: 08/04/06 No Benzene 50.4 ug/kg 50.0 98.2 80-120 Sol 20 Chuene 49.1 " 50.0 98.8 80-120 Sol 99.8 80-120 Sylene (p/m) 99.8 " 100 99.8 80-120 Sol 99.8 80-120 Surrogate: a. a. dr. Trifluorotoluene 37.3 " 40.0 93.4 80-120 Sol Surrogate: 4-Bromofluorobenzene 34.2 " 90.0 93.4 80-120 Sol Sol Surrogate: 4-Bromofluorobenzene 34.2 " 1.36 ND 93.4 80-120 Sol Surrogate: 4-Bromofluorobenzene 1.27 0.0250 " 1.3</td><td>Xylenc (o) 1.31 0.025 " 1.25 1.05 80-120 Surrogate: 4.4.6 - Tr/fluorotohene 39.7 ug/kg 40.0 92.2 80-120 Calibration Check (EH64702-CCCV) Prepared: 08/04/06 Analyzec: 08/07/06 Analyzec: 08/07/06 Benzene 50.4 ug/kg 50.0 No 82.2 80-120 Ethylbenzene 49.4 " 50.0 98.8 80-120 </td><td>Xylenc (o) 1.31 0.025 " 1.25 1.05 80-120 Surrogate: 4.4.6 - Tr/fluorotohene 39.7 ug/kg 40.0 92.2 80-120 Calibration Check (EH64702-CCCV) Prepared: 08/04/06 Analyzec: 08/07/06 Analyzec: 08/07/06 Benzene 50.4 ug/kg 50.0 No 82.2 80-120 Ethylbenzene 49.4 " 50.0 98.8 80-120 </td><td>Nyles (n) 1,3 0,020 1,25 105 8,41,0 Burrogate: 4,0,0 T/flueroslownen 30,7 s,6,6 40,0 92,2 40,120 50,120 Calibration Cacck (KH60702-CCVI) Prepared: 08/04/06 Analyze: 90,120 50,0 98,8 80-120 Beazen 90,4 - 50,0 98,8 80-120 50,0 98,8 80-120 Sylens (n) 93,8 - 100 98,8 80-120 50,0 98,120 - - Sylens (n) 93,8 - 100 98,8 80-120 -</td><td>Xylene (p/m)</td><td>1</td><td>2.66</td><td>0.0250</td><td></td><td>2.50</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Xylene (o) 1.31 0.020 " 1.25 105 80-120 Surrogate: a. a. a. Trifluorotoluene 39.7 ug/kg 40.0 102 80-120 Surrogate: 4-Bronofluorobenzene 40.7 " 40.0 102 80-120 Calibration Check (EH60702-CCVI) Prepared: 08/04/06 Analyzed: 08/04/06 Analyzed: 08/04/06 Analyzed: 08/04/06 No Benzene 50.4 ug/kg 50.0 98.2 80-120 Sol 20 Chuene 49.1 " 50.0 98.8 80-120 Sol 99.8 80-120 Sylene (p/m) 99.8 " 100 99.8 80-120 Sol 99.8 80-120 Surrogate: a. a. dr. Trifluorotoluene 37.3 " 40.0 93.4 80-120 Sol Surrogate: 4-Bromofluorobenzene 34.2 " 90.0 93.4 80-120 Sol Sol Surrogate: 4-Bromofluorobenzene 34.2 " 1.36 ND 93.4 80-120 Sol Surrogate: 4-Bromofluorobenzene 1.27 0.0250 " 1.3	Xylenc (o) 1.31 0.025 " 1.25 1.05 80-120 Surrogate: 4.4.6 - Tr/fluorotohene 39.7 ug/kg 40.0 92.2 80-120 Calibration Check (EH64702-CCCV) Prepared: 08/04/06 Analyzec: 08/07/06 Analyzec: 08/07/06 Benzene 50.4 ug/kg 50.0 No 82.2 80-120 Ethylbenzene 49.4 " 50.0 98.8 80-120	Xylenc (o) 1.31 0.025 " 1.25 1.05 80-120 Surrogate: 4.4.6 - Tr/fluorotohene 39.7 ug/kg 40.0 92.2 80-120 Calibration Check (EH64702-CCCV) Prepared: 08/04/06 Analyzec: 08/07/06 Analyzec: 08/07/06 Benzene 50.4 ug/kg 50.0 No 82.2 80-120 Ethylbenzene 49.4 " 50.0 98.8 80-120	Nyles (n) 1,3 0,020 1,25 105 8,41,0 Burrogate: 4,0,0 T/flueroslownen 30,7 s,6,6 40,0 92,2 40,120 50,120 Calibration Cacck (KH60702-CCVI) Prepared: 08/04/06 Analyze: 90,120 50,0 98,8 80-120 Beazen 90,4 - 50,0 98,8 80-120 50,0 98,8 80-120 Sylens (n) 93,8 - 100 98,8 80-120 50,0 98,120 - - Sylens (n) 93,8 - 100 98,8 80-120 -	Xylene (p/m)	1	2.66	0.0250		2.50						
Surrogate: a.a. a-Trifluorotoluene 39.7 ug/kg 40.0 99.2 80-120 Surrogate: 4-Bromofluorobenzene 40.7 " 40.0 102 80-120 Calibration Check (EH66702-CCV1) Prepared: 08/04/06 Analyzed: 08/07/06 80-120 Benzene 50.4 ug/kg 50.0 101 80-120 Toluene 49.1 " 50.0 98.2 80-120 Ethylbenzene 49.4 " 50.0 98.8 80-120 Xylene (n/m) 99.8 " 100 99.8 80-120 Surrogate: 4-Bromofluoroblene 7.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluoroblene 7.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluoroblene 34.2 " 40.0 93.4 80-120 Surrogate: 4-Bromofluoroblene 1.27 0.0250 " 40.0 93.4 80-120 Surrogate: 4-Bromofluorobenzene 1.27 0.0250 " 1.36 ND	Surrogate: a, a, -Trifluorotoluene 39,7 ug/kg 40,0 99,2 80-120 Surrogate: 4-Bromofluorobenzene 40,7 " 40,0 102 80-120 Calibration Check (EH60702-CCV1) Prepared: 08/04/06 Analyzed: 08/07/06 Source: 08/04/06 Analyzed: 08/07/06 Benzene 50.4 ug/kg 50.0 101 80-120 Toluene 49.1 " 50.0 98.8 80-120 Ethylbenzene 49.4 " 50.0 98.8 80-120 Xylene (n/m) 99.8 " 100 99.8 80-120 Surrogate: 4-Bromofluoroblene 37.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluoroblene 37.3 " 40.0 85.5 80-120 Surrogate: 4-Bromofluoroblene 34.2 " 40.0 85.5 80-120 Surrogate: 4-Bromofluoroblene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Surrogate: 4-Bromofluoroblene 1.27 0.0250 " 1.36 ND 94.4 80-120 <td< td=""><td>Surrogate: a.a.a-Trifluorotoluene 39.7 ug/Ag 40.0 99.2 80.120 Surrogate: 4-Bromofluorobenzene 40.7 " 40.0 102 80-120 Calibration Check (EH60702-CCV1) Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 50.4 ug/kg 50.0 101 80-120 Editybeinzene 50.4 ug/kg 50.0 98.8 80-120 Sourogate: 4.870.00 98.8 80-120 Kylene (p/m) 99.8 " 100 99.8 80-120 Sourogate: 4.870.00 98.8 80-120 Surrogate: a.a.a-Trifluorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluorobenzene 37.3 " 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzet: 08/07/06 Benzene 1.27 0.0250 " 1.36 ND 93.4 80-120 Kylene (p/m) 2.67 0.0250 " 1.36 ND 90.4 80-120 Surrogate: 4-Bromofluorobuene 32.8 ug/kg 40.0 82</td><td>Surrogate: a.a.a-Trifluorotoluene 39.7 ug/Ag 40.0 99.2 80.120 Surrogate: 4-Bromofluorobenzene 40.7 " 40.0 102 80-120 Calibration Check (EH60702-CCV1) Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 50.4 ug/kg 50.0 101 80-120 Editybeinzene 50.4 ug/kg 50.0 98.8 80-120 Sourogate: 4.870.00 98.8 80-120 Kylene (p/m) 99.8 " 100 99.8 80-120 Sourogate: 4.870.00 98.8 80-120 Surrogate: a.a.a-Trifluorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluorobenzene 37.3 " 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzet: 08/07/06 Benzene 1.27 0.0250 " 1.36 ND 93.4 80-120 Kylene (p/m) 2.67 0.0250 " 1.36 ND 90.4 80-120 Surrogate: 4-Bromofluorobuene 32.8 ug/kg 40.0 82</td><td>Surrogate: a.g. P.TPLancoolamen 39.7 ng/kg 40.0 99.2 80-120 Surrogate: 4. Hormofluorobeneen 40.7 * 40.0 102 80-120 Calibration Check (EH66702-CCV)). Prepared: 08(04/06 Analyzed: 08(07/06 * Beazone 50.4 up/kg 50.0 98.2 80-120 Toluwen 49.1 * 50.0 98.8 80-120 Strongate: a.g.or.Prifluoroblenee 37.3 * 40.0 92.2 80-120 Surrogate: EH60702-MS1) Source: EH04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Beazone 1.27 0.0250 * 1.36 ND 93.4 80-120 Matrix Spike (EH60702-MS1) Source: EH04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Beazone 1.27 0.0250 * 1.36 ND 93.4 80-120 Sylene (p/m) 2.67 0.0250 * 1.36 ND 94.2 80-120 Surrogate: a.a.o.Triffuoroblenee</td><td></td><td></td><td></td><td>0.0250</td><td>"</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Surrogate: a.a.a-Trifluorotoluene 39.7 ug/Ag 40.0 99.2 80.120 Surrogate: 4-Bromofluorobenzene 40.7 " 40.0 102 80-120 Calibration Check (EH60702-CCV1) Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 50.4 ug/kg 50.0 101 80-120 Editybeinzene 50.4 ug/kg 50.0 98.8 80-120 Sourogate: 4.870.00 98.8 80-120 Kylene (p/m) 99.8 " 100 99.8 80-120 Sourogate: 4.870.00 98.8 80-120 Surrogate: a.a.a-Trifluorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluorobenzene 37.3 " 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzet: 08/07/06 Benzene 1.27 0.0250 " 1.36 ND 93.4 80-120 Kylene (p/m) 2.67 0.0250 " 1.36 ND 90.4 80-120 Surrogate: 4-Bromofluorobuene 32.8 ug/kg 40.0 82	Surrogate: a.a.a-Trifluorotoluene 39.7 ug/Ag 40.0 99.2 80.120 Surrogate: 4-Bromofluorobenzene 40.7 " 40.0 102 80-120 Calibration Check (EH60702-CCV1) Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 50.4 ug/kg 50.0 101 80-120 Editybeinzene 50.4 ug/kg 50.0 98.8 80-120 Sourogate: 4.870.00 98.8 80-120 Kylene (p/m) 99.8 " 100 99.8 80-120 Sourogate: 4.870.00 98.8 80-120 Surrogate: a.a.a-Trifluorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluorobenzene 37.3 " 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzet: 08/07/06 Benzene 1.27 0.0250 " 1.36 ND 93.4 80-120 Kylene (p/m) 2.67 0.0250 " 1.36 ND 90.4 80-120 Surrogate: 4-Bromofluorobuene 32.8 ug/kg 40.0 82	Surrogate: a.g. P.TPLancoolamen 39.7 ng/kg 40.0 99.2 80-120 Surrogate: 4. Hormofluorobeneen 40.7 * 40.0 102 80-120 Calibration Check (EH66702-CCV)). Prepared: 08(04/06 Analyzed: 08(07/06 * Beazone 50.4 up/kg 50.0 98.2 80-120 Toluwen 49.1 * 50.0 98.8 80-120 Strongate: a.g.or.Prifluoroblenee 37.3 * 40.0 92.2 80-120 Surrogate: EH60702-MS1) Source: EH04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Beazone 1.27 0.0250 * 1.36 ND 93.4 80-120 Matrix Spike (EH60702-MS1) Source: EH04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Beazone 1.27 0.0250 * 1.36 ND 93.4 80-120 Sylene (p/m) 2.67 0.0250 * 1.36 ND 94.2 80-120 Surrogate: a.a.o.Triffuoroblenee				0.0250	"							
Surrogate: 4-Bromofluorobenzene 40.7 40.0 102 80-120 Calibration Check (EH60702-CCV1) Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 50.4 ug/kg 50.0 101 80-120 Toluene 49.1 50.0 98.8 80-120 Kylene (p/m) 99.8 100 99.8 80-120 Xylene (g/m) 99.8 00 93.2 80-120 Surrogate: 4.0.0 93.2 80-120 Surrogate: 4.0.0 93.2 80-120 Matrix Spike (EH60702-MS1) Source: H0411-01 Prepared: 08/04/06 Analyzet: 08/07-06 Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Benzene 1.27 0.0250 1.36 ND 93.4 80-120 Kylene (p/m) 2.67 0.0250 1.36 ND 93.4 80-120 Stylene (on 1.27 0.0250 1.36 ND 93.4 80-120 Stylene (on/m) 2.67 0.0250	Surrogate: 4-Bromofluorobenzene 40.7 " 40.0 102 80-120 Calibration Check (EH60702-CCV1) Prepared: 08/04/06 Analyzet: 08/07/06 Benzene 50.4 ug/kg 50.0 98.2 80-120 Toluene 49.1 " 50.0 98.8 80-120 Ethylbenzene 49.4 " 50.0 98.8 80-120 Xylene (p/m) 99.8 " 100 99.8 80-120 Surrogate: a.aTrifluorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluorobenzene 34.2 " 90.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H0401-0 Prepared: 08/04/06 Analyzet: 08/07/06 Benzene 1.27 0.0250 " 1.36 ND 93.4 80-120 Stylene (p/m) 2.64 0.0250 " 1.36 ND 93.4 80-120 Stylene (p/m) 2.67 0.0250 " 1.36 ND 93.4 80-120 Stylene (p/m) 2.6	Surrogate: 4-Bromofluorobenzene 40.7 40.0 102 80-120 Calibration Check (EH60702-CCV1) Prepared: 08/04/06 Analyzet: 08/07/06 Benzene 50.4 ug/kg 50.0 98.2 80-120 Calibration Check (EH60702-CCV1) " 50.0 98.2 80-120 Ednylbenzene 49.1 " 50.0 98.8 80-120 Kylenc (p/m) 99.8 " 100 99.8 80-120 Surrogate: a.a.e-Trifluorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluorobenzene 37.3 " 40.0 93.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-0 Prepared: 08/04/06 Analyzet: 08/07/06 Benzene 1.27 0.0250 " 1.36 ND 93.4 80-120 Kylenc (p/m) 2.67 0.0250 " 1.36 ND 93.4 80-120 Kylenc (o/m) 2.67 0.0250 " 1.36 ND 93.4 80-120 Surrogate: a.a.a-Trifluorotoluene 1.27 0.0250 "	Surrogate: 4-Bromofluorobenzene 40.7 40.0 102 80-120 Calibration Check (EH60702-CCV1) Prepared: 08/04/06 Analyzet: 08/07/06 Benzene 50.4 ug/kg 50.0 98.2 80-120 Calibration Check (EH60702-CCV1) " 50.0 98.2 80-120 Ednylbenzene 49.1 " 50.0 98.8 80-120 Kylenc (p/m) 99.8 " 100 99.8 80-120 Surrogate: a.a.e-Trifluorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluorobenzene 37.3 " 40.0 93.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-0 Prepared: 08/04/06 Analyzet: 08/07/06 Benzene 1.27 0.0250 " 1.36 ND 93.4 80-120 Kylenc (p/m) 2.67 0.0250 " 1.36 ND 93.4 80-120 Kylenc (o/m) 2.67 0.0250 " 1.36 ND 93.4 80-120 Surrogate: a.a.a-Trifluorotoluene 1.27 0.0250 "	Surrogate: 4-Bronngfluoroblement 90,7 40,0 102 80-120 Calibration Check (EH69702-CCV1) Prepared: 08/04/06 Analyzet: 08/07/0 86-120 Enters 90,4 90,0 98,8 80-120 Ethylhenzene 90,4 50,0 98,8 80-120 Kylene (o) 98,8 50,0 98,8 80-120 Surrogate: a.g.a.P.ffluoroblemen 37,3 40,0 93,2 80-120 Surrogate: A.g.a.P.ffluoroblemen 37,3 40,0 93,4 80-120 Surrogate: A.g.a.P.ffluoroblemen 37,3 40,0 93,4 80-120 Surrogate: A.g.a.P.ffluoroblemen 37,3 136 ND 93,4 80-120 Surrogate: A.g.a.P.ffluoroblemen 127 00250 1,36 ND 93,4 80-120 Surrogate: A.g.a.P.ffluoroblemen 123 00250 1,36 ND 90,4 80-120 Surrogate: A.g.a.P.ffluoroblemen 3,8 40,0 80,2 80-120 1.36 ND 100 80-120 Surrogate: A.g.a.P.ffluoroblemen 3,8 40,0 80,5 80-120	Surrogate: a.a.a-Trifluorotoluene		39.7		uo/ko	40.0		99.2		····.	1	······
Calibration Check (EH60702-CCV1) Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 50.4 ug/kg 50.0 101 80-120 Toluene 49.1 " 50.0 98.2 80-120 Ethylbenzene 49.4 " 50.0 98.8 80-120 Xylene (p/m) 99.8 " 100 99.8 80-120 Xylene (o) 48.8 " 50.0 97.6 80-120 Surrogate: a.aTrifluorotoluene 37.3 " 40.0 93.2 80-120 Matrix Spike (EH60702-MS1) Source: 6H0011-01 Prepared: 08/04/06 Analyzed: 08/07/0- - Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Kylene (ym) 2.67 0.0250 " 1.36 ND 93.4 80-120 Sturrogate: a.a.a-Trifluorotoluene 1.23 0.0250 " 1.36 ND 90.4 80-120 Stylene (ym) 1.36 ND </td <td>Calibration Check (EH60702-CCV1) Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 50.4 ug/kg 50.0 101 80-120 Toluene 49.1 " 50.0 98.2 80-120 Ethylbenzene 49.4 " 50.0 98.8 80-120 Xylene (p/m) 99.8 " 100 99.8 80-120 Surrogate: 48.8 " 50.0 97.6 80-120 Surrogate: 37.3 " 40.0 93.2 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/05 Benzene 1.27 0.0250 " 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Stylene (p/m) 2.67 0.0250 " 1.36 ND 96.120 - Stylene (p/m) 2.67 0.0250 " 1.36 ND 80-120 - Stylene (p/m) 3.6</td> <td>Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 50.4 ug/kg 50.0 101 80-120 Toluene 49.1 " 50.0 98.2 80-120 Ethylbenzene 49.4 " 50.0 98.8 80-120 Xylene (g/m) 99.8 " 100 99.8 80-120 Surrogate: a.a.e.Triffuorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: a.a.e.Triffuorotoluene 34.2 " 40.0 93.2 80-120 Surrogate: a.a.e.Triffuorotoluene 34.2 " 40.0 93.4 80-120 Surrogate: a.a.e.Triffuorotoluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Surrogate: a.a.e.Triffuorotoluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Ethylenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Surrogate: a.a.e.Triffuorotoluene 3.2 ug/kg 40.0 80-120 Surrogate: a.a.e.Triffuorotoluene 3.5.8 "<!--</td--><td>Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 50.4 ug/kg 50.0 101 80-120 Toluene 49.1 " 50.0 98.2 80-120 Ethylbenzene 49.4 " 50.0 98.8 80-120 Xylene (g/m) 99.8 " 100 99.8 80-120 Surrogate: a.a.e.Triffuorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: a.a.e.Triffuorotoluene 34.2 " 40.0 93.2 80-120 Surrogate: a.a.e.Triffuorotoluene 34.2 " 40.0 93.4 80-120 Surrogate: a.a.e.Triffuorotoluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Surrogate: a.a.e.Triffuorotoluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Ethylenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Surrogate: a.a.e.Triffuorotoluene 3.2 ug/kg 40.0 80-120 Surrogate: a.a.e.Triffuorotoluene 3.5.8 "<!--</td--><td>Calibration Check (E160702-CCV1) Prepared: 05/04/06 Analyzet: 08/07/06 Benzene 49.1 - 50.0 98.8 80.120 Foluene 49.1 - 50.0 98.8 80.120 Killsmither 50.0 98.8 80.120 - - Sylene (p/m) 98.8 - 100 99.8 80.120 - Swrogate: 4-Bromofiluerobarcene 37.3 40.0 83.5 80-120 - Matri Spike (E160702-MS1) Source: 6H40411 Prepared: 08/04/06 Analyzed: 08/07/0 - - Benzene 1.27 0.0250 mg/kg 1.36 ND 94.4 80-120 Stringet: a.a.b. refuturositure 2.37 0.0250 1.36 ND 94.4 80-120 Stringet: a.a.b. refuturositure 1.27 0.0250 " 1.36 ND 94.2 80-120 Stringet: a.a.b. refuturositure 1.28 ND 94.4 80-120 2.4 2.0 Stringet: a.a.b. refuturositure 2</td><td></td><td></td><td></td><td></td><td>"</td><td></td><td></td><td></td><td></td><td></td><td></td><td>:</td></td></td>	Calibration Check (EH60702-CCV1) Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 50.4 ug/kg 50.0 101 80-120 Toluene 49.1 " 50.0 98.2 80-120 Ethylbenzene 49.4 " 50.0 98.8 80-120 Xylene (p/m) 99.8 " 100 99.8 80-120 Surrogate: 48.8 " 50.0 97.6 80-120 Surrogate: 37.3 " 40.0 93.2 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/05 Benzene 1.27 0.0250 " 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Stylene (p/m) 2.67 0.0250 " 1.36 ND 96.120 - Stylene (p/m) 2.67 0.0250 " 1.36 ND 80-120 - Stylene (p/m) 3.6	Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 50.4 ug/kg 50.0 101 80-120 Toluene 49.1 " 50.0 98.2 80-120 Ethylbenzene 49.4 " 50.0 98.8 80-120 Xylene (g/m) 99.8 " 100 99.8 80-120 Surrogate: a.a.e.Triffuorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: a.a.e.Triffuorotoluene 34.2 " 40.0 93.2 80-120 Surrogate: a.a.e.Triffuorotoluene 34.2 " 40.0 93.4 80-120 Surrogate: a.a.e.Triffuorotoluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Surrogate: a.a.e.Triffuorotoluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Ethylenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Surrogate: a.a.e.Triffuorotoluene 3.2 ug/kg 40.0 80-120 Surrogate: a.a.e.Triffuorotoluene 3.5.8 " </td <td>Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 50.4 ug/kg 50.0 101 80-120 Toluene 49.1 " 50.0 98.2 80-120 Ethylbenzene 49.4 " 50.0 98.8 80-120 Xylene (g/m) 99.8 " 100 99.8 80-120 Surrogate: a.a.e.Triffuorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: a.a.e.Triffuorotoluene 34.2 " 40.0 93.2 80-120 Surrogate: a.a.e.Triffuorotoluene 34.2 " 40.0 93.4 80-120 Surrogate: a.a.e.Triffuorotoluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Surrogate: a.a.e.Triffuorotoluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Ethylenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Surrogate: a.a.e.Triffuorotoluene 3.2 ug/kg 40.0 80-120 Surrogate: a.a.e.Triffuorotoluene 3.5.8 "<!