GW - 372

REPORTS

YEAR(S):

2007 - 2009

Lowe, Leonard, EMNRD

From:	Philley, Ted [tphilley@keyenergy.com]
Sent:	Wednesday, August 27, 2008 10:09 AM
То:	Lowe, Leonard, EMNRD
Cc:	Hansen, Edward J., EMNRD; Johnson, Larry, EMNRD
Subject:	RE: GW-372, Work plan approval
	Vey Eurise add

Attachments: Key Eunice .pdf

Leonard,

x. . . 7

The groundwater and soil sampling at our Eunice Truck Yard went well. The site detail maps previously generated by our consultants documented the slab as a square, but the slab is not square at all. The actual edges of the slab increased the perimeter and the number of needed soil borings, resulting in using up all my available soil jars. Please review the attached drawing and let me know if you require any additional soil borings as there is a gap in the 10' spacing of borings in the North West corner.

Ted

Ted Philley | Key Energy Services | o: 432.571.7141 | c: 432.288.5358

-----Original Message----- **From:** Lowe, Leonard, EMNRD [mailto:Leonard.Lowe@state.nm.us] **Sent:** Thursday, August 14, 2008 5:31 PM **To:** Philley, Ted **Cc:** Hansen, Edward J., EMNRD; Johnson, Larry, EMNRD **Subject:** GW-372, Work plan approval

Mr. Ted Philley,

The submitted Soil and groundwater sampling work plan dated July 22, 2008 for the Key Energy Service Yard in Eunice has been APPROVED.

The OCD Santa Fe office is not required to be in attendance for this work plan. You can contact the local OCD Environmental Bureau representative, Mr. Larry Johnson for notification if you should need to. The OCD only request if any changes or problems occur during this work plan that you keep us informed.

SIDE NOTE: I have yet to complete my inspection report for that facility, you should have it by next week.

If you have any questions please feel free to contact, Mr. Hansen or myself.

Leonard Lowe

Environmental Engineer Oil Conservation Division/EMNRD 1220 S. St. Francis Drive Santa Fe, N.M. 87505 Office: 505-476-3492 Fax: 505-476-3462 E-mail: <u>leonard.lowe@state.nm.us</u> Website: http://www.emnrd.state.nm.us/ocd/

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review,

use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.

This inbound email has been scanned by the MessageLabs Email Security System.

Lowe, Leonard, EMNRD

From: Lowe, Leonard, EMNRD

Sent: Thursday, August 14, 2008 4:31 PM

To: 'Philley, Ted'

Cc: Hansen, Edward J., EMNRD; Johnson, Larry, EMNRD

Subject: GW-372, Work plan approval

Mr. Ted Philley,

:

The submitted Soil and groundwater sampling work plan dated July 22, 2008 for the Key Energy Service Yard in Eunice has been APPROVED.

The OCD Santa Fe office is not required to be in attendance for this work plan. You can contact the local OCD Environmental Bureau representative, Mr. Larry Johnson for notification if you should need to. The OCD only request if any changes or problems occur during this work plan that you keep us informed.

SIDE NOTE: I have yet to complete my inspection report for that facility, you should have it by next week.

If you have any questions please feel free to contact, Mr. Hansen or myself.

Leonard Lowe

Environmental Engineer Oil Conservation Division/EMNRD 1220 S. St. Francis Drive Santa Fe, N.M. 87505 Office: 505-476-3492 Fax: 505-476-3462 E-mail: <u>leonard.lowe@state.nm.us</u> Website: <u>http://www.emnrd.state.nm.us/ocd/</u>

Key Energy Services 6 Desta Drive Suite 4400 Midland Texas 79705

2008 JUL 25 PM 2 10

Telephone: 432.571.7141 Facsimile: 432.571.7173 www.keyenergy.com

July 22, 2008

Mr. Ed Hanson New Mexico Oil Conservation District P.O. Box 6429 Santa Fe, New Mexico 87505

GW-372; Key Energy Services Yard in Eunice, Lea County, New Mexico Re: Soil and Groundwater Sampling Work Plan

Dear Mr. Hanson:

Key Energy Services (Key) respectfully submits this soil and groundwater sampling work plan to investigate elevated chlorides at the Key Eunice Truck Yard Washout Pit and Slab (Site) located in Lea County, New Mexico, in Section 33,T-21-S; R-31-E (Figure 1).

PREVIOUS SOIL AND GROUNDWATER CHLORIDE ASSESSMENT ACTIVITIES

Arcadis G&M, Inc. (Arcadis) performed a soil investigation at the Site on behalf of Key in November 2002 comprised of four soil borings located at the corners of the Washout Pit and Slab. Samples from soil borings SB-1 through SB-4 (Figure 2) yielded chloride concentrations below 3000 mg/kg (Table 1). The SB-4 soil boring located at the southwest corner (Figure 2) vielded a chloride concentration of 4,259 mg/kg at 5-feet below ground surface (bgs). In 2004, Brown and Caldwell (B&C) installed a monitor well (MW-1) at the apparent down-gradient, southeast corner of the wash pad to determine impact of the elevated soil chloride concentration found in SB-4. The June 11, 2004 sample indicated a chloride content of 196 mg/L. The New Mexico Water Quality Control Commission (NMWQCC) domestic water supply standard for chloride is 250 mg/L.

PROPOSED SOIL CHLORIDE ASSESSMENT ACTIVITIES

The previous soil assessment activities inadequately delineated soil chloride concentrations at the Site. Key proposes to hand-auger soil borings 1-foot from the edge of the slab at 10-foot intervals around the perimeter. Samples will be collected at 2.5-feet bgs and 5-feet bgs. Soil cuttings will be placed in the pit for disposal and clean caliche will be used for backfilling the soil boring. Four duplicate soil samples will be collected for quality control.

The hand auger will be decontaminated with potable water/non-phosphate detergent wash, a potable water rinse, and a de-ionized water rinse prior to collecting each soil sample. Each sample collected will be homogenized in a decontaminated stainless steel mixing bowl and immediately placed in

laboratory-supplied glass jars, properly labeled and placed on ice in an insulated cooler for preservation. The soil samples and duplicate sample will be sealed for shipment to Southern Petroleum Laboratories in Houston, Texas for EPA 300.0 laboratory analysis for chloride.

PROPOSED GROUNDWATER CHLORIDE ASSESSMENT ACTIVITIES

Key proposes to collect a groundwater sample utilizing a new disposable bailer to remove a minimum of three well volumes of fluid from the well MW-1. Purged water collected during the sampling and well development events will be temporarily stored in 5-gallon buckets and emptied into the pit for evaporation. A groundwater sample and duplicate will be collected using the bailer and will be placed in laboratory supplied 250-ml plastic bottles. The groundwater samples will then be labeled and placed on ice in an insulated cooler for preservation. The groundwater sample and duplicate sample will be sealed for shipment to Southern Petroleum Laboratories in Houston, Texas for EPA 300.0 laboratory analysis for chloride.

ANALYTICAL RESULTS

The analytical laboratory results will be forwarded to your office as an attachment to a *Proposed Excavation and Confirmation Sample Plan* for any areas exceeding 3000 mg/kg chloride concentration in soil.

Yours truly,

Key Energy Services

Edward D. "Ted" Philley

Corporate Environmental/Specialist

Figures Table

P-1 - 1 - 1921

; b

Aug 26, 2004 - 2:44pm ckelly P:\Cad\JOBS\KeyEnerg\25934\EuniceSiteMap.dwg

tī

 Key Energy Services Eunice Truck Yard Wash Pad Sump Pit

.

• .

۱

Soil Boring									н ССС		
Location / Map Designation	Depth (Feet)	Sample Date	Benzene	Toluene	Ethylbenzene	Xylenes	Total BTEX	GRU C-6-C-12	URU >C-12-C-35	Total TPH	Chlorides
OCD Hyc	trocarbon Scr	eening Level	10	1			50	ł	1	1000	1
Northwest (SB-1)	20	11/19/2007	<0.025	<0.025	<0.025	<0.025	<0.025	<0.10	20.7	20.8	1060
Northwest (SB-1)	25	11/19/2007	<0.025	<0.025	<0.025	<0.025	<0.025	<0.10	60.8	60.9	1
Northeast (SB-2)	10	11/19/2007	<0.025	<0.025	<0.025	<0.025	<0.025	<0.10	<0.10	<0.10	I
Northeast (SB-2)	15	11/19/2007	<0.025	<0.025	<0.025	<0.025	<0.025	<0.10	16.8	16.9	1660
Southeast (SB-3)	2	11/19/2007	<0.025	<0.025	<0.025	<0.025	<0.025	<0.10	110	110.1	1
Southeast (SB-3)	5	11/19/2007	<0.025	<0.025	<0.025	<0.025	<0.025	<0.10	<10.0	<0.10	2390
Southwest (SB-4)	2	11/19/2007	<0.025	<0.025	<0.025	<0.025	<0.025	<0.10	33.3	33.4	1
Southwest (SB-4)	5	11/19/2007	<0.025	<0.025	<0.025	<0.025	<0.025	<0.10	<10.0	<0.10	4250

OCD's Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993, site specific hydrocarbon screening levels 2) Results and Screening Levels in mg/kg (Parts Per Million)
TPH by EPA 8015M, BTEX by EPA 8021B/5030, Chloride by SW 9253

Key Energy Services 6 Desta Drive Suite 4400 Midland, Texas 79705

April 30, 2008

GW-372

Mr. Leonard Lowe New Mexico Oil Conservation Division 1220 S. St. Francis Drive Santa Fe, New Mexico 87505

Re: Key Energy Services Yard in Eunice, Lea County, New Mexico

Dear Mr. Lowe:

Please find enclosed a completed Form C-144 for the Key Energy Services (Key) Eunice Truck Yard wash out pit and first page of the July 20, 2007 letter to Mr. Wayne Price as requested.

Key wishes to backfill the pit with clean fill and cap with concrete to match the surrounding slab as it is a safety hazard. Please do not hesitate to call me if you require any additional information.

