

SITE CLOSURE REPORT

5PUD

w.1, 0A

TP. 25.04

COOPER 7 NO. 1 DRILLING PIT

NMOCD REF: 1RP#753 EPI REF: #160014

UL-D (NW¼ OF THE NW¼) OF SECTION 7, T20S, R37E ~13.5 Miles Southwest of Hobbs Lea County, New Mexico Latitude: N 32° 35' 35.6" Longitude: W 103° 17' 47.1"

DECEMBER 2006

PREPARED FOR: >>

Chesapeake

Distribution List

Site Closure Report

Cooper 7 No. 1

Ref. #160014

Name	Tıtle	Company or Agency	Mailing Address	e-mail
Chris Williams	Division I Supervisor	New Mexico Oil Conservation Division- Hobbs	1625 N. French Drive Hobbs, New Mexico 88240	chris.williams@state.nm.us
Bradley Blevins	Field Supervisor	Chesapeake Operating, Inc.	P.O. Box 190 Hobbs, New Mexico 88240-0190	bblevins@chkenergy.com
Harlan M. Brown	Senior Environmental Representative	Chesapeake Energy	6100 N. Western Ave. Oklahoma City, OK 73118	hbrown@chkenergy.com
Jimmie T. Cooper	Property Owner		P.O. Box 55 Monument, New Mexico 88265	(505) 397-2045 (Home Phone) (505) 369-7108 (Mobile)
File		Environmental Plus, Inc.	P.O. Box 1558 Eunice, New México 88231	dduncan@envplus.net

STANDARD OF CARE

Site Closure Report

Cooper 7 No. 1 Drilling Pit NMOCD Ref. 1RP-753; EPI Ref. #160014

The information provided in this report was collected consistent with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases (August 13, 1993), the NMOCD Unlined Surface Impoundment Closure Guidelines (February, 1993) and Environmental Plus, Inc. (EPI) Standard Operating Procedures and Gality Assurance/Qulity Control Plan. The conclusions are based on field observations and laboratory analytical reports as presented in the report. Recommendations follow NMOCD guidance and represent the professional opinions of EPI staff. These opinions were derived using currently accepted geologic, hydrogeologic and engineering practices at this time and location. The report was prepared or reviewed by a certified or registered professional with a background in engineering, environmental and/or natural sciences.

This report was prepared by:

MA David P. Duncan **Civil Engineer**

3-02-07

This report was reviewed by:

Fegemall teron.

Jason Stegemoller, MS **Environmentalist Scientist**

1 March 2007 Date

Table of Contents

1.0	Summary	·
2.0	Site Desc	ription 1
	2.1	Geological Description 1
	2.2	Ecological Description1
	2.3	Area Groundwater 2
	2.4	Area Water Wells
	2.5	Area Surface Water Features 2
3.0	NMOCD	Site Ranking 2
4.0	Subsurfac	ee Soil Investigation
5.0	Groundw	ater Investigation 3
6.0	Remediat	ion and Backfill Procedures 4

FIGURES

Figure 1: Area Map
Figure 2: Site & Well Location Map
Figure 3: Site Map
Figure 4: Sample Point Location Map
Figure 5: Soil Boring Sample Location Mar
Figure 6: Sample Map #1 June 7-14, 2006
Figure 7: Sample Map #2 June 15, 2006

TABLES

Table 1: Well Data

Table 2: Summary of Soil Boring Soil Sample Field Analyses and Laboratory Analytical Results

Table 3: Summary of Excavation Soil Sample Field Analyses and Laboratory Analytical Results

APPENDICES

Appendix I: Laboratory Analytical Reports and Chain-of-Custody Forms Appendix II: Project Photographs Appendix III: Soil Boring Logs Appendix IV: NMOCD Form C-103

1.0 Summary

On June 29, 2005, Chesapeake Operating, Inc. retained Environmental Plus, Inc. (EPI) to conduct drilling pit closure work consistent with NMOCD Pit and Below-Grade Tank Guidelines (November, 2004) on the Cooper 7 No.1 drilling pit. The site is located in Lea County, New Mexico in the NW ¼ of the NW ¼ of Section 07, Township 20 South, Range 37 East. More specifically, the site is located approximately 13.5 miles southwest of Hobbs, New Mexico on property owned by Jimmie Cooper (reference *Figures 1 & 2*).

EPI performed GPS surveying, photography and characterization of the site on June 29, 2005. Form C-103 was submitted to the New Mexico Oil Conservation Division (NMOCD) on July 18, 2005 documenting the site and proposed operations. The drilling pit entailed a surface area of approximately 12,800 square feet (ft^2) with a depth of ±8-feet below ground surface (bgs) (reference *Figure 3*).

From July 13 through July 22, 2005, EPI personnel excavated and transported approximately 1,666 cubic yards (yd³) of material from the drill pit to Sundance Services, Inc., of Eunice, New Mexico for disposal. On July 22, 2005 grab samples were collected from five (5) sample points excavated beneath the pit floor (reference *Figure 4*) with a portion of each sample placed in laboratory provided containers and immediately put on ice for transport to Cardinal Laboratories of Hobbs, New Mexico for quantification of chloride concentrations (reference *Attachment I*). The remaining portion of the sample was analyzed in the field for chloride concentrations utilizing a LaMotte Chloride Test Kit. Field analytical results indicated concentrations ranged from 250 mg/Kg to 5,280 mg/Kg (reference *Table 2*).

From October 3 through October 4, 2005, four (4) soil borings were advanced to different depths at the same location as the previous sample points in the pit bottom with the exception of sample point SP-4 (reference *Figure 5*). A soil boring was not completed at this location as previous analytical results indicated chloride concentrations below 250 mg/Kg at 14-feet bgs (reference *Table 2*). Samples were collected from the soil borings with a portion of each sample placed in laboratory provided containers and immediately put on ice for transport to Cardinal Laboratories of Hobbs, New Mexico for quantification of total petroleum hydrocarbons (TPH) and chloride concentrations (reference *Attachment I*). The remaining portion of each sample was analyzed in the field for the presence of organic vapors utilizing a MiniRae® photoionozation detector (PID) equipped with a 9.8 electron-volt (eV) lamp and chloride concentrations utilizing a LaMotte Chloride Test Kit. Field analytical results indicated organic vapor concentrations ranged from 0.2 to 6.3 parts per million (ppm) and chloride concentrations ranged from 240 to 800 mg/Kg (reference *Table 2*).

2.0 Site Description

2.1 Geological Description

The United States Geological Survey (USGS) Ground-Water Report 6, "Geology and Ground-water Conditions in Southern Lea County, New Mexico," A. Nicholson and A. Clebsch, 1961, describes the near surface geology of southern Lea County as "an intergrade of the Quaternary Alluvium (QA) sediments (i.e., fine to medium sand) with the mostly eroded Cenozoic Ogallala (CO) formation. Typically, the QA and CO formations in the area are capped by a thick interbed of caliche and generally overlain by sandy soil."

The release site is located in the Eunice Plain physiographic subdivision, described by Nicholson & Clebsch as an area "underlain by a hard caliche surface and is almost entirely covered by reddishbrown dune sand." The thickness of the sand cover ranges from 2-5 feet in most areas to as much as 20-30 feet in drift areas.

2.2 Ecological Description

The area is typically of the Upper Chihuahuan Desert Biome consisting primarily of sandy soil covered with short semi-arid grasses, interspersed with Honey Mesquite and forbs. Mammals represented include Orrd's and Merriam's Kangaroo Rats, Deer Mouse, White Throated Wood Rat, Cottontail Rabbit, Black Tailed Jackrabbit, Mule Deer, Bobcat, Red Fox and Coyote. Reptiles, amphibians and birds are numerous and typical of the area. A survey of Listed, Threatened or Endangered species was not conducted.

2.3 Area Groundwater

The unconfined groundwater aquifer at this site was projected to be <50-ft bgs based on water depth data obtained from the New Mexico State Engineers Office and the United States Geological Survey data base. However, groundwater was encountered approximately 31-feet bgs during the advancement of soil boring SB-5B (reference *Appendix III*).

2.4 Area Water Wells

There are no water supply wells located within a 1,000- foot radius of the release site (reference *Figure 2*).

2.5 Area Surface Water Features

There are no surface water bodies within a 1,000-foot radius of the release site (reference Figure 2).

3.0 NMOCD Site Ranking

Contaminant delineation and remedial work done at this site indicate chemical parameters of the soil and physical parameters of the groundwater were characterized consistent with the characterization and remediation/abatement goals and objectives set forth in the following New Mexico Oil Conservation Division (NMOCD) publications:

- Guidelines for Remediation of Leaks, Spills and Releases (August 13, 1993)
- <u>Unlined Surface Impoundment Closure Guidelines (February, 1993)</u>
- <u>Pit and Below-Grade Tank Guidelines (November, 2004)</u>

Acceptable thresholds for contaminants/constituents of concern (CoC) were determined based on the NMOCD Ranking Criteria as follows:

- Depth to Groundwater (i.e., distance from the lower most acceptable concentration to groundwater);
- Wellhead Protection Area (i.e., distance from fresh water supply wells); and
- Distance to Surface Water Body (i.e., horizontal distance to all down gradient surface water bodies).

Based on the proximity of the site to protectable area water wells, surface water bodies, and depth to groundwater from the lower most contamination, the NMOCD ranking score for the site is 20 points with the soil remedial goals highlighted in the Site Ranking table presented below:

1. Groundwater	2. Wellhead Protection Area	3. Distance to Surface Water					
Depth to GW <50 feet: 20 points	If <1,000' from water source, or; <200' from	<200 horizontal feet: 20 points					
Depth to GW 50 to 99 feet: 10 points	private domestic water source: 20 points	200-1,000 horizontal feet: 10 points					
Depth to GW >100 feet: 0 points	If >1,000' from water source, or; >200' from private domestic water source: <i>0 points</i>	>1,000 horizontal feet: 0 points					
Site Rank (1+2+3) = 20 + 0 + 0 = 2	20 points						
Total Site Ranking Score and Acce	ptable Remedial Goal Concentrations						
Parameter 20	or > 10	0					
Benzene ¹ 10	ppm 10 ppm	10 ppm					
BTEX ¹ 50	ppm 50 ppm	50 ppm					
ТРН 100	ppm 1,000 ppm	5,000 ppm					

¹A field soil vapor headspace measurement of 100 ppm was substituted for laboratory analyses of the Benzene and BTEX concentration limits.

4.0 Subsurface Soil Investigation

Excavation of pit contents (drilling mud) commenced on July 13, 2005 and continued through July 22, 2005. Approximately 1,666 cubic yards of drilling mud were excavated and disposed of at Sundance Services, Inc., of Eunice, New Mexico.

On July 22, 2005 five (5) sample points (reference *Figure 4*) were excavated beneath the pit floor with grab samples collected at various depths. A portion of each selected sample was placed in laboratory provided containers and submitted to an independent laboratory for analyses of chloride concentrations. The remaining portion was analyzed in the field for chloride concentrations utilizing a LaMotte Chloride Test Kit. Field analyses indicated chloride concentrations ranged from 240 mg/Kg (SP-1 @ 16-ft bgs) to 5,280 mg/Kg (SP-3 @ 14-ft bgs) (reference *Table 2*).

Laboratory analytical data for the soil samples collected on July 22, 2005 indicated chloride concentrations ranged from 112 mg/Kg (SP-4 @ 16-ft bgs) to 4,319 mg/Kg (SP-4 @ 10-ft bgs) (reference *Table 2*).

On October 3 through October 4, 2005, the vertical extent of contamination from the drill pit materials was further determined via four (4) soil borings (reference *Figure 5*) advanced to different depths in the same location as the previous sample points in the pit floor (reference *Figure 4*). During the advancement of the soil borings, soil samples were collected at 26- and 31-feet bgs with a portion of each sample being submitted for laboratory analyses. The remaining portion of each sample was analyzed in the field for organic vapor and chloride concentrations. Field analyses indicated organic vapor concentrations ranged from 0.2 ppm to 6.3 ppm and chloride concentrations ranged from 240 mg/Kg to 800 mg/Kg (reference *Table 2*).

Laboratory analytical data for the soil sample collected from the four (4) soil borings indicated TPH constituent concentrations in SB-1B of 126 mg/Kg at 26-feet bgs and 21 mg/Kg at 31-feet bgs. TPH constituent concentrations in the remaining three (3) soil borings were non-detectable at or above laboratory method detection limits (MDL). Reported chloride concentrations for soil samples collected from the four (4) soil borings ranged from 64 mg/Kg (SB-1B @26-ft bgs) to 976 mg/Kg (SB-5B a@ 26-ft bgs) (reference *Table 2*).

During the excavation process (June 7 through June 16, 2006), soil samples were collected from the sidewalls and bottom of the excavation on six (6) separate events (reference *Figure 6* for location and *Table 3* for analytical results and dates of sampling events). The soil samples were analyzed in the field for chloride concentrations as guidelines for excavation limits. Areas with elevated chloride concentrations were excavated until acceptable field threshold goals were attained. Final soil samples were collected on June 15, 2006. As with previous soil samples, a portion of selective soil samples collected during the excavation process were sent to an independent laboratory for analysis of TPH, BTEX, chloride and sulfate concentrations. Laboratory analytical analyses indicated both TPH and BTEX constituents concentrations were below NMOCD Remedial Threshold goals for all soil samples events. Soil samples collected on June 15, 2006 event indicated chloride concentrations ranged from 75 mg/Kg (SW-3 @ 14-ft. bgs) to 709 mg/Kg (SW-8 @ 14-ft. bgs). Sulfate concentrations ranged from 34.4 mg/Kg (SW-3 @ 14-ft. bgs) to 681 mg/Kg (SW-9 @ 14-ft. bgs) (reference *Figure 7* for location and *Table 3* for analytical results)

5.0 Groundwater Investigation

Groundwater was encountered approximately 31-feet bgs during the advancement of the soil borings. Most of the soil impacted above the NMOCD remedial thresholds for TPH and BTEX constituents had been removed from the pit and disposed at Sundance Services, Inc. of Eunice, New Mexico.

Confirmatory laboratory analytical results for soil samples collected during the advancement of the soil borings indicated TPH constituents were detectable in one soil boring (SB-1B), but were non-detectable at or above laboratory MDL in the other three (3) soil borings (reference *Table 2 and Appendix I*).

Laboratory analytical results for the soil samples collected the during the advancement of the soil borings indicated chloride concentrations ranged from 64 mg/Kg to 976 mg/Kg in the four (4) soil borings (reference *Table 2* and *Appendix I*).

