CLOSURE REPORT

WEST LOVINGTON UNIT #55

NMOCD REF: 1RP #1226

EPI REF: 200066

API# 30025039160000

UL-F (SW¼ of the NE¼) of Section 8 T17S R36E

~6 MILES SOUTH OF LOVINGTON

LEA COUNTY, NEW MEXICO

LATITUDE: N 32° 51' 04.38"

LONGITUDE: W 103° 22' 44.66"

MARCH 2007

PREPARED BY:

Environmental Plus, Inc. 2100 Avenue O Eunice, New Mexico 88231

PREPARED FOR:

incident- nPACO711047384 application- pPACO711047503

LETTER OF TRANSMITTAL

ENVIRONMENTAL PLUS, INC.

Date: April 19, 2007

To: Mr. Larry Johnson

Company Name: New Mexico Oil Conservation Division

Address: 1625 French Drive

City / State / Zip: Hobbs, New Mexico 88240

From: David P. Duncan

CC: Larry Williams, Chevron USA - Eunice, NM

Darr Angell, Property Owner, Lovington, NM NMOCD Ref. 1RP#1226: EPI Ref. #200066

Project #: NMOCD Ref. 1RP#1226:
Project Name: West Lovington Unit #55

Subject: Closure Report

# of originals	s # of copies	Description
1		Chevron USA – West Lovington Unit #55– Closure Report

Remarks

Dear Mr. Johnson:

Enclosed is a hard bound copy of the *Closure Report* for the above referenced site. Upon approval of the document by the NMOCD, EPI will remit hard bound copies of the *Closure Report* to individuals noted on the Distribution List. Should you have any technical questions, concerns or need additional information, please contact me at (505) 394-3481 or via email at dduncan@envplus.net. Official correspondence should be directed to Mr. Larry Williams, Chevron USA, at (505) 396-4414 ext. #128 (office), (505) 390-7165 (cellular) or via e-mail at lcwl@chevron.com.

Sincerely,

David P. Duncan Civil Engineer

P. O. Box 1558 Eunice, NM 88240 (505) 394-3481 Fax: (505) 394-2601

Distribution List

Chevron USA - West Lovington Unit #55

NMOCD Ref: 1RP #1226; EPI Ref: 200066

Name	Title	Company or Agency	Mailing Address	e-mail
Larry Johnson	Environmental Engineer	NMOCD – Hobbs	1625 French Drive Hobbs, NM 88240	larry.johnson@state.nm.us
Larry Williams	HES Champion	Chevron	P.O. Box 1949 Eunice, NM 88231	lcwl@chevron.com
Darr Angell	Property Owner	1	P.O. Box 190 Lovington, NM 88260	(505) 370-9048
File	-	Environmental Plus, Inc.	P.O. Box 1558 Eunice, NM 88231	dduncan@envplus.net

STANDARD OF CARE

Site Closure Report West Lovington Unit #55

NMOCD Ref: 1RP #1226, (EPI Ref. #200066)

The information provided in this report was collected consistent with the New Mexico Oil Conservation Division (NMOCD) *Guidelines for Remediation of Leaks, Spills and Releases* (August 13, 1993), the NMOCD *Unlined Surface Impoundment Closure Guidelines* (February, 1993) and Environmental Plus, Inc. (EPI) *Standard Operating Procedures and Quality Assurance/Quality Control Plan*. The conclusions are based on field observations and laboratory analytical reports as presented in the report. Recommendations follow NMOCD guidance and represent the professional opinions of EPI staff. These opinions were derived using currently accepted geologic, hydro-geologic and engineering practices at this time and location. The report was prepared or reviewed by a certified or registered professional with a background in engineering, environmental and/or natural sciences.

Prepared by:

Brandon Farrar

Environmental Consultant

4/19/07 Date

Reviewed by:

David P. Duncan

Civil Engineer

4/19/07

Table of Contents

1.0	Project Synopsis	iv
2.0	Site and Release Information	1
3.0	NMOCD Site Ranking	2
4.0	Excavation Soil Information	3
5.0	Sampling Information	4
6.0	Analytical Results	5
7.0	Discussion	6
8.0	Conclusion and Recommendations	7

FIGURES

Figure 1: Area Map

Figure 2: Site Location Map

Figure 3: Site Map

Figure 4: Soil Boring Location Map

TABLES

Table 1: Well Data

Table 2: Summary of Soil Boring Sample Field Analyses and Laboratory Analytical

Results

APPENDICES

Appendix I: Laboratory Analytical Reports and Chain-of-Custody Forms

Appendix II: Project Photographs Appendix III: Soil Boring Logs

Appendix IV: Information and Metrics Form

Initial NMOCD Form C-141 Final NMOCD Form C-141

1.0 PROJECT SYNOPSIS

Site Specific:

- ♦ Company Name: Chevron USA, Inc.
- ◆ Facility Name: West Lovington Unit #55
- ◆ Project Reference: NMOCD Ref: 1RP#1226; EPI Ref: #200066
- ♦ Company Contacts: Larry Williams
- ♦ Site Location: WGS84 N32° 51' 04.38"; W103° 22' 44.66"
- ♦ Legal Description: Unit Letter-F (SW¼ of the NE¼), Section 8, T17S, R36E
- General Description: Approximately 6-miles southeast of Lovington, New Mexico
- ♦ *Elevation:* 3,895-ft amsl
- ♦ Land Ownership: Darr Angell
- ♦ EPI Personnel: Project Consultant —Jason Stegemoller

Release Specific:

- ♦ Product Released: Produced water
- ♦ Volume Released: Unknown Volume Recovered: None
- ♦ Time of Occurrence: Unknown Time of Discovery: Unknown
- ♦ Release Source: Flow-line failed
- ♦ Initial Surface Area Affected: ~ 3,130 square feet

Remediation Specific:

- ♦ Final Vertical extent of contamination: Chlorides impact to 2-3 ft bgs
- ♦ **Depth to Ground Water:** Approximately 50-ft bgs
- ♦ Water wells within 1,000-ft: None
- ♦ Private domestic water sources within 200-ft: None
- ♦ Surface water bodies within 1,000-ft: None
- ♦ NMOCD Site Ranking Index: 10 points
- ♦ Remedial goals for Soil: TPH 1,000 mg/Kg; BTEX 50 mg/Kg; Benzene 10 mg/Kg; Chloride residuals may not be capable of impacting groundwater above NMWQCC Groundwater Standards of 250 mg/L.
- ◆ RCRA Waste Classification: Exempt
- Remediation Option Selected: a) Most soil impacted above NMOCD remedial goals was excavated
 and disposed off site; b) laboratory analyses confirmed removal of most soil impacted above
 NMOCD remedial thresholds; c) backfilled excavation with clean soil.
- ♦ *Disposal Facility:* Unknown (excavation completed by another contractor)
- Volume disposed: Unknown (excavation completed by another contractor)
- ♦ Project Completion Date: February 28, 2007

2.0 SITE AND RELEASE INFORMATION

- 2.1 Describe the land use and pertinent geographic features within 1,000 feet of the site. Land surrounding the area is rangeland and utilized for livestock grazing as well as oilfield operations.
- 2.2 Identify and describe the source or suspected source(s) of the release. Flow-line failed.
- 2.3 What is the volume of the release? (if known): Unknown barrels of: Produced water
- 2.4 What is the volume recovered? (if any): 0 barrels
- 2.5 When did the release occur? (if known): Unknown

2.6 Geological Description

The United States Geological Survey (USGS) Ground-Water Report 6, "Geology and Ground-water Conditions in Southern Lea County, New Mexico," A. Nicholson and A. Clebsch, 1961, describes the near surface geology of southern Lea County as "an intergrade of the Quaternary Alluvium (QA) sediments, i.e., fine to medium sand, with the mostly eroded Cenozoic Ogallala (CO) formation. Typically, the QA and CO formations in the area are capped by a thick interbed of caliche that was encountered between 5' and 10' bgs."

2.7 Ecological Description

The area is typical of the Upper Chihuahuan Desert Biome consisting primarily of sandy soil covered with short semi-arid grasses, interspersed with Honey Mesquite and forbs. Mammals represented include Orrd's and Merriam's Kangaroo Rats, Deer Mouse, White Throated Wood Rat, Cottontail Rabbit, Black Tailed Jackrabbit, Mule Deer, Bobcat, Red Fox and Coyote. Reptiles, amphibians and birds are numerous and typical of the area. A survey of Listed, Threatened or Endangered species was not conducted.

2.8 Area Groundwater

The unconfined groundwater aquifer at this site is projected to be \sim 50 feet (ft) bgs based on average water depth data obtained from the New Mexico State Engineers Office and the United States Geological Survey data base (reference *Table 1*).

2.9 Area Water Wells

No water well located within a 1,000-foot radius of the site (*Figure 2*).

2.10 Area Surface Water Features

No surface water features exist within a 1,000-foot radius of the site (reference Figure 2).

3.0 NMOCD SITE RANKING

Contaminant delineation and remedial work done at this site indicate chemical parameters of the soil and physical parameters of the groundwater were characterized consistent with the characterization and remediation/abatement goals and objectives set forth in the following New Mexico Oil Conservation Division (NMOCD) publications:

- ♦ Guidelines for Remediation of Leaks, Spills and Releases (August 13, 1993)
- ◆ Unlined Surface Impoundment Closure Guidelines (February, 1993)
- ♦ Pit and Below-Grade Tank Guidelines (November, 2004)

Acceptable thresholds for contaminants/constituents of concern (CoC) were determined based on the NMOCD Ranking Criteria as follows:

- Depth to Groundwater (i.e., distance from the lower most acceptable concentration to groundwater);
- ♦ Wellhead Protection Area (i.e., distance from fresh water supply wells);
- Distance to Surface Water Body (i.e., horizontal distance to all down gradient surface water bodies).

Based on the proximity of the site to protectable area water wells, surface water bodies, and depth to groundwater from the lower most contamination, the NMOCD ranking score for the site is ten (10) points with the soil remedial goals highlighted in the Site Ranking table presented below:

1. Ground Water		2. Wellhead Pro	otection Area	3. Di	stance to Surface Water
Depth to GW <50 20 points	feet:		n water source, or;	<200	horizontal feet: 20 points
Depth to GW 50 feet: 10 points	to 99	water source:			1,000 horizontal feet: oints
Depth to GW >10 0 points	0 feet:	1 '	n water source, or; vate domestic 0 points	>1,00	00 horizontal feet: <i>0 point</i> s
Site Rank (1+2+3) = 10 + 0	+ 0 = 10 points	•		
Total Site Rankir	g Score a	nd Acceptable R	emedial Goal Concei	ntration	s
Ranking Score		20 or >	10		0
Benzene ¹	10 ppm		10 ppm		10 ppm
BTEX ¹		50 ppm	0 ppm 50 ppm		50 ppm
ТРН	1	00 ppm	1,000 ppm		5,000 ppm

¹ A field soil vapor headspace measurement of 100 ppm can be substituted in lieu of laboratory analyses for benzene and BTEX.

4. <i>1</i>	Was soil excavated for off-site treatment or disposal? 🛮 🖂 Yes 🗀	No
	Date excavated: Unknown (excavation completed by another contractor)	ı
	Total volume removed: Unknown (excavation completed by another con	tractor)
4.2	Indicated soil treatment type: Disposal Land Treatement Composting/Biopiling Other ()	
Name	e and location of treatment/disposal facility:	

5.0 SAMPLING INFORMATION

5.1 Briefly describe the field screening methods used to distinguish contaminated from uncontaminated soil.

Organic Vapor Concentrations – A portion of each soil sample was inserted into a self-sealing polyethylene bag to allow volatilization of organic vapors. After the samples equilibrated to $\sim 70^{\circ}$ F, they were analyzed for organic vapors utilizing a MiniRae® Photo-ionization Detector (PID) equipped with a 10.6 electron volt (eV) lamp and calibrated for benzene response.

Chloride Concentrations – A La Motte Chloride Test Kit (titration method) was utilized for field chloride concentration analyses.

5.2 Briefly describe the soil analytical sampling and handling procedures used.

Soil samples from the soil borings were collected initially at 2-3 ft bgs, 5-6 ft bgs and thereafter at 5-foot intervals to total depth of each respective soil boring.

Upon collection of each sample, a portion was immediately placed in a laboratory provided container, labeled and set on ice for transport to an independent laboratory for quantification of total petroleum hydrocarbons (TPH), benzene, toluene, ethylbenzene and total xylenes (BTEX constituents), chloride and sulfate concentrations.

5.3 Discuss sample locations and provide rationale for their locations.

On February 7, 2006, four (4) soil borings were advanced throughout the release area at varying depths to delineate the vertical extent of impacted soil (reference *Appendix III*, *Soil Boring Logs*). Soil boring SB-4 was advanced outside the release area and used for background reference data. Locations for soil borings SB-1, SB-2 and SB-3 were chosen to provide the best representative examples of soil throughout the release area (reference *Figure 4* for locations).

6.0 **ANALYTICAL RESULTS**

6.1 Describe the vertical and horizontal extent and magnitude of soil contamination.

Laboratory analyses of soil samples collected from SB-1 thru SB-3 indicated benzene, BTEX and TPH concentrations were ND at or above laboratory MDL. Chloride concentrations ranged from 8 mg/Kg (SB-3 @ 5-6-feet bgs) to 425 mg/Kg (SB-1 @ 2-3feet bgs) (reference *Table 2*).

6.2 Is surface soil contamination present at the site (i.e., soil in the uppermost two feet that is visibly stained, contaminated at greater than 10 ppm (PID) or hydrocarbon saturated)?

☐ yes × no

If yes, attach a site map identifying extent(s) of surface soil contamination.

7.0 <u>DISCUSSION</u>

7.1 Discuss the risks associated with the remaining soil contamination:

Soil impacted above NMOCD remedial thresholds remains in situ. Benzene, TPH and BTEX constituent concentrations were ND at or above laboratory MDL. Laboratory analytical results indicated chloride impacted soil exists above the groundwater vadose zone. However, chloride impacted soil diminished with vertical extent. Based on depth to groundwater (~ 50 ft bgs), contaminants remaining in the soil may not be capable of impacting groundwater above NMWQCC Groundwater Standards of 250 mg/L.