Yours truly,

Key Energy Services

Edward D. "Ted" Philley

Corporate Environmental Specialist II

Enclosures

District I 1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

For drilling and production facilities, submit to appropriate NMOCD District Office. For downstream facilities, submit to Santa Fe office

Pit or Below-Grade Tank Registration or Closure

Is pit or below-grade tank covered by a "general plan"? Yes No X Type of action: Registration of a pit or below-grade tank Closure of a pit or below-grade tank X

Operator:Telephor	432-571-7141 e-mail address:	bhilley@keyenergy.com
Address: 2105 Avenue O, Eunice, New Mexico, 88231		
Facility or well name: Eunice Truck Yard (GW-372) API #:	U/L or Qtr/Qtr	Sec <u>33</u> T_ <u>21S</u> R_ <u>_31E</u>
County: Lea Latitude	N 32° 26' 29.94" Longitude W 103°	<u>10' 9.41"</u> NAD: 1927 🗖 1983 🖾
Surface Owner: Federal 🗌 State 🔛 Private 🔲 Indian 💭		
Pit	Below-grade tank	
<u>Type:</u> Drilling Production Disposal	Volume:bbl Type of fluid:	
Workover 🗋 Emergency 🗋 Wash Out 🕱	Construction material:	
	Double-walled, with leak detection? Yes I If not	, explain why not.
Liner type: Synthetic 🗌 Thicknessmil Clay 🗋		
Pit Volume <u>~450</u> bbl Concrete IX		
Depth to ground water (vertical distance from bottom of nit to seasonal	Less than 50 feet	(20 points)
high water elevation of ground water)	50 feet or more, but less than 100 feet	(10 points) 10
	100 feet or more	(0 points)
Wellhead protection area: (Less than 200 feet from a private domestic	Yes	(20 points)
water source or less than 1000 feet from all other water sources)	No	(0 points) 0
	Loga than 200 feet	
Distance to surface water: (horizontal distance to all wetlands, playas,	200 fast as more but less than 1000 from	(10 points)
irrigation canals, ditches, and perennial and ephemeral watercourses.)	200 feet of more, but less than 1000 feet	
	Ranking Score (Total Points)	10

If this is a pit closure: (1) Attach a diagram of the facility showing the pit's relationship to other equipment and tanks. (2) Indicate disposal location: (check the onsite box if your are burying in place) onsite in offsite in the facility Sundance Services - Parabo. (3) Attach a general description of remedial action taken including remediation start date and end date. (4) Groundwater encountered: No in Yes in the Yes, show depth below ground surface fit. and attach sample results. (5) Attach soil sample results and a diagram of sample locations and excavations.

Additional Comments:

See pit closure request letter dated 7/20/2007 for diagram, additonal information and closure plan.

I hereby certify that the information above is true and complete to the best of my knowledge and belief. I further certify that the above-described pit or below-grade tank has been/will be constructed or closed according to NMOCD guidelines [], a general permit [], or an (attached) alternative OCD-approved plan 🕅.

Date: 4/30/08						
Printed Name/Title Edward	"Ted"	Philley,	Ent.	spec.	Π	Si

gnature	ELF	. Phil	
· .			

Your certification and NMOCD approval of this application/closure does not relieve the operator of liability should the contents of the pit or tank contaminate ground water or otherwise endanger public health or the environment. Nor does it relieve the operator of its responsibility for compliance with any other federal, state, or local laws and/or regulations.

Approval:

Printed Name/Title

_ Signature _

___ Date: ___

Key Energy Services 6 Desta Drive Suite 4400 Midland, Texas 79705

Telephone: 432.571.7141 Facsimile: 432.571.7173 www.keyenergy.com

July 20, 2007

Mr. Wayne Price New Mexico Oil Conservation District P.O. Box 6429 Santa Fe, New Mexico 87505

Re: Key Energy Services Yard in Eunice, Lea County, New Mexico

Dear Mr. Price:

Key Energy Services (Key) respectfully requests closure of the Key Eunice Truck Yard Wash Pad Sump Pit (Site) located in Lea County New Mexico, in section 33,T-21-S; R-31-E (FIGURE 1). The Site coordinates are N 32° 26' 29.94", W 103° 10' 9.41". The concrete lined pit was constructed in 1984 and removed from service in 2002. A summary of the analytical results from soil and groundwater sampling activities performed is compared with OCD site specific ranking criteria and the New Mexico Water Quality Control Commission (WQCC) domestic water supply standard.

REGULATORY FRAMEWORK

Using the OCD's *Guidelines for Remediation of Leaks, Spills and Releases,* dated August 13, 1993, and site specific *general site characteristics,* hydrocarbon screening levels were developed for the Site. Information obtained by Key from the New Mexico Office of the State Engineer's IWaters database indicated that the depth-to-groundwater in the vicinity of the Site is 100-feet below ground surface (bgs). A copy of a water well record (APENDIX 1) for a location in the NE ¼ of the SE ¼ of section 33, T-21-S; R-37-E demonstrated a depth to water of 100 feet. On June 27, 2007, Key Environmental Department personnel met with City of Eunice Water Department personnel to discuss the location of nearby water wells. The nearest operational well known by the City of Eunice Water Department is located at 1508 7th Street (N 32° 26.610', W 103° 09.134'). The City of Eunice Water Department employees indicated that the municipal water supply wells were located 20 miles North of Eunice. A review of the 7.5 minute USGS Eunice Quadrangle, 1979 revision (FIGURE 2), indicates the nearest surface water exceeds 3500-feet in distance and nearest water source wells exceed 3000-feet in distance. Based on the August 26, 2004 Brown and Caldwell (B&C) report (APPENDIX 2) the onsite monitor well gauging data records the depth to water at the site as 80-feet bgs.

CHARACTERISTIC	SELECTION	SCORE
Depth to Groundwater	50 – 100-feet	10
Wellhead Protection Area	>1,000-feet (water source)> 200-feet (private domestic water source)	0
Distance to Surface Water	>1,000 feet	0

Total Ranking Score =10

Based on these general site characteristics and associated OCD ranking criteria presented in the table above, the following hydrocarbon screening levels apply at the Site in Parts Per Million (PPM): benzene- 10 ppm, Total BTEX- 50 ppm and TPH- 1,000 ppm.

Key Energy Services 6 Desta Drive Suite 4400 Midland, Texas 79705

Telephone: 432.571.7141 Facsimile: 432.571.7173 www.keyenergy.com

July 20, 2007

Mr. Wavne Price New Mexico Oil Conservation District P.O. Box 6429 Santa Fe, New Mexico 87505

Re: Key Energy Services Yard in Eunice, Lea County, New Mexico

Dear Mr. Price:

Key Energy Services (Key) respectfully requests closure of the Key Eunice Truck Yard Wash Pad Sump Pit (Site) located in Lea County New Mexico, in section 33,T-21-S; R-31-E (FIGURE 1). The Site coordinates are N 32° 26' 29.94", W 103° 10' 9.41". The concrete lined pit was constructed in 1984 and removed from service in 2002. A summary of the analytical results from soil and groundwater sampling activities performed is compared with OCD site specific ranking criteria and the New Mexico Water Quality Control Commission (WQCC) domestic water supply standard.

REGULATORY FRAMEWORK

Using the OCD's Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993, and site specific general site characteristics, hydrocarbon screening levels were developed for the Site. Information obtained by Key from the New Mexico Office of the State Engineer's IWaters database indicated that the depthto-aroundwater in the vicinity of the Site is 100-feet below ground surface (bgs). A copy of a water well record (APENDIX 1) for a location in the NE ¼ of the SE ¼ of section 33, T-21-S; R-37-E demonstrated a depth to water of 100 feet. On June 27, 2007, Key Environmental Department personnel met with City of Eunice Water Department personnel to discuss the location of nearby water wells. The nearest operational well known by the City of Eunice Water Department is located at 1508 7th Street (N 32° 26.610', W 103° 09.134'). The City of Eunice Water Department employees indicated that the municipal water supply wells were located 20 miles North of Eunice. A review of the 7.5 minute USGS Eunice Quadrangle, 1979 revision (FIGURE 2), indicates the nearest surface water exceeds 3500-feet in distance and nearest water source wells exceed 3000-feet in distance. Based on the August 26, 2004 Brown and Caldwell (B&C) report (APPENDIX 2) the onsite monitor well gauging data records the depth to water at the site as 80-feet bgs.

CHARACTERISTIC	SELECTION	SCORE
Depth to Groundwater	50 – 100-feet	10
Wellhead Protection Area	>1,000-feet (water source)> 200-feet (private domestic water source)	0
Distance to Surface Water	>1,000 feet	0 -

Total Ranking Score =10

12

Based on these general site characteristics and associated OCD ranking criteria presented in the table above, the following hydrocarbon screening levels apply at the Site in Parts Per Million (PPM): benzene- 10 ppm, Total BTEX- 50 ppm and TPH- 1,000 ppm.

JUL 2 3 2007

Oll Conservation Division 1220 S. St. Francis Drive Santa Fe, NM 87505

SOIL ASSESSMENT ACTIVITIES

Arcadis G&M, Inc. (Arcadis) performed a soil investigation at the Site on behalf of Key in November 2002 comprised of four soil borings located at the corners of the Wash Pad and Sump Pit. An Arcadis report dated January 20, 2003 presents the sampling methodology, analytical results, logs and site plan (APPENDIX 3).

Arcadis collected samples at the surface, 2-foot, 5-foot, and at 5-foot intervals to total depth. The samples were field screened with a photo-ionizing detector (PID) for hydrocarbons and a scintillator for naturally occurring radioactive material (NORM). The borings were advanced until the instruments and field observation indicated no impact was apparent in the recovered soil. Arcadis selected samples for analytical laboratory analysis based on PID headspace readings, field observations, or deepest sample collected.

Two samples were selected from each boring for laboratory analysis for Total Petroleum Hydrocarbons (TPH) by EPA method 8015M, benzene, toluene, ethylbenzene and xylenes (BTEX) by EPA method 8021B and Resource Conservation and Recovery Act (RCRA) 8 metals by SW 7470. One sample from each boring was analyzed for chloride by SW 9253. The samples were not analyzed for NORM in the laboratory as field screening results did not exceed background in any of the samples. The selected samples were delivered by Arcadis to Environmental Lab of Texas I, LTD in Odessa, Texas for laboratory analysis.

The selected samples did not exhibit hydrocarbon concentrations above the site specific hydrocarbon screening levels. BTEX was not detected above laboratory detection levels in any of the soil samples. The highest TPH (110 mg/kg) was found at 2-feet bgs in the southeast soil boring. Elevated chloride concentrations were identified in each soil boring with Arcadis noting chloride concentrations decreased with depth. The range of chlorides in the various wells was 4,259 mg/kg at 5-feet bgs in the southwest SB-4 soil boring to 1,060 mg/kg at 20-feet bgs in the northwest SB-1soil boring. Table I summarizes the hydrocarbon and chloride laboratory results.

The RCRA 8 metal concentrations found in the selected samples did not exceed New Mexico (NMED) Industrial/Occupational Soil Screening Levels (SSLs). Table II summarizes the RCRA 8 metals analytical laboratory results.