6.0 Remediation and Backfill Procedures

Excavation of the drilling pit contents commenced on July 13, 2005 and continued through July 20, 2005. Approximately 1,666 cubic yards of drilling mud were stabilized and transported to Sundance Services, Inc., for disposal. Excavation of impacted soil resumed on June 7, 2006 and continued through June 16, 2006. During this interval approximately 2,520 cubic yards of impacted soil were removed and disposed at Sundance Services, Inc. Final depth of the excavation ranged from twelve (12) feet to nineteen (19) feet bgs. To prevent downward migration of chloride and sulfates from impacting groundwater, a twenty (20) mil thick polyethylene barrier was installed over the bottom of the excavation on June 20, 2006. The polyethylene barrier was sandwiched between two (2) protective layers of sand six (6) inches or more in depth. Backfill operations began on June 21, 2006 and concluded on June 28, 2006. Backfill operations required the use of approximately 2,880 cubic yards of soil imported from Jimmie Cooper's pit as well as "on site" excavated soil which was below NMOCD remedial threshold limits. After completion of backfill operations, the drill pit and surrounding area were contoured to allow natural drainage. Remaining remediation activity includes seeding of the disturbed area with a seed mixture approved by the landowner. **FIGURES**

ì

Well Data

Chesapeake Energy Cooper 7 No.1 (NMOCD Ref. 1RP-753; EPI Ref. #160014)

Well Number	Diversion*	Owner	Use	Twsp	Rng	Sec q q q	Latitude	Longitude	Date Measured	Well Depth	Depth to Water
L.02460	3	Moran Drilling Co	PRO	20.5	37 F	07.21	N 37º 35' 28 41"	W 103º 17' 25 25"	09-Jan-54	82	38
L.02533	0	Moran Drilling Co	PRO	205	37 E	07 2 3	N 32º 35' 15 33"	W 103 17 25 23"	24 Apr 54	82	34
USGS #1	1 ×	inoran Drining Co	110	205	37 E	07 131	132 33 13 33	W 105 17 25 25	10 Apr 68	02	27.04
USGS #2				205	37 E	07 243			29-Jan-91		25.06
USGS #3				20 5	37 E	07 243			29-Mar-54		26 37
USGS #4				20 5	37 E	07 432			10-Apr-68		26.14
L 01450	3	Ohio Oil Co	PRO	205	37 E	05 1 3	N 32" 36' 7 65"	W 103º 16' 54 36"	10-7401-00		20 44
L 01572	3	Exploration Drilling Co.	PRO	20 5	37 E	05 3 3 1	N 32º 35' 41 47"	W 103° 16' 54 37"	16 Sep 52	70	
1.02102	3	E E Moran Inc	PRO	203	37 E	05 34	N 32º 35' 41 47	W 103 16' 38 0"	20 Mar 53	70	46
L 02278	3	L aughlin Estate	DOM	203	37 E	05 4 3	N 32º 35º 41 39"	W 103 16' 23 43"	01 Feb 61	65	37
L 02278	3	The Texas Co	PRO	203	37 E	05 2 3	N 22º 26' 7 57"	W 103 10 23 45	07 Feb 54	63	37
L 02497	3	Amerada Petroleum Corn	PRO	20 5	37 6	05 3 3 3	N 32º 35' 41 47"	W 103 16' 54 37"	10 Mar 54	05	35
L 02501	1 2	Amerada Petroleum Corp	PRO	20 5	37 E	05 3 3 3	N 32º 35' 41 47	W 103 16' 54 37"	10-1/141-34		
L 09779	3	Dolores Nash Davis	DOM	20.5	37 E	05 2 2 2	N 32º 36' 20 62"	W 103 16 94 57	15 Jan 85	50	40
USGS #5	<u> </u>	Dolores Husin Duvis	DOW	20.5	37 E	05 1 3 4	N 52 50 20 02	W 105 10 8 01	13-Jan-65	50	20.75
11SGS #6				20.5	37 E	05 134			30 Jap 76		26.82
USGS #7				203	37 E	05 2 2 2			10 Apr 68		20.82
L 01145	3	Gulf Oil Corporation	PRO	20.5	37 E	06 4 1 4	N 32º 35' 54 6"	W/ 103º 17' 25 25"	01 May 37	75	30 2
L 01487	3	Gulf Oil Corporation	PRO	20 5	37 E	06 4 1 4	N 32° 35' 54.6"	W 103 17 25 25"	01-Way-57	15	55
L 02553	3	Gulf Oil Corporation	PRO	205	37 E	06 4 3 4	N 32º 35' 41 40"	W 103 17 25 25	13 May 54	95	40
L 02801	3	Amerada Petroleum Corp	PRO	203	37 E	06 233	N 32" 36' 7 7"	W 103 17 25 20	1.5-1v1ay-54	85	40
L 03810	3	The Texas Co	PRO	20.5	37 E	06 144	N 32º 36' 7 72"	W 103 17 23 24	00 Mar 58	86	27
L 04619	3	Gulf Oil Corporation	PRO	20 5	37 E	06 4 2 3	N 32º 35' 54 58"	W 103 17 40 07	20 Mar 61	86	26
USGS #8		our on corporation	110	20 5	37 E	06 113	11 52 55 54 50	W 105 17 7 01	12 Feb 81	00	22.04
USGS #9				20.5	37 E	06 3 3 4			23-Jan-96		28.81
L 01253	3	Gulf Oil Comoration	PRO	20.5	37 E	08 2 3 1	N 32º 35' 15 21"	W 103º 16' 23 42"	25-5411-50		2001
A 02139	3	Gackle Drilling Co	PRO	20.5	37 E	08 2 2 2	N 32" 35' 28 26"	W 103° 16' 7 95"	19-Mar-53	80	38
L 02274	3	Sinclair Oil & Gas Co	PRO	20'5	37 F	08 13	N 32° 35' 15 28"	W 103° 16' 54 35"	05-101-53	70	30
L 02463	3	Amerada Petroleum Corp	PRO	20.5	37 E	08 3 2 1	N 32º 35' 2 16"	W 103° 16' 38 87"	22-Jan-54	86	30
L 02483	3	Moran Drilling Co	PRO	20.5	37 E	08 1 4 4	N 32" 35' 15 25"	W 103° 16' 38 88"	16-Feb-54	80	34
L 07619	15.57	Jun Cooper	IRR	20.5	37 E	08 4 2 2	N 32º 35' 2 08"	W 103° 16' 7 95"	10100.01	01	
L 07619 S		Jun Cooper	IRR	20.5	37 E	08 4 1 1	N 32º 35' 2 12"	W 103º 16' 23 41"			
L 09590	3	Jummy Cooper	DOM	20.5	37 F	08.4	N 32" 34' 49 04"	W 103° 16' 23 41"	03-Dec-84	70	35
L 09594	0	Jummy Cooper	DOM	20.5	37 E	08 4 2	N 32º 35' 2 08"	W 103º 16' 7 95"	03-1960-04	/0	
L 09890	t ő	Jimmy Cooper	EXP	20.5	37 E	08.4	N 32" 34' 49 04"	W 103° 16' 23 41"	03-Dec-84	70	35
USGS #10	···· • ·	Simily Cooper	L/11	20.5	37 E	08 4 2 3	1.02 01 10 04	,, 105 10 25 41	04-Feb-76	10	19.86
USGS #11				20 5	37 F	08 4 2 4			03-Mar-66		40.43
USGS #12				20.5	37 F	17 132			23-Jan-96		26.6
USGS #13				20.5	37 F	18 21 2			29-Jan-91		27.28
L 03188	3	Amerada Petroleum Corn	PRO	20.5	36 F	01 412	N 32º 35' 54 66"	W 103º 18' 26 59"	2)-5411-51		2120
L 03814	3	W C Byrd	DOM	20.5	36 E	01 2 2 2	N 32° 36' 20 84"	W 103" 18' 11 05"	04-Sep-58	60	40
USGS #14			DOM	20 5	36 E	01 4 1 2			11-Apr-68		26.28
					50 5	51 .12		· · · · ·	11-Apr-68		29.65P
USGS #15				20 S	36 E	12 141			27-lan-71		28.25
USGS #16				20 S	36 E	12 2 2 2 2			08-Sep-67		20 23
USGS #17				20 S	36 E	12 2 4 4			01-Mar-61	<u> </u>	25.65

* = Data obtained from the New Mexico Office of the State Engineer Website (http://waters.ose_state.nm.us 7001/jWATERS/wr_RegisServlet1) and a USGS Database on file at EPI's Office Well locations shown on Figure 2

^A = in acre feet per annum

PRO = 72-12-1 Prospecting or Development of a Natural Resource

IRR = Irrigation

DOM = Domestic

•

EXP = Exploration

quarters are 1=NW, 2=NE, 3=SW, 4=SE, quarters are biggest to smallest

Summary of Soil Boring Soil Sample Field Analyses and Laboratory Analytical Results Chesapeake Energy - Cooper 7 No. 1 (NMOCD Ref 1RP-753; EPI Ref.# 160014)

Sample I.D.	Depth (feet)	Sample Date	PID Field Analysis (ppm)	Field Chloride Analyses (mg/Kg)	Benzene (mg/Kg)	Total BTEX (mg/Kg)	TPH (as Diesel) (mg/Kg)TPH (as gasoline) (mg/Kg)		Total TPH (mg/Kg)	Chloride (mg/Kg)
	10	22-Jul-05		1,400						1,280
	12	22-Jul-05		1,600						
	14	22-Jul-05		560						
SD 1	16	22-Jul-05		250						
51-1	18	22-Jul-05		640						992
	20	22-Jul-05		1,020						
	22	22-Jul-05		800						
	24	22-Jul-05		560						464
	10	22-Jul-05		1,060						864
	12	22-Jul-05		880						
	14	22-Jul-05		880						
SP 2	16	22-Jul-05		1,060						992
51-2	18	22-Jul-05		1,200						
	20	22-Jan-05		780						
	22	22-Jul-05		2,020						-
	24	22-Jul-05		660						720
	10	22-Jul-05		1,920						2,351
	12	22-Jul-05		1,540						
[[[14	22-Jul-05		5,280						
CD 3	16	22-Jul-05		2,500						3,199
51-5	18	22-Jul-05		1,040						
	20	22-Jul-05		1,120						
	14	22-Jul-05		680						
	24	22-Jul-05		640						544
	10	22-Jul-05		1,760						4,319
SP_4	12	22-Jul-05		320						
51-4	14	22-Jul-05		250						128
	16	22-Jul-05		250						112

Summary of Soil Boring Soil Sample Field Analyses and Laboratory Analytical Results Chesapeake Energy - Cooper 7 No. 1 (NMOCD Ref 1RP-753; EPI Ref.# 160014)

Sample I.D.	Depth (feet)	Sample Date	PID Field Analysis (ppm)	Field Chloride Analyses (mg/Kg)	Benzene (mg/Kg)	Total BTEX (mg/Kg)	TPH (as Diesel) (mg/Kg)	TPH (as gasoline) (mg/Kg)	Total TPH (mg/Kg)	Chloride (mg/Kg)
	10	22-Jul-05		3,160						3,039
	12	22-Jul-05		2,000						
	14	22-Jul-05		2,120						
SP 5	16	22-Jul-05		2,480						4,159
51-5	18	22-Jul-05		1,940						
	20	22-Jul-05		1,460						
	22	22-Jul-05		640						
	24	22-Jul-05		420						384
SB-1B	26	03-Oct-05	4.2	240	A	A	126	<10.0	126	64
	31	03-Oct-05	2.2	320	A	A	21	<10.0	21	96
SB-2B	26	04-Oct-05	0.5	240	A	A	<10.0	<10.0	<10.0	144
5D-2D	31	04-Oct-05	0.2	400	A	A	<10.0	<10.0	<10.0	368
SB-3B	26	04-Oct-05	3.5	720	A	A	<10.0	<10.0	<10.0	672
50-50	31	04-Oct-05	6.3	480	A	A	<10.0	<10.0	<10.0	432
SB-5B	26	03-Oct-05	2.5	800	A	A	<10.0	<10.0	<10.0	976
5D-5D	31	03-Oct-05	5.4	800	A	A	<10.0	<10.0	<10.0	656
	NMOO	CD Remedial T	Thresholds		10	50			100	250 2

Bolded values are in excess of NMOCD Remediation Thresholds

^A A field soil vapor headspace measurement of 100 ppm was substituted for laboratory analyses of the Benzene and BTEX concentrations limits ¹ Estimated concentration; analyte dectected below method detection limits

² Chloride residuals may not be capable of impacting local groundwater above the NMWQCC standards of 250 mg/L.

-- Not Analyzed

Summary of Excavation Soil Sample Field Analyses and Laboratory Analytical Results

Chesapeake Operating, Inc. Cooper 7 No. 1 Drill Pit (NMOCD Ref. 1RP#753; EPI)Ref.# 160014)

Sample I D	Depth (feet)	Soil Status	Sample Date	PID Field Analysis (ppm)	Field Chloride Analyses (mg/Kg)	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethylbenzene (mg/Kg)	Total Xylenes (mg/Kg)	Total BTEX (mg/Kg)	Carbon Ranges C6-C12	Carbon Ranges C12-C28	Carbon Ranges C28-C35	Total Hydrocarbons nC6-nC35	Chloride (mg/Kg)	Sulfates (mg/Kg)
BH-1 (SP-5)	18	In situ	07-Jun-06		440	<0 0250	<0 0250	<0.0250	<0.050	<0 125	<10 0	<10.0	<10 0	<30 0	278	139
BH-2	16	In sıtu	07-Jun-06		2,000											
BH-3	18	In situ	07-Jun-06		1,160											
BH-4 (SP-6)	19	In sıtu	08-Jun-06		880	<0.0250	<0 0250	<0 0250	<0.050	<0.125	<10 0	<10.0	<10.0	<30.0	550	414
BH-5 (SP-8)	12	ln sıtu	08-Jun-06		760	<0 0250	<0 0250	<0.0250	<0.050	<0 125	<10.0	<10.0	<10 0	<30 0	512	302.0
BH-6 (SP-4)	12	In situ	09-Jun-06		360	<0 0250	<0.0250	<0.0250	<0 050	<0 10	<10.0	<10 0	<10.0	<30 0	102	531
BH-7 (SP-9)	16	In sıtu	09-Jun-06		880	<0 0250	<0.0250	<0 0250	<0 050	<0.10	<10.0	<10 0	<10.0	<30.0	451	250
BH-8	16	Excavated	09-Jun-06		1,400											
BH-9 (SP-7)	18	In Sıtu	12-Jun-06		600	<0.0250	<0 0250	<0 0250	<0 050	<0.125	<10.0	<10 0	<10.0	<30.0	451	228
BH-10	10	Excavated	13-Jun-06		1,160											
BH-11 (SP-10)	12	In-sıtu	13-Jun-06		880	<0 0250	<0.0250	<0 0250	<0 050	<0 125	<10 0	<10.0	<10 0	<30 0	404	498
BH-12	12	ln sıtu	14-Jun-06		1,200											
BH-13	14	In-sıtu	14-Jun-06		880											
BH-14 (SP-1)	14	In situ	14-Jun-06		760	<0 0250	<0.0250	<0 0250	<0.050	<0.125	<10 0	<100	<10.0	<30.0	648	1,130
BH-15	18	In situ	14-Jun-06		1,200											

--

Summary of Excavation Soil Sample Field Analyses and Laboratory Analytical Results

Chesapeake Operating, Inc.

Cooper 7 No. 1 Drill Pit (NMOCD Ref. 1RP#753; EPI Ref.# 160014)

Sample I.D	Depth (feet)	Soil Status	Sample Date	PID Field Analysis (ppm)	Field Chloride Analyses (mg/Kg)	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethylbenzene (mg/Kg)	Total Xylenes (mg/Kg)	Total BTEX (mg/Kg)	Carbon Ranges C6-C12	Carbon Ranges C12-C28	Carbon Ranges C28-C35	Total Hydrocarbons nC6-nC35	Chloride (mg/Kg)	Sulfates (mg/Kg)
BH-16 (SP-3)	18	ln-sıtu	15-Jun-06		800	<0.0250	<0 0250	<0.0250	<0.050	<0 125	<10.0	<100	<10 0	<30 0	488	319
SW- 1	14	In sıtu	15-Jun-06		600	<0 0250	<0.0250	<0 0250	<0.050	<0 125	<100	<10 0	<10 0	<30.0	289	191
SW-2	14	In sıtu	15-Jun-06		600	<0.0250	<0 0250	<0 0250	<0 050	<0 125	<10.0	<10 0	<10 0	<30 0	550	338
SW-3	14	In situ	15-Jun-06		480	<0 0250	<0 0250	<0 0250	<0 050	<0.125	<10 0	<10 0	<10.0	<30 0	75 0	34 4
SW-4	12	In sıtu	15-Jun-06		480	<0.0250	<0 0250	<0.0250	<0 050	<0 125	<10.0	<10 0	<10 0	<30 0	171	67.8
SW-5	16	In sıtu	15-Jun-06		640	<0.0250	<0 0250	<0.0250	<0 050	<0 125	<10.0	<10 0	<10 0	<30 0	86.7	40 3
SW-6	16	In sıtu	15-Jun-06		600	<0.0250	<0 0250	<0.0250	<0.050	<0 125	<10 0	<10.0	<10 0	<30 0	140	89 0
SW-7	16	In situ	15-Jun-06		880	<0.0250	<0.0250	<0.0250	<0.050	<0 125	<10.0	<10 0	<10 0	<30.0	546	348
SW-8	14	In sıtu	15-Jun-06		760	<0 0250	<0.0250	<0 0250	<0.050	<0.125	<10 0	<10.0	<10.0	<30 0	709	407
SW-9	14	In sıtu	15-Jun-06		800	<0 0250	<0.0250	<0 0250	<0 050	<0.125	<10 0	<100	<10.0	<10 0	358	681
NM	10CD Remo	edial Threshold	l Goals			10				50			100		250	600

Bolded values are in excess of NMOCD Remediation Threshold Goals

-- = Not Analyzed

ND = Not Detected

BH = Soil samples collected from the bottom of the excavation, SW = Soil samples collected from the side walls of the excavation

.

