CLOSURE REPORT

LOVINGTON PADDOCK #8

NMOCD 1RP-1227

COMPANY # 4323 EPI REF: #200067

30025 03927 0000

UL-F (SE' of the NW') of Section 12 T17 S R36E ~6 MILES SOUTHEAST OF LOVINGTON

LEA COUNTY, NEW MEXICO

LATITUDE: N 32° 51' 08.57"

LONGITUDE: W 103° 18' 32.18"

APRIL 2007

PREPARED BY:

ENVIRONMENTAL PLUS, INC. 2100 AVENUE O **EUNICE, NEW MEXICO 88231**

PREPARED FOR:

medent-nPACO7110463846 Pplication-pPK'0711047017

Distribution List

Chevron USA – Lovington Paddock #81 NMOCD 1RP #1227; EPI Ref: 200067

Name	Title	Company or Agency	Mailing Address	e-mail
Larry Johnson	Larry Johnson Environmental Engineer	NMOCD – Hobbs	1625 French Drive Hobbs, NM 88240	larry.johnson@state.nm.us
Larry Williams	HES Champion	Chevron	P.O. Box 1949 Eunice, NM 88231	larry.williams@chevron.com
Darr Angell	Property Owner		P.O. Box 190 Lovington, NM 88260	
File	-	Environmental Plus, Inc.	P.O. Box 1558 Eunice, NM 88231	ddominguez@envplus.net

LETTER OF TRANSMITTAL

ENVIRONMENTAL PLUS, INC.

Date:

April 19, 2007

To:

Mr. Larry Johnson

Company Name:

New Mexico Oil Conservation Division

Address:

1625 French Drive

City / State / Zip:

Hobbs, New Mexico 88240

From:

David P. Duncan

CC:

Larry Williams, Chevron USA - Eunice, NM

-.

Darr Angell, Property Owner, Lovington, NM

Project #:

NMOCD Ref. 1RP#1227: EPI Ref. #200067

Project Name:

Lovington Paddock #81

Subject:

Closure Report

# or originals	# of copie	
1		Chevron USA – Lovington Paddock #81– Closure Report

Remarks

Dear Mr. Johnson:

Enclosed is a hard bound copy of the *Closure Report* for the above referenced site. Upon NMOCD approval of the document, EPI will remit hard bound copies of the *Closure Report* to individuals noted on the Distribution List. Should you have any technical questions, concerns or need additional information, please contact me at (505) 394-3481 or via email at dduncan@envplus.net. Official correspondence should be directed to Mr. Larry Williams, Chevron USA, at (505) 396-4414 ext. #128 (office), (505) 390-7165 (cellular) or via e-mail at lcwl@chevron.com.

Sincerely,

David P. Duncan Civil Engineer

> P. O. Box 1558 Eunice, NM 88240 (505) 394-3481 Fax: (505) 394-2601

STANDARD OF CARE

Closure Report Lovington Paddock #81 NMOCD 1RP #1227; EPI Ref. #200067

The information provided in this report was collected consistent with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases (August 13, 1993), the NMOCD Unlined Surface Impoundment Closure Guidelines (February, 1993) and Environmental Plus, Inc. (EPI) Standard Operating Procedures and Quality Assurance/Quality Control Plan. The conclusions are based on field observations and laboratory analytical reports as presented in the report. Recommendations follow NMOCD guidance and represent the professional opinions of EPI staff. These opinions were derived using currently accepted geologic, hydro-geologic and engineering practices at this time and location. The report was prepared or reviewed by a certified or registered professional with a background in engineering, environmental and/or natural sciences.

Prepared by:	
Daniel Dominguez Environmental Consultant	Date
Reviewed by: David P. Duncan Civil Engineer	<u>A) 19/07</u>

Table of Contents

1.0	Project Synopsis	iv
2.0	Site and Release Information	1
3.0	NMOCD Site Ranking	2
4.0	Excavation Soil Information	3
5.0	Sampling Information	4
6.0	Analytical Results	5
7.0	Discussion	6
8.0	Conclusion and Recommendations	7

FIGURES

Figure 1: Area Map

Figure 2: Site Location Map

Figure 3: Site Map

Figure 4: Soil Boring Location Map

TABLES

Table 1: Well Data

Table 2: Summary of Soil Boring Sample Field Analyses and Laboratory Analytical

Results

APPENDICES

Appendix I: Laboratory Analytical Reports and Chain-of-Custody Forms

Appendix II: Project Photographs Appendix III: Soil Boring Logs

Appendix IV: Information and Metrics Form

Initial NMOCD Form C-141 Final NMOCD Form C-141

1.0 PROJECT SYNOPSIS

Site Specific:

- ♦ *Company Name:* Chevron USA, Inc.
- ♦ Facility Name: Lovington Paddock #81
- ♦ Project Reference: 200067
- ♦ Company Contacts: Larry Williams
- ♦ Site Location: WGS84 N32° 51' 08.57"; W103° 18' 32.18"
- ♦ Legal Description: Unit Letter-F (SE¼ of the NW¼), Section 12, T17S, R36E
- ♦ General Description: Approximately 6-miles southeast of Lovington, New Mexico
- ♦ *Elevation:* 3,817-ft amsl
- ♦ Land Ownership: Darr Angell
- ♦ EPI Personnel: Project Consultant –Jason Stegemoller

Release Specific:

- ♦ Product Released: Produced water
- ♦ Volume Released: Unknown Volume Recovered: Unknown
- ♦ Time of Occurrence: Unknown Time of Discovery: Unknown
- ♦ Release Source: Corrosion of a flowline
- ♦ Initial Surface Area Affected: ~5,400 square feet

Remediation Specific:

- ♦ Final Vertical extent of contamination: Chloride impacted soil exists to 3-feet bgs near the point of release.
- ♦ **Depth to Ground Water:** Approximately 59-ft bgs
- ♦ Water wells within 1,000-ft: One (USGS 17S 36E 12.1.2.3); Figure 2 #31
- ♦ Private domestic water sources within 200-ft: None
- ♦ Surface water bodies within 1,000-ft: None
- ♦ *NMOCD Site Ranking Index*: 30 points
- ♦ Remedial goals for Soil: TPH 100 mg/Kg; BTEX 50 mg/Kg; Benzene 10 mg/Kg; Chloride residuals may not be capable of impacting groundwater above NMWQCC groundwater standards of 250 mg/L.
- ♦ RCRA Waste Classification: Exempt
- Remediation Option Selected: a) Impacted soil from the release area was excavated and disposed off site by another contractor; b) backfilled excavation with clean topsoil and caliche; c) graded and contoured site area to allow natural drainage; d) disturbed area will be seeded with a blend preferred by the land owner.
- ◆ Disposal Facility: Excavation and disposal by another contractor
- ♦ Volume disposed: Unknown
- ◆ Project Completion Date: March 8, 2006

2.0 SITE AND RELEASE INFORMATION

- 2.1 Describe the land use and pertinent geographic features within 1,000 feet of the site.

 Land surrounding the area is rangeland and utilized for livestock grazing as well as oilfield operations.
- 2.2 Identify and describe the source or suspected source(s) of the release.

 Corrosion of a flowline.
- 2.3 What is the volume of the release? (if known): unknown barrels of: Produced water
- 2.4 What is the volume recovered? (if any): none barrels
- 2.5 When did the release occur? (if known): unknown

2.6 Geological Description

The United States Geological Survey (USGS) Ground-Water Report 6, "Geology and Ground-water Conditions in Southern Lea County, New Mexico," A. Nicholson and A. Clebsch, 1961, describes the near surface geology of southern Lea County as "an intergrade of the Quaternary Alluvium (QA) sediments, i.e., fine to medium sand, with the mostly eroded Cenozoic Ogallala (CO) formation. Typically, the QA and CO formations in the area are capped by a thick inter-bed of caliche that was encountered between 5' and 10' bgs."

2.7 Ecological Description

The area is typical of the Upper Chihuahuan Desert Biome consisting primarily of sandy soil covered with short semi-arid grasses, interspersed with Honey Mesquite and forbs. Mammals represented include Orrd's and Merriam's Kangaroo Rats, Deer Mouse, White Throated Wood Rat, Cottontail Rabbit, Black Tailed Jackrabbit, Mule Deer, Bobcat, Red Fox and Coyote. Reptiles, amphibians and birds are numerous and typical of the area. A survey of Listed, Threatened or Endangered species was not conducted.

2.8 Area Groundwater

The unconfined groundwater aquifer at this site is projected to be \sim 59 feet (ft) bgs based on water depth data obtained from the New Mexico State Engineers Office and United States Geological Survey data base (reference *Table 1*).

2.9 Area Water Wells

One (1) water well exists within a 1,000-foot radius of the site (reference *Table 1* and *Figure 2*).

2.10 Area Surface Water Features

No surface water features exist within a 1,000-foot radius of the site (reference Figure 2).

3.0 NMOCD SITE RANKING

Contaminant delineation and remedial work done at this site indicate chemical parameters of the soil and physical parameters of the groundwater were characterized consistent with the characterization and remediation/abatement goals and objectives set forth in the following New Mexico Oil Conservation Division (NMOCD) publications:

- ◆ Guidelines for Remediation of Leaks, Spills and Releases (August 13, 1993)
- ♦ Unlined Surface Impoundment Closure Guidelines (February, 1993)
- ♦ Pit and Below-Grade Tank Guidelines (November, 2004)

Acceptable thresholds for contaminants/constituents of concern (CoC) were determined based on the NMOCD Ranking Criteria as follows:

- Depth to Groundwater (i.e., distance from the lower most acceptable concentration to groundwater);
- ♦ Wellhead Protection Area (i.e., distance from fresh water supply wells);
- Distance to Surface Water Body (i.e., horizontal distance to all down gradient surface water bodies).

Based on the proximity of the site to protectable area water wells, surface water bodies, and depth to groundwater from the lower most contamination, the NMOCD ranking score for the site is thirty (30) points with the soil remedial goals highlighted in the Site Ranking table presented below:

1. Ground Water		2. Wellhead Pro	otection Area	3. Dist	tance to Surface Water
Depth to GW <50 20 points	feet:		n water source, or;	<200 I	norizontal feet: 20 points
Depth to GW 50 feet: 10 points	to 99	water source:		200-1, 10 poi	000 horizontal feet: ints
Depth to GW >10 0 points	0 feet:		n water source, or; vate domestic 0 points	>1,000) horizontal feet: <i>0 points</i>
Site Rank (1+2+3	3) = 10 + 20	+ 0 = 30 point	ts		
Total Site Rankir	ng Score a	nd Acceptable R	emedial Goal Concer	ntrations	
Ranking Score		20 or >	10		0
Benzene ¹		10 ppm	10 ppm		10 ppm
BTEX ¹		50 ppm	50 ppm		50 ppm
ТРН	1	00 ppm	1,000 ppm		5,000 ppm

¹ A field soil vapor headspace measurement of 100 ppm can be substituted in lieu of laboratory analyses for benzene and BTEX.

4. <i>1</i>	Was soil excavated for off-site treat	tment o	r disposal?	⊠ Yes	□ No
	Date excavated: Unknown				
	Total volume removed: Unknown				
4.2	Indicated soil treatment type:		Disposal Land Treat Composting Other (Unk	g/Biopiling	
Name	and location of treatment/disposal fa	cility:			

5.0 SAMPLING INFORMATION

5.1 Briefly describe the field screening methods used to distinguish contaminated from uncontaminated soil.

Organic Vapor Concentrations – A portion of each soil boring soil sample was placed in a polyethylene bag to allow sufficient time and temperature for organic vapors to volatilize. The detector portion of a Photo-ionization Detector equipped with a 10.6 electron volt lamp was placed in the bag to analyze organic vapor concentration.

Chloride Concentrations – A La Motte Chloride Test Kit was utilized for field chloride concentration analyses.

5.2 Briefly describe the soil analytical sampling and handling procedures used.

Soil borings were advanced utilizing a trailer mounted auger with a hollow stem for collection of soil samples. Soil samples were collected at 2-foot bgs, 5-foot bgs and at 5-foot intervals thereafter to the TD of each respective soil borings.

Upon collection of each sample, a portion was immediately placed in a laboratory provided container, labeled and set on ice for transport to an independent laboratory for quantification of total petroleum hydrocarbons (TPH), benzene, toluene, ethylbenzene and total xylenes (BTEX), chloride and sulfate concentrations.