GROUNDWATER ASSESSMENT ACTIVITIES

After reviewing the Arcadis soil investigation report, B&C determined no further hydrocarbon or metals analytical laboratory testing of soil samples was required. B&C installed a monitor well at the Site on behalf of Key in June 2004 for a groundwater investigation to determine impact of elevated soil chloride concentrations at the Wash Pad and Sump Pit. A monitor well (MW-1) placed at the apparent down-gradient, southeast corner of the wash pad. The B&C report dated August 26, 2004 presents the well installation, sampling methodology, analytical results, log, site plan, and conclusions for the Site.

B&C field screened soil samples with a PID during the drilling of MW-1 and no hydrocarbon readings were observed from surface to total depth. B&C completed the well to 100-feet bgs with a screened interval at 60-feet bgs to 100-feet bgs. After 48-hours, B&C noted no product in the well and recorded depth-to-water as 80.81-feet below top-of-casing (TOC). B&C collected a groundwater sample and duplicate using low flow sampling equipment at 85-feet below TOC. The groundwater sample and duplicate sample were delivered by B&C to Severn Trent Laboratories in Houston, Texas for EPA 160.1 Total Dissolved Solids (TDS) and EPA 300.0 Chloride laboratory analysis.

The B&C report compared the chloride concentration and TDS from MW-1at the southeast corner of the pad to the WQCC domestic water supply standard. The June 11, 2004 sample indicated a chloride content of 196 mg/L and a TDS content of 1,010 mg/L. The WQCC domestic water supply standard for chloride and TDS are 250 mg/L and 1000 mg/L respectively. Table III summarizes the Groundwater sample analytical results. B&C reported that the first measured (1,010 mg/L TDS) result becomes the default groundwater standard for the site under WQCC rules. At the time of the report, B&C concluded that groundwater does not appear to be impacted

at the site by the elevated chloride found in the soil samples and no further investigation of the groundwater is necessary.

The unused concrete pit is a safety hazard to personnel and Key wishes backfill the pit with clean fill and cap with concrete to match the surrounding slab. Key Energy Services (Key) respectfully requests written closure of the Key Eunice Truck Yard Wash Pad Sump Pit and authorization to plug and abandon the monitor well MW-1.

Yours truly,

Key Energy Services

ELI D. Phill Edward D. "Ted" Philley

Corporate Environmental Specialist

Figures Tables Appendices

TABLES

Table I

Key Energy Services Eunice Truck Yard Wash Pad Sump Pit

Soil Boring								11	Ho		
Location /	Depth	Samnle Date	Renzene	Toluene	Ethvlhenzene	Xvlanes	Total	GRO	DRO	Тоға ТРН	Chlorides
Map Designation	(Feet)						BTEX	C-6-C-12	>C-12-C-35		
OCD Hy	drocarbon Scr	eening Level	10	ł	1	1	50	1	1	1000	1
Northwest (SB-1)	20	11/19/2007	<0.025	<0.025	<0.025	<0.025	<0.025	<0.10	20.7	20.8	1060
Northwest (SB-1)	25	11/19/2007	<0.025	<0.025	<0.025	<0.025	<0.025	<0.10	60.8	60.9	I.
Northeast (SB-2)	10	11/19/2007	<0.025	<0.025	<0.025	<0.025	<0.025	<0.10	<0.10	<0.10	ł
Northeast (SB-2)	15	11/19/2007	<0.025	<0.025	<0.025	<0.025	<0.025	<0.10	16.8	16.9	1660
Southeast (SB-3)	2	11/19/2007	<0.025	<0.025	<0.025	<0.025	<0.025	<0.10	110	110.1	1
Southeast (SB-3)	5	11/19/2007	<0.025	<0.025	<0.025	<0.025	<0.025	<0.10	<10.0	<0.10	2390
Southwest (SB-4)	2	11/19/2007	<0.025	<0.025	<0.025	<0.025	<0.025	<0.10	33.3	33.4	1
Southwest (SB-4)	5	11/19/2007	<0.025	<0.025	<0.025	<0.025	<0.025	<0.10	<10.0	<0.10	4250

OCD's Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993, site specific hydrocarbon screening levels 2) Results and Screening Levels in mg/kg (Parts Per Million)
3)TPH by EPA 8015M, BTEX by EPA 8021B/5030, Chloride by SW 9253

Key Energy Services Eunice Truck Yard Wash Pad Sump Pit

17.7 564 3400 800 5680 5680 100,000 /2007 <0.40 196 0.677 4.35 <0.20 <0.10 <0.10 /2007 <0.40 196 0.677 4.35 <0.20 <0.10 <0.10 /2007 <0.40 98.3 0.652 4.29 <0.20 <0.10 <0.10 /2007 1.72 130 0.431 2.48 <0.20 <0.10 <0.10 /2007 1.72 130 0.543 3.42 <0.20 <0.10 <0.10 /2007 1.32 552 0.606 3.58 <0.20 <0.10 <0.10 /2007 2.92 0.606 3.58 <0.20 <0.10 <0.10 /2007 2.92 0.682 3.58 <0.20 <0.10 <0.10 /2007 0.945 169 0.682 3.58 <0.20 <0.10 <0.10 /2007 0.945 169 0.682 3.88<	Depth (Feet) S	ample Date	Arsenic	Cadmium	Chromium ²	Lead	Selenium	Silver	Mercury
/2007 <0.40 196 0.677 4.35 <0.20 <0.10 <0.10 /2007 <0.40	0	s_	17.7	564	3400	800	5680	5680	100,000
/2007 <0.40 98.3 0.652 4.29 <0.20 <0.10 <0.10 /2007 1.72 130 0.431 2.48 <0.20	$\mathbf{\Sigma}$	1/19/2007	<0.40	196	0.677	4.35	<0.20	<0.10	<0.10
/2007 1.72 130 0.431 2.48 <0.20 <0.10 <0.10 /2007 1.41 559 0.543 3.42 <0.20	11	19/2007	<0.40	98.3	0.652	4.29	<0.20	<0.10	<0.10
/2007 1.41 559 0.543 3.42 <0.20 <0.10 <0.10 /2007 1.32 522 0.606 3.58 <0.20	11/	19/2007	1.72	130	0.431	2.48	<0.20	<0.10	<0.10
/2007 1.32 522 0.606 3.58 <0.20 <0.10 <0.10 /2007 2.92 216 0.758 3.5 <0.20	11/	19/2007	1.41	559	0.543	3.42	<0.20	<0.10	<0.10
/2007 2.92 216 0.758 3.5 <0.20 <0.10 <0.10 /2007 0.945 169 0.682 3.88 <0.20	Ξ	19/2007	1.32	522	0.606	3.58	<0.20	<0.10	<0.10
/2007 0.945 169 0.682 3.88 <0.20 <0.10 <0.10 /2007 2.06 169 0.433 1.95 <0.20	11/	19/2007	2.92	216	0.758	3.5	<0.20	<0.10	<0.10
/2007 2.06 169 0.433 1.95 <0.20 <0.10 <0.10	11/	19/2007	0.945	169	0.682	3.88	<0.20	<0.10	<0.10
	11	19/2007	2.06	169	0.433	1.95	<0.20	<0.10	<0.10

NMED Soil Screening Levels (SSLs), February 2004, Revision 2
Chromium SSL is Chromium VI (lowest SSL), value reported is Total Chromium 3) Results and SSLs in mg/kg
Color highlight indicates exeedence of respective SSL
Total Metals by SW 7470

Table II

Key Energy Services Eunice Truck Yard

Wash Pad Sump Pit

0CD'1	061		0-452	
1,050	195	6/11/2004	Dup-01	Southeast / MW-1
1,010 ³	196	6/11/2004	MW-1	Southeast / MW-1
1,000 ²	250	ion Limit ¹	C Groundwater Protect	NMWQC
Total Dissolved Solids (TDS)	Chlorides	Sample Date	Sample ID	Monitor Well Location / Map Designation

1) New Mexico Water Quality Control Commission (NMWQCC) Regulation 20.6.2.3.3103, Subsections A-C

TDS limit etablished by NMWQCC: default value is first measured value established for site in the event that previous groundwater data is unavailable.
NMWQCC new site default groundwater standard value for TDS

Results and Protection limits in mg/L
TDS by EPA 160.1, Chlorides by EPA 300.0
Monitor well installation and ground water sampling by Brown & Caldwell

Table III

FIGURES

APPENDIX I

New Mexico Office of the State Engineer

Page 1 of 1

New Mexico Office of the State Engineer Point of Diversion Summary

Back

(quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are biggest to smallest)

POD Number CP 00726		Tws 215	Rng 37E	Sec 33	q 4	q 2	đ	Zone	x	¥	
Driller Licen	ce: 208	VAN	NOY,	₩.L.					S.		Shallow
Drill Start Da	te: 02/2	3/198	8					Drill	Finish	Date:	02/23/1968
Pump Typ Casing Si	pe: 20.	07250	.0					Pipe Di	scharge	Size:	
Depth We	11 : 125							DOL	Depth V	Nater:	100

http://iwaters.ose.state.nm.us:7001/iWATERS/WellAndSurfaceDispatcher?email_address=ephilley@crawor... 7/10/2007

APPENDIX II

1415 Loui**si**ana Suite 2500 Houston, **Te**xas 77002

Tel: (713) **7**59-0999 Fax: (713) **3**08-3886

www.brownandcaldwell.com

August 26, 2004

Mr. Daniel K. Gibson Key Energy Services, Inc. 6 Desta Drive, Suite 4400 Midland, Texas 79705

Subject:

BROWN AND

CALDWELI

Documentation of Monitoring Well Installation and Sampling Key Energy Services, Inc. Truck Wash Pad and Sump Eunice, Lea County, New Mexico

Dear Mr. Gibson:

Brown and Caldwell completed the installation and sampling of one permanent groundwater monitoring well at the Key Energy Services, Inc. (Key) truck wash pad and sump facility in Eunice, New Mexico on June 9-11, 2004. Key currently operates the truck wash facility at 2105 Avenue O (New Mexico Highway 176) in Eunice, New Mexico (Figure 1). Soil assessment activities were previously performed by ARCADIS G&M, Inc. (ARCADIS) on November 19, 2002 to determine potential soil impact associated with the Key truck wash pad and sump. Findings from the November 19, 2002 field investigation indicated elevated concentrations of chlorides in soil surrounding the cement truck wash pad, detected in the range between 1,060 and 4,520 milligrams per kilogram (mg/kg). Benzene, toluene, ethylbenzene or xylene (BTEX) were not detected above the respective detection limits in samples collected by ARCADIS; consequently, further sampling of soils for BTEX was not performed. Metals concentrations from the investigation conducted by ARCADIS were screened against the New Mexico Environment Department (NMED) Soil Screening Levels (SSLs), February 2004, Revision 2. No metals concentrations were found to exceed the Industrial/Occupational SSLs; consequently, further sampling of soils for metals was not performed. The groundwater assessment was performed to establish groundwater quality and determine if chlorides in soil had potentially caused impact to groundwater in the vicinity of the apparent downgradient, southeast corner of the truck wash pad. Field activities for the June 2004 investigation included monitoring well installation, groundwater sampling, and laboratory analytical results and are discussed in the following paragraphs.