APPENDIX I

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY FORM

PHONE (325) 673-7001 2111 BEECHWOOD + ABILENE, TX 79603

PHONE (505) 393-2326 + 101 E. MARLAND + HOBBS, NM 88240

ANALYTICAL RESULTS FOR ENVIRONMENTAL PLUS, INC. ATTN: IAIN OLNESS P.O. BOX 1558 EUNICE, NM 88231 FAX TO: (505) 394-2601

Receiving Date: 08/03/05 Reporting Date: 08/04/05 Project Owner: CHESAPEAKE ENERGY CORP. Project Name: COOPER 7 NO. 1 Project Location: UL-D, SECT.7.T20S, R36E Analysis Date: 08/03/05 Sampling Date: 07/22/05 Sample Type: SOIL Sample Condition: COOL & INTACT Sample Received By: AH Analyzed By: AH

LAB NUMBER	SAMPLE ID	Cl [—] (mg/Kg)
H10029-1	SP-1 (10')	1280
H10029-2	SP-1 (18')	992
H10029-3	SP-1 (24')	464
H10029-4	SP-2 (10')	864
H10029-5	SP-2 (16')	992
H10029-6	SP-2 (24')	720
H10029-7	SP-3 (10')	2351
H10029-8	SP-3 (16')	. 3199
H10029-9	SP-3 (24')	544
H10029-10	SP-4 (10')	4319
H10029-11	SP-4 (14')	128
H10029-12	SP-4 (16')	112
H10029-13	SP-5 (10')	3039
H10029-14	SP-5 (16')	4159
H10029-15	SP-5 (24')	384
Quality Control		1000
True Value QC		1000
% Recovery		100
Relative Percent	Difference	2.0

METHOD: Standard Methods

Note: Analyses performed on 1:4 w/v aqueous extracts.

m Chemist

4500-CI'B

PLEASE NOTE: Lability and Damages Cardinal's habity and clean's exclusive remoty for any claim arking, whether based in contract or lont, shull be time of to the amount poxt by cleant for analysiss. All diam, instruction to be loss be incodential incodential or consequential balancement without limitation, buttiness interruptions, based uses, or loss of profiles incurred by cleant for analysis. Billialta or successors analysis of use of the performance of a section of the destination, buttiness interruptions, based uses, or loss of profiles incurred by cleant for a based analysis. Billialta or successors analysis of or related to the performance of sections of cleant data, regardless to whather such claim is based uses or loss of profiles incurred by cleant or otherwise.

101 East Marland	101 East Marland, Hobbs, NM 88240						2111 Beechwood, Abilene, TX 79603																			
505-393-2326 F	Fax 505-393-2476					_	915	-67	3-7(201	Fa	x 9	15-6	73-7020												
Company Name	Environm	ental Plus,	Inc									Sin E		0				A	NAL	Y'S	ISIP	IEQ	UES	T		影
EPI Project Man	ager lain Olnes	SS										_ 117				Γ					Π	\square			T	
Mailing Address	P.O. BOX	1558																							Í	1
City, State, Zip	Eunice N	ew Mexico	882	31	-							Ē														
EPI Phone#/Fax	# 505-394-3	481 / 505-3	94-	260	1						6.30E)	TT								1						
Client Company	Chesapea	ke Energy C	orp	orat	ion]						1													
Facility Name	Cooper 7	No. 1																					-			
Location	UL-D, Sec	rt. 7. T 20 S	i, R	367	Έ						Att	n: I	ain	Olness												
Project Reference	ce 160014										F	PO E	Зох	1558		ţ										
EPI Sampler Na	me George B	lackburn									Eur	nice	, NA	M 88231					-							
							MA	TRIX			PR	ESE	RV.	SAMPLI	NG	1	l			Į –						
LAB I.D.	LAB I.D. SAMPLE I.D.		(G)RAB OR (C)OMP	# CONTAINERS	GROUND WATER	WASTEWATER	SOIL	CRUDE OIL	SLUDGE	OTHER:	ACID/BASE	ICE/COOL	отнев	DATE	TIME	BTEX 8021B	TPH 8015M	CHLORIDES (CI)	SULFATES (SO4°)	Ho	ICLP	OTHER >>>	PẠH		¢	
H10029-1 1	SP-1 (10')		G	1			X					x	Ē	22-Jul-05	7:30	Ē	İ-	X		┢═	H	Ē	F	┢──┤		-1
- 2 2	SP-1 (18')		G	1	h		X				İ –	х		22-Jul-05	8:10	Í	†	X		i –				$\neg \uparrow$		-
-3 3	SP-1 (24')		G	1			X					X		22-Jul-05	8:55	1	1	X						T		-1
-4 4	SP-2 (10')		G	1			X			Î	Í	X		22-Jui-05	9:15	t –		X		í	i –		T		\rightarrow	
-5 5	SP-2 (16')		G	1			X					Х		22-Jul-05	9:55	F	f	X		†				Γ ή	<u> </u>	****
-6 6	SP-2 (24')		G	1			X					X		22-Jul-05	10:40	i		X		<u>ا</u>			\square		Î	
-7 7	SP-3 (10')		G	1			X					Х		22-Jul-05	11:00	1	Γ,	X								_
-8 8	SP-3 (15) (16')		G	1			X					Х		22-Jul-05	11:40	1		X		<u>۲</u>					T	
-9 9	SP-3 (24')		G	1			Х					X		22-Jul-05	12:55	—		X		\square			Г		T	-1
-10 10	SP-4 (10')		G	1			X					Х		22-Jul-05	13:20		Γ	X		Γ	Γ			ΠÎ	T	_
						22					1944) 1944							a state				編的				國語
Sampler Belinquished: Relinquished by	Oixell-	Date Time Date Date Distant Time Distant Time Distant	Rece	No i	By: By. (k	ab sta		Ì	Ì			E-n REM	ail r ARKS	esults to: ioine:	ss@hotma	il.co	m			Companya Sa	008460(2)22	under Aller	ter Line Co	meller with the		H2010L
Delivered by:		Saprple (^{Yes}	Coop	& Inta N	act ()	<i>دا</i>		Ch	ecked	By:			r													,

Cardinal Laboratories Inc.

...

Chain of Custody Form

Rage 2 of 2

Cardinal Laboratories Inc. 101 East Mariand, Hobbs, NM 88240 2111 Beechwood, Abilene, TX 79603 505-393-2326 Fax 505-393-2476 915-673-7001 Fax 915-673-7020 **Company Name** Environmental Plus, Inc. Bill'To ANALYSISIREQUEST **EPI Project Manager** lain Olness Mailing Address P.O. BOX 1558 City, State, Zip Eunice New Mexico 88231 EPI Phone#/Fax# 505-394-3481 / 505-394-2601 **Client Company Chesapeake Energy Corporation** Facility Name Cooper 7 No. 1 UL-D, Sect. 7. T 20 S, R 367E Location Attn: Jain Olness **Project Reference** 160014 PO Box 1558 **EPI Sampler Name** George Blackburn Eunice, NM 88231 PRESERV. MATRIX SAMPLING (G)RAB OR (C)OMP. **GROUND WATER** SULFATES (SO4") CHLORIDES (CI) # CONTAINERS WASTEWATER LAB I.D. SAMPLE I.D. ACID/BASE BTEX 8021B CRUDE OIL SLUDGE \$ **TPH 8015M** ICE/COOL ÓTHER: OTHER OTHER SOIL TCLP PAH Hd DATE TIME G 410029-11 1 SP-4 (14') 1 Х Х 22-Jul-05 14:05 X 2 SP-4 (16') G 1 Х X -12 X 22-Jul-05 14:35 3 SP-5 (8) 10' G 1 X Х -13 Х 22-Jul-05 15:00 4 SP-5 (16') G 1 Х -14 Х 22-Jul-05 15:25 X 5 SP-5 (24') GI1 X -15 X 15:50 X 22-Jul-05 7 8 9 10 and the second **Received By** Sampler Reprodushed: E-mail results to: ioiness@hotmail.com Reb REMARKS: Selfmuisted by: 813/05 ived By: (lab staff) 1 J amin Delivered by: Checked By: Sample Cool & Intact ()

Chain of Custody Form

PHONE (325) 673-7001 • 2111 BEECHWOOD • ABILENE, TX 79503 PHONE (505) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

ANALYTICAL RESULTS FOR ENVIRONMENTAL PLUS, INC. ATTN: IAIN OLNESS P.O. BOX 1558 EUNICE, NM 88231 FAX TO: (505) 394-2601

Receiving Date: 10/04/05 Reporting Date: 10/07/05 Project Number: 160014 Project Name: COOPER 7 NO.1 Project Location: UL-D, SECT.7. T 20 S, R 367E Sampling Date: 10/03/05 Sample Type: SOIL Sample Condition: COOL & INTACT Sample Received By: NF Analyzed By: BC/HM

	GRO	DRO	
	(C6-C10)	(>C ₁₀ -C ₂₈)	Cl*
LAB NUMBER SAMPLE ID	(mg/Kg)	(mg/Kg)	(mg/Kg)
ANALYSIS DATE	10/06/05	10/06/05	10/05/05
H10265-1 SB-1B (26')	<10.0	126	64
H10265-2 SB-1B (31')	<10.0	21.0	96
H10265-3 SB-2B (26')	<10.0	<10.0	144
H10265-4 SB-2B (31')	<10.0	<10.0	368
H10265-5 SB-3B (26')	<10.0	<10.0	672
H10265-6 SB-3B (31')	<10.0	<10.0	432
H10265-7 SB-5B (26')	<10.0	<10.0	976
H10265-8 SB-5B (31')	<10.0	<10.0	656
Quality Control	782	801	1030
True Value QC	800	800	1000
% Recovery	97.7	100	103
Relative Percent Difference	1.0	0.4	0.0

METHODS: TPH GRO & DRO: EPA SW-846 8015 M; CI: Std. Methods 4500-CI'B *Analyses performed on 1:4 w:v aqueous extracts.

Less Agashi Chemist

H10265.XLS

PLEASE NOTE: Liability and Damagos. Cardinat's liability and climit's exclusive remody for any claim ansing, whattier based in contract or tort, shall be limited to the anount paid by clent for disulyages All claims, including diseas for negligence and any other cause whatsoover shall be deemed valued unders made in writing and received by Cardinal within durity (30) days after completion of the application service. In no evant shall cardinate be fable for incidential or consequencial damagos, including, without finasis interrupted, is of to set of profiles incident by client, its obtainandes; affikates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise.

Page 1 of 1

Environmental Plus, Inc. Chain of Custody Form 2100 Avenue O, Eunice, NM 88231 P.O. Box 1558, Eunice, NM 88231 (505) 394-3481 FAX: (505) 394-2601 Environmental Plus, Inc. Company Name Bill To EPI Project Manager lain Olness P.O. BOX 1558 Mailing Address **Eunice New Mexico 88231** City, State, Zip EPI Phone#/Fax# 505-394-3481 / 505-394-2601 **Client Company Chesapeake Energy Corporation** Facility Name Cooper 7 No. 1 Location UL-D, Sect. 7. T 20 S, R 367E Attn: lain Olness Project Reference 160014 PO Box 1558 **EPI Sampler Name** George Blackburn Eunice, NM 88231 PRESERV. SAMPLING MATRIX (G)RAB OR (C)OMP. SULFATES (SO4⁺) p^H GROUND WATER CHLORIDES (CI) # CONTAINERS WASTEWATER ACID/BASE ICE/COOL BTEX 8021B LAB I.D. SAMPLE I.D. OTHER >>> PAH CRUDE OIL TPH 8015M SLUDGE OTHER: OTHER TCLP SOIL DATE TIME 410265-1 1 SB-1B (26') X 1 1 03-Oct-05 13:20 X Х -> 2 SB-1B (31") X 1 1 03-Oct-05 XX 14:00 $\overline{X|1}$ 3 SB-2B (26') 1 04-Oct-05 9:30 XX ~Z Х 1 4 SB-2B (31') -4 1 04-Oct-05 10:30 XX 1 5 SB-3B (26') X 1 04-Oct-05 XX 12:00 -5-6 SB-3B (31') X 1 1 04-Oct-05 XX 13:00 -î -7 7 SB-5B (26') X 1 1 03-Oct-05 11:15 XX X 1 - × 8 SB-5B (31') 1 03-Oct-05 12:00 XX 10 Sampler Relinquished: Received By: E-mail results to: iolness@envplus.net REMARKS: time. Relinquished by: 10/4/05 **Received By** 10 PM Checked By ... Och Sample Cool & Intact 17 (Yes/ No

4

Analytical Report

Prepared for:

Iain Olness Environmental Plus, Incorporated P.O. Box 1558 Eunice, NM 88231

Project: Chesapeake/ Cooper 7 No. 1 Project Number: 160014 Location: UL-D, Sect. 7, T 20 S, R 37 E

Lab Order Number: 6F13007

Report Date: 06/19/06

/

Project. Chesapeake/ Cooper 7 No 1 Project Number. 160014 Project Manager lain Olness

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SP-4 12'	6F13007-01	Soil	06/09/06 07 00	06/13/06 10 35
SP-5 18'	6F13007-02	Soil	06/07/06 09 15	06/13/06 10 35
SP-6 19'	6F13007-03	Soil	06/08/06 09 00	06/13/06 10 35
SP-7 18'	6F13007-04	Soil	06/12/06 08 05	06/13/06 10 35
SP-8 12'	6F13007-05	Soil	06/08/06 09.15	06/13/06 10.35
SP-9 16'	6F13007-06	Soil	06/09/06 08 25	06/13/06 10.35

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Project Chesapeake/ Cooper 7 No 1 Project Number 160014 Project Manager Iain Olness