7.2 Discuss the risks associated with the impacted groundwater:

Groundwater not impacted.

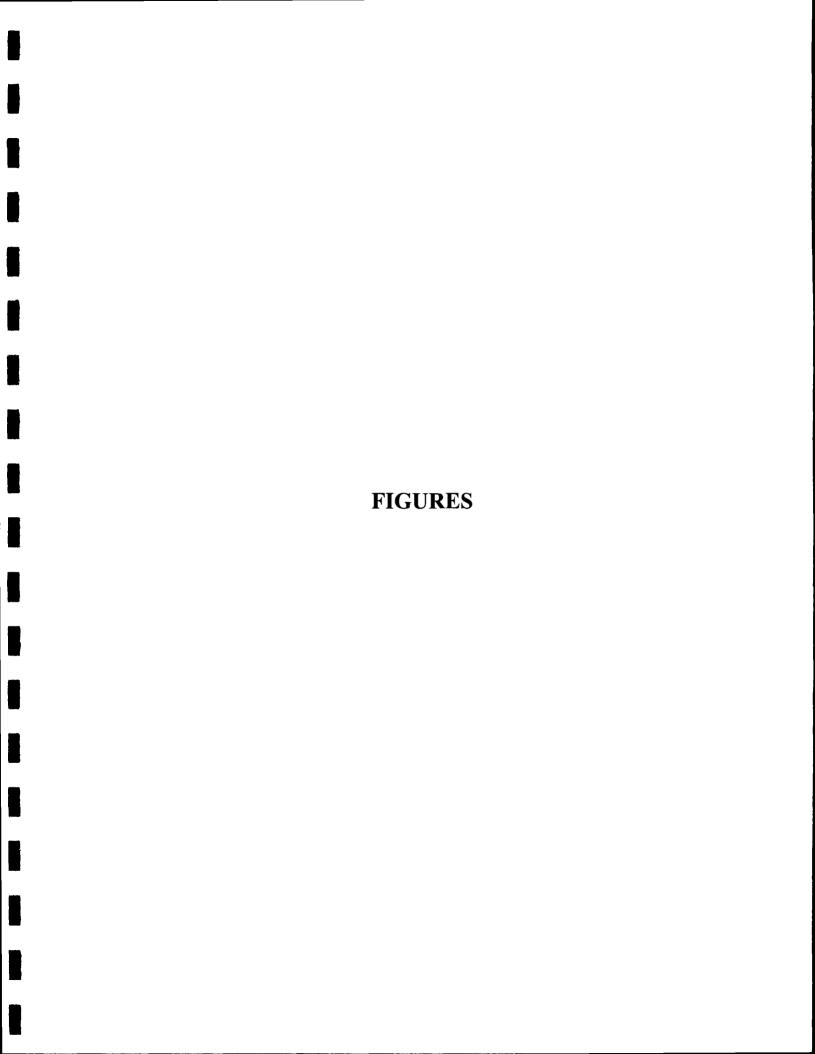
7.3 Discuss other concerns not mentioned above:

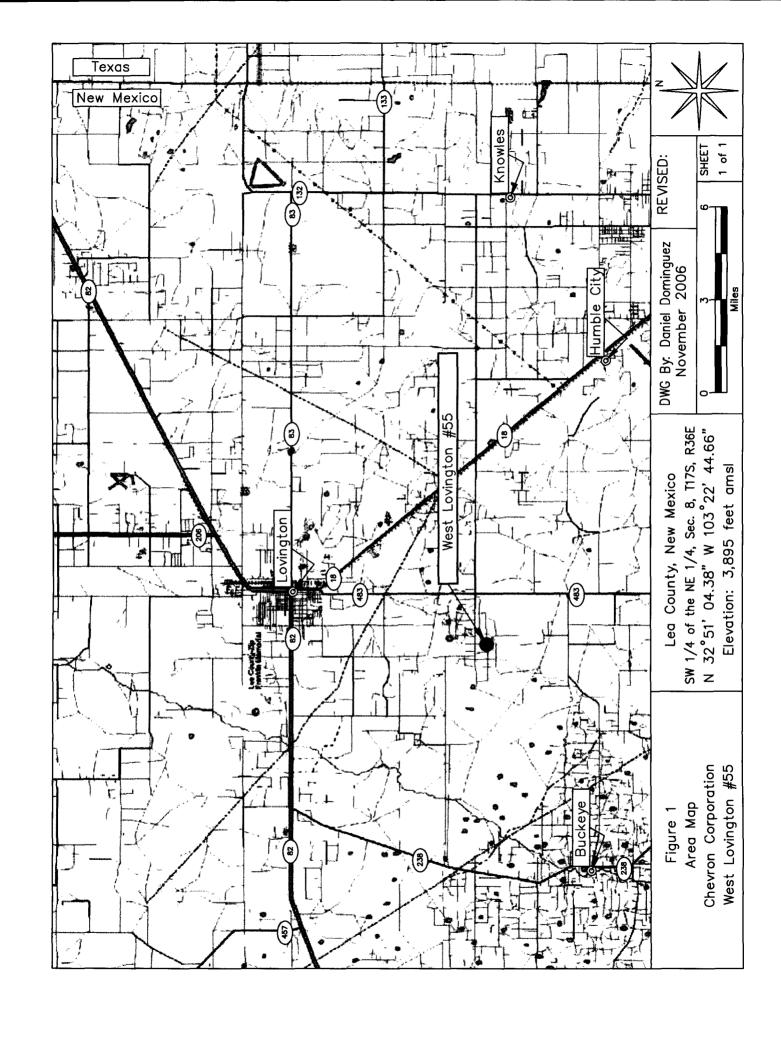
Not applicable

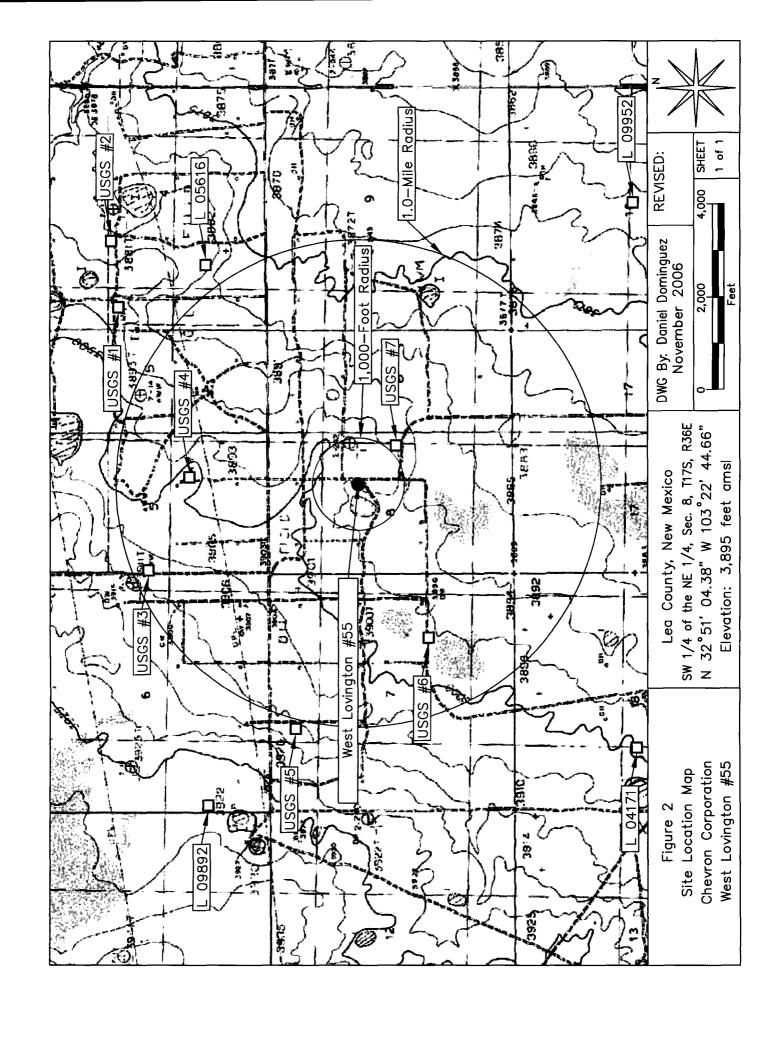
8.0 CONCLUSIONS AND RECOMMENDATIONS

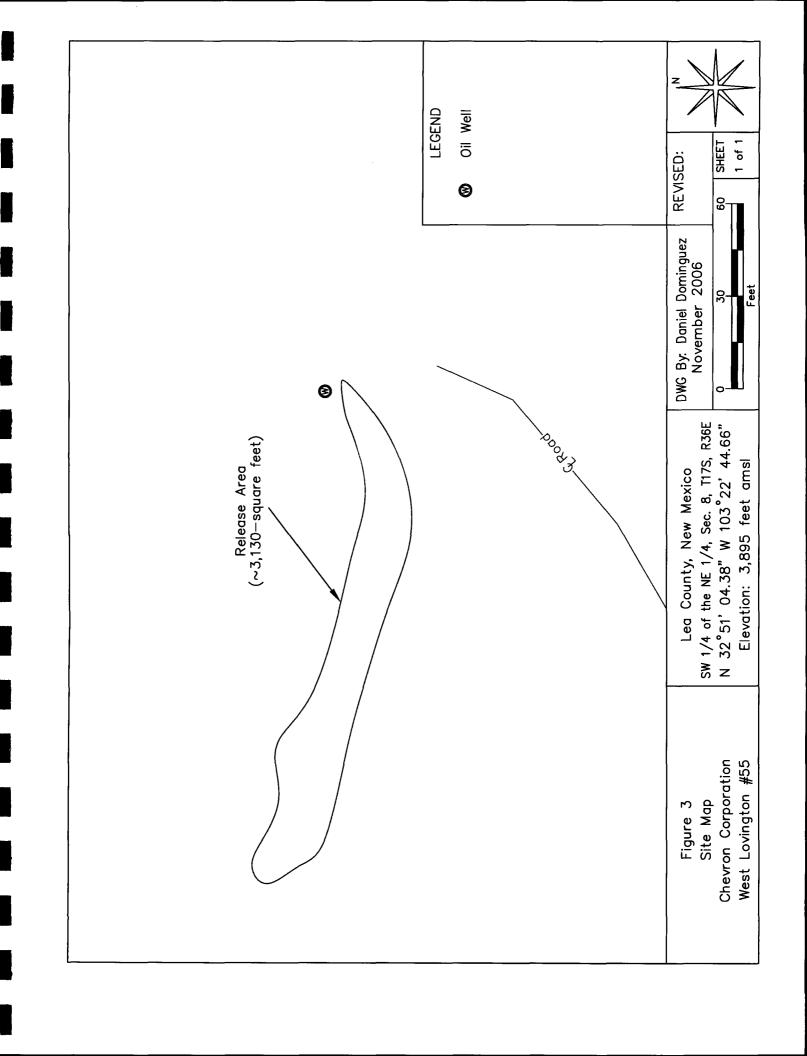
<i>8.1</i>	Recommendation for the site:	Site Closure
		Additional Groundwater Monitoring
		Corrective Action

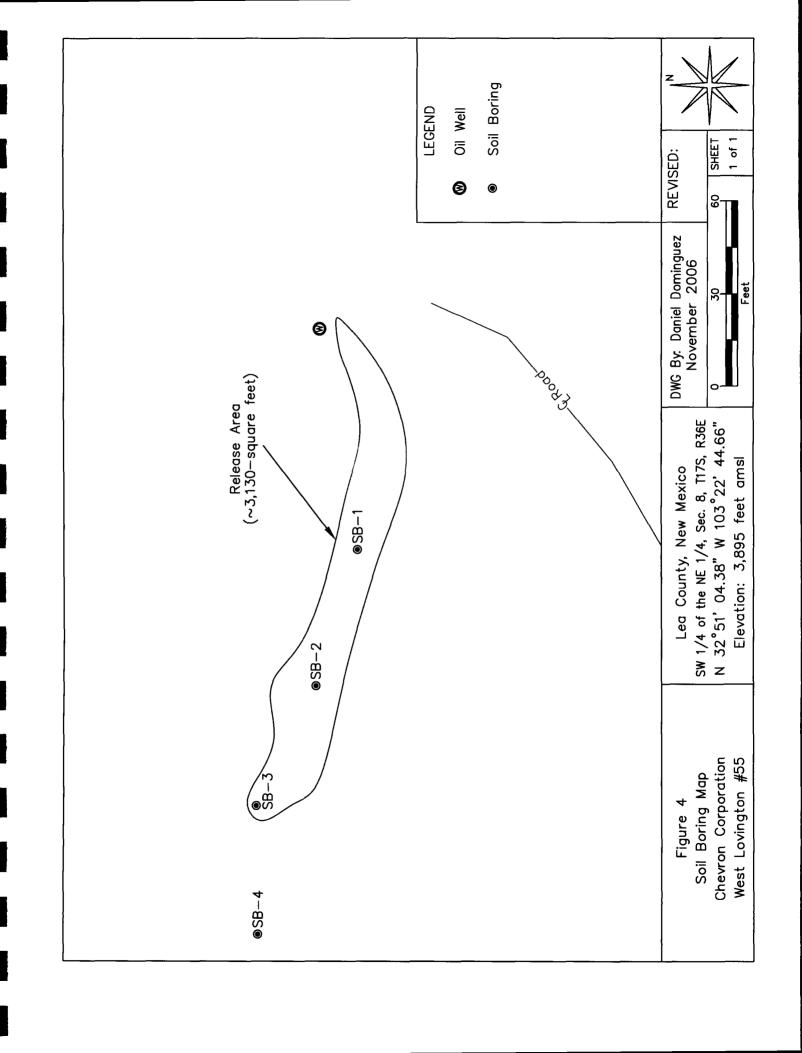
8.2 Base the recommendation above on <u>Guidelines for Remediation of Leaks, Spills and Releases (August 13, 1993)</u>. Describe below how you applied the policy to support your recommendation. If closure is recommended, please summarize significant site investigative events and describe how site specific risk issues have been adequately addressed or minimized to acceptable low risk levels.