5.3 Discuss sample locations and provide rationale for their locations.

On February 7, 2006, two (2) soil borings (SB-1 and SB-2) were advanced throughout the release area to approximately 11-ft bgs to delineate the extent of vertically impacted soil. The soil boring locations were chosen to provide the best representative examples of contaminated soil within the release area (reference *Figure 4*).

6.0 ANALYTICAL RESULTS

6.1 Describe the vertical and horizontal extent and magnitude of soil contamination.

Laboratory analyses of the soil samples collected from SB-1 and SB-2 indicated benzene, BTEX and TPH concentrations were ND at or above laboratory MDL. Chloride concentrations ranged from 7.04 mg/L (SB-2 @ 5-feet bgs) to 311 mg/L (SB-1 @ 2-feet bgs) (reference *Table 2* and *Figure 4*).

6.2 Is surface soil contamination present at the site (i.e., soil in the uppermost two feet that is visibly stained, contaminated at greater than 10 ppm (PID) or hydrocarbon saturated)?

☐ yes 🛛 no

If yes, attach a site map identifying extent(s) of surface soil contamination.

7.0 <u>DISCUSSION</u>

7.1 Discuss the risks associated with the remaining soil contamination:

Benzene, TPH and BTEX constituent concentrations were ND at or above laboratory MDL. Laboratory analytical results indicated chloride impacted soil exists above the groundwater in the vadose zone. Soil above NMOCD remedial threshold goals remain insitu at a depth of 3-ft bgs. However, chloride concentrations in intervals beneath 3-ft bgs are below NMOCD Remedial Threshold Goals of 250 mg/Kg. Based on depth to groundwater (~59-ft bgs), contaminants remaining in-situ are not capable of impacting groundwater above NMWQCC groundwater standards of 250 mg/L.

7.2 Discuss the risks associated with the impacted groundwater:

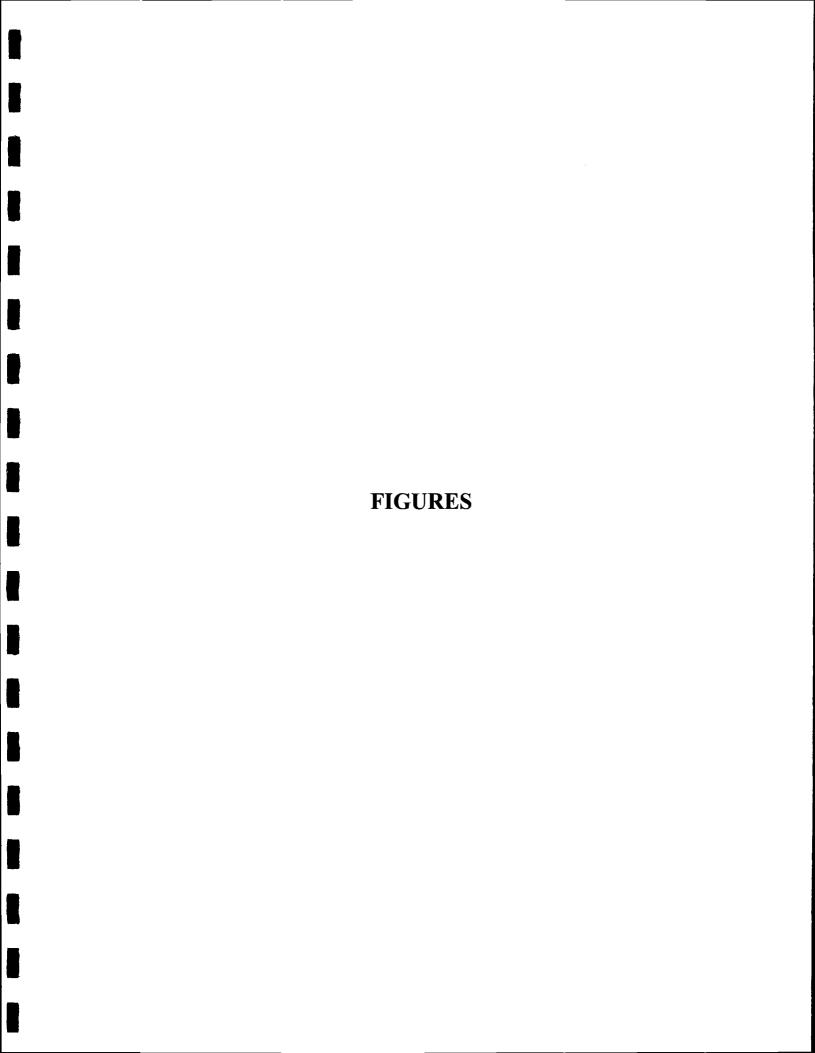
Groundwater is not impacted.

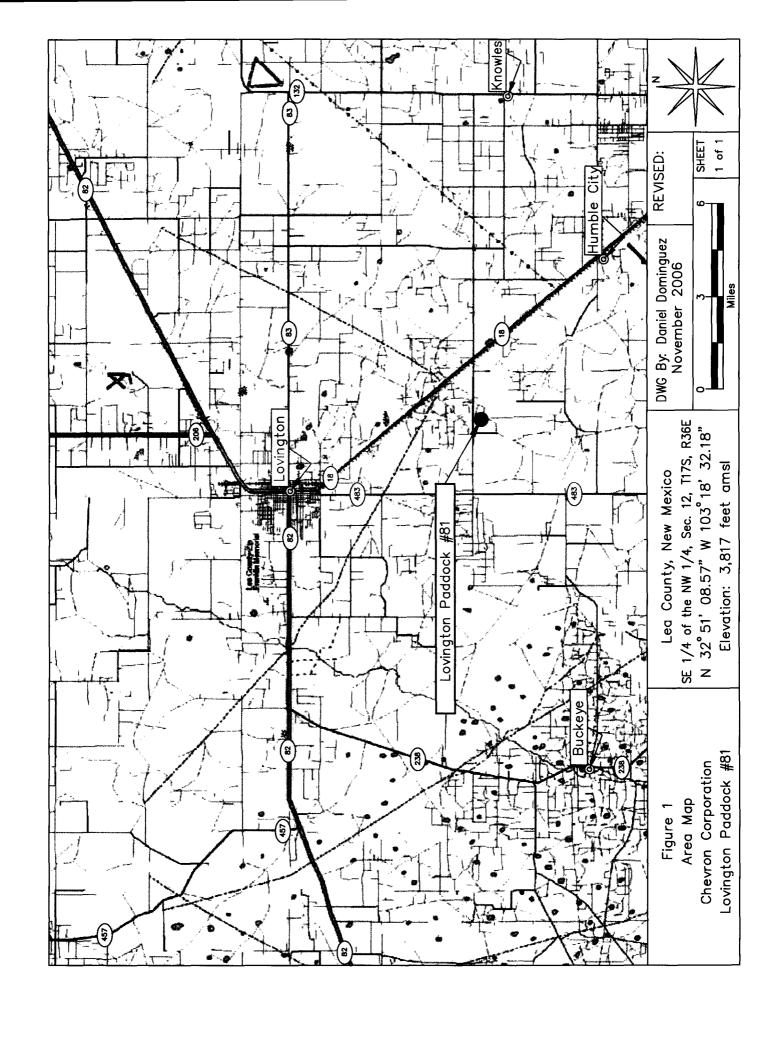
7.3 Discuss other concerns not mentioned above: Not applicable

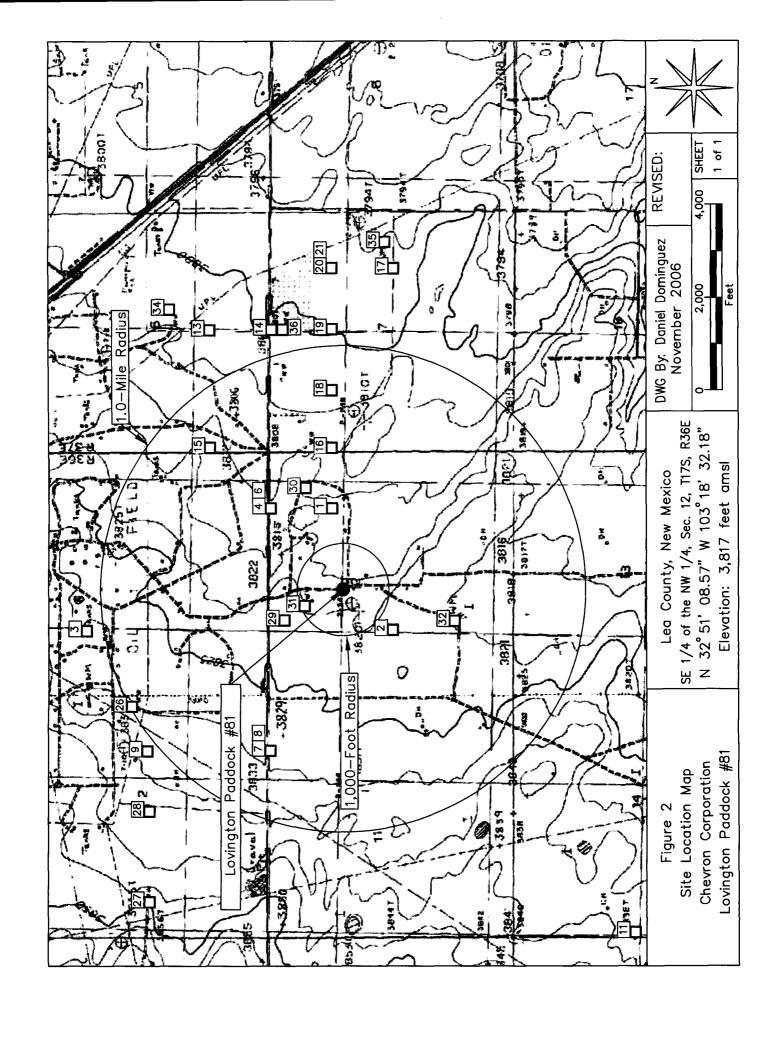
8.0 CONCLUSIONS AND RECOMMENDATIONS

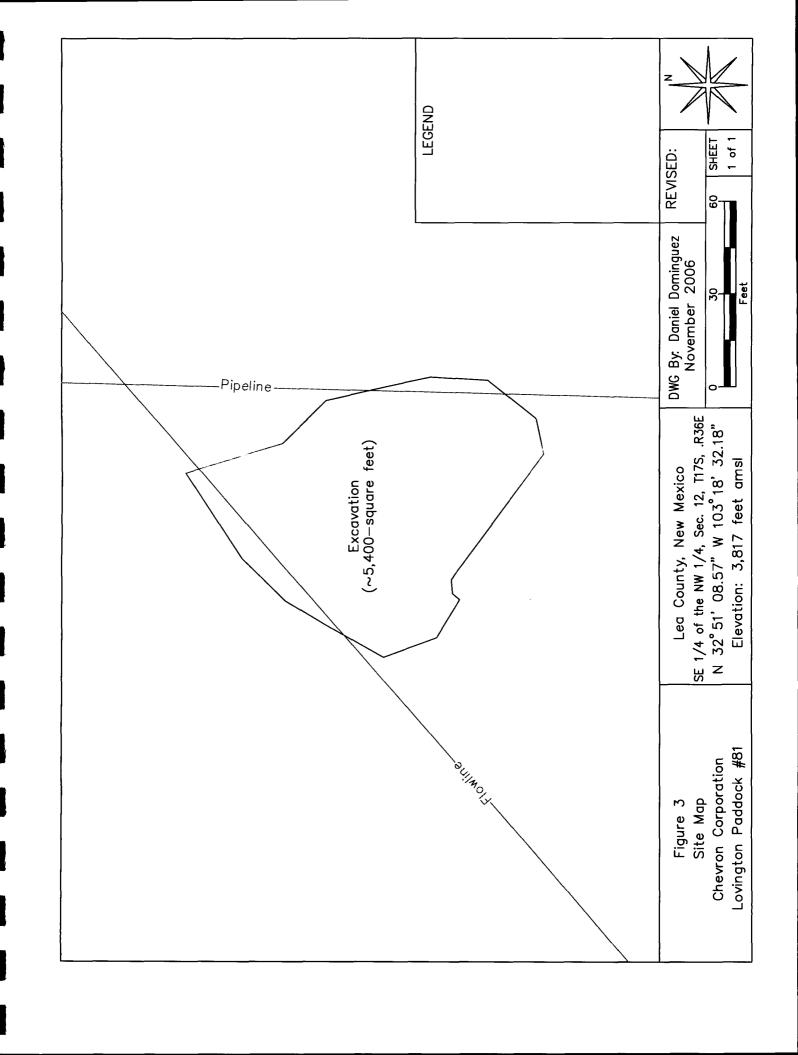
8.1	Recommendation for the site:	☑ Site Closure☐ Additional Groundwater Monitoring☐ Corrective Action
8.2	Base the recommendation above or	n <u>Guidelines for Remediation of Leaks, Spills a</u>

8.2 Base the recommendation above on <u>Guidelines for Remediation of Leaks, Spills and Releases (August 13, 1993)</u>. Describe below how you applied the policy to support your recommendation. If closure is recommended, please summarize significant site investigative events and describe how site specific risk issues have been adequately addressed or minimized to acceptable low risk levels.