--</td--><td>Calibration Check (E160702-CCV1) Prepared: 05/04/06 Analyzet: 08/07/06 Benzene 49.1 - 50.0 98.8 80.120 Foluene 49.1 - 50.0 98.8 80.120 Killsmither 50.0 98.8 80.120 - - Sylene (p/m) 98.8 - 100 99.8 80.120 - Swrogate: 4-Bromofiluerobarcene 37.3 40.0 83.5 80-120 - Matri Spike (E160702-MS1) Source: 6H40411 Prepared: 08/04/06 Analyzed: 08/07/0 - - Benzene 1.27 0.0250 mg/kg 1.36 ND 94.4 80-120 Stringet: a.a.b. refuturositure 2.37 0.0250 1.36 ND 94.4 80-120 Stringet: a.a.b. refuturositure 1.27 0.0250 " 1.36 ND 94.2 80-120 Stringet: a.a.b. refuturositure 1.28 ND 94.4 80-120 2.4 2.0 Stringet: a.a.b. refuturositure 2</td><td></td><td></td><td></td><td></td><td>"</td><td></td><td></td><td></td><td></td><td></td><td></td><td>:</td></td>	Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 50.4 ug/kg 50.0 101 80-120 Toluene 49.1 " 50.0 98.2 80-120 Ethylbenzene 49.4 " 50.0 98.8 80-120 Xylene (g/m) 99.8 " 100 99.8 80-120 Surrogate: a.a.e.Triffuorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: a.a.e.Triffuorotoluene 34.2 " 40.0 93.2 80-120 Surrogate: a.a.e.Triffuorotoluene 34.2 " 40.0 93.4 80-120 Surrogate: a.a.e.Triffuorotoluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Surrogate: a.a.e.Triffuorotoluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Ethylenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Surrogate: a.a.e.Triffuorotoluene 3.2 ug/kg 40.0 80-120 Surrogate: a.a.e.Triffuorotoluene 3.5.8 " </td <td>Calibration Check (E160702-CCV1) Prepared: 05/04/06 Analyzet: 08/07/06 Benzene 49.1 - 50.0 98.8 80.120 Foluene 49.1 - 50.0 98.8 80.120 Killsmither 50.0 98.8 80.120 - - Sylene (p/m) 98.8 - 100 99.8 80.120 - Swrogate: 4-Bromofiluerobarcene 37.3 40.0 83.5 80-120 - Matri Spike (E160702-MS1) Source: 6H40411 Prepared: 08/04/06 Analyzed: 08/07/0 - - Benzene 1.27 0.0250 mg/kg 1.36 ND 94.4 80-120 Stringet: a.a.b. refuturositure 2.37 0.0250 1.36 ND 94.4 80-120 Stringet: a.a.b. refuturositure 1.27 0.0250 " 1.36 ND 94.2 80-120 Stringet: a.a.b. refuturositure 1.28 ND 94.4 80-120 2.4 2.0 Stringet: a.a.b. refuturositure 2</td> <td></td> <td></td> <td></td> <td></td> <td>"</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>:</td>	Calibration Check (E160702-CCV1) Prepared: 05/04/06 Analyzet: 08/07/06 Benzene 49.1 - 50.0 98.8 80.120 Foluene 49.1 - 50.0 98.8 80.120 Killsmither 50.0 98.8 80.120 - - Sylene (p/m) 98.8 - 100 99.8 80.120 - Swrogate: 4-Bromofiluerobarcene 37.3 40.0 83.5 80-120 - Matri Spike (E160702-MS1) Source: 6H40411 Prepared: 08/04/06 Analyzed: 08/07/0 - - Benzene 1.27 0.0250 mg/kg 1.36 ND 94.4 80-120 Stringet: a.a.b. refuturositure 2.37 0.0250 1.36 ND 94.4 80-120 Stringet: a.a.b. refuturositure 1.27 0.0250 " 1.36 ND 94.2 80-120 Stringet: a.a.b. refuturositure 1.28 ND 94.4 80-120 2.4 2.0 Stringet: a.a.b. refuturositure 2					"							:
Benzene 50.4 ug/kg 50.0 101 80-120 Toluene 49.1 " 50.0 98.2 80-120 Ethylbenzene 49.4 " 50.0 98.8 80-120 Xylene (p/m) 99.8 " 100 99.8 80-120 Xylene (o) 48.8 " 50.0 97.6 80-120 Surrogate: a.a.a-Trifluorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluorobenzene 34.2 " 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 94.4 80-120 Surrogate: a.a.a-Trifluorotoluene 1.23 0.0250 " 1.36 ND 94.4 80-120 Yolene (p/m) 2.67 0.0250 " 1.36 ND 94.4 80-120 Surrogate: a.a.a-Trifluorotoluene <td>Benzene 50.4 ug/kg 50.0 101 80-120 Toluene 49.1 " 50.0 98.2 80-120 Ethylbenzene 49.4 " 50.0 98.8 80-120 Xylene (p/m) 99.8 " 100 99.8 80-120 Xylene (o) 48.8 " 50.0 97.6 80-120 Surrogate: a.a.a-Trifluorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluorobenzene 34.2 " 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 94.4 80-120 Sylene (p/m) 2.67 0.0250 " 1.36 ND 94.4 80-120 Sylene (o) 1.36 0.0250 " 1.36 ND 94.4 80-120 Surrogate: a.a.a-Trifluorotoluene 3.2.8</td> <td>Benzene 50.4 ug/kg 50.0 101 80-120 Toluene 49.1 " 50.0 98.2 80-120 Ethylbenzene 49.4 " 50.0 98.8 80-120 Xylene (p/m) 99.8 " 100 99.8 80-120 Surrogate: a.a.o.Trifluorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluorobenzene 34.2 " 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 9.4 80-120 Stylene (p/m) 2.67 0.0250 " 1.36 ND 9.4 80-120 Surrogate: a.a.a.Trifluorotoluene 1.27 0.0250 " 1.36 ND 9.4 80-120 Surrogate: a.a.a.Trifluorotoluene 1.26 0.0250 " 1.36 ND 9.12 30</td> <td>Benzene 50.4 ug/kg 50.0 101 80-120 Toluene 49.1 " 50.0 98.2 80-120 Ethylbenzene 49.4 " 50.0 98.8 80-120 Xylene (p/m) 99.8 " 100 99.8 80-120 Surrogate: a.a.o.Trifluorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluorobenzene 34.2 " 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 9.4 80-120 Stylene (p/m) 2.67 0.0250 " 1.36 ND 9.4 80-120 Surrogate: a.a.a.Trifluorotoluene 1.27 0.0250 " 1.36 ND 9.4 80-120 Surrogate: a.a.a.Trifluorotoluene 1.26 0.0250 " 1.36 ND 9.12 30</td> <td>Benzene 50.4 ug/kg 50.0 101 80-120 Toluene 49.1 "50.0 98.8 80-120 Xylenc (y'm) 99.8 "100 99.8 80-120 Surrogate: 4-Bromgfluorobnezne 37.3 40.0 92.2 80-120 Surrogate: 4-Bromgfluorobnezne 34.2 "40.0 92.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 "1.36 ND 93.4 80-120 Ethylbenzee 1.23 0.0250 "1.36 ND 93.4 80-120 Strorgate: 4.Bromgfluorobnezene 1.27 0.0250 "2.72 ND 98.2 80-120 Strorgate: 4.Bromgfluorobnezene 32.8 "40.0 82.0 80-120 - - Surrogate: 4.Bromgfluorobnezene 32.8 "40.0 82.0 80-120 - - Surrogate: 4.Bromgfluorobnezene 32.8 ug/fg 40.0 82.0 80-120 - Surrogate: a.g.a.Friffluorobnezene 32.8 ug/fg</td> <td>•</td> <td></td>	Benzene 50.4 ug/kg 50.0 101 80-120 Toluene 49.1 " 50.0 98.2 80-120 Ethylbenzene 49.4 " 50.0 98.8 80-120 Xylene (p/m) 99.8 " 100 99.8 80-120 Xylene (o) 48.8 " 50.0 97.6 80-120 Surrogate: a.a.a-Trifluorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluorobenzene 34.2 " 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 94.4 80-120 Sylene (p/m) 2.67 0.0250 " 1.36 ND 94.4 80-120 Sylene (o) 1.36 0.0250 " 1.36 ND 94.4 80-120 Surrogate: a.a.a-Trifluorotoluene 3.2.8	Benzene 50.4 ug/kg 50.0 101 80-120 Toluene 49.1 " 50.0 98.2 80-120 Ethylbenzene 49.4 " 50.0 98.8 80-120 Xylene (p/m) 99.8 " 100 99.8 80-120 Surrogate: a.a.o.Trifluorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluorobenzene 34.2 " 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 9.4 80-120 Stylene (p/m) 2.67 0.0250 " 1.36 ND 9.4 80-120 Surrogate: a.a.a.Trifluorotoluene 1.27 0.0250 " 1.36 ND 9.4 80-120 Surrogate: a.a.a.Trifluorotoluene 1.26 0.0250 " 1.36 ND 9.12 30	Benzene 50.4 ug/kg 50.0 101 80-120 Toluene 49.1 " 50.0 98.2 80-120 Ethylbenzene 49.4 " 50.0 98.8 80-120 Xylene (p/m) 99.8 " 100 99.8 80-120 Surrogate: a.a.o.Trifluorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluorobenzene 34.2 " 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 9.4 80-120 Stylene (p/m) 2.67 0.0250 " 1.36 ND 9.4 80-120 Surrogate: a.a.a.Trifluorotoluene 1.27 0.0250 " 1.36 ND 9.4 80-120 Surrogate: a.a.a.Trifluorotoluene 1.26 0.0250 " 1.36 ND 9.12 30	Benzene 50.4 ug/kg 50.0 101 80-120 Toluene 49.1 "50.0 98.8 80-120 Xylenc (y'm) 99.8 "100 99.8 80-120 Surrogate: 4-Bromgfluorobnezne 37.3 40.0 92.2 80-120 Surrogate: 4-Bromgfluorobnezne 34.2 "40.0 92.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 "1.36 ND 93.4 80-120 Ethylbenzee 1.23 0.0250 "1.36 ND 93.4 80-120 Strorgate: 4.Bromgfluorobnezene 1.27 0.0250 "2.72 ND 98.2 80-120 Strorgate: 4.Bromgfluorobnezene 32.8 "40.0 82.0 80-120 - - Surrogate: 4.Bromgfluorobnezene 32.8 "40.0 82.0 80-120 - - Surrogate: 4.Bromgfluorobnezene 32.8 ug/fg 40.0 82.0 80-120 - Surrogate: a.g.a.Friffluorobnezene 32.8 ug/fg	•											
Toluene 49.1 50.0 98.2 80-120 Ethylbenzene 49.4 50.0 98.8 80-120 Xylene (p/m) 99.8 100 99.8 80-120 Xylene (o) 48.8 50.0 97.6 80-120 Surrogate: a.a.a-Trifluorotoluene 37.3 " 40.0 93.2 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Stylene (p/m) 2.67 0.0250 " 1.36 ND 93.4 80-120 Stylene (o) 1.36 0.0250 " 1.36 ND 90.4 80-120 Styrogate: a.a.a-Trifluorotoluene 1.26 0.0250 " 1.36 ND 90.4 80-120 Styrogate: a.a.a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 1.16 1.20 80	Toluene 49.1 " 50.0 98.2 80-120 Ethylbenzene 49.4 " 50.0 98.8 80-120 Xylene (p/m) 99.8 " 100 99.8 80-120 Xylene (o) 48.8 " 50.0 97.6 80-120 Surrogate: a.	Toluene 49.1 " 50.0 98.2 80-120 Ethylbenzene 49.4 " 50.0 98.8 80-120 Xylene (p/m) 99.8 " 100 99.8 80-120 Surrogate: a.a.a-Trifluorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluorobenzene 34.2 " 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzec: 08/07/06 Vol Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Ethylbenzene 1.27 0.0250 " 1.36 ND 94.4 80-120 Sylene (p/m) 2.67 0.0250 " 1.36 ND 90.4 80-120 Sylene (o) 1.36 0.0250 " 1.36 ND 96.4 80-120 Sylene (o) 1.36 0.0250 " 1.36 ND 90.4 80-120 Surrogate: a.a.e.Trifluorotoluene 32.8 ug/kg 40.0 89.5 80-120 <td>Toluene 49.1 " 50.0 98.2 80-120 Ethylbenzene 49.4 " 50.0 98.8 80-120 Xylene (p/m) 99.8 " 100 99.8 80-120 Surrogate: a.a.a-Trifluorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluorobenzene 34.2 " 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzec: 08/07/06 Vol Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Ethylbenzene 1.27 0.0250 " 1.36 ND 94.4 80-120 Sylene (p/m) 2.67 0.0250 " 1.36 ND 90.4 80-120 Sylene (o) 1.36 0.0250 " 1.36 ND 96.4 80-120 Sylene (o) 1.36 0.0250 " 1.36 ND 90.4 80-120 Surrogate: a.a.e.Trifluorotoluene 32.8 ug/kg 40.0 89.5 80-120<td>Toluene 49.1 50.0 98.2 80-120 Edylspector 99.4 50.0 98.8 80-120 Sylenc (pn) 99.8 100 98.8 80-120 Surrogate: a.a.o.Trifluoroinhuene 37.3 40.0 95.5 80-120 Surrogate: 4.Bromofluorobenzene 34.2 7 80.400 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-0 Prepared: 08/04/0 Analyzec: 08/07/0 80-120 Bezzene 1.27 0.0250 1.36 ND 99.4 80-120 Toluene 1.27 0.0250 1.36 ND 99.4 80-120 Sylenc (pn) 2.67 0.0250 1.36 ND 99.4 80-120 Sylenc (a.a.o.Trifluoroinhuene 32.8 wg/kg 40.0 80-120 Verture Surrogate: 4.Bromofluorobenzene 32.8 wg/kg 1.00 80-120 2.38 20 Surrogate: 4.Bromofluorobenzene 1.24 0.0250 1.36 ND 91.2 80-120 2.38 20 Surogate: 4.Bromofluorobenzene 1.24</td><td></td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td><td></td><td>08/04/06 A</td><td></td><td></td><td></td><td>• • • •</td><td>· · · ·</td></td>	Toluene 49.1 " 50.0 98.2 80-120 Ethylbenzene 49.4 " 50.0 98.8 80-120 Xylene (p/m) 99.8 " 100 99.8 80-120 Surrogate: a.a.a-Trifluorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluorobenzene 34.2 " 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzec: 08/07/06 Vol Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Ethylbenzene 1.27 0.0250 " 1.36 ND 94.4 80-120 Sylene (p/m) 2.67 0.0250 " 1.36 ND 90.4 80-120 Sylene (o) 1.36 0.0250 " 1.36 ND 96.4 80-120 Sylene (o) 1.36 0.0250 " 1.36 ND 90.4 80-120 Surrogate: a.a.e.Trifluorotoluene 32.8 ug/kg 40.0 89.5 80-120 <td>Toluene 49.1 50.0 98.2 80-120 Edylspector 99.4 50.0 98.8 80-120 Sylenc (pn) 99.8 100 98.8 80-120 Surrogate: a.a.o.Trifluoroinhuene 37.3 40.0 95.5 80-120 Surrogate: 4.Bromofluorobenzene 34.2 7 80.400 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-0 Prepared: 08/04/0 Analyzec: 08/07/0 80-120 Bezzene 1.27 0.0250 1.36 ND 99.4 80-120 Toluene 1.27 0.0250 1.36 ND 99.4 80-120 Sylenc (pn) 2.67 0.0250 1.36 ND 99.4 80-120 Sylenc (a.a.o.Trifluoroinhuene 32.8 wg/kg 40.0 80-120 Verture Surrogate: 4.Bromofluorobenzene 32.8 wg/kg 1.00 80-120 2.38 20 Surrogate: 4.Bromofluorobenzene 1.24 0.0250 1.36 ND 91.2 80-120 2.38 20 Surogate: 4.Bromofluorobenzene 1.24</td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td></td> <td></td> <td>08/04/06 A</td> <td></td> <td></td> <td></td> <td>• • • •</td> <td>· · · ·</td>	Toluene 49.1 50.0 98.2 80-120 Edylspector 99.4 50.0 98.8 80-120 Sylenc (pn) 99.8 100 98.8 80-120 Surrogate: a.a.o.Trifluoroinhuene 37.3 40.0 95.5 80-120 Surrogate: 4.Bromofluorobenzene 34.2 7 80.400 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-0 Prepared: 08/04/0 Analyzec: 08/07/0 80-120 Bezzene 1.27 0.0250 1.36 ND 99.4 80-120 Toluene 1.27 0.0250 1.36 ND 99.4 80-120 Sylenc (pn) 2.67 0.0250 1.36 ND 99.4 80-120 Sylenc (a.a.o.Trifluoroinhuene 32.8 wg/kg 40.0 80-120 Verture Surrogate: 4.Bromofluorobenzene 32.8 wg/kg 1.00 80-120 2.38 20 Surrogate: 4.Bromofluorobenzene 1.24 0.0250 1.36 ND 91.2 80-120 2.38 20 Surogate: 4.Bromofluorobenzene 1.24			· · · · · · · · · · · · · · · · · · ·				08/04/06 A				• • • •	· · · ·
Ethylbenzene 49.4 " 50.0 98.8 80-120 Xylene (p/m) 99.8 " 100 99.8 80-120 Xylene (o) 48.8 " 50.0 97.6 80-120 Surrogate: a.a.e-Trifluorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluorobenzene 34.2 " 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-0 Prepared: 08/04/06 Analyzed: 08/07/06 N Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Ethylbenzene 1.27 0.0250 " 1.36 ND 90.4 80-120 Ethylbenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Surrogate: a.a.a-Trifluorotoluene 2.67 0.0250 " 1.36 ND 98.2 80-120 Surrogate: a.a.a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 V Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5	Ethylbenzene 49.4 " 50.0 98.8 80-120 Xylene (p/m) 99.8 " 100 99.8 80-120 Xylene (o) 48.8 " 50.0 97.6 80-120 Surrogate: a.a.e-Trifluorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluorobenzene 34.2 " 40.0 Analyzet: 08/07/06 N Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Ethylbenzene 1.23 0.0250 " 1.36 ND 94.4 80-120 Surrogate: a.a.e-Trifluorotoluene 1.36 0.0250 " 1.36 ND 94.4 80-120 Surrogate: a.a.e-Trifluorotoluene 1.36 0.0250 " 1.36 ND 96.2 80-120 Surrogate: a.a.e-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 V V Surrogate: 4-Bromofluorobenzene 35.8 <	Ethylbenzene 49.4 " 50.0 98.8 80-120 Xylene (n/m) 99.8 " 100 99.8 80-120 Xylene (n/m) 48.8 " 50.0 97.6 80-120 Surrogate: a.aTrifluorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluorobenzene 34.2 " 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-0 Prepared: 08/04/06 Analyzed: 08/07/06 Source: 08/04/06 Benzene 1.27 0.0250 " 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 94.4 80-120 Xylene (p/m) 2.67 0.0250 " 1.36 ND 94.4 80-120 Xylene (o) 1.36 0.025 " 1.36 ND 94.2 80-120 Xylene (p/m) 2.67 0.0250 " 1.36 ND 90.4 80-120 Surrogate: a.a.e.Trifluorotoluene 3.8 " 1.36 ND 90.2	Ethylbenzene 49.4 " 50.0 98.8 80-120 Xylene (n/m) 99.8 " 100 99.8 80-120 Xylene (n/m) 48.8 " 50.0 97.6 80-120 Surrogate: a.aTrifluorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluorobenzene 34.2 " 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-0 Prepared: 08/04/06 Analyzed: 08/07/06 Source: 08/04/06 Benzene 1.27 0.0250 " 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 94.4 80-120 Xylene (p/m) 2.67 0.0250 " 1.36 ND 94.4 80-120 Xylene (o) 1.36 0.025 " 1.36 ND 94.2 80-120 Xylene (p/m) 2.67 0.0250 " 1.36 ND 90.4 80-120 Surrogate: a.a.e.Trifluorotoluene 3.8 " 1.36 ND 90.2	EdityDenacene 49.4 * 50.0 98.8 80-120 Xylene (o) 48.8 * 50.0 97.6 80-120 Surrogate: a.a.o. Trifluorotoluene 37.3 * 40.0 93.2 80-120 Surrogate: a.a.o. Trifluorotoluene 37.3 * 40.0 83.5 80-120 Matrix Spike (El60702-MS1) Source: 6H04011-0 Prepared: 08/04/06 Analyzet: 08/07/06 Analyzet: 08/07/06 Beazene 1.27 0.0250 * 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 * 1.36 ND 90.4 80-120 Sylene (o) 1.36 0.0250 * 1.36 ND 90.4 80-120 Surrogate: a.a.e.Trifluorotoluene 3.8 * 40.0 82.0 80-120 Surrogate: a.a.e.Trifluorotoluene 3.8 * 40.0 82.0 80-120 Surrogate: a.a.e.Trifluorotoluene 1.24 0.0250 * 1.36 ND 91.2 80-120 2.38 20 Surogate: a.a.e.Trifluorotoluene 1.24 0		5 B)			ug/kg							
Xylene (p/m) 99.8 " 100 99.8 80-120 Xylene (o) 48.8 " 50.0 97.6 80-120 Surrogate: a.a.o-Trifluorotoluene 37.3 " 40.0 93.2 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 - Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Stylene (p/m)	Xylene (p/m) 99.8 " 100 99.8 80-120 Xylene (o) 48.8 " 50.0 97.6 80-120 Surrogate: a.a.o-Trifluorotoluene 37.3 " 40.0 93.2 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 - Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Kylene (p/m) 2.67 0.0250 " 1.36 ND 99.4 80-120 Surrogate: a.a.o-Trifluorotoluene 2.67 0.0250 " 1.36 ND 99.2 80-120 Surrogate: a.a.o-Trifluorotoluene 2.67 0.0250 " 1.36 ND 98.2 80-120 Surrogate: a.a.o-Trifluorotoluene 3.2.8 ug/kg 40.0 80-120 - - Surrogate: 4-Bromofluorobenzene 3.5.8 " 40.0 80.2 80-120 - Matrix Spike Dup (EH60702-MSD1)	Xylene (p/m) 99.8 " 100 99.8 80-120 Xylene (o) 48.8 " 50.0 97.6 80-120 Surrogate: a.a.a-Trifluorotoluene 37.3 " 40.0 93.2 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 V Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Ethylbenzene 1.23 0.0250 " 1.36 ND 94.4 80-120 Xylene (o) 1.36 0.0250 " 1.36 ND 94.2 80-120 Surrogate: a.a.a-Trifluorotoluene 1.23 0.0250 " 1.36 ND 94.2 80-120 Surrogate: a.a.a-Trifluorotoluene 3.8 " 40.0 80-120 - - Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 - - - Benzene 1.24	Xylene (p/m) 99.8 " 100 99.8 80-120 Xylene (o) 48.8 " 50.0 97.6 80-120 Surrogate: a.a.a-Trifluorotoluene 37.3 " 40.0 83.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 V Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Ehylbenzene 1.23 0.0250 " 1.36 ND 94.4 80-120 Xylene (o) 1.36 0.0250 " 1.36 ND 94.2 80-120 Surrogate: a.a.a-Trifluorotoluene 1.23 0.0250 " 1.36 ND 94.2 80-120 Surrogate: a.a.a-Trifluorotoluene 2.67 0.0250 " 1.36 ND 94.2 80-120 Surrogate: a.a.a-Trifluorotoluene 32.8 ug/kg 40.0 &82.0 &80-120 Matri Spike Dup (EH60702-MSDI)	Xylenc (n/m) 99.8 * 100 99.8 80-120 Xylenc (n/m) 48.8 50.0 77.6 80-120 Surrogut: a.a.o.Trifluorotoluene 37.3 40.0 83.2 80-120 Marix Spike (EH66702-MSI) Source: 6H04011-0 Preparet: 08/04/06 Analyzet: 08/07/05 80-120 Benzene 1.27 0.0250 * 1.36 ND 93.4 80-120 Kylenc (n/m) 2.67 0.0250 * 1.36 ND 94.4 80-120 Xylenc (n/m) 2.67 0.0250 * 1.36 ND 94.4 80-120 Surrogat: - A.a.r.Trifluorotoluene 3.2.8 ugAg 40.0 82.0 80-120 Surrogat: - A.a.r.Trifluorotoluene 3.2.8 ugAg 40.0 84.120 2.38 20 Surrogat: - A.a.r.Trifluorotoluene 3.2.4 0.0250 * 1.36 ND 91.2 80-120 2.38 20 Surrogat: - A.a.r.Trifluorotoluene 3.1 0.0250 * 1.36 ND 91.2 80-120 2.38 20 Su		,										
