

Closure Report

Prepared for Mr. Larry Johnson New Mexico Oil Conservation Division Hobbs, New Mexico

api#30025305920000

1RP-1035

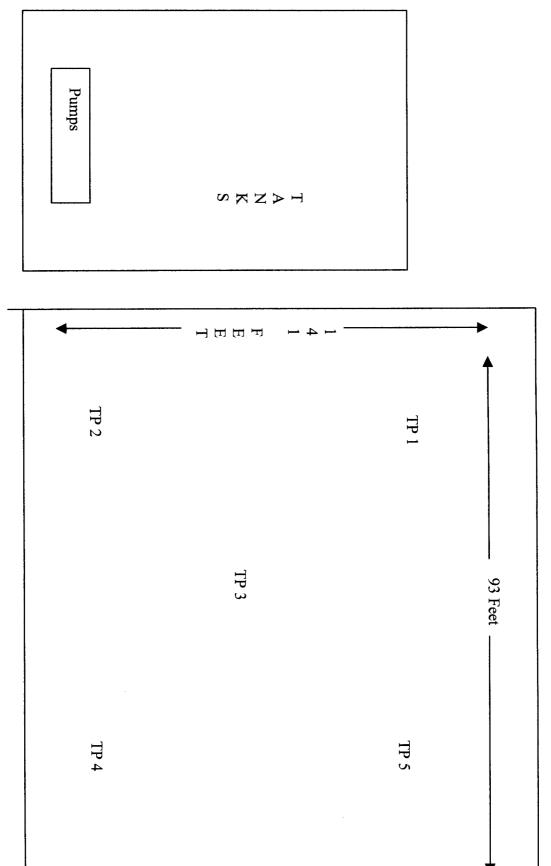
Project:
Saber Resources
F M Hollyway S W D # 1

CC: Doug Keathly Saber Resources

incident -n PACO628637724 application - PPACO628637817

RP#1035

Elke Environmental, Inc.


P.O. Box 14167, Odessa Texas 79768 Phone 432-366-0043 Fax 432-366-0884

Job Summary Sheet

Start Date: 3-7-06	Start Date: 3-7-06 Completion Date 8-3-06						
One Call Confirmatiom #: 2006	5181596						
GPS Point of Origin:	TS:17s	Range:38E_	_Section:13ne_				
	Client Information						
Company: Saber Resources, Inc	c						
Site Name: F M Hollyway SWD)#1	<u></u>					
Client Contact: Nelson Patton_							
Client Phone #: 432-553-5080_							
Client Reference #:	, , , , , , , , , , , , , , , , , , ,						
Rep	ortable Spill: YESX	– NO					
Spill Type: Crude and Produce	d Water						
Spill Amount: 10 bbls Oil / 100	bblsWater						
	Site Dimensions						
Before Excavation:							
After Excavation: 105'x143'x24	P		2 27 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4				
Total Cubic Yards Excavated:	13,346						
Labo	oratory Analysis: Yes	s – No					
Analysis Type & Date Collected		TP 4/4-27-06, T	РН				

SABER RESOURCES, LLC F M HOLLYWAY SWD PLOT MAP

NORTH

LABORATORY TEST REPORT PETTIGREW & ASSOCIATES, P.A.

1110 N. GRIMES HOBBS, NM 83240 (505) 393-9827

To:

Elke Environmental

Attn: Kim Baker

P.O. Box 14167

Odessa, TX 79768

Test Method:

Material:

Red Clay

Project:

FM Holloway

Project No. 2006.1099

ASTM: D 2922

Date of Test:

July 13, 2006

Depth:

4' Below Finished Subgrade

Depth of Proba:

Dry Density % Maximum Location % Moisture Depth Test No. Pit - 25' N. & 35' E. of the SW Corner 99.8 20.9 SG 1

Control Density:

101.6

ASTM: D 698

Optimum Moisture:

22.8%

Required Compaction:

95%

Lab No.:

06 5953-5954

Coples To:

Elke Environmental

PETTIGREW & ASSOCIATES

BY:____ P.E

Saber Resources FM Hollyway Swd Daily Work log

3-7-06

Excavated TP 1 to a depth of 14'. TP 2 to a depth of 8'. TP 3 to a Depth of 14'. TP 5 to a Depth of 6'

4-3-06

Excavated TP 1 to a Depth of 26'. TP 2 to a Depth of 32'. TP 3 to a Depth of 28'. TP 4 to a Depth of 18'.

4-5-06

Excavated TP 3 to a Depth of 36'. TP 4 to a Depth of 30'.

4-27-06

Excavated TP 2 to Depth of 40'. TP 4 to a Depth of 42'

7-05-06

Joe blending with Cat D6R Dozer worked 12 hours.

7-06-06

Joe blending with Cat D6R Dozer worked 12 hours.

7-07-06

Joe blending with Cat D6R Dozer worked 9 hours and Javier hauled the John Deere Backhoe to the site.

7-10-06

Joe blending with Cat D6R Dozer and Javier blending and stock piling clay with John Deere Backhoe 410. Five trucks hauling clay from Wallach Pit in Eunice to site. Solis Trucking, Marquez Trucking, Angel Trucking, Franco Trucking, JAS Trucking, Alamance Trucking all hauled five loads each for a total of 664.94 tons of clay.

7-11-06

Joe blending and backfilling with Cat D6R Dozer. Javier excavating clean with backhoe

7-12-06

Joe backfilling to put in liner, Then started blending. Javier putting in liner.

7-13-06

Joe blending with Cat D6R Dozer. Javier blending with John Deere Backhoe Blending. Pettigrew & Assoc. tested liner at 2:00 PM. Compaction test was 99.8%.

7-14-06

Pulled 5 Composite samples from spoil pile all tested above 2,040-PPM TPH 418.1. Laid out spoil pile as thin as we could and let it air out over the weekend.

7-17-06

Pulled a composite sample from the thinnest layer of spoil pile tested it and it was 4,360 PPM TPH 418.1. Started layering clean with dirty at a ratio of 1:1. Blended a pile and tested it. It tested at 626-PPM TPH 418.1, 74.4 Chloride, and 10-PPM PID. Javier started digging up clean to blend with. Eli blending spoils piles with John Deere 644 Loader.

7-18-06

Javier excavating clean with backhoe. Eli blending spoils piles and backfilling with loader starting at road going west. Blending ratio of 1:1

7-19-06

Eli blending spoils piles and backfilling. Javier backfilling around Tank Battery and rebuilding berm. Labor Hand picking up plastic. Blending ratio of 1:1

7-20-06

Eli blending with John Deere 644 Loader. Javier blending with John Deere Backhoe. Labor Hand picking up plastic.Blending ratio 1:1

7-21-06

Javier Excavating clean with backhoe. Eli blending with loader. Labor Hand picking up plastic. Blending ratio 5 clean to 1 dirty.

<u>7-22-06</u>

Javier Excavating clean and blending with backhoe. Carlos blending with loader. Blending ratio 5:1

7-23-06

Javier Blending with loader. Blending ratio 5:1

7-24-06

Javier excavating clean with backhoe. Eli blending with loader. Labor Hand picking up plastic. Blending ratio 5:1

7-25-06

Javier excavating clean and blending with backhoe. Eli blending with loader. Labor Hand picking up plastic. Blending ratio 5:1

7-26-06

Javier excavating clean with backhoe until noon. Eli blending with loader until noon. Javier and Eli both backfilling in the afternoon. Moved dozer to location to finish blending, backfilling. Removed loader from site. Blending ratio 5:1

<u>7-27-06</u>

Javier blending with dozer at a ratio of 5:1 and 1:1. Carlos backfilling with backhoe.

7-28-06

Javier backfilling with backhoe. Joe blending with dozer at a ratio of 1:1. Labor hand picking up plastic.

7-29-06

Javier blending with dozer at a ratio of 1:1.

7-30-06

Javier blending with dozer at a ratio of 1:1

7-31-06

Tested all piles and they all passed. Started backfilling with dozer and backhoe.

8-1-06

Finished backfilling with blended material and leveling site with dozer and backhoe.

8-2-06

Started backfilling with top soil using the dozer and backhoe.

8-3-06

Finished backfilling and leveling site with about 8" of top soil.