Organics by GC

Environmental Lab of Texas

1		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP-4 12' (6F13007-01) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EF61420	06/14/06	06/14/06	EPA 8021B	
Toluene	ND	0 0250		11			и	**	
Ethylbenzene	ND	0.0250	11		**	"	*	"	
Xylene (p/m)	ND	0.0250		11	".	н	н	"	
Xylene (o)	ND	0 0250		"	11	11		**	
Surrogate a,a,a-Trifluorotoluene		81.8%	80-1	20	"	"	"	"	
Surrogate 4-Bromofluorobenzene		90.8 %	80-1.	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EF61312	06/13/06	06/14/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	н		н	"	"	
Carbon Ranges C28-C35	ND	10 0	н	"		"	п	"	
Total Hydrocarbon nC6-nC35	ND	10 0	11		**	11	"		
Surrogate 1-Chlorooctane		98.8 %	70-1.	30	"	n	"	"	
Surrogate 1-Chlorooctadecane		96.0 %	70-1	30	"	"	"	"	
SP-5 18' (6F13007-02) Soil				•					
Benzene	ND	0 0250	mg/kg dry	25	EF61420	06/14/06	06/14/06	EPA 8021B	
Toluene	ND	0 0250	"	"	"	11			
Ethylbenzene	ND	0 0250	"	"	н	"	н		
Xylene (p/m)	ND	0.0250	"	н			n	n	
Xylene (o)	ND	0.0250	**	"	u.	"	"	п	
Surrogate a,a,a-Trifluorotoluene		91.0 %	80-1.	20	"	"	"	"	
Surrogate 4-Bromofluorobenzene		90 2 %	80-1.	20	"	"	"	п	
Carbon Ranges C6-C12	ND	10 0	mg/kg dry	1	EF61312	06/13/06	06/14/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	п		н		н	
Carbon Ranges C28-C35	ND	10 0	"	"	11	"	"	н	
Total Hydrocarbon nC6-nC35	ND	10.0		"	**	u	п	"	
Surrogate 1-Chlorooctane		958%	70-1.	30	"	"	"	"	
Surrogate 1-Chlorooctadecane		930%	70-1.	30	"	"	"	"	
SP-6 19' (6F13007-03) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EF61420	06/14/06	06/14/06	EPA 8021B	
Toluene	ND	0.0250	"	11	н	н		"	
Ethylbenzene	ND	0 0250	н	"			"	u	
Xylene (p/m)	ND	0.0250		11	11	н	п	"	
Xylene (o)	ND	0 0250		"	"	**	"	"	
Surrogate a,a,a-Trifluorotoluene		80.0 %	80-12	20	"	"	"	"	
Surrogate 4-Bromofluorobenzene		84 8 %	80-1.	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EF61312	06/13/06	06/14/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory This analytical report must be reproduced in its entirety,

with written approval of Environmental Lab of Texas

Page 2 of 13

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

ProjectChesapeake/ Cooper 7 No1Project Number160014Project ManagerIain Olness

Organics by GC **Environmental Lab of Texas** Reporting Result Limit Units Analyte Dilution Batch Prepared Analyzed Method Notes SP-6 19' (6F13007-03) Soil Carbon Ranges C12-C28 10.0 mg/kg dry EF61312 06/13/06 EPA 8015M 06/14/06 ND 1 .. 10 0 н 11 Carbon Ranges C28-C35 ND п 11 ц ц п п Total Hydrocarbon nC6-nC35 10.0 ND 972% 70-130 " " ,, .. Surrogate 1-Chlorooctane Surrogate 1-Chlorooctadecane 94.2 % 70-130 SP-7 18' (6F13007-04) Soil EPA 8021B Benzene ND 0.0250 mg/kg dry 25 EF61420 06/14/06 06/14/06 ** Toluene ND 0.0250 ., Ethylbenzene ND 0 0250 п Xylene (p/m) ND 0 0250 11 Xylene (o) ND 0 0250 ** ., " +1 ,, Surrogate a,a,a-Trifluorotoluene 818% 80-120 .. ,, " " Surrogate 4-Bromofluorobenzene 81.0 % 80-120 .. ,, ,, Carbon Ranges C6-C12 ND 10.0 mg/kg dry EF61314 06/13/06 06/15/06 EPA 8015M 1 Carbon Ranges C12-C28 10 0 ND Carbon Ranges C28-C35 10.0 ,, ND ... 10.0 ,, " н 11 Total Hydrocarbon nC6-nC35 ND .. 105 % " Surrogate 1-Chlorooctane · 70-130 " " " 105 % Surrogate 1-Chlorooctadecane 70-130 " SP-8 12' (6F13007-05) Soil Benzene ND 0.0250 mg/kg dry EF61420 EPA 8021B 25 06/14/06 06/14/06

	I D	010200			2101120	00/1//00	00.14.00		
Toluene	′ ND	0.0250	"	н	"	"	"	"	
Ethylbenzene	ND	0.0250	"				н	"	
Xylene (p/m)	ND	0.0250	н	"	н	"	н	n	
Xylene (o)	ND	0 0250	11	н		"	11	н	
Surrogate [•] a,a,a-Trifluorotoluene		87.5 %	80-120		"	"	"	"	
Surrogate. 4-Bromofluorobenzene		82 5 %	80-120		"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	l	EF61314	06/13/06	06/15/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10 0	"	11	۳	"	11	н	
Carbon Ranges C28-C35	ND	10.0		"		н	"	11	
Total Hydrocarbon nC6-nC35	ND	10.0	н	"	"	"		11	
Surrogate 1-Chlorooctane		89.8 %	70-130		"	"	"	"	
Surrogate 1-Chlorooctadecane		92.0 %	70-130		"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas

Project Chesapeake/ Cooper 7 No 1 Project Number. 160014 Project Manager. Iain Olness

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting	Unite	DL					
		Linin	Units	Dilution	Balch	Prepared	Analyzed	Method	Notes
SP-9 16' (6F13007-06) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EF61420	06/14/06	06/14/06	EPA 8021B	
Toluene	ND	0.0250		"		"	11	"	
Ethylbenzene	ND	0 0250	"			"	"		
Xylene (p/m)	ND	0.0250	"	n	н	*	"	н	
Xylene (o)	ND	0.0250		п		н	*	**	
Surrogate a,a,a-Trifluorotoluene		87.5 %	80-1	20	"	"	"	n	
Surrogate 4-Bromofluorobenzene		80 8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10 0	mg/kg dry	1	EF61428	06/14/06	06/15/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	н	н	"	п	н	н	
Carbon Ranges C28-C35	ND	10 0	**	"	"	"	"	"	
Total Hydrocarbon nC6-nC35	ND	10 0		"	н	"		н	
Surrogate 1-Chlorooctane		117 %	70-1	30	"	"	"	"	
Surrogate 1-Chlorooctadecane		114 %	70-1	30	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Project. Chesapeake/ Cooper 7 No. 1 Project Number 160014 Project Manager: Iain Olness

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP-4 12' (6F13007-01) Soil									
Chloride	102	10.0	mg/kg	20	EF61406	06/14/06	06/14/06	EPA 300 0	
% Moisture	12.1	01	%	1	EF61407	06/13/06	06/14/06	% calculation	
Sulfate	531	10 0	mg/kg	20	EF61406	06/14/06	06/14/06	EPA 300 0	
SP-5 18' (6F13007-02) Soil									
Chloride	278	10.0	mg/kg	20	EF61406	06/14/06	06/14/06	EPA 300 0	
% Moisture	15.3	01	%	1	EF61407	06/13/06	06/14/06	% calculation	
Sulfate	139	10 0	mg/kg	20	EF61406	06/14/06	06/14/06	EPA 300 0	
SP-6 19' (6F13007-03) Soil									
Chloride	550	20.0	mg/kg	40	EF61406	06/14/06	06/14/06	EPA 300 0	
% Moisture	12.4	0.1	%	1	EF61407	06/13/06	06/14/06	% calculation	
Sulfate	414	20.0	mg/kg	40	EF61406	06/14/06	06/14/06	EPA 300 0	
SP-7 18' (6F13007-04) Soil									
Chloride	451	10.0	mg/kg	20	EF61406	06/14/06	06/14/06	EPA 300 0	
% Moisture	10.6	01	%	1	EF61407	06/13/06	06/14/06	% calculation	
Sulfate	228	10.0	mg/kg	20	EF61406	06/14/06	06/14/06	EPA 300 0	
SP-8 12' (6F13007-05) Soil									
Chloride	512	10.0	mg/kg	20	EF61406	06/14/06	06/14/06	EPA 300 0	
% Moisture	15.0	01	%	1	EF61407	06/13/06	06/14/06	% calculation	
Sulfate	302	10 0	mg/kg	20	EF61406	06/14/06	06/14/06	EPA 300 0	
SP-9 16' (6F13007-06) Soil									
Chloride	451	20 0	mg/kg	40	EF61406	06/14/06	06/14/06	EPA 300 0	
% Moisture	9.5	0.1	%	1	EF61407	06/13/06	06/14/06	% calculation	
Sulfate	250	20.0	mg/kg	40	EF61406	06/14/06	06/14/06	EPA 300 0	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirely, with written approval of Environmental Lab of Texas

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EF61312 - Solvent Extraction (GC)										
Blank (EF61312-BLK1)	_			Prepared (nalyzed 06	5/14/06			
Carbon Ranges C6-C12	ND	10 0	mg/kg wet							
Carbon Ranges C12-C28	ND	10 0	п							
Carbon Ranges C28-C35	ND	10 0	н							
Total Hydrocarbon nC6-nC35	ND	10 0	"							
Surrogate I-Chlorooctane	58 4		mg/kg	50 0		117	70-130			
Surrogate 1-Chlorooctadecane	58 6		"	50 0		117	70-130			
LCS (EF61312-BS1)				Prepared. (06/13/06 A	nalyzed 06	/14/06			
Carbon Ranges C6-C12	447	10 0	mg/kg wet	500		89 4	75-125			
Carbon Ranges C12-C28	508	10 0	п	500		102	75-125			
Total Hydrocarbon nC6-nC35	955	10 0	"	1000		95 5	75-125			
Surrogate 1-Chlorooctane	57 2		mg/kg	50 0		114	70-130			
Surrogate 1-Chlorooctadecane	61 6		"	50 0		123	70-130			
Calibration Check (EF61312-CCV1)				Prepared. (06/13/06 A	nalyzed 06	/15/06			
Carbon Ranges C6-C12	205		mg/kg	250		82 0	80-120			
Carbon Ranges C12-C28	294		н	250		118	80-120			
Total Hydrocarbon nC6-nC35	499			500		99 8	80-120			
Surrogate 1-Chlorooctane	63 7		"	50 0		127	70-130			
Surrogate 1-Chlorooctadecane	62 1		"	50 0		124	70-130			
Matrix Spike (EF61312-MS1)	Sou	Source: 6F13007-01		Prepared. 06/13/06 Analyzed 06/14/06			6/14/06			
Carbon Ranges C6-C12	518	10 0	mg/kg dry	569	ND	91.0	75-125			
Carbon Ranges C12-C28	533	10 0	"	569	ND	93 7	75-125			
Total Hydrocarbon nC6-nC35	1050	10 0		1140	ND	92 1	75-125			
Surrogate 1-Chlorooctane	60 3		mg/kg	50 0		121	70-130			
Surrogate 1-Chlorooctadecane	52 0		"	50.0		104	70-130			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EF61312 - Solvent Extraction (GC)										
Matrix Spike Dup (EF61312-MSD1)	Sou	rce: 6F13007	7-01	Prepared: (06/13/06 A	nalyzed. 06	5/14/06			
Carbon Ranges C6-C12	511	10 0	mg/kg dry	569	ND	89 8	75-125	1 36	20	
Carbon Ranges C12-C28	527	10 0	"	569	ND	92 6	75-125	1.13	20	
Total Hydrocarbon nC6-nC35	1040	10 0	"	1140	ND	91 2	75-125	0 957	20	
Surrogate 1-Chlorooctane	598		mg/kg	50 0		120	70-130			
Surrogate 1-Chlorooctadecane	516		"	50 0		103	70-130			
Batch EF61314 - Solvent Extraction (GC)										
Blank (EF61314-BLK1)				Prepared.	06/13/06 A	nalyzed: 06	5/14/06			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10 0	"							
Carbon Ranges C28-C35	ND	10 0	n							
Total Hydrocarbon nC6-nC35	ND	10 0	н							
Surrogate 1-Chlorooctane	416		mg/kg	50 0		832	70-130			
Surrogate 1-Chlorooctadecane	43 0		"	50 0		86 0	70-130			
LCS (EF61314-BS1)				Prepared. (06/13/06 A	nalyzed 06	5/14/06			
Carbon Ranges C6-C12	519	10.0	mg/kg wet	500		104	75-125			
Carbon Ranges C12-C28	535	10 0	11	500		107	75-125			
Total Hydrocarbon nC6-nC35	1050	10 0	"	1000		105	75-125			
Surrogate 1-Chlorooctane	61.0		mg/kg	50 0		122	70-130			
Surrogate 1-Chlorooctadecane	61 0		"	50 0		122	70-130			
Calibration Check (EF61314-CCV1)				Prepared.	06/13/06 A	nalyzed. 06	6/14/06			
Carbon Ranges C6-C12	253		mg/kg	250		101	80-120			
Carbon Ranges C12-C28	256		"	250		102	80-120			
Total Hydrocarbon nC6-nC35	509		н	500		102	80-120			
Surrogate 1-Chlorooctane	48 5		"	50 0		970	70-130			x.
Surrogate 1-Chlorooctadecane	503		"	50 0		101	70-130			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas
Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EF61314 - Solvent Extraction (GC)										
Matrix Spike (EF61314-MS1)	Sou	rce: 6F13008	8-01	Prepared	06/13/06 A	nalyzed 06	5/14/06			
Carbon Ranges C6-C12	578	10.0	mg/kg dry	550	ND	105	75-125			
Carbon Ranges C12-C28	608	10 0	"	550	ND	111	75-125			
Total Hydrocarbon nC6-nC35	1190	10 0	н	1100	ND	108	75-125			
Surrogate 1-Chlorooctane	59 0		mg/kg	50 0		118	70-130			,
Surrogate 1-Chlorooctadecane	52 3		"	50 0		105	70-130			
Matrix Spike Dup (EF61314-MSD1)	Sou	rce: 6F13008	8-01	Prepared	06/13/06 A	nalyzed. 06	5/14/06			
Carbon Ranges C6-C12	584	10.0	mg/kg dry	550	ND	106	75-125	1 03	20	
Carbon Ranges C12-C28	611	10 0	"	550	ND	111	75-125	0 492	20	
Total Hydrocarbon nC6-nC35	1200	10 0	н	1100	ND	109	75-125	0 837	20	
Surrogate 1-Chlorooctane	597		mg/kg	50 0		119	70-130			
Surrogate 1-Chlorooctadecane	52 4		"	50 0		105	70-130			
Batch EF61420 - EPA 5030C (GC)										
Blank (EF61420-BLK1)				Prepared	06/14/06 A	nalyzed. 06	5/15/06			
Benzene	ND ×	0 0250	mg/kg wet							
Toluene	ND	0.0250	'n							
Ethylbenzene	ND	0 0250	н							
Xylene (p/m)	ND	0 0250	11							
Xylene (o)	ND	0 0250	"							
Surrogate a,a,a-Trifluorotoluene	37 4		ug/kg	40.0		93 5	80-120			
Surrogate 4-Bromofluorobenzene	32 5		"	40 0		812	80-120			
LCS (EF61420-BS1)				Prepared &	k Analyzed.	06/14/06				
Benzene	1 13	0 0250	mg/kg wet	1 25		90 4	80-120			
Toluene	1 11	0 0250	н	1 25		88 8	80-120			
Ethylbenzene	1 05	0 0250	н	1 25		84 0	80-120			
Xylene (p/m)	2 41	0 0250	н	2 50		96 4	80-120			
Xylene (o)	1 29	0 0250	н	1 25		103	80-120			
Surrogate a,a,a-Trifluorotoluene	34 6		ug/kg	40 0		86 5	80-120			
Surrogate 4-Bromofluorobenzene	43 0		"	40 0		108	80-120			