Field Activities

One monitoring well (MW-1) was installed at the southeast corner of the truck wash pad where elevated levels of chlorides in soils were detected during the November 19, 2002 investigation conducted by ARCADIS. One groundwater sample and one duplicate groundwater sample were collected from monitoring well MW-1 for laboratory analysis. Prior to drilling activities, utility clearance was obtained through coordination with site personnel and by contacting New Mexico One-Call. The New Mexico Oil Control Division (OCD) was notified in advance of commencement of field activities.

 E_n

August 26, 2004 Mr. Daniel K. Gibson Page 2

Monitoring Well Installation

Brown and Caldwell installed permanent groundwater monitoring well MW-1 using an air rotary rig. Soil cores were continuously sampled to a depth of 10 feet and sampled at least once every 10 feet thereafter using decontaminated 2-foot split-spoons and/or shovels for cuttings. Each sample interval was logged for recovery length and lithology, visually observed for impacts, and field screened with a photo-ionization detector (PID). No PID readings were observed from ground surface to the total depth of the borehole. Soil cores and cuttings were logged by a field geologist. The lithologic description and moisture content were described in accordance with ASTM International Standard D 2488, Standard Practice for Description and Identification of Soils (Visual Manual Procedure), and classified in accordance with the Unified Soil Classification System (USCS). The soil boring/monitoring well log for monitoring well MW-1 is included in Attachment 1. The lithology consisted predominantly of fine to medium-grained, rounded, well sorted, brownish-red sand. A significant increase in moisture content was observed at 62 feet below ground surface (bgs), and saturation was observed at approximately 79 feet bgs. The monitoring well borehole was initially drilled to 90 feet bgs, but collapsed in to 80 feet bgs. The borehole was cleaned out, and re-drilled to 100 feet bgs to ensure an adequate water column; however, the hole collapsed a second time due to wet formation sands. The monitoring well was installed to a total depth of 90 feet bgs and was constructed with 30 feet of 2-inch diameter, 0.010 machine slot, flushthreaded, Schedule 40 polyvinyl chloride (PVC) screen, and 2-inch diameter Schedule 40 PVC casing to ground surface. The screened interval intersects the first area where increased moisture was observed, though the water table was found to equilibrate at approximately 80 feet bgs. The monitoring well was completed a few inches bgs and protected with a flush-to-grade manhole set in a 3-foot square concrete pad that is 4 inches thick.

Brown and Caldwell developed the monitoring well using a 1.5-inch disposable PVC bailer. Monitoring well development was considered complete when produced fluids were relatively free of suspended material. Approximately 20 gallons of groundwater was bailed from monitoring well MW-1 during development.

Brown and Caldwell used a handheld Global Positioning System (GPS) device to determine the location of the monitoring well, as required by the New Mexico OCD. The monitoring well location is depicted on Figure 2 and the GPS coordinates are listed on Table 1.

Collection and Analysis of Groundwater Samples

Brown and Caldwell measured the static water level in the monitoring well immediately prior to sampling and purging using a decontaminated oil/water interface probe. The monitoring well was purged using low flow/low stress purging procedures with a 2-inch submersible stainless steel Fultz pump and disposable polyethylene tubing. The oil/water interface probe and pump were decontaminated in the field before and after use by washing with a non-phosphate detergent (Liquinox) and distilled water wash, followed by a distilled water rinse. August 26, 2004 Mr. Daniel K. Gibson Page 3

The intake of the Fultz pump was placed at 85 feet bgs. A pumping rate of 0.25 liters per minute was sustained while field parameter measurements for pH, specific conductivity, turbidity, and temperature were collected during the purging process. A YSI 600 XL flow cell was used to measure these parameters at approximate 3 minute increments. A total of 6.25 liters of groundwater were produced before parameters indicated groundwater stabilization had occurred. The field data sheet for purging and sampling of monitoring well MW-1 is included as Attachment 2.

Upon completion of purging operations, a groundwater sample and a duplicate groundwater sample were immediately collected from the monitoring well at the pump discharge line after the flow cell had been disconnected. The samples were transferred into laboratory-supplied, 500-milliliter plastic containers, labeled, and placed on ice in an insulated cooler using standard chain-of-custody procedures. The samples were hand delivered to Severn Trent Laboratories, Inc. in Houston, Texas the following morning. The groundwater samples were analyzed for:

- Total Dissolved Solids (TDS) by EPA Method 160.1 and
- Chlorides by EPA Method 300.0

Groundwater Analytical Results

The groundwater sample collected from monitoring well MW-1 indicates a chlorides content of 196 milligrams per liter (mg/L) and a TDS content of 1,010 mg/L. The chloride content is below the 250 mg/L domestic water supply standard for chloride established in the New Mexico Water Quality Control Commission (WQCC) Regulations, Section 20.6.2.3103, Subsection A-C. The New Mexico WQCC has established a limit of 1,000 mg/L for TDS; however, in the event that previous TDS data for the site is not available, the first measured concentration becomes the new groundwater standard by default. Therefore, site activities may not indicate TDS impact to groundwater above approximately 1,010 mg/L during any subsequent monitoring event. Duplicate sample results were comparable to the original sample results. The analytical results are presented in Table 2 and the laboratory analytical report is included as Attachment 3.

Waste Management

Soil cuttings generated during the well installation activities were placed in clean, 55gallon steel drums. Decontamination water, well development water, and purge water produced during well installation and sampling activities were also placed in a clean, 55gallon steel drum. Non-hazardous waste labels were affixed to each drum. A total of three drums containing soil and one drum containing water were produced during investigation activities and staged near the southeast corner of the concrete pad pending offsite disposal. August 26, 2004 Mr. Daniel K. Gibson Page 4

Conclusions and Recommendations

Analytical results indicate the elevated levels of chlorides present in near surface soils potentially due to truck washing operations do not appear to have impacted groundwater at the southeast corner of the truck wash pad. Further investigation of groundwater in the area is not necessary at this time.

If you have any additional questions regarding the information contained in this correspondence, please contact Madeline Mauk at (713)-646-1119.

Sincerely,

BROWN AND CALDWELL nanoufer Lomas Il

Madeline S. Mauk, P.E. Supervising Engineer

cc: Brown and Caldwell project file

Figures

1 Site Location Map

2 Monitoring Well Location Map

Tables

1 GPS Coordinates for Monitoring Well

2 Groundwater Analytical Results

Attachments

Soil Boring/Monitoring Well Log Groundwater Sampling Field Data Sheet Laboratory Analytical Report **BROWN AND CALDWELL**

Lynn M. Wright, P.G. Supervising Geologist

Aug 26, 2004 - 2:44pm ckelly P:\Cad\JOBS\KeyEnerg\25934\EuniceSiteMap.dwg

TABLES

P:\Wp\KEYENRGY\25934\002lr.doc

Table 1

į.

-tran

ALL I Distant

1

Entry of a states

Coordinates for Monitoring Well Key Energy Services, Inc. - Eunice Truck Wash Pad and Sump Facility Eunice, New Mexico

Longitude	-103°10.140'
Latitude	32°26.493'
Monitoring Well	I-MM

Notes:

1) GARMIN brand handheld Global Positioning System unit. North American Datum (1983). (dd°mm.mmm')

2) GPS was not getting adequate satellite coverage during marking of coordinates.

P:\Wp\KEYENRGY\25934\003ta\GPS.xls

Table 2

11 miles

ben we we

01000

j.

deno:

Groundwater Analytical Results Key Energy Services, Inc. - Eunice Truck Wash Pad and Sump Facility Eunice, New Mexico

Laboratory Analysis			Total Dissolved Solids (mg/L) [EPA Method 160.1]	Chlorides (mg/L) [EPA Method 300.0]
NMWQCC ⁽¹⁾ Groundwat	ter Protection Limit		1,000 ⁽²⁾	250
Sample Location	Sample ID	Sample Date		
I-MM	I-MW	6/11/2004	1,010	196
I-MM	DUP-01	6/11/2004	1,050	195

Notes:

1) NMWQCC = New Mexico Water Quality Control Commission (Regulation 20.6.2.3103, Subsections A-C).

2) Total Dissolved Solids limit established by NMWQCC; default value is first measured value established for site in the event that previous groundwater data for site is unavailable.