Field Analytical Report Form

Client: Saber Resources Analyst: Kim Baker

Site: F M Holloway #1 SWD

Sample ID	Sample Date	Depth	TPH/PPM	CVPPM	PID/PPM
Background	3-7-06	Surface		191	
TP1	3-7-06	Surface	9,710	955	
TP1	3-7-06	2'	28,580		
TP1	3-7-06	4'	219	2,363	
TP1	3-7-06	6'		2,242	
TP1	3-7-06	8'	376	1,002	
TP1	3-7-06	14'	92	2,836	
TP1	4-3-06	16'	36	1,299	
TP1	4-3-06	18'		1,199	
TP1	4-3-06	20'		1,739	
TP1	4-3-06	22'		1,049	
TP1	4-3-06	24'		540	
TP1	4-3-06	26'		163	

Analyst Notes			
······································			
Analyst Signatur	e Thin De	len	

Field Analytical Report Form

Client: Saber Resources Analyst: Kim Baker

Site: F M Holloway #1 SWD

Sample ID	Sample Date	Depth	TPH/PPM	CI/PPM	PID/PPM
TP2	3-7-06	2,		1,802	
TP2	3-7-06	6'		1,162	
TP2	3-7-06	8'		344	
TP2	4-3-06	14'	34,920		
TP2	4-3-06	16'	26,970		
TP2	4-3-06	18'	30,150		
TP2	4-3-06	20'	23,380		
TP2	4-3-06	26'	23,740	1,106	
TP2	4-3-06	32'	2,690	1,220	
TP2	4-27-06	34'	2,120	1,760	
TP2	4-27-06	36'	180	1,020	
TP2	4-27-06	38'		585	
TP2	4-27-06	40'		473	

Analyst Notes		· · · · · · · · · · · · · · · · · · ·	
Analyst Signatu	re Tin Balan		

Field Analytical Report Form

Client: Saber Resources Analyst: Kim Baker

Site: F M Hollow	ay #1 SWD				
Sample ID	Sample Date	Depth	TPH/PPM	Cl/PPM	PID/PPM
TP3	3-7-06	2'		3,433	
TP3	3-7-06	6'	576	590	
TP3	3-7-06	8'	483	945	
TP3	3-7-06	10'	1,745	1,196	
TP3	3-7-06	12'	9,400	1,158	
TP3	3-7-06	14'	14,320		
TP3	4-3-06	18'	40	1,199	
TP3	4-3-06	20'		1,799	
TP3	4-3-06	22'		1,022	
TP3	4-3-06	24'		859	
TP3	4-3-06	26'		725	
TP3	4-3-06	28'		560	
TP3	4-5-06	30'		785	
TP3	4-5-06	32'		597	
TP3	4-5-06	34'		567	
TP3	4-5-06	36'		537	

Analyst Notes			
		· · · · · · · · · · · · · · · · · · ·	
Analyst Signature	The Bale		

Field Analytical Report Form

Client: Saber Resources Analyst: Kim Baker

Site: F M Holloway #1 SWD

Sample ID	Sample Date	Depth	TPH/PPM	CI/PPM	PID/PPM
TP4	1-13-06	Surface	699	2,189	
TP4	4-3-06	8'		1,439	
TP4	4-3-06	10'		899	
TP4	4-3-06	12'		1,799	
TP4	4-3-06	14'		1,679	
TP4	4-3-06	18'		1,499	
TP4	4-5-06	22'		1,379	
TP4	4-5-06	24'		1,195	
TP4	4-5-06	26'		1,494	
TP4	4-5-06	28'		896	
TP4	4-5-06	30'		920	
TP4	4-27-06	32'		470	
TP4	4-27-06	34'		580	
TP4	4-27-06	36'		905	
TP4	4-27-06	38 '		1,030	
TP4	4-27-06	40'		846	
TP4	4-27-06	42'		848	

Analyst Notes		
<u>~ 1</u>	= A Do-	
Analyst Signature	in Bater	

Field Analytical Report Form

Client: Saber Resources			Analyst: Kim Baker			
Site: F M Hollows	ay #1 SWD					
Sample ID	Sample Date	Depth	TPH/PPM	Cl/PPM	PID/PPM	
TP5	3-7-06	6'	78	227		
Analyst Notes						
Analyst Signatur	e Thin B	ele				

Elke Environmental, Inc.

P.O. Box 14167 Odessa, Tx 79768

Field Analytical Report Form

TPH/PPM

1,120

995

126.35

92.55

6 5

CI/PPM

PID/PPM

Client: Saber Resources Analyst: Kim Baker

Sample Date Depth

Site: F M Holloway #1 SWD

Sample ID

SP 13

SP 14

SP 1	7-10-06	2,040			
SP 1	7-11-06	626	74.45	10	
SP 2	7-12-06	2,185			
SP 2	7-18-06	525	325.40	5	
SP 3	7-12-06	2,105			
SP 3	7-18-06	1,403	36.70	4	
SP 4	7-12-06	2,473			
SP 4	7-19-06	1,000	78.32	8	
SP 5	7-12-06	2,428			
SP 5	7-19-06	563	685.25	9	

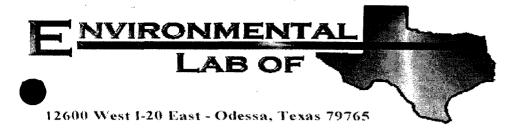
SP 5 7-19-06 **563 SP 6** 7-12-06 2,060 **SP 6** 7-20-06 **759** 131.55 3 127.56 2 **SP 7** 7-20-06 567 7-21-06 6,180 **SP 8 SP 8** 7-21-06 914 95.67 4 4,580 SP 9 7-21-06 1,339 105.24 5 SP 9 7-21-06 **SP 10** 7-21-06 4,600 7-24-06 **SP 10** 1,490 125.35 6 **SP 11** 7-24-06 5,160 **SP 11** 7-27-06 1,220 187.56 7 **SP 12** 7-27-06 936 74.24 8

7-31-06

7-31-06

Analyst Notes_		 	 		
		 ()			

Analyst Signature Thin Baller


ELKE ENVIROMENTAL

P.O. Box 14167 Odessa, Tx 79768

Summary of Laboratory Results:

Sample Location	Sample Type	Date	TPH	Chloride	PID Test
TP 2	Grab	4-27-06		683 PPM	
TP 3	Grab	4-27-06		870 PPM	
SP 2	4 Point Comp.	7-18-06	106 PPM	613 PPM	5
SP 3	4 Point Comp.	7-18-06	666 PPM	47.3PPM	4
SP 5	4 Point Comp.	7-19-06	383 PPM	940 PPM	9

PID Tests were ran on a Grab Sample

Analytical Report

Prepared for:

Kim Baker Elke Environmental P.O. Box 14167 Odessa, TX 79768

Project: FM Holloway SWD #1
Project Number: None Given
Location: Lea County

Lab Order Number: 6D28001

Report Date: 05/03/06

Project: FM Holloway SWD #1

Project Number: None Given Project Manager: Kim Baker

Fax: (432) 366-0884

Reported: 05/03/06 10:20

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
T2@ 46'	6D28001-01	Soil	04/27/06 11:00	04/28/06 07:20
T4@ 46'	6D28001-02	Soil	04/27/06 14:00	04/28/06 07:20

Project: FM Holloway SWD #1

Project Number: None Given Project Manager: Kim Baker

Fax: (432) 366-0884

Reported:

Reported: 05/03/06 10:20

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
T2@ 46' (6D28001-01) Soil									
Chloride	683	10.0	mg/kg	20	EE60126	05/01/06	05/01/06	EPA 300.0	
T4@ 46' (6D28001-02) Soil									
Chloride	870	20.0	mg/kg	40	EE60126	05/01/06	05/01/06	EPA 300.0	

Project: FM Holloway SWD #1

Project Number: None Given Project Manager: Kim Baker

Fax: (432) 366-0884

Reported: 05/03/06 10:20

General Chemistry Parameters by EPA / Standard Methods - Quality Control **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE60126 - Water Extraction			· · · · · · · · · · · · · · · · · · ·	<u></u>						
Blank (EE60126-BLK1)				Prepared	& Analyze	ed: 05/01/	06			
Chloride	ND	0.500	mg/kg							
LCS (EE60126-BS1)				Prepared	& Analyz	ed: 05/01/	06			
Chloride	8.77		mg/L	10.0		87.7	80-120			
Calibration Check (EE60126-CCV1)				Prepared	& Analyz	ed: 05/01/	06			
Chloride	9.75		mg/L	10.0		97.5	80-120			
Duplicate (EE60126-DUP1)	So	urce: 6D2700	04-01	Prepared	& Analyz	ed: 05/01/	06			
Chloride	180	10.0	mg/kg		177			1.68	20	

Project: FM Holloway SWD #1

Project Number: None Given Project Manager: Kim Baker

Fax: (432) 366-0884

Reported: 05/03/06 10:20

Notes and Definitions

Analyte DETECTED DET

Analyte NOT DETECTED at or above the reporting limit ND

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Laboratory Control Spike LCS

Matrix Spike MS

Dup Duplicate

Report Approved By: Kalandk Jul

Date:

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

12600 West I-20 East Odessa, Texas 79765

Phone: 432-563-1800 Fax: 432-563-1713

KIN BAKER

ENUTROMENTAL Project Manager:

29256 14/67 Company Address: P. O. BOX City/State/Zip: ODESSA, Company Name

Telephone No: 432 - 366-0043

Sampler Signature: The Bell

Fax No: 432 - 366-0384

PO# SABER RESOURCES

Analyze For

TCLP TOTAL

Project Loc: LEACOUNTY

Project #:

Project Name: FM HOLLOWAX SWOTH

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

				-	•	rese	Preservative	g)	_	Σ	Malix	-	9	_		ə	_	0	_	_			_		
LAB # (lab use only)	FIELD CODE	Dale Sampled	Time Sampled	No. of Containers 402-910	•ОИН	HCI	OS2H HOBN	anovi	Other (Specify)	NateW Sludge	lios	Other (specify):	TPH: 418.1 8015M 1005 100	Cations (Ca, Mg, Na, K) Anions (Cl, SO4, CO3, HCO3)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg S	Seliteles	B1EX 80518/2030 ot 81EX 856	всі	M.R.O.N.	CHTOGINES	**************************************		alubarto&-arq) TAT H&UR	Standard TAT brands
9	T2 @ 46'	70-Lt-h	11.004n	<u> </u>	_		-			-	K		_	 			-			Δ.	V	_			ī —
70-	74 @ 46'	902C-h	2.00%				<u> </u>			_	\geq		-												
				-						_	<u> </u>			<u> </u>											
				_									 	<u> </u>											<u> </u>
				\vdash	_		_			-			-	-			-	<u> </u>							_
							-			\vdash			 	-			<u> </u>				_	<u> </u>		-	Τ
				-	_				-	-			 	_			-				_	_			Γ
							-		-	<u> </u>			 				_					<u> </u>		\vdash	
							_		-					_			-				-	_			T
										-							-								Γ
Special Instructions:														S	la ple	Sample Containers Intact?	laine	rs Int	act?		9	_	z		
									1					L de	impei bora	Temperature Upon Receipt: Laboratory Comments:	6 6 8	men Ke	celpt IS:		30,0	v			
Relinquished by:	Le 4-28-06 7:20	Received by:								Date		-	Time	.> 	Ž	W/labels and stals on containers	ઇ જ	Z S	etals	ç	Õ	zz E	Š	M	
Relinquished by:	Date Time	Received by ELOT								Date			Time	Ι											
		Charre	men	3	1				0270 028-40	287	90	07	20			,			!		į				 1

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Slient: LKV TW				
Date/Time: 9/28/00 7:20				
Order #: 602800				
Initials:				
Sample Receipt	Checkli	st		
Temperature of container/cooler?	Yes	No	3,0 CI	
Shipping container/cooler in good condition?	Yes	No		
Custody Seals intact on shipping container/cooler?	Yes	No	Not present	
Custody Seals intact on sample bottles?	E	No	Not present	
Chain of custody present?	Yes	No		
Sample Instructions complete on Chain of Custody?	∕€s	No		
Chain of Custody signed when relinquished and received?	(Pes	No		
Chain of custody agrees with sample label(s)	Es	No		
Container labels legible and intact?	Yes	No		
Sample Matrix and properties same as on chain of custody?	Yes	No		
Samples in proper container/bottle?	Yes I	No	•	
Samples properly preserved?	Y €S	No		
Sample bottles intact?	(Fes	No		
Preservations documented on Chain of Custody?	≿es	No		
Containers documented on Chain of Custody?	Fes	No		
fficient sample amount for indicated test?	Yes	No		
and samples received within sufficient hold time?	Yes	No		
VOC samples have zero headspace?	Wes	No	(Not Apolicable 1)	
Other observations:				
Contact Person: Date/Time:Regarding:			Contacted by:	i
Corrective Action Taken:				
				
· ·				
				
				

Analytical Report

Prepared for:

Kim Baker Elke Environmental P.O. Box 14167 Odessa, TX 79768

Project: Saber Resources
Project Number: None Given
Location: FM Hollyway

Lab Order Number: 6G20001

Report Date: 07/24/06

Project: Saber Resources

Project Number: None Given
Project Manager: Kim Baker

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SP 2 4pt Comp.	6G20001-01	Soil	07/18/06 16:00	07/19/06 17:17
SP 3 4pt Comp.	6G20001-02	Soil	07/18/06 16:10	07/19/06 17:17
SP 5 4pt Comp.	6G20001-03	Soil	07/19/06 09:00	07/19/06 17:17

Fax: (432) 366-0884

Project: Saber Resources

Project Number: None Given Project Manager: Kim Baker Fax: (432) 366-0884

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP 2 4pt Comp. (6G20001-01) Soil									
Carbon Ranges C6-C12	J [6.42]	10.0	mg/kg dry	1	EG62121	07/21/06	07/21/06	EPA 8015M	
Carbon Ranges C12-C28	106	10.0	*		*	"		*	
Carbon Ranges C28-C35	J [7.09]	10,0	n	•		*	•	*	1
Total Hydrocarbon nC6-nC35	106	10.0	*	"	7	n	*		
Surrogate: 1-Chlorooctane		106 %	70-1	30	*	n	,	н	
Surrogate: 1-Chlorooctadecane		129 %	70-1	30	•	"	n	,	
SP 3 4pt Comp. (6G20001-02) Soil									
Carbon Ranges C6-C12	J [9.03]	10.0	mg/kg dry	1	EG62121	07/21/06	07/21/06	EPA 8015M	
Carbon Ranges C12-C28	571	10.0		•	,	*	•	*	
Carbon Ranges C28-C35	94.7	10.0	•	•	=	•		•	
Total Hydrocarbon nC6-nC35	666	10.0			*		*		
Surrogate: 1-Chlorooctane		106 %	70-1	30	n	n	7	rt	
Surrogate: 1-Chlorooctadecane		142 %	70-1	30	•	"	*	*	S-04
SP 5 4pt Comp. (6G20001-03) Soil									
Carbon Ranges C6-C12	J [8.13]	10.0	mg/kg dry	1	EG62121	07/21/06	07/21/06	EPA 8015M	
Carbon Ranges C12-C28	344	10.0	*	•	70	•	*	,	
Carbon Ranges C28-C35	39.1	10.0	,	•	7	,	*	•	
Total Hydrocarbon nC6-nC35	383	10.0			*				
Surrogate: 1-Chlorooctane		107 %	70-1	130	,	n	,	n	
Surrogate: 1-Chlorooctadecane		136 %	70-1	130	*	•	n	*	S-04

Project: Saber Resources

Project Number: None Given
Project Manager: Kim Baker

Fax: (432) 366-0884

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP 2 4pt Comp. (6G20001-01) Soil									
Chloride	613	20.0	mg/kg	40	EG62409	07/24/06	07/24/06	EPA 300.0	
% Moisture	4.1	0.1	%	1	EG62111	07/20/06	07/21/06	% calculation	
SP 3 4pt Comp. (6G20001-02) Soil									
Chloride	47,3	5.00	mg/kg	10	EG62409	07/24/06	07/24/06	EPA 300.0	
% Moisture	15,6	0.1	%	1	EG62111	07/20/06	07/21/06	% calculation	
SP 5 4pt Comp. (6G20001-03) Soil									
Chloride	940	20.0	mg/kg	40	EG62409	07/24/06	07/24/96	EPA 300.0	
% Moisture	11.0	0.1	%	1 .	EG62111	07/20/06	07/21/06	% calculation	

Project: Saber Resources
t Number: None Given

Project Number: None Given Project Manager: Kim Baker

Fax: (432) 366-0884

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG62121 - Solvent Extraction (GC)										
Blank (EG62121-BLK1)				Prepared &	Analyzed:	07/21/06				
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	n							
Carbon Ranges C28-C35	ND	10.0	*							
Total Hydrocarbon nC6-nC35	ND	10.0	W							
Surrogate: 1-Chlorooctane	47.9		mg/kg	50.0		95.8	70-130	, , , , , , , , , , , , , , , , , , , ,		
Surrogate: 1-Chlorooctadecane	45.6		,,	50.0		91.2	70-130			
LCS (EG62121-BS1)				Prepared &	Analyzed:	07/21/06				
Carbon Ranges C6-C12	451	10.0	mg/kg wet	500		90.2	75-125			••
Carbon Ranges C12-C28	487	10.0	*	500		97.4	75-125			
Carbon Ranges C28-C35	ND	10.0	•	0.00			75-125			
Total Hydrocarbon nC6-nC35	938	10.0	*	1000		93.8	75-125			
Surrogate: 1-Chlorooctane	63.3		mg/kg	50.0		127	70-130			
Surrogate: I-Chlorooctadecane	55.2		,	50.0		110	70-130			
Calibration Check (EG62121-CCV1)				Prepared &	Analyzed:	07/21/06				
Carbon Ranges C6-C12	203		mg/kg	250		81.2	80-120			
Carbon Ranges C12-C28	271			250		108	80-120			
Total Hydrocarbon nC6-nC35	474		•	500		94.8	80-120			
Surrogate: 1-Chlorooctane	58.5		,	50.0		117	70-130			
Surrogate: 1-Chlorooctadecane	61.8		"	50.0		124	70-130			
Matrix Spike (EG62121-MS1)	Sou	ırce: 6G20014	4- 01	Prepared &	z Analyzed:	07/21/06				
Carbon Ranges C6-C12	550	10,0	mg/kg dry	607	ND	90,6	75-125			1.20
Carbon Ranges C12-C28	587	10.0	•	607	ND	96.7	75-125			
Carbon Ranges C28-C35	ND	10.0	•	0.00	ND		75-125			
Total Hydrocarbon nC6-nC35	1140	10.0	•	1210	ND	94.2	75-125			
Surrogate: 1-Chlorooctane	71.7		mg/kg	100		71.7	70-130			
Surrogate: 1-Chlorooctadecane	72.6		*	100		72.6	70-130			