Environmental Lab of Texas

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
- Batch EF61420 - EPA 5030C (GC)										
Calibration Check (EF61420-CCV1)				Prepared (06/14/06 A	nalyzed 06	5/15/06			
Benzene	46 8		ug/kg	50 0		93 6	80-120			
Toluene	45 0		11	50 0		90 0	80-120			
Ethylbenzene	48.7		н	50 0		97 4	80-120			
Xylene (p/m)	86 9		"	100		86 9	80-120			
Xylene (o)	47 5		н	50.0		95 0	80-120			
Surrogate a,a,a-Trifluorotoluene	36 1		"	40 0		90.2	80-120			
Surrogate 4-Bromofluorobenzene	34 8		"	40 0		870	80-120			
Matrix Spike (EF61420-MS1)	Sou	rce: 6F13007	-01	Prepared (06/14/06 A	nalyzed. 06	/15/06			
Benzene	1 39	0 0250	mg/kg dry	1 42	ND	97 9	80-120			
Toluene	1 34	0 0250	"	1 42	ND	94 4	80-120			
Ethylbenzene	1 20	0 0250	"	1 42	ND	84 5	80-120			
Xylene (p/m)	2 66	0 0250	п	2 84	ND	93.7	80-120			
Xylene (o)	1 42	0 0250	"	1 42	ND	100	80-120			
Surrogate a,a,a-Trifluorotoluene	397		ug/kg	40 0		99 2	80-120			
Surrogate 4-Bromofluorobenzene	38 4		"	40 0		96 0	80-120			
Matrix Spike Dup (EF61420-MSD1)	Sou	rce: 6F13007	-01	Prepared.	06/14/06 A	nalyzed 06	/15/06			
Benzene	1 31	0 0250	mg/kg dry	1 42	ND	92 3	80-120	5 89	20	
Toluene	1 28	0.0250	н	1 42	ND	90 1	80-120	4 66	20	
Ethylbenzene	1 15	0 0250	н	1.42	ND	81.0	80-120	4 23	20	
Xylene (p/m)	2 55	0 0250	"	2 84	ND	89 8	80-120	4 25	20	
Xylene (o)	1 37	0 0250	"	1 42	ND	96 5	80-120	3 56	20	
Surrogate a,a,a-Trifluorotoluene	33 1		ug/kg	40 0		82 8	80-120			
Surrogate 4-Bromofluorobenzene	37 5		"	40 0		938	80-120			
Batch EF61428 - Solvent Extraction (GC)										
Blank (EF61428-BLK1)				Prepared.	06/14/06 A	nalyzed 06	/15/06			
Carbon Ranges C6-C12	ND	10 0	mg/kg wet							
Carbon Ranges C12-C28	ND	10 0	"							
Carbon Ranges C28-C35	ND	10 0	н							
Total Hydrocarbon nC6-nC35	ND	10 0	"							
Surrogate 1-Chlorooctane	42.2		mg/kg	50 0		84 4	70-130			
Surrogate 1-Chlorooctadecane	457		"	50 0		914	70-130			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EF61428 - Solvent Extraction (GC)										
LCS (EF61428-BS1)				Prepared	06/14/06 A	nalyzed. 06	5/15/06			
Carbon Ranges C6-C12	506	10 0	mg/kg wet	500		101	75-125			
Carbon Ranges C12-C28	516	10 0	"	500		103	75-125			
Total Hydrocarbon nC6-nC35	1020	10 0		1000		102	75-125			
Surrogate 1-Chlorooctane	490		mg/kg	50 0		98 0	70-130			
Surrogate 1-Chlorooctadecane	48 3	·	"	50 0		96 6	70-130			
Calibration Check (EF61428-CCV1)				Prepared	06/14/06 A	nalyzed. 06	5/15/06			
Carbon Ranges C6-C12	208		mg/kg	250		83 2	80-120			
Carbon Ranges C12-C28	289		**	250		116	80-120			
Total Hydrocarbon nC6-nC35	497		"	500		99 4	80-120			
Surrogate 1-Chlorooctane	62 2		"	50 0		124	70-130			
Surrogate 1-Chlorooctadecane	60 1		"	50 0		120	70-130			
Matrix Spike (EF61428-MS1)	Sou	rce: 6F13009	-15	Prepared	06/14/06 A	nalyzed. 06	5/15/06			
Carbon Ranges C6-C12	455	10 0	mg/kg dry	504	ND	90 3	75-125			
Carbon Ranges C12-C28	476	10 0	"	504	ND	94 4	75-125			
Total Hydrocarbon nC6-nC35	931	10 0	"	1010	ND	92 2	75-125			
Surrogate 1-Chlorooctane	60 9		mg/kg	50 0		122	70-130			
Surrogate 1-Chlorooctadecane	55 3		"	50 0		111	70-130			
Matrix Spike Dup (EF61428-MSD1)	Sou	rce: 6F13009	-15	Prepared	06/14/06 A	.nalyzed. 06	5/16/06			
Carbon Ranges C6-C12	479	10 0	mg/kg dry	504	ND	95 0	75-125	5 14	20	
Carbon Ranges C12-C28	494	10 0	н	504	ND	98 0	75-125	3 71	20	
Total Hydrocarbon nC6-nC35	973	10 0	"	1010	ND	96 3	75-125	4 4 1	20	
Surrogate 1-Chlorooctane	60 9		mg/kg	50 0		122	70-130			
Surrogate 1-Chlorooctadecane	591		"	50 0		118	70-130			

Environmental Lab of Texas

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EF61406 - Water Extraction										
Blank (EF61406-BLK1)				Prepared 8	k Analyzed.	06/14/06				
Sulfate	ND	0 500	mg/kg							
Chloride	ND	0 500	**							
LCS (EF61406-BS1)				Prepared &	k Analyzed	06/14/06				
Sulfate	9 27	0 500	mg/kg	10 0		92 7	80-120			
Chloride	10 2	0 500	"	10 0		102	80-120			
Calibration Check (EF61406-CCV1)				Prepared &	2 Analyzed	06/14/06				
Chloride	10 1		mg/L	10 0		101	80-120			
Sulfate	8 21		n	10 0		82 1	80-120			
Duplicate (EF61406-DUP1)	Sou	Source: 6F12012-04 P			z Analyzed.	06/14/06				
Chloride	804	25 0	mg/kg		791			1 63	20	
Sulfate	277	25 0	н		271			2 19	20	
Duplicate (EF61406-DUP2)	Sou	rce: 6F13007-	·02	Prepared 8	z Analyzed	06/14/06				
Chloride	288	10 0	mg/kg		278			3 53	20	······································
Sulfate	144	10 0	"		139			3 53	20	
Matrix Spike (EF61406-MS1)	Sou	rce: 6F12012-	-04	Prepared &	k Analyzed.	06/14/06				
Chloride	1430	25 0	mg/kg	500	791	128	80-120			S-07
Sulfate	684	25 0	"	500	271	82 6	80-120			
Matrix Spike (EF61406-MS2)	Sou	rce: 6F13007-	-02	Prepared &	Prepared & Analyzed 06/14/06					
Sulfate	273	10 0	mg/kg	200	139	67 0	80-120			S-07
Chloride	494	10 0	н	200	278	108	80-120			

Environmental Lab of Texas

Environmental Plus, Incorporated P O. Box 1558 Eunice NM, 88231

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		- Banastina		Caulto	Č nuroo		%DEC		מתק	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EF61407 - General Preparation (Prep)								_		
Blank (EF61407-BLK1)				Prepared	06/13/06	Analyzed 06	/14/06			
% Solids	100		%							
Duplicate (EF61407-DUP1)	Sour	ce: 6F12025-0	01	Prepared	06/13/06	Analyzed. 06	/14/06			
% Solids	95 0		%		95 1			0 105	20	
Duplicate (EF61407-DUP2)	Source: 6F13004-02			Prepared	06/13/06	Analyzed. 06	/14/06			
% Solids	92.3		%		92 5			0 216	20	
Duplicate (EF61407-DUP3)	Sour	ce: 6F13009-(92	Prepared	06/13/06	Analyzed 06	/14/06			
% Solids	94 4		%		94 4			0 00	20	
Duplicate (EF61407-DUP4)	Sour	ce: 6F13009-2	22	Prepared	06/13/06	Analyzed 06	/14/06			
% Solids	94 8		%		94 0			0 847	20	
Duplicate (EF61407-DUP5)	Sour	ce: 6F13013-0)4	Prepared	06/13/06	Analyzed 06	/14/06			
% Solids	89 4		%		89 4			0 00	20	

Environmental Lab of Texas

Notes and Definitions

S-07	Recovery outside Laboratory historical or method prescribed limits
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike

Dup Duplicate

Report Approved By:

Raland K Junes

6/19/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas

Page 13 of 13

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

	ncinal i i	us, me.																$\underline{\nabla}$	nia	<u>",, (</u>	<u></u>	203		19.1	0	<u> </u>
2100 Avenue O,	Eunice, NM 882	231	Ρ.(). B	ox 1	558	3, Et	unic	:e, 1	VM 8	882;	31								L	AB:		ΕI	LT		
(505) 394-3481	FAX: (505) 394-	2601																				_				
Company Name	Envi	ronmental Plus	, Inc	».			H.				.	E	illa	0		1		A	NAL	YS	IS P	EQ	UES	J		
EPI Project Mana	ager lain	Olness																								
Mailing Address	P.O.	BOX 1558										Ш	L													
City, State, Zip	Euni	ce New Mexico	882	31							Ĩ	(E	, `E													
EPI Phone#/Fax#	# 505-:	394-3481 / 505-3	394-	260	1																					
Client Company	Ches	apeake Energy C	orp	orat	ion																					
Facility Name	Cool	per 7 No. 1					1																			
Location	UL-D), Sect. 7. T 20 S	5, R	367	Έ						Att	in: I	ain	Olness												
Project Reference	e 1600	14	· · · · · · · · · · · · · · · · · · ·								F	°O E	Box	1558		ļ										
EPI Sampler Nar	ne Geor	rge Blackburn									Eur	nice	, NN	M 88231												
							MAT	RIX			PR	ESE	RV.	SAMPLI	NG]										
LAB I.D.	SAMP	LE I.D.	(G)RAB OR (C)OMF	# CONTAINERS	GROUND WATER	WASTEWATER	SOIL	CRUDE OIL	SLUDGE	OTHER:	ACID/BASE	ICE/COOL	OTHER	DATE	TIME	BTEX 8021B	TPH 8015M	CHLORIDES (CI)	SULFATES (SO4 [*])	Hd	TCLP	OTHER >>>	РАН			
-0 1	SP-4 (12')		G	1			_1							09-Jun-06	7:00	X	X	Х	X							
-87 2	SP-5 (18')		G	1			1							07-Jun-06	9:15	X	X	X	X							
- FG 3	SP-6 (19')		G	1			1					·		08-Jun-06	9:00	X	X	X	X							
54 4	SP-7 (18')		G	1			1					I		12-Jun-06	8:05	X	X	X	X							
-09 5	SP-8 (12')		G	1			1							08-Jun-06	9:15	X	X	Х	X							
-010 6	SP-9 (16')		G	1			1							09-Jun-06	8:25	X	<u> X</u>	X	Х							
7			Ļ	L								<u> </u>														Ц
8			ļ									ļ														
9			ļ	<u> </u>								L														Ш
10			L	<u> </u>																						
				×.,																	<u> Ser</u>	i i i i i i i i i i i i i i i i i i i				
Sampler Relinquished		139 line Ob	Rece	eived	ву: ГЛ	12	_					E-m	ail r	esuits to: iolnes	s@envpli	us.ne	∍t									
10en UV	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Date 20 726	Rec	inod		ab eta	7						Алқа	∧. A ₽_+												
in LMM		10:35	1	W	ú	, ((el	lz						402-glass												ļ
Deliveréd by.			e Cool	l & int ►	act Io			The	ecked	By:				wlake	0.5					-						

Environmental Plus Inc

Chain of Custody Form

Page 1 of 1

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client:	EP1
Date/Time	6/13/20e
Order #:	6713007
Initials:	Cla

Sample Receipt Checklist

Temperature of container/cooler?	Yes	No	05 01
Shipping container/cooler in good condition?	(ES	Na	
Custody Seals intact on shipping container/cooler?	Yes	No	Clot present:
Custody Seals intact on sample bottles?	Yes	No	Not present
Chain of custody present?	(Pes	No	
Sample Instructions complete on Chain of Custody?	XES	No	
Chain of Custody signed when relinquished and received?	100	No	
Chain of custody agrees with sample label(s)	(es	No	
Container labels legible and intact?	8e9	No	······
Sample Matrix and properties same as on chain of custody?	(TES	No	
Samples in proper container/bottle?	1 1/28	No	
Samples properly preserved?	10	No	
Sample bottles intact?	1 123	No	
Preservations documented on Chain of Custody?	1 2795	No	
Containers documented on Chain of Custody?	1 Ces	No	
Sufficient sample amount for indicated test?	XES	No	
All samples received within sufficient hold time?	Tes	No	
VOC samples have zero headspace?	(Yeg	No	Not Apolicable

Other observations:

Analytical Report

Prepared for:

Iain Olness Environmental Plus, Incorporated P.O. Box 1558 Eunice, NM 88231

Project: Chesapeake/ Cooper 7 No. 1 Project Number: 160014 Location: UL-D, Sect. 7, T 20 S, R 37 E

Lab Order Number: 6F16007

Report Date: 06/20/06

ProjectChesapeake/ Cooper 7 No1Project Number160014Project ManagerIan Olness

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SP-10 12'	6F16007-01	Soil	06/13/06 09.30	06/16/06 11.35
SP-1 14'	6F16007-02	Soil	06/14/06 09 30	06/16/06 11 35
SP-3 18'	6F16007-03	Soil	06/15/06 07.50	06/16/06 11 35
SW-1 14'	6F16007-04	Soil	06/15/06 14.00	06/16/06 11 35
SW-2 14'	6F16007-05	Soil	06/15/06 14.05	06/16/06 11.35
SW-3 14'	6F16007-06	Soil	06/15/06 14 10	06/16/06 11 35
SW-4 12'	6F16007-07	Soil	06/15/06 14.15	06/16/06 11 35
SW-5 16'	6F16007-08	Soil	06/15/06 14·20	06/16/06 11.35
SW-6 16'	6F16007-09	Soil	06/15/06 14.25	06/16/06 11.35
SW-7 16'	6F16007-10	Soil	06/15/06 14 30	06/16/06 11.35
SW-8 14'	6F16007-11	Soil	06/15/06 14 35	06/16/06 11.35
SW-9 14'	6F16007-12	Soil	06/15/06 14 40	06/16/06 11.35

ProjectChesapeake/ Cooper 7 No. 1Project Number160014Project ManagerIam Olness

Organics by GC

Environmental Lab of Texas

		Reporting										
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
SP-10 12' (6F16007-01) Soil												
Benzene	ND	0 0250	mg/kg dry	25	EF61704	06/17/06	06/19/06	EPA 8021B				
Toluene	ND	0 0250	"	н	"		"	H				
Ethylbenzene	ND	0 0250	ш	**	"	n	"	ч				
Xylene (p/m)	ND	0.0250	"	"		н	"	11				
Xylene (o)	ND	0 0250	'n	"	н	"	11	n				
Surrogate a,a,a-Trifluorotoluene		100 %	80-1	20	"	"	"	"				
Surrogate 4-Bromofluorobenzene		104 %	80-1	20	"	"	"	"				
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EF61612	06/16/06	06/17/06	EPA 8015M				
Carbon Ranges C12-C28	ND	10.0	**	"	п	"	н	н				
Carbon Ranges C28-C35	ND	10.0	"	"	**	"	"	н				
Total Hydrocarbon nC6-nC35	ND	10 0		н	"		"	м				
Surrogate 1-Chlorooctane		115 %	70-1	30	"	"	"	"				
Surrogate 1-Chlorooctadecane		117 %	70-1	30	n	"	"	"				
SP-1 14' (6F16007-02) Soil												
Benzene	ND	0 0250	mg/kg dry	25	EF61704	06/17/06	06/19/06	EPA 8021B				
Toluene	ND	0.0250	"	н	"	"	11	*1				
Ethylbenzene	ND	0.0250	**	**		"	**	"				
Xylene (p/m)	ND	0 0250		"	"	"	"	"				
Xylene (o)	ND	0.0250	"	"	"	"		"				
Surrogate a,a,a-Trifluorotoluene		106 %	80-1	20	"	"	"	"				
Surrogate 4-Bromofluorobenzene		100 %	80-1	20	"	"	"	"				
Carbon Ranges C6-C12	ND	10 0	mg/kg dry	1	EF61612	06/16/06	06/17/06	EPA 8015M				
Carbon Ranges C12-C28	ND	10.0	"	"	"	"	"	"				
Carbon Ranges C28-C35	ND	10.0	"		"	и	"	п				
Total Hydrocarbon nC6-nC35	ND	10 0		н	"	н	н	"				
Surrogate 1-Chlorooctane		118 %	70-1	30	"	"	"	"				
Surrogate 1-Chlorooctadecane		121 %	70-1	30	"	"	"	"				
SP-3 18' (6F16007-03) Soil												
Benzene	ND	0.0250	mg/kg dry	25	EF61704	06/17/06	06/19/06	EPA 8021B				
Toluene	ND	0 0250	**	н	н	н	**	н				
Ethylbenzene	ND	0 0250	"	"	"	"	"	11				
Xylene (p/m)	ND	0 0250	"	"	"	"		"				
Xylene (0)	ND	0 0250	u.	и	"	н	"	n				
Surrogate a,a,a-Trifluorotoluene		95.8 %	80-1	20	"	"	"	"				
Surrogate 4-Bromofluorobenzene		81.2 %	80-1	20	"	"	n	"				
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EF61612	06/16/06	06/17/06	EPA 8015M				