P:\Wp\KEYENRGY\25934\003ta\eunice-gw

ATTACHMENT 1

Soil Boring/Monitoring Well Log
MW-1

Proje	ct N	lame:	_ E	unice Truck Wash and Sun	np Facility Monito	r W	ell	Pro	ject Nur	nber: <u>2</u>	5934.0	01 SI	heet <u>1</u> of <u>3</u>
Project Location: 2105 Avenue O, Eunice, New Mexico								I	ogged B	y: C. Put	ney	Approved:	
Drilling Contractor: Harrison and Cooper								I	Date Star	ted: 6/9/)4	Date Finished	: 6/9/04
Drilling Equipment: IR TH-60 Driller: Leonard									otal Bor Depth: (fo	ing eet) 100.	0	Depth to Stati Water: (feet)	c
Drilling Method: Air Rotary Borehole Diameter: 8"								L I	OC Elev	vation:		Ground Eleva	tion:
Samp	oling	; Metl	nod:	split-spoon/shovel					Diameter f Well C	and Type asing:	2" PV	/C	
Comments: Water level measured from top of casing.								S	Slot Size: 0.010 " Filter Material: 20/40 silica Development Method: bailer				
Depth (feet)	Depth to Water	USC Soil Type	Lithology	Description		PID Readings	Sampled Interval	Recovery (feet)	Sample ID		n an	Monitoring Well Remarks	rato da produkcija na konstrukcija na konstrukcija na konstrukcija na konstrukcija na konstrukcija na konstrukc
2				Cleared for utilities to 2'. Fill mate medium sand with gravel.	erial and fine to	0	X	0				Flush mount com	oletion
6		SP SM		Silty sand, fine, trace hard caliche cementation at 10 feet, dry.	/calcareous	0		.5 .5					
12		•		Caliche/calcareous cementation a	nd nodules increase.	0		2					
16				brown to light grayish brown w medium sand seams, dry. Very hard cemented sand in split-	ith interlayered fine to spoon shoe at 22'.		X	.2					
20 						0		∎.5					
26- - 28- - - - - 	- - - -	SP SM		Silty sand, fine to medium, light r caliche, mostly loose, dry. Calo	eddish-brown, trace arous nodules at 42 [°] .	0		0					
32-					•	0	X	.3					

Monitoring Well:

MW-1

Eunice Truck Wash and Sump Facility Monitor Well Project Number: Sheet 2 of 325934.001 Project Name: Sampled Interval PID Readings Depth to Water USC Soil Type Recovery (feet) Monitoring Well Remarks Depth (feet) Lithology Sample ID Description 34 0 .5 36 38 40 0 42 44 0 0 46 48 50 0 0 52 54 Sand, slight increase in grain size, grading to darker reddish-brown in color. Slightly cemented portion at 59.5'. SP 0 .3 56.0 56 58 0 60 Top of screened interval at 60 ft. 62 64 SP Sand, very moist, lt. reddish-brown, trace 0 0 calcareous/cemented fragments, no odor. 66· 68 70· 0 1 72 74

Monitoring Well:

MW-1

Sheet $\underline{3}$ of $\underline{3}$

ATTACHMENT 2

Groundwater Sampling Field Data Sheet

the state

10.00

B R O W N AND GROUNDWATER SAMPLING FIELD DATA SHEET
CALDWELL WELL ID: MW-1
1. PROJECT INFORMATION Project Number: 25934 Task Number: 001 Date: 6-11-04 Client: KEY ENERGY Personnel: C. PUTNEY Project Location: EUNICE, NM Weather: WINDY, 85'F, SUNNY 2 WELL DATA
Casing Diameter: 2 inches Type: SCRVC I Stainless I Galv. Steel I Teffon® I Other
Screen Diameter: 2inches Type: >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Total Depth of Well: 90 feet From: >= Top of Well Casing (TOC)
Depth to Static Water: 80.81 feet From: 🞾 Top of Well Casing (TOC) 🗆 Top of Protective Casing 🗅 Other:
Depth to Product:feet From:
Length of Water Column: 9.19 feet Well Volume: gal Screened Interval (from GS): 100'-910' Pump intake depth 85' (from GS) Note: 2-inch well = 0.16 gal/ft 4-inch well = 0.65 gal/
3. PURGE DATA
Purge Method: Bailer, Size: Bladder Pump 22" Submersible Pump 24" Submersible Pump Centrifugal Pump 2 Peristattic Pump 2 Inertial Lift Pump 2 Other: Equipment Model(s)
Materials: Pump/Bailer Dedicated Depared Off-Site SDField Cleaned Disposable 1. VST LOOO X L
Materials: Rope/(ubing Polyethylene Polypropylene Teffon® Other Dedicated Prepared Off-Site Field Cleaned Str. Disposable 2. HACH TUBBIDITY
Was well purged dry? Dives R No Pumping Rate: 0.25 liters/min 3.2" FULTZ PUMP
Time Cum. Liters Removed pH Temp Spec. Cond. Eh Dissolved Oxygen Turbidity Depth to Water (TOC) Comments
1600 0.25 7.27 27.17 1.207 - 48.9 3.02 320 80.88 VERY CLOUDY
1603 1.0 7.31 2771 1.20 19-13.30 320 80.88 "
11009 7.5 2.7922121 220367 3710 2.72 80.86 51 610101
1/10/2 3.25 7.29/20 851, 2/4-31.8 4.01 1.81 80.8/2 "
1615 4.0 7.37 26.411.184 -31.9 4.35 99.2 80.85 "
1618 4.75 7.332609 1.171 -32 4.58 70.6 80.85 CLEARING UP
1621 5.5 7.3226 191.175 - 33 4.50 40.5 80.84 "
1624 10.25 7.33710.101.180 -32 4.42 35.9 80.83 "
4. SAMPLING DATA Geochemical Analyses
Method(s): Bailer, Size: Bladder Pump 1 2 Submersible Pump 4 * Submersible Pump Peristaltic Pump Inertial Lift Pump Other:
Materials: Pump/Bailer Stainless DPVC DTeflon® Other Dedicated DPrepared Off-Site Sofield Cleaned Disposable DO: mg/L
Materials: Tubing/Rope Dedicated Delypropylene Delypropyle
Depth to Water at Time of Sampling: 80,87 Field Filtered? Ves No Sulfate: mg/L
Sample ID: M M Sample Time: W & for Containers: Alkalinity: mg/L
5. COMMENTS TDS + CHILORIDES
Note: Include comments such as well condition, odor, presence of NAPL, or other items not on the field data sheet.
FORM GW-1 (Rev 2/26/02 - dg)

N

- HEARING

CUNTER OF

į,

τ.

ATTACHMENT 3

Laboratory Analytical Report

£

Berch

EUNICE

Signature

Name: Ed B. Fry Title: Project Manager III E-Mail: efry@stl-inc.com

7/8/04 Date

Severn Trent Laboratories 6310 Rothway Drive Houston, TX 77040

PHONE: (713) 690-4444

Madeline Mauk Brown and Caldwell 1415 Louisiana Suite 2500 Houston, TX 77002

SEVERN

Reference: Project : Brown and Caldwell-Hobbs Eunice Project No. : 275517 Date Received : 06/12/2004 STL Job : 275517

Dear Madeline Mauk:

Enclosed are the analytical results for your project referenced above. The following samples are included in the report.

1. MW-1

2. DUP-01

All holding times were met for the tests performed on these samples.

Enclosed, please find the Quality Control Summary. All quality control results for the QC batch that are applicable to the sample(s) are acceptable except as noted in the QC batch reports.

The test results in this report meet all NELAP requirements for STL Houston's NELAP accredited parameters. Any exceptions to NELAP requirements will be noted and included in a case narrative as a part of this report.

If the report is acceptable, please approve the enclosed invoice and forward it for payment.

Thank you for selecting Severn-Trent Laboratories to serve as your analytical laboratory on this project. If you have any questions concerning these results, please feel free to contact me at any time.

We look forward to working with you on future projects.

Sincerely,

-

5.45

Ed B. Fry Project Manager

SAMPLE INFORMATION Date: 07/08/2004

Job Number.: 275517	Project Number
Customer: Brown and Caldwell	Customer Project ID: KEY ENERGY
Attn: Madeline Mauk	Project Description: Brown and Caldwell-Hobbs Eunice

Laboratory Sample ID	Customer Sample ID	Sample Matrix	Date Sampled	Time Sampled	Date Received	Time Received
275517-1	Mw-1	Water	06/11/2004	16:25	06/12/2004	11:52
275517-2	DUP-01	Water	06/11/2004	00:00	06/12/2004	11:52
7						
٤						
.						•
P	·					
5						
P						
8						
	· · · · ·					н. С
• ·						
						· ·
-						
	<u></u>					
		Page 1				

Date:07/08/2004	ATTN: Madeline Msuk	17-1 12/2004 52	RL DILUTION UNITS BATCH DT DATE/TIME TI	10 1 mg/L 102935 06/14/04 1800 si	4.0 10 mg/L 103052 06/15/04 2029 ci	
ABORATORY TEST RESULTS	PROJECT: KEY ENERGY	Laboratory Sample ID: 2755 Date Received 06/1 Time Received 11:5	SAMPLE RESULT 9 FLAGS MDL	1010 2.99	196 0.70	Page 2
Job Number: 275517	n and Caldweil	Sample ID: MW-1 pled: 06/11/2004 pled: Mater atrix: Water	PARAMETER/TEST DESCRIPTION	Solids, Total Dissolved (TDS), Water	Chloride, Water	* In Description = Dry Wgt.
	CUSTONER: Brow	Customer Date Sam Time Sam Sample M	TEST METHOD	EPA 160.1	EPA 300.0	

Ĩ

5

فوحدا محمدون

SEVERN STL

þ

6310 Rothway Drive • Houston, TX 77040 • Tel: 713 690 4444 • Fax: 713 690 5646 • www.stl-inc.com

DATE/TIME TECH 06/15/04 2044 cas 06/14/04 1800 sur ATIN: Madeline Mauk DT Date:07/08/2004 BATCH 102935 103052 STINU mg/L J∕F DILUTION 9 Laboratory Sample ID: 275517-2 Date Received...... 06/12/2004 Time Received...... 11:52 4.0 RL 9 S ESULT 0.70 2.99 MDL ≃ TEST PROJECT: KEY ENERGY Q FLAGS Page 3 LABORATORY SAMPLE RESULT 1050 195 PARAMETER/TEST DESCRIPTION Solids, Total Dissolved (TDS), Water * In Description = Dry Wgt. Customer Sample ID: DUP-01 Date Sampled..... 06/11/2004 Time Sampled..... 00:00 Sample Matrix..... Water Job Number: 275517 Chloride, Water CUSTOMER: Brown and Caldwell TEST METHOD EPA 300.0 EPA 160.1