Excavation and disposal of impacted soil was completed by another contractor. On February 7, 2006 EPI advanced three (3) soil borings (SB) throughout the release area to delineate the vertical extent of impacted soil. Soil boring SB-4 was advanced outside the release area with data used as background reference. Upon receipt of Soil Boring Soil Sample Laboratory Analytical Data confirming most soil impacted above NMOCD remedial threshold goals were excavated, EPI backfilled the excavation with approximately 14 yds³ of caliche and 84 yds³ of top-soil. The entire disturbed area was graded and contoured for natural drainage. The area will be seeded with a blend preferred by the property owner.


8.3 If additional groundwater monitoring is recommended, indicate the proposed monitoring schedule and frequency. Conduct quarterly monitoring until the NMOCD responds to this report.


Not Applicable


8.4 If corrective action is recommended, provide a conceptual approach.


Not applicable

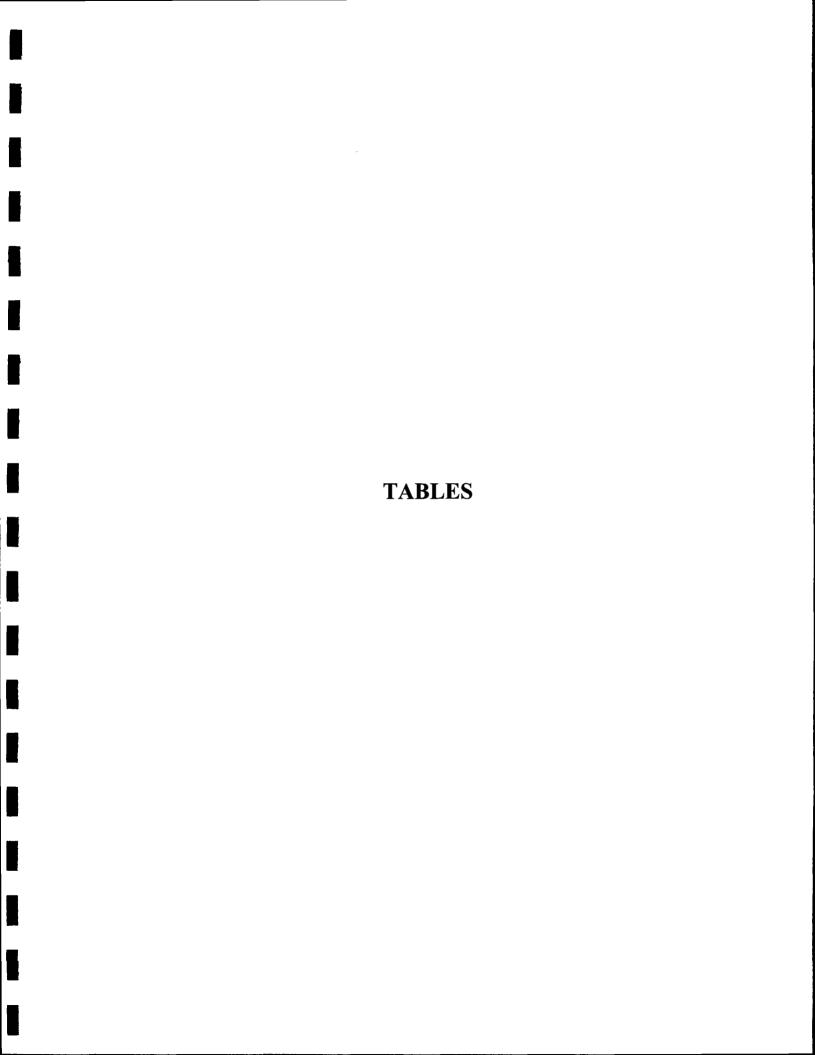


TABLE 1

WELL INFORMATION REPORT*

Chevron USA - West Lovington #55 (Ref #200066)

			╟─		<u> </u>				Date	Surface	Depth to
Well Number	Diversion	Owner	Ose	Lwsp	Kng	Kng Sec q q q	Latitude	Longitude	Measured	Elevation	Water
L 04171	3	NORWOOD DRILLING COMPANY	PRO	17S	36E 1	36E 18 14	N32° 50' 4.77"	N32° 50' 4.77" W103° 23' 52.25"	65-unf-60	3,900	128
L 05616	0	TRI-SERVICE DRILLING COMPANY	PRO	17S	36E (36E 04 32	N32° 51' 37.00"	N32° 51' 37.00" W103° 21' 48.77"	02-May-65	3,885	65
L 09892	0	GOFF DAIRY	PRO	17S	36E (6 3 1 3	N32° 51' 36.40"	36E 06 3 1 3 N32° 51' 36.40" W103° 24' 7.00"	30-Jan-87	3,927	50
L 09952	0	TERRA RESOURCES	PRO	17S	36E 1	16 233	N32° 50' 5.58"	36E 16 2 3 3 N32° 50' 5.58" W103° 21' 33.15"	25-Sep-87	3,867	45
USGS #1				17S	36E	36E 4 133			15-Jan-91	3,893	61.6
USGS #2				17S	36E	36E 4 141			03-Feb-61	3,885	51.92
USGS #3				17S	36E (36E 5 311			25-Jan-96	3,907	54.62
USGS #4				17S	36E	36E 5 324			14-Jan-86	3,901	57.19
USGS #5				17S	36E	7 121			15-Jan-90	3,910	49.12
9# SĐSN				17S	36E	7 414			25-Jan-96	3,895	42.17
USGS #7				17S	36E 8 41	3 411			25-Jan-96	3,895	\$96.0S
						本		3 () () () () () () () () () (
			Page 1			esi (
		· · · · · · · · · · · · · · · · · · ·				hair.					- C. E.
				200							

^{* =} Data obtained from the New Mexico Office of the State Engineer Website (http://iwaters.ose.state.nn.us;7001/iWATERS/wr_RegisServlet1) and USGS Database. Shaded well information indicates well location not shown on Figure 2

PRO = Production

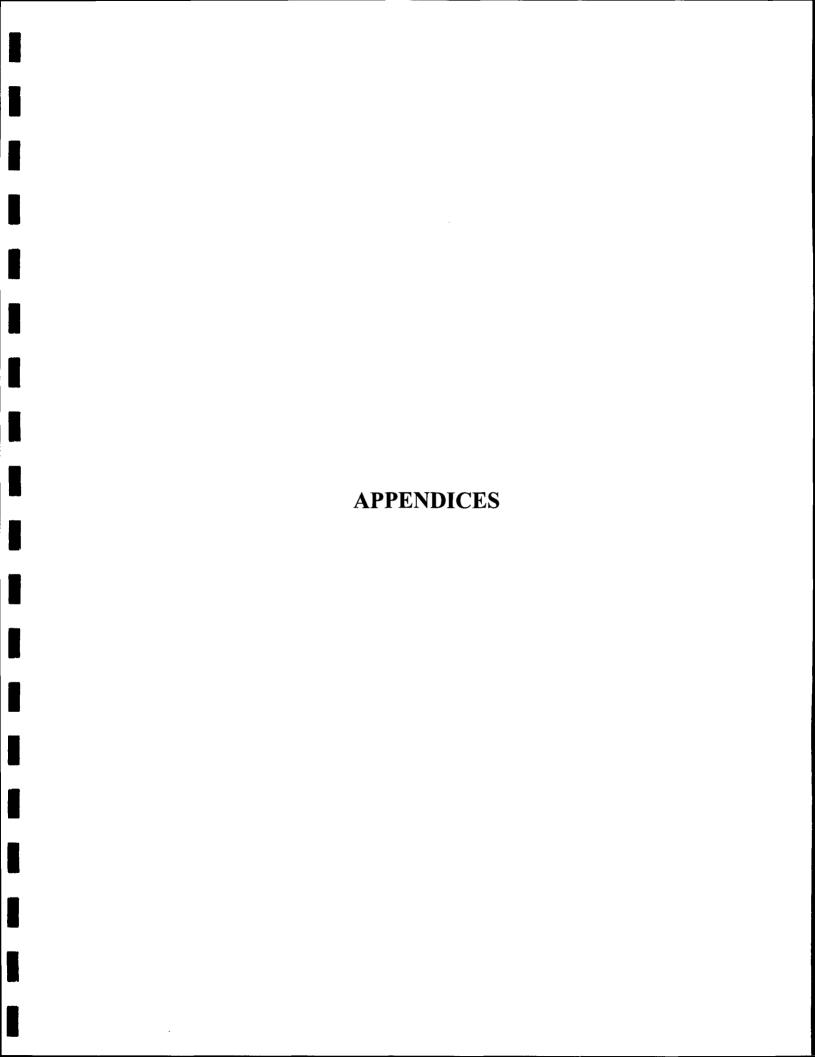
 $^{^{\}rm A}={\rm in}$ acre feet per annum

^B = Interpolated from USGS Topographical Map

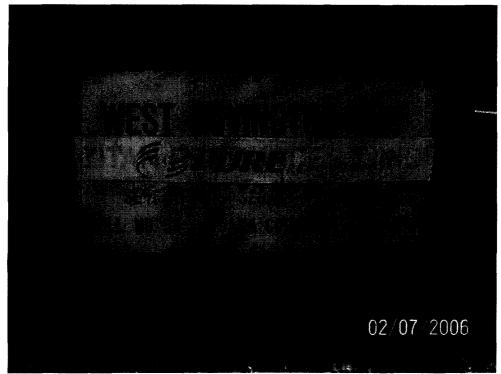
⁽quarters are l=NW, 2=NE, 3=SW, 4=SE) (quarters are biggest to smallest - X Y are in Feet - UTM are in Meters)

TABLE 2

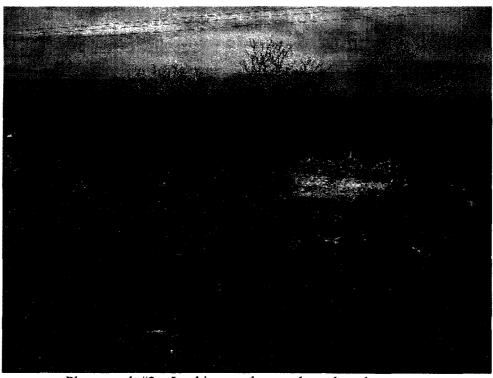
Summary of Soil Boring Field Analyses and Laboratory Analytical Data


Chevron USA

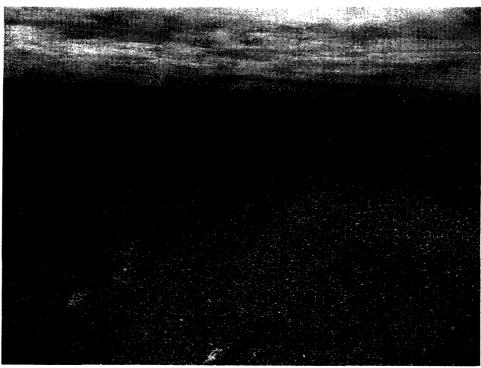
West Lovington Unit #55 (NMOCD Ref: 1RP# 1226; EPI Ref: 200066)


PID Field	ļ	ļ	Field				Total		Carbon	Carbon	Carbon	Total	
	Sample Date Analysis (ppm)		Chloride Analyses (mg/Kg)	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethylbenzene (mg/Kg)	Xylenes (mg/Kg)	Total BTEX (mg/Kg)	Ranges C6-C12 (mg/Kg)	Ranges C12-C28 (mg/Kg)	Ranges C28-C35 (mg/Kg)	Hydrocarbons C6-C35 (mg/Kg)	Chloride (mg/Kg)
2-3 Excavated 07-Feb-06				<0.0250	<0.0250	<0.0250	<0.050	<0.125	<20.0	<20.0	<20.0	0.09>	425
5-6 In-situ 07-Feb-06	07-Feb-06			<0.0250	<0.0250	<0.0250	<0.050	<0.125	<10.0	62.1	32.3	94.4	25
10-11 In-situ 07-Feb-06	07-Feb-06			<0.0250	<0.0250	<0.0250	<0.050	<0.125	<10.0	<10.0	<10.0	<30.0	171
15-16 In-situ 07-Feb-06									<10.0	<10.0	<10.0	<30.0	•
2-3 Excavated 07-Feb-06				<0.0250	J [0.0102]	J [0.0168]	0.0409	0.0409	<10.0	47.7	11.7	59.4	188
5-6 In-situ 07-Feb-06	07-Feb-06			<0.0250	<0.0250	<0.0250	<0.050	<0.125	<10.0	62.1	32.3	94.4	191
10-11 In-situ 07-Feb-06	07-Feb-06			<0.0250	<0.0250	<0.0250	<0.050	<0.125	<10.0	<10.0	<10.0	<30.0	
15-16 In-situ 07-Feb-06	07-Feb-06				1		:		<10.0	<10.0	<10.0	<30.0	
2-3 Excavated 07-Feb-06				<0.0250	<0.0250	<0.0250	<0.050	<0.125	<10.0	<10.0	0.01>	<30.0	13.2
5-6 In-situ 07-Feb-06	07-Feb-06			<0.0250	<0.0250	<0.0250	<0.050	<0.125	<10.0	<10.0	<10.0	<30.0	8.0
2-3 In-situ 07-Feb-06	07-Feb-06			<0.0250	<0.0250	<0.0250	<0.050	<0.125	<10.0	<10.0	<10.0	<30.0	13.5
5-6 In-situ 07-Feb-06				<0.0250	<0.0250	<0.0250	<0.050	<0.125	<10.0	<10.0	<10.0	<30.0	18.9
NMOCD Remedial Threshold Goals		100		10				50				1,000	250 1

BOLD values exceed NMOCD Remedial Threshold Goals


^{1 =} Chloride and Sulphate residuals may not be capable of impacting groundwater above NMWQCC Groundwater Standards of 250 mg/Kg and 600 mg/Kg, respectively
- - = Not Analyzed; J = Analyte detected, but below Reporting Limit. Therefore, result is an estimated concentration (CPL J-Flag)

APPENDIX I PROJECT PHOTOGRAPHS


Photograph #1 – Lease sign.