Chloride impacted soils were excavated and transported for disposal. Based on laboratory analytical data taken from the soil borings, most impacted soil in sidewalls and bottom were excavated (reference *Table 2*). The excavation was backfilled with topsoil, graded for natural drainage and will be seeded with a blend preferred by the land owner.


8.3 If additional groundwater monitoring is recommended, indicate the proposed monitoring schedule and frequency. Conduct quarterly monitoring until the NMOCD responds to this report.


Not Applicable


8.4 If corrective action is recommended, provide a conceptual approach.

Not applicable

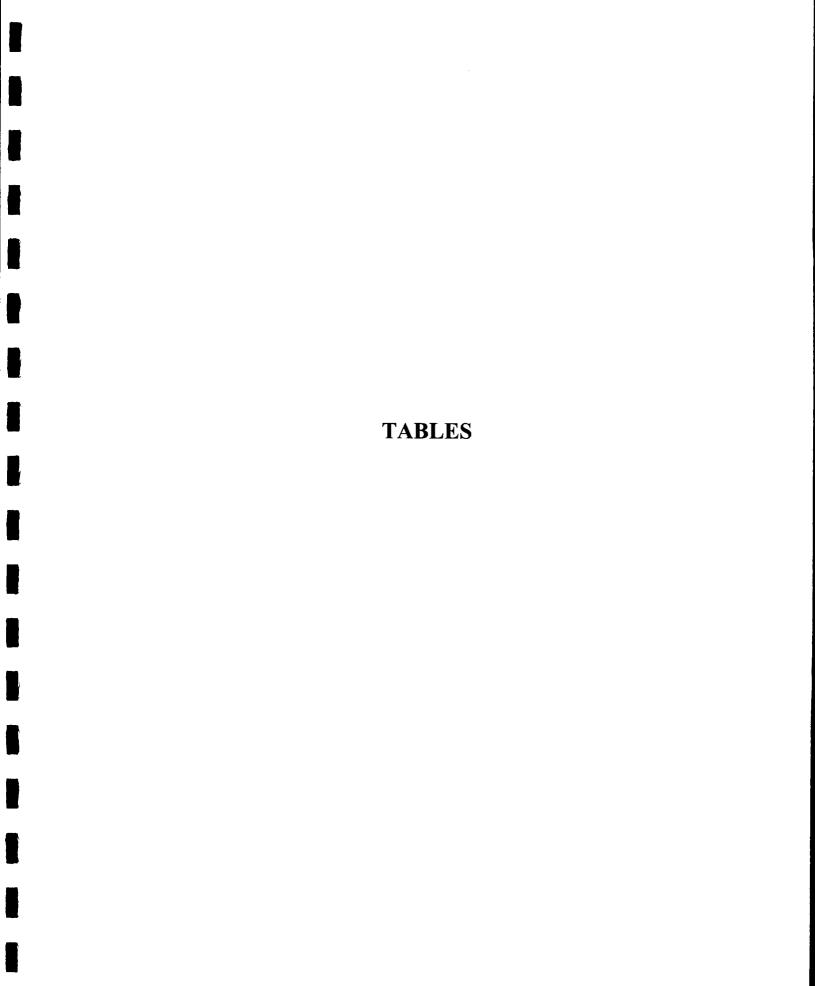


TABLE 1

WELL INFORMATION REPORT*

Chevron USA - Lovington Paddock #81 (Ref #200067)

	L									Date	Surface	Denth to
Ref. #	Well Number	Diversion	Owner	Ose	Twsp	Rng	b b b oas	Latitude	Longitude	Measured	Elevation ^B	Water
-	L 02205	3	HOWARD DRILLING CO. & HOLMES	PRO	17S	36E 1	12 2 2 I	N32° 51' 10.90"	W103° 18' 11.46"	01-May-53	3,811	45
2	L 06395 (E)	0	NCVAY DRILLING COMPANY	PRO	17S	36E 1	12 14	N32° 50' 57.89"	W103° 18' 42.48"	19-Oct-68	3,822	47
3	L 01584	3	LEE DRILLING CO.	PRO	17S	36E [0	01 12	N32° 52' 3.36"	W103° 18' 42.66"	29-Sep-52	3,830	48
4	L 02331	3	J.P. (BUM) GIBBONS INC.	PRO	17S	36E [0	01 44	N32° 51' 23.99"	W103° 18' 11.48"	02-Sep-53	3,810	48
9	L 10633 S3				178	36E [0	01 444	N32° 51' 23.99"	W103° 18' 11.48"	10-May-01	3,810	80
7	L 02413	3	JACK CLAYTON	MOG	17S	36E [0	44	N32° 51' 24.10"	W103° 19' 13.63"	20-Nov-53	3,830	96
8	L 02426	3	тне оню оп. со.	PRO	17S	36E (02 44 I	N32° 51' 24.10"	W103° 19' 13.63"	03-Dec-53	3,830	48
6	L 03676	3	JACK CAYTON	MOG	17S	36E (02 24	N32° 51' 50.31"	W103° 19' 13.71"	17-Sep-57	3,834	89
11	L 03882	3	MORAN OIL PRODUCING AND	PRO	17S	36E 1	14 13 N	N32° 50' 6.01"	W103° 19' 59.81"	26-May-58	3,838	57
13	L 00449	442.8	J. LYNN WALKER	IRR	178	37E (06 421 N	N32° 51' 37.00"	W103° 17' 25.99"	20-May-05	3,804	101
14	L 00449 EXPLORE				17S	37E (06 4	N32° 51' 23.92"	W103° 17' 25.96"	11-May-05	3,800	118
15	L 02474	3	LEE DRILLING CO.	PRO	17S	37E (06 3 1	N32° 51' 37.04"	W103° 17' 55.96"	14-Jan-54	3,813	40
16	L 01603 APPRO	3	SIMMONS DRILLING CO.	PRO	17S	37E (07 11 1	N32° 51' 10.87"	W103° 17' 55.91"	25-Oct-52	3,807	39
17	L 04197 APPRO EXP	3	E. D. JR. SHIPP	STK	17S	37E (07 24	N32° 50' 57.74"	W103° 17' 10.38"	07-Jul-59	3,796	45
18	L 04359 B	120	CHARLES WORDEN	DAI	17S	37E [C	07 121 N	N32° 51' 10.86"	W103° 17' 41.40"	10-Jan-04	3,804	7.5
19	L 04712	3	ELBERT D. SHIPP	DOM	17S	37E (07 212 1	N32° 51' 10.84"	W103° 17' 25.89"	11-Sep-61	3,800	7.5
20	L 10021	3	E. D. ASTON	DOM	17S	37E (07 222 1	N32° 51' 10.81"	W103° 17' 10.42"	19-Jul-88	3,797	70
21	L 11056	3	KENNETH GOFF	DOM	17S	37E (07 222 I	N32° 51' 10.81"	W103° 17' 10.42"	09-May-00	3,797	62
26	USGS #2				17S	36E 2	2 244			14-Jan-86		62.96
27	USGS #3				17S	36E 2	2 3 1 2			13-Jan-81		53.19
28	USGS #4				17S	36E 2	2 411			19-Jan-96		57.77
29	USGS #5				17S	36E 1	12 121			27-Feb-76		44.1
30	USGS #6				17S	36E 1	12 223			19-Jan-96		55.32
31	USGS #7				17S	36E 1	12 123	i		14-Jan-86		50.87
32	USGS #8				17S	36E 1	12 3 2 3			14-Jan-86		45.93
34	USGS #10				17S	37E (6 411			31-Jan-91		61.64
35	USGS #11				17S	\neg	- 1			24-Jan-91		53.44
36	USGS #12				17S	37E 7	7 211			07-Jan-81		51.09

TABLE 1

WELL INFORMATION REPORT*

Chevron USA - Lovington Paddock #81 (Ref #200067)

					L		L						Γ		r		L	\vdash		\vdash				L			H	١	١	Ľ	, ref	٩	Dont	4, 4,	_
Ref. #		≩	Well Number	mber	Dive	iversion ^A				O	ner			C	يو.	Use Twsp Rng Sec q q q Latitude	<u>~</u>	Š Su	b b oa	1 d	ï	atituc	<u>e</u>		Longitude	tude		Mea	sured	· 🖂	evati	a B	wai Wai	Measured Elevation ^B Water	
		100						A THE STATE								,	100			in contract	1			80, 1991 80, 1991		en.									
									i din		0		果排						10.74					Last											_
	eriore Estimation												Be		电影				149	e i		r (C)		le s				10.656				機			
出版													5 (5)						鉄											b.					
and the second												1 1																in and							_
K.																					9	1-8				1		540					i e		_
e.									武装		B																			-40 -163 (RZ)					_
			A STATE OF																		, 100 (100 (100 (100 (100 (100 (100 (100														
	The state of the s									#8			7				120		1§										9734	建建					

^{* =} Data obtained from the New Mexico Office of the State Engineer Website (http://iwaters.ose.state.nm.us:7001/iWATERS/wr_RegisServlet1) and USGS Database. Shaded well information indicates well location not shown on Figure 2

PRO = Production

IRR = Irrigation DOM = Domestic one household

STK = Livestock watering

DAI = Dairy operation (quarters are 1=NW, 2=NE, 3=SW, 4=SE) (quarters are biggest to smallest - X Y are in Feet - UTM are in Meters)

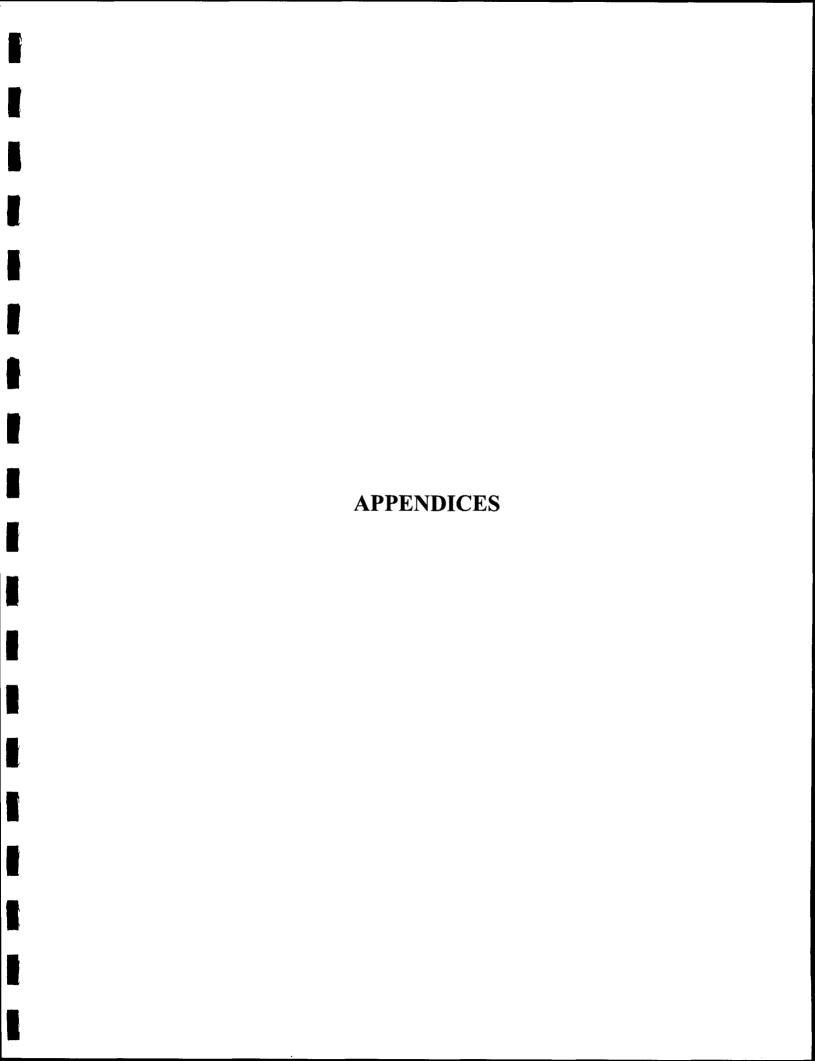
A = in acre feet per annum

 $^{^{\}rm B}=$ Interpolated from USGS Topographical Map

TABLE 2

Summary of Soil Boring Field Analyses and Laboratory Analytical Data

Chevron USA


Lovington Paddock #81 (EPI Ref.# 200067)