-- Pitel

TRENT

SEVERN

6310 Rothway Drive • Houston, TX 77040 • Tel: 713 690 4444 • Fax: 713 690 5646 • www.stl-inc.com

Job Number.: 275517

J

QUALITY CONTROL RESULTS

Report Date.: 07/08/2004

CUSTOMER: Brown and Caldwell

the state

SEVERN

PROJECT: KEY ENERGY

ATTN: Madeline Mauk

Test Method: EPA 300.0 Method Description.: Ion Chromatography Analysis Parameter: Chloride				Units Batch(s)	: 103052	Analyst: cas Test Code.: CHL				
ĩJC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result *	'Limits I	F Date	Time
		WCS31126	19.932 0	400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400 - 400	20.00		99.7	90.0-110.	06/15/2004 06/15/2004 06/15/2004	1200
[®] CS		WCS31126	19.729		20.00		98.6	90.0-110.	06/15/2004	1245
CCV		WCS31126	20.712 0.2720		20.00		103.6	90.0-110.	06/15/2004	1501
DU	275458-1		5.6227			5.4458	3.2	20	06/15/2004	1712
MS	275458-1	WCS30882	15.894		10.000000	5.4458	104.5	80-120	06/15/2004) 172 7
່ວບ	275590-1		3.4219			3.4423	0.6	20	06/15/2004	▶ 1757
CCV CCB		WCS31126	19.725 0.2434		20.00		98.6	90.0-110.	06/15/2004 06/15/2004	1813 1828
MS	275590-1	WCS30882	13.806		10.000000	3.4423	103.6	80-120	06/15/2004	1843
°CCV ∶CCB		WCS31126	19.795 0.2501		20.00		99.0	90.0-110.	06/15/2004 06/15/2004	+ 2114 + 2129
ĐU	275517-3		5.1628	· · · · · · · · · · · · · · · · · · ·		5.2670	2.0	20	06/15/2004	+ 2144
MS	275517-3	WCS30882	15.791		10.000000	5.2670	105.2	80-120	06/15/2004	2159
CCV		WCS31126	20.097 0.2435 0		20.00		100.5	90.0-110.	06/16/2004 06/16/2004 06/16/2004	0015
LCS		WCS31126	19-804		20.00		99.0	90.0-110.	06/16/2004	0101
DU	275334-2	*	7,5941			7.2345	4.9	20	06/16/2004	0146
MS	275334-2	WCS30882	18.024		10.000000	7,2345	107.9	80-120	06/16/2004	0201
CCV CCB		WCS31126	19 . 584 0		20.00		97.9	90.0-110.	06/16/2004 06/16/2004	0317
DU	275407-2		4,2093			4.1746	0.8	20	06/16/2004	0533
₽MS	275407-2	WCS30882	14.703		10.000000	4.1746	105.3	80-120	06/16/2004	0548
CCV CCB		WCS31126	19.758 0.2345		20.00		98.8	90.0-110.	06/16/2004 06/16/2004	0618 0633
CCV CCB		WCS31126	19.904 0.2642		20.00		99.5	90.0-110.	06/16/2004 06/16/2004	0704 0719

lac	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result *	Limits	F Dat	e	Time
DU	275338-10		1359.00			1388.00	2.1	10.0	06/14	2004	1800
DU	275487-6		1311.00			1256.00	4.3	10.0	06/14	2004	1800
MB			1.00						06/14,	2004	1800
LCS		WCS31351	3506.00		3600		97.4	90.0-110.	06/14	2004	1800
DU	275517-2		1052.00			1012.00	3.9	10.0	06/14	2004	1800
LCS		WCS31351	3520.00		3600		97.8°	90.0-110.	06/14	2004	1800
MB	·		1.00						06/14	/2004	1800

Page 4 * %=% REC, R=RPD, A=ABS Diff., D=% Diff.

QUALITY ASSURANCE NETHODS

REFERENCES AND NOTES

Report Date: 07/08/2004

REPORT COMMENTS

- 1) All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.
- 2) Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable.
- 3) According to 40CFR Part 136.3, pH, Chlorine Residual, and Dissolved Oxygen analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field,(e.g. pH Field) they were not analyzed immediately, but as soon as possible on laboratory receipt.
- 4) For all USACE projects, the QC limits are based on "mean +/- 2 sigma", which are the warning limits.

General Information:

VERN

- Cresylic Acid is the combination of o,m and p-Cresol. The combination is reportesd as the final result.
- m-Cresol and p-Cresol co-elute. The result of the two is reported as either m&p-cresol or as p-cresol.
- m-Xylene and p-Xylene co-elute. The result of the two is reported as m,p-Xylene.
- N-Nitrosodiphenylamine decomposes in the gas chromatograph inlet forming dipheylamine and, consequently, may be detected as diphenylamine.
- Methylene Chloride and Acetone are recognized potential laboratory contaminants. Its presence in the sample up to five times the amount reported in the blank may be attributed to laboratory contamination.
- Trimethysilyl(Diazomethane) is used to esterify acid herbicides in Method SW-846 8151A.
 For Inorganic analyses, duplicate QC limits are determined as follows: If the sample result is less than or equal to 5 times the reporting limit, the RPD limit is equal to the reporting limit. If the sample result is greater than 5 times the reporting limit, the RPD limit is the method defined RPD.

Explanation of Qualifiers:

- U This qualifier indicates that the analyte was analyzed but not detected.
- J (Organics only) This qualifier indicates that the analyte is an estimated value between the RL and the MDL.
- B (Inorganics only) This Qualifier indicates that the analyte is an estimated value between the RL and the MDL.
- N (Organics only) This flag indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It is applied to all TIC results. For generic charachterization of a TIC, such as "chlorinated hydrocarbon", the "N" flag is not used.

Explanation of General QC Outliers:

- A Matrix interference present in sample.
- a MS/MSD analyses yielded comparable poor recoveries, indicating a possible matrix interference. Method performance is demonstrated by acceptable LCS recoveries.
- b Target analyte was found in the method blank.
- M QC sample analysis yielded recoveries outside QC acceptance criteria. This sample was reanalyzed.
- L LCS analysis yielded high recoveries, indicating a potential high bias. No target analytes were
- observed above the RL in the associated samples. G - Marginal outlier within 1% of acceptance criteria.
- r RPD value is outside method acceptance criteria.
- C Poor RPD values observed due to the non-homogenous nature of the sample.
- 0 Sample required dilution due to matrix interference.
- D Sample reported from a dilution.
- d Spike and/or surrogate diluted.
- P The recovery of this analyte is outside default QC limits. The data is accepted and will be used to calculate in-house statistical limits.
- E The reported concentration exceeds the instrument calibration.
- F The analyte is outside QC limits. The sample data is accepted since this analyte is not reported in associated samples.
- H Continuing Calibration Verification (CCV) standard is not associated with the samples reported.
- q See the subcontract final report for qualifier explanation.

Page 5

QUALITY ASSURANCE METHODS

Report Date: 07/08/2004

REFERENCES AND NOTES

- W The MS/MSD recoveries are outside QC acceptance criteria because the amount spiked is much less than the amount found in the sample.
- K High recovery will not affect the quality of reported results.
- Z See case narrative.

Explanation of Organic QC Outliers:

ERN

- e Method blank analysis yielded phthalate concentrations above the RL. Phthlates are recognized potential laboratory contaminants. Its presence in the sample up to five times the amount reported in the blank may be attributed to laboratory contamination.
- S Sample reanalyzed/reextracted due to poor surrogate recovery. Reanalysis confirmed original analysis indicating a possible matrix interference.
- T Sample analysis yielded poor surrogate recovery.
- R The RPD between the two GC columns is greater than 40% and no anomalies are present. The higher result is reported as per EPA Method 8000B.
- I The RPD between the two GC columns is greater than 40% and anomalies are present. The lower of the two results has been reported.
- X Gaseous compound. In-house QC limits are advisory.
- Y Ketone compounds have poor purge efficiency. In-house QC limits are advisory.
- f Surrogate not associated with reported analytes.

Explanation of Inorganic QC Outliers:

- Q Method blank analysis yielded target analytes above the RL. Associated sample results are greater than 10 times the concentrations observed in the method blank.
- V The RPD control limit for sample results less than 5 times the RL is +/- the RL value. Sample and duplicate results are within method acceptance criteria.
- e Serial dilution failed due to matrix interference.
- g Sample result quantitated by Method of Standard Additions (MSA) due to the analytical spike recovery being below 85 percent. The correlation coefficent for the MSA is greater than or equal to 0.995.
- s BCDD/cBOD seed value is not within method acceptance criteria. Due to the nature of the test method, the seample cannot be reanalyzed.
- I BCDD/cBOD LCS value is not within method acceptance criteria. Due to the nature of the test method, sample cannot be reanalyzed.
- n Sample result quantitated by Method of Standard Additions (MSA) due to the analytical spike recovery being below 85 percent. The correlation coefficient for the MSA is less than 0.995.

Abbrevi ations:

Batch	•	Designation given to identify a specific extraction, digestion, preparation, or analysis set.
CCV	-	Continuing Calibration Verification
CRA	-	Low level standard check - GFAA, Mercury
CRI	-	Low level standard check - ICP
Dil Fa∎c	•.	Dilution Factor - Secondary dilution analysis
DLFac	-	Detection Limit Factor
EB	-	Extraction Blank (TCLP, SPLP, etc.)
ICAL	•	Initial Calibration
ICB	-	Initial Calibration Blank
ICV	-	Initial Calibration Verification
ISA	-	Interference Check Sample A - ICP
ISB	-	Interference Check Sample B - ICP
LCD	-	Laboratory Control Duplicate
LCS	-	Laboratory Control Sample
MB	-	Method Blank
MD	-	Method Duplicate
MDL	-	Method Detection Limit
MS	-	Matrix Spike
		•

QUALITY ASSURANCE METHODS

REFERENCES AND

Report Date: 07/08/2004

NOTES

MSD	- Matrix Spike Duplicate
ND	- Not Detected
₽B	- Preparation Blank
PREPF	- Preparation Factor
RL	- Reporting Limit
RPD	- Relative Percent Difference

ERN

- RRF - Relative Response Factor
- Retention Time RT
- DU - Duplicate

Method References:

- (1) EPA 600/4-79-020 Methods for the Analysis of Water and Wastes, March 1983.
- EPA 600/R-94-111 Methods for the Determination of MEtals in Environmental Samples, Supplement I, May (2) 1994.
- (3) EPA SW846 Test Methods for Evaluating Solid Waste, Third Edition, September 1986; Update I July 1992; Update II, September 1994, Update IIA August 1993; Update IIB, January 1995; Update III, December 1996, Update IVA January 1998, Update IVB November 2000.
- (4) Standard Methods for the Examination of Water and Wastewater, 16th Edition (1985), 17th Edition (1989), 18th Edition (1992), 19th Edition (1995), 20th Edition (1998). (5) HACH Water Analysis Handbook 3rd Edition (1997).
- (6) Federal Register, July 1, 1990 (40 CFR Part 136 Appendix A).
- (7) Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, 2nd Edition, January 1997.
- (8) ASTM Annual Book of Methods (Various Years)
- (9) Diagnosis and Improvement of Saline and Alkali Soils, Agriculture Handbook No. 60, United States Department of Agriculture, 1954.