Xylene (o) 48.8 " 50.0 97.6 80-120 Surrogate: a,a,a-Trifluorotoluene 37.3 " 40.0 93.2 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Kontrester Kontrester Kontrester ND 93.4 80-120 Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Xylene (p/m) 2.67 0.0250 " 1.36 ND 90.4 80-120 Surrogate: a,a,a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Benzene	Xylene (o) 48.8 " 50.0 97.6 80-120 Surrogate: a,a,a-Trifluorotoluene 37.3 " 40.0 93.2 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Kylene (p/m) 2.67 0.0250 " 1.36 ND 90.4 80-120 Surrogate: 4-Bromofluorobenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Kylene (p/m) 2.67 0.0250 " 1.36 ND 90.4 80-120 Surrogate: a,a,a - Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 82.0 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 " 1.36 </td <td>Xylene (o) 48.8 " 50.0 97.6 80-120 Surrogate: a,a,a-Trifluorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluoroberzene 34.2 " 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Ethylbenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Xylene (o) 1.36 0.0250 " 1.36 ND 90.4 80-120 Surrogate: a,a,a-Trifluorotoluene 2.28 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Surrogate: 4-Bromofluorobenzene 32.8 ug/kg 40.0 89.5 80-120 Surrogate: 4-Bromofluorobenzene 32.4 0.0250 " 1.36 ND 91.2 80-120 2.38 20<!--</td--><td>Xylene (o) 48.8 " 50.0 97.6 80-120 Surrogate: a, a,</td><td>Xylenc (n) 48.8 50.0 97.6 80-120 Surrogate: a.a.a-Ptr/Juorotoluene 37.3 40.0 95.2 80-120 Surrogate: a.a.a-Ptr/Juorotoluene 37.3 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H6011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 mg/kg dv 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 * 1.36 ND 93.4 80-120 Xylene (pin) 2.67 0.0250 * 1.36 ND 90.4 80-120 Xylene (pin) 2.67 0.0250 * 1.36 ND 90.4 80-120 Surrogate: a.a.a-Tt/fluorotoluene 3.8 ug/g 40.0 83.9 80-120 Surrogate: a.a.a-Tt/fluorotoluene 3.8 ug/g 40.0 83.0 80-120 2.38 20 Surrogate: a.a.a-Tt/fluorotoluene 3.6 ND 91.2 80-120 2.38 20 S</td><td>•</td><td>,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	Xylene (o) 48.8 " 50.0 97.6 80-120 Surrogate: a,a,a-Trifluorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluoroberzene 34.2 " 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Ethylbenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Xylene (o) 1.36 0.0250 " 1.36 ND 90.4 80-120 Surrogate: a,a,a-Trifluorotoluene 2.28 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Surrogate: 4-Bromofluorobenzene 32.8 ug/kg 40.0 89.5 80-120 Surrogate: 4-Bromofluorobenzene 32.4 0.0250 " 1.36 ND 91.2 80-120 2.38 20 </td <td>Xylene (o) 48.8 " 50.0 97.6 80-120 Surrogate: a, a,</td> <td>Xylenc (n) 48.8 50.0 97.6 80-120 Surrogate: a.a.a-Ptr/Juorotoluene 37.3 40.0 95.2 80-120 Surrogate: a.a.a-Ptr/Juorotoluene 37.3 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H6011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 mg/kg dv 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 * 1.36 ND 93.4 80-120 Xylene (pin) 2.67 0.0250 * 1.36 ND 90.4 80-120 Xylene (pin) 2.67 0.0250 * 1.36 ND 90.4 80-120 Surrogate: a.a.a-Tt/fluorotoluene 3.8 ug/g 40.0 83.9 80-120 Surrogate: a.a.a-Tt/fluorotoluene 3.8 ug/g 40.0 83.0 80-120 2.38 20 Surrogate: a.a.a-Tt/fluorotoluene 3.6 ND 91.2 80-120 2.38 20 S</td> <td>•</td> <td>,</td> <td></td>	Xylene (o) 48.8 " 50.0 97.6 80-120 Surrogate: a,	Xylenc (n) 48.8 50.0 97.6 80-120 Surrogate: a.a.a-Ptr/Juorotoluene 37.3 40.0 95.2 80-120 Surrogate: a.a.a-Ptr/Juorotoluene 37.3 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H6011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 mg/kg dv 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 * 1.36 ND 93.4 80-120 Xylene (pin) 2.67 0.0250 * 1.36 ND 90.4 80-120 Xylene (pin) 2.67 0.0250 * 1.36 ND 90.4 80-120 Surrogate: a.a.a-Tt/fluorotoluene 3.8 ug/g 40.0 83.9 80-120 Surrogate: a.a.a-Tt/fluorotoluene 3.8 ug/g 40.0 83.0 80-120 2.38 20 Surrogate: a.a.a-Tt/fluorotoluene 3.6 ND 91.2 80-120 2.38 20 S	•	,										
Surrogate: a,a,a-Trifluorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluorobenzene 34.2 " 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Kylene (p/m) 2.67 0.0250 " 1.36 ND 90.4 80-120 Xylene (o) 1.36 0.0250 " 1.36 ND 98.2 80-120 Surrogate: a,a,a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Matrix Spike Dup (EH60702-MSD1) Source: 6H	Surrogate: a,a,a-Trifluorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluorobenzene 34.2 " 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Kylene (p/m) 2.67 0.0250 " 1.36 ND 90.4 80-120 Surrogate: a,a,a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01	Surrogate: a.a.a.Trifluorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluorobenzene 34.2 " 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Kylene (p/m) 2.67 0.0250 " 1.36 ND 90.4 80-120 Surrogate: a, a, a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 1.24 0.0250 " 1.36 ND 91.2 80-120 Surrogate: 4-Bromofluorobenzene 1.24 0.0250 " 1.36	Surrogate: a.a.a-Trifluorotoluene 37.3 " 40.0 93.2 80-120 Surrogate: 4-Bromofluorobenzene 34.2 " 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Kylene (p/m) 2.67 0.0250 " 1.36 ND 90.4 80-120 Surrogate: a.g.a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Surrogate: 4-Bromofluorobenzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 <t< td=""><td>Surrogate: a.a.e.Trifluorololuene 37.3 40.0 93.2 80-120 Surrogate: 4-Bromofluorobenzene 34.2 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H94011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 mg/kg dv 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 1.36 ND 90.4 80-120 Kylene (p/m) 2.67 0.0250 1.36 ND 90.4 80-120 Surrogate: 4-Bromofhuorobenzene 3.2 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofhuorobenzene 3.5 ug/kg 40.0 89.5 80-120 Surrogate: 4-Bromofhuorobenzene 3.6 vg/kg 1.36 ND 91.2 80-120 Surrogate: 4-Bromofhuorobenzene 3.6 vg/kg 40.0 89.5 80-120 Surrogate: 4-Bromofhuorobenzene 3.7 ug/kg 1.36 ND 91.2 80.120 2.38 20</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Surrogate: a.a.e.Trifluorololuene 37.3 40.0 93.2 80-120 Surrogate: 4-Bromofluorobenzene 34.2 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H94011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 mg/kg dv 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 1.36 ND 90.4 80-120 Kylene (p/m) 2.67 0.0250 1.36 ND 90.4 80-120 Surrogate: 4-Bromofhuorobenzene 3.2 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofhuorobenzene 3.5 ug/kg 40.0 89.5 80-120 Surrogate: 4-Bromofhuorobenzene 3.6 vg/kg 1.36 ND 91.2 80-120 Surrogate: 4-Bromofhuorobenzene 3.6 vg/kg 40.0 89.5 80-120 Surrogate: 4-Bromofhuorobenzene 3.7 ug/kg 1.36 ND 91.2 80.120 2.38 20												
Surrogate: 4,4,4-Prijitabrobolatene 57.3 40.0 53.2 60-720 Surrogate: 4-Bromofluorobenzene 34.2 " 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 90.4 80-120 Kylene (p/m) 2.67 0.0250 " 1.36 ND 90.4 80-120 Surrogate: a,a,a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 80-120	Surrogate: 4,4,4-Prijitabrobolatere 37.3 40.0 53.2 50-720 Surrogate: 4-Bromofluorobenzene 34.2 " 40.0 85.5 80-120 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 90.4 80-120 Xylene (p/m) 2.67 0.0250 " 2.72 ND 98.2 80-120 Xylene (o) 1.36 0.0250 " 1.36 ND 100 80-120 Surrogate: a,a,a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91	starring die: d. d. Pring die: d. d. d. Pring die: d.	Marrigate: M.d. H. Pripatrikalization 57.3 "40.0 55.2 50-720 Surrogate: 4.2 "40.0 85.5 80-720 Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 " 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 94.4 80-120 Kylene (p/m) 2.67 0.0250 " 1.36 ND 94.2 80-120 Surrogate: a.a.a.arTrifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Surrogate: 4.8.0 35.8 " 40.0 82.0 80-120 Matrix Spike Dup (EH60702-MSD1) Source: H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Surrogate: 4.80.0 89.5 80-120 2.38 20 2.38 20	Surrogate: AB.0 Source: Source: <t< td=""><td></td><td>· . · ·</td><td></td><td></td><td></td><td>50.0</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		· . · ·				50.0						
Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 90.4 80-120 Ethylbenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Xylene (p/m) 2.67 0.0250 " 2.72 ND 98.2 80-120 Surrogate: a.a.a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20	Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 90.4 80-120 Ethylbenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Xylene (p/m) 2.67 0.0250 " 2.72 ND 98.2 80-120 Surrogate: a.a.a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: FH04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 Toluene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 8.0120 Surrogate: 4-Bromofluorobenzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 Surrogate: 4-Br	Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Ethylbenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Xylene (p/m) 2.67 0.0250 " 2.72 ND 98.2 80-120 Surrogate: a, a, a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Surrogate: 4-Bromofluorobenzene 1.24 0.0250 " 1.36 ND 91.2	Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Ethylbenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Xylene (p/m) 2.67 0.0250 " 2.72 ND 98.2 80-120 Surrogate: a, a, a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Surrogate: 4-Bromofluorobenzene 1.24 0.0250 " 1.36 ND 91.2	Matrix Spike (EH60702-MS1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzone 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Ethylbenzene 1.23 0.0250 " 1.36 ND 93.4 80-120 Kylene (p'n) 2.67 0.0250 " 1.35 ND 98.2 80-120 Surrogate: a.a.e-Trifhuorotohuene 32.8 ug/kg 40.0 82.0 80-120 Surrogate: a.a.e-Trifhuorotohuene 32.8 " 40.0 82.0 80-120 Surrogate: a.a.e-Trifhuorotohuene 32.8 " 40.0 89.5 80-120 Surrogate: a.a.e-Trifhuorotohuene 32.8 " 40.0 89.0 80.120 2.38 20 Surrogate: a.a.e-Trifhuorotohuene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Surrogate: a.a.e-Trifhuorotohuene 1.20 0.0250 " 1.36 ND 96.3 80-120 2.0											<i>.</i> *	
Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Ethylbenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Xylene (p/m) 2.67 0.0250 " 2.72 ND 98.2 80-120 Xylene (o) 1.36 0.0250 " 1.36 ND 100 80-120 Surrogate: a,a,a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20	Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Ethylbenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Xylene (p/m) 2.67 0.0250 " 2.72 ND 98.2 80-120 Xylene (o) 1.36 0.0250 " 1.36 ND 100 80-120 Surrogate: a,a,a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 82.0 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20	Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Ethylbenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Xylene (p/m) 2.67 0.0250 " 2.72 ND 98.2 80-120 Xylene (o) 1.36 0.0250 " 1.36 ND 100 80-120 Surrogate: a, a, a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Kylene (p/m) 2.62 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Surrogate: a, a, a-Trifluorotohuene 1.24 0.0250	Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Ethylbenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Xylene (p/m) 2.67 0.0250 " 2.72 ND 98.2 80-120 Xylene (o) 1.36 0.0250 " 1.36 ND 100 80-120 Surrogate: a, a, a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Kylene (p/m) 2.62 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Surrogate: a, a, a-Trifluorotohuene 1.24 0.0250	Benzene 1.27 0.0250 mg/kg dry 1.36 ND 93.4 80-120 Toluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Ethylbenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Xylene (p/m) 2.67 0.0250 " 1.36 ND 90.4 80-120 Surrogate: a.a.a Trifluorotoluene 32.8 ug/kg 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Stylene (p/m) 2.62 0.0250 " 1.36 ND 82.8 80-120 2.38 20 Xylene (o) 1.31 0.0250 " 1.36 ND	Surrogate: 4-Bromofluorobenzene		34.2		"	40.0		85.5	80-120			
Toluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Ethylbenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Xylene (p/m) 2.67 0.0250 " 2.72 ND 98.2 80-120 Xylene (o) 1.36 0.0250 " 1.36 ND 100 80-120 Surrogate: a,a,a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20	Toluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Ethylbenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Xylene (p/m) 2.67 0.0250 " 2.72 ND 98.2 80-120 Xylene (o) 1.36 0.0250 " 1.36 ND 100 80-120 Surrogate: a,a,a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20	Toluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Ethylbenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Xylene (p/m) 2.67 0.0250 " 2.72 ND 98.2 80-120 Xylene (o) 1.36 0.0250 " 1.36 ND 100 80-120 Surrogate: a,a,a-Trifluorotoluene 32.8 ug/Ag 40.0 82.0 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Surrogate: (p/m) 2.62 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Surrogate: (p/m) 2.62 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Xylene (o) 1.31	Toluene 1.27 0.0250 " 1.36 ND 93.4 80-120 Ethylbenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Xylene (p/m) 2.67 0.0250 " 2.72 ND 98.2 80-120 Xylene (o) 1.36 0.0250 " 1.36 ND 100 80-120 Surrogate: a,a,a-Trifluorotoluene 32.8 ug/Ag 40.0 82.0 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Surrogate: (p/m) 2.62 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Surrogate: (p/m) 2.62 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Xylene (o) 1.31	Toluene 1.27 0.0250 1.36 ND 93.4 80-120 Ehslybenzene 1.23 0.0250 1.36 ND 90.4 80-120 Xylene (p/m) 1.36 0.0250 2.72 ND 98.2 80-120 Surrogate: a.a.G.Trifluorotoluene 32.8 ugAg 40.0 89.5 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Surrogate: 4-Bromofluorobenzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Benzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ehslybenzene 1.20 0.0250 " 1.36 ND 96.3 80-120 2.46 20 Sylene (o') 1.31 0.0250 " 1.36 ND 96.3 80-120 3.7 20 Surrogate: a.a.e-Trifluorotoluene 33.1 ug/kg 40.0	Matrix Spike (EH60702-MS1)	· .	So	urce: 6H0401	l-01	Prepared: (08/04/06 A	Analyzed: 08	8/07/06	3	18 ¹	
Ethylbenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Xylene (p/m) 2.67 0.0250 " 2.72 ND 98.2 80-120 Xylene (o) 1.36 0.0250 " 1.36 ND 100 80-120 Surrogate: a.a.a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20	Ethylbenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Xylene (p/m) 2.67 0.0250 " 2.72 ND 98.2 80-120 Xylene (o) 1.36 0.0250 " 1.36 ND 100 80-120 Surrogate: a.a.a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20	Ethylbenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Xylene (p/m) 2.67 0.0250 " 2.72 ND 98.2 80-120 Xylene (o) 1.36 0.0250 " 1.36 ND 100 80-120 Surrogate: a,a,a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 2.38 20 Benzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.20 0.0250 " 1.36 ND 88.2 80-120 2.46 20 Xylene (p/m) 2.62 0.0250 " 1.36 ND 96.3 80-120 3.77 20 <td>Ethylbenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Xylene (p/m) 2.67 0.0250 " 2.72 ND 98.2 80-120 Xylene (o) 1.36 0.0250 " 1.36 ND 100 80-120 Surrogate: a,a,a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 2.38 20 Benzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.20 0.0250 " 1.36 ND 88.2 80-120 2.46 20 Xylene (p/m) 2.62 0.0250 " 1.36 ND 96.3 80-120 3.77 20<td>Ethylbenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Xylene (p'm) 2.67 0.0250 " 1.36 ND 100 80-120 Surrogate: a.a.a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 " 1.36 ND 91.2 80-120 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.20 0.0250 " 1.36 ND 96.3 80-120 1.95 20 Surrogate: a.a.a-Trifluorotoluene 33.1 ug/kg 40.0 88.8 80-120 3.77 20 Surrogate: 4-Bromofluorobenzene 35.5 " 40.0 88.8 80-120 3.77 20 Surrogate: 4-Bromofluorobenzene <t< td=""><td>Benzene</td><td>и. , · · ·</td><td>1:27</td><td>0.0250</td><td>mg/kg dry</td><td>1.36</td><td>ND</td><td>93.4</td><td>80-120</td><td></td><td></td><td></td></t<></td></td>	Ethylbenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Xylene (p/m) 2.67 0.0250 " 2.72 ND 98.2 80-120 Xylene (o) 1.36 0.0250 " 1.36 ND 100 80-120 Surrogate: a,a,a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 2.38 20 Benzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.20 0.0250 " 1.36 ND 88.2 80-120 2.46 20 Xylene (p/m) 2.62 0.0250 " 1.36 ND 96.3 80-120 3.77 20 <td>Ethylbenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Xylene (p'm) 2.67 0.0250 " 1.36 ND 100 80-120 Surrogate: a.a.a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 " 1.36 ND 91.2 80-120 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.20 0.0250 " 1.36 ND 96.3 80-120 1.95 20 Surrogate: a.a.a-Trifluorotoluene 33.1 ug/kg 40.0 88.8 80-120 3.77 20 Surrogate: 4-Bromofluorobenzene 35.5 " 40.0 88.8 80-120 3.77 20 Surrogate: 4-Bromofluorobenzene <t< td=""><td>Benzene</td><td>и. , · · ·</td><td>1:27</td><td>0.0250</td><td>mg/kg dry</td><td>1.36</td><td>ND</td><td>93.4</td><td>80-120</td><td></td><td></td><td></td></t<></td>	Ethylbenzene 1.23 0.0250 " 1.36 ND 90.4 80-120 Xylene (p'm) 2.67 0.0250 " 1.36 ND 100 80-120 Surrogate: a.a.a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 " 1.36 ND 91.2 80-120 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.20 0.0250 " 1.36 ND 96.3 80-120 1.95 20 Surrogate: a.a.a-Trifluorotoluene 33.1 ug/kg 40.0 88.8 80-120 3.77 20 Surrogate: 4-Bromofluorobenzene 35.5 " 40.0 88.8 80-120 3.77 20 Surrogate: 4-Bromofluorobenzene <t< td=""><td>Benzene</td><td>и. , · · ·</td><td>1:27</td><td>0.0250</td><td>mg/kg dry</td><td>1.36</td><td>ND</td><td>93.4</td><td>80-120</td><td></td><td></td><td></td></t<>	Benzene	и. , · · ·	1:27	0.0250	mg/kg dry	1.36	ND	93.4	80-120			
Xylene (p/m) 2.67 0.0250 '' 2.72 ND 98.2 80-120 Xylene (o) 1.36 0.0250 '' 1.36 ND 100 80-120 Surrogate: a.a.a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 '' 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Source: 08/07/06 Benzene 1.24 0.0250 ''' 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 ''' 1.36 ND 91.2 80-120 2.38 20	Xylene (p/m) 2.67 0.0250 2.72 ND 98.2 80-120 Xylene (o) 1.36 0.0250 1.36 ND 100 80-120 Surrogate: a,a,a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20	Xylene (p/m) 2.67 0.0250 " 2.72 ND 98.2 80-120 Xylene (o) 1.36 0.0250 " 1.36 ND 100 80-120 Surrogate: a,a,a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Kylene (p/m) 2.62 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Kylene (o) 1.31 0.0250 " 1.36 ND 96.3 80-120 2.46 20 Kylene (o) 33.1 ug/kg 40.0 82.8 80-120 3.77 20	Xylene (p/m) 2.67 0.0250 " 2.72 ND 98.2 80-120 Xylene (o) 1.36 0.0250 " 1.36 ND 100 80-120 Surrogate: a,a,a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Kylene (p/m) 2.62 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Kylene (o) 1.31 0.0250 " 1.36 ND 96.3 80-120 2.46 20 Kylene (o) 33.1 ug/kg 40.0 82.8 80-120 3.77 20	Xylene (p'm) 2.67 0.0250 " 2.72 ND 98.2 80-120 Xylene (o) 1.36 0.0250 1.36 ND 100 80-120 Surrogate: a.a.a-Trifluorololuene 32.8 ug/kg 40.0 82.0 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 2.38 20 Benzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.20 0.0250 " 1.36 ND 96.3 80-120 2.95 20 Xylene (p'm) 2.62 0.0250 " 1.36 ND 96.3 80-120 3.77 20 Surrogate: a.a.e.Trifluorololuene 33.1 ug/kg 40.0 82.8 80-120 3.77 20 Surrogate: 4.Bromofluorobenzene 35.5 " 40.0 88.8 80-120 3.77 20	foluene	•	1.27	0.0250		1.36	ND	93.4	80-120			, •
Xyleic (pin) 2.07 0.0250 2.12 ND 50.2 60120 Xylene (o) 1.36 0.0250 1.36 ND 100 80-120 Surrogate: a,a,a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Zurogate: 2.12 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20	Xyleic (pin) 2.07 0.02.0 2.72 ND 90.2 60-120 Xylene (o) 1.36 0.0250 1.36 ND 100 80-120 Surrogate: a,a,a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 2.38 20 Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20	Xylene (p/m) 2.67 0.0250 1.2 ND 96.2 60-120 Xylene (o) 1.36 0.0250 " 1.36 ND 100 80-120 Surrogate: a,a,a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Xylene (p/m) 2.62 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Surrogate: 3.1 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Surrogate: 3.1 0.0250 " 1.36 ND 96.3 80-120 2.46 20 Xylene (o) 1.31 0.0250 " 1.36 ND 96.3 80-120 3.77 20	Xylene (p/m) 2.67 0.0250 1.2 ND 96.2 60-120 Xylene (o) 1.36 0.0250 " 1.36 ND 100 80-120 Surrogate: a,a,a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Xylene (p/m) 2.62 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Surrogate: 3.1 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Surrogate: 3.1 0.0250 " 1.36 ND 96.3 80-120 2.46 20 Xylene (o) 1.31 0.0250 " 1.36 ND 96.3 80-120 3.77 20	Appendix (pm) 2.00 0.0250 1.12 1.10 9.0.2 00.120 Xylene (a) 1.36 0.0250 1.36 ND 100 80-120 Surrogate: 4.Bromofluorobenzene 32.8 ug/kg 40.0 82.0 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 * 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 * 1.36 ND 91.2 80-120 2.38 20 Kylene (n) 2.62 0.0250 * 1.36 ND 91.2 80-120 2.46 20 Xylene (n) 2.62 0.0250 * 1.36 ND 96.3 80-120 2.45 20 Surrogate: a, a, ch Trifluorotoluene 33.1 0.0250 * 1.36 ND 96.3 80-120 3.77 20 Surrogate: 4.Bromofluorobenzene 35.5 <t< td=""><td>Ethylbenzene</td><td>• · · · ·</td><td>1.23</td><td>0.0250</td><td>н .</td><td>1.36</td><td>ND</td><td>90.4</td><td>80-120</td><td></td><td></td><td></td></t<>	Ethylbenzene	• · · · ·	1.23	0.0250	н .	1.36	ND	90.4	80-120			
Xylete (0) 1.50	Xylete (0) 1.50 0.0250 1.50 1.50 100 80-120 Surrogate: a,a,a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20	Xylene (b) 1.50 0.0250 1.50 1.50 100 60-120 Surrogate: a,a,a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 2.38 20 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 2.38 20 Toluene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.20 0.0250 1.36 ND 91.2 80-120 2.38 20 Xylene (p/m) 2.62 0.0250 1.36 ND 91.2 80-120 2.38 20 Surrogate: a,a,a-Trifluorotoluene 1.31 0.0250 1.36 ND 96.3 80-120 1.95 20 Surrogate: a,a,a-Trifluorotoluene 33.1 ug/kg 40.0 82.8 80-120 3.77 20	Xylene (b) 1.50 0.0250 1.50 1.50 100 60-120 Surrogate: a,a,a-Trifluorotoluene 32.8 ug/kg 40.0 82.0 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 2.38 20 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 2.38 20 Toluene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.20 0.0250 1.36 ND 91.2 80-120 2.38 20 Xylene (p/m) 2.62 0.0250 1.36 ND 91.2 80-120 2.38 20 Surrogate: a,a,a-Trifluorotoluene 1.31 0.0250 1.36 ND 96.3 80-120 1.95 20 Surrogate: a,a,a-Trifluorotoluene 33.1 ug/kg 40.0 82.8 80-120 3.77 20	Areas (0) 1.35 0.020 1.35 1.05 0.00 82.0 80-120 Surrogate: 4-Bromo/luorobenzene 32.8 ug/kg 40.0 82.0 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 - Benzene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Kylene (p/m) 2.62 0.0250 " 1.36 ND 96.3 80-120 1.95 20 Surrogate: a.aTrifluorotoluene 33.1 ug/kg 40.0 82.8 80-120 3.77 20 Surrogate: a.aTrifluorotoluene 33.1 ug/kg 40.0 88.8 80-120 3.77 20 Surrogate: 4-Bromofluorobenzene 35.5 " 40.0 88.8 80-120 3.77 20	Kylene (p/m)		2.67	0.0250	н	2.72	ND	98.2	80-120			
Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Source: 08/07/06 Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20	Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 80-120 2.38 20 Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20	Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.20 0.0250 " 1.36 ND 91.2 80-120 2.46 20 Xylene (p/m) 2.62 0.0250 " 2.72 ND 96.3 80-120 1.95 20 Xylene (o) 33.1 ug/kg 40.0 82.8 80-120 3.77 20	Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.20 0.0250 " 1.36 ND 91.2 80-120 2.46 20 Xylene (p/m) 2.62 0.0250 " 2.72 ND 96.3 80-120 1.95 20 Xylene (o) 33.1 ug/kg 40.0 82.8 80-120 3.77 20	Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-U Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.20 0.0250 " 1.36 ND 96.3 80-120 2.46 20 Xylene (p/m) 2.62 0.0250 " 1.36 ND 96.3 80-120 3.7 20 Surrogate: a.a.e-Trifluorotoluene 33.1 ug/kg 40.0 88.8 80-120 3.7 20 Surrogate: 4-Bromofluorobenzene 35.5 " 40.0 88.8 80-120 80.70	Kylene (0)	14 - A - A - A - A - A - A - A - A - A -	1.36	0.0250	н	1.36	ND	100	80-120			
Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Source: 08/07/06 Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20	Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 80-120 2.38 20 Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20	Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.20 0.0250 " 1.36 ND 91.2 80-120 2.46 20 Xylene (p/m) 2.62 0.0250 " 2.72 ND 96.3 80-120 1.95 20 Xylene (o) 33.1 ug/kg 40.0 82.8 80-120 3.77 20	Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-01 Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.20 0.0250 " 1.36 ND 91.2 80-120 2.46 20 Xylene (p/m) 2.62 0.0250 " 2.72 ND 96.3 80-120 1.95 20 Xylene (o) 33.1 ug/kg 40.0 82.8 80-120 3.77 20	Surrogate: 4-Bromofluorobenzene 35.8 " 40.0 89.5 80-120 Matrix Spike Dup (EH60702-MSD1) Source: 6H04011-U Prepared: 08/04/06 Analyzed: 08/07/06 Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.20 0.0250 " 1.36 ND 96.3 80-120 2.46 20 Xylene (p/m) 2.62 0.0250 " 1.36 ND 96.3 80-120 3.7 20 Surrogate: a.a.e-Trifluorotoluene 33.1 ug/kg 40.0 88.8 80-120 3.7 20 Surrogate: 4-Bromofluorobenzene 35.5 " 40.0 88.8 80-120 80.70	Surrogate: a,a,a-Trifluorotoluene		32.8		ug/kg	40.0		82.0	80-120			
Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20	Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20	Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.20 0.0250 " 1.36 ND 88.2 80-120 2.46 20 Xylene (p/m) 2.62 0.0250 " 2.72 ND 96.3 80-120 1.95 20 Xylene (o) 1.31 0.0250 " 1.36 ND 96.3 80-120 3.77 20 Surrogate: a,a,a-Trifluorotoluene 33.1 ug/kg 40.0 82.8 80-120 3.77 20	Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.20 0.0250 " 1.36 ND 88.2 80-120 2.46 20 Xylene (p/m) 2.62 0.0250 " 2.72 ND 96.3 80-120 1.95 20 Xylene (o) 1.31 0.0250 " 1.36 ND 96.3 80-120 3.77 20 Surrogate: a,a,a-Trifluorotoluene 33.1 ug/kg 40.0 82.8 80-120 3.77 20	Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.20 0.0250 " 1.36 ND 88.2 80-120 2.46 20 Xylene (p/m) 2.62 0.0250 " 2.72 ND 96.3 80-120 1.95 20 Xylene (o) 1.31 0.0250 " 1.36 ND 96.3 80-120 3.77 20 Surrogate: a.a.a-Trifluorotoluene 33.1 ug/kg 40.0 82.8 80-120 3.77 20 Surrogate: 4-Bromofluorobenzene 35.5 " 40.0 88.8 80-120 40.0 88.8 80-120 40.0 88.8 80-120 40.0 88.8 80-120 40.0 80.9 40.0 80.9 40.0 40.0 40.0 40.0 40.0 40.0	Surrogate: 4-Bromofluorobenzene		35.8			40.0		89.5	80-120		*	
Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20	Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20	Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.20 0.0250 " 1.36 ND 88.2 80-120 2.46 20 Xylene (p/m) 2.62 0.0250 " 2.72 ND 96.3 80-120 1.95 20 Xylene (o) 1.31 0.0250 " 1.36 ND 96.3 80-120 3.77 20 Surrogate: a,a,a-Trifluorotoluene 33.1 ug/kg 40.0 82.8 80-120 3.77 20	Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.20 0.0250 " 1.36 ND 88.2 80-120 2.46 20 Xylene (p/m) 2.62 0.0250 " 2.72 ND 96.3 80-120 1.95 20 Xylene (o) 1.31 0.0250 " 1.36 ND 96.3 80-120 3.77 20 Surrogate: a,a,a-Trifluorotoluene 33.1 ug/kg 40.0 82.8 80-120 3.77 20	Benzene 1.24 0.0250 mg/kg dry 1.36 ND 91.2 80-120 2.38 20 Toluene 1.24 0.0250 " 1.36 ND 91.2 80-120 2.38 20 Ethylbenzene 1.20 0.0250 " 1.36 ND 88.2 80-120 2.46 20 Xylene (p/m) 2.62 0.0250 " 2.72 ND 96.3 80-120 1.95 20 Xylene (o) 1.31 0.0250 " 1.36 ND 96.3 80-120 3.77 20 Surrogate: a.a.a-Trifluorotoluene 33.1 ug/kg 40.0 82.8 80-120 3.77 20 Surrogate: 4-Bromofluorobenzene 35.5 " 40.0 88.8 80-120 40.0 88.8 80-120 40.0 88.8 80-120 40.0 88.8 80-120 40.0 88.8 80-120 40.0 40.0 40.0 40.0 40.0 40.0 40.0 <t< td=""><td>Matrix Snike Dun (FH60702-)</td><td>(SD1)</td><td>Sa</td><td>urce: 6H04011</td><td>-01</td><td>Prenared (</td><td>)8/04/06 A</td><td>nalvzed 08</td><td>/07/06</td><td></td><td></td><td></td></t<>	Matrix Snike Dun (FH60702-)	(SD1)	Sa	urce: 6H04011	-01	Prenared ()8/04/06 A	nalvzed 08	/07/06			
1014cmc 1.24 0.0230 1.30 ND 71.2 60420 2.36 20	1.24 0.0230 1.30 ND 91.2 80420 2.36 20	Indicate 1.24 0.0250 1.30 ND 91.2 60120 2.38 20 Ethylbenzene 1.20 0.0250 " 1.36 ND 88.2 80-120 2.46 20 Xylene (p/m) 2.62 0.0250 " 2.72 ND 96.3 80-120 1.95 20 Xylene (o) 1.31 0.0250 " 1.36 ND 96.3 80-120 3.77 20 Surrogate: a,a,a-Trifluorotoluene 33.1 ug/kg 40.0 82.8 80-120 3.77 20	Indicate 1.24 0.0250 1.30 ND 91.2 60120 2.38 20 Ethylbenzene 1.20 0.0250 " 1.36 ND 88.2 80-120 2.46 20 Xylene (p/m) 2.62 0.0250 " 2.72 ND 96.3 80-120 1.95 20 Xylene (o) 1.31 0.0250 " 1.36 ND 96.3 80-120 3.77 20 Surrogate: a,a,a-Trifluorotoluene 33.1 ug/kg 40.0 82.8 80-120 3.77 20	Indefe 1.24 0.0250 1.53 1.15 1.15 1.15 2.15										2.38	20	
Ethylbenzene 1.20 0.0250 " 1.36 ND 88.2 80-120 2.46 20		Xylene (p/m) 2.62 0.0250 " 2.72 ND 96.3 80-120 1.95 20 Xylene (o) 1.31 0.0250 " 1.36 ND 96.3 80-120 3.77 20 Surrogate: a,a,a-Trifluorotoluene 33.1 ug/kg 40.0 82.8 80-120 3.77 20	Xylene (p/m) 2.62 0.0250 " 2.72 ND 96.3 80-120 1.95 20 Xylene (o) 1.31 0.0250 " 1.36 ND 96.3 80-120 3.77 20 Surrogate: a,a,a-Trifluorotoluene 33.1 ug/kg 40.0 82.8 80-120 3.77 20	Xylene (p/m) 2.62 0.0250 " 2.72 ND 96.3 80-120 1.95 20 Xylene (o) 1.31 0.0250 " 1.36 ND 96.3 80-120 3.77 20 Surrogate: a, a, a-Trifluorotoluene 33.1 ug/kg 40.0 82.8 80-120 5 5 " 40.0 88.8 80-120 5 5 5 " 40.0 88.8 80-120 5 5 5 5 " 40.0 88.8 80-120 5 5 5 " 40.0 88.8 80-120 5 5 5 5 " 40.0 88.8 80-120 5 5 5 5 5 10 5 <td< td=""><td>Foluene</td><td>н</td><td>1.24</td><td>0.0250</td><td></td><td>1.36</td><td>ND</td><td>91.2</td><td>80-120</td><td>2.38</td><td>20</td><td></td></td<>	Foluene	н	1.24	0.0250		1.36	ND	91.2	80-120	2.38	20	
	Ethylbenzene 1.20 0.0250 " 1.36 ND 88.2 80-120 2.46 20	Xylene (a) 1.31 0.0250 1.36 ND 96.3 80-120 3.77 20 Surrogate: a,a,a-Trifluorotoluene 33.1 ug/kg 40.0 82.8 80-120	Xylene (a) 1.31 0.0250 1.36 ND 96.3 80-120 3.77 20 Surrogate: a,a,a-Trifluorotoluene 33.1 ug/kg 40.0 82.8 80-120	Aylene (o) 1.31 0.0250 1.36 ND 96.3 80-120 3.77 20 Surrogate: a,a,a-Trifluorotoluene 33.1 ug/kg 40.0 82.8 80-120 Surrogate: 4-Bromofluorobenzene 35.5 " 40.0 88.8 80-120	Ethylbenzene		1.20	0.0250	Ħ	1.36	ND	88.2	80-120	2.46	20	
		Xylene (o) 1.31 0.0250 " 1.36 ND 96.3 80-120 3.77 20 Surrogate: a,a,a-Trifluorotoluene 33.1 ug/kg 40.0 82.8 80-120	Xylene (o) 1.31 0.0250 " 1.36 ND 96.3 80-120 3.77 20 Surrogate: a,a,a-Trifluorotoluene 33.1 ug/kg 40.0 82.8 80-120	Xylene (o) 1.31 0.0250 " 1.36 ND 96.3 80-120 3.77 20 Surrogate: a.a.a-Trifluorotoluene 33.1 ug/kg 40.0 82.8 80-120 3.77 20 Surrogate: 4-Bromofluorobenzene 35.5 " 40.0 88.8 80-120 3.77 20 Environmental Lab of Texas The results in this report apply to the samples analyzed in accordance with the samples 3.77 20	•		2.62	0.0250	"	2.72	ND	96.3	80-120	1.95	20	
		Surrogate: a,a,a-Trifluorotoluene 33.1 ug/kg 40.0 82.8 80-120	Surrogate: a,a,a-Trifluorotoluene 33.1 ug/kg 40.0 82.8 80-120	Surrogate: a,a,a-Trifluorotoluene 33.1 ug/kg 40.0 82.8 80-120 Surrogate: 4-Bromofluorobenzene 35.5 " 40.0 88.8 80-120 Environmental Lab of Texas The results in this report apply to the samples analyzed in accordance with the samples				0.0250	"	1.36	ND	96.3	80-120	3.77	20	• •
				Surrogate: 4-Bromafluorobenzene 35.5 " 40.0 88.8 80-120 Environmental Lab of Texas The results in this report apply to the samples analyzed in accordance with the samples			33.1		ug/kg	40.0		82.8	80-120			
	Surrogale: a,a,a-Iriliuorololuene 53.1 ug/kg 40.0 62.6 00-120			Environmental Lab of Texas The results in this report apply to the samples analyzed in accordance with the samples					"	1.5						
					•											
		Surrogate: 4-Bromofluorobenzene 35.5 " 40.0 88.8 80-120	Surrogate: 4-Bromofluorobenzene 35.5 " 40.0 88.8 80-120	Environmental Lab of Texas The results in this report apply to the samples analyzed in accordance with the samples					ug/kg	1.5						
							55.5			70.0	•		120			
					Environmental Lab of Texa		·		The re	sults in this re	port apply to	o the samples	analyzed in a	iccordance v	vith the san	ples
Environmental Lab of Texas The results in this report apply to the samples analyzed in accordance with the samples	Surrogate: 4-Bromofluorobenzene 35.5 " 40.0 88.8 80-120	Environmental Lab of Texas The results in this report apply to the samples analyzed in accordance with the samples	Environmental Lab of Texas The results in this report apply to the samples analyzed in accordance with the samples	received in the laboratory. This analytical report must be reproduced in its entirety,												