Project: Saber Resources

Project Number: None Given
Project Manager: Kim Baker

Fax: (432) 366-0884

Organics by GC - Quality Control

Environmental	Lab of Texas
---------------	--------------

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG62121 - Solvent Extraction (GC)									
Matrix Spike Dup (EG62121-MSD1)	Source	e: 6G20014	-01	Prepared &	Analyzed:	07/21/06				
Carbon Ranges C6-C12	552	10.0	mg/kg dry	607	ND	90.9	75-125	0.363	20	
Carbon Ranges C12-C28	593	10.0	*	607	ND	97.7	75-125	1.02	20	
Carbon Ranges C28-C35	ND	10.0		0.00	ND		75-125		20	
Total Hydrocarbon nC6-nC35	1140	10.0	₩	1210	ND	94.2	75-125	0.00	20	
Surrogate: 1-Chlorooctane	71.5		mg/kg	100		71.5	70-130			-1.
Surrogate: 1-Chlorooctadecane	76.7			100		76.7	70-130			

Project: Saber Resources

Project Number: None Given

Project Manager: Kim Baker

Fax: (432) 366-0884

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		Reporting		Cmiles	Source		%REC		RPD		
Analyte	Result	Keporung Limit	Units	Spike Level	Result	%REC	%REC Limits	RPD	Limit	Notes	
Batch EG62111 - General Preparation (P	rep)										
Blank (EG62111-BLK1)				Prepared: (7/20/06 A	nalyzed: 07	/21/06				
% Solids	100		%								
Duplicate (EG62111-DUP1)	Sour	ce: 6G20001	-01	Prepared: (7/20/06 A	nalyzed: 07	/21/06				
% Solids	95,9		%		95.9			0.00	20	· · · ·	
Duplicate (EG62111-DUP2)	Sour	Source: 6G20003-15				Prepared & Analyzed: 07/21/06					
% Solids	88,0		%		87,5			0.570	20		
Duplicate (EG62111-DUP3)	Source: 6G20014-09			Prepared &	z Analyzed;						
% Solids	86.7	86.7 %			86.7				20		
Duplicate (EG62111-DUP4)	Sour	ce: 6G20013	-04	Prepared & Analyzed: 07/21/06							
% Solids	93.6		%		93.6			0.00	20		
Batch EG62409 - General Preparation (V	VetChem)										
Blank (EG62409-BLK1)	•			Prepared &	Analyzed:	07/24/06	•				
Chloride	ND	0.500	mg/kg						-		
LCS (EG62409-BS1)				Prepared &	Analyzed:	07/24/06					
Chloride	9.18	0.500	mg/kg	10.0		91.8	80-120				
Calibration Check (EG62409-CCV1)				Prepared & Analyzed: 07/24/06							
Chloride	9.97		mg/L	10.0		99.7	80-120				
Duplicate (EG62409-DUP1)	Sour	ce: 6G20001	-01	Prepared & Analyzed: 07/24/06							
Chloride	575	20.0	mg/kg		613			6,40	20		

Project: Saber Resources

Project Number: None Given Project Manager: Kim Baker

Fax: (432) 366-0884

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EG62409 - General Preparatio	n (WetChem)									
Duplicate (EG62409-DUP2)	Source	e: 6G20003-	-10	Prepared &	Analyzed:	07/24/06				•
Chloride	17100	500	mg/kg		17700			3.45	20	
Matrix Spike (EG62409-MS1)	Source	e: 6G20001	-01	Prepared &	Analyzed:	07/24/06				
Chloride	1080	20.0	mg/kg	400	613	117	80-120			
Matrix Spike (EG62409-MS2)	Source	ce: 6G20003-	-10	Prepared &	: Analyzed:	07/24/06				
Chloride	27400	500	mg/kg	10000	17700	97.0	80-120			

Elke Environmental Project: Saber Resources Fax: (432) 366-0884

P.O. Box 14167 Project Number: None Given
Odessa TX, 79768 Project Manager: Kim Baker

Notes and Definitions

The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect. S-04 Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag). DET Analyte DETECTED ND Analyte NOT DETECTED at or above the reporting limit Not Reported NR Sample results reported on a dry weight basis dry Relative Percent Difference RPD LCS Laboratory Control Spike MS Matrix Spike Dup Duplicate

	Kaland Kestur	*	
Report Approved By:	Karan C 110	Date:	7/24/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

12600 West I-20 East Odessa, Texas 79765

Phone: 432-563-1800 Fax: 432-563-1713

BAKETL

Project Name: SABER RESOURCES

Project Loc: FM HOLLYWAY

Project #:

PO #

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Company Name ELKE ENUTRONMENTAL Company Address: 4817 ANDREWS HWY Project Manager:

78762 Telephone No: 432-366-0043 City/State/Zip: OOESSA

Fax No: 433-366-0884 Sampler Signature: 716

09 85 TOLP 90 Mairix Preservative Email: ELKEENU @ YPHOS. COM

Analyze For

																					_
_	TAT brishnst2	7	7	>	I					I				Γ							
1	Subarta&-eng) TAT H2US			L	L				L	1		_	↓_	1							
					\prod							_	L	z	z						
				L	\int				L				_		_	ç					
					I				L	1				E	6	_ i	Ċ				
					I					\perp	_]	_		٦	9	Cooler	<u>-</u>				
	.м.я.о.и									\perp	_[
	IDA				\int			Ш		I				2				×			
9	BTEX 80218/5050 or BTEX 82] =	~	量	148 0	ant			
	Semicolanics			T						T			1.	Sample Codainers Intaci?	Labels on container?	Custody Seals: Containers	Temperatura Upon Racelpt:	Laboratory Comments:			
	\$9 Jet	Γ		T	T	٦		Γ	T	T			Τ	\ \{\frac{1}{2}}	an co	80	5	Ö			
S	Metals: As Ag Ba Cd Cr Pb Hg				7	\neg		Γ	T	T		Г	T]8	5 5	SS.		Š	•		
	3AR1ESP1CEC	Г		T	1	\neg		Γ	1	1			1	7	1 18	g	ğ	e o			
	Anions (Ct.) FOR. COS. HCOSI	区	\triangleright	: 15	7			Γ	T	7			1	- 5	ē	3	Te T	S.			
	Cations (Ca. Mg. Na. K)				1			十	+	+			十	Ť	_=		<u>. </u>	Ť		T	_
•	TPH; 418.1 (8015M 1005 100		夂	卜	,		_	✝	+	+		+	\top	1				Time		Time	!
Ī	Ogluck (sbacgly):	1	۴	Ť	7	_		┝	╈	+		┝	+	٦				F		F	:
١	198	Ł		木	╁			╀╌	╁	\dashv		╄	╅	\dashv				+		╁	
ı	Skudge	キ	**	*	4	-	<u> </u>	╁╴	+	\dashv		╀	+	4				1_		1.	
1		╂—	╀	╀	+			╀╌	┿	+	_	╀		-				Date		Sec.	:
	Make	╄	╁╾	+	+	_	-	╄	╀	-		┝	+	4				1		1	•
	Other (Specify)	┼	╀	╀	4		 	╁	+	4		╀	-	4				-		+	
	anoN	╁_	丨	1	_}		<u> </u>	╀-	+	-		╀	1	4							
	10894	1_	丰	4	4		Ĺ	╀_	4	4		Ļ	4	4						١	
	HO®N	1_	\bot	\perp	4		L	<u> </u>	1	4		L	_	1						1	
	нст	1_	上	┸			L	1	\perp	\Box	_	L	\perp	_						١	
	FONH		\perp					L	┸			L		╛						l	
	90)	1	<u> </u>	<u>(</u>	⊻			1				L						ı		1	
_	No. of Containers Aco.	1	. -	4	7				_	\neg		Ţ									
			1	_	2		\vdash	+	+	\dashv	-	t	╅	\dashv				l		l	
	1	40.C.D	11.00.11		2.86			1				1		-				1		1	
	Time Sampled	۲	\$	8	8		1			1		١	-	1				\		-	
		7	-13	H	3		1		ĺ				1	-						١,	<u></u>
	ļ	_		ı			\vdash	+-	╬	-	-	╁	+	\dashv				1			Received by ELUI:
		JU 91-C	3 3	1/8-00	1500	-	1	1	- [١	-	1]	6	ľ	չ.
	Date Sampled	2	9 5	9	6			ı	İ	Ì		ĺ		-				- [2	8	ľ	ŝ
			ıŪ	4	N	_	1	1	}			1	1	١					Kepewed by		ē
		1,	+	+	-		╄	╀	4		ļ	+	+	4				4	<u> </u>	<u>.</u>	ž
		1	ł	1			ı	ı	- [1	1				1.	Date (I'me	34	.
			1	- }.	0		}	1	1			}	1	- }						۲,	Ē
		o o o cone	ጛየ	5 5 JAN 602	of your conf	ŀ		1	١									ſ	ريا	7	
		18	31	3	Ò			1	1			1	1	1				Ì	- 4	e l	_
	,	2 5	ز إذ	ij	Š		}	}	١		Į		- }]				.		2	Date
			-1	2	E		1		ı			1	ı					ŀ	<u>ت</u> ۵	7	õ
			귀:	7	7		1					1	1	ı				}	<u> </u>		
	1		ىل	ہ	١		1	1						ļ				-			
	1	٦	10	'1	V	1		1			l	1	- 1							1	
		3	7 2	J	0	}	ì		}			1	- 1							/	
		1	へ	ام	べる	1	Į	-	l			-	- (- 1	~	8	
	1	1			- 1	Ί						-							_	ا۲,	
			\perp	_}		_		_	_										V	7	ļ
	,	2	T	\neg			T	T			Γ	\top	T		23				F	~	İ
		<u> </u>					1					İ	1		ફ			ĺ	ا.	, 1	١.
	10	<u> </u>	Ø'	7	$\widetilde{\omega}$				ļ		l		l		Ĭ			-	á	ţ	1
	100/83	AB # (lab use only)	4	G	400	1									pecial instructions:				elinquished by:	1	pling alshed hy
		*	1	۱ ٔ	•				Í		1	1	- 1		cla			1	ģ-	2	5
		₹١	1			1		-	ı		ŀ		ŀ		2			j	를 `	1	ä