Page 7

 	-	
	· ·	
		an a
	· ·	
	- <u>u</u>	and and a second s
		P. P
i an	<u></u>	
		n Provincia (Balang
 •		

APPENDIX III

Key Energy Eunice Truck Sump Report

PREPARED FOR

Key Energy Services 2625 W. Marland Hobbs, New Mexico 88241

Infrastructure, buildings, environment, communications

Mr. Royce Crowell Key Energy Services 2625 W. Marland Hobbs, New Mexico 88241

Subject:

Findings and Recommendations from a Soil Investigation of the Truck Wash Sump Key Energy Services, Eunice, New Mexico Facility Lea County, New Mexico

Dear Mr. Crowell:

On November 19, 2002, ARCADIS G&M, Inc. (ARCADIS) performed an investigation into the potential soil impact associated with the Key Energy Services truck washing facility pad and sump located in Eunice, New Mexico. The sump and pad are contiguous to the main shop and office building and are directly south of the building. A total of four soil borings were advanced using air rotary drilling.

The Key Energy Services facility is located at 2105 Avenue O (New Mexico Highway 176) in Eunice, New Mexico. The sump is located at approximately North 32 Degrees, 26 Minutes, 29.6 seconds longitude and West 103 degrees, 10 minutes, 7.3 seconds latitude. Figure 1 is a map of the site.

Mr. Wayne Price of the New Mexico Oil Conservation Commission (NMOCD) inspected the site before work began and verified compliance with NMOCD regulations.

FIELD METHODS

Four soil borings were drilled around the truck washing facility sump and pad. A direct-push sampling device was used to collect soil samples for analysis. The sampling device was thoroughly cleaned between each sample using laboratory-grade soap and water. Soil samples were caught at intervals of 0-0.5 feet, 2 feet, 5 feet, and at 5-foot intervals thereafter, to total depth.

The samples were sealed in 4-ounce glass jars and in plastic zip-lock bags. The headspace in the zip-lock bags was analyzed using a photo-ionization detector (PID) that was previously calibrated using 100 parts per million (ppm) isobutane. A scintillator was used to screen for the potential of naturally occurring radioactive material (NORM).

ARCADIS G&M, Inc. 1004 N. Big Spring Street. Suite 300 Midland Texas 79701 Tel 915-687-5400 Fax 915-687-5401 www.arcadis-us.com

ENVIRONMENT

Date: January 20, 2003

Contact Ralph Lang

Phone: (915) 687-5400

Email: rlang@arcadis-us.com

Our ref:

G:/Aproject/Key Energy Services/MT0764.01 Eunice/reports/Key Energy Eunice Truck Sump Report

Part of a bigger picture

The two borings closest to the sump, SB-1 and SB-2, were drilled to 25 feet and 21 feet, respectively. Soil borings SB-3 and SB-4 were drilled until no impacted soil was evident by field inspection and screening (13 feet and 15 feet, respectively). All soil borings were plugged to the surface with bentonite chips that were hydrated with fresh water.

Two soil samples from each borehole were submitted to the laboratory for analysis. One sample was taken from the sample with the highest headspace reading; the other sample was taken from either the base of the boring or when field observation indicated that there was no other soil impact. Samples were collected according to standard procedures in containers supplied by the laboratory. They were placed on ice soon after they were taken and kept on ice until they were turned over to laboratory personnel.

PID readings, scintillator readings, and the soil descriptions are summarized on the boring logs in Appendix A. Using appropriate chain-of-custody protocol, the soil samples were hand-delivered by ARCADIS personnel to Environmental Lab of Texas I, LTD.

The samples were analyzed for total petroleum hydrocarbons (TPH) by method 8015M and for benzene, toluene, ethylbenzene and xylenes (BTEX) by method 8021B/5030. The samples were also examined for the eight RCRA metals (arsenic, barium, cadmium, chromium, lead, selenium, silver, mercury) and for chloride.

FIELD AND ANALYTICAL RESULTS

The highest PID readings observed were 220 ppm and 299 ppm in soil boring SB-1 from 10 feet and 20 feet, respectively. Field readings for NORM did not exceed measured background levels.

Analytical results were examined for completeness and procedural errors and none were observed. The complete laboratory analytical report is included in Appendix B.

No BTEX was detected in any of the samples analyzed. TPH was found in the diesel range (>C12-C35). TPH and BTEX analytical results are summarized Table A. Chloride and RCRA 8 metals analytical results are summarized in Table B.

CONCLUSIONS

There were four types of potential soil impact addressed by this investigation. These potential impacts were NORM, hydrocarbon, metals, and chloride. No groundwater investigation was conducted at this site. Field and laboratory analysis indicated the following:

- 1. No NORM impact was found at this site.
- 2. Hydrocarbon impact was addressed by the PID readings and the laboratory analysis of soil samples.
 - 2a. Laboratory analysis indicates that there is no BTEX impact.
 - 2b. The only TPH impact that was encountered was from diesel range organics (DRO>C12-C35) and only one sample exceeded the 100-ppm regulatory limit. This sample was taken in SB-3 (2'). The DRO was 110 ppm and the sample below SB-3 (5') had no detectable hydrocarbon impact.
- 3. Laboratory analysis of the soil samples for RCRA metals indicated that there was no selenium, silver or mercury detected in any of the samples.
 - 3a. Barium was encountered, but is felt that this was a natural occurrence.
 - 3b. Small amounts of arsenic, cadmium, chromium, and lead were encountered in the soils and their source is unclear.
- 4. Moderately high concentrations of chlorides were encountered in each of the soil borings and these appear to decrease with depth.
 - 4a. The highest chloride concentrations appear to be associated with the shallow borings (SB-1 & SB-2) around the cement pad.
 - 4b. The chlorides were in the 1,060 milligrams per kilogram (mg/Kg) to 4,520 mg/Kg (equivalent to ppm) range.

RECOMMENDATIONS

ARCADIS proposes the following recommendations for consideration:

- 1. A groundwater assessment should be performed to determine the depth and quality of the groundwater. A monitor well drilled southeast of the pad and sump will evaluate potential chloride impact.
- 2. A shallow soil sample in another area removed from the pad should be taken and analyzed for RCRA total metals and chlorides to be used as a background control sample.
- 3. Excavation of the shallow impacted soil associated with the cement pad should be removed and replaced.
- 4. It is required that the soils at the base of an excavation be sampled to comply with NMOCD regulations.

Mr. Royce Crowell January 20, 2003

ARCADIS appreciates the opportunity to investigate this property for Key Energy Services. If you should have any questions regarding this report of activities at the site, please do not hesitate to contact us at (915) 687-5400.

Very truly yours,

ARCADIS G&M, Inc.

Ralph Rang Hi

Ralph Lang Scientist

ischer (en

Steven P. Tischer Remediation Department Manager

copies: Mr. Gene Butler Key Energy Services 6 Desta Drive #5900 Midland, TX 79705

G:WPROJECT/KEY Energy Services/MT764.01 Eunice/reports/Key Energy Eunice Truck Sump Report.doc

Key Energy Services Eunice, New Mexico Truck Washing Facility Pad and Sump

Samples collected November 19, 2002

Table A

Organic Compounds in mg/Kg (ppm)

Soil	TPI	-		BTEX								
Borings	GRO, C6-C12	DRO, >C12-C35	Benzene	Ethylbenzene	Toluene	p/m-Xylene	o-Xylene					
SB-1 (20')	<10.0	20.7	<0.025	<0.025	<0.025	<0.025	<0.025					
SB-1 (25')	<10.0	60.8	<0.025	<0.025	<0.025	<0.025	<0.025					
SB-2 (10')	<10.0	<10.0	<0.025	<0.025	<0.025	<0.025	<0.025					
SB-2 (15')	<10.0	16.8	<0.025	<0.025	<0.025	<0.025	<0.025					
SB-3 (2')	<10.0	110	<0.025	<0.025	<0.025	<0.025	<0.025					
SB-3 (5')	<10.0	<10.0	<0.025	· <0.025	<0.025	<0.025	<0.025					
SB-4 (2')	<10.0	33.3	<0.025	<0.025	<0.025	<0.025	<0.025					
SB-4 (5')	<10.0	<10.0	<0.025	<0.025	<0.025	<0.025	<0.025					

G:/Aproject/Key Energy/MT0764.01/Tables/Soil sample analysis/TPH & BTEX Table

Key Energy Services Eunice, New Mexico Truck Washing Facility Pad and Sump

Samples collected November 19, 2002

Table B

Eight RCRA Metals and Chloride in mg/Kg (ppm)

Soil Borings	Chloride	Arsenic	Barium	Cadmium	Chromium	Lead	Selenium	Silver	Mercury
SB-1 (20')	1060	<0.40	196	0.677	4.35	<0.550	<0.20	<0.10	<0.10
SB-1 (25')		<0.40	98.3	0.652	4.29	1.09	<0.20	<0.10	<0.10
SB-2 (10')		1.72	130	0.431	2.48	<0.550	<0.20	<0.10	<0.10
SB-2 (15')	1660	1.41	559	0.543	3.42	0.76	<0.20	<0.10	<0.10
	· · ·								
SB-3 (2')		1.32	522	0.606	3.58	4.57	<0.20	<0.10	<0.10
SB-3 (5')	2390	2.92	216	0.758	. 3.5	0.7	<0.20	<0.10	<0.10
SB-4 (2')		0.945	169	0.682	3.88	6,14	<0.20	<0.10	<0.10
SB-4 (5')	4520	2.06	169	0.433	1.95	1.68	<0.20	<0.10	<0.10

G:/Aproject/Key Energy/MT0764.01/Tables/Soil sample analysis/Metals & Chloride Table

. . .

.

Appendix A

Soil Boring Logs

. .

.

		Contraction of the second		1						· · .		ļ	
			2			~			B	ORING L	OG		SB-1
<u></u> }	A	KC/	ADIS	> [1004	N. Big S	pring	St. Suit	e 300, Mi	dlan d, TX 79701-3383	Tel: 915 687-5400 Fax: 91	5 687-5401	Page 1, of 1
)	PRC CLII PRC SITT UN	DJEC ENT DJEC E LO IQUE	t nun Name T nan Catio E num	ABEI : AE: N: BER	R: Ν Ε L	ATOOO7 Cey Ener Cunice Y ea Cour	64.00 gy Sei ard W nty, N	01 rvices, li /ash Bas ew Me> FIL	nc. sin Soil Bo tico .E NAME:	rings SB-1.dat	DRILLING CO: Env DRILLING METHOD: Geo DRILLER: — LOGGER: D. I DATE BEGUN: 11/19/02	ironmental P oprobe McNeese DATE CC	NMPLETED: 11/19/02
	DEPTH	SAMPLED	SAMPLING METHOD	ANALYZED	MOISTURE	RECOVERY	OVM READING	U.S.C.S. CLASS	ГІТНОГОЄУ		DESCRIPTION	1	· · ·
	0-		Push	$\overline{\prod}$			14.2			SAND: brown, very fine grained,	, rounded, well sorted. Dark brown stain	with strong hydroca	bon odor.
							145			SAND: reddish brown, very fine	grained, rounded to subrounded, well so	rted, slight odor.	
	-5 -		Push				33				· ·		
										SAND: pale yellow, very fine gra	ained, rounded to subrounded, well sorte	d, slight odor.	
	-10 -												
	-10 -		Push				122	-		SAND: light red to pink, very fine	e grained, rounded, well sorted, trace of	CALICHE.	
	-15 -						-	-			}		
			Shovel				220		, , , , , , , , , , , , , , , , , , ,	SANDY CALICHE: pale yellow,	chalky SAND, rounded, quartz grains (h	ard drilling).	
	-20 -		Push				299						
			rusi i				~33			SAND: light pink, very fine grain	ed, rounded to subrounded, fairly sorted	(very hard drilling b	etween 20' and 25').
× /	-25 -		Push/ Shovel				8			SANDY CALICHE: pale tan to I The push tube only yielded abo	buff, slightly chalky; SAND—very fine gra but 2 oz. The remainder was from shovel	ained. (Note:25' sam sample off the auge	ple was not very representative. rs.)