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety.

with written approval of Environmental Lab of Texas

Page 2 of 15

Project Manager Chesapeake/ Cooper 7 No. 1 Project Number 160014 Project Manager Iain Olness

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dulution	Ratch	Prepared	Analyzad	Method	Notes
SP-3 18' (6F16007-03) Soil			Cinto	Dilution	Batch	ricpated	Analyzed	MCUIUU	inotes
Carbon Panges C12-C28	ND	10.0	mø/kø dry	1	EE61612	06/16/06	06/17/06		
Carbon Ranges C12-C25	ND	10.0	" ,	"	E101012	"	"	"	
Tatal Hudrogerbon nC6 pC35	ND	10.0	"	"				и	
	ND	10.0	70.12	0					
Surrogate 1-Chlorooctane		125 %	/0-13	0	"	"	"	"	
Surrogate I-Chlorooctadecane		127 %	/0-13	0	"	"	"	"	
SW-1 14' (6F16007-04) Soil								_	
Benzene	ND	0 0250	mg/kg dry	25	EF61704	06/17/06	06/19/06	EPA 8021B	
Toluene	ND	0.0250	и	11	n	"	"		
Ethylbenzene	ND	0.0250	н	"	н	n	"	"	
Xylene (p/m)	ND	0 0250	"	"	п	11	п	"	
Xylene (o)	ND	0 0250	"	"	11	"		н	
Surrogate a,a,a-Trifluorotoluene		93.2 %	80-12	0	"	"	"	"	
Surrogate 4-Bromofluorobenzene		90.8 %	80-12	0	"	"	"	"	
Carbon Ranges C6-C12	ND	10 0	mg/kg dry	1	EF61612	06/16/06	06/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	u.		н	н	н		
Carbon Ranges C28-C35	ND	10 0	11		"	н	н		
Total Hydrocarbon nC6-nC35	ND	10 0	'n	0		"	••	11	
Surrogate 1-Chlorooctane		122 %	70-13	0	"	"	"	"	
Surrogate 1-Chlorooctadecane		127 %	70-13	0	"	"	"	"	
SW-2 14' (6F16007-05) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EF61704	06/17/06	06/19/06	EPA 8021B	
Toluene	ND	0.0250		"	"	11		11	
Ethylbenzene	ND	0.0250	11	"	н	**	ц	"	
Xylene (p/m)	ND	0.0250	н	"	11	"	11	**	
Xylene (o)	ND	0 0250	11	н		"	"	п	
Surrogate a,a,a-Trifluorotoluene		95.2 %	80-12	0	"	"	"	"	
Surrogate 4-Bromofluorobenzene		95.2 %	80-12	0	"	"	"	"	
Carbon Ranges C6-C12	ND	10 0	mg/kg dry	1	EF61612	06/16/06	06/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10 0	n	"	**	"	н	н	
Carbon Ranges C28-C35	ND	10 0	"	н	"	"	"	н	
Total Hydrocarbon nC6-nC35	ND	10.0		н			"	н	
Surrogate 1-Chlorooctane		127 %	70-13	0	"	"	"	"	
Surrogate 1-Chlorooctadecane		129 %	70-13	0	"	"	n	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas

Page 3 of 15

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Project. Chesapeake/ Cooper 7 No 1 Project Number: 160014 Project Manager lain Olness

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SW-3 14' (6F16007-06) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EF61704	06/17/06	06/19/06	EPA 8021B	
Toluene	ND	0 0250	и	п	н	"	"	31	
Ethylbenzene	ND	0.0250	н	п	n	11	"	н	
Xylene (p/m)	ND	0.0250	*1	п	"	"	п	"	
Xylene (o)	ND	0.0250	11	"	"	**	-11	n	
Surrogate a,a,a-Trifluorotoluene		93.8 %	80-1	20	"	"	"	"	
Surrogate 4-Bromofluorobenzene		84.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10 0	mg/kg dry	1	EF61612	06/16/06	06/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10 0	51	11	"	"	н	It	
Carbon Ranges C28-C35	ND	10 0	"	"	"		"	18	
Total Hydrocarbon nC6-nC35	ND	10.0	"	"	и	"	H	"	
Surrogate 1-Chlorooctane		118 %	70-1	30	"	"	"	"	
Surrogate 1-Chlorooctadecane		129 %	70-1	30	"	n	"	"	
SW-4 12' (6F16007-07) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EF61704	06/17/06	06/19/06	EPA 8021B	
Toluene	ND	0 0250	н	"	n.		n	н	
Ethylbenzene	ND	0.0250	"		н		п	11	
Xylene (p/m)	ND	0.0250	п		"	"	п	м	
Xylene (o)	ND	0 0250	11	11	"	"	11	"	
Surrogate a,a,a-Trifluorotoluene		100 %	80-1	20	"	"	"	"	
Surrogate 4-Bromofluorobenzene		105 %	80-1	20	"	"	n	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	l	EF61612	06/16/06	06/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0		u	11	"	"	n	
Carbon Ranges C28-C35	ND	10.0	п	н	"	"		н	
Total Hydrocarbon nC6-nC35	ND	10 0	"	" `	"	"	н	"	
Surrogate 1-Chlorooctane		128 %	70-1	30	"	"	"	"	
Surrogate 1-Chlorooctadecane		127 %	70-1	30	"	n	"	"	
SW-5 16' (6F16007-08) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EF61704	06/17/06	06/19/06	EPA 8021B	
Toluene	ND	0 0250	**	и	"	"	"	"	
Ethylbenzene	ND	0.0250	**	"	п	н		"	
Xylene (p/m)	ND	0 0250	н	"	11	**	и	"	
Xylene (o)	ND	0.0250	**	"	"	"	"	н	
Surrogate a,a,a-Trifluorotoluene		104 %	80-1	20	"	"	"	"	
Surrogate 4-Bromofluorobenzene		102 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EF61612	06/16/06	06/17/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety.

with written approval of Environmental Lab of Texas

Page 4 of 15

Project Chesapeake/ Cooper 7 No. 1 Project Number 160014 Project Manager. Iain Olness

X		O	rganics b	y GC					
		Environ	mental L	ab of Te	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SW-5 16' (6F16007-08) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EF61612	06/16/06	06/17/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10 0	н	11	"		"	11	
Total Hydrocarbon nC6-nC35	ND	10 0	"	"	**	н	11	"	
Surrogate 1-Chlorooctane		121 %	70-1	130	"	"	"	"	
Surrogate 1-Chlorooctadecane		125 %	70-1	130	"	"	"	"	
SW-6 16' (6F16007-09) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EF61704	06/17/06	06/19/06	EPA 8021B	
Toluene	ND	0 0250	н	"		"	н	"	
Ethylbenzene	ND	0 0250	11	н	"	"		II.	
Xylene (p/m)	ND	0.0250	"	н	0	"	"	н	
Xylene (o)	ND	0 0250	"	"	11	"	"	**	
Surrogate a,a,a-Trifluorotoluene		108 %	80-1	120	"	"	"	"	
Surrogate 4-Bromofluorobenzene		101 %	80-1	120	"	"	"	"	
Carbon Ranges C6-C12	ND	10 0	mg/kg dry	1	EF61612	06/16/06	06/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"	"	"	"	u	
Carbon Ranges C28-C35	ND	10.0	19	u	"	"		"	
Total Hydrocarbon nC6-nC35	ND	10.0	н	н	"		11		
Surrogate 1-Chlorooctane		128 %	70-1	130	"	"	"	"	
Surrogate 1-Chlorooctadecane		128 %	70-1	130	"	"	"	"	
SW-7 16' (6F16007-10) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EF61704	06/17/06	06/19/06	EPA 8021B	
Toluene	ND	0 0250	"	н	"	"		31	
Ethylbenzene	ND	0.0250	"	"		н	n		
Xylene (p/m)	ND	0.0250	н	11	"	R		н	
Xylene (o)	ND	0.0250	11	"	"	11	"	•	
Surrogate a,a,a-Trifluorotoluene		102 %	80-1	20	"	"	"	"	
Surrogate 4-Bromofluorobenzene		92.0 %	80-1	120	"	"	"	"	
Carbon Ranges C6-C12	ND	10 0	mg/kg dry	1	EF61612	06/16/06	06/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10 0	"	11	"			11	
Carbon Ranges C28-C35	ND	10.0	"	"	"	"	"		

Surrogate 1-Chlorooctane Surrogate 1-Chlorooctadecane

Total Hydrocarbon nC6-nC35

ND

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas

,,

"

"

"

70-130

70-130

"

10 0

116 %

118 %

ProjectChesapeake/ Cooper 7 No. 1Project Number160014Project ManagerIam Olness

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prenared	Analyzed	Method	Notes
SW-8 14' (6F16007-11) Soil				Ditation		·····		menod	
Benzene	ND	0 0250	mg/kg dry	25	EF61704	06/17/06	06/19/06	EPA 8021B	
Toluene	ND	0 0250	"	н	11	"	"	н	
Ethylbenzene	ND	0 0250		н	"	"	"	н	
Xylene (p/m)	ND	0.0250	н	"	и	U.	"	н	
Xylene (o)	ND	0.0250	"	"	н	п	"	"	
Surrogate a,a.a-Trifluorotoluene		108 %	80-1	20	"	"	"	"	
Surrogate [,] 4-Bromofluorobenzene		91.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10 0	mg/kg dry	1	EF61612	06/16/06	06/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"	н	11	н	н	
Carbon Ranges C28-C35	ND	10 0	"	"	"	"	"	н	
Total Hydrocarbon nC6-nC35	ND	10.0	"	n	"		"	н	
Surrogate 1-Chlorooctane		128 %	70-1	30	"	"	"	n	
Surrogate 1-Chlorooctadecane		126 %	70-1	30	"	"	"	"	
SW-9 14' (6F16007-12) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EF61704	06/17/06	06/19/06	EPA 8021B	
Toluene	ND	0 0250	11	"	"	"		"	
Ethylbenzene	ND	0 0250	"	"	11	"	н	п	
Xylene (p/m)	ND	0 0250	"		**	"	11	н	
Xylene (o)	ND	0 0250	"		*	н	"	"	
Surrogate a,a,a-Trifluorotoluene		110 %	80-1	20	"	"	"	"	
Surrogate 4-Bromofluorobenzene		100 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EF61612	06/16/06	06/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10 0	"			н	н	17	
Carbon Ranges C28-C35	ND	10 0		11	"	"	и	51	
Total Hydrocarbon nC6-nC35	ND	10 0	п	"	"		"		
Surrogate 1-Chlorooctane		114 %	70-1	30	"	"	"	"	
Surrogate 1-Chlorooctadecane		117 %	70-1	30	"	"	"	"	

Environmental Lab of Texas

Project Number. Cooper 7 No. 1 Project Number. 160014 Project Manager lan Olness

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP-10 12' (6F16007-01) Soil	1								
Chloride	404	10.0	mg/kg	20	EF61709	06/17/06	06/17/06	EPA 300 0	
% Moisture	16.3	01	%	1	EF61710	06/16/06	"	% calculation	
Sulfate	498	10 0	mg/kg	20	EF61709	06/17/06	ч	EPA 300 0	
SP-1 14' (6F16007-02) Soil									
Chloride	648	20.0	mg/kg	40	EF61709	06/17/06	06/17/06	EPA 300.0	
% Moisture	16.3	0.1	%	1	EF61710	06/16/06	"	% calculation	
Sulfate	1130	20 0	mg/kg	40	EF61709	06/17/06	и	EPA 300 0	
SP-3 18' (6F16007-03) Soil									
Chloride	488	10.0	mg/kg	20	EF61711	06/17/06	06/17/06	EPA 300 0	
% Moisture	27.4	01	%	1	EF61710	06/16/06	06/17/06	% calculation	
Sulfate	319	10 0	mg/kg	20	EF61711	06/17/06	06/17/06	EPA 300 0	
SW-1 14' (6F16007-04) Soil									
Chloride	289	10 0	mg/kg	20	EF61711	06/17/06	06/17/06	EPA 300 0	
% Moisture	5.2	0.1	%	1	EF61710	06/16/06	06/17/06	% calculation	
Sulfate	191	10.0	mg/kg	20	EF61711	06/17/06	06/17/06	EPA 300 0	
SW-2 14' (6F16007-05) Soil				-					
Chloride	550	10 0	mg/kg	20	EF61711	06/17/06	06/17/06	EPA 300 0	
% Møisture	7.8	0.1	%	1	EF61710	06/16/06	06/17/06	% calculation	
Sulfate	338	10.0	mg/kg	20	EF61711	06/17/06	06/17/06	EPA 300 0	
SW-3 14' (6F16007-06) Soil									
Chloride	75.0	5.00	mg/kg	10	EF61711	06/17/06	06/17/06	EPA 300 0	
% Moisture	1.3	0 1	%	1	EF61710	06/16/06	06/17/06	% calculation	
Sulfate	34.4	5 00	mg/kg	10	EF61711	06/17/06	06/17/06	EPA 300 0	
SW-4 12' (6F16007-07) Soil									
Chloride	171	10 0	mg/kg	20	EF61711	06/17/06	06/17/06	EPA 300 0	
% Moisture	3.4	0.1	%	1	EF61710	06/16/06	06/17/06	% calculation	
Sulfate	67.8	10 0	mg/kg	20	EF61711	06/17/06	06/17/06	EPA 300 0	

Environmental Lab of Texas

Project. Chesapeake/ Cooper 7 No 1 Project Number 160014 Project Manager. Iain Olness

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SW-5 16' (6F16007-08) Soil									
Chloride	86.7	5 00	mg/kg	10	EF61711	06/17/06	06/17/06	EPA 300 0	
% Moisture	1.7	0.1	%	1	EF61710	06/16/06	06/17/06	% calculation	
Sulfate	40.3	5.00	mg/kg	10	EF61711	06/17/06	06/17/06	EPA 300 0	
SW-6 16' (6F16007-09) Soil									
Chloride	140	10 0	mg/kg	20	EF61711	06/17/06	06/17/06	EPA 300 0	
% Moisture	3.7	0.1	%	1	EF61710	06/16/06	06/17/06	% calculation	
Sulfate	89.0	10.0	mg/kg	20	EF61711	06/17/06	06/17/06	EPA 300 0	
SW-7 16' (6F16007-10) Soil									
Chloride	546	10.0	mg/kg	20	EF61711	06/17/06	06/17/06	EPA 300 0	
% Moisture	6.6	01	%	1	EF61710	06/16/06	06/17/06	% calculation	
Sulfate	348	10 0	mg/kg	20	EF61711	06/17/06	06/17/06	EPA 300 0	
SW-8 14' (6F16007-11) Soil									
Chloride	709	10.0	mg/kg	20	EF61711	06/17/06	06/17/06	EPA 300 0	
% Moisture	6.7	0.1	%	1	EF61710	06/16/06	06/17/06	% calculation	
Sulfate	407	10 0	mg/kg	20	EF61711	06/17/06	06/17/06	EPA 300 0	
SW-9 14' (6F16007-12) Soil									
Chloride	358	10 0	mg/kg	20	EF61711	06/17/06	06/17/06	EPA 300 0	
% Moisture	11.6	01	%	1	EF61710	06/16/06	06/17/06	% calculation	
Sulfate	681	10.0	mg/kg	20	EF61711	06/17/06	06/17/06	EPA 300 0	