Environmental Plus, Incorporated P.O. Box 1558 Eunice NM, 88231 Project:Apache/ N. Mon. Grayburg SA 603Project Number:240014Project Manager:Jason Stegemoller

Fax: 505-394-2601

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

porting	1.101							
Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
						_		
		Prepared &	Analyzed:	08/02/06				
0.500	mg/kg							
0.500	"							
		Prepared &	Analyzed:	08/02/06				
0.500	mg/kg	10.0		86.2	80-120			
0.500	"	10.0		97.0	80-120			
		Prepared &	Analyzed:	08/02/06				
	mg/L	10.0		98.3	80-120			
		10.0		109	80-120			
G31011-	•02	Prepared &	Analyzed:	08/02/06				
5.00	mg/kg		149			3.30	20	
5.00	"		48.0			1.89	20	
G31013-	•02	Prepared &	Analyzed:	08/02/06				
5.00	mg/kg		127			0.791	20	
5.00	"		176			1.72	20	
Source: 6G31011-02			Analyzed:	08/02/06				
5.00	mg/kg	100	48.0	104	80-120			
5.00	"	100	149	107	80-120			
G31013-	-02	Prepared &	Analyzed:	08/02/06				
5.00	mg/kg	100	176	109	80-120			
5.00		100	127	107	80-120			
	0.500 0.500 0.500 0.500 0.500 0.500 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	0.500 mg/kg 0.500 " 0.500 mg/kg 0.500 " mg/L " iG31011-02 5.00 mg/kg 5.00 " iG31013-02 5.00 mg/kg 5.00 " iG31011-02 5.00 mg/kg 5.00 "	Prepared & 0.500 mg/kg 0.500 " Prepared & 0.500 0.500 " 0.500 mg/kg 0.500 " 0.500 " 0.500 " 0.500 " 0.500 " 0.500 " 0.500 " 0.500 " mg/L 10.0 " 10.0 " 10.0 " " 5.00 mg/kg 5.00 " " " G31013-02 Prepared & 5.00 " 100 " 5.00 " 100 " G31013-02 Prepared & 5.00 " 100 " 5.00 " 100 "	Prepared & Analyzed: 0.500 mg/kg 0.500 " Prepared & Analyzed: 0.500 " 0.500 " 0.500 mg/kg 0.500 " 0.500 " 0.500 " 0.500 " 0.500 " 0.500 " 0.500 " 0.500 " 0.500 " 0.500 " 0.500 " 10.0 " " 10.0 " 10.0 " 10.0 " 10.0 " 10.0 " 10.0 " 149 5.00 mg/kg 127 5.00 5.00 mg/kg 100 48.0 5.00 " 100 149 G31013-02 Prepared & Analyzed: <td>Prepared & Analyzed: 08/02/06 0.500 mg/kg 0.500 " Prepared & Analyzed: 08/02/06 0.500 " Prepared & Analyzed: 08/02/06 0.500 " 0.500 " 0.500 " Prepared & Analyzed: 08/02/06 0.500 " 10.0 97.0 Prepared & Analyzed: 08/02/06 mg/L 10.0 10.0 98.3 10.0 109 GG31011-02 Prepared & Analyzed: 08/02/06 5.00 mg/kg 5.00 " GG31013-02 Prepared & Analyzed: 08/02/06 5.00 " GG31011-02 Prepared & Analyzed: 08/02/06 5.00 mg/kg 100 5.00 " 176 GG31011-02 Prepared & Analyzed: 08/02/06 5.00 " 100 5.00 " 100 5.00 " 100 100 149</td> <td>Prepared & Analyzed: 08/02/06 0.500 mg/kg 0.500 " Prepared & Analyzed: 08/02/06 0.500 " 0.500 " Prepared & Analyzed: 08/02/06 80-120 0.500 " 10.0 86.2 80-120 0.500 " 10.0 97.0 80-120 Prepared & Analyzed: 08/02/06 </td> <td>Prepared & Analyzed: 08/02/06 0.500 mg/kg 0.500 " Prepared & Analyzed: 08/02/06 0.500 " Prepared & Analyzed: 08/02/06 0.500 " 0.500 " 0.500 " Prepared & Analyzed: 08/02/06 mg/L 10.0 98.3 80-120 Prepared & Analyzed: 08/02/06 " 10.0 109 80-120 G31011-02 Prepared & Analyzed: 08/02/06 5.00 mg/kg 149 3.30 5.00 " 48.0 1.89 G31013-02 Prepared & Analyzed: 08/02/06 S.00 " 176 0.791 5.00 " 176 1.72 G31011-02 Prepared & Analyzed: 08/02/06 5.00 " 100 5.00 " 100 48.0 104 80-120 S.00 "</td> <td>Prepared & Analyzed: 08/02/06 0.500 mg/kg 0.500 " Prepared & Analyzed: 08/02/06 0.500 " Prepared & Analyzed: 08/02/06 0.500 " Prepared & Analyzed: 08/02/06 Prepared & Analyzed: 08/02/06 mg/L 10.0 98.3 80-120 " 10.0 98.3 80-120 GG31011-02 Prepared & Analyzed: 08/02/06 </td>	Prepared & Analyzed: 08/02/06 0.500 mg/kg 0.500 " Prepared & Analyzed: 08/02/06 0.500 " Prepared & Analyzed: 08/02/06 0.500 " 0.500 " 0.500 " Prepared & Analyzed: 08/02/06 0.500 " 10.0 97.0 Prepared & Analyzed: 08/02/06 mg/L 10.0 10.0 98.3 10.0 109 GG31011-02 Prepared & Analyzed: 08/02/06 5.00 mg/kg 5.00 " GG31013-02 Prepared & Analyzed: 08/02/06 5.00 " GG31011-02 Prepared & Analyzed: 08/02/06 5.00 mg/kg 100 5.00 " 176 GG31011-02 Prepared & Analyzed: 08/02/06 5.00 " 100 5.00 " 100 5.00 " 100 100 149	Prepared & Analyzed: 08/02/06 0.500 mg/kg 0.500 " Prepared & Analyzed: 08/02/06 0.500 " 0.500 " Prepared & Analyzed: 08/02/06 80-120 0.500 " 10.0 86.2 80-120 0.500 " 10.0 97.0 80-120 Prepared & Analyzed: 08/02/06	Prepared & Analyzed: 08/02/06 0.500 mg/kg 0.500 " Prepared & Analyzed: 08/02/06 0.500 " Prepared & Analyzed: 08/02/06 0.500 " 0.500 " 0.500 " Prepared & Analyzed: 08/02/06 mg/L 10.0 98.3 80-120 Prepared & Analyzed: 08/02/06 " 10.0 109 80-120 G31011-02 Prepared & Analyzed: 08/02/06 5.00 mg/kg 149 3.30 5.00 " 48.0 1.89 G31013-02 Prepared & Analyzed: 08/02/06 S.00 " 176 0.791 5.00 " 176 1.72 G31011-02 Prepared & Analyzed: 08/02/06 5.00 " 100 5.00 " 100 48.0 104 80-120 S.00 "	Prepared & Analyzed: 08/02/06 0.500 mg/kg 0.500 " Prepared & Analyzed: 08/02/06 0.500 " Prepared & Analyzed: 08/02/06 0.500 " Prepared & Analyzed: 08/02/06 Prepared & Analyzed: 08/02/06 mg/L 10.0 98.3 80-120 " 10.0 98.3 80-120 GG31011-02 Prepared & Analyzed: 08/02/06

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 9 of 11

····	Genera	l Chemis	try Para	ameters b	y EPA	/ Standar	l Metho	ds - Qua	lity Con	trol		
				Environ	mental	Lab of Te	xas		` `			
Analyte	÷ :		Result	Reporting Limit		Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH60302 - General	Preparat	ion (Prep)						· · · · · ·	1. ¹ .		iy s	
Blank (EH60302-BLK1)	·	, <i>'</i>	ч с			Prepared:	08/02/06 A	analyzed: 08	3/03/06	· .	. *	
% Solids			100		· %							
Duplicate (EH60302-DUP1) % Solids			Sou 99.5	irce: 6H0200	9 1-01 %	Prepared:	08/02/06 A 99.4	analyzed: 08	8/03/06	0.101	20	
			,,,,,				,,,,,			0.101	20	
	ŝ	•								· · ·		·
		• •										
		- 1								· .		
												•
				· • ,		*						
• •												
					t,							
	· .					· .	-					
	' <u>.</u>			1						·		۰.
	4				•							
				. *								
Environmental Lab of Tex	as		· .			results in this re						les
				с. т 1 — м		ived in the labo written approv				produced in		Page 10 of 11
					_							-
	' 1	2600 West 1	I-20 East	- Odessa, To	exas 7970	15 - (432) 56	3-1800 - F	fax (432) 5	63-1713			

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Fax: 505-394-2601

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Report Approved By:

Kaland K Just

8/8/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Environmental Plus, Inc.

P.O. Box 1558, Eunice, NM 88231

2100 Avenue O, Eunice, NM 88231

ANALYSIS REQUES H∀d <<< R3HTO 1 of 1 LCLP Ηđ ("OS) SETARLUS × × × (ID) SEGINOTHO × × × E-mail results to: jstegemoller@envplus.net × × MS108 HAJ × 81208 X3T8 × 15:39 TIME 11:40 13:43 8:30 SAMPLING 31-Jul-06 31-Jul-06 31-Jul-06 31-Jul-06 DATE Are gass Eunice, NM 88231 Attn: (ain Olness 20 P.O. Box 1558 NOTES: PRESERV. язнто × ICE/COOF × × × ACID/BASE :ABHTO (ed By: **3900**19 MATRIX CRUDE OIL 800 7105 Received By: (Jab stal RETEWATER Jung RATAW GNUORE Sample Cool & Intact Received By 505-394-3481 / 505-394-2601 # CONTAINERS Eunice New Mexico 88231 UL-C, Sec 20, T19S, R37E N. Mon. Grayburg SA 603 Environmental Plus, Inc. G G 5 C AMO(D) RO BAR(D) Apache Corporation 第 7 Q **Jason Stegemoller** George Blackburn P.O. BOX 1558 SAMPLE I.D. (505) 394-3481 FAX: (505) 394-2601 240014 BH-13 (6") BH-12 (6") (BH-14 (6") BH-11 (6") EPI Project Manager EPI Sampler Name Project Reference EPI Phone#/Fax# Mailing Address Company Name 0 **Client Company** Chy, State, Zip Facility Name pler Relinquished LAB I.D vd bed av ocation

. 1

E Int Ca

Nrt (alber)

Π

Chain of Custody Form

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

lient:	EPI	
Date/ Time:	RZ 00 11:15	
.ab ID # :	6H02D06	
nitials:	CK	

 \Box

Sample Receipt Checklist

...

Client Initials

t1	Temperature of container/ cooler?	Yes	No	3,0 °C
ŧ2	Shipping container in good condition?	V O3	No	
! 3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present,
<u>4</u>	Custody Seals intact on sample bottles/ container?	Yes	No	Not Present
ł5	Chain of Custody present?	Yes	No	
‡6	Sample instructions complete of Chain of Custody?	Yes	No	
ŧ7	Chain of Custody signed when relinquished/ received?	Yes	No	· · · · · · · · · · · · · · · · · · ·
7 8	Chain of Custody agrees with sample label(s)?	Xes	No	ID written on Cont./ Lid
ŧ9	Container label(s) legible and intact?	Xes	No	Not Applicable
<i>‡</i> 10	Sample matrix/ properties agree with Chain of Custody?	Xas	No	
#11	Containers supplied by ELOT?	(Xes	No	
<i>‡</i> 12	Samples in proper container/ bottle?	Yes	No	See Below
<i>‡</i> 13	Samples properly preserved?	Yeg	No	See Below
#14	Sample bottles intact?	Xes	No	
<i>‡</i> 15	Preservations documented on Chain of Custody?	(Jes)	No	
<i>‡</i> 16	Containers documented on Chain of Custody?	Xes	No	
‡17	Sufficient sample amount for indicated test(s)?	Nes	No	See Below
‡18	All samples received within sufficient hold time?	Yes	No	See Below
<i>‡</i> 19	VOC samples have zero headspace?	(es)	No	Not Applicable

Variance Documentation

Contact:		Contacted by:	Date/ Time:	
Regarding:				
Corrective Action Taken	1:			
l Check all that Apply:		See attached e-mail/ fax Client understands and would	like to proceed with analysis	

Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

NVIRONMENTAL

12600 West I-20 East - Odessa, Texas 79765

at a second s

Analytical Report

Prepared for: Jason Stegemoller Environmental Plus, Incorporated P.O. Box 1558 Eunice, NM 88231

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014

Location: UL-C, Sec. 20, T19S, R37E

Lab Order Number: 6H02007

Report Date: 08/08/06

Environmental Plus, Incorporated P.O. Box 1558 Eunice NM, 88231 Project:Apache/ N. Mon. Grayburg SA 603Project Number:240014Project Manager:Jason Stegemoller

Fax: 505-394-2601

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BH-15 6"	6H02007-01	Soil	2006-08-01 08:55	2006-08-02 11:15
BH-16 6"	6H02007-02	Soil	2006-08-01 10:10	2006-08-02 11:15
BH-17 6"	6Н02007-03	Soil	2006-08-01 11:25	2006-08-02 11:15
BH-18 6"	6H02007-04	Soil	2006-08-01 13:10	2006-08-02 11:15
BH-19 6"	6H02007-05	Soil	2006-08-01 14:25	2006-08-02 11:15
BH-20 6"	6H02007-06	Soil	2006-08-01 15:25	2006-08-02 11:15

Énvironmental Plus, Incorporated P.O. Box 1558 Eunice NM, 88231		Project N	Project: Apac Jumber: 2400 Janager: Jasor	14		g SA 603		Fax: 505-3	94-2601
		O	rganics by	GC ·	• • •				
and a second s	•		mental La		exas		• •	•.	4
· · · · · · · · · · · · · · · · · · ·		Reporting						·.	
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
BH-15 6'' (6H02007-01) Soil			<u>.</u>						
Benzene	ND	0.0250	mg/kg dry	25	EH60702	08/04/06	08/06/06	EPA 8021B	
Foluene	ND	0.0250		"	"	17	н	II.	
Ethylbenzene	ND	0.0250	"	"			"	н	,
Kylene (p/m)	ND	0.0250		N	"	ч	"	17	
Kylene (o)	ND	0.0250	"	**	"	"	"	**	
Surrogate: a,a,a-Trifluorotoluene		96.5 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.8 %	80-12	0	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH60209	08/02/06	08/02/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	u	н		"	"	15	
Carbon Ranges C28-C35	ND	10.0	14	н	"	14	"	11	
Total Hydrocarbons	ND	10.0	H	м	"	۳	"	u	
Surrogate: 1-Chlorooctane		96.0 %	70-13	0	"	"	"	"	
Surrogate: 1-Chlorooctadecane		115 %	70-13	0	n	"	"	"	
8H-16 6'' (6H02007-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60702	08/04/06	08/06/06	EPA 8021B	
Toluene	ND	0.0250	"	"	"	*	**	11	
Ethylbenzene	ND	0.0250	н		"	••	"	19	
Xylene (p/m)	ND	0.0250	"	"	"	"	н	"	
(ylene (o)	ND	0.0250	"	н	"	"	"	11	
Surrogate: a,a,a-Trifluorotoluene		97.5 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.5 %	80-12	0	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH60209	08/02/06	08/02/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	**		"	m	"	11	
Carbon Ranges C28-C35	ND	10.0	H	"	"		11	**	
Total Hydrocarbons	ND	10.0	u		"	**	"	"	
Surrogate: 1-Chlorooctane		96.4 %	70-13	0	"	11	"	"	
Surrogate: 1-Chlorooctadecane		113 %	70-13	0	"	n	"	"	
3H-17 6'' (6H02007-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60702	08/04/06	08/06/06	EPA 8021B	
Toluene	ND	0.0250	"	"	"	н	n	н	
Sthylbenzene	ND	0.0250	Ħ		"	"	"	•	
(ylene (p/m)	ND	0.0250	"	"	"	*	"	"	
(ylene (o)	ND	0.0250	н	"	н	*	n	"	
Surrogate: a,a,a-Trifluorotoluene		98.5 %	80-12	0		n	"	11	
Surrogate: 4-Bromofluorobenzene		93.5 %	80-12	0	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH60209	08/02/06	08/02/06	EPA 8015M	

received in the laboratory. This analytical report must be reproduced in its entire with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 2 of 11

1

-

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
BH-17 6'' (6H02007-03) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EH60209	08/02/06	08/02/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	"	н	"	14	"	**	
Total Hydrocarbons	ND	10.0	"	"	"	11	"	11	
Surrogate: 1-Chlorooctane		93.8 %	70-13	80	"	"	"	"	
Surrogate: 1-Chlorooctadecane		112 %	70-13	80	"	"	"	n	
BH-18 6'' (6H02007-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60702	08/04/06	08/06/06	EPA 8021B	
Toluene	ND	0.0250	"	n		н	"	*1	
Ethylbenzene	ND	0.0250	н	"	"	"	"		
Xylene (p/m)	ND	0.0250	"	н		n	"	11	
Xylene (o)	ND	0.0250	"	"	*	"	ti	.,	
Surrogate: a,a,a-Trifluorotoluene		92.8 %	80-12	20	"	n	"	"	
Surrogate: 4-Bromofluorobenzene		87.2 %	80-12	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH60209	08/02/06	08/02/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"	"	0		**	
Carbon Ranges C28-C35	ND	10.0	н	"	**	u	"		
Total Hydrocarbons	ND	10.0	н	"	•	0	**	"	
Surrogate: 1-Chlorooctane		93.4 %	70-13	30	**	**	н	**	· · · · · ·
Surrogate: 1-Chlorooctadecane		112 %	70-13	80	"	17	n	17	
BH-19 6'' (6H02007-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60702	08/04/06	08/06/06	EPA 8021B	
Toluene	ND	0.0250	н		"	"	"	11	
Ethylbenzene	ND	0.0250	"	и	"	n	"	**	
Xylene (p/m)	ND	0.0250	*	"	н	"	"	n	
Xylene (o)	ND	0.0250	11	n	"	u	"	11	
Surrogate: a,a,a-Trifluorotoluene		90.5 %	80-12	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.8 %	80-12	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH60209	08/02/06	08/02/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	n	"	"	**	"	
Carbon Ranges C28-C35	ND	10.0	"	н		н	"	"	
Total Hydrocarbons	ND	10.0	u	н		"	н	"	
Surrogate: I-Chlorooctane		96.2 %	70-13	30	"	"	"	н	
Surrogate: 1-Chlorooctadecane		113 %	70-13	80	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Environmental Plus, Incorporated P.O. Box 1558 Eunice NM, 88231 Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014

.