٠;.

Date

Relinquished by:

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

The Envi				
lient:				
nlial. insurt				
Dace/Time: 1/9/04 17-17				
1 1 2 2 2 2 2				
Order #: 440001				
~ ·			•••	
nitials:				
Sample Bessint	Chaakli	ic+		
Sample Receipt Température of container/cooler?				
Shipping container/cooler in good condition?	Yes	No No	(O C	
Custody Seals intact on shipping container/cooler?	Yes Yes	No	diol present	
Custody Seals intact on sample bottles?	Yes	No	Not present	
Chain of custody present?	725	No	Hot present	
Sample Instructions complete on Chain of Custody?		No		
Chain of Custody signed when relinquished and received?	YES .	No		
Chain of custody agrees with sample label(s)	(F)	No		
Container labels legible and intact?	⊘ 3s	No		
Sample Matrix and properties same as on chain of custody?	Yes	No		
Samples in proper container/bottle?	Yes	No		
Samples properly preserved?		No		
Sample bottles intact?	Ses.	No		
Preservations documented on Chain of Custody?	VALS.	No		
Containers documented on Chain of Custody?	V GS	No	1	
Sufficient sample amount for indicated test?	Y63	No		
All samples received within sufficient hold time?	1	No		
C samples have zero headspace?	X es	No	Not Applicable	
Other observations:				····
Variance Descri				i
Variance Docur	nentatio	on:	.	
Contact Person: Date/Time:			Contacted by:	
Regarding:				
		·		
	·····			
Corrective Action Taken:				
	•			
·				

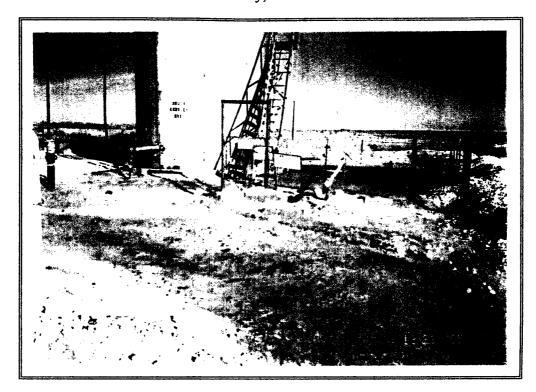
PHOTOGRAPHIC POCUMENTATION Saber Resources, LLC Lea County, New Mexico

39. F.M. Holloway #1 SWD Facility - diked spill area, east of facility.

40. F.M. Holloway #1 SWD Facility - trench open hole at southwest corner of diked spill area.

PHOTOGRAPHIC DOCUMENTATION

Saber Resources, LLC Lea County, New Mexico


41. F.M. Holloway #1 SWD Facility - trench hole, at southeast corner of diked spill area.

42. F.M. Holloway #1 SWD Facility - trench hole, at northeast corner of diked spill area.

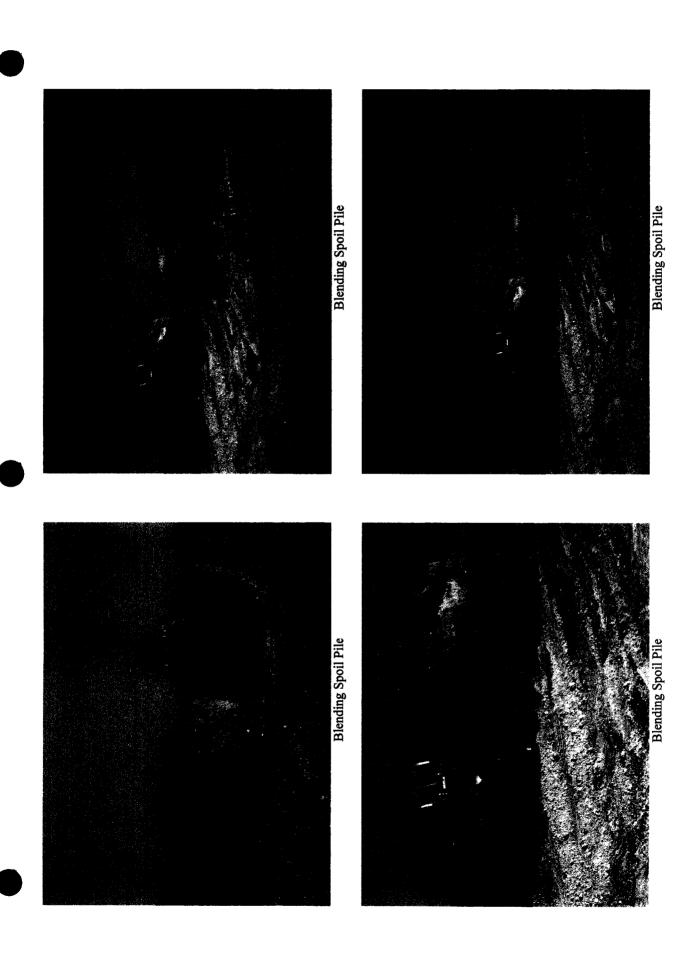
PHOTOGRAPHIC DOCUMENTATION

Saber Resources, LLC Lea County, New Mexico

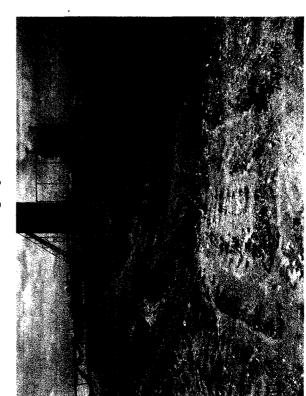
37. F.M. Holloway #1 SWD Facility - spills at facility.

38. F.M. Holloway #1 SWD Facility - diked spill area, east of facility.

North to South Excavation

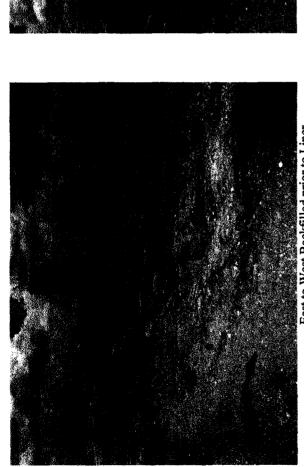

East to West Excavation

South to North Excavation



East to West Excavation

Backfilling to put in Liner South to North


Backfill to put in Liner

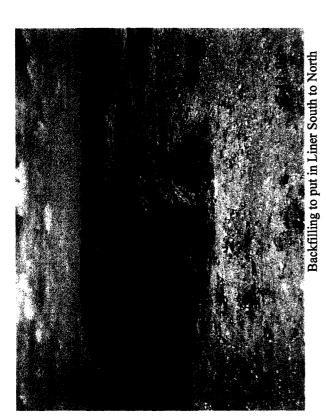
Backfilling to put in Liner South to North

Backfill to put in Liner

East to West Backfilled prior to Liner

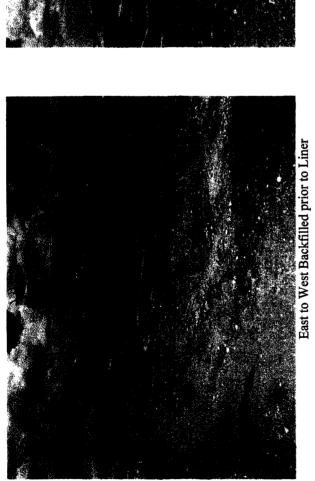
North to South Backfilled prior to Liner