Environmental Lab of Texas

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EF61612 - Solvent Extraction (GC)										
Blank (EF61612-BLK1)				Prepared &	& Analyzed	: 06/16/06				
Carbon Ranges C6-C12	ND	10 0	mg/kg wet							
Carbon Ranges C12-C28	ND	10 0	н							
Carbon Ranges C28-C35	ND	10 0	ч							
Total Hydrocarbon nC6-nC35	ND	10 0	**							
Surrogate 1-Chlorooctane	60 2		mg/kg	50 0		120	70-130			
Surrogate 1-Chlorooctadecane	62 9		"	50 0		126	70-130			
LCS (EF61612-BS1)				Prepared &	k Analyzed	06/16/06				
Carbon Ranges C6-C12	518	10 0	mg/kg wet	500		104	75-125			
Carbon Ranges C12-C28	507	10 0	н	500		101	75-125			
Carbon Ranges C28-C35	ND	10 0	"	0 00			75-125			
Total Hydrocarbon nC6-nC35	1030	10 0	н	1000		103	75-125			
Surrogate 1-Chlorooctane	62 3		mg/kg	50 0		125	70-130			
Surrogate 1-Chlorooctadecane	587		"	50 0		117	70-130			
Calibration Check (EF61612-CCV1)				Prepared (06/16/06 A	nalyzed 06	/17/06			
Carbon Ranges C6-C12	206		mg/kg	250		82.4	80-120			
Carbon Ranges C12-C28	265		н	250		106	80-120			
Total Hydrocarbon nC6-nC35	471		11	500		94 2	80-120			
Surrogate 1-Chlorooctane	62 1		"	50 0		124	70-130			
Surrogate 1-Chlorooctadecane	594		"	50 0		119	70-130			
Matrix Spike (EF61612-MS1)	Sou	ırce: 6F15021	-06	Prepared &	k Analyzed.	. 06/16/06				
Carbon Ranges C6-C12	538	10 0	mg/kg dry	520	ND	103	75-125			
Carbon Ranges C12-C28	532	10 0	**	520	18.0	98 8	75-125			
Carbon Ranges C28-C35	ND	10 0	"	0 00	ND		75-125			
Total Hydrocarbon nC6-nC35	1070	10 0	••	1040	18 0	101	75-125			
Surrogate 1-Chlorooctane	79 7		mg/kg	100		79 7	70-130			
Surrogate I-Chlorooctadecane	74 I		"	100		74 I	70-130			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF61612 - Solvent Extraction (GC)		•								
Matrix Spike Dup (EF61612-MSD1)	Sou	rce: 6F15021	-06	Prepared.	06/16/06 Ai	nalyzed 06	5/17/06			
Carbon Ranges C6-C12	541	10 0	mg/kg dry	520	ND	104	75-125	0 556	20	
Carbon Ranges C12-C28	538	10 0	н	520	18 0	100	75-125	1 12	20	
Carbon Ranges C28-C35	ND	10 0	"	0 00	ND		75-125		20	
Total Hydrocarbon nC6-nC35	1080	10 0		1040	18 0	102	75-125	0 930	20	
Surrogate 1-Chlorooctane	80 2		mg/kg	100		80 2	70-130			
Surrogate 1-Chlorooctadecune	739		"	100		739	70-130			

Batch EF61704 - EPA 5030C (GC)

Blank (EF61704-BLK1)				Prepared 06/17/06 Analyzed 06/19/06							
Benzene	ND	0 0250	mg/kg wet								
Tolucne	ND	0 0250	11								
Ethylbenzene	ND	0 0250	"								
Xylenc (p/m)	ND	0 0250	"								
Xylene (o)	ND	0 0250	*								
Surrogate a,a,d-Trifluorotoluene	46 7		ug/kg	40 0	117	80-120					
Surrogate 4-Bromofluorobenzene	397		"	40 0	99 <u>2</u>	80-120					
LCS (EF61704-BS1)				Prepared 06/17	/06 Analyzed 0	6/19/06					

				-		
Benzene	1 45	0 0250 mg/kg wet	1 25	116	80-120	
Toluene	1 48	0 0250 "	1 25	118	80-120	
Ethylbenzene	1 41	0 0250 "	1 25	113	80-120	
Xylene (p/m)	2 97	0.0250 "	2 50	119	80-120	
Xylene (o)	1.48	0.0250 "	1 25	118	80-120	
Surrogate a,a,a-Trifluorotoluene	44 7	ug/kg	40 0	112	80-120	
Surrogate 4-Bromofluorobenzene	41 5	n	40 0	104	80-120	

Environmental Lab of Texas

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EF61704 - EPA 5030C (GC)										
Calibration Check (EF61704-CCV1)				Prepared	06/17/06 A	nalyzed. 06	/19/06			
Benzene	58 2		ug/kg	50 0		116	80-120			
Tolucne	59 8		м	50 0		120	80-120			
Ethylbenzene	56 6		н	50 0		113	80-120			
Xylene (p/m)	120		11	100		120	80-120)
Xylenc (0)	59 3		11	50 0		119	80-120			
Surrogate a,a,a-Trifluorotoluene	44 1		"	40 0		110	80-120			
Surrogate 4-Bromofluorobenzene	38 9		"	40 0		97 2	80-120			
Matrix Spike (EF61704-MS1)	Sou	rce: 6F16007	-12	Prepared	06/17/06 A	nalyzed. 06	/19/06			
Benzene	1 59	0 0250	mg/kg dry	1 41	ND	113	80-120			
Tolucne	1 63	0 0250	"	141	ND	116	80-120			
Ethylbenzene	1 56	0 0250	"	1 41	ND	111	80-120			
Xylene (p/m)	3 35	0 0250	11	2 83	NÐ	118	80-120			
Xylene (0)	1 69	0 0250	"	141	ND	120	80-120			
Surrogate a,a,a-Trifluorotoluene	41 5		ug/kg	40.0		104	80-120			
Surrogate 4-Bromofluorobenzene	40 1		"	400		100	80-120			
Matrix Spike Dup (EF61704-MSD1)	Sou	rce: 6F16007	-12	Prepared	06/17/06 A	nalyzed 06	/19/06			
Benzene	1 65	0 0250	mg/kg dry	1.41	ND	117	80-120	3 48	20	
Toluene	1 69	0 0250	**	141	ND	120	80-120	3 39	20	
Ethylbenzene	1 57	0 0250	**	1 41	ND	111	80-120	0 00	20	
Xylene (p/m)	3 36	0.0250		2 83	ND	119	80-120	0 844	20	
Xylenc (0)	1 57	0 0250	11	1.41	ND	111	80-120	7 79	20	
Surrogate a,a,a-Trifluorotoluene	46 6		ug/kg	40 0		116	80-120			
Surrogate 4-Bromofluorobenzene	40 8		"	40 0		102	80-120			

Environmental Lab of Texas

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EF61709 - General Preparation (WetChem)									
Blank (EF61709-BLK1)				Prepared &	k Analyzed	06/17/06				
Sulfate	ND	0 500	mg/kg							
Chloride	ND	0 500	"							
LCS (EF61709-BS1)				Prepared &	k Analyzed.	06/17/06				
Sulfate	9 22		mg/L	10 0		92 2	80-120			1 111 miles
Chloride	10.5		н	10.0		105	80-120			
Calibration Check (EF61709-CCV1)				Prepared &	2 Analyzed	06/17/06				
Chloride	10 8		mg/L	10 0		108	80-120			
Sulfate	10 2		"	10 0		102	80-120			
Duplicate (EF61709-DUP1)	Sou	rce: 6F16008-	-01	Prepared &	k Analyzed	06/17/06				
Chloride	31.4	10 0	mg/kg		32 0			1 89	20	
Sulfate	886	10 0	"		887			0 1 1 3	20	
Duplicate (EF61709-DUP2)	Sou	rce: 6F16008-	-15	Prepared &	z Analyzed.	06/17/06				
Sulfate	63 2	5 00	mg/kg		85 0			29 4	20	S-08
Chloride	24 6	5 00	"		26 2			6 30	20	
Matrix Spike (EF61709-MS1)	Sou	rce: 6F16008-	-01	Prepared &	analyzed	06/17/06				
Chloride	220	10 0	mg/kg	200	32 0	94 0	80-120			
Sulfate	1120	10 0	"	200	887	116	80-120			
Matrix Spike (EF61709-MS2)	Sou	rce: 6F16008-	-15	Prepared &	Analyzed:	06/17/06				
Chloride	110	5 00	mg/kg	100	26 2	83 8	80-120			
Sulfate	118	5 00	н	100	85 0	33 0	80-120			S-07

Environmental Lab of Texas

Environmental Lab of Texas

	P or ult	Reporting	Unito	Spike	Source	9/ PE/	%REC	PPD	RPD	Notas
Analyte	Kesun	Limit	Units	Lever	Result		_ Limits	RPD	Limit	INDICS
Batch EF61710 - General Preparation (Prep)										
Blank (EF61710-BLK1)				Prepared.	06/16/06	Analyzed	06/17/06			
% Moisture	ND	01	%							
Duplicate (EF61710-DUP1)	Sou	rce: 6F15019-0	01	Prepared	06/16/06	Analyzed.	06/19/06			
% Moisture	0 2	01	%		03			40 0	20	S-08
Duplicate (EF61710-DUP2)	Sou	rce: 6F15019-2	21	Prepared	06/16/06	Analyzed	06/19/06			
% Moisture	09	01	%		12			28 6	20	S-08
Duplicate (EF61710-DUP3)	Sou	rce: 6F15019-4	41	Prepared.	06/16/06	Analyzed	06/19/06			
% Moisture	08	0 1	%		09			11 8	20	
Duplicate (EF61710-DUP4)	Sou	rce: 6F15019-6	51	Prepared	06/16/06	Analyzed	06/19/06			
% Moisture	88	01	%		94			6 59	20	
Duplicate (EF61710-DUP5)	Sou	rce: 6F15021-0)5	Prepared	06/16/06	Analyzed.	06/17/06			
% Moisture	61	01	%		81			28 2	20	S-08
Duplicate (EF61710-DUP6)	Sou	rce: 6F16008-0	01	Prepared.	06/16/06	Analyzed	06/19/06			
% Moisture	2 0	01	%		29			36 7	20	S-08
Duplicate (EF61710-DUP7)	Sou	rce: 6F16010-()1	Prepared.	06/16/06	Analyzed	06/19/06			
% Moisture	11	01	%		11			0 00	20	
Patch FE61711 Consul Propagation (Watch	hom)									
Batch Erol /11 - General Preparation (WetCh	iem)									

Blank (EF61711-BLK1)				Prepared & Analyzed. 06/17/06
Chloride	ND	0 500	mg/kg	
Sulfate	ND	0 500		

Environmental Lab of Texas

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF61711 - General Preparation (V	VetChem)									
LCS (EF61711-BS1)				Prepared &	Analyzed.	06/17/06				
Chloride	10 0		mg/L	10 0		100	80-120			
Sulfate	8 16		11	10 0		81.6	80-120			
Calibration Check (EF61711-CCV1)				Prepared &	Analyzed	06/17/06				
Sulfate	10 2		mg/L	10 0		102	80-120			
Chloride	10.8		"	10 0		108	80-120			
Duplicate (EF61711-DUP1)	Sou	rce: 6F16007-	04	Prepared &	Analyzed	06/17/06				
Chloride	294	10 0	mg/kg		289			1 72	20	
Sulfate	191	10 0	"		191			0 00	20	
Matrix Spike (EF61711-MS1)	Sou	rce: 6F16007-	04	Prepared &	a Analyzed	06/17/06				
Chloride	545	10 0	mg/kg	200	289	128	80-120	``		S-07
Sulfate	374	10 0	н	200	191	91 5	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirely, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Notes and Definitions

S-08	Value outside Laboratory historical or method prescribed QC limits
S-07	Recovery outside Laboratory historical or method prescribed limits.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike

Dup Duplicate

Report Approved By:

Raland K Junes Date[.]

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas

6/20/2006

Page 15 of 15

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

2100 Avenue O,	Eunice, NM 88231		P.C). B	ox '	155	8, Eunice, NM 88231								\mathbf{L}_{i}	AB:		E							
(505) 394-3481 FAX: (505) 394-2601																						_			
Company Name Environmental Plus, Inc.								Bill To											YS	IS R	<u>(EQ</u>	UE:	<u>3</u>	<u> The second sec</u>	
EPI Project Manager lain Olness																									
Mailing Address	P.O. BOX	1558										Ш	ų					150				·	1		
City, State, Zip	Euniće Ne	ew Mexico	882	31]					ĺΕ,	⊳ }≡					20							
EPI Phone#/Fax	# 505-394-34	481 / 505-3	94-:	260	1							No.						و کړ							
Client Company	Chesapeak	ke Energy C	orp	orat	tion											ł		222							
Facility Name	Cooper 7	No. 1					1											ΗR							
Location	UL-D, Sec	:t. 7. T 20 S	, R	37E	-		1				At	tn: I	ain	Olness				2							
Project Reference	ce 160014						1	PO Box 1558 3																	
EPI Sampler Na	me Felix Hern	nandez			- 10	,	1				Eu	nice	e, NI	VI 88231				え			1				
			<u>.</u> .				MA	TRIX			PR	ESE	RV.	SAMPLI	NG	1		¹							
			Ř		ĸ			:		I															
			ទ	RS	Ë	۲. ۲				ł								<u></u>	0°						
LAB I,D.	SAMPLE I.D) .	Ř	R	N S	F		<u> </u>			Щ					μ	Σ	SH SH	S S			Å			
100				TAI	9	I ≥			H۳.	i.	3AS	Įğ	~			802	115								
1.100			RA	NO	8	ST	_	<u> </u>	ĕ	빌	ă	ğ	Ξ		- -	X		<u>יפ</u> ו	L L		٩	臣	Ŧ		
NOK V			0	0 #	С Ц	N N	ŝ	ч	SL	5	AC	U U U U	5	DATE	TIME	HE I	Ē	당	sul	표	1 2 1	E O	PA		
-0 1	SP-10 (12')		G	1			X						1	13-Jun-06	9:30	X	X	X	X	<u> </u>			<u> </u>		
-01, 2	SP-1 (14')		G	1			X						Γ	14-Jun-06	9:30	X	X	Х	X				Î –		
-03 3	SP-3 (18')		G	1			X							15-Jun-06	7:50	Х	X	X	X			;			
-04 4	SW-1 (14')		G	1			X			l		1		15-Jun-06	14:00	Х	Х	X	X				[\square	
DS 5	SW-2 (14')		G	1			Х						1	15-Jun-06	14:05	X	X	X	X	1			Î –		
-010 6	SW-3 (14')		G	٦			Х					Î		15-Jun-06	14:10	X	X	X	X				Γ-		
-111 7	SW-4 (12')		G	1			Х				Î	İ –		15-Jun-06	14:15	X	X	X	X						
-01/ 8	SW-5 (16')		G	1			X							15-Jun-06	14:20	X	X	X	X		Ē		\square		
- 69 9	SW-6 (16')		G	1			Х			<u> </u>				15-Jun-06	14:25	X	X	X	X				T		
10 10	SW-7 (16')		G	1			Х						1	15-Jun-06	14:30	X	х	X	X				f		
							220		Tai				1999			<u>.</u>		<u> </u>		377		à	32		
Samples Relinourshed		92 aured 6	Rece	ived I	Ву			~~ ~~~	<i></i>			E-n	nail r	esults to; iolne	ss@envpl	us.n	et					147544		er-0-96,59	<u></u>
1 am Olne	er i	TITORAL	l	in	1	Ŋ	<u> </u>	~				REN	IARK	4.6	0 1										
Rollinguished by.		Willoldo	Rećě	ved I	By. (ia	aosta	ff)	•				1													1
la l'Um		TIMP 1:35	_[Û	e	し	- (C	el	Ż	~				for dass											
Delivered by:		Sample	Cool	& Inta	act			Ch	sked	l By				0											
		Ø		N	lo								M	labels											

Environmental Plus, Inc.