Organics by GC

Project Manager: Jason Stegemoller

Environmental Lab of Texas

		Reporting		* 1					
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
BH-20 6'' (6H02007-06) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60702	08/04/06	08/07/06	EPA 8021B	19 1 1 1 1
Toluene	ND	0.0250	"	н	"	н	"	R (¹
Ethylbenzene	ND	0.0250	"	н	۲.,	"	۳		ł
Xylene (p/m)	ND	0.0250	ч.	н	"	"	"	۳. ,	
Xylene (0)	ND	0.0250	"	. 11		н	н	• 5 5 5	
Surrogate: a,a,a-Trifluorotoluene		98.0 %	80-12	20	"	n	"	"	
Surrogate: 4-Bromofluorobenzene		94.8 %	80-12	20	"			"	• • • •
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	· 1	EH60209	08/02/06	08/02/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	ر, "	"	Ħ	*1	"	"	1
Carbon Ranges C28-C35	ND	10.0	".	., "	"	u	н		· · · · · · ·
Total Hydrocarbons	ND	10.0	n	. "	"	н	н	ч.	
Surrogate: 1-Chlorooctane	······	104 %	70-13	80	"	"	"	n	ı.',
Surrogate: 1-Chlorooctadecane		123.%	70-13	80	"	"	. "	. "	
									· .

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 4 of 11

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyta	Result	Reporting Limit	Units	D'L d'	D. (1	D	A 1 1	M-d - 1	N .
Analyte	Kesun	Limil	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
BH-15 6" (6H02007-01) Soil									
Chloride	2510	50.0	mg/kg	100	EH60307	08/02/06	08/04/06	EPA 300.0	
% Moisture	13.6	0.1	%	1	EH60302	08/02/06	08/03/06	% calculation	
Sulfate	146	50.0	mg/kg	100	EH60307	08/02/06	08/04/06	EPA 300.0	
BH-16 6'' (6H02007-02) Soil									
Chloride	226	10.0	mg/kg	20	EH60307	08/02/06	08/04/06	EPA 300.0	
% Moisture	10.6	0.1	%	1	EH60302	08/02/06	08/03/06	% calculation	
Sulfate	84.6	10.0	mg/kg	20	EH60307	08/02/06	08/04/06	EPA 300.0	
BH-17 6'' (6H02007-03) Soil							_	_	
Chloride	1720	50.0	mg/kg	100	EH60307	08/02/06	08/04/06	EPA 300.0	
% Moisture	11.8	0.1	%	1	EH60302	08/02/06	08/03/06	% calculation	
Sulfate	290	50.0	mg/kg	100	EH60307	08/02/06	08/04/06	EPA 300.0	
BH-18 6'' (6H02007-04) Soil									
Chloride	1240	25.0	mg/kg	50	EH60307	08/02/06	08/04/06	EPA 300.0	
% Moisture	8.3	0.1	%	1	EH60302	08/02/06	08/03/06	% calculation	
Sulfate	176	25.0	mg/kg	50	EH60307	08/02/06	08/04/06	EPA 300.0	
BH-19 6" (6H02007-05) Soil									
Chloride	1550	25.0	mg/kg	50	EH60307	08/02/06	08/04/06	EPA 300.0	
% Moisture	9.0	0.1	%	1	EH60302	08/02/06	08/03/06	% calculation	
Sulfate	253	25.0	mg/kg	50	EH60307	08/02/06	08/04/06	EPA 300.0	
BH-20 6'' (6H02007-06) Soil									
Chloride	7.20	5.00	mg/kg	10	EH60307	08/02/06	08/04/06	EPA 300.0	
% Moisture	4.6	0.1	%	1	EH60302	08/02/06	08/03/06	% calculation	
Sulfate	21.8	5.00	mg/kg	10	EH60307	08/02/06	08/04/06	EPA 300.0	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Organics by GC - Quality Control

Project Manager: Jason Stegemoller

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH60209 - EPA 5030C (GC)							- N. 14	•	and the second s	
Blank (EH60209-BLK1)				Prepared &	Analyzed:	08/02/06				
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	· 10.0		a.						
Carbon Ranges C28-C35	ND	10.0	н							
Total Hydrocarbons	ND	10.0	н		.					
Surrogate: 1-Chlorooctane	64.0		mg/kg	50.0		128	70-130			1
Surrogate: 1-Chlorooctadecane	61.1		. "	50.0	1	122	70-130			
LCS (EH60209-BS1)				Prepared &	Analvzéd:	08/02/06				
Carbon Ranges C6-C12	441	10.0	mg/kg wet	500	· j	88.2	75-125			
Carbon Ranges C12-C28	451	10.0	"	500 ·		90.2	75-125	· .		
Carbon Ranges C28-C35	ND	10.0	••• •	0.00			75-125			· ·
Fotal Hydrocarbons	892	10.0		1000	٠.	89.2	75-125			
Surrogate: 1-Chloroociane	49.0		mg/kg	50.0	·····	98.0	70-130			*
Surrogate: 1-Chlorooctadecane	37.1		"	50.0	.*	74.2	70-130			<u>,</u> (
Calibration Check (EH60209-CCV1)				Prepared: 0	8/02/06 An	alvzed: 08	3/03/06			÷
Carbon Ranges C6-C12	210	~	mg/kg	250		84.0	80-120			•••
Carbon Ranges C12-C28	271			250		108	80-120			· ·· ·
Fotal Hydrocarbons	481		"	~ 500		96.2	80-120		2.	1.1.1.1
Surrogate: 1-Chlorooctane	87.7			100		87.7	70-130			· · · ·
surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctadecane	75.9		"	100		75.9	70-130 70-130			
-			A1		4 t				•	
Matrix Spike (EH60209-MS1) Carbon Ranges C6-C12	466	e: 6H02005 10.0	-01 mg/kg dry	Prepared & 520	Analyzed: ND	89.6	75-125			
Carbon Ranges C12-C28	479	10.0	" "	520	ND ···	92.1	75-125			
Carbon Ranges C28-C35	ND	10.0	ų	0.00	ND		75-125			4
Fotal Hydrocarbons	945	10.0	#	1040	ND	90.9	75-125			
Surrogate: 1-Chlorooctane	49.7		mg/kg	50.0		99.4	70-130			
Surrogate: 1-Chlorooctadecane	38.3	· ·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	50.0		76.6	70-130			
										يد ا
	6.000				2.+					۰.

Environmental Lab of Texas

,

1 . A . A

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 6 of 11

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH60209 - EPA 5030C (GC)										
Matrix Spike Dup (EH60209-MSD1)	Sou	rce: 6H02005	5-01	Prepared &	Analyzed:	08/02/06				
Carbon Ranges C6-C12	470	10.0	mg/kg dry	520	ND	90.4	75-125	0.855	20	
Carbon Ranges C12-C28	484	10.0	"	520	ND	93.1	75-125	1.04	20	
Carbon Ranges C28-C35	ND	10.0	"	0.00	ND		75-125		20	
otal Hydrocarbons	954	10.0	"	1040	ND	91.7	75-125	0.948	20	
urrogate: 1-Chlorooctane	50.5		mg/kg	50.0	-	101	70-130			
urrogate: 1-Chlorooctadecane	37.2		"	50.0		74.4	70-130			
Batch EH60702 - EPA 5030C (GC)										
Blank (EH60702-BLK1)				Prepared: 0	08/04/06 A	nalyzed: 08	/06/06			
Benzene	ND	0.0250	mg/kg wet							
oluene	ND	0.0250	"							
thylbenzene	ND	0.0250	"							
(ylene (p/m)	ND	0.0250	"							
(ylene (o)	ND	0.0250								
Surrogate: a,a,a-Trifluorotoluene	37.0		ug/kg	40.0		92.5	80-120			
urrogate: 4-Bromofluorobenzene	33.9		"	40.0		84.8	80-120			
LCS (EH60702-BS1)				Prepared: 0	08/04/06 A	nalyzed: 08	/06/06			
Benzene	1.19	0.0250	mg/kg wet	1.25		95.2	80-120			
oluene	1.21	0.0250	"	1.25		96.8	80-120			
Ethylbenzene	1.08	0.0250	"	1.25		86.4	80-120			
(ylene (p/m)	2.66	0.0250	"	2.50		106	80-120			
(ylene (o)	1.31	0.0250	"	1.25		105	80-120			
Surrogate: a,a,a-Trifluorotoluene	39.7		ug/kg	40.0		<i>99.2</i>	80-120			

40.0

40.7

Surrogate: 4-Bromofluorobenzene

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

102

80-120

Environmental Plus, Incorporated P.O. Box 1558 Eunice NM, 88231 Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Fax: 505-394-2601

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH60702 - EPA 5030C (GC))						· .			· · · · ·
Calibration Check (EH60702-CCV1)		· · · ,		Prepared:	08/04/06 A	nalyzed: 08	/07/06			· · .
Benzene	• • 50.4		ug/kg	50.0		101	80-120		· ·	
'oluene '	49.1		u (50.0		98.2	80-120			
thylbenzene	49.4		۳.	50.0	· ·	98.8	80-120		,	
(ylene (p/m)	99.8		н	100	с <i>х</i> ,	99.8	80-120		•	
(ylene (0)	48.8		н	50.0		97.6	80-120		10 A	
urrogate: a,a,a-Trifluorotoluene	37.3		#	40.0		93.2	80-120	·····,		
urrogate: 4-Bromofluorobenzene	34.2		"	40.0		85.5	80-120			
Matrix Spike (EH60702-MS1)	S.	ource: 6H0401	i_01	Prenared (18/04/06 A	nalyzed: 08	/07/06	· · ·		
Benzene	1.27	0.0250	mg/kg dry	1.36	ND	93.4	80-120		<u> </u>	<u> </u>
oluene	1.27	0.0250	"	1.36	ND	93.4	80-120			,
Ethylbenzene	1.23	0.0250		1.36	ND	90.4	80-120			
(ylene (p/m)	2.67	0.0250		2.72	ND	98.2	80-120			1 - F
(ylene (o)	1.36	0.0250	"	1.36	ND	100	80-120			
Surrogate: a,a,a-Trifluorotoluene	32.8		ug/kg	40.0	·	82.0	80-120			
Surrogate: 4-Bromofluorobenzene	35.8	Y	"	40.0		89.5	80-120		• •	
Aatrix Spike Dup (EH60702-MSD1)	Se	ource: 6H04011	1-01	Prepared: (08/04/06 A	nalyzed: 08	/07/06			
Benzene	1.24	0.0250	mg/kg dry	1.36	ND	91.2	80-120	2.38	20	
oluene	1.24	0.0250	. н 	1.36	ND	91.2	80-120	2.38	20	
thylbenzene	1.20	0.0250	"	1.36	ND	88.2	80-120	2.46	20	
(ylene (p/m)	2.62	0.0250	н	2.72	ND	96.3	80-120	1.95	20	·.
(ylene (o)	1.31	0.0250	"	1.36	ND	96.3	80-120	3.77	20	· · · · ·
urrogate: a,a,a-Trifluorotoluene	33.1		ug/kg	40.0		82.8	80-120			
Surrogate: 4-Bromofluorobenzene	35.5		5.0	40.0		88.8	80-120		•	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 8 of 11

Project:Apache/ N. Mon. Grayburg SA 603Project Number:240014Project Manager:Jason Stegemoller

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
				Lever			Zinits		<u>Ennir</u>	
Batch EH60302 - General Preparation (Prep)										
Blank (EH60302-BLK1)				Prepared: (08/02/06	Analyzed:	08/03/06			
% Solids	100		%							
Duplicate (EH60302-DUP1)	Sou	rce: 6H02001-	-01	Prepared: (08/02/06	Analyzed:	08/03/06			
% Solids	99.5		%		99.4			0.101	20	
Batch EH60307 - Water Extraction										
Blank (EH60307-BLK1)				Prepared: (08/02/06	Analyzed:	08/04/06			
Sulfate	ND	0.500	mg/kg							
Chloride	ND	0.500	*							
LCS (EH60307-BS1)				Prepared: (08/02/06	Analyzed:	08/04/06			
Chloride	8.90	0.500	mg/kg	10.0		89.0	80-120			
Sulfate	9.47	0.500	"	10.0		94.7	80-120			
Calibration Check (EH60307-CCV1)				Prepared: (08/02/06	Analyzed:	08/04/06			
Chloride	10.1		mg/L	10.0		101	80-120			
Sulfate	9.57		"	10.0		95.7	80-120			
Duplicate (EH60307-DUP1)	Sou	rce: 6H01008-	-03	Prepared: (08/02/06	Analyzed:	08/04/06			
Sulfate	327	10.0	mg/kg		325			0.613	20	
Chloride	7.30	10.0	н		9.22			23.2	20	S-08,
Duplicate (EH60307-DUP2)	Sou	rce: 6H01009-	-06	Prepared: (08/02/06	Analyzed:	08/04/06			
Sulfate	30.1	5.00	mg/kg		30.1			0.00	20	
Chloride	13.3	5.00	*1		13.3			0.00	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Environmental Plus, Incorporated P.O. Box 1558

 $\{t_{i}^{(1)}\}_{i \in I}$ •

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Eunice NM, 88231

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	e V	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH60307 - Water Extr	raction										· · · · ·
Matrix Spike (EH60307-MS1)	y and a second	Sou	rce: 6H01008	-03	Prepared: ()8/02/06 A	nalyzed: 0	8/04/06			-
Chloride		221	10.0	mg/kg	200	9.22	106	80-120			• *
Sulfate	e e de	539	10.0	•	200	325	107	80-120			
Matrix Spike (EH60307-MS2)			rce: 6H01009		Prepared: (·····				
Chloride		109	5.00	mg/kg	100	13.3	95.7 80.0	80-120 		1	• 1,
Sulfate	مب الجار م المراج الم الج	120	5.00		100	30.1	69.9	. 80-120			•
											1 g
	. 61° 4.	,	e • a						,		, ₋
	· ·										
	· · · , · ·								•	.'	. (
									,		
	1	· .								• •	
									÷	- :	
х ¹ е											
Environmental Lab of Texas	an a	I			esults in this re						les
алан (с. 1917). Стала (с. 1917).	24 14		·	receiv	ed in the labor vritten approva	atory. This a	nalytical reț	oort must be r		its entirety,	
x - 1				•••••••		,		, ,		ł	Page 10 of 1

Notes and Definitions

S-08 Value outside Laboratory historical or method prescribed QC limits.

J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

DET Analyte DETECTED

- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Report Approved By:

Raland K Just Date:

Date:

8/8/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Environmental Plus, Inc.

2100 Avenue O, Eunice, NM 88231 (505) 304-3481 EAY (505) 304-35	Eunice, NM 88231 FAX: (505) 394-2501	M 88231 394-2601	P.O.	Box	155	8° EI	Box 1558, Eunice, NM 88231	ŝ, M	<i>#</i> 88.	231								1 of	f 1			., .
10		Environmental Plus, Inc.	i, Inc.								BILTO	Eo E				NN		i Si	ANALYSIS REGUES	EST		
EPI Project Manager	ager	Jason Stegemolier		l											-	-	-			-		
Mailing Address		P.O. BOX 1558																				-
City, State, Zip		Eunice New Mexico 8823		-						1	Ę	لمر		اليديد ما فا			_					
EPI Phone#/Fax#		505-394-3481 / 505-394-2601	394-21	Ĩ						M	0 	Щ.										
Client Company		Apache Corporation									F	-										<u> </u>
Facility Name		N. Mon. Grayburg SA 603	A 603			-						r		_				_	-			
Location		UL-C, Sec 20, T19S, R37		ш					Ā	ttn: I	lain	Attn: Iain Olness			-					• • • • •		
Project Reference		240014								0.0	â	P.O. Box 1558					,					
EPI Sampler Name		George Blackburn					i		Щ	inice	Ž	Eunice, NM 88231									:	
		1 1	Ē	\vdash		MATRIX	Ň			PRESERV.	<u>ک</u>	SAMPLING	5 V							-	:'	
														ومراوي المراجع			(too)			• • • • • • • • • • • • • • • • • • •	· .	
POOLOH !!	Ölgen av		RO BAR	NIATNO: N GNUOF	AWATSA			UDGE	:ID/BY2E	1000/3	HEB			EX 8051	H 8012W	ILORIDE: SETA7J		۲b	H3H		4,194 	· · · · · · · · · · · · · · · · · · ·
	(BH-15 (6")					os –		_		_		DATE 01-Aug-06	TIME 8:55				Hq			Aq		
-61/ 2	2 BH-16 (6")		σ	┝		F	E	┢─	┢──	×		01-Aug-06	10:10			┣━		L		╁╴	-	
-02	3 BH-17(6")		ច			-		Η	Н	×		01-Aug-06	11:25			××						
101	4 BH-18 (6")	-	G	-		1				×		01-Aug-06	13:10	×	X	хX	;					ŀ
2 4 4	5 BH-19 (6")		g	-		1			_	×		01-Aug-06	14:25	×	X	XX				Н		
, 000 v	6 BH-20 (6")	·	G	-		-				×		01-Aug-06	15:25	×	XX	Ň	• •					•
. 7				-											Η					-		
8								-	_								1			_		
6			_												Ĥ		4.			1		
10				-			_	-	_	_							.: •					
Sampler Relinquished:		Dette	Receiv	ed By:						цч Ш	nail r	E-mail results to: jstegemoller@envplus.net	moller@en	-plu	3.net						ľ	
- 1	•							ļ		ò Ž	NOTES:	et,	١,			;				•		
Relinquished by:	•.	Party 2. CC	A Contraction	red By: (ab shaft)	la dis)	fin (٢		(distantes	dro-	- Cross				•••					,	

.e. *

 $(x,y) \in \mathcal{Y}_{\ell}$

Π \Box Ĩ []. Ú \square \square

0 30

toz glase z jer seel

jecked By:

Sample Cool & Intact

ç

ved By: (lab stat inca

Nered by

Chain of Custody Form

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

ent:	EPI
ite/ Time:	R/2/06 11:15
b ID # :	6H02007
tials:	UK

Sample Receipt Checklist

÷ .

				Client Initials
	Temperature of container/ cooler?	Yes	No	2,0 °C
!	Shipping container in good condition?	Kes	No	
}	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present,
Ŧ	Custody Seals intact on sample bottles/ container?	Yes	No	Not Present
5	Chain of Custody present?	Yos	No	
3	Sample instructions complete of Chain of Custody?	Xes	No	
7	Chain of Custody signed when relinquished/ received?	Tes	No	
3	Chain of Custody agrees with sample label(s)?	tes	No	ID written on Cont./ Lid
3	Container label(s) legible and intact?	Yes	No	Not Applicable
10	Sample matrix/ properties agree with Chain of Custody?	Xas	No	
11	Containers supplied by ELOT?	(Xes	No	
12	Samples in proper container/ bottle?	Xes	No	See Below
13	Samples properly preserved?	Yes	No	See Below
14	Sample bottles intact?	Yes	No	
15	Preservations documented on Chain of Custody?	Yes	No	
16	Containers documented on Chain of Custody?	XE8	No	
17	Sufficient sample amount for indicated test(s)?	Tes	No	See Below
18	All samples received within sufficient hold time?	Yes	No	See Below
19	VOC samples have zero headspace?	(Ves)	No	Not Applicable

Variance Documentation

Contact:		Contacted by:	Date/ Time:	ite/ Time:		
Regarding:						
Corrective Action Taker	ר.					
	· .			······································		
Check all that Apply:		See attached e-mail/ fax Client understands and would li Cooling process had begun sho				

Cooling process had begun shortly after sampling event

12600 West I-20 East - Odessa, Texas 79765

Analytical Report

Prepared for: Jason Stegemoller Environmental Plus, Incorporated P.O. Box 1558 Eunice, NM 88231

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Location: EUL-C, Sec. 20, T19S, R37E

Lab Order Number: 6H08004

Report Date: 08/10/06

.