Photograph #2 – Looking northwesterly at the release area.

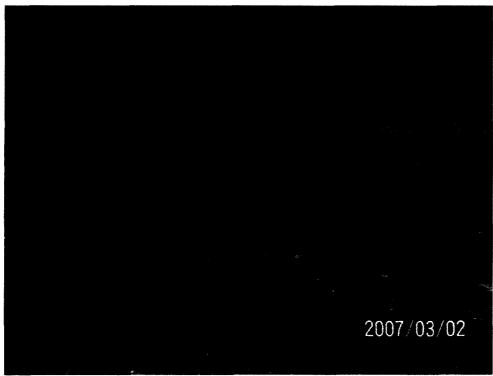
Photograph #3 – Looking west at the release area.

Photograph #4 – Looking westerly at the release area.

Photograph #5 – Looking northeasterly at the release area.

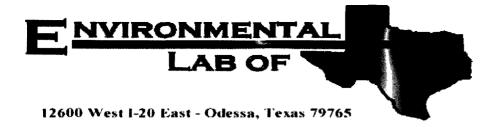
Photograph #6 – Looking easterly at the release area.

Photograph #7 – Looking westerly at the release area and plugged SB-2 and SB-3.


Photograph #8 – Looking east towards the release area and SB-4.

Photograph #9 – Looking easterly towards the release area.

Photograph #10 – Looking west at remediated site with backfilled topsoil and caliche.



Photograph #11 – Looking westerly at remediated site with backfilled topsoil.

Photograph #12 – Looking westerly at remediated site with backfilled caliche and topsoil.

APPENDIX II LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY FORMS

Analytical Report

Prepared for:

Iain Olness
Environmental Plus, Incorporated
P.O. Box 1558
Eunice, NM 88231

Project: Chevron USA/ West Lovington Unit #55

Project Number: 200066

Location: UL-F, Sec. 08, T 17 S, R 36 E

Lab Order Number: 6B08017

Report Date: 02/22/06

P.O. Box 1558 Eunice NM, 88231 Project: Chevron USA/ West Lovington Unit #55

Project Number: 200066
Project Manager: Iain Olness

Fax: 505-394-2601

Reported: 02/22/06 16:36

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-1 2'-3'	6B08017-01	Soil	02/07/06 10:50	02/08/06 11:10
SB-1 5'-6'	6B08017-02	Soil	02/07/06 11:10	02/08/06 11:10
SB-1 10'-11'	6B08017-03	Soil	02/07/06 11:19	02/08/06 11:10
SB-1 15'-16'	6B08017-04	Soil	02/07/06 11:30	02/08/06 11:10
SB-2 2'-3'	6B08017-08	Soil	02/07/06 13:00	02/08/06 11:10
SB-2 5'-6'	6B08017-09	Soil	02/07/06 13:05	02/08/06 11:10
SB-2 10'-11'	6B08017-10	Soil	02/07/06 13:15	02/08/06 11:10
SB-2 15'-16'	6B08017-11	Soil	02/07/06 13:23	02/08/06 11:10
SB-3 2'-3'	6B08017-12	Soil	02/07/06 13:29	02/08/06 11:10
SB-3 5'-6'	6B08017-13	Soil	02/07/06 13:32	02/08/06 11:10
SB-4 2'-3'	6B08017-15	Soil	02/07/06 13:41	02/08/06 11:10
SB-4 5'-6'	6B08017-16	Soil	02/07/06 13:44	02/08/06 11:10

P.O. Box 1558 Eunice NM, 88231 Project: Chevron USA/ West Lovington Unit #55

Project Number: 200066 Project Manager: Iain Olness Fax: 505-394-2601

Reported: 02/22/06 16:36

Organics by GC Environmental Lab of Texas

			_	ab 01 10				_	
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 2'-3' (6B08017-01) Soil				Dilution	Daten	Перагец	Anaryzeu	IVICTIOG	Notes
Benzene	ND	0.0250	mg/kg dry	25	EB61034	02/10/06	02/12/06	EPA 8021B	
Toluene	ND	0.0250	"	"	"	н	"	н	
Ethylbenzene	ND	0.0250	"	**	"	**	"	п	
Xylene (p/m)	J [0.0233]	0.0250	н	,,		"	11	11	:
Xylene (o)	ND	0.0250	u	"	**	"	II.	"	
Surrogate: a,a,a-Trifluorotoluene		84.2 %	80-1	20	"	 "	,,	"	
Surrogate: 4-Bromofluorobenzene		91.2 %	80-1	20	n	"	"	"	
Carbon Ranges C6-C12	ND	20.0	mg/kg dry	2	EB61012	02/10/06	02/13/06	EPA 8015M	
Carbon Ranges C12-C28	ND	20.0	"	**	11	11	"	и	
Carbon Ranges C28-C35	ND	20.0	**	"	11	n	n		
Total Hydrocarbon C6-C35	ND	20.0	н	"	"	11	11	"	
Surrogate: 1-Chlorooctane		98.2 %	70-1	30	"	· "	"	<i>n</i>	
Surrogate: 1-Chlorooctadecane		89.2 %	70-1	30	"	"	"	"	
SB-1 5'-6' (6B08017-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61024	02/10/06	02/12/06	EPA 8021B	
Toluene	ND ND	0.0250	mg/kg dry	23	EB61034	U2/10/UU "	02/12/06	EFA 6021B	
Ethylbenzene	ND	0.0250	"	**	n	11	"	11	
Xylene (p/m)	ND	0.0250	11	11	11	n	**	н	
Xylene (o)	ND	0.0250	11	,,	**	**	"	и	
Surrogate: a,a,a-Trifluorotoluene		81.8 %	80-1	20					
Surrogate: 4-Bromofluorobenzene		84.8 %	80-1		"	,,	"	n.	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	20 1	EB61012	02/10/06	02/13/06	EPA 8015M	
Carbon Ranges C12-C28	55.6	10.0	"	,	LB01012	02/10/00	02/13/00	"	
Carbon Ranges C28-C35	J [9.04]	10.0	**		"	"	,,	11	j
Total Hydrocarbon C6-C35	55.6	10.0	**	,,	*	"	"	н	•
Surrogate: 1-Chlorooctane		92.0 %	70-1	30	"	"	····	,,	
Surrogate: 1-Chlorooctadecane		83.0 %	70-1		,,	"	"	"	
SB-1 10'-11' (6B08017-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EB62007	02/17/06	02/20/06	EPA 8021B	
Toluene	ND	0.0250	"	"	"	"	"	"	
Ethylbenzene	ND	0.0250	"	**	11	H	"	"	
Xylene (p/m)	ND	0.0250	"		11	"	n		
Xylene (o)	ND	0.0250	11		**	"	#	**	
Surrogate: a,a,a-Trifluorotoluene		90.7 %	80-1	20		"	"		
Surrogate: 4-Bromofluorobenzene		108 %	80-1		"	"	,,	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EB61408	02/14/06	02/15/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

P.O. Box 1558 Eunice NM, 88231 Project: Chevron USA/ West Lovington Unit #55

Project Number: 200066 Project Manager: Iain Olness Fax: 505-394-2601

Reported:
02/22/06 16:36

Organics by GC Environmental Lab of Texas

		- Environ	mentai L	ab or i	LAAS				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 10'-11' (6B08017-03) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EB61408	02/14/06	02/15/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	Ħ	11	**	н	"	H	
Total Hydrocarbon C6-C35	ND	10.0	n	"	**	11	11	H	
Surrogate: 1-Chlorooctane		91.0 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		92.2 %	70-1	30	"	"	"	"	
SB-1 15'-16' (6B08017-04) Soil									
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EB61408	02/14/06	02/15/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	11	"	"	Ħ	11	11	
Carbon Ranges C28-C35	ND	10.0	**	"	n	#	11	11	
Total Hydrocarbon C6-C35	ND	10.0	"	"	11	"	11	u	
Surrogate: 1-Chlorooctane		87.6 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		91.4 %	70-1	30	"	"	"	"	
SB-2 2'-3' (6B08017-08) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EB61034	02/10/06	02/12/06	EPA 8021B	
Toluene	J [0.0102]	0.0250	н		"	11	**	n	
Ethylbenzene	J [0.0168]	0.0250	11	n	11	н	"	11	
Xylene (p/m)	0.0409	0.0250	**	n	n	11	"	11	
Xylene (o)	ND	0.0250		11		"	"	"	
Surrogate: a,a,a-Trifluorotoluene		87.8 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		109 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EB61012	02/10/06	02/13/06	EPA 8015M	
Carbon Ranges C12-C28	47.7	10.0	"	**	11	11	"	"	
Carbon Ranges C28-C35	11.7	10.0	n	11	11	II .	**	"	
Total Hydrocarbon C6-C35	59.4	10.0	H	11	"		"		
Surrogate: 1-Chlorooctane		106 %	70-1	30	n	"	"	"	
Surrogate: 1-Chlorooctadecane		103 %	70-1	30	n	"	n	"	
SB-2 5'-6' (6B08017-09) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EB61034	02/10/06	02/12/06	EPA 8021B	
Toluene	ND	0.0250	п	**	"	*	**	"	
Ethylbenzene	ND	0.0250	11	11	н	11	11	и	
Xylene (p/m)	ND	0.0250	**	"	"	**	"	и	
Xylene (o)	ND	0.0250	"	11	"	"	11	"	
Surrogate: a,a,a-Trifluorotoluene		81.2 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		87.8 %	80-1.	20	#	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EB61012	02/10/06	02/13/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

P.O. Box 1558 Eunice NM, 88231 Project: Chevron USA/ West Lovington Unit #55

Project Number: 200066 Project Manager: Iain Olness Fax: 505-394-2601

Reported: 02/22/06 16:36

Organics by GC Environmental Lab of Texas

		EHVHUH	mental L	AU UI I	EAAS				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-2 5'-6' (6B08017-09) Soil									
Carbon Ranges C12-C28	62.1	10.0	mg/kg dry	1	EB61012	02/10/06	02/13/06	EPA 8015M	
Carbon Ranges C28-C35	32.3	10.0	**	"	11	"	"	"	
Total Hydrocarbon C6-C35	94.4	10.0	11	"	11	#	n		
Surrogate: 1-Chlorooctane		106 %	70-1	30	"	,,	"	,,	
Surrogate: 1-Chlorooctadecane		98.6 %	70-1	30	"	"	"	rr .	
SB-2 10'-11' (6B08017-10) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EB62007	02/17/06	02/17/06	EPA 8021B	
Toluene	ND	0.0250	"	u	H	н	n	**	
Ethylbenzene	ND	0.0250	"	и	"	"	n	**	
Xylene (p/m)	ND	0.0250	"	"	11	"	n	н	
Xylene (o)	ND	0.0250	"	11	11	#	**	"	
Surrogate: a,a,a-Trifluorotoluene		98.5 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		88.2 %	80-1	20	"	"	n.	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EB61408	02/14/06	02/15/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	**	**	"	"	"	"	
Carbon Ranges C28-C35	ND	10.0	**	**	н	*	"	"	
Total Hydrocarbon C6-C35	ND	10.0	"	**	11	"	11	"	
Surrogate: 1-Chlorooctane		94.8 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		97.4 %	70-1	30	"	"	"	"	
SB-2 15'-16' (6B08017-11) Soil									
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EB61408	02/14/06	02/15/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	n n	"	**	**	11	н	
Carbon Ranges C28-C35	ND	10.0	11		**	11	**	и	
Total Hydrocarbon C6-C35	ND	10.0	11	**		**	**	"	
Surrogate: 1-Chlorooctane		100 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		99.0 %	70-1	30	"	"	"	"	
SB-3 2'-3' (6B08017-12) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EB61034	02/10/06	02/14/06	EPA 8021B	
Toluene	ND	0.0250	н	и	и	#	11	11	
Ethylbenzene	ND	0.0250	**	н	11	**	"	11	
Xylene (p/m)	ND	0.0250	"	н	**	"	и	11	
Xylene (o)	ND	0.0250	n	"	"	и	"	W.	
Surrogate: a,a,a-Trifluorotoluene		81.8 %	80-1.	20	"	"	n n	"	
Surrogate: 4-Bromofluorobenzene		81.8 %	80-1.	20	"	"	"	н	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EB61012	02/10/06	02/13/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 4 of 19