Sample I.D.	Depth (feet)	Soil Status	Sample Date	PID Field Analysis (ppm)	Field Chloride Analyses (mg/L)	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethylbenzene (mg/Kg)	Total Xylenes (mg/Kg)	Total BTEX (mg/Kg)	Carbon Ranges C6-C12 (mg/Kg)	Carbon Ranges C12-C28 (mg/Kg)	Carbon Ranges C28-C35 (mg/Kg)	Total Hydrocarbons C6-C35 (mg/Kg)	Chloride (mg/L)
	2-3	In situ	07-Feb-06	9:0	400	<0.0250	<0.0250	<0.0250	<0.050	<0.125	<10.0	<10.0	<10.0	<30.0	311
SB-1	9-9	n situ	07-Feb-06	0.3	160	<0.0250	<0.0250	<0.0250	<0.050	<0.125	<10.0	<10.0	<10.0	<30.0	33.2
	10-11	In situ	07-Feb-06	0.3	160	<0.0250	<0.0250	<0.0250	<0.050	<0.125	<10.0	<10.0	<10.0	<30.0	13.5
	2-3	ın situ	07-Feb-06	0.2	160	<0.0250	<0.0250	<0.0250	<0.050	<0.125	<10.0	<10.0	<10.0	<30.0	9.65
SB-2	9-9	n situ	07-Feb-06	0.1	160	<0.0250	<0.0250	<0.0250	<0.050	<0.125	<10.0	<10.0	<10.0	<30.0	7.04
	10-11	In situ	07-Feb-06	0.1	160	<0.0250	<0.0250	<0.0250	<0.050	<0.125	<10.0	<10.0	<10.0	<30.0	7.49
NN	fOCD Reme	NMOCD Remedial Threshold Goals	Goals	001		01				20				100	250 1

BOLD values exceed NMOCD Remedial Threshold Goals

I= Chloride residuals may not be capable of impacting groundwater above NMWQCC Groundwater Standards of 250 mg/L

-- = Not Analyzed; J = Analyte detected, but below Reporting Limit. Therefore, result is an estimated concentration (CPL J-Flag)

APPENDIX I PROJECT PHOTOGRAPHS

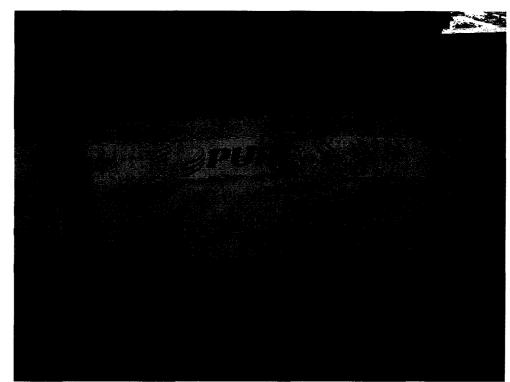


Photo #1:Lease sign.

Photo #2: Excavated release area.

Photo #3: Excavated release area.

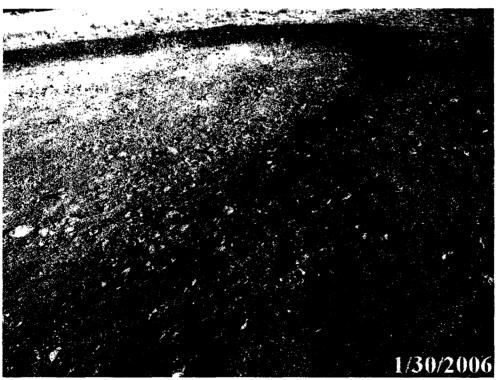


Photo #4: Excavated release area.

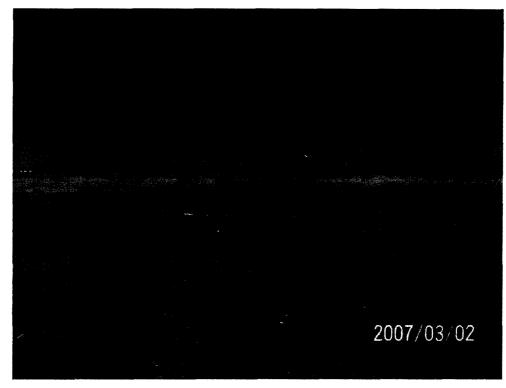


Photo #5: Remediated site.

Photo #6: Remediated site.

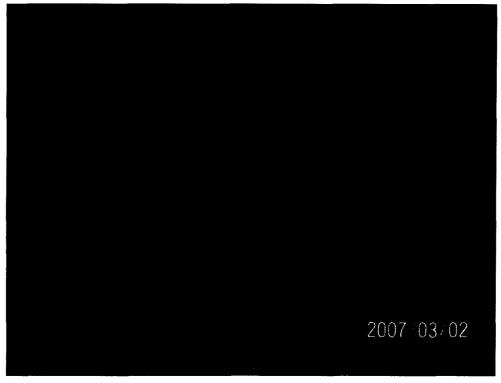


Photo #7: Remediated site.

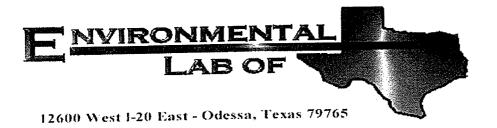



Photo #8: Remediated site.

1

APPENDIX II LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY FORM

Analytical Report

Prepared for:

Iain Olness
Environmental Plus, Incorporated
P.O. Box 1558
Eunice, NM 88231

Project: Chevron USA/ Lovington Paddock #81

Project Number: 200067

Location: UL-F, Sec. 12, T 17 S, R 36 E

Lab Order Number: 6B08019

Report Date: 02/15/06

P.O. Box 1558 Eunice NM, 88231 Project: Chevron USA/ Lovington Paddock #81

Project Number: 200067 Project Manager: Iain Olness Fax: 505-394-2601

Reported: 02/15/06 17:09

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-1 2'-3'	6B08019-01	Soil	02/07/06 16:10	02/08/06 11:10
SB-1 5'-6'	6B08019-02	Soil	02/07/06 16:17	02/08/06 11:10
SB-1 10'-11'	6B08019-03	Soil	02/07/06 16:27	02/08/06 11:10
SB-2 2'-3'	6B08019-04	Soil	02/07/06 16:40	02/08/06 11:10
SB-2 5'-6'	6B08019-05	Soil	02/07/06 16:51	02/08/06 11:10
SB-2 10'-11'	6B08019-06	Soil	02/07/06 17:04	02/08/06 11:10

P.O. Box 1558 Eunice NM, 88231 Project: Chevron USA/ Lovington Paddock #81

Project Number: 200067 Project Manager: Iain Olness Fax: 505-394-2601

Reported:
02/15/06 17:09

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note:
SB-1 2'-3' (6B08019-01) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EB61034	02/10/06	02/14/06	EPA 8021B	
Toluene	ND	0.0250	18	н	U	n	n	"	
Ethylbenzene	ND	0.0250	(r	ŧı	ŧŧ	11	41	Ħ	
Xylene (p/m)	ND	0.0250	11	H	11	•	4	11	
Xylene (o)	ND	0.0250	n		u	ń	10	4(
Surrogate: a,a,a-Trifluorotoluene		83.0 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		103 %	80~1	20	"	"	"	n	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EB61011	02/10/06	02/10/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	**		#	н	li .	v	
Carbon Ranges C28-C35	ND	10.0	"	**	"	u	ĸ	u	
Total Hydrocarbon C6-C35	ND	10.0	11		11	77	n	*	
Surrogate: 1-Chlorooctane	- 9 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	93.4 %	70-1	30	"	**	#	,	
Surrogate: 1-Chlorooctadecane		76.8 %	70-1	30	#	"	п	η	
SB-1 5'-6' (6B08019-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EB61034	02/10/06	02/14/06	EPA 8021B	
Toluene	ND	0.0250	u	n	**	n	н	D	
Ethylbenzene	ND	0.0250	h	u	11	Ħ	te	u	
Xylene (p/m)	ND	0.0250	10	"	f#	11	tı		
Xylene (o)	ND	0.0250	ţı	U	11	u	to	D	
Surrogate: a,a,a-Trifluorotoluene		83.2 %	80-1	20	"	н	"	n	
Surrogate: 4-Bromofluorobenzene		106 %	80-1	20	"	u	n	и	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EB61011	02/10/06	02/10/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	11	n	n	ø	W	et.	
Carbon Ranges C28-C35	ND	10.0	41		и	"	*	u	
Total Hydrocarbon C6-C35	ND	10.0	μ	n	*	(1	и	41	
Surrogate: 1-Chlorooctane		93.4 %	70-1	30	"	"	11	n	ACCOUNT OF ARREST AND THE STATE OF
Surrogate: 1-Chlorooctadecane		79.2 %	70-1	30	11	"	n	**	

P.O. Box 1558 Eunice NM, 88231 Project: Chevron USA/ Lovington Paddock #81

Project Number: 200067 Project Manager: Iain Olness Fax: 505-394-2601 Reported: 02/15/06 17:09

Organics by GC **Environmental Lab of Texas**

Analyte	Result	Reporting Limit		Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 10'-11' (6B08019-03) Soil	·				-		-		
Benzene	ND	0.0250	mg/kg dry	25	EB61034	02/10/06	02/14/06	EPA 8021B	
Toluene	ND	0.0250	**	u	**	U	u	U	
Ethylbenzene	ND	0.0250	#	11	11	n	4	u u	
Xylene (p/m)	ND	0.0250	н	ú	#		"	u	
Xylene (o)	ND	0.0250	#	u	19	n	a	n	
Surrogate: a,a,a-Trifluorotoluene		84.0 %	80-1	20	n	**	"	n	
Surrogate: 4-Bromofluorobenzene		102 %	80-1	20	n	n	**	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	i	EB61011	02/10/06	02/11/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	**	u	11	v	4	u	
Carbon Ranges C28-C35	ND	10.0	13	11	**	n	4	n	
Total Hydrocarbon C6-C35	ND	10.0	+	n	n	н	n	1	
Surrogate: 1-Chlorooctane	AT 1444 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 -	91.4%	70-1	30	n	"	11	"	
Surrogate: I-Chlorooctadecane		77.0 %	% 70-130		и	"	"	н	
SB-2 2'-3' (6B08019-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EB61501	02/13/06	02/14/06	EPA 8021B	
Toluene	ND	0.0250	n	u	**	u	0	0	
Ethylbenzene	ND	0.0250	17	11	**	p	n	μ	
Xylene (p/m)	ND	0.0250	**	n	n	u	u	n	
Xylene (o)	ND	0.0250	U	n	'n	п	**	11	
Surrogate: a,a,a-Trifluorotoluene		92.2 %	80-1	20	"	17	u	"	
Surrogate: 4-Bromofluorobenzene		99.2 %	80-1	20	"	μ	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EB61011	02/10/06	02/11/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	11	*	11	A	*		
Carbon Ranges C28-C35	ND	10.0	Ħ	II.	u	Ħ	*	u	
Total Hydrocarbon C6-C35	ND	10.0	Ħ	u		#	*	n	
Surrogate: I-Chlorooctane		96.2 %	70-1	30	.,	11	n	. "	
Surrogate: I-Chlorooctadecane		78.2 %	70-1	30	"	"	"	n	