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BH-21 6"	6H08004-01	Soil	08/02/06 08:15	08-08-2006 10:40
BH-22 6"	6H08004-02	Soil	08/02/06 09:50	08-08-2006 10:40
BH-23 6"	6H08004-03	Soil	08/02/06 12:00	08-08-2006 10:40
BH-24 6"	6H08004-04	Soil	08/02/06 13:30	08-08-2006 10:40
BH-25 6"	6H08004-05	Soil	08/02/06 14:35	08-08-2006 10:40
BH-26 6"	6H08004-06	Soil	08/02/06 15:06	08-08-2006 10:40

Environmental Plus, Incorporated	1		Project: Apac		on. Graybur	g SA 603	: .	Fax: 505	5-394-2601
P.O. Box 1558 Eunice NM, 88231			lumber: 2400 anager: Jason		oller			, 4 .	
		к	rganics by		<u> </u>	· **** · · · · · · · · · · · · · · · ·			
, . .	· · · · ·		mental La		282				
· · · · · · · · · · · · · · · · · · ·	. *	·. ·						· · · · · · · · · · · · · · · · · · ·	
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BH-21 6" (6H08004-01) Soil	· · · · · · · · · · · · · · · · · · ·					· · · · · ·			£ ,
Benzene	ND	0.0250	_mg/kg dry	25	EH60809	08/08/06	08/09/06	EPA 8021B.	
Toluene	ND	0.0250	н —	н	**	"	**	19	,
Ithylbenzene	ND	0.0250	i dan M	n		н	**		• •
(ylene (p/m)	ND	0.0250	· 11	"	"	н	H	н	
(ylene (o)	ND	0.0250	н	Ħ		н	м	u	
Surrogate: a,a,a-Trifluorotoluene		98.5 %	80-120	0	"	п	"		
Surrogate: 4-Bromofluorobenzene		89.5 %	80-120		"	"	"	"	
Carbon Ranges C6-C12	13.4	10.0	mg/kg dry	1	EH60808	08/08/06	08/08/06	EPA 8015M	
Carbon Ranges C12-C28	57.8	10.0	" " "	1	EH00000	U8/U8/U0 "	08/08/00	"	
Carbon Ranges C28-C35	ND	10.0	11	"	п	*			
Fotal Hydrocarbons	71.2	10.0	н	н	*	и	и	и	
urrogate: 1-Chlorooctane		125 %	70-130	 າ	"	"	,,	"	
Surrogate: 1-Chlorooctadecane		125 %	70-130		"	"	"	"	
3H-22 6" (6H08004-02) Soil									
Senzene	ND		mg/kg dry	25	EH60809	08/08/06	08/09/06	EPA 8021B	
oluene	ND	0.0250							
Sthylbenzene	ND	0.0250							
(ylene (p/m)	ND	0.0250					"		
(ylene (o)	ND	0.0250						·	
urrogate: a,a,a-Trifluorotoluene		89.8 %	80-120		n	"	"	"	
Surrogate: 4-Bromofluorobenzene		84.2 %	80-120		"	"	"	" ED. 001616	
Carbon Ranges C6-C12	ND		mg/kg dry	1	EH60808 "	08/08/06	08/08/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0							
Carbon Ranges C28-C35	ND	10.0			" "				
Total Hydrocarbons	ND	10.0							
Surrogate: 1-Chlorooctane		120 %	70-130		n	n	п	"	
Surrogate: 1-Chlorooctadecane		117 %	70-130	0	"	"	"	и	
BH-23 6" (6H08004-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60809	08/08/06	08/09/06	EPA 8021B	
Toluene	ND	0.0250	n	н	"	"	"	*	
thylbenzene	ND	0.0250	H	u	"	*	n	**	
(ylene (p/m)	ND	0.0250	н	н	н	*	11		
(o)	ND	0.0250	н	"	"	n 		H	
Surrogate: a,a,a-Trifluorotoluene		97.0 %	80-120	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.8 %	80-120	0	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH60808	08/08/06	08/08/06	EPA 8015M	
Environmental Lab of Texas	,	·	The resul	ts in this r	eport apply to	the samples an	alyzed in accord	ance with the sam	oles
								iced in its entirety,	

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

ſ

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BH-23 6" (6H08004-03) Soil					Batch	riepareu	Allaryzeu		
Carbon Ranges C12-C28	ND	10.0	mg/kg dry		EH60808	08/08/06	08/08/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	"					"	
Total Hydrocarbons	ND	10.0	"	"	11		"	"	
Surrogate: 1-Chlorooctane		130 %	70-13	0	"	"	"	"	
Surrogate: 1-Chlorooctadecane		121 %	70-13	0	n	"	"	"	
BH-24 6" (6H08004-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60809	08/08/06	08/08/06	EPA 8021B	
Toluene	ND	0.0250	"	"	"	11	"	**	
Ethylbenzene	ND	0.0250	"	"	11	"	"		
Xylene (p/m)	0.0361	0.0250	11	"		н	"	16	
Xylene (o)	ND	0.0250	и	Ħ	н	11		"	
Surrogate: a,a,a-Trifluorotoluene		98.8 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		87.5 %	80-12	0	"	"	"	*1	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH60808	08/08/06	08/08/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0		н	н	u	"	н	
Carbon Ranges C28-C35	ND	10.0		ч	"	м	11	u	
Total Hydrocarbons	ND	10.0	0	"	"	"	"	"	
Surrogate: 1-Chlorooctane		129 %	70-13	0	."	"	"	"	
Surrogate: 1-Chlorooctadecane		117 %	70-13	0	"	"	"	"	
BH-25 6" (6H08004-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EH60809	08/08/06	08/08/06	EPA 8021B	
Toluene	ND	0.0250	"	и	"	n	"	н	
Ethylbenzene	ND	0.0250		"	"	н	"	"	
Xylene (p/m)	ND	0.0250	11	"	"	н	*	"	
Xylene (o)	ND	0.0250	"	"	н		"	"	
Surrogate: a,a,a-Trifluorotoluene		85.0 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		81.5 %	80-12	0	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EH60808	08/08/06	08/08/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	н	*1	н		"	"	
Carbon Ranges C28-C35	ND	10.0	н	n	н	"	n	"	
Total Hydrocarbons	ND	10.0	11	n	"	"	11	н	
Surrogate: 1-Chlorooctane		125 %	70-13	0	"	"	"	"	
Surrogate: 1-Chlorooctadecane		117 %	70-13	0	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Environmental Plus, Incorporated P.O. Box 1558 Eunice NM, 88231

rated

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Fax: 505-394-2601

× . ,

• Organics by GC

Environmental Lab of Texas

A 1. 4.	D . 1	Reporting		.*					;
Analyte	Result	Limit	Units	Dilution	Batch	 Prepared 	i Analyzed	Method	Note
BH-26 6" (6H08004-06) Soil		<u></u>					`	·	· · · · · · · · · · · · · · · · · · ·
Benzene	ND ND	0.0250	mg/kg dry	25	EH60809	08/08/06	08/08/06	EPA 8021B	
Toluene	ND	0.0250			•		"	· • •	s. (
Ethylbenzene	ND	0.0250		. 11	н.,	. "	"	н	+ i
Xylene (p/m)	ND	0.0250	u	"	"	н	"	н.	
Xylene (o)	ND	0.0250	. "	*	"		۳	н.	· · ·
Surrogate: a,a,a-Trifluorotoluene		101 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.0 %	80-12	0	".	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	. 1	EH60808	08/08/06	08/08/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	**	"	•	"	"	u	
Carbon Ranges C28-C35	ND	10.0	• :		"	"	"	۰.	11 - L
Total Hydrocarbons	ND	10.0			"	11	"	11	·· , *
Surrogate: 1-Chlorooctane		121 %	70-13	0	"	"	"	"	
Surrogate: 1-Chlorooctadecane		113 %	70-13	0	"	"	"	"	· · · ·
				÷			• · · · · ·	r	${\cal L}_{\rm eff} = {\cal L}_{\rm eff} {\cal L}_{\rm eff}$
· · · · · · ·			$(0, \dots, 0, n)$						
			· ·						e. E
								. •	
				•					Ť
									,
							· · · ·		1. 11 1
	1. e								4 2 1
									1.12
									$(a,b) \in [0,b]$
									e ta t
								4 ×	
								s	W.
	¢.,							· · ·	e ja 1777
				,					ı
								- · • ,	* ti.
								· . *	۲.
									, •••

Environmental Lab of Texas

τ.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 4 of 11

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
BH-21 6" (6H08004-01) Soil	· · · · · · · · · · · · · · · · · · ·								
Chloride	920	25.0	mg/kg	50	EH60812	08/08/06	08/08/06	EPA 300.0	
% Moisture	14.4	0.1	%	1	EH60906	08/08/06	08/09/06	% calculation	
Sulfate	168	25.0	mg/kg	50	EH60812	08/08/06	08/08/06	EPA 300.0	
BH-22 6" (6H08004-02) Soil					-	-			
Chloride	976	25.0	mg/kg	50	EH60812	08/08/06	08/08/06	EPA 300.0	
% Moisture	12.0	0.1	%	1	EH60906	08/08/06	08/09/06	% calculation	
Sulfate	121	25.0	mg/kg	50	EH60812	08/08/06	08/08/06	EPA 300.0	
BH-23 6'' (6H08004-03) Soil									
Chloride	6.09	5.00	mg/kg	10	EH60812	08/08/06	08/08/06	EPA 300.0	
% Moisture	10.9	0.1	%	1	EH60906	08/08/06	08/09/06	% calculation	
Sulfate	17.6	5.00	mg/kg	10	EH60812	08/08/06	08/08/06	EPA 300.0	
BH-24 6'' (6H08004-04) Soil									
Chloride	705	20.0	mg/kg	40	EH60812	08/08/06	08/08/06	EPA 300.0	
% Moisture	10.1	0.1	%	1	EH60906	08/08/06	08/09/06	% calculation	
Sulfate	65.3	20.0	mg/kg	40	EH60812	08/08/06	08/08/06	EPA 300.0	
BH-25 6'' (6H08004-05) Soil									
Chloride	1250	50.0	mg/kg	100	EH60812	08/08/06	08/08/06	EPA 300.0	
% Moisture	10.2	0.1	%	1	EH60906	08/08/06	08/09/06	% calculation	
Sulfate	2380	50.0	mg/kg	100	EH60812	08/08/06	08/08/06	EPA 300.0	
BH-26 6'' (6H08004-06) Soil							<u>.</u>		
Chloride	136	10.0	mg/kg	20	EH60812	08/08/06	08/08/06	EPA 300.0	
% Moisture	12.8	0.1	%	1	EH60906	08/08/06	08/09/06	% calculation	
Sulfate	151	10.0	mg/kg	20	EH60812	08/08/06	08/08/06	EPA 300.0	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Environmental Plus, Incorporated P.O. Box 1558 Eunice NM, 88231			Project N	umber: 24		n. Grayburg SA 603	•	ν" γε - ι	Fax: 50	5-394-2601
. :	· · ·	Or	ganics by	y GC - Q	Quality Co	ontrol				
]	Environi	mental L	ab of Te	xas				
Analyte	· · ·	Result	Reporting Limit	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH60808 - EPA 5030C (GC)				. •-	• .		a	en en en		
Blank (EH60808-BLK1)	Sec. 1				Prepared &	Analyzed: 08/08/06				1989 8
Carbon Ranges C6-C12	· ·	ND	10.0	mg/kg wet						
Carbon Ranges C12-C28	1.1.1	ND	10.0	· 11						
Carbon Ranges C28-C35		ND	10.0	п						
fotal Hydrocarbons		ND	10.0	*						a a a
Surrogate: 1-Chlorooctane	*	58.0		mg/kg	50.0		70-130			
Surrogate: 1-Chlorooctadecane		55.6		"	50.0	. 111	70-130			t inter
LCS (EH60808-BS1)	1 at 51			5	Prepared &	z Analyżed: 08/08/06				
Carbon Ranges C6-C12		483	10.0	mg/kg wet	500	96.6	75-125			
Carbon Ranges C12-C28		426	10.0	"	500	85.2	75-125	an da s	(A. 1)	· ·
Carbon Ranges C28-C35		ND	10.0		0.00		75-125			,
otal Hydrocarbons		909	10.0	н	1000	90.9	75-125			
urrogate: 1-Chlorooctane		63.2		mg/kg	50.0	126	70-130			· · · · · · · · · · · · · · · · · · ·
urrogate: I-Chlorooctadecane	. U . ,	56.3		"	50.0	113	70-130			· •
Calibration Check (EH60808-CCV1)					Prepared &	Analyzed: 08/08/06		· · · ·	· · ·	1.11 C
Carbon Ranges C6-C12		215	•	mg/kg	250	86.0	80-120			
Carbon Ranges C12-C28		224		"	250	89.6	80-120			'
otal Hydrocarbons	s. 1	439		"	500	87.8	80-120			
urrogate: 1-Chlorooctane	Jacob Sa	64.1		"	50.0	128	70-130			· · ·
urrogate: 1-Chlorooctadecane		62.2		"	50.0	124	70-130		<u>t</u>	
Matrix Spike (EH60808-MS1)		Sourc	e: 6H08003	3-02	Prepared &	: Analyzed: 08/08/06	• •		•	• •
Carbon Ranges C6-C12		597	10.0	mg/kg dry	561	ND 106	75-125			.'
Carbon Ranges C12-C28		520	10.0	"	561	ND 92.7	75-125			. *
Carbon Ranges C28-C35	 G 	ND	10.0	. !!	0.00	ND	75-125			
Total Hydrocarbons		1120	10.0	u	1120	ND 100	75-125			
Surrogate: 1-Chlorooctane		64.9		mg/kg	50.0	130	70-130		• • • •	
Surrogate: 1-Chlorooctadecane		63.8	-	"	50.0	128	70-130	·	·	. *
g · ··		۰.				· .			,	·

Environmental Lab of Texas 12.1 1. de

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 6 of 11

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH60808 - EPA 5030C (GC)										
Matrix Spike Dup (EH60808-MSD1)	Sour	ce: 6H08003	3-02	Prepared &	& Analyzed:	08/08/06				
Carbon Ranges C6-C12	585	10.0	mg/kg dry	561	ND	104	75-125	2.03	20	
Carbon Ranges C12-C28	498	10.0	н	561	ND	88.8	75-125	4.32	20	
Carbon Ranges C28-C35	ND	10.0	"	0.00	ND		75-125		20	
Total Hydrocarbons	1080	10.0	и	1120	ND	96.4	75-125	3.64	20	
Surrogate: 1-Chlorooctane	64.1		mg/kg	50.0		128	70-130			
Surrogate: 1-Chlorooctadecane	63.3		"	50.0		127	70-130			
Batch EH60809 - EPA 5030C (GC)		_								
Blank (EH60809-BLK1)				Prepared 8	k Analyzed:	08/08/06				
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	н							
Ethylbenzene	ND	0.0250	н							
Xylene (p/m)	ND	0.0250	ч							
Xylene (0)	ND	0.0250	н							
Surrogate: a,a,a-Trifluorotoluene	37.0		ug/kg	40.0		92.5	80-120			
Surrogate: 4-Bromofluorobenzene	33.5		"	40.0		83.8	80-120			
LCS (EH60809-BS1)				Prepared 8	k Analyzed:	08/08/06				
Benzenc	1.24	0.0250	mg/kg wet	1.25		99.2	80-120			
Toluene	1.27	0.0250	и	1.25		102	80-120			
Ethylbenzene	1.12	0.0250	"	1.25		89.6	80-120			
Xylene (p/m)	2.78	0.0250	"	2.50		111	80-120			
Xylene (0)	1.39	0.0250	"	1.25		111	80-120			
Surrogate: a,a,a-Trifluorotoluene	34.8		ug/kg	40.0		87.0	80-120		·	
Surrogate: 4-Bromofluorobenzene	36.8		"	40.0		92.0	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Environmental Plus, Incorporated P.O. Box 1558 Eunice NM, 88231 Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

Fax: 505-394-2601

. .

Organics by GC - Quality Control Environmental Lab of Texas

.

Analyte	•••. •		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH60809 - EPA	5030C (GC)								· · · ·	·		
Calibration Check (EH6	0809-CCV1)		н. "Д		• • • •	'Prepared &	& Analyzed	: 08/08/06	÷ .	•	••	
Benzene			49.2		ug/kg	50.0	··-	98.4	80-120			
Foluene		·	48.6		и	50.0		97.2	80-120		•	14 - 11
Ethylbenzene	4		48.4	1	н .	50.0	;	96.8	80-120			••
(ylene (p/m)	<u>.</u> •		101		н	100	1 e +	101	80-120		r	
Kylene (o)			50.0	i.	. н	50.0	Τ.	100	80-120	.1		
urrogate: a,a,a-Trifluorotoh	uene		32.8	•	"	40.0	· .	82.0	80-120		S. 1	· · ·
urrogate: 4-Bromofluoroben	izene		32.1		"	40.0		80.2	80-120	di e	÷ •	
Aatrix Spike (EH60809-	MS1)	•	So	urce: 6H07012	2-01	Prepared &	k Analyzed	: 08/08/06	• •			•
Benzene		1 1 1	1.38	0.0250	mg/kg dry	1.38	ND	100	80-120			
oluene			1.42	0.0250	Ħ	1.38	ND	103	80-120			
thylbenzene			1.40	0.0250	11	1.38	ND	101	80-120			
(ylene (p/m)			3.09	0.0250	N	2.76	ND	112	80-120			
(ylene (o)			1.50	0.0250	н	1.38	ND	10 9	80-120			
urrogate: a,a,a-Trifluorotolu	iene		41.4	· · · · · ·	ug/kg	40.0	<u>.</u>	104	80-120			<u>.</u>
urrogate: 4-Bromofluoroben	zene		39.6		"	40.0		99 .0	80-120			•
1atrix Spike Dup (EH60)809-MSD1)		So	urce: 6H07012	2-01	Prepared &	k Analyzed	: 08/08/06				
Benzene		, <u>, , , , , , , , , , , , , , , , , , </u>	1.37	0.0250	mg/kg dry	1.38	ND	99.3	80-120	0.702	20	• •
oluene	•••••		1.41	0.0250	"	1.38	ND	102	80-120	0.976	20	
thylbenzene	. *		1.39	0.0250	**	1.38	ND	101	80-120	0.00	20	ť
(ylene (p/m)			3.10	0.0250	••	2.76	ND	112	80-120	0.00	20	,
ylene (o)	. 1		1.54	0.0250	**	1.38	ND	112	80-120	2.71	20	
urrogate: a,a,a-Trifluorotolu	iene	<u>-</u>	41.8		ug/kg	40.0		104	80-120			·
Surrogate: 4-Bromofluoroben			40.1	1.1.1	` <i>и</i>	40.0		100	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 8 of 11

Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH60812 - Water Extraction								(
Blank (EH60812-BLK1)				Prepared &	Analyzed:	08/08/06				
Chloride	ND	0.500	mg/kg							
Sulfate	ND	0.500	"							
LCS (EH60812-BS1)				Prepared &	Analyzed:	08/08/06				
Sulfate	8.06	0.500	mg/kg	10.0		80.6	80-120			
Chloride	9.00	0.500	"	10.0		90.0	80-120			
Calibration Check (EH60812-CCV1)				Prepared &	Analyzed:	08/08/06				
Chloride	10.1		mg/L	10.0		101	80-120			
Sulfate	10.9		"	10.0		109	80-120			
Duplicate (EH60812-DUP1)	Sou	irce: 6H07014-	-04	Prepared &	Analyzed:	08/08/06				
Chloride	4.20	5.00	mg/kg		3.93		· · · · · · · · · · · · · · · · · · ·	6.64	20	
Duplicate (EH60812-DUP2)	Sou	rce: 6H08004-	-05	Prepared &	Analyzed:	08/08/06				
Sulfate	2200	50.0	mg/kg		2380			7.86	20	
Chloride	1150	50.0	"		1250			8.33	20	
Matrix Spike (EH60812-MS1)	Sou	rce: 6H07014-	•04	Prepared &	Analyzed:					
Chloride	100	5.00	mg/kg	100	3.93	96.1	80-120			
Matrix Spike (EH60812-MS2)	Sou	rce: 6H08004-	-05	Prepared &	Analyzed:	08/08/06				
Chloride	2200	50.0	mg/kg	1000	1250	95.0	80-120			
Sulfate	3190	50.0	"	1000	2380	81.0	80-120			
Batch EH60906 - General Preparation (Prep)										
Blank (EH60906-BLK1)				Prepared: 0	08/08/06 A	nalyzed: 08	/09/06			-
% Solids	100		%							

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Environmental Plus, Incorporated P.O. Box 1558 Eunice NM, 88231 Project: Apache/ N. Mon. Grayburg SA 603 Project Number: 240014 Project Manager: Jason Stegemoller

ji -

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas													
Analyte	í,	2 ¹	``	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
Batch EH60906 - Ge	eneral l	Preparatio	on (Prep)							-	1 <i></i> .	• • *	
Duplicate (EH60906-E	DUP1)		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Sou	ırce: 6H08003-	-01	Prepared:	08/08/06 A	nalyzed: 08	/09/06	$(f) \in$	· · .	1 - M. J
% Solids				83.3		· %	*a 	82.9			0.481	20	
			1999 1	N 8 - 25	· · · · ·			·			<i></i>		n Angelon 2003
			y 104 1	t .	<u>و</u> .			t,		χ	, I.		•
			. ī	· · · ·	`	٤,	11. P	•••				Ń	1 m
			• • •		.t., 1		.'				;	· · · · ·	·, •
	£. •		÷.	•.			(1					an the
		. •	1. (g. 1. 1. 1	•••••	* 1. 1.* * 7		1997 - 1 99 1997 - 199	s as,"" 1			: * 1. 1. ^{- *}	•	
		 			e e de Martin		*	• . .• .				••••	
		۰.		 . i	4		• . •		() ⁽ -		······	• K., 4	

 Environmental Lab of Texas
 The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

 Page

12600 West I-20 East - Odessa; Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 10 of 11

Notes and Definitions

J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Report Approved By:

Raland K Just

8/10/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 11 of 11

Environmental Plus, Inc.