East to West Backfilled prior to Liner



North to South Backfilled prior to Liner

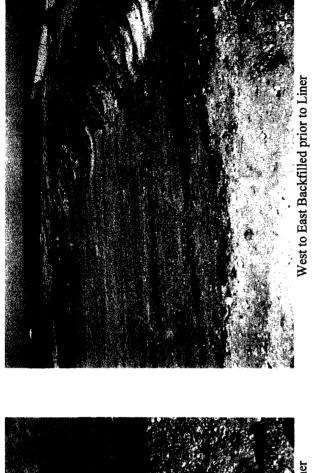
West to East Backfilled prior to Liner


Backfill to put in Liner

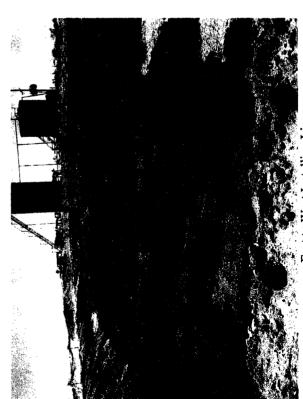
Backfilling to put in Liner South to North



Backfill to put in Liner

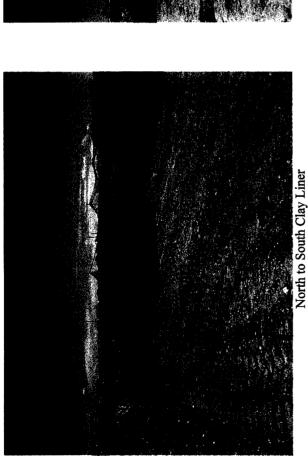


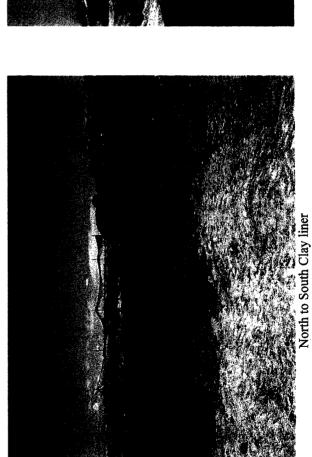
North to South Backfilled prior to Liner



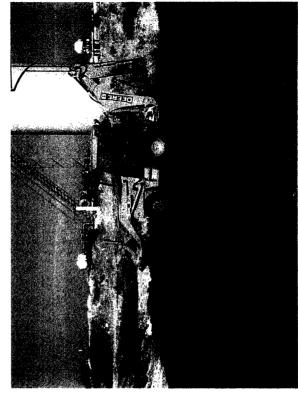
West to East Backfilled prior to Liner

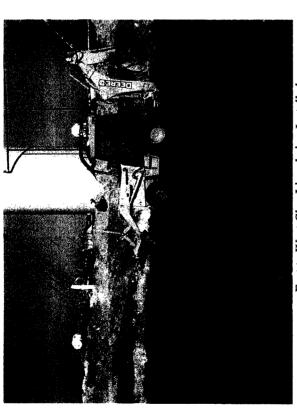
Mixing Clay for Liner


East to West Installing Liner

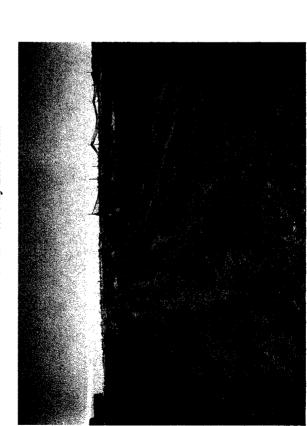


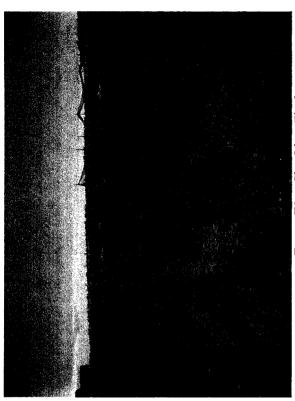
Putting in Liner

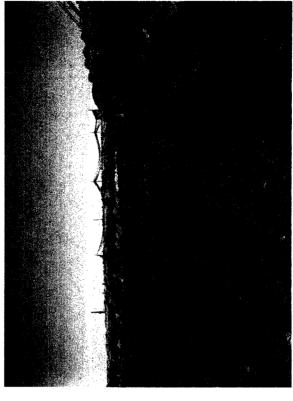

East to West Installing Liner


North to South Clay Liner

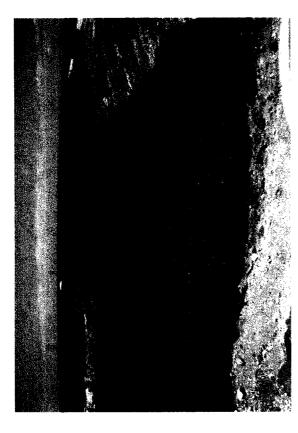
East to West Clay Liner being Installed


East to West Clay Liner being Installed


East to West Clay Liner being Installed

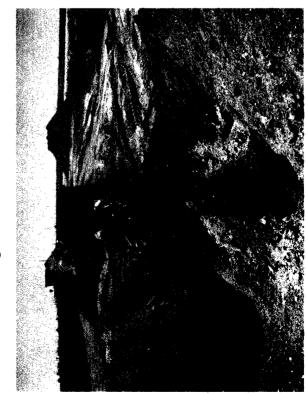

East to West Clay Liner Final

North to South Clay Liner Final



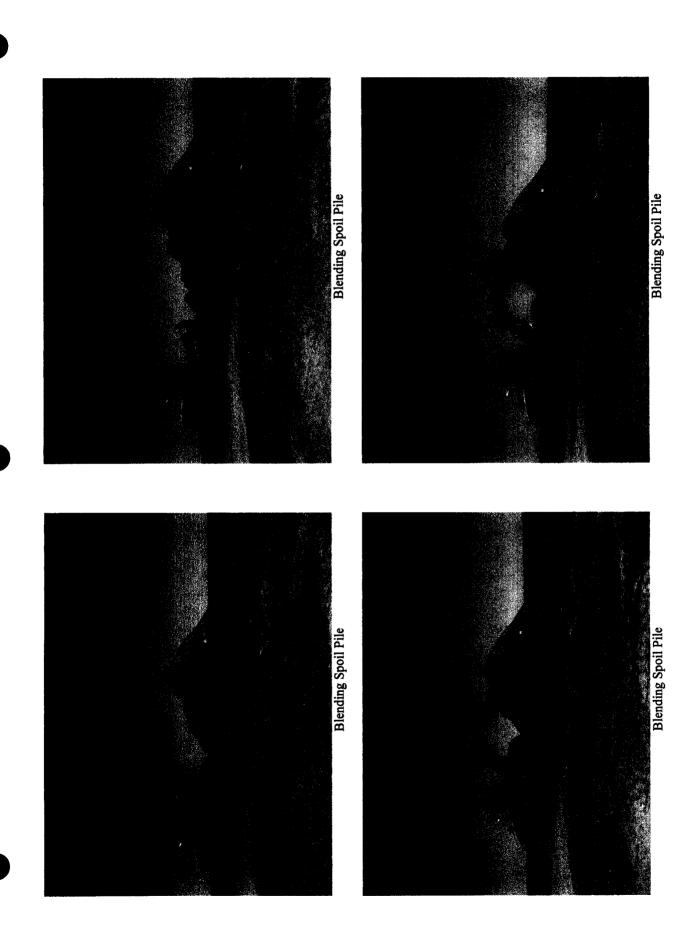
East to West Clay Liner Final

North to South Clay Liner Final

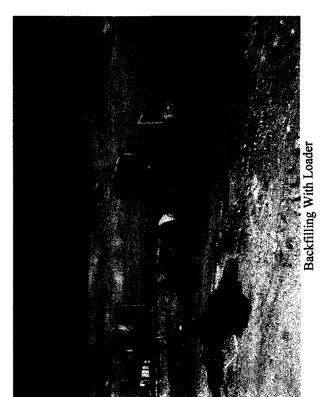


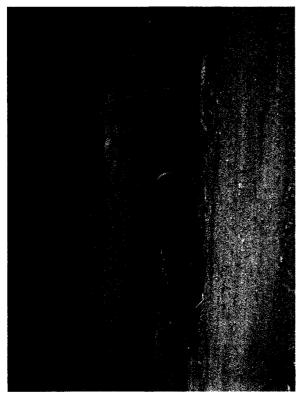
West to East Clay Liner Final

Excavating Clean to Blend with Contaminated Soil


Excavating Clean to Blend with Contaminated Soil

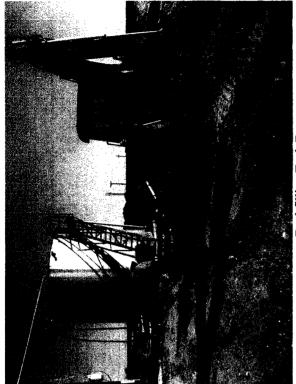
Excavating Clean to Blend with Contaminated Soil