P.O. Box 1558 Eunice NM, 88231 Project: Chevron USA/ West Lovington Unit #55

Project Number: 200066 Project Manager: Iain Olness Fax: 505-394-2601

Reported: 02/22/06 16:36

Organics by GC Environmental Lab of Texas

Analyta	Pr 1.	Reporting	11-2-						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	No
SB-3 2'-3' (6B08017-12) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EB61012	02/10/06	02/13/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	"	n	"	н	11	**	
Total Hydrocarbon C6-C35	ND	10.0	н	"	н	u	"	"	
Surrogate: 1-Chlorooctane		98.0 %	70-13	10	"	"	"	"	
Surrogate: 1-Chlorooctadecane		90.4 %	70-13	80	"	"	"	"	
SB-3 5'-6' (6B08017-13) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EB61034	02/10/06	02/14/06	EPA 8021B	
Toluene	ND	0.0250	"	"	tt	н	11	"	
Ethylbenzene	ND	0.0250	n	11	**	**	**	"	
Xylene (p/m)	ND	0.0250	н	11	**	**	"	H .	
Xylene (o)	ND	0.0250	n	11	"	11	"	11	
Surrogate: a,a,a-Trifluorotoluene		82.0 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		86.2 %	80-12	0	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EB61011	02/10/06	02/10/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	и		n	"	**	"	
Carbon Ranges C28-C35	ND	10.0	u	**	n	W	**	"	
Total Hydrocarbon C6-C35	ND	10.0	н	"	**	"	"	n	
Surrogate: 1-Chlorooctane		96.4 %	70-13	0	"	<i>n</i>	"	"	
Surrogate: 1-Chlorooctadecane		81.6 %	70-13	0	"	"	"	"	
SB-4 2'-3' (6B08017-15) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EB61034	02/10/06	02/12/06	EPA 8021B	
Toluene	ND	0.0250	н	11	"	n	**	11	
Ethylbenzene	ND	0.0250	**	**	**	"	н	и	
Xylene (p/m)	ND	0.0250	"	**	u	11	"	п	
Xylene (o)	ND	0.0250	**	"	n	**	"	н	
Surrogate: a,a,a-Trifluorotoluene		83.2 %	80-12	0	"	"	,,	m .	
Surrogate: 4-Bromofluorobenzene		80.0 %	80-12	0	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EB61011	02/10/06	02/10/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	**	11	#	"	"	*	
Carbon Ranges C28-C35	ND	10.0	"	u	**	*	"	**	
Total Hydrocarbon C6-C35	ND	10.0	**	"	"	**	u u	"	
Surrogate: 1-Chlorooctane		96.0 %	70-13	0	"	,,	<i>"</i>	"	
Surrogate: 1-Chlorooctadecane		82.4 %	70-13	0	"	"	n	"	

P.O. Box 1558 Eunice NM, 88231 Project: Chevron USA/ West Lovington Unit #55

Project Number: 200066
Project Manager: Iain Olness

Fax: 505-394-2601

Reported: 02/22/06 16:36

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-4 5'-6' (6B08017-16) Soil				Ditution	Datch	Frepated	Analyzeu	Mediod	Notes
Benzene	ND	0.0250	mg/kg dry	25	EB61034	02/10/06	02/14/06	EPA 8021B	
Toluene	ND	0.0250	**		н	"	и	11	
Ethylbenzene	ND	0.0250	"	n	**	"	Ħ	**	
Xylene (p/m)	ND	0.0250	"	n	**	**	**	**	
Xylene (o)	ND	0.0250	н	11	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		84.0 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		89.0 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EB61011	02/10/06	02/10/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	n	**	"	"	"	"	
Carbon Ranges C28-C35	ND	10.0	H	n	n	**	•	17	
Total Hydrocarbon C6-C35	ND	10.0	"	#	"	**	"	11	
Surrogate: 1-Chlorooctane		96.8 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		83.8 %	70-1	30	"	"	"	n	

P.O. Box 1558 Eunice NM, 88231 Project: Chevron USA/ West Lovington Unit #55

Project Number: 200066
Project Manager: Iain Olness

Fax: 505-394-2601

Reported: 02/22/06 16:36

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-1 2'-3' (6B08017-01) Soil									
Chloride	425	20.0	mg/kg	40	EB61301	02/10/06	02/13/06	EPA 300.0	
% Moisture	2.6	0.1	%	1	EB61007	02/09/06	02/10/06	% calculation	
Sulfate	1320	20.0	mg/kg	40	EB61301	02/10/06	02/13/06	EPA 300.0	
SB-1 5'-6' (6B08017-02) Soil									
Chloride	24.9	5.00	mg/kg	10	EB61301	02/10/06	02/13/06	EPA 300.0	
% Moisture	0.3	0.1	%	1	EB61007	02/09/06	02/10/06	% calculation	
Sulfate	55.1	5.00	mg/kg	10	EB61301	02/10/06	02/13/06	EPA 300.0	
SB-1 10'-11' (6B08017-03) Soil									
Chloride	171	5.00	mg/kg	10	EB61608	02/15/06	02/15/06	EPA 300.0	
% Moisture	4.7	0.1	%	1	EB61505	02/14/06	02/15/06	% calculation	
Sulfate	56.0	5.00	mg/kg	10	EB61608	02/15/06	02/15/06	EPA 300.0	
SB-1 10'-11' (6B08017-03RE1) Soil									
% Moisture	3.5	0.1	%	1	EB62011	02/17/06	02/20/06	% calculation	
SB-1 15'-16' (6B08017-04) Soil									
% Moisture	4.7	0.1	%	1	EB61505	02/14/06	02/15/06	% calculation	
SB-2 2'-3' (6B08017-08) Soil									
Chloride	188	10.0	mg/kg	20	EB61301	02/10/06	02/13/06	EPA 300.0	
% Moisture	0.9	0.1	%	1	EB61007	02/09/06	02/10/06	% calculation	
Sulfate	97.7	10.0	mg/kg	20	EB61301	02/10/06	02/13/06	EPA 300.0	
SB-2 5'-6' (6B08017-09) Soil									
Chloride	161	5.00	mg/kg	10	EB61301	02/10/06	02/13/06	EPA 300.0	
% Moisture	2.7	0.1	%	1	EB61007	02/09/06	02/10/06	% calculation	
Sulfate	66.5	5.00	mg/kg	10	EB61301	02/10/06	02/13/06	EPA 300.0	

P.O. Box 1558 Eunice NM, 88231 Project: Chevron USA/ West Lovington Unit #55

Project Number: 200066
Project Manager: Iain Olness

Fax: 505-394-2601

Reported: 02/22/06 16:36

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

	Reporting							
Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
4.6	0.1	%	1	EB61505	02/14/06	02/15/06	% calculation	
7.1	0.1	%	1	EB61505	02/14/06	02/15/06	% calculation	
						<u> </u>		
13.2	5.00	mg/kg	10	EB61301	02/10/06	02/13/06	EPA 300.0	
1.7	0.1	%	1	EB61007	02/09/06	02/10/06	% calculation	
97.7	5.00	mg/kg	10	EB61301	02/10/06	02/13/06	EPA 300.0	
8.01	5.00	mg/kg	10	EB61301	02/10/06	02/13/06	EPA 300.0	
1.6	0.1	%	1	EB61007	02/09/06	02/10/06	% calculation	
61.7	5.00	mg/kg	10	EB61301	02/10/06	02/13/06	EPA 300.0	
13.5	5.00	mg/kg	10	EB61301	02/10/06	02/13/06	EPA 300.0	
1.2	0.1	%	1	EB61007	02/09/06	02/10/06	% calculation	
82.2	5.00	mg/kg	10	EB61301	02/10/06	02/13/06	EPA 300.0	
18.9	5.00	mg/kg	10	EB61302	02/11/06	02/13/06	EPA 300.0	
18.9 1.5	5.00 0.1	mg/kg %	10 1	EB61302 EB61007	02/11/06 02/09/06	02/13/06 02/10/06	EPA 300.0 % calculation	
	4.6 7.1 13.2 1.7 97.7 8.01 1.6 61.7	Result Limit 4.6 0.1 7.1 0.1 13.2 5.00 1.7 0.1 97.7 5.00 8.01 5.00 1.6 0.1 61.7 5.00 13.5 5.00 1.2 0.1	Result Limit Units 4.6 0.1 % 7.1 0.1 % 13.2 5.00 mg/kg 1.7 0.1 % 97.7 5.00 mg/kg 1.6 0.1 % 61.7 5.00 mg/kg 13.5 5.00 mg/kg 1.2 0.1 %	A.6	Result Limit Units Dilution Batch 4.6 0.1 % 1 EB61505 7.1 0.1 % 1 EB61505 13.2 5.00 mg/kg 10 EB61301 1.7 0.1 % 1 EB61007 97.7 5.00 mg/kg 10 EB61301 8.01 5.00 mg/kg 10 EB61301 1.6 0.1 % 1 EB61007 61.7 5.00 mg/kg 10 EB61301 13.5 5.00 mg/kg 10 EB61301 1.2 0.1 % 1 EB61007	Result Limit Units Dilution Batch Prepared 4.6 0.1 % 1 EB61505 02/14/06 7.1 0.1 % 1 EB61505 02/14/06 13.2 5.00 mg/kg 10 EB61301 02/10/06 1.7 0.1 % 1 EB61007 02/09/06 97.7 5.00 mg/kg 10 EB61301 02/10/06 8.01 5.00 mg/kg 10 EB61301 02/10/06 1.6 0.1 % 1 EB61301 02/10/06 61.7 5.00 mg/kg 10 EB61301 02/10/06 13.5 5.00 mg/kg 10 EB61301 02/10/06 1.2 0.1 % 1 EB61307 02/09/06	Result Limit Units Dilution Batch Prepared Analyzed 4.6 0.1 % 1 EB61505 02/14/06 02/15/06 7.1 0.1 % 1 EB61505 02/14/06 02/15/06 13.2 5.00 mg/kg 10 EB61301 02/10/06 02/13/06 1.7 0.1 % 1 EB61301 02/10/06 02/13/06 97.7 5.00 mg/kg 10 EB61301 02/10/06 02/13/06 8.01 5.00 mg/kg 10 EB61301 02/10/06 02/13/06 1.6 0.1 % 1 EB61301 02/10/06 02/13/06 61.7 5.00 mg/kg 10 EB61301 02/10/06 02/13/06 13.5 5.00 mg/kg 10 EB61301 02/10/06 02/13/06 1.2 0.1 % 1 EB61007 02/09/06 02/13/06	Result

P.O. Box 1558 Eunice NM, 88231 Project: Chevron USA/ West Lovington Unit #55

Project Number: 200066
Project Manager: Iain Olness

Fax: 505-394-2601

Reported: 02/22/06 16:36

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
-	resure	Z.mit	Omo	Level	resuit	/UKLC	Limits	NI D	Liiiii	110103
Batch EB61011 - Solvent Extraction (GC)										
Blank (EB61011-BLK1)				Prepared &	Analyzed:	02/10/06				
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	**							
Carbon Ranges C28-C35	ND	10.0	"							
Total Hydrocarbon C6-C35	ND	10.0	"							
Surrogate: 1-Chlorooctane	48.8		mg/kg	50.0		97.6	70-130			
Surrogate: 1-Chlorooctadecane	43.2		"	50.0		86.4	70-130			
LCS (EB61011-BS1)				Prepared &	Analyzed:	02/10/06				
Carbon Ranges C6-C12	477		mg/kg	500		95.4	75-125			
Carbon Ranges C12-C28	508		"	500		102	75-125			
Total Hydrocarbon C6-C35	985		"	1000		98.5	75-125			
Surrogate: 1-Chlorooctane	57.2		"	50.0		114	70-130			
Surrogate: 1-Chlorooctadecane	52.4		"	50.0		105	70-130			
Calibration Check (EB61011-CCV1)				Prepared: 0	02/10/06 A	nalyzed: 02	/11/06			
Carbon Ranges C6-C12	467		mg/kg	500		93.4	80-120			
Carbon Ranges C12-C28	543		n	500		109	80-120			
Total Hydrocarbon C6-C35	1010		"	1000		101	80-120			
Surrogate: 1-Chlorooctane	56.5		"	50.0		113	70-130			
Surrogate: 1-Chlorooctadecane	48.7		"	50.0		97.4	70-130			
Matrix Spike (EB61011-MS1)	Sou	rce: 6B08020	-07	Prepared &	Analyzed:	02/10/06				
Carbon Ranges C6-C12	507		mg/kg	500	ND	101	75-125			
Carbon Ranges C12-C28	579		"	500	ND	116	75-125			
Total Hydrocarbon C6-C35	1090		"	1000	ND	109	75-125			
Surrogate: 1-Chlorooctane	56.1		n	50.0		112	70-130			
Surrogate: 1-Chlorooctadecane	53.0		"	50.0		106	70-130			

Project: Chevron USA/ West Lovington Unit #55

Fax: 505-394-2601

P.O. Box 1558 Eunice NM, 88231

Project Number: 200066 Project Manager: Iain Olness

Reported: 02/22/06 16:36

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB61011 - Solvent Extraction (GC										
Matrix Spike Dup (EB61011-MSD1)		ce: 6B08020	1_07	Drangrad &	Analyzed:	02/10/06				
Carbon Ranges C6-C12	523	ce. ubvouzu	mg/kg	500	ND ND	105	75-125	3.11	20	
Carbon Ranges C12-C28	597		mg/kg	500	ND	119	75-125 75-125	3.06	20	
Total Hydrocarbon C6-C35	1120		н	1000	ND	112	75-125	2.71	20	
Surrogate: I-Chlorooctane	56.4			50.0		113	70-130	2.7.		
Surrogate: 1-Chlorooctahe Surrogate: 1-Chlorooctadecane	54.5		**	50.0		109	70-130 70-130			
Batch EB61012 - Solvent Extraction (GC	C)									
Blank (EB61012-BLK1)				Prepared: 0	02/10/06 As	nalyzed: 02	/13/06			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet			·				
Carbon Ranges C12-C28	ND	10.0	u							
Carbon Ranges C28-C35	ND	10.0	n							
Total Hydrocarbon C6-C35	ND	10.0	11							
Surrogate: 1-Chlorooctane	48.9		mg/kg	50.0		97.8	70-130			
Surrogate: 1-Chlorooctadecane	44.9		"	50.0		89.8	70-130			
LCS (EB61012-BS1)				Prepared: 0	02/10/06 Aı	nalyzed: 02	/13/06			
Carbon Ranges C6-C12	472	10.0	mg/kg wet	500		94.4	75-125			
Carbon Ranges C12-C28	570	10.0	u	500		114	75-125			
Total Hydrocarbon C6-C35	1040	10.0	n	1000		104	75-125			
Surrogate: 1-Chlorooctane	58.0		mg/kg	50.0		116	70-130			
Surrogate: 1-Chlorooctadecane	53.6		"	50.0		107	70-130			
Calibration Check (EB61012-CCV1)				Prepared: 0	02/10/06 At	nalyzed: 02	/13/06			
Carbon Ranges C6-C12	472		mg/kg	500		94.4	80-120			
Carbon Ranges C12-C28	587		**	500		117	80-120			
Total Hydrocarbon C6-C35	1060		"	1000		106	80-120			
Surrogate: 1-Chlorooctane	58.0		·····	50.0		116	70-130			