Chain of Custody Form ANALYSIS REQUES 1 of 1 SAMPLING Eunice, NM 88231 Attn:Cody Miller P.O. Box 1558 BHITO PRESERV. P.O. Box 1558, Eunice, NM 88231 MATRIX 505-394-3481 / 505-394-2601 Eunice New Mexico 88231 UL-C, Sec 20, T19S, R37E N. Mon. Grayburg SA 603 Environmental Plus, Inc. Jason Stegemoller Apache Corporation Jacob Melancon P.O. BOX 1558 (505) 394-3481 FAX: (505) 394-2601 240014 2100 Avenue O, Eunice, NM 88231 **EPI Project Manager EPI Sampler Name** Project Reference EP! Phone#/Fax# Company Name Mailing Address **Client Company** City, State, Zip acility Name -ocation

НАЧ <<< ABHTO **CLP** Hq ("JOS) SETARIUS × × × × × × (ID) SEGINOTHO × × E-mail results to: jstegemoller@envpius.net N2108 H91 × × × × BTEX 8021B × × × 12:00 TIME 8:15 1:30 2:35 3:06 9:50 462 gas 02-Aug-06 02-Aug-06 02-Aug-06 02-Aug-06 02-Aug-06 02-Aug-06 w lebel DATE $\frac{30}{20}$ NOTES: RAHTO ICE/COOF × × × × × × ACID/BASE :83HTO ChebKed By: зралла 200 CHUDE OIL າເວຣ Received By: (lab staf RATEWATEAW 3 RECURD WATER Sample Cool & Intact Res No Received By: ງ ລູ **# CONTAINERS** Q GINDE OF (C)OMP. G 9 G G 6 10140 *18100 SAMPLE I.D. BH-26.(6") BH-23 (6") BH-22 (6") BH-24 (6") BH-25 (6") BH-21 (6") ampler Reinquished elinquished by: þ AB I elivered by:

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

	127	
Client:		
Date/ Time:	8/8/de 10:40	
.ab ID # :	6408064	_
nitials:		

Sample Receipt Checklist

				Client Ini	itials
71	Temperature of container/ cooler?	Yes	No	3.0 °C	
# 2	Shipping container in good condition?	¥ es	No		
7 3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present	
7 4	Custody Seals intact on sample bottles/ container?	Yes	No	Not Present	
#5	Chain of Custody present?	Yes	No		
7 6	Sample instructions complete of Chain of Custody?	205	No		
¥7	Chain of Custody signed when relinquished/ received?	Yes	No		
#8	Chain of Custody agrees with sample label(s)?	Xes	No	ID written on Cont./ Lid	
# 9	Container label(s) legible and intact?	Yes	No	Not Applicable	
# 10	Sample matrix/ properties agree with Chain of Custody?	Jes I	No		
#11	Containers supplied by ELOT?	Yes	No		
#12	Samples in proper container/ bottle?		No	See Below	
#13	Samples properly preserved?	Yes	No	See Below	
#14	Sample bottles intact?	Xes	No		
#15	Preservations documented on Chain of Custody?	Yes	No		
#16	Containers documented on Chain of Custody?	X	No		
#17	Sufficient sample amount for indicated test(s)?	(jo s	No	See Below	
#18	All samples received within sufficient hold time?	YES)	No	See Below	
#19	VOC samples have zero headspace?	XES	No	Not Applicable	

Variance Documentation

Contact:	Contacted by:	Date/ Time:
Regarding:		
·		
Corrective Action Taken:		

Check all that Apply:

See attached e-mail/ fax

 Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

APPENDIX II

PROJECT PHOTOGRAPHS

Photo #1: Well location sign.

Photo #2: Lanexco well location sign.

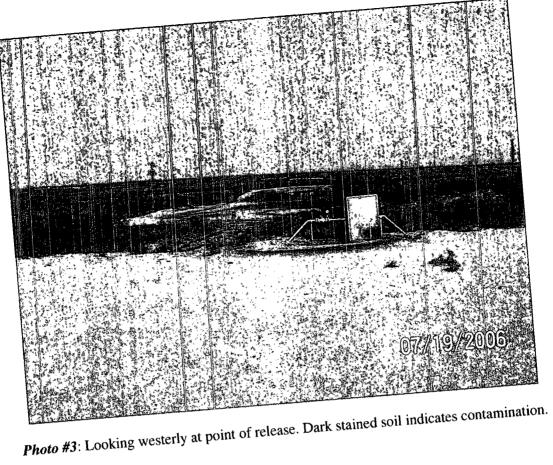


Photo #4: Looking westerly from point of release at Lanexco well pad. Dark stained soil indicates contamination.

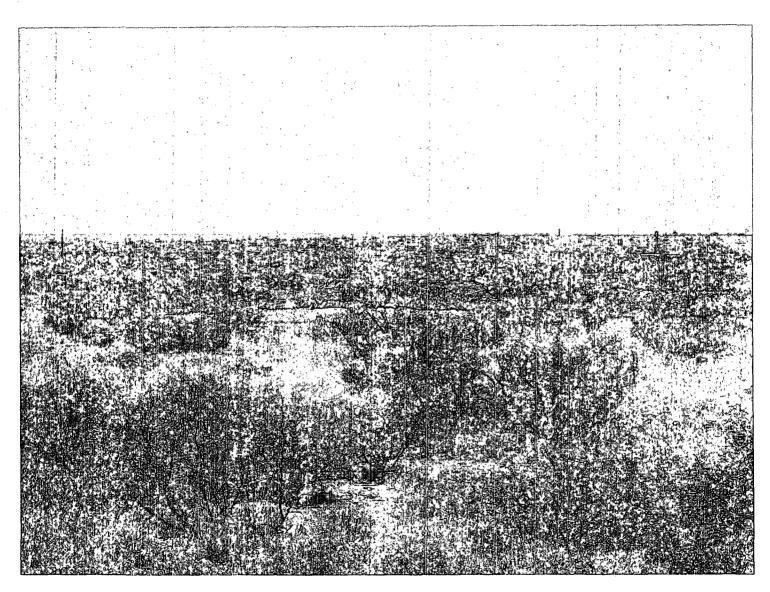


Photo #5: Looking southerly at flowpath area. Caliche berm at the center of photo is the extent of flowpath.

;

.....

Photo #6: Looking northerly at excavation of the south flowpath area.

Photo #7: Looking west-northwesterly at excavation of Lanexco caliche well pad.

APPENDIX III

INFORMATIONAL COPY OF INITIAL NMOCD C-141 FORM

LETTER OF TRANSMITTAL

Date:	August 31, 2006
To:	Mr. Larry Johnson
Company Name:	New Mexico Oil Conservation Division
Address:	1625 French Drive
City / State / Zip:	Hobbs, NM 88240
From:	Jason Stegemoller
CC:	Mike Warren, Apache Corp. – Monument, NM
	Jimmy Cooper, Landowner – Monument, NM
Project #:	1RP # 1019; EPI Ref: 240014
Project Name:	North Monument Grayburg San Andres Unit #603
Subject:	Delineation Proposal

# of originals	# of copies	Description
1		Apache Corporation - North Monument Grayburg San Andres Unit #603 Delineation Proposal
·	·	
	<u> </u>	

Remarks:

Dear Mr. Johnson:

Enclosed is a copy of the *Delineation Proposal* for the above referenced site. An original copy of the report was also submitted to the landowner and appropriate Apache Corporation personnel. Should you have any questions or concerns, please feel free to contact me at (505) 394-3481.

Sincerely,

Magemoth ano

Jason Stegemoller Environmental Scientist

P. O. Box 1558 Eunice, NM 88240 (505) 394-3481 Fax: (505) 394-2601

Y:\Clients\Apache (240)\JOB SITES\240014 (N Monument GSAU #3)\REPORTS\Letter of Transmittal.doc

District I 625 N. Frénch Dr., Hobbs, NM 88240 State (240014 .					
025 19, French Dr., 110005, 19M 88240	of New Mexico	-	Form C-141					
JOI W. Grand Avenue, Artesia, NM 88210	Is and Natural Resources	Sub-it	Revised October 10, 2003					
OKU KIO BIJIZOS ROAD. AZICC. NM 87410	ervation Division 1th St. Francis Dr.	Distr	2 Copies to appropriate ict Office in accordance with Rule 116 on back					
220 S. St. Francis Dr., Santa Fe, NM 87505 Santa Fe, NM 87505 Santa Fe, NM 87505								
مەن ئىل بەر بەر ئەرىپ تەممەن <i>تىكىنى بىرىكى بىرىكى بىرىكى بىرىكى بىرىكى بىرىكى بىرىكىك تەركىكى بىرىكىك تەركى بىرىك</i>	on and Corrective Actio)n	(740-2011) - Anna -					
-	OPERATOR	Initial Repor	t 🔲 Final Report					
Name of Company Apache Corp	Contact Doing Marthews							
Address 17 Hess Lane Facility Name NUGSAU # 4003	Telephone No. 505-44 Facility Type Threation							
	Gtate of NM	Lease No. 3.	1651-9					
LOCATION OF RELEASE API#3002 5056690000								
Jnit Letter Section Township Range Feet from the North/South Line Feet from the East/West Line County								
C 20 195 37E 660 N	orth 1980 L	Jest hx	સ્વ					
Latitude N32° 39,0	74 ¹ Longitude <u>10108 16,56</u>	o'	······································					
37 Lantude <u>N 27 37, 674</u> Longitude <u>W 103 76, 36</u> () NATURE OF RELEASE								
ype of Release Injection leak	Volume of Release 85 b615	Volume Recovered						
Vas Immediate Notice Oliven?	Date and Hour of Occurrence If YES, To Whom?	Date and Hour of 1	Discovery 7/16/06 8:4544					
Yes No Not Require		21 21						
ly Whom? Doug Mathews Vas a Watercourse Reached?		If YES, Volume Impacting the Watercourse.						
Yes 🖾 No								
Fa Watercourse was Impacted, Describe Fully.*								
escribe Cause of Problem and Remedial Action Taken.*			<u> </u>					
Plug blew out of injection line	Trucks were a	alled and	1 911					
		• • •						
Fluid was picked up. rescribe Area Affected and Cleanup Action Taken.*		11 4 11 0	uiest 9					
Injection water ran off locati	on and down h	II to the	ulesc, .					
Vacuum trucks picked up all	fluid,	•	Escribe Area Affected and Cleanup Action Taken.* Injection water ran off location and down hill to the weest,					
hereby certify that the information given above is true and complete to	the best of my knowledge and unders	and that pursuant to N						
gulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger								
iblic health or the environment. The accentance of a C-141 report by	the NMOCD marked as "Final Report"	does not relieve the o	ch may endanger					
ablic health or the environment. The acceptance of a C-141 report by would their operations have failed to adequately investigate and remedi	ate contamination that pose a threat to	does not relieve the o ground water, surface	ch may endanger perator of liability water, human health					
ablic health or the environment. The acceptance of a C-141 report by	ate contamination that pose a threat to does not relieve the operator of respon-	does not relieve the o ground water, surface usibility for complianc	ch may endanger perator of liability water, human health e with any other					
ablic health or the environment. The acceptance of a C-141 report by would their operations have failed to adequately investigate and remedi the environment. In addition, NMOCD acceptance of a C-141 report	ate contamination that pose a threat to does not relieve the operator of respon-	does not relieve the o ground water, surface	ch may endanger perator of liability water, human health e with any other					
iblic health or the environment. The acceptance of a C-141 report by would their operations have failed to adequately investigate and remedi the environment. In addition, NMOCD acceptance of a C-141 report	ate contamination that pose a threat to does not relieve the operator of respon OIL CONSER	does not relieve the o ground water, surface usibility for complianc	ch may endanger perator of liability water, human health e with any other					
ablic health or the environment. The acceptance of a C-141 report by would their operations have failed to adequately investigate and remedi the environment. In addition, NMOCD acceptance of a C-141 report deral, state, or local laws and/or regulations.	ate contamination that pose a threat to does not relieve the operator of respon-	does not relieve the o ground water, surface usibility for complianc	ch may endanger perator of liability water, human health e with any other					
iblic health or the environment. The acceptance of a C-141 report by would their operations have failed to adequately investigate and remedi the environment. In addition, NMOCD acceptance of a C-141 report deral, state, or local laws and/or regulations.	ate contamination that pose a threat to does not relieve the operator of respon OIL CONSER	does not relieve the o ground water, surface usibility for complianc	ch may endanger perator of liability water, human health e with any other					
ablic health or the environment. The acceptance of a C-141 report by rould their operations have failed to adequately investigate and remedi- the environment. In addition, NMOCD acceptance of a C-141 report deral, state, or local laws and/or regulations. ignature: Roll Mathews inted Name: Doug Mosthews itle: Pumper II	ate contamination that pose a threat to does not relieve the operator of respon <u>OIL CONSER</u> Approved by District Supervisor: Approval Date:	does not relieve the o ground water, surface usibility for complianc VATION DIVIS Expiration Date:	ch may endanger perator of liability water, human health e with any other <u>ION</u>					
ablic health or the environment. The acceptance of a C-141 report by rould their operations have failed to adequately investigate and remedi the environment. In addition, NMOCD acceptance of a C-141 report deral, state, or local laws and/or regulations. ignature: Roll Mathews inted Name: Doug Mathews intel Name: Doug Mathews itle: Pumper II mail Address: Joug. mg thews Dusa, apachecopy ate: 7/16/06	ate contamination that pose a threat to does not relieve the operator of respon <u>OIL CONSER</u> Approved by District Supervisor: Approval Date:	does not relieve the o ground water, surface usibility for complianc VATION DIVIS Expiration Date:	ch may endanger perator of liability water, human health e with any other					
ablic health or the environment. The acceptance of a C-141 report by would their operations have failed to adequately investigate and remedi- the environment. In addition, NMOCD acceptance of a C-141 report deral, state, or local laws and/or regulations. ignature: Roll Mathews inted Name: Doug Mathews inted Name: Doug Mathews itle: Pumper II mail Address: Loug. mg thews couse, apachecopy ate: 7/16/06 Phone: 441-2148	ate contamination that pose a threat to dees not relieve the operator of respon <u>OIL CONSER</u> Approved by District Supervisor: <u>Approval Date:</u> Conditions of Approval:	does not relieve the o ground water, surface usibility for complianc VATION DIVIS Expiration Date: Attack	ch may endanger perator of liability water, human health e with any other <u>ION</u>					
ablic health or the environment. The acceptance of a C-141 report by would their operations have failed to adequately investigate and remedi- the environment. In addition, NMOCD acceptance of a C-141 report deral, state, or local laws and/or regulations. ignature: Roll Mathews inted Name: Doug Mathews inted Name: Doug Mathews itle: Pumper II mail Address: Loug. mg thews couse, apachecopy ate: 7/16/06 Phone: 441-2148	ate contamination that pose a threat to dees not relieve the operator of respon <u>OIL CONSER</u> Approved by District Supervisor: <u>Approval Date:</u> Conditions of Approval:	does not relieve the o ground water, surface usibility for complianc VATION DIVIS Expiration Date: Attack	ch may endanger perator of liability water, human health e with any other <u>ION</u>					
ablic health or the environment. The acceptance of a C-141 report by would their operations have failed to adequately investigate and remedi- the environment. In addition, NMOCD acceptance of a C-141 report deral, state, or local laws and/or regulations. ignature: Roll Mathews inted Name: Doug Mathews inted Name: Doug Mathews itle: Pumper II mail Address: Loug. mg thews couse, apachecopy ate: 7/16/06 Phone: 441-2148	ate contamination that pose a threat to dees not relieve the operator of respon <u>OIL CONSER</u> Approved by District Supervisor: <u>Approval Date:</u> Conditions of Approval:	does not relieve the o ground water, surface usibility for complianc VATION DIVIS Expiration Date: Attack	ch may endanger perator of liability water, human health e with any other ION					
ablic health or the environment. The acceptance of a C-141 report by would their operations have failed to adequately investigate and remedi- the environment. In addition, NMOCD acceptance of a C-141 report deral, state, or local laws and/or regulations. ignature: Roll Mathews inted Name: Doug Mathews inted Name: Doug Mathews itle: Pumper II mail Address: Loug. mg thews couse, apachecopy ate: 7/16/06 Phone: 441-2148	ate contamination that pose a threat to dees not relieve the operator of respon <u>OIL CONSER</u> Approved by District Supervisor: <u>Approval Date:</u> Conditions of Approval:	does not relieve the o ground water, surface usibility for complianc VATION DIVIS Expiration Date: Attack	ch may endanger perator of liability water, human health e with any other ION					
ablic health or the environment. The acceptance of a C-141 report by rould their operations have failed to adequately investigate and remedi the environment. In addition, NMOCD acceptance of a C-141 report deral, state, or local laws and/or regulations. ignature: Roll Mathews inted Name: Poug Mathews intel Name: Poug Mathews itle: Pumper II mail Address: Joug. mg thews Dusa, apachecopy ate: 7/16/06	ate contamination that pose a threat to dees not relieve the operator of respon <u>OIL CONSER</u> Approved by District Supervisor: <u>Approval Date:</u> Conditions of Approval:	does not relieve the o ground water, surface isibility for complianc VATION DIVIS Expiration Date: Attack	ch may endanger perator of liability water, human health e with any other ION					
ablic health or the environment. The acceptance of a C-141 report by would their operations have failed to adequately investigate and remedi- the environment. In addition, NMOCD acceptance of a C-141 report deral, state, or local laws and/or regulations. ignature: Roll Mathews inted Name: Doug Mathews inted Name: Doug Mathews ittle: Pumper II mail Address: Joug. mg thews Dusa, apachecopy ate: 7/16/06 Phone: 441-2148	ate contamination that pose a threat to dees not relieve the operator of respon <u>OIL CONSER</u> Approved by District Supervisor: <u>Approval Date:</u> Conditions of Approval:	does not relieve the o ground water, surface isibility for complianc VATION DIVIS Expiration Date: Attack	ch may endanger perator of liability water, human health e with any other ION					
ablic health or the environment. The acceptance of a C-141 report by would their operations have failed to adequately investigate and remedi- the environment. In addition, NMOCD acceptance of a C-141 report deral, state, or local laws and/or regulations. ignature: Roll Mathews inted Name: Doug Mathews inted Name: Doug Mathews itle: Pumper II mail Address: Loug. mg thews couse, apachecopy ate: 7/16/06 Phone: 441-2148	ate contamination that pose a threat to dees not relieve the operator of respon <u>OIL CONSER</u> Approved by District Supervisor: <u>Approval Date:</u> Conditions of Approval:	does not relieve the o ground water, surface isibility for complianc VATION DIVIS Expiration Date: Attack	ch may endanger perator of liability water, human health e with any other <u>ION</u>					

ļ

in p