P.O. Box 1558 Eunice NM, 88231 Project: Chevron USA/ Lovington Paddock #81

Project Number: 200067 Project Manager: Iain Olness Fax: 505-394-2601

Reported: 02/15/06 17:09

Organics by GC **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-2 5'-6' (6B08019-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EB61501	02/13/06	02/14/06	EPA 8021B	
Toluene	ND	0.0250	(I	Þ	п	"	и	и	
Ethylbenzene	ND	0.0250		ø	#	II	u	ti.	
Xylene (p/m)	ND	0.0250	н	**	n	ii	ti	ıt	
Xylene (o)	ND	0.0250	II.	"		#	p	#	
Surrogate: a,a,a-Trifluorotoluene		83.5 %	80-1	20	"	"	7/	"	Maria de la compania del compania de la compania del la compania del compania de la compania de la compania de la compania del compania
Surrogate: 4-Bromostuorobenzene		98.5 %	80-1	20	η	n	n	n	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EB61011	02/10/06	02/11/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	Ħ	n	n	Ħ	II .	Ħ	
Carbon Ranges C28-C35	ND	10.0	tr		**	b	н	H	
Total Hydrocarbon C6-C35	ND	10.0		tr	n	ų	31	u	
Surrogate: 1-Chlorooctane		86.8 %	70-1	30	"	п	11	v	
Surrogate: 1-Chlorooctadecane		75.0 %	70-1	30	**	"	н	n	
SB-2 10'-11' (6B08019-06) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EB61501	02/13/06	02/14/06	EPA 8021B	
Toluene	ND	0.0250	n	H	n	n	Ħ	n	
Ethylbenzene	ND	0.0250	ıı	и		u	tr	u	
Xylene (p/m)	ND	0.0250	11	11	Ħ	n	u	n	
Xylene (o)	ND	0.0250	"	e)	"	n	#	e	
Surrogate: a,a,a-Trifluorotoluene		89.8 %	80-1	20	"	11	71		
Surrogate: 4-Bromosluorobenzene		108 %	80-1	20	H	"	**	,,	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EB61011	02/10/06	02/11/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	*	н	u	Ħ	u	n	
Carbon Ranges C28-C35	ND	10.0	11	u	77	11	ч	Ħ	
Total Hydrocarbon C6-C35	ND	10.0	n	**	u	ıı	n	a	
Surrogate: 1-Chlorooctane		88.2 %	70-1	30	"	"	n	**	
Surrogate: 1-Chlorooctadecane		73.8 %	70-1	30	"	"	H	*	

P.O. Box 1558 Eunice NM, 88231 Project: Chevron USA/ Lovington Paddock #81

Project Number: 200067
Project Manager: Iain Olness

Fax: 505-394-2601 Reported: 02/15/06 17:09

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

SB-1 2'-3' (6B08019-01) Soil	311						Analyzed	Method	Notes
	311								
Chloride	~ ~ ~	10.0	mg/kg	20	EB61302	02/11/06	02/13/06	EPA 300.0	
% Moisture	1.5	0.1	%	1	EB61007	02/09/06	02/10/06	% calculation	
Sulfate	50.9	10.0	mg/kg	20	EB61302	02/11/06	02/13/06	EPA 300.0	
SB-1 5'-6' (6B08019-02) Soil				· ·					
Chloride	33.2	5.00	mg/kg	10	EB61302	02/11/06	02/13/06	EPA 300.0	
% Moisture	0.3	0.1	%	I	EB61007	02/09/06	02/10/06	% calculation	
Sulfate	33.8	5.00	mg/kg	10	EB61302	02/11/06	02/13/06	EPA 300.0	
SB-1 10'-11' (6B08019-03) Soil									
Chloride	13.5	5.00	mg/kg	10	EB61302	02/11/06	02/13/06	EPA 300.0	
% Moisture	0.5	0.1	%	1	EB61007	02/09/06	02/10/06	% calculation	
Sulfate	29.6	5.00	mg/kg	10	EB61302	02/11/06	02/13/06	EPA 300.0	
SB-2 2'-3' (6B08019-04) Soil									
Chloride	9.65	5.00	mg/kg	10	EB61302	02/11/06	02/13/06	EPA 300.0	
% Moisture	0.5	0.1	%	1	EB61007	02/09/06	02/10/06	% calculation	
Sulfate	23.7	5.00	mg/kg	10	EB61302	02/11/06	02/13/06	EPA 300.0	
SB-2 5'-6' (6B08019-05) Soil									
Chloride	7.04	5.00	mg/kg	10	EB61302	02/11/06	02/13/06	EPA 300.0	
% Moisture	0.4	0.1	%	1	EB61007	02/09/06	02/10/06	% calculation	
Sulfate	24.9	5.00	mg/kg	10	EB61302	02/11/06	02/13/06	EPA 300.0	
SB-2 10'-11' (6B08019-06) Soil									
Chloride	7.49	5.00	mg/kg	10	EB61302	02/11/06	02/13/06	EPA 300.0	
% Moisture	0.3	0.1	%	1	EB61007	02/09/06	02/10/06	% calculation	
Sulfate	25.2	5.00	mg/kg	10	EB61302	02/11/06	02/13/06	EPA 300.0	

P.O. Box 1558 Eunice NM, 88231 Project: Chevron USA/ Lovington Paddock #81

Project Number: 200067 Project Manager: Iain Olness Fax: 505-394-2601

Reported: 02/15/06 17:09

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB61011 - Solvent Extraction (GC)									
Blank (EB61011-BLK1)	Prepared & Analyzed: 02/10/06									
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	u							
Carbon Ranges C28-C35	ND	. 10.0	P							
Total Hydrocarbon C6-C35	ND	10.0	u							
Surrogate: 1-Chlorooctane	48.8		mg/kg	50.0	·	97.6	70-130			
Surrogate: 1-Chlorooctadecane	43.2		ır	50.0		86.4	70-130			
LCS (EB61011-BS1)				Prepared	& Analyze	ed: 02/10/0)6			
Carbon Ranges C6-C12	477		mg/kg	500		95.4	75-125			
Carbon Ranges C12-C28	508		н	500		102	75-125			
Total Hydrocarbon C6-C35	985		u	1000		98.5	75-125			
Surrogate: 1-Chlorooctane	57.2		"	50.0	······································	114	70-130			with a superior annual state
Surrogate: 1-Chlorooctadecane	52.4		n	50.0		105	70-130			
Calibration Check (EB61011-CCV1)				Prepared:	02/10/06	Analyzed	: 02/11/06			
Carbon Ranges C6-C12	467		mg/kg	500		93.4	80-120			
Carbon Ranges C12-C28	543		#	500		109	80-120			
Total Hydrocarbon C6-C35	1010		U	1000		101	80-120			
Surrogate: 1-Chlorooctane	56.5		n.	50.0		113	70-130	·		
Surrogate: 1-Chlorooctadecane	48.7		"	50.0		97.4	70-130			
Matrix Spike (EB61011-MSI)	So	urce: 6B080	20-07	Prepared	& Analyze	d: 02/10/0	06			
Carbon Ranges C6-C12	507		mg/kg	500	ND	101	75-125			
Carbon Ranges C12-C28	579		u	500	ND	116	75-125			
Total Hydrocarbon C6-C35	1090		*	1000	ND	109	75-125			
Surrogate: 1-Chlorooctane	56.1		**	50.0		112	70-130	·		
				20.0			710-120			

P.O. Box 1558 Eunice NM, 88231 Project: Chevron USA/ Lovington Paddock #81

Project Number: 200067 Project Manager: Iain Oiness Fax: 505-394-2601 Reported: 02/15/06 17:09

Organics by GC - Quality Control **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB61011 - Solvent Extraction (GC)									
Matrix Spike Dup (EB61011-MSD1)	Sou	rce: 6B080	20-07	Prepared .	& Analyze	ed: 02/10/0	06			
Carbon Ranges C6-C12	523		mg/kg	500	ND	105	75-125	3.11	20	Andrews comments and the company
Carbon Ranges C12-C28	597		0	500	ND	119	75-125	3.06	20	
Total Hydrocarbon C6-C35	1120		п	1000	ND	112	75-125	2.71	20	
Surrogate: 1-Chlorooctane	56.4		" .	50.0	· · · · · · · · · · · · · · · · · · ·	113	70-130			
Surrogate: 1-Chlorooctadecane	54.5		#	50.0		109	70-130			
Batch EB61034 - EPA 5030C (GC)										
Blank (EB61034-BLK1)				Prepared:	02/10/06	Analyzed	: 02/14/06	-		
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	U							
Ethylbenzene	ND	0.0250	п							
Xylene (p/m)	ND	0.0250	u							
Xylene (o)	ND	0.0250	Ħ							
Surrogate: a,a,a-Trifluorotoluene	34.2	····	ug/kg	40.0		85.5	80-120			
Surrogate: 4-Bromofluorobenzene	43.7		,,	40.0		109	80-120			
LCS (EB61034-BS1)				Prepared:	02/10/06	Analyzed	: 02/14/06			
Benzene	0.0964	0.00100	mg/kg wet	0.100		96.4	80-120		**************************************	· · · · · · · · · · · · · · · · · · ·
Toluene	0.102	0.00100	1)	0.100		102	80-120			
Ethylbenzene	0.108	0.00100	11	0.100		108	80-120			
Xylene (p/m)	0.199	0.00100	er .	0.200		99.5	80-120			
Xylene (o)	0.118	0.00100	17	0.100		118	80-120			
Surrogate: a,a,a-Trifluorotoluene	39,4		ug/kg	40.0		98.5	80-120			
Surrogate: 4-Bromofluorobenzene	34.3		"	40.0		85.8	80-120			
Calibration Check (EB61034-CCV1)				Prepared:	02/10/06	Analyzed	: 02/14/06			
Benzene	49.7		ug/kg	50.0		99.4	80-120			
Toluene	54.4		11	50.0		109	80-120			
Ethylbenzene	55.5			50.0		111	80-120			
Xylene (p/m)	112		n	100		112	80-120			
Xylene (o)	59.3			50.0		119	80-120			
Surrogate: a.a,a-Trifluorotoluene	38.0		"	40.0		95.0	80-120			arabiti aritaty esaren
Surrogate: 4-Bromofluorobenzene	35.5		"	40.0		88.8	80-120			

P.O. Box 1558 Eunice NM, 88231 Project: Chevron USA/ Lovington Paddock #81

Project Number: 200067 Project Manager: Iain Olness Fax: 505-394-2601

Reported: 02/15/06 17:09

Organics by GC - Quality Control **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB61034 - EPA 5030C (GC)										
Matrix Spike (EB61034-MS1)	So	urce: 6B080	19-02	Prepared:	02/10/06	Analyzed	: 02/14/06			
Benzene	1.21	0.0250	mg/kg dry	1.25	ND	96.8	80-120			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Toluene	1.34	0.0250	II	1.25	ND	107	80-120			
Ethylbenzene	1.46	0.0250	u	1.25	ND	117	80-120			
Xylene (p/m)	2.94	0.0250	*	2.51	ND	117	80-120			
Xylene (o)	1.49	0.0250	II	1.25	ND	119	80-120			
Surrogate: a,a,a-Trifluorotoluene	36.2		ug/kg	40.0		90.5	80-120			
Surrogate: 4-Bromofluorobenzene	42.2		n	40.0		106	80-120			
Matrix Spike Dup (EB61034-MSD1)	So	urce: 6B080	19-02	Prepared:	02/10/06	Analyzed	: 02/14/06			
Benzene	1.28	0.0250	mg/kg dry	1.25	ND	102	80-120	5.23	20	
Toluene	1.41	0.0250	μ	1.25	ND	113	80-120	5.45	20	
Ethylbenzene	1.50	0.0250	u	1.25	ND	120	80-120	2.53	20	
Xylene (p/m)	2.99	0.0250	Ħ	2.51	ND	119	80-120	1.69	20	
Xylene (o)	1.50	0.0250	t?	1.25	ND	120	80-120	0.837	20	
Surrogate: a,a,a-Trifluorotoluene	37.0		ug/kg	40.0		92.5	80-120	·····		v.w. ~
Surrogate: 4-Bromofluorobenzene	45.1		,,	40.0		113	80-120			
Batch EB61501 - EPA 5030C (GC)										
Blank (EB61501-BLK1)				Prepared:	02/13/06	Analyzed	: 02/14/06			
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	u ,							
Ethylbenzene	ND	0.0250	u							
Xylene (p/m)	ND	0.0250	u							
Xylene (o)	ND	0.0250	u							
Surrogate: a,a,a-Trifluorotoluene	34.7		ug/kg	40.0		86.8	80-120	····		
Surrogate: 4-Bromofluorobenzene	38.8		"	40.0		97.0	80-120			