50.0

55.2

Surrogate: 1-Chlorooctadecane

110

70-130

P.O. Box 1558 Eunice NM, 88231 Project: Chevron USA/ West Lovington Unit #55

Project Number: 200066
Project Manager: Iain Olness

Fax: 505-394-2601

Reported: 02/22/06 16:36

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB61012 - Solvent Extraction (GC	C)									
Matrix Spike (EB61012-MS1)	Sou	rce: 6B08017	7-12	Prepared: (02/10/06 A	nalyzed: 02	2/13/06			
Carbon Ranges C6-C12	573	10.0	mg/kg dry	509	ND	113	75-125			-
Carbon Ranges C12-C28	588	10.0	**	509	ND	116	75-125			
Total Hydrocarbon C6-C35	1160	10.0	"	1020	ND	114	75-125			
Surrogate: 1-Chlorooctane	55.8	_	mg/kg	50.0		112	70-130			
Surrogate: 1-Chlorooctadecane	51.7		"	50.0		103	70-130			
Matrix Spike Dup (EB61012-MSD1)	Sou	rce: 6B08017	7-12	Prepared: (02/10/06 Aı	nalyzed: 02	/13/06			
Carbon Ranges C6-C12	591	10.0	mg/kg dry	509	ND	116	75-125	3.09	20	
Carbon Ranges C12-C28	602	10.0	"	509	ND	118	75-125	2.35	20	
Total Hydrocarbon C6-C35	1190	10.0	"	1020	ND	117	75-125	2.55	20	
Surrogate: 1-Chlorooctane	57.4		mg/kg	50.0		115	70-130			
Surrogate: I-Chlorooctadecane	52.3		"	50.0		105	70-130			
Batch EB61034 - EPA 5030C (GC) Blank (EB61034-BLK1)				Prepared: (02/10/06 Aı	nalyzed: 02	/14/06			
Benzene	ND	0.0250	mg/kg wet	·-						
Toluene	ND	0.0250	n							
Ethylbenzene	ND	0.0250	n							
Xylene (p/m)	ND	0.0250	н							
Xylene (o)	ND	0.0250	**							
Surrogate: a,a,a-Trifluorotoluene	34.2		ug/kg	40.0		85.5	80-120			
Surrogate: 4-Bromofluorobenzene	43.7		"	40.0		109	80-120			
LCS (EB61034-BS1)				Prepared: (02/10/06 Aı	nalyzed: 02	/14/06			
Benzene	0.0964	0.00100	mg/kg wet	0.100		96.4	80-120			
Toluene	0.102	0.00100	"	0.100		102	80-120			
Ethylbenzene	0.108	0.00100	11	0.100		108	80-120			
Xylene (p/m)	0.199	0.00100	11	0.200		99.5	80-120			
Xylene (o)	0.118	0.00100	II.	0.100		118	80-120			
Surrogate: a,a,a-Trifluorotoluene	39.4		ug/kg	40.0		98.5	80-120			
Surrogate: 4-Bromofluorobenzene	34.3		"	40.0		85.8	80-120			

P.O. Box 1558 Eunice NM, 88231 Project: Chevron USA/ West Lovington Unit #55

Project Number: 200066
Project Manager: Iain Olness

Fax: 505-394-2601

Reported: 02/22/06 16:36

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB61034 - EPA 5030C (GC)										
Calibration Check (EB61034-CCV1)				Prepared: (02/10/06 A	nalyzed: 02	/14/06		-	
Benzene	49.7		ug/kg	50.0		99.4	80-120			
Toluene	54.4		"	50.0		109	80-120			
Ethylbenzene	55.5		"	50.0		111	80-120			
Xylene (p/m)	112		**	100		112	80-120			
Xylene (o)	59.3		"	50.0		119	80-120			
Surrogate: a,a,a-Trifluorotoluene	38.0		"	40.0		95.0	80-120			
Surrogate: 4-Bromofluorobenzene	35.5		"	40.0		88.8	80-120			
Matrix Spike (EB61034-MS1)	Sou	rce: 6B08019	-02	Prepared: (02/10/06 A	nalyzed: 02	:/14/06			
Benzene	1.21	0.0250	mg/kg dry	1.25	ND	96.8	80-120			
Tolucne	1.34	0.0250		1.25	ND	107	80-120			
Ethylbenzene	1.46	0.0250	"	1.25	ND	117	80-120			
Xylene (p/m)	2.94	0.0250	**	2.51	ND	117	80-120			
Xylene (o)	1.49	0.0250	11	1.25	ND	119	80-120			
Surrogate: a,a,a-Trifluorotoluene	36.2		ug/kg	40.0		90.5	80-120			
Surrogate: 4-Bromofluorobenzene	42.2		"	40.0		106	80-120			
Matrix Spike Dup (EB61034-MSD1)	Sou	rce: 6B08019	-02	Prepared: 0	02/10/06 Aı	nalyzed: 02	/14/06			
Benzene	1.28	0.0250	mg/kg dry	1.25	ND	102	80-120	5.23	20	
Toluene	1.41	0.0250	"	1.25	ND	113	80-120	5.45	20	
Ethylbenzene	1.50	0.0250	17	1.25	ND	120	80-120	2.53	20	
Xylene (p/m)	2.99	0.0250	**	2.51	ND	119	80-120	1.69	20	
Xylene (o)	1.50	0.0250	"	1.25	ND	120	80-120	0.837	20	
Surrogate: a,a,a-Trifluorotoluene	37.0		ug/kg	40.0		92.5	80-120			
Surrogate: 4-Bromofluorobenzene	45.1		"	40.0		113	80-120			
Batch EB61408 - Solvent Extraction (GC)										
Blank (EB61408-BLK1)				Prepared: (02/14/06 Aı	nalyzed: 02	/15/06			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	**							
Carbon Ranges C28-C35	ND	10.0	"							
Total Hydrocarbon C6-C35	ND	10.0	**							
Surrogate: 1-Chlorooctane	47.7		mg/kg	50.0		95.4	70-130			
Surrogate: 1-Chlorooctadecane	51.7		,,	50.0		103	70-130			

silvironmentar i ius, meorporate

Project: Chevron USA/ West Lovington Unit #55

Fax: 505-394-2601

Reported: 02/22/06 16:36

P.O. Box 1558 Project Number: 200066
Eunice NM, 88231 Project Manager: Iain Olness

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Anatyu	Result	- Lillit	Onns	Level	Nesun	/OKEC	Lilling	NI D	Limit	Notes
Batch EB61408 - Solvent Extraction (GC)										
LCS (EB61408-BS1)				Prepared: (02/14/06 Aı	nalyzed: 02	:/15/06			
Carbon Ranges C6-C12	505	10.0	mg/kg wet	500		101	75-125			
Carbon Ranges C12-C28	521	10.0	"	500		104	75-125			
Total Hydrocarbon C6-C35	1030	10.0	11	1000		103	75-125			
Surrogate: 1-Chlorooctane	54.1		mg/kg	50.0		108	70-130			
Surrogate: 1-Chlorooctadecane	54.2		"	50.0		108	70-130			
Calibration Check (EB61408-CCV1)				Prepared: (02/14/06 Aı	nalyzed: 02	/15/06			
Carbon Ranges C6-C12	472		mg/kg	500		94.4	80-120			
Carbon Ranges C12-C28	538		"	500		108	80-120			
Total Hydrocarbon C6-C35	1010		н	1000		101	80-120			
Surrogate: 1-Chlorooctane	49.3			50.0		98.6	70-130			
Surrogate: 1-Chlorooctadecane	43.4		"	50.0		86.8	70-130			
Matrix Spike (EB61408-MS1)	Sou	rce: 6B10009)-15	Prepared: ()2/14/06 Aı	nalyzed: 02	/15/06			
Carbon Ranges C6-C12	472	10.0	mg/kg dry	510	ND	92.5	75-125			
Carbon Ranges C12-C28	587	10.0	"	510	142	87.3	75-125			
Carbon Ranges C28-C35	12.8	10.0	"	0.00	12.6		75-125			
Total Hydrocarbon C6-C35	1060	10.0	11	1020	155	88.7	75-125			
Surrogate: 1-Chlorooctane	51.0		mg/kg	50.0		102	70-130		-	
Surrogate: 1-Chlorooctadecane	47.8		"	50.0		95.6	70-130			
Matrix Spike Dup (EB61408-MSD1)	Sou	rce: 6B10009)-15	Prepared: (02/14/06 A ₁	nalyzed: 02	/15/06			
Carbon Ranges C6-C12	462	10.0	mg/kg dry	510	ND	90.6	75-125	2.14	20	
Carbon Ranges C12-C28	588	10.0	u	510	142	87.5	75-125	0.170	20	
Carbon Ranges C28-C35	13.9	10.0	"	0.00	12.6		75-125	8.24	20	
Total Hydrocarbon C6-C35	1050	10.0	n	1020	155	87.7	75-125	0.948	20	
Surrogate: 1-Chlorooctane	55.2		mg/kg	50.0		110	70-130			
Surrogate: 1-Chlorooctadecane	47.9		"	50.0		95.8	70-130			

P.O. Box 1558 Eunice NM, 88231 Project: Chevron USA/ West Lovington Unit #55

Project Number: 200066 Project Manager: Iain Olness Fax: 505-394-2601

Reported: 02/22/06 16:36

Organics by GC - Quality Control **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Acsuit	Limit	Onits	LEVEI	- ACSUIT	70KEC	Tung	KI D	PHIN	Notes
Batch EB62007 - EPA 5030C (GC)										
Blank (EB62007-BLK1)				Prepared &	Analyzed:	02/17/06				
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	"							
Ethylbenzene	ND	0.0250	**							
Xylene (p/m)	ND	0.0250	11							
Xylene (o)	ND	0.0250	11							
Surrogate: a,a,a-Trifluorotoluene	39.2		ug/kg	40.0		98.0	80-120			
Surrogate: 4-Bromofluorobenzene	32.3		"	40.0		80.8	80-120			
LCS (EB62007-BS1)				Prepared &	Analyzed:	02/17/06				
Benzene	0.101	0.00100	mg/kg wet	0.100		101	80-120			. –
Toluene	0.118	0.00100	**	0.100		118	80-120			
Ethylbenzene	0.118	0.00100	"	0.100		118	80-120			
Xylene (p/m)	0.209	0.00100	**	0.200		104	80-120			
Xylene (o)	0.117	0.00100	n	0.100		117	80-120			
Surrogate: a,a,a-Trifluorotoluene	40.0		ug/kg	40.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	36.9		"	40.0		92.2	80-120			
Calibration Check (EB62007-CCV1)				Prepared: 0	2/17/06 A	nalyzed: 02	/21/06			
Benzene	40.2		ug/kg	50.0		80.4	80-120			
Toluene	43.0			50.0		86.0	80-120			
Ethylbenzene	48.4		**	50.0		96.8	80-120			
Xylene (p/m)	102		*1	100		102	80-120			
Xylene (o)	50.0		**	50.0		100	80-120			
Surrogate: a,a,a-Trifluorotoluene	33.4			40.0		83.5	80-120			
Surrogate: 4-Bromofluorobenzene	38.4		"	40.0		96.0	80-120			
Matrix Spike (EB62007-MS1)	Sou	rce: 6B14008	-16	Prepared: 0	2/17/06 A	nalyzed: 02	/22/06			
Benzene	0.0499	0.00100	mg/kg dry	0.0539	ND	92.6	80-120			
Toluene	0.0561	0.00100	"	0.0539	ND	104	80-120			
Ethylbenzene	0.0634	0.00100	**	0.0539	ND	118	80-120			
Xylene (p/m)	0.129	0.00100	"	0.108	ND	119	80-120			
Xylene (o)	0.0640	0.00100	**	0.0539	ND	119	80-120			
Surrogate: a,a,a-Trifluorotoluene	40.8		ug/kg	40.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	46.3		"	40.0		116	80-120			

P.O. Box 1558 Eunice NM, 88231 Project: Chevron USA/ West Lovington Unit #55

Project Number: 200066
Project Manager: Iain Olness

Fax: 505-394-2601

Reported: 02/22/06 16:36

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB62007 - EPA 5030C (GC)										
Matrix Spike Dup (EB62007-MSD1)	Sou	rce: 6B14008	I-16	Prepared: 0)2/17/06 A	nalyzed: 02	!/22/06			<u> </u>
Benzene	0.0504	0.00100	mg/kg dry	0.0539	ND	93.5	80-120	0.967	20	
Toluene	0.0563	0.00100	"	0.0539	ND	104	80-120	0.00	20	
Ethylbenzene	0.0637	0.00100	"	0.0539	ND	118	80-120	0.00	20	
Xylene (p/m)	0.129	0.00100	"	0.108	ND	119	80-120	0.00	20	
Xylene (o)	0.0642	0.00100	Ħ	0.0539	ND	119	80-120	0.00	20	
Surrogate: a,a,a-Trifluorotoluene	37.3		ug/kg	40.0		93.2	80-120			
Surrogate: 4-Bromofluorobenzene	46.7		"	40.0		117	80-120			

Project: Chevron USA/ West Lovington Unit #55

Fax: 505-394-2601

P.O. Box 1558 Eunice NM, 88231 Project Number: 200066 Project Manager: Iain Olness