Excavating Clean to Blend with Contaminated Soil

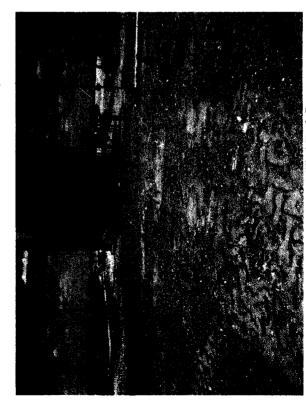
Backfilling With Loader

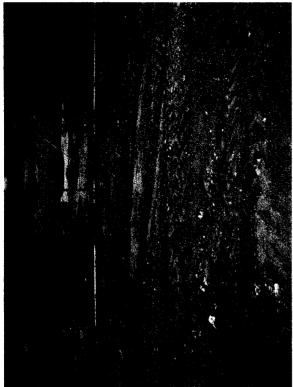
Backfilling With Loader


Backfilling With Loader

Backfilling Tank Battery

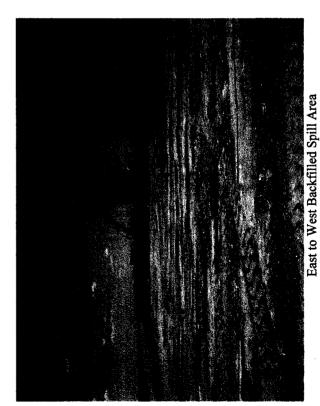
Backfilling Tank Battery

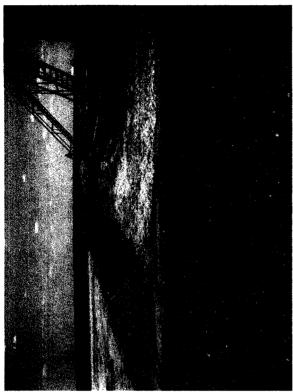

Backfilling Tank Battery


East to West Backfilled Tank Battery

East to West Backfilled Tank Battery

South to North Backfilled Tank Battery


East to West Backfilled Tank Battery



South to North Backfilled Tank Battery

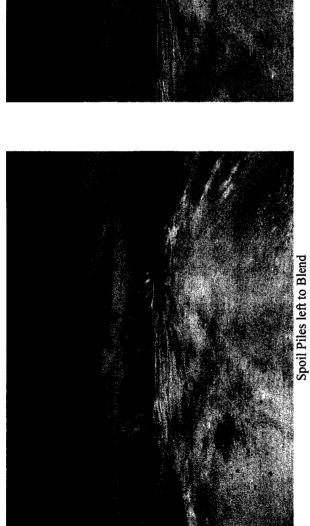
East to West Rebuilt Berm

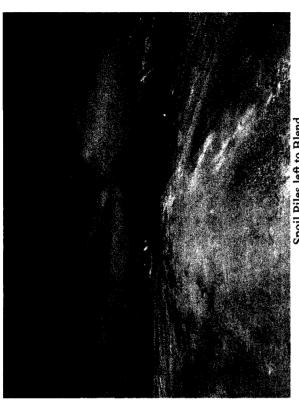


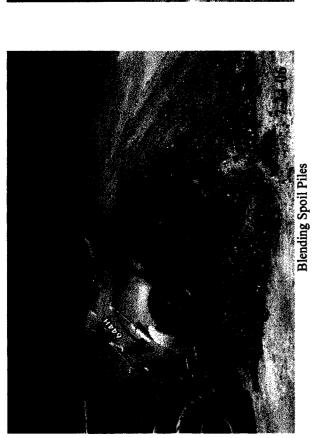


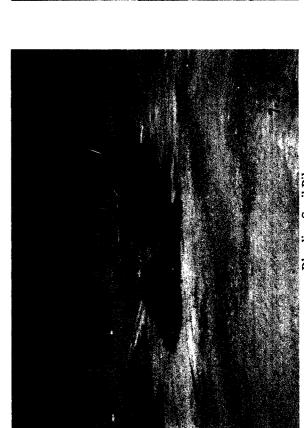
North to South Rebuilt Berm

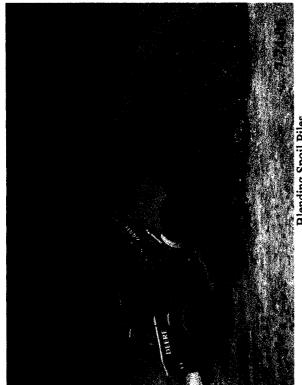



East to West Backfilled Spill Area

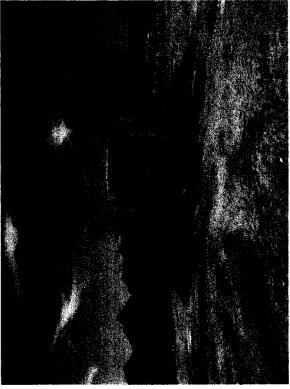


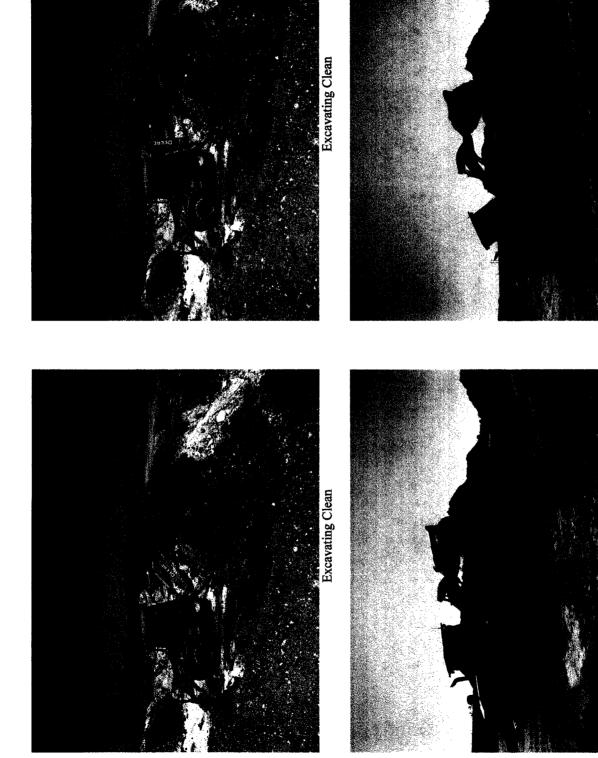

Blending Spoil Piles





Spoil Piles left to Blend



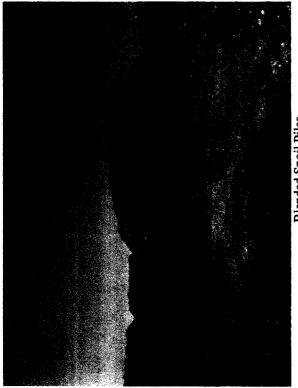

Blending Spoil Piles

Blending Spoil Piles

Blending Spoil Piles



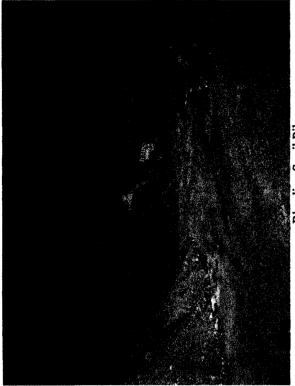
Blending Spoil Piles

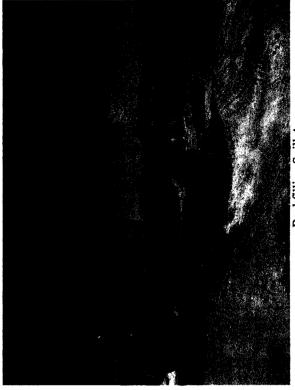

Blending Spoil Piles

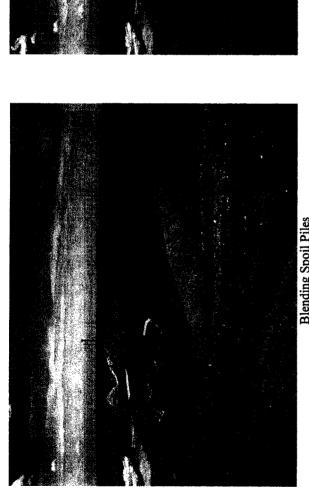
Blended Spoil Piles

Excavated Area for Clean Material

Blended Spoil Piles


Excavated Area for Clean Material

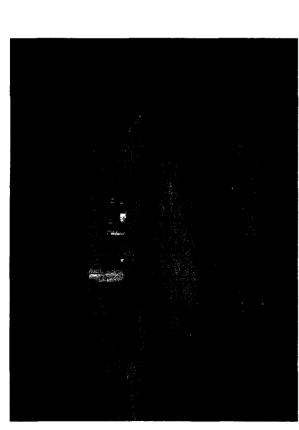

Blending Spoil Piles

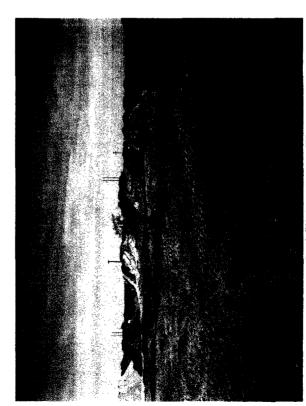

Backfilling Spill Area

Blending Spoil Piles

Backfilling Spill Area

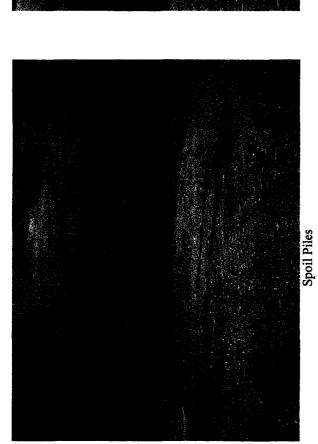
Blending Spoil Piles


Blending Spoil Piles


Backfilling Spil Area

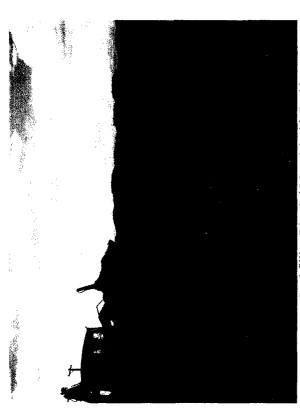
Backfilling Spill Area

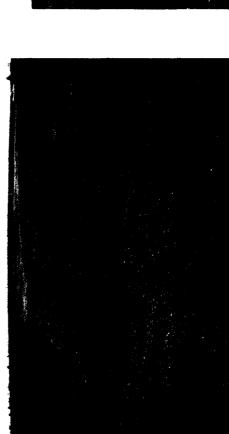
Backfill Area East to West


Backfill Area East to West

Backfill Area East to West

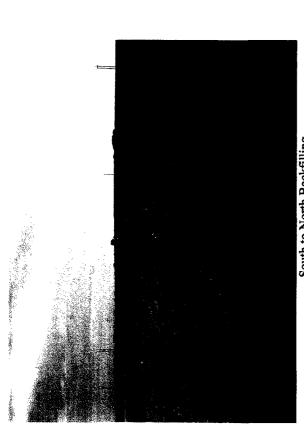
Backfill Area South to North

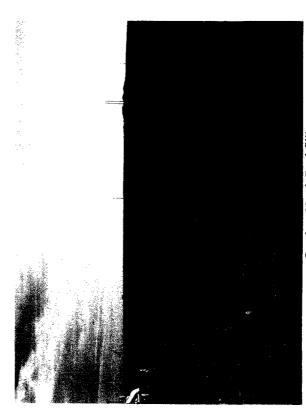

Backfilling with Backhoe

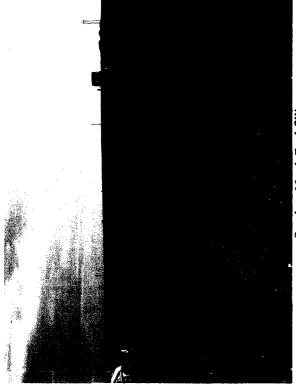

Backfilling with Dozer

Backfilling with Backhoe

Backfilling Blended Material with Backhoe

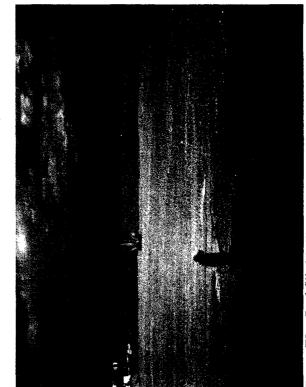

North to South Blended Material Backfilled


Backfillinig Blended Material with Dozer


North to South Blended Material Backfilled

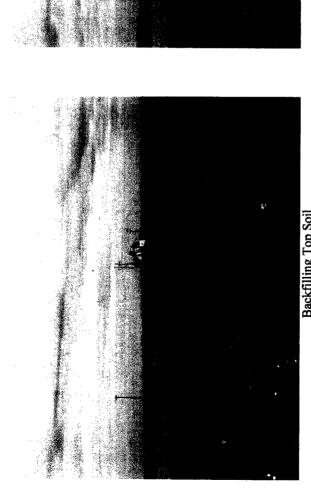
South to North Backfilling

South to North Backfilling


South to North Backfilling

North to South Backfilling

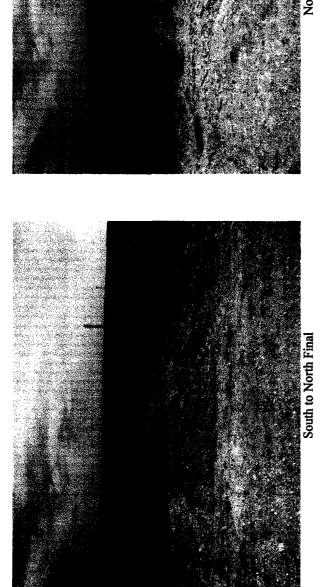
North to South Backfilled Spill Area

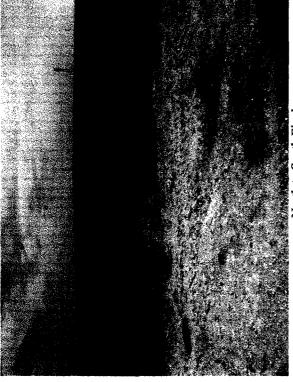

East to West Backfilled Spill Area

North to South Backfilled Spill Area

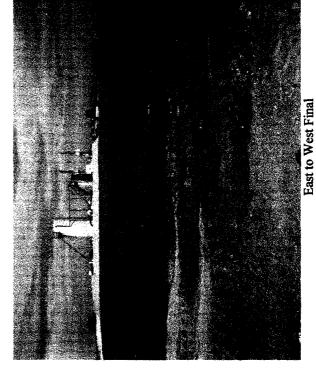
East to West Backfilled Area

Backfilling Top Soil


Backfilling Top Soil



Backfilling Top Soil



Backfilling Top Soil

District I
1625 N. French Dr., Hobbs, NM 88240
District II
1301 W. Grand Avenue, Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 For drilling and production facilities, submit to appropriate NMOCD District Office.
For downstream facilities, submit to Santa Fe