P.O. Box 1558 Eunice NM, 88231 Project: Chevron USA/ Lovington Paddock #81

Project Number: 200067 Project Manager: Iain Olness Fax: 505-394-2601

Reported: 02/15/06 17:09

Organics by GC - Quality Control Environmental Lab of Texas

Prepared: 02/13/06 Analyzed: 02/14/06 Section Prepared: 02/13/06 Analyzed: 02/14/06 Section O.0947 O.00100 mg/kg wet O.100 94.7 80-120 Section O.104 O.00100 " O.100 104 80-120 Section O.104 O.00100 " O.100 104 80-120 Section O.104 O.00100 " O.100 104 80-120 Section O.104 O.00100 " O.100 O.108 80-120 Section O.104 O.00100 " O.100 O.108 80-120 Section O.104 O.00100 " O.100 O.108 80-120 Section O.1019 O.00100 " O.100 O.119 O.00100 O.119 O.00100 O.100 O.119 O.00100 O.100 O.119 O.00100 O.100 O.116 O.00100 O.116 O.00100 O.116 O.00100 O.116 O.00100 O.100 O.00100 O.116 O.00100 O.116 O.00100 O.116 O.00100 O.116 O.00100	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Prepared: 02/13/06 Analyzed: 02/14/06 Prepared: 02/13/06 Prepare	Batch EB61501 - EPA 5030C (GC)										
Serizene					Prepared:	02/13/06	Analyzed	: 02/14/06			
Column C	Benzene	0.0947	0.00100	mg/kg wet					~~~~~~~~~	managaman (n. 1. Agas e 20 per	The sales of the control of the con-
thylhenzene (0.116 0.00100 " 0.100 116 80-120 120	Toluene			H	0.100						
Sylene (p/m)	Ethylbenzene	0.116	0.00100	**	0.100		116	80-120			
Sylene (o) 0.119 0.0010 " 0.100 119 80-120	Xylene (p/m)	0.215	0.00100	bi	0.200		108	80-120			
Prepared: 02/13/06 Analyzed: 02/15/06 Analyze	Xylene (o)	0.119	0.00100	u	0.100		119	80-120			
Prepared: 02/13/06 Analyzed: 02/15/06 Analyze	Surrogate: a,a,a-Trifluorotoluene	33.9		ug/kg	40.0		84.8	80-120	Print Place on purpose propries and account of the contract of		
Renzene 100 ug/kg 100 100 80-120 100 80-120 100 100 80-120 100 100 80-120 100 100 80-120 100 100 80-120 100 100 100 80-120 100 100 80-120 100 100 100 80-120 100 100 100 80-120 100 100 100 80-120 100 100 100 80-120 100 100 100 80-120 100 100 100 80-120 100 100 100 80-120 100 100 100 80-120 100 100 100 80-120 100 100 100 80-120 100 100 100 100 80-120 100 100 100 100 80-120 100 100 100 100 80-120 100 100 100 100 80-120 100 100 100 100 80-120 100 100 100 100 80-120 100 100 100 100 100 100 100 100 100	Surrogate: 4-Bromofluorobenzene	46.4		n	40.0		116	80-120			
Renzene 100 ug/kg 100 100 80-120 100 80-120 100 100 80-120 100 100 80-120 100 100 80-120 100 100 80-120 100 100 100 80-120 100 100 80-120 100 100 100 80-120 100 100 100 80-120 100 100 100 80-120 100 100 100 80-120 100 100 100 80-120 100 100 100 80-120 100 100 100 80-120 100 100 100 80-120 100 100 100 80-120 100 100 100 80-120 100 100 100 100 80-120 100 100 100 100 80-120 100 100 100 100 80-120 100 100 100 100 80-120 100 100 100 100 80-120 100 100 100 100 80-120 100 100 100 100 100 100 100 100 100	Calibration Check (EB61501-CCV1)				Prepared:	02/13/06	Analyzed	: 02/15/06			
Solution 105 " 100 105 80-120 108 80-120 108 109 108 80-120 109 108 80-120 109 1	Вепгене	100		ug/kg							
Sylene (p/m) 198	Toluene	105			100		105	80-120			
Source: 6B08020-04 Prepared: 02/13/06 Analyzed: 02/15/06 Analyze	Ethylbenzene	108		11	100		108	80-120			
Adaptive gate: a, a, a - Triffuorotohene 39.7 " 40.0 99.2 80-120 (aurogate: 4-Bromofluorobenzene 32.8 " 40.0 82.0 80-120 (aurogate: 4-Bromofluorobenzene 32.8 " 40.0 82.0 80-120 (aurogate: 4-Bromofluorobenzene 2.16 0.0250 mg/kg dry 2.68 ND 80.6 80-120 (aurogate: 4-Bromofluorobenzene 2.16 0.0250 mg/kg dry 2.68 ND 86.6 80-120 (aurogate: 4-Bromofluorobenzene 2.45 0.0250 " 2.68 ND 91.4 80-120 (aurogate: 4-Bromofluorobenzene 32.1 ug/kg 40.0 80.2 80-120 (aurogate: 4-Bromofluorobenzene 32.5 " 40.0 81.2 80-120 (aurogate: 4-Bromofluorobenzene 32.5 " 40.0 81.2 80-120 (aurogate: 4-Bromofluorobenzene 2.40 0.0250 mg/kg dry 2.68 ND 89.6 80-120 10.6 20 (aurogate: 4-Bromofluorobenzene 2.55 0.0250 " 2.68 ND 95.1 80-120 9.36 20 (aurogate: 4-Bromofluorobenzene 2.55 0.0250 " 2.68 ND 95.1 80-120 9.36 20 (aurogate: 4-Bromofluorobenzene 3.55 0.0250 " 2.68 ND 95.1 80-120 9.36 20 (aurogate: 4-Bromofluorobenzene 3.55 0.0250 " 2.68 ND 95.1 80-120 7.88 20 (aurogate: 4-Bromofluorobenzene 3.55 0.0250 " 2.68 ND 95.1 80-120 7.88 20 (aurogate: 4-Bromofluorobenzene 3.55 0.0250 " 2.68 ND 95.1 80-120 7.88 20 (aurogate: 4-Bromofluorobenzene 3.55 0.0250 " 2.68 ND 95.1 80-120 7.88 20 (aurogate: 4-Bromofluorobenzene 3.55 0.0250 " 2.68 ND 95.1 80-120 7.88 20 (aurogate: 4-Bromofluorobenzene 3.55 0.0250 " 2.68 ND 95.1 80-120 7.88 20 (aurogate: 4-Bromofluorobenzene 3.55 0.0250 " 2.68 ND 95.1 80-120 7.88 20 (aurogate: 4-Bromofluorobenzene 3.55 0.0250 " 2.68 ND 95.1 80-120 7.88 20 (aurogate: 4-Bromofluorobenzene 3.55 0.0250 " 2.68 ND 95.1 80-120 7.88 20 (aurogate: 4-Bromofluorobenzene 3.55 0.0250 " 2.68 ND 91.0 80-120 7.14 20 (aurogate: 4-Bromofluorobenzene 3.55 0.0250 " 2.68 ND 91.0 80-120 7.14 20 (aurogate: 4-Bromofluorobenzene 3.55 0.0250 " 2.68 ND 91.0 80-120 7.14 20 (aurogate: 4-Bromofluorobenzene 3.55 0.0250 " 2.68 ND 91.0 80-120 7.14 20 (aurogate: 4-Bromofluorobenzene 3.55 0.0250 " 2.68 ND 91.0 80-120 7.14 20 (aurogate: 4-Bromofluorobenzene 3.55 0.0250 " 2.68 ND 91.0 80-120 7.14 20 (aurogate: 4-Bromofluorobenzene 3.55 0.0250 " 2.68 ND 91.0 80-120 7.1	Xylene (p/m)	198		μ	200		99.0	80-120			
### Autrix Spike (EB61501-MS1) Source: 6B08020-04	Xylene (o)	118		n	100		118	80-120			
Source: 6B08020-04 Prepared: 02/13/06 Analyzed: 02/15/06 Source: 6B08020-04 Prepared	Surrogate: a,a,a-Trifluorotoluene	39.7		27	40.0		99.2	80-120			
Senzene 2.16 0.0250 mg/kg dry 2.68 ND 80.6 80-120	Surrogate: 4-Bromofluorobenzene	32.8		Ħ	40.0		82.0	80-120			
Senzene 2.16 0.0250 mg/kg dry 2.68 ND 80.6 80-120	Matrix Spike (EB61501-MS1)	Soi	urce: 6B0802	20-04	Prepared:	02/13/06	Analyzed	: 02/15/06			
2.45 0.0250 " 2.68 ND 91.4 80-120 (ylene (p/m) 4.56 0.0250 " 5.36 ND 85.1 80-120 (ylene (p/m) 4.56 0.0250 " 2.68 ND 108 80-120 (ylene (o) 2.90 0.0250 " 2.68 ND 108 80-120 (ylene (o) 32.1 ug/kg 40.0 80.2 80-120 (ylene (a.a.a-Trifluorotoluene 32.5 " 40.0 81.2 80-120 (ylene (o) 81.2 80-120 (ylene (p/m) 89.6 80-120 (ylene (p/m) 89.9 80-120 (ylene (o) 31.2 0.0250 " 2.68 ND 98.9 80-120 (ylene (o) 31.2 0.0250 " 3.68 ND 91.0 80-120 (ylene (o) 31.2 0.0250 " 3.68 ND 116 80-120 (ylene (o) 31.2 0.0250 " 3.68 ND 116 80-120 (ylene (o) 31.2 0.0250 " 38.8 80-120 (ylene (o) 83.8 80-12	Benzene	2.16	0.0250	mg/kg dry	2.68	ND	80.6	80-120	Y	AL NOW BUT OF THE STATE OF THE	
(ylene (p/m) 4.56 0.0250 " 5.36 ND 85.1 80-120 (ylene (o)) 2.90 0.0250 " 2.68 ND 108 80-120 (urrogate: a.a.a-Trifluorotohuene 32.1 ug/kg 40.0 80.2 80-120 (urrogate: 4-Bromofluorobenzene 32.5 " 40.0 81.2 80-120 (urrogate: Spike Dup (EB61501-MSD1) Source: 6B08020-04 Prepared: 02/13/06 Analyzed: 02/15/06 Senzene 2.40 0.0250 mg/kg dry 2.68 ND 89.6 80-120 10.6 20 Coluene 2.55 0.0250 " 2.68 ND 95.1 80-120 9.36 20 Sthylbenzene 2.65 0.0250 " 2.68 ND 98.9 80-120 7.88 20 Cylene (p/m) 4.88 0.0250 " 5.36 ND 91.0 80-120 6.70 20 Surrogate: a.a.a-Trifluorotoluene 33.5 ug/kg 40.0 83.8 80-120	Toluene	2.32	0.0250	į»	2.68	ND	86.6	80-120			
Aylene (o) 2.90 0.0250 " 2.68 ND 108 80-120 Jurrogate: a.a,a-Trifluorotoluene 32.1 ug/kg 40.0 80.2 80-120 Jurrogate: 4-Bromofluorobenzene 32.5 " 40.0 81.2 80-120 Jurrogate: 4-Bromofluorobenzene 2.40 0.0250 mg/kg 40.0 89.6 80-120 10.6 20 Genzene 2.40 0.0250 " 2.68 ND 95.1 80-120 9.36 20 Schylene (p/m) 4.88 0.0250 <t< td=""><td>Ethylbenzene</td><td>2.45</td><td>0.0250</td><td>D</td><td>2.68</td><td>ND</td><td>91.4</td><td>80-120</td><td></td><td></td><td></td></t<>	Ethylbenzene	2.45	0.0250	D	2.68	ND	91.4	80-120			
Surrogate: a.a.a-Trifluorotoluene 32.1 ug/kg 40.0 80.2 80-120 aurogate: 4-Bromofluorobenzene 32.5 " 40.0 81.2 80-120 aurogate: 4-Bromofluorobenzene 32.5 " 40.0 81.2 80-120 aurogate: 4-Bromofluorobenzene 32.5 " 40.0 81.2 80-120 aurogate: 02/15/06 aurogate: 02/1	Xylene (p/m)	4.56	0.0250	n	5.36	ND	85.1	80-120			
Matrix Spike Dup (EB61501-MSD1) Source: 6B08020-04 Prepared: 02/13/06 Analyzed: 02/15/06 Senzene 2.40 0.0250 mg/kg dry 2.68 ND 89.6 80-120 10.6 20 Soluene 2.55 0.0250 2.68 ND 95.1 80-120 9.36 20 Soluene 2.65 0.0250 2.68 ND 98.9 80-120 7.88 20 Soluene Soluene (ylene (p/m) 4.88 0.0250 3.12 0.0250 3.12 0.0250 3.13 0.0250 3.14 0.0250 3.15 0.0250 3.16 0.0250 3.17 0.0250 3.18 0.0250 3.18 0.0250 3.19 0.0250 3.19 0.0250 3.10 0.0250 0	Xylene (o)	2.90	0.0250	Ħ	2.68	ND	108	80-120			
Autrix Spike Dup (EB61501-MSD1) Source: 6B08020-04 Prepared: 02/13/06 Analyzed: 02/15/06 Benzene 2.40 0.0250 mg/kg dry 2.68 ND 89.6 80-120 10.6 20 Goluene 2.55 0.0250 " 2.68 ND 95.1 80-120 9.36 20 Glylene (p/m) 4.88 0.0250 " 2.68 ND 98.9 80-120 7.88 20 Gylene (o) 3.12 0.0250 " 5.36 ND 91.0 80-120 6.70 20 Gylene (a) 3.12 0.0250 " 2.68 ND 116 80-120 7.14 20	Surrogate: a.a,a-Trifluorotoluene	32.1		ug/kg	40,0		80.2	80-120	~~~~~		······································
Senzene 2.40 0.0250 mg/kg dry 2.68 ND 89.6 80-120 10.6 20 Foluene 2.55 0.0250 " 2.68 ND 95.1 80-120 9.36 20 Schylenzene 2.65 0.0250 " 2.68 ND 98.9 80-120 7.88 20 Sylene (p/m) 4.88 0.0250 " 5.36 ND 91.0 80-120 6.70 20 Sylene (o) 3.12 0.0250 " 2.68 ND 116 80-120 7.14 20 Surrogate: a,a,a-Trifluorotolnene 33.5 ug/kg 40.0 83.8 80-120	Surrogate: 4-Bromofluorobenzene	32.5		,,	40.0		81.2	80-120			
Senzene 2.40 0.0250 mg/kg dry 2.68 ND 89.6 80-120 10.6 20 Foluene 2.55 0.0250 " 2.68 ND 95.1 80-120 9.36 20 Schylenzene 2.65 0.0250 " 2.68 ND 98.9 80-120 7.88 20 Sylene (p/m) 4.88 0.0250 " 5.36 ND 91.0 80-120 6.70 20 Sylene (o) 3.12 0.0250 " 2.68 ND 116 80-120 7.14 20 Surrogate: a,a,a-Trifluorotolnene 33.5 ug/kg 40.0 83.8 80-120	Matrix Spike Dup (EB61501-MSD1)	Sou	urce: 6B080	20-04	Prepared:	02/13/06	Analyzed	: 02/15/06			
Ethylbenzene 2.65 0.0250 " 2.68 ND 98.9 80-120 7.88 20 Cylene (p/m) 4.88 0.0250 " 5.36 ND 91.0 80-120 6.70 20 Cylene (o) 3.12 0.0250 " 2.68 ND 116 80-120 7.14 20 iurrogate: a,a,a-Trifluorotoluene 33.5 ug/kg 40.0 83.8 80-120	Benzene	2.40	0.0250	mg/kg dry				·····		20	
Kylene (p/m) 4.88 0.0250 " 5.36 ND 91.0 80-120 6.70 20 Kylene (o) 3.12 0.0250 " 2.68 ND 116 80-120 7.14 20 iurrogate: a,a,a-Trifluorotoluene 33.5 ug/kg 40.0 83.8 80-120	Toluene	2.55	0.0250		2.68	ND	95.1	80-120	9.36	20	
(ylene (o) 3.12 0.0250 " 2.68 ND 116 80-120 7.14 20 (urrogate: a,a,a-Trifluorotoluene 33.5 ug/kg 40.0 83.8 80-120	Ethylbenzene	2.65	0.0250	n	2.68	ND	98.9	80-120	7.88	20	
iurrogate: a,a,a-Trifluorotoluene 33.5 ug/kg 40.0 83.8 80-120	Xylene (p/m)	4.88	0.0250	"	5.36	ND	91.0	80-120	6.70	20	
	Xylene (o)	3.12	0.0250	н	2.68	ND	116	80-120	7.14	20	
iurrogate: 4-Bromofluorobenzene 33.8 " 40.0 84.5 80-120	Surrogate: a,a,a-Trifluorotoluene	33.5		ug/kg	40.0		83.8	80-120			
	Surrogate: 4-Bromofluorobenzene	<i>33.8</i>		H	40.0		84.5	80-120			