00066

Reported: 02/22/06 16:36

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		D		CII	6		0/DEC		D.DD	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB61007 - General Preparation (Prep)										
Blank (EB61007-BLK1)				Prepared: 0	02/09/06 A	Analyzed: 02	/10/06			
% Solids	100		%							
Duplicate (EB61007-DUP1)	Sou	rce: 6B08014-	01	Prepared: 0	02/09/06 A	Analyzed: 02	/10/06			
% Solids	98.8		%		98.6			0.203	20	
Duplicate (EB61007-DUP2)	Sou	rce: 6B08019-	06	Prepared: 0	02/09/06 A	Analyzed: 02	/10/06			
% Solids	99.7		%		99.7			0.00	20	
Duplicate (EB61007-DUP3)	Sou	rce: 6B09002-	03	Prepared: 0	02/09/06 A	Analyzed: 02	/10/06			
% Solids	74.8		%		74.5			0.402	20	
Batch EB61301 - Water Extraction										
Blank (EB61301-BLK1)				Prepared: 0	2/10/06 A	Analyzed: 02	/13/06			
Sulfate	ND	0.500	mg/kg							
Chloride	ND	0.500	"							
LCS (EB61301-BS1)				Prepared: 0	02/10/06 A	Analyzed: 02	/13/06			
Chloride	8.86		mg/L	10.0		88.6	80-120			
Sulfate	9.66		11	10.0		96.6	80-120			
Calibration Check (EB61301-CCV1)				Prepared: 0	2/10/06 A	Analyzed: 02	/13/06			
Sulfate	9.82		mg/L	10.0		98.2	80-120			
Chloride	9.05		"	10.0		90.5	80-120			
Duplicate (EB61301-DUP1)	Sou	rce: 6B07009-	01	Prepared: 0	2/10/06 A	Analyzed: 02	/13/06			
Chloride	180	5.00	mg/kg		180		~	0.00	20	·
Sulfate	82.4	5.00	"		84.8			2.87	20	

Project: Chevron USA/ West Lovington Unit #55

Fax: 505-394-2601

P.O. Box 1558

Project Number: 200066

Reported:

Eunice NM, 88231

Project Manager: Iain Olness

02/22/06 16:36

General Chemistry Parameters by EPA / Standard Methods - Quality Control **Environmental Lab of Texas**

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC_	Limits	RPD	Limit	Notes
Batch EB61302 - Water Extraction										
Blank (EB61302-BLK1)				Prepared: 0	2/11/06 A	nalyzed: 02	/13/06			
Sulfate	ND	0.500	mg/kg							
Chloride	ND	0.500	**							
LCS (EB61302-BS1)				Prepared: 0	2/11/06 A	nalyzed: 02	2/13/06			
Sulfate	9.72		mg/L	10.0		97.2	80-120			
Chloride	8.98		"	10.0		89.8	80-120			
Calibration Check (EB61302-CCV1)				Prepared: 02	2/11/06 A	nalyzed: 02	/13/06			
Sulfate	9.84		mg/L	10.0		98.4	80-120			
Chloride	9.04		**	10.0		90.4	80-120			
Duplicate (EB61302-DUP1)	Sou	rce: 6B08017-	16	Prepared: 0	2/11/06 A	nalyzed: 02	/13/06			
Sulfate	80.5	5.00	mg/kg		78.5			2.52	20	
Chloride	18.5	5.00	n		18.9			2.14	20	
Batch EB61505 - General Preparation (Prep)										
Blank (EB61505-BLK1)				Prepared: 0	2/14/06 A	nalyzed: 02	/15/06			
% Solids	100		%							
Duplicate (EB61505-DUP1)	Sou	rce: 6B13007-	01	Prepared: 02	2/14/06 A	nalyzed: 02	/15/06			
% Solids	96.5		%		97.0			0.517	20	
Duplicate (EB61505-DUP3)	Sou	rce: 6B14008-	03	Prepared: 02	2/14/06 A	nalyzed: 02	/15/06			
% Solids	98.0		%		94.8		-	3.32	20	
Duplicate (EB61505-DUP4)	Sou	rce: 6B14008-	24	Prepared: 02	2/14/06 A	nalyzed: 02	/15/06			
% Solids	95.6		%		98.1			2.58	20	

Project: Chevron USA/ West Lovington Unit #55

Fax: 505-394-2601

P.O. Box 1558 Eunice NM, 88231

Project Number: 200066 Project Manager: Iain Olness

Reported: 02/22/06 16:36

General Chemistry Parameters by EPA / Standard Methods - Quality Control **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB61505 - General Preparation (P		2			110001	, , , , ,	224445			1,0103
Duplicate (EB61505-DUP5)		rce: 6B14008-	43	Prepared: (02/14/06 A	nalyzed: 02	2/15/06			
% Solids	92.2		%	•	92.0	. <u> </u>		0.217	20	
Batch EB61608 - Water Extraction										
Blank (EB61608-BLK1)				Prepared &	Analyzed	02/15/06				
Chloride	ND	0.500	mg/kg			-				
Sulfate	ND	0.500	**							
LCS (EB61608-BS1)				Prepared &	Analyzed:	02/15/06				
Chloride	9.06		mg/L	10.0		90.6	80-120			
Sulfate	9.65		"	10.0		96.5	80-120			
Calibration Check (EB61608-CCV1)				Prepared &	Analyzed:	02/15/06				
Sulfate	9.88		mg/L	10.0		98.8	80-120			
Chloride	9.16		"	10.0		91.6	80-120			
Duplicate (EB61608-DUP1)	Sou	rce: 6B02016-	46	Prepared &	Analyzed:	02/15/06				
Sulfate	59.1	10.0	mg/kg		58.7			0.679	20	
Chloride	407	10.0	"		389			4.52	20	
Batch EB62011 - General Preparation (P	rep)									
Blank (EB62011-BLK1)				Prepared: 0)2/17/06 A	nalyzed: 02	/20/06			
% Solids	100		%							
Duplicate (EB62011-DUP1)	Sou	rce: 6B08017-	03RE1	Prepared: 0	02/17/06 A	nalyzed: 02	/20/06			
% Solids	96.5		%		96.5			0.00	20	

Environmental Plus, Incorporated Project: Chevron USA/ West Lovington Unit #55

P.O. Box 1558
Project Number: 200066
Eunice NM, 88231
Project Manager: Iain Olness

Reported: 02/22/06 16:36

Notes and Definitions

Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By:	Kaland Kulub	Date:
Report Approved by.		Daic.

Raland K. Tuttle, Lab Manager

Celey D. Keene, Lab Director, Org. Tech Director

LaTasha Co

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Peggy Allen, QA Officer

2/22/2006

Chain of Custody Form

Environmental Plus, Inc.

2100 Avenue O, Eunice, NM 88231 (505) 394-3481 FAX: (505) 394-2601 Company Name

P.O. Box 1558, Eunice, NM 88231

Chain of Custody Form

Environmental Plus, Inc.

2100 Avenue O, Eunice, NM 88231 (505) 394-3481 FAX: (505) 394-2601

P.O. Box 1558, Eunice, NM 88231

Company Name	Environmental Plus, Inc	al Plus,	nc.								8	Ĭ	Bill To				NF.	ANALYSIS REQUEST	SIS	REC		ST		
EPI Project Manager	iger lain Olness					\vdash					:						Г	\vdash	<u> </u>	L	L			
Mailing Address	P.O. BOX 1558	8	ĺ			T						4												
City, State, Zip	Eunice New Mexico 88231	Mexico 8	823	<u></u>		Т			-		mp	Щ	. 81											
EPI Phone#/Fax#	505-394-3481 / 505-394-	/ 505-39	34-2	2601																				
Client Company	Chevron USA					<u> </u>															-			
Facility Name	West Lovington Unit #5	on Unit	#55			Γ																		
_ocation	UL-F, Sec. 08, T 17 S, R	,T17S,	æ	36 E		Ι				Attr	n:	i	Attn: lain Olness											
Project Reference				-		Г				Ē	PO Box 1558	×	558											
EPI Sampler Name	ne George Blackburn	tpnru							_	Eun	ice,	₹	Eunice, NM 88231											
			┝	<u> </u>		M	MATRIX			PRE	PRESERV.	<u>.</u>	SAMPLING	NG										
LABI.D.	SAMPLE I.D.		9MO(3) RO 8AR(8)	# CONTAINERS	GROUND WATER	MASTEWATER JIOS	CBUDE OIL	SLUDGE	:язнто	VCID/BYSE	CE/COOF	язнто	DATE	IME	B1208 X3TB	грн 8015М	CHTORIDES (CI.)	SULFATES (SO ₄ ") Ho	TCLP	OTHER >>>	Н∀с			
1	SB-2 (15'-16')			┿	┿┈	┿	+			1	×	,	07-Feb-06	13:23	ı×	×	4—	4	+-	┿	-			T
12 2	2 SB-3 (2'-3')		×	-	\vdash	×					×	<u> </u>	07-Feb-06	13:29	×	×	-	×	├	├				
-13 3	3 SB-3 (5'-6')		×	-	-	×					×	┢┈	07-Feb-06	13:32	×	×	×	×		_	L			
~ (C 4	4 SB-3 (10'-11')		×		H	×	Ц				×	-	07-Feb-06	13:37	×	×	×	×						
15 5	5 SB-4 (2'-3')		×	1	\vdash	×	Ш				X	Н	07-Feb-06	13:41	X	X	X	×	Н					
110 6	6 SB-4 (5'-6')		×	-	Н	×	Ц				×		07-Feb-06	13:44	X	X	×	×		_				
7	7 SB-4 (10'-11')		×	귀	\dashv	×					×		07-Feb-06	13:49	×	×	×	×	Н	Н	Ц			П
S			┪	+	┥	4	_			_	1	1						\dashv	_	_	_			
6			_																					
10				Н	Н	Ц						Н					П		_					
Sampler, Relinquished:		10/0/2 XC20 F	Receiv	ived By:							F-m.	ii re	E-mail results to: iolness@envplus.net REMARKS: Analyze subsequent samples in each soil boring for each analyte until two successive	s@envplu t samples in	S.ne	oil bo	ing for	each e	analyte	e until	two su	ccessi	ę	
Relinquished by:	The Control of the Co	00/3	/eceiv	Received By: (Tab staff	a 3	staff)	3				sampi QUES	es are TIONS	samples are no for organics and/of <250 mg/kg for chlorides and/of <600 mg/kg for sulfates. ANY QUESTIONS, PLEASE CALL IAIN OLNESS AT (505) 394-3481. PLEASE PEAD!	a/or <250 mg	/Kg To	15) 39.	des a 1-3481	<u> </u>	8 m i ≅ ⊲	S T	्र हे	READ!!!		
Delive/ed by:		Sample Cool 8	Sool &	& Intact No			æh.	ecked L	ked By:		;	ay	ed ar lake	label	_									
					رم ا	2,0,5			ĺ	1			, /											1

Environmental Lab of Texas Variance / Corrective Action Report — Sample Log-In

Client: Highlander				
Date/Time: 2/8/06 11:10				
Order #:				
Initials:				
Sample Receipt	Checkli	ist	-	1
Temperature of container/cooler?	Yes	No	50 C	
Shipping container/cooler in good condition?	YES	No		
Custody Seals intact on shipping container/cooler?	Yes	No	tiot present	
Custody Seals intact on sample bottles?	X55	No	Not present	
Chain of custody present?	(ES	No		
Sample Instructions complete on Chain of Custody?	(ES	No		
Chain of Custody signed when relinguished and received?	Yes	No		
Chain of custody agrees with sample label(s)	Yes	No		
Container labels legible and intact?	(E)	No		
Sample Matrix and properties same as on chain of custody?	Yas	No		
Samples in proper container/oottle?	≱es	No	,	
Samples properly preserved?	(ES	No		
Sample bottles intact?	783	No		
Preservations documented on Chain of Custody?	I Yes	No		
Containers documented on Chain of Custody?		No		
Sufficient sample amount for indicated test?	(E)	No		
All samples received within sufficient hold time?	Yes	No		
VOC samples have zero headspace?	Yas	No	Not Applicable	
Other observations:				
Variance Docur Contact Person: Date/Time: Regarding:			Contacted by:	,
Corrective Action Taken:				
Corrective Action Taken.				
· · · · · · · · · · · · · · · · · · ·				

APPENDIX III SOIL BORING LOGS

Log Of Test Borings

(NDTE - Page 1 of 1)

ENVIRONMENTAL PLUS, INC.
CONSULTING AND
REMEDIAL CONSTRUCTION
EUNICE, NEW MEXICO
505-394-3481

Project Number: 200066

Project Name: West Lovington Unit #55

Location UL-G, Section 8, Township 17 South, Range 36 East

78	r	EC	505-39	94-3481	VICH	[Boring N	nber: SB-1 Surface Elevation: 3	3910-feet amsl
Time	Sample Type	Recovery (inches)	Moisture	PID Readings (ppm)	Chloride Analysis (mg/Kg)	U.S.C.S. Symbol	Depth (feet)	Start Date: <u>2-07-06</u> Time: Completion Date: <u>2-07-06</u> T Description	1100hrs Ime: <u>1220hrs</u>
1100	22	12		.8	400	_		2' Rocky Brown Soll	
1120	22	12		0.7	160		5	5'Rocky Brown Sand	
1129	22	12		.4	320		10	10' Tan Sand	
1140	22	12	-	.4	400		15	15' Tan Sand	
1150				.5	480		50	20' Tan sand	_ _
1200	!			.6	240		 25	25/ Tan Sand	_ _ _ _
					L70			25' Tan Sand	
1220				.4	200		30	30' Tan Sand End of Soll Boring at 32' bgs	
Date	- Wate		l Meas mple	urement Casino	s (feet Cave-ir	n Vo	ter Dr	Ing Method: HSA 3.5' ID	
	 '"	De	pth	Casing Depth	Depth	<u>"</u> "	evel 🗀	kfill Method: Bentonite	
	1 =		=		_			d Representative: GB	

Log Of Test Borings

(NOTE - Page 1 of 1)