Chain of Custody Form

$\underline{\mathbf{U}}_{\mathbf{I}} \mathbf{V}_{\mathbf{I}} \mathbf{U}_{\mathbf{I}} \mathbf$												<u> </u>														
2100 Avenue O, Eunice, NM 88231 P.O. Box 1558						3, E(unic	e, I	VM a	882:	31								\mathbf{L}_{I}	AB:		EI	Т			
(505) 394-3481 FAX: (505) 394-2601																										
Company Name	Er	nvironmental Plus	, Inc).					a.			E		ſo	Yazi			14	NAL	YS	IS R	(EQ	UES	JØ		ê
EPI Project Mana	ager lai	in Olness					1				-		1													
Mailing Address	Ρ.	O. BOX 1558		_								Щ														
City, State, Zip	E.	unice New Mexico	882	231								F	È													
EPI Phone#/Fax#	7 50	5-394-3481 / 505-3	394-	260	1								\mathbf{Y}	-												
Client Company	Ch	nesapeake Energy (Corp	orat	іоп																					
Facility Name	Co	ooper 7 No. 1																						i I		
Location	UI	L-D, Sect. 7. T 20 9	5, R	37E		_					Att	n: I	ain	Olness												
Project Reference	e 16	60014					PO Box 1558											ξ								
EPI Sampler Nan	ne Fe	elix Hernandez					Eunice, NM 88231											Z,								
							MA	TRIX			PR	ESE	RV.	SAMPLI	NG		ľ	E S								
LAB I.D. UFUDOM 	SAI SW-8 (14') SW-9 (14')	MPLE I.D.	D D C (G)RAB OR (C)OMI	L L # CONTAINERS	GROUND WATER	WASTEWATER	X X SOIL		SLUDGE	OTHER:		ICE/COOL	OTHER	DATE 15-Jun-06 15-Jun-06	TIME 14:35 14:40	X X BTEX 8021B	X X TPH 8015M	× × CHLORIDES (CI)	X X SULFATES (SO ₄ [¬])	Hd	LCLP	OTHER >>>	PAH			
			+	$\mathbf{+}$		<u> </u>	· · · ·			├──							-	┢──┦	┣━┥	┢──	┢━━┙	┢──	┢──┤	┝━┥		┢──
		· · ·	┢	┢──														┢╼┥	—	┝──	┢──	┢──	┢──┤	┝╼┥		┢──
			┢─	┢──	┢─┈											┝──		┢━┦	┢──	┝──	┢─	┢──	┢──┤	┝─┦		┢──
10			+	ţ		1	<u> </u>	—				<u> </u>	┢──			╆──		┢──┦		┢──		┢──	┢──┤	┝─┦		┢
10																	1 303									
Sampler Relinquistad:	ess in	Prta	Rece Rece e Coo	eived eived G I & Int	By By: (I By: br>(I B)) (I B)) (I B) (I B)) (I B) (I B)) (I B) (I B)) (I B) (I B)) (I B) (I B)) (I B) (I B)) (I B)) (I B) (I B)) (I	U ab sta			ecked	I By:		E-m REM	nail r IARKS	results to: iolnes 3:	ss@envplu	us.ne	et.					<u> <u>K</u>irani</u>				<u>~~~</u>

Environmental Plus Inc

Page 2 of 2

Chain of Custody Form

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client:	EP1
Date/Time ⁻	10/10/06 11:35
Order #:	6F16007
Initials:	CK

Sample Receipt Checklist

Temperature of container/cooler?	Yes	No	4.0 CI
Shipping container/cooler in good condition?	Ces	No	
Custody Seals intact on shipping container/cooler?	Yes	No	Not present
Custody Seals intact on sample bottles?	Yes	No	Not present
Chain of custody present?	(TBS	No	
Sample Instructions complete on Chain of Custody?	Xes	No	1
Chain of Custody signed when relinguished and received?	(e)	No	1
Chain of custody agrees with sample label(s)	XES,	No	
Container labels legible and intact?	Xes"	No	
Sample Matrix and properties same as on chain of custody?	Tes	No	
Samples in proper container/bottle?	Yes	No	
Samples properly preserved?	YES	No	
Sample bottles intact?	Mes.	No	
Preservations documented on Chain of Custody?	1235	No	
Containers documented on Chain of Custody?	125	No	1
Sufficient sample amount for indicated test?	Yes	No	
All samples received within sufficient hold time?	YES	No	
VOC samples have zero headspace?	X23	No	Not Apolicable

Other observations:

 Variance Documentation:

 Contact Person: -_____ Date/Time: _____ Contacted by: ______

 Regarding:

 Corrective Action Taken:

,

APPENDIX II

PROJECT PHOTOGRAPHS

Photograph #1 – Lease Sign

والمراجع والمراجع

Photograph #2 – Looking east at drill pit, dividers and liner

Photograph #3 – Looking at northwest corner of pit and clean dirt stockpile

Photograph #4 – Looking at southwest corner of pit

Photograph #5 – Looking northwest at pit excavation and clean soil stockpile

Photograph #6 – Looking west at pit excavation

. 19. -

Photograph #8 – Looking west at divider wall and pit excavation

Photograph #9 – Looking east at Test Trench SB-1

.

.

Photograph #10 – Looking southeast at drill pit excavation

Photograph #11 – Looking east at finished excavation bottom

Photograph #12 – Looking northeast at polyethylene barrier and sand cushion

.

Photograph #14 – Looking east at finished drill pit and pad

APPENDIX III

Soil Boring Logs
						L	.00	Of Tes	t Borings (NDTE - Page 1 of 1)
لل ال		E'nv	/irù	INMENT	AL P	lus; In	C.	Proje Proje	ct Number: 160014
JF)声 s	TATE	AP		D'LAND Tal sei	FARM A	ND	1 or of	
- MI	*	-		E	UNICE	21			UL-D; Sec. U7, 1205, RS7C-Lea County, New Mexico.
					يەد - بردن ا]	Boring	Number: SB-1B Surface Elevation: 3.557
11me	Sample	Recover	vijicues.	Molsture	PID Readings (ppn)	Chloride Analysis (ng/Kg)	U.S.C.S Svinbol	Depth	Start Date: <u>10-3-05</u> Tin <u>e: 1240</u> Completion Date: <u>10-3-05</u> Tine: <u>1430</u> Description
									-
		ļ						-	-
								F	-
								Ľ	
								Ĺ	Drilling Pit
									CALICHE, White, Soft -
]						-
								-	-
								-	-
								-	-
									-
									-
								Ľ	-
									-
								_	-
								–	-
								\vdash	-
								-	-
								-	-
1320	SS	6		Noist	4.2	<u>~</u>	SP		Red to White, Soft, SAND
									with some Trace Silt and Clay —
								L.	-
			-						
1400	22	6		Wet	22		SP	┦┚	End of soil boring at 31'
	Vate	r Le	evel	Measu	rement	s (feet	>	I	L
Date	Tim	e	Sam Dep	oth	Lasing Depth	Depth	ין צ	evel	n mang na shude nga gu tu
10/3/05	141	5	3	-	30	30		31	JACKTAL METADON DENTONICE
						Ľ,		F	ield Representative: GB

.

	<u></u>					L	- go	uitiria ⊡						
db									Project Number: 16001.4					
STATE APPROVED LAND FARM AND						FARH A	U. IND	Project Nane: Chosopeake Cooper 7 #1						
- Tr		E	VVIRO	IMEN E	ital, sei Unice	RVICES		Locati	DA: UL-D, Sec. 07, T20S, R37E-Leo County, New Mexico					
				505-	394-34	81		Boring	Number: 58-28 Surface Elevation: 3,557					
â.	e e	ery.		ų T	soc	955 955 955 955 955 955 955 955 955 955	40	ि <u>द</u> ⊋	Start Date: 10-4-05. Time: 0730					
T	Typ.	Recov			Readin Cpp	Chian Analy (mg/x	U.S.C	Dept	Completion Date: <u>10-4-05</u> Time: <u>1055</u> . Description					
								-	-					
								-	-					
									-					
								L.	-					
								Ľ	-					
								-	Drilling Pit					
l									CALICHE, White Soft					
								1						
								-						
								-	-					
							``	· -						
								┣						
									-					
									-					
								-	-					
,									-					
								⊢ [·]	-					
								F	-					
								E	-					
									-					
0930	SS	10	Mo	ist	0.5		SP	``	Red to White, Soft, SAND with some Trace Silt and Clay					
									with bond in the site time tray					
								-	-					
								-	-					
1030	22	10	v	et	0.2		SP		-					
									End of soil boring at 31'					
Date	Vate Tim	r Le e T	evel M Samol	easi e l	urenent Casina	s (feet Cave-t	e) n I V	ater	rilling Method: HSA 3.57 ID					
10/4/05	103	5	Dept	<u>n</u>	Depth 30	Depth 30	<u> </u>	evel 1	ackfill Method: Bentonite					
			-											

					L	.09	Of Test	Borings (NDTE - Page 1 of 1)				
		<u></u>			_		Project Number: 160014					
	ENVIRONMENTAL PLUS, INC.						Project Name: Chesapeake Cooper 7 #1					
ENVIRONMENTAL SERVICES							Location: UL-D. Sec. 07, T205, R37E-Lea County, New Mexico					
, Ň,			505	-394-34	81	ľ	Boring N	umber: S8-38 Surface Elevation: 3,557				
T		2	e la	N.	200			Criment Tanking 10-4-05 Timen 1100				
ë:	pe de		ţ,	ESE		Sol	pth	Candothan Data 10-4-05 Time 1330				
	S-1	Re l	N N N	Re P	S S S	S'S	A.	Déscription				
			<u>``</u>				L					
			,									
							—					
		ļ					5					
							\vdash					
							-	Drilling Pit				
							F					
								LALICHE, White, Soft				
							10					
							F					
							15					
							-					
							-					
							20					
1200	27	~	Mole+	35		SP	25	Red to White Soft SAND				
	33	- 0		+			+-	with some Trace Silt and Clay				
				1			-	· · · ·				
				1			F					
1300	SS	8	Vet	6.3		SP	⊥ฃ					
	Vata	01-	No. Mass		e /5			End of soil boring at 31'				
Date	Tim	e	Sample	Casing	Cave-b	n Ve	iter Dr	illing Method= HSA 3.5' ID				
10/4/05	5 131	0	llepth 31	Depth 30	Depth 30	╇	evel Bo	ckfil Method: Bentonite				
	-			***	-							

.

							Pro lect	Number: 160014				
للإر		Ė'nvi	Ronmeni	AL P	LUS, INC	: †	Project Name: Chesopeake Cooper 7 #1					
Ľ	₽ s	TATE A ENV	ironmen	d l'and tal sei	Farm ai RVICES	ND -	1 ocation	III-D. Sec. 07 T205 837E-Leg County New Mexico				
- IQI		,	505-	UNICE	RI	ł	Develop N					
		<u>></u>	1	1	T		soring N	Amperi SB-58 Surface Elevationi 3,557				
	e e	Les)	a'n	225	Sister Xo	Ng	₽₽	Start Bate: <u>10-3-05</u> Tine: <u>0900</u>				
Ē	EX.		l ti	E 9 G	Part Part	SIS	Dep (Fee	Completion Date: <u>10-3-05</u> Time: <u>1230</u>				
		52	<u> </u>	,œ	042			Description				
							\vdash		-			
							-		-			
									-			
							5		•***			
							–					
								Drilling Pit	-			
								CALICHE, White, Soft	_			
									-			
									-			
									-			
									-			
							15					
							—					
									-			
							· ·					
							-		-			
									-			
									_			
1115	S\$	8	Moist	2.5		SP		Red to White, Soft, SAND	-			
l								with some trace sitt and liay	_			
									_			
									_			
1200	<u>55</u>	12	Water	5.4		SP	╷┸║					
	Vote	r Lev	el Meas	Irenent	s (Feet	<u> </u>		End of soil boring at 31'				
Date	Tim	e S	ample	Casing	Cave-h	V	iter Dr	lling Methods HSA 3.5' 1D				
0/3/05	5 120	5	31	Jepth 30	Jepth 30		31 Bo	ckfil Method: Bentonite				
								Id Deservation CD				

.

•

ł

APPENDIX IV

Ĩ

NMOCD FORM C-103

Submit 3 Copies To Appropriate District Office	State of New Mo Energy Minerals and Nati	exico tral Resources	Form C-103 May 27, 2004
<u>District 1</u> 1625 N. French Dr., Hobbs, NM 88240	Lifei gy, while als and wat	n ar itesources	WELL API NO.:
<u>District 11</u> 1301 W. Grand Ave., Artesia, NM 88210	OIL CONSERVATION	DIVISION	30-025-36860
District III	1220 South St. Fra	ncis Dr.	STATE FEE
1000 Rio Brazos Rd., Aztec, NM 87410 <u>District IV</u> 1220 S. St. Francis Dr., Santa Fe, NM	Santa Fe, NM 8	7505	6. State Oil & Gas Lease No.:
8/305 SUNDRY NOTIO (DO NOT USE THIS FORM FOR PROPOS DIFFERENT RESERVOIR USE "APPLIC	CES AND REPORTS ON WELLS ALS TO DRILL OR TO DEEPEN OR PL ATION FOR PERMIT" (FORM C-101) FO	JG BACK TO A DR SUCH	7. Lease Name or Unit Agreement Name: Cooper 7
PROPOSALS.)			8. Well Number: No. 1
1. Type of Well: Oil Well 2. Name of Operator: Chesapeak	e Operating, Inc.		9. OGRID Number:
3. Address of Operator: 5014 Ca Hobbs, N	rlsbad Highway JM 88240		10. Pool name or Wildcat
4. Well Location		·	· ·
Unit Letter: <u>D</u> : <u>660</u> fe Section: 7 Townshin:	et from the <u>North</u> line and <u>900</u> 20 South Bange 37 East NM	feet from the <u>Wes</u>	tine Fulf
	11. Elevation (Show whether D	R. RKB, RT, GR, et	c.)
Dit on Dalay grade Tark Application	3,557 feet above mean sea level		
Pit type: <u>Drilling</u> Depth to Groundwater:	<u></u>	vater well: <u>>1,000 feet</u>	Distance from nearest surface water: $\geq 1,000$ feet
Pit Liner Thickness: 20 - mil Below-C	Grade Tank: Volume: bbls; Con	struction Material:	
12. Check App	propriate Box to Indicate N	ature of Notice,	Report or Other Data
NOTICE OF IN	ΓΕΝΤΙΟΝ ΤΟ:	SUB	SEQUENT REPORT OF:
PERFORM REMEDIAL WORK 🔲	PLUG AND ABANDON 🔲	REMEDIAL WORK	ALTERING CASING
TEMPORARILY ABANDON	CHANGE PLANS	COMMENCE DRIL	LING OPNS. D P AND A
PULL OR ALTER CASING	MULTIPLE COMPL	CASING/CEMENT .	JOB
OTHER:		OTHER: Pit Closu	
13. Describe proposed or com estimated date of starting of proposed completion or	pleted operations. (Clearly state any proposed work). SEE RULE recompletion.	all pertinent detail 1103. For Multip	s, and give pertinent dates, including le Completions: Attach wellbore diagram
NMOCD Pit and Below-Gra approximately 2,520 cubic y twenty (20) mil thick polyet	(Chesapeake) conducted closure of ade Tank Guidelines (November, 2 vards of impacted soil were remove hylene liner sandwiched between t	004). Upon removal d with disposal of a wo (2) protective la	l of pit materials (+- 1,666 c.y.) and liner, ll material/soil at Sundance Services, Inc. A yers of sand six (6) inches or more in depth
was installed over the botton "on-site" stockpiled material	n of the excavation. The excavatio	n was backfilled wit below NMOCD Rer	h clean soil from both the landowner's pit and nedial Threshold Goals. After completion of
backfill operations, the drill	pit and surrounding area were con-	oured to allow natu	ral drainage. Remaining remedial activity is
Petinent details, dates and da 1RP#753: EPI Ref. #160014	a with a mixture approved by the la ata are presented in the Site Closur b) dated December, 2006.	e Report for the Coo	oper 7 No. 1 Drilling Pit (NMOCD Ref.
	,		
I hereby certify that the informatio	n above is true and complete to t	he best of my know	vledge and helief. I further certify that any nit or
below-grade tank has been/will be construct plan .	ted or closed according to NMOCD guide	lines 🖾, a general peri	nit] or an (attached) alternative OCD-approved
SIGNATURE Tradley	Slavin	Field Technician	DATE 6. 21-07
Type or print name: <u>Bradley Blevi</u>	ins E-mail address: <u>bblevin</u>	@chkenergy.com	Telephone No.: <u>(505)</u> <u>391-1462</u> ext. <u>24</u>
For State Use Only			
APPROVED BY:	so TITLE	ENUROENE	DATE 6-27.07
Conditions of Approval (II any):			

ļ

ļ