Form C-144

June 1, 2004

Pit or Below-Grade Tank Registration or Closure
Is pit or below-grade tank covered by a "general plan"? Yes \(\subseteq \text{No} \subseteq \)

Type of action: Registration of a pit or below-grade tank Closure of a pit or below-grade tank		
Operator: Saber Resources, LLCTelephone: 432-685-0169e-mail address:		
		l l
Address: 400 West Illinois, Suite 950 Midland, TX 79701		
County: Lea Longitude Longitude NAD: 1927 🗌 1983 🗌 Surface Owner: Federal 🗌 State 📝 Private x 🔲 Indian 🗍		
Pit Below-grade tank		
Type: Drilling Production Disposal D	Volume:bbl Type of fluid:	
	Construction material:	
Workover	Double-walled, with leak detection? Yes If not, explain why not.	
Lined Unlined U	Double-wanted, with leak detection? 165 If not, explain why not.	
Liner type: Synthetic Thickness mil Clay D		
Pit Volumebbl		
Depth to ground water (vertical distance from bottom of pit to seasonal	Less than 50 feet	(20 points)
high water elevation of ground water.)	50 feet or more, but less than 100 feet	(10 points)x (0 points)
	100 feet or more	(0 points)
W-liberal and advantage of another 200 foot from a minute demonstra	Yes	(20 points)
Wellhead protection area: (Less than 200 feet from a private domestic	No	(0 points)x
water source, or less than 1000 feet from all other water sources.)		
Distance to surface water: (horizontal distance to all wetlands, playas,	Less than 200 feet	(20 points)
gation canals, ditches, and perennial and ephemeral watercourses.)	200 feet or more, but less than 1000 feet	(10 points)
,	1000 feet or more	(0 points)x
	Ranking Score (Total Points)	10 2.0
your are burying in place) onsite offsite formula from the facility (3) Attach a general description of remedial action taken including remediation start date and end date. (4) Groundwater encountered: No Yes formula from fixer fixer formula from fixer fixer formula from fixer fixer fixer formula from fixer		
Site was started on 3-7-06 and the finish date was 8-3-06. Excavated to a depth of 24 feet blended material. Backfilled spill area up to a depth of four feet from surface and installed a clay liner and finished backfilling. Then put about six to eight inches of top soil on top of spill area and leveled site.		
I hereby certify that the information above is true and complete to the best of my knowledge and belief. I further certify that the above-described pit or below-grade tank has been/will be constructed or closed according to NMOCD guidelines , a general permit , or an (attached) alternative OCD-approved plan .		
Date: 9-16.06 Printed Name/Title/IM BAKEN FIELD SUPERIUTS OF Signature 7 (3)		
Your certification and NMOCD approval of this application/closure does not relieve the operator of liability should the contents of the pit or tank contaminate ground water or otherwise endanger public health or the environment. Nor does it relieve the operator of its responsibility for compliance with any other federal, state, or local laws and/or agulations.		
Approval: Printed Name/Title L Totheson - Enuro Greek Signature Date: 11-20.06		