ENVIRONMENTAL PLUS, INC.
CONSULTING AND
REMEDIAL CONSTRUCTION
EUNICE, NEW MEXICO

Project Number: 200066

Project Name: West Lovington Unit #55

Location: UL-G, Section 8, Township 17 South, Range 36 East

1		El	JNICE,	NEW MEX	KICH	L L			
	,		505-3	94-3481			Boring	Number	SB-2 Surface Elevation: 3910-feet amsl
Time	Sample Type	Recovery (inches)	Moisture	PID Readings (ppm)	Chloride Analysis (mg/Kg)	U.S.C.S. Symbol	Depth (feet)		Start Date: 2-07-06 Time: 1300hrs Completion Date: 2-07-06 Time: 1333hrs Description
1300	22	12		.3	24				2' Rocky Brown Soil
									L KOCKY BI GWII SOK
1305	22	12		.3	320		+ `		5' Tan Sand
									_ _
1315	22	12		.3	200		11		10' Tan Sand
1323	22	12		.3	200		15	5	15' Tan Sand End of Soll Sample at 16'
					11 ₁ 11 ₁				· — — — — — — — — — — — — — — — — — — —
								0	
				į					_
							2	5	— <u>— </u>
									_ t
							3		——————————————————————————————————————
	<u> </u>	L							-
Date		e So	mple	casing	Cave-ir	n V	~ ~	Orilling Meth	hod: HSA 3.5' ID
	+	De	pth	Casing Depth —	Depth	<u>"</u>	evel 🗀	Backfill Met	thod: Bentonite
=			= 1				_		
							'	Tield Repres	sentative: GB

ENVIRONMENTAL PLUS, INC.
CONSULTING AND
REMEDIAL CONSTRUCTION
EUNICE, NEW MEXICO

200066 Project Number:

Project Name: West Lovington Unit #55

UL-G, Section 8, Township 17 South, Range 36 East Location

. 7	P	E L	JNICE	NEW MEX	KICH	L							
	•		505-3	94-3481			Boring	Number	SB-3	}	Surface Elevat	tlon: 3910-feet am:	sl
Time	Sample Type	Recovery (inches)	Moisture	PID Readings (ppm)	Chloride Analysis (mg/Kg)	U.S.C.S. Symbol	Depth (feet)		Star Comp	pletion I	2-07-06 Date: 2-07-06 Piption	Time: 1329hrs Time: 1347hrs	_
1339	22	12		,53	160					2' F	Rocky Brown Soll		_ _ _
					160			-5		_	" T. O. I		_
1342	22	12		,3	160					5	' Tan Sand		- - -
1347	22	12		.3	160			10			10' Tan Sand Soll Boring at 11'	bgs	_ _ _
											·		_ _ _
								15					_
								20					_ _ _
	:		į.										_ _ _
	i e						-	25					_
ļ													_ _ _
		,					-	30					<u>-</u>
	<u>l , , , , , , , , , , , , , , , , , , ,</u>	<u>l</u>	<u> </u>	<u> </u>			<u> </u>						
Date			Meas mple epth	urement Casing Depth	Cave-Ir	n Vo	ater .evel	Drilling Met	hodi	HSA 3.5'	ID		
_			-		Depth -		-	Backfill Me	thod	Bento	onite		
-			-		_		-	Claid Banna		C	- D	<u> </u>	

Field Representative:

GB

ENVIRONMENTAL PLUS, INC.
CONSULTING AND
REMEDIAL CONSTRUCTION
EUNICE, NEW MEXICO

Project Number: 200066

Project Name: West Lovington Unit #55

Location: UL-G, Section 8, Township 17 South, Range 36 East

	ı	El	JNICE, I	NEW MEX	KICO	L	LOCU				Township 17 dod on, hange do East
	_		505-39	94-3481			Boring	Numb	er: SE	1-4	Surface Elevation: 3910-feet ams
Time	Sample Type	Recovery (inches)	Moisture	PID Readings (ppm)	Chloride Analysis (mg/Kg)	U.S.C.S. Symbol	Depth				2-07-06 Time: 1329hrs Date: 2-07-06 Time: 1347hrs ription
							<u> </u>				_
1351	22	12		.2	160				\	2′	Rocky Brown Soil
							-				_
1354	22	12		.4	160			-5		5	5' Tan Sand
							-	į			_
								10			
1359	22	12		.2	160			10	\		10' Tan Sand
							\vdash			End of :	Soil Boring at 11' bgs
											_
								15			_
							-				-
							-				_
i							<u> </u>	20			_
							-				_
							_				_
	İ							25			_
											_ _
											-
							-				-
							-	30			_
	Wata	n Laur	l Mass	l l l l l l l l l l l l l l l l l l l	s (feet		Ι,				
Date	Tim			urement Casing Depth	Cave-li Depth		ater evel	Drilling	Method	HSA 3.5	' ID
	-		- -				=_	Backf	ill Metho	d: Bent	onite
			_		-			Field i	Represer	ntative: (GB

APPENDIX IV

INFORMATION AND METRICS FORM INITIAL NMOCD FORM C-141 FINAL NMOCD FORM C-141

Incident Date:

Unknown

NMOCD Notified:

Unknown

Assigned Site Reference: #200066

Information and Metrics

Site: West Lovington Unit #55

Company: Chevron USA, Inc.

Street Address:

Mailing Address: P.O. Box 1949

City, State, Zip: Eunice, New Mexico 88231

Representative: Larry Williams Representative Telephone:

Telephone:

Fluid volume released (bbls): unknown

Recovered (bbls): none

>25 bbls: Notify NMOCD verbally within 24 hrs and submit form C-141 within 15 days.

(Also applies to unauthorized releases >500 mcf Natural Gas)

5-25 bbls: Submit form C-141 within 15 days (Also applies to unauthorized releases of 50-500 mcf Natural Gas)

Unit Letter: F

Leak, Spill, or Pit (LSP) Name: West Lovington Unit #55

Source of contamination: Injection Well

Land Owner, i.e., BLM, ST, Fee, Other: Darr Angell

LSP Dimensions: Unknown

LSP Area: ~3,130 ft²

Location of Reference Point (RP):

Location distance and direction from RP:

Latitude: N 32° 52' 36.83" **Longitude:** W 103° 17' 19.47"

Elevation above mean sea level: 3,895feet

Feet from South Section Line: Feet from East Section Line:

Location- Unit or 1/4: SW1/4 of the NE1/4

Location-Section: 8

Location- Township: 17 South

Location- Range: 36 East

Surface water body within 1000 'radius of site: none

Domestic water wells within 1000' radius of site: none

Agricultural water wells within 1000' radius of site: one

Public water supply wells within 1000' radius of site: none

Depth from land surface to groundwater (DG): ~50 feet

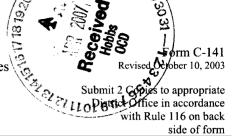
Depth of contamination (DC): unknown

Depth to groundwater (DG – DC = DtGW): \sim 50 feet

1. Groundwater	2. Wellhead Protection Area	3. Distance to Surface Water Body
If Depth to GW <50 feet: 20 points	If <1000' from water source, or;<200' from	<200 horizontal feet: 20 points
If Depth to GW 50 to 99 feet: 10 points	private domestic water source: 20 points	200-1000 horizontal feet: 10 points
If Depth to GW >100 feet: 0 points	If >1000' from water source, or; >200' from private domestic water source: 0 points	>1000 horizontal feet: 0 points

Site Rank (1+2+3) = 10+20+0=30

Total Site Ranking Score and Acceptable Concentrations Parameter >19 10-19 0-9


Benzene¹ 10 ppm 10 ppm 10 ppm BTEX¹ 50 ppm 50 ppm 50 ppm TPH 100 ppm 1,000 ppm 5,000 ppm

100 ppm field VOC headspace measurement may be substituted for lab analysis

District I
1625 N. French Dr., Hobbs, NM 88240
District II
1301 W. Grand Avenue, Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico
Energy Minerals and Natural Resources
Oil Conservation Division

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Release Notification and Corrective Action

				OPERA 7	FOR			Report [Final Report			
Name of Co	ompany:	Chevron			- 1	Contact: Larr	y Williams					
Address: P.	O. Box 1	949 Eunice	, NM 88	3231	'	Telephone No).:					
Facility Na	me: West	t Lovington	. 55			Facility Type	: Injection well					
				1.5		G		1 . 57 37	20.025.05260			
Surface Ov	vner: Stat	te of New N	/lexico	Mineral O	wne	r: State of Ne	w Mexico	API No.	: 30-025-05360			
				LOCATION								
Unit Letter F	Section 8	Township 17S	Range 36E	Feet from the	Nor	th/South Line	Feet from the	East/West Li	ine County Lea			
		Lat	itude: <u>N</u>	1 32° 51' 04.38"								
<u> </u>				NATURE () F			1				
Type of Relea Source of Relea							lease: Unknown r of Occurrence:		ecovered: none			
Source of Rei	ease: mjeci	ion wen				Unknown	r of Occurrence:	Unknown	Hour of Discovery:			
Was Immedia	te Notice (Given?				If YES, To W	hom?					
		⊠ '	Yes 🔲	No Not Requ	ired	Pat Caperton, 1	NMOCD					
By Whom?						Date and Hou						
Was a Watercourse Reached? ☐ Yes ☒ No ☐ Yes ☒ No ☐ If YES, Volume Impacting the Watercourse: Not Applicable												
If a Watercou	rse was Im	pacted, Desc	ribe Fully	.* Not Applicable								
Depth to Grou												
Describe Cau	se of Probl	em and Remo	edial Acti	on Taken.* An unk	nowi	amount of prod	uced water was re	eased when a f	low-line failed. Zero			
(0) barrels of t	luid were re	ecovered. Upo	n discove	ry of the release, Ch 1, 2006. Impacted i	nevro	n contacted EPI f	or remediation act	ivities. EPI was	s on-site and did			
				ken.* Approximat				affected by the	e release			
I hereby certify	y that the ir	nformation giv	en above	is true and complet	te to t	he best of my kr	owledge and und	erstand that pur	suant to NMOCD rules			
and regulation	s all operat	ors are requir	ed to repo	rt and/or file certai	n rel	ease notifications	and perform cor	ective actions	for releases which may			
endanger publ	ic health or	r the environ	nent. The	acceptance of a C	C-141	report by the N	MOCD marked a	s "Final Repor	rt" does not relieve the			
operator of ha	bility shoul human heal	d their operat	ions have	In addition NMO	y inv	estigate and rem	ediate contaminati	on that pose a	threat to ground water, perator of responsibility			
for compliance	with any o	ther federal, s	tate, or lo	al laws and/or regu	ilatio	ns.	141 report does in	of refleve the of	perator of responsibility			
		7	. ,	1 1			IL CONSERV	ATION DIV	ISION			
			. 10	lean					<u></u>			
Signature	/			- Com								
Printed Name	: Larry Wil	lliams				Approved by Dis	strict Supervisor:					
Title: HES Ch	ampion					Approval Date:		Expiration 1	Date:			
E-mail Addre	ss: larry.wi	lliams@chevr	on.com		Conditions of Approval:							
Date: 11-2	28-200	5 Phone:50	5-396	5-4414 ex	128	3						

* Attach Additional Sheets If Necessary

District I
1625 N. French Dr., Hobbs, NM 88240
District II
1301 W. Grand Avenue, Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico
Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 2 Copies to appropriate
District Office in accordance

Old 3 L 3 with Rule 116 on back
side of form

ω Form C-141

Release Notification and Corrective Action

				OPERA			☐ In	itial R	eport	⊠ I	Final Report
Name of Co	mpany:	Chevron				Contact: Larr	y Williams	5			
Address: P.			, NM 88	3231	-	Telephone No					
Facility Na						Facility Type		well			
Surface Ov	v ner: Dar	r Angell	_	Mineral O	wne	r: State of Ne	w Mexico	(API No		>
				LOCATION	_						
Unit Letter F	Section 8	Township 17S	Range 36E	Feet from the	Nor	th/South Line	Feet from t	the I	East/West I	Line	County Lea
		Lat	itude: <u>N</u>	I 32° 51' 04.38"	Lon	gitude: <u>W 10</u>	3° 22' 44.6	<u>6"</u>			
				NATURE ()F			KI	13	224	2
Type of Relea						Volume of Re					red: None
Source of Rel	ease: Inject	ion well				Date and Hou Unknown	r of Occurre	nce:	Date and Unknown		of Discovery:
Was Immedia	ite Notice (Yes 🗌	No 🗌 Not Requ	ired	If YES, To W Pat Caperton, 1					
By Whom?						Date and Hou					
Was a Water	course Rea		- Yes ⊠ I	٧o		If YES, Volum Not Applicable	ne Impacting	the W	atercourse		
If a Watercou	rse was Im			** Not Applicable							
II a Watercou		ipacicu, Desc		. Not ripplicable							
Depth to Grou			ndial Acti	on Taken.* An unk	mourt	amount of prod	ucad water w	ac ralaa	sad when a	flow li	no failed Zero
				d disposal of impac						110W-11	ne failed. Zeio
				ken.* Approximat						e relea	se. On February
				were advanced thro							
receipt of Soil	Boring Soil	l Sample Labo	oratory An	alytical Data confii	ming	excavation of m	ost soil impa	cted abo	ove NMOCI) reme	dial threshold
				mately 14 yds ³ of ca				ntire di	sturbed area	was g	raded and
contoured for i	natural draii	nage and will	be seeded	with a blend prefer	red by	y the property ov	vner.				
and regulation endanger publ operator of lia	s all operat ic health or bility shoul	ors are requir r the environ d their operat	ed to repo nent. The ions have	is true and comple ort and/or file certain acceptance of a failed to adequate In addition, NMO	in rele C-141 ly inv	ease notifications report by the Nestigate and rem	s and perforn NMOCD mar ediate contar	n correct ked as nination	tive actions "Final Report that pose a	for re ort" do a threa	leases which may es not relieve the t to ground water,
				cal laws and/or regu		ns.					
		/	hl	10 -		<u>O</u>	IL CONSE	RVA'	TION DI	VISIC	<u> </u>
Signature:	ten		/ul	Clan	_	Approved by Di	GW	REN	SR A		
Printed Name	: Larry Wil	lliams			A	Approved by Di	strict S uperv	isor:	لمالة	کری	<u> </u>
Title: HES Ch	nampion				1	Approval Date:	4.20.0	7	Expiration	Date:	
E-mail Addre	ss: larry.wi	lliams@chevr	on.com		_	Conditions of Approval:					
Date: 4-19 Attach Add		Phone 5	5-396	5-4414 ex	128	3.				<u> </u>	