Project: Chevron USA/ Lovington Paddock #81

Fax: 505-394-2601

P.O. Box 1558 Eunice NM, 88231 Project Number: 200067

Project Manager: Iain Olness

Reported: 02/15/06 17:09

General Chemistry Parameters by EPA / Standard Methods - Quality Control **Environmental Lab of Texas**

A Vista	Dogule	Reporting Limit	Units	Spike Level	Source	4/DEC	%REC	D DD	RPD	Made
Analyte	Result	LIMIT	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB61007 - General Preparation	n (Prep)									
Blank (EB61007-BLK1)				Prepared:	02/09/06	Analyzed	: 02/10/06			
% Solids	100		%							
Duplicate (EB61007-DUP1)	Soc	urce: 6B0801	4-01	Prepared:	02/09/06	Analyzed	: 02/10/06			
% Solids	98.8		%		98.6			0.203	20	
Duplicate (EB61007-DUP2)	Sou	urce: 6B0801	9-06	Prepared:	02/09/06	Analyzed	: 02/10/06			
% Solids	99.7		%		99.7			0.00	20	
Duplicate (EB61007-DUP3)	Soc	urce: 6B0900	2-03	Prepared:	02/09/06	Analyzed	: 02/10/06			
% Solids	74.8		%		74.5			0.402	20	
Batch EB61302 - Water Extraction										
Blank (EB61302-BLK1)				Prepared:	02/11/06	Analyzed	: 02/13/06	.,		
Chloride	ND	0.500	mg/kg							
Sulfate	ND	0.500	H							
LCS (EB61302-BS1)				Prepared:	02/11/06	Analyzed	: 02/13/06			
Chloride	8.98		mg/L	10.0		89.8	80-120			
ulfate	9.72		P	10.0		97.2	80-120			
Calibration Check (EB61302-CCV1)				Prepared:	02/11/06	Analyzed	: 02/13/06			
Chloride	9.04		mg/L	10.0		90.4	80-120			
Sulfate	9.84		47	10.0		98.4	80-120			
Ouplicate (EB61302-DUP1)	Soi	ırce: 6B0801	7-16	Prepared:	02/11/06	Analyzed	: 02/13/06			
Sulfate	80.5	5.00	mg/kg		78.5			2.52	20	
Chloride	18.5	5.00	p		18.9			2,14	20	

P.O. Box 1558 Eunice NM, 88231 Project: Chevron USA/ Lovington Paddock #81

Project Number: 200067 Project Manager: Iain Olness Fax: 505-394-2601

Reported:
02/15/06 17:09

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By: Rollandk Juil

Date: 2-16-06

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Chain of Custody Form

Environmental Plus, Inc.

2100 Avenue O, Eunice, NM 88231 (505) 394-3481 FAX: (505) 394-2601

P.O. Box 1558, Eunice, NM 88231

Company Name	Environmental Plus, Inc	2							RIIITIS					NU		Q Q	ü	Ĭ	ļ		
EPI Project Manager	ager													-	-					-	
Mailing Address				T-					-												
City, State, Zip		88231		_			* 10	m	Щ	ALON AND AND AND AND AND AND AND AND AND AN											
EPI Phone#/Fax#		394-2601		<u> </u>			"	7		l _e			**********							********	
Client Company	Chevron USA			r				directors dispersion policies	2000											<i></i>	
Facility Name		#81		Γ																	
Location	UL-F, Sec. 12, T 17 S, R	S, R 36 E		Г			٩	ttn: k	ain (Attn: lain Olness								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		*****	
Project Reference				T				8	ŏ	PO Box 1558		_	•••••	_							
EPI Sampler Name	me George Blackburn			\vdash			Ш	unice	N.	Eunice, NM 88231											
				MA	MATRIX		۲	PRESERV.	RV.	SAMPLING	NG	_							-		
LABI.D.	SAMPLE I.D.	# СОИТАІИЕРЗ	GROUND WATER WASTEWATER	TIOS	CBNDE OIF	SEUDGE	OTHER:	ICE\COOF	ЯЗНТО	DATE	TIME	BTEX 8021B	Matos H9T	снговірег (сі.)	SULFATES (SO4 ⁵)	на ТСГР	OTHER >>>	нда			
0[1	SB-1 (2'-3')	X 1		X				X		07-Feb-06	16:10	×	×	×	₽	_	_			H	Τ
<u>-</u>	2 SB-1 (5'-6')	X 1		X			Н	X		07-Feb-06	16:17	×	×	×	×	_	_			H	T
-62 3	SB-1 (10'-11')	X 1		×				X		07-Feb-06	16:27	×	X	×	×	_				H	<u> </u>
	4 SB-2 (2'-3")	X		×				×		07-Feb-06	16:40	X	×	X	×						
I	SB-2 (5'-6')	- ×	\dashv	긔		7	-	×		07-Feb-06	16:51	×	×	×	×						
9 0)0-	SB-2 (10'-11')	- ×	-	ĭ		7	\dashv	×		07-Feb-06	17:04	X	×	X	×	_					
7			+	-		十	╁	-						十	+		4			H	П
\$ 6			+	-		\dagger	+	\bot					†	\dagger	+	-	4			\dagger	Т
10		Ī	十	\downarrow	I	t	+	1	T			$oldsymbol{\mathbb{I}}$	T	十	+	╀	4			\dagger	Т
				-			1						7	7		_	-				
Sample PRelinquished)	≋ I>	Received By:	٠					1		and the fact of the second											
ړ_ ـ	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	level The	CI C					HE WE	REMARKS:	E-mail resuits to: loiness@envplus.net REMARKS:	envp)	us.ne									
Relipedished by:	0) James 00/8/1000	Righterived By	r. (lab	b staff)	te	20	\		7	for glass											
Delivered by:	Sample Cool 8	Cool & Intact			ر چ چ	Checked By	i.		7	seal inc	iar/lake										<u> </u>
		0'5	6							1											1

Environmental Lab of Texas Variance / Corrective Action Report — Sample Log-In

Client: Highlander				
Date/Time: 2/8/06 11-10	-			
Order #: 6808017				
01.				
nitials:				
Sample Receipt	Checki	ist	-~	,
Temperature of container/cooler?	Yes	No	50 C	
Shipping container/cooler in good condition?	X25	No		
Custody Seals intact on shipping container/cooler?	Yes	No	HICT Present	
Custody Seals intact on sample bottles?	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	No	Not present	
Chain of custody present?	155	No		
Sample Instructions complete on Chain of Custody?	Væs	No		
Chain of Custody signed when relinquished and received?	Yes	No		
Chain of custody agrees with sample label(s)	Yes	No		
Container labels legible and intact?	16	No		
Sample Matrix and properties same as on chain of custody?	Yes	No		
Samples in procer container/bottle?	≱es	l No		
Samples in prober contamendation. Samples properly preserved?	1 Kes	No		
Sample bottles intact?	7 (2)	No		
Preservations documented on Chain of Custody?	1 (5)	No		
Containers documented on Chain of Custody?		l No		
Sufficient sample amount for indicated test?		No	1	
All samples received within sufficient hold time?		No		
VOC samples have zero headspace?	Y@	No	Not Accilcable	
Other observations:				
Variance Docu Contact Person: Date/Time: Regarding:			Contacted by: _	j
		-		
Corrective Action Taken:				
	······································	·····		

APPENDIX III SOIL BORING LOGS

Log Of Test Borings

(NOTE - Page 1 of 1)

ENVIRONMENTAL PLUS, INC.
CONSULTING AND
REMEDIAL CONSTRUCTION
EUNICE, NEW MEXICO
505-394-3481

Project Number: 200067

Project Name: Lovington Paddock #81

UL F, Section 12, Township 17 South, Range 36 East Location:

SUNFACE

	-		505-3	94-3481]1	Boring I	Number	SB-1	Surface Elevation: 3,817-feet ams
Time	Sample Type	Recovery (inches)	Moisture	PID Readings (ppm)	Chloride Analysis (mg/Kg)	U.S.C.S. Symbol	Depth (feet)		Star Comp	t Date: 2-07-06 Time: 1610 hrs Description Time: 1637 hrs
										_
1620	22	12		.6	400		+			2' CALICHE, White
1627	22	12		.3	160		5		-	5' ROCK, Tan
								į		
							10			_
1631	22	12		.3	160		⊥ "			10' ROCK, Tan
i							\perp			End of Soil Boring at 11' bgs
					1		<u> </u>			-
							—			
							15	;		
							-			-
							-			_
							-			-
							\vdash			_
							20	1		_
										- - -
			}				 			
								:		
							F			_
			1				25			_
)										_
										_
										_
			1							
							30			
								<u> </u>		_
Date	Wate Tim		Meas	urement Casino	cave-l	;) n Wo	ter D	rilling Me	thod	Straub
	-		mple epth -	Casing Depth	Cave-li Depth -		vel -	ackfill Me	thodi	Bentonite
					1	1				

Field Representative:

Log Of Test Borings

(NOTE - Page 1 of 1)

ENVIRONMENTAL PLUS, INC.
CONSULTING AND
REMEDIAL CONSTRUCTION
EUNICE, NEW MEXICO
505-394-3481

Project Number: 200067

Project Name: Lovington Paddock #81

UL F, Section 12, Township 17 South, Range 36 East Location

	•		505-39	94-3481		E	Boring I	Number	SB-5	Surface Eleva	tion: 3,817-feet amsl
Time	Sample Type	Recovery (inches)	Moisture	PII) Readings (ppm)	Chloride Analysis (mg/Kg)	U.S.C.S. Symbol	Depth (feet)		Completion	e: 2-07-06 Date: 2-07-06 cription	Time: 1640 hrs Time: 1720 hrs
1640	22	12		ż	160					0/ 04/ 70/15 - 1// //	_
1040	33	16			100		<u> </u>			2' CALICHE, White	
1651	22	12		.1	160		5			5' ROCK, Tan	
					1		_				
1705	22	12		.1	160		10		Fnd	10' ROCK, Tan	11/ hos
									Lriu	or soil borning at	- -
							15				
											_
				i			50				_
											_ _
					,		25				_
											_
							-				_ _
	- 						30				_
Date -	Vate Tim	e Sa De	mple pth	urement Casing Depth	S (feet Cave-Ir Depth	l Wa	vel	rilling Meth ackfill Meti		aub ntonite	
			-	_	-	-		ield Repres	entative	GB	

APPENDIX IV INFORMATION AND METRICS FORM INITIAL NMOCD FORM C-141 FINAL NMOCD FORM C-141

Incident Date:

Unknown

NMOCD Notified:

Unknown

Information and Metrics

Site: Lovington Paddock #81 Assigned Site Reference: NMOCD 1RP#1227; EPI #200067

Company: Chevron

Street Address:

Mailing Address: P.O. Box 1949

City, State, Zip: Eunice, New Mexico 88231

Representative: Larry Williams
Representative Telephone:

Telephone:

Fluid volume released (bbls): unknown

Recovered (bbls): none

>25 bbls: Notify NMOCD verbally within 24 hrs and submit form C-141 within 15 days.
(Also applies to unauthorized releases >500 mcf Natural Gas)

5-25 bbls: Submit form C-141 within 15 days (Also applies to unauthorized releases of 50-500 mcf Natural Gas)

Leak. Spill. or Pit (LSP) Name: Lovington Paddock #81

Source of contamination: Injection Well

Land Owner, i.e., BLM, ST, Fee, Other: Darr Angell

LSP Dimensions: Unknown

LSP Area: ~5,400 ft²

Location of Reference Point (RP):

Location distance and direction from RP:

Latitude: N 32° 51' 08.57" **Longitude:** W 103° 18' 32.18"

Elevation above mean sea level: 3,817 feet

Feet from South Section Line: Feet from East Section Line:

Location- Unit or 1/4/4: SE1/4 of the NW1/4 Unit Letter: F

Location- Section: 12

Location- Township: 17 South Location- Range: 36 East

Surface water body within 1000 ' radius of site: none

Domestic water wells within 1000' radius of site: none

Agricultural water wells within 1000' radius of site: One (USGS 17S 36E 12.1.2.3); Figure 2 - #31

Public water supply wells within 1000' radius of site: none

Depth from land surface to groundwater (DG): ~59 feet

Depth of contamination (DC): ~3 feet

Depth to groundwater (DG – DC = DtGW): \sim 56 feet

	A \$57 111 170 4 41 4	
1. Groundwater	2. Wellhead Protection Area	3. Distance to Surface Water Body
If Depth to GW <50 feet: 20 points	If <1000' from water source, or;<200' from	<200 horizontal feet: 20 points
If Depth to GW 50 to 99 feet: 10 points	private domestic water source: 20 points	200-1000 horizontal feet: 10 points
If Depth to GW >100 feet: 0 points	If >1000' from water source, or; >200' from private domestic water source: 0 points	>1000 horizontal feet: 0 points

Site Rank (1+2+3) = 10+20+0=30

Total Site Ranking Score and Acceptable Concentrations >19 0-9 Parameter 10-19 Benzene¹ 10 ppm 10 ppm 10 ppm BTEX¹ 50 ppm 50 ppm 50 ppm TPH 1,000 ppm 100 ppm 5,000 ppm 100 ppm field VOC headspace measurement may be substituted for lab analysis

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 District II

1301 W. Grand Avenue, Artesia, NM 88210

District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

* Attach Additional Sheets If Necessary

State of New Mexico
Energy Minerals and Natural Resources Co
Oil Conservation Division
1220 South St. Francis Dr.
Santa Fe, NM 87505

tification and Correct:
OPERATO Form C-141 Revised October 10, 2003 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Final Report

Release Notification and Corrective Action

Name of Co	mpany:	Chevron				Contact: Larr	y Williams					
Address: P.	O. Box 1	949 Eunice	, NM 88	231	,	Telephone No	D.:					
Facility Na	me: Lovi	ngton Padd	ock #81			Facility Type	: Injection well					
Surface Ow	more Dar	r Angal		Mineral O	w no	r: State of Ne	w Mevico	API No.	•			
Surface Ow	ner: Dai	1 Aligei		Millerar	WHE	1. State of Ne	w Mexico	AFT NO.	•			
				LOCATION								
Unit Letter F	Section 12	Township 17S	Range 36E	Feet from the	Nor	th/South Line	Feet from the	East/West Li	ine County Lea			
		Lat	itude: <u>N</u>	32° 51' 08.57"	Lon	gitude: W 10	3° 18' 32.18"					
				NATURE C)F]	RELEASE						
Type of Relea						Volume of Re	lease: unknown		ecovered: none			
Source of Rela	ease: Inject	ion well					r of Occurrence:		Hour of Discovery:			
Was Immedia	to Notice (livan9	·			30 January 200 If YES, To W		30 January	2006 @ a.m.			
	te Houce (M 1	Yes 🔲	No 🔲 Not Requi	ired			- Polic by a Physician de Artic	,			
By Whom?		1 10		········		Date and Hou		TT7 .				
Was a Watercourse Reached? ☐ Yes ☒ No ☐ Yes ☒ No ☐ Not Applicable												
						Тоттъррисион						
If a Watercou	rse was Im	pacted, Desc	ribe Fully	*.* Not Applicable								
Depth to Grou	ındwater:	~59 feet		······························								
Describe Caus	se of Probl	em and Remo							failed. Zero (0) barrels			
				Chevron contacted EP					team worked on the eanup of the release area.			
				ken.* Approximatel					canup of the release area.			
I hereby certify	that the ir	formation giv	en above	is true and complet	e to t	the best of my kr	nowledge and under	erstand that pur	suant to NMOCD rules			
									for releases which may			
									rt" does not relieve the threat to ground water,			
									perator of responsibility			
for compliance	with any o	ther federal, s	tate, or loc	ad laws and/or regu	latio	ns.	•					
_		7	/ 1.	11	İ	<u>O</u>	IL CONSERV.	ATION DIV	<u>ISION</u>			
Signature:			1,1	L.	_							
Printed Name	: Larry Wil	liams			1	Approved by Dis	strict Supervisor:					
Title: HES Ch	ampion					Approval Date:		Expiration l	Date:			
E-mail Addre	ss: larry.wi	lliams@chevr	on.com		_ •	Conditions of A _l	pproval:		Attached			
Date: 1 20	0.6	Phone: 5		6 1111 02	1 2 0)						

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico
Energy Minerals and Natural Resources

Oil Conservation Division
1220 South St. Francis Dr.
Santa Fe, NM 87505

State of New Mexico

Submit 2 Coptes to appropriate
District Office in accordance
Submit 2 Coptes to appropriate
District Office in accordance
Side of form

Release Notification and Corrective Action

				OPERA'	TOR		Initial	Report [
Name of Co	ompany:	Chevron			•	Contact: Larr	y Williams						
Address: P.	.O. Box 1	949 Eunice	, NM 88	231		Telephone No	D.:						
Facility Na	me: Lovi	ngton Padd	ock #81]]	Facility Type	: Injection well						
Surface Ov	man Da	m Angoll		Minoral		r: State of Ne	w Movino	ADI No	. }				
Surface Ov	vner: Dai	T Aligen		Mineral	wite	r: State of Ne	W IVIEXICO	API No.	, 30°°				
				LOCATION		-	, i	The second second	·				
Unit Letter F	Section 12	Township 17S	Range 36E	Feet from the	Nor	th/South Line	Feet from the	East/West Li	ine County Lea				
		Lat	itude: <u>N</u>	32° 51' 08.57" NATURE (KF	# 1227				
Type of Relea						Volume of Re	lease: unknown	Volume R	ecovered: none				
Source of Rel	ease: Inject	ion well				Date and Hou unknown	r of Occurrence:	Date and l unknown	Hour of Discovery:				
Was Immedia	te Notice (Yes 🔲 🛚	No 🗌 Not Requ	ired	If YES, To W unknown	hom?						
By Whom? u						Date and Hou							
Was a Watero	Was a Watercourse Reached? ☐ Yes ☑ No If YES, Volume Impacting the Watercourse: Not Applicable												
If a Watercou	rse was Im	pacted, Desc	ribe Fully	*.* Not Applicable		<u> </u>							
Depth to Grou													
Describe Cause of fluid were recoff site by anoth	overed. App	roximately 5,40	edial Action 0 square fee	on Taken.* An unket of surface area was	nown a affect	amount of produce ed by the release. I	d water was released mpacted soil from the	when a flow-line e release area wa	failed. Zero (0) barrels s excavated and disposed				
Describe Area advanced and w	Affected ork continue removed. The	and Cleanup d from 3/7/06 the excavation w	hrough 3/8/ as backfille	06. Based on laborated with clean topsoil	tory an	alytical data taken	from the soil boring	s, most impacted	30/06. Soil borings were d soil in the bottom of the coured for natural drainage				
I hereby certif	y that the in	nformation giv	en above	is true and comple	te to t	he best of my kr	nowledge and unde	rstand that pur	suant to NMOCD rules				
and regulation	s all operat	ors are requir	ed to repo	rt and/or file certa	in rele	ease notifications	and perform corr	ective actions	for releases which may				
operator of lia	ic neaith of bility shoul	r the environr d their operat	nent. I ne ions have	failed to adequate	U-141 Ivinv	report by the N	MOCD marked a	s "Final Repor on that pose a	t" does not relieve the threat to ground water,				
surface water,	human hea	lth or the envi	ronment.	In addition, NMO	CD ac	ceptance of a C-	141 report does no	t relieve the op	perator of responsibility				
				1 1			IL CONSERVA	ATION DIV	<u>ISION</u>				
Signature	X	my G	Ιl	Luni									
Printed Name	: Larry Wi	\nearrow			A	Approved by Dis	ENUREI strict Supervisor;	NCR DO	ha				
Title: HES Ch	ampion				A	Approval Date:	4.20.07	Expiration I	Date:				
E-mail Addre	ss: larry.wi	lliams@chevr	on.com		_ 0	Conditions of A	proval:		Attached				
Date: 4-1 Attach Add	9-07			6-4414 ex1	28								
ALLEGA COLUMN			CSSMIV										