	Ø						B		_OG		SB-2
		() C	100			<u></u>		U. 1. TV 70704 0000	T 1 015 507 5100 5 015		
 PRO CLIE PRO	JECT NUI NT NAMI JECT NAI		R: N	VT0007 Key Ener	64.00 rgy Sei ard W	ot. Suit 001 rvices, li /ash Bas	nc.	rings	DRILLING CO: Enviro DRILLING METHOD: Geop DRILLER: —	onmental P probe	Page 1 of 1
UNK	QUE NUN	1BER	l:			FIL	LE NAME:	SB-2.dat	DATE BEGUN: 11/19/02	DATE CC	MPLETED: 11/19/02
DEPTH	SAMPLED SAMPLING METHOD	ANALYZED	MOISTURE	RECOVERY	OVM READING	U.S.C.S. CLASS	ГІТНОГОЄУ		DESCRIPTION		
0-	Push				165			SAND: pale red to buff, very fin	ne grained. Some brown stain with strong hyd	drocarbon odor.	· · · · · · · · · · · · · · · · · · ·
	Push				10			SAND: red brown, very fine to t	fine grained, rounded, well sorted, trace stair	n, moderate odor.	
-5-	Push				15	}		SAND: light red, very fine to fin	e grained, trace CALICHE, some pink.		
-10 -											
	Shovel				146			SAND: light red, very fine grain	ed, rounded to subrounded, well sorted; CAt	LICHE—buff, firm	to hard.
-15	Shovel				0			CALICHE: Note: CALICHE load 19' to 20.5'.	ded up probe; no sample (sample collected f	rom shovel). Very	hard to 18', pushed probe fro
- -20					36			SANDY CALICHE: light pink, s	some limestone nodules, slightly chalky. Refu	usal at 21'.	

 AF	ر ۲)		(۲	1004	N Big	Spring	St Suit	e 300 Mi	dland TX 79701-3383	Tel: 915 687-5400 Eav: 915 687-5401	Page 1 of 1
PRC CLI PRC SITI UN	DJEC ENT DJEC E LO	T NUI NAM T NAI CATIC	MBEF E: ME: DN: 1BER	R: N K E L	MT0007 Key Ene Sunice Y Lea Cou	764.00 rgy Sei Yard W nty, No	01 rvices, li /ash Bas ew Me> FiL	nc. sin Soil Bo kico .E NAME:	rings SB-3.dat	DRILLING CO: Environmental DRILLING METHOD: Geoprobe DRILLER: LOGGER: D. McNeese DATE BEGUN: 11/19/02 DATE C	Plus OMPLETED: 11/19/0
DEPTH	SAMPLED	SAMPLING METHOD	ANALYZED	MOISTURE	RECOVERY	OVM READING	U.S.C.S. CLASS	ПТНОГОСУ		DESCRIPTION	
-10 -						2.1 2.4 0			SAND: pale yellow to buff tan, SAND: light red brown, very fin SAND: red brown, very fine gra SAND: light pink red, very fine	very fine grained, well sorted, rounded, trace brown stain. e grained, fairly sorted, trace CALICHE. nined, well sorted, trace CALICHE.	pecause clean hole.

				1					D	ORING L	UG	SB-4
		C/	ADI ADI	S -	1004	N. Bia S	Spring 9	St Suit	e 300 Mi	dland, TX 79701-3383	Tel: 915 687-5400 Fax: 915 687-5401	Page 1 of 1
	PRC CLIE PRC SITE UNI	DJEC NT I DJEC LOC	t nui Nam T nai Catic Nun	MBEI E: ME: DN: MBER	R: N K E L	/TOOO7 Cey Ener Cunice Y ea Cou	764.00 rgy Ser fard W nty, No	01 rvices, li /ash Ba: ew Mex Fil	nc. sin Soil Bo kico _E NAME:	rings SB-4.dat	DRILLING CO: Environmental DRILLING METHOD: Geoprobe DRILLER: LOGGER: D. McNeese DATE BEGUN: 11/19/02 DATE G	Plus
	DEPTH	SAMPLED	SAMPLING METHOD	ANALYZED	MOISTURE	RECOVERY	DVM READING	U.S.C.S. CLASS	ГТНОГОСУ		DESCRIPTION	
	0-						5.2			SAND: red brown, very fine grain	ed, rounded, well sorted, trace CALICHE.	
	-						42				· · · · · · · · · · · · · · · · · · ·	
										SAND: red to red brown, very fine	e grained, rounded, well sorted, slightly moist, trace CAL	ICHE.
	-											
	-5-						0		· · · · · · · · · · · · · · · · · · ·	SAND: light red to pink, very fine	grained, subrounded, fairly sorted, trace CALICHE.	
)	-					1						
	-											·
	-10						0			SAND: red orange, very fine grain	ned, rounded, well sorted, clean	
	-									CALICHE		
										SAND		
										CALICHE	·	·····
	-15						8.2			SANDY CALICHE: pale yellow to	o light pink, very fine grained SAND.	
1	•	•					_i			d		
												Ĩ

Appendix B

Laboratory Analyses

ANALYTICAL REPORT

Prepared for:

MR. STEVE TISCHER ARCADIS GERAGHTY & MILLER, INC. 1004 N. BIG SPRING STREET MIDLAND, TX 79701

Project: MT000764.0001

PO#:

Order#: G0205083

Report Date: 11/27/2002

<u>Certificates</u> US EPA Laboratory Code TX00158

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ENVIRONMENTAL LAB OF TEXAS

SAMPLE WORK LIST

ARCADIS GERAGHTY & MILLER, INC. 1004 N. BIG SPRING STREET MIDLAND, TX 79701

687-5401

Order#:G0205083Project:None GivenProject Name:MT000764.0001Location:Key Eunice / NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

	,		Date / Time	Date / Time		
Lab ID:	Sample :	Matrix:	Collected	Received	Container	Preservativ
205083-06	SB-1 (20')	SOIL	11/19/02 10:30	11/20/02 16:50	4 oz Glass	lœ
La	b Testing:	Rejected: No	Tei	mp: 0.5 C		
	8015M					
	8021B/5030 BTEX					×
	METALS RCRA 7 Tota	ıl				
	Chloride					
	Mercury, Total					
0205083-07	SB-1 (25)	SOIL	11/19/02 10:50	11/20/02 16:50	4 oz Giass	Ice
La	b Testing:	Rejected: No	Te	mp: 0.5 C		
	8015M					
ş	8021B/5030 BTEX	;				
	METALS RCRA 7 Tota	al				
	Mercury, Total	······································		·		
0205083-11	SB-2 (10')	SOIL	11/19/02 13:13	11/20/02 16:50	4 oz Glass	lce
	b Testing:	Rejected: No	Te	mp: 0.5 C		
:	8015M					
	8021B/5030 BTEX					
	METALS RCRA 7 Tot	al				
	Mercury, Total					
0205083-12	\$B-2 (15')	SOIL	11/19/02	11/20/02	4 oz Glass	lce
T.	ah Taotina.	Rejected: No	14.55 D Te	ma: 0.5 C		
<u></u>	2015)A		•••••••••••••••••••••••••••••••••••••••			
	0013M1 9031D/6020 DTEV			·		
		al				
	Chloride					
	Merciny Total					
	Miciculy, Total				·	·
0205083-15	SB-3 (2')	SOIL.	11/19/02	11/20/02	4 oz Glass	Ice
L	ab Testine:	Rejected: N	60 T	10:50 emp: 0.5 C		· .
ž	8015M	-		-		
2						
E	NYIRONMENTAL LAB O	F TEXAS I, LI	D. 12600 Wes	at 1-20 East, Ode	essa, TX 79765 P	7: 212-202-1900

ENVIRONMENTAL LAB OF TEXAS

SAMPLE WORK LIST

ARCADIS GERAGHTY & MILLER, INC. 1004 N. BIG SPRING STREET MIDLAND, TX 79701 687-5401 Order#:G0205083Project:None GivenProject Name:MT000764.0001Location:Key Eunice / NM

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

			Date / Time	Date / Time		
Lab ID:	<u>Sample :</u> 8021B/5030 BTEX	<u>Matrix:</u>	Collected	Received	Container	Preservative
	METALS RCRA 7 To	tal				
·	Mercury, Total					
0205083-16	SB-3 (5')	SOIL	1 J/19/02 15:10	1 1/20/02 16:50	4 oz Glass	Ice
L	ab Testing:	Rejected: N	No Te	emp: 0.5 C		
	8015M					
	8021B/5030 BTEX					
	METALS RCRA 7 To	tal				
	Chloride					
·	Mercury, Total					
)0205•083-19	SB-4 (2')	SOIL	11/19/02 16:20	11/20/02 16:50	4 oz Glass	Ice
<u>L</u>	ab Testing:	Rejected: N	No T	emp: 0.5 C		
	8015M					
	8021B/5030 BTEX					
	METALS RCRA 7 To	otal				
	Mercury, Total					·
0205083-20	SB-4 (5')	SOIL	11/19/02 16:25	11/20/02 16:50	4 oz Glass	lœ
<u>L</u>	<u>ab Testing:</u>	Rejected:)	No T	emp: 0.5 C		
	8015M					
	8021B/5030 BTEX					
	METALS RCRA 7 To	otal				
	Chloride			. *		
	Mercury, Total				······································	·
02050=83-23	TRIP BLANK	LIQUID	11/19/02	11/20/02 16:50	40 mL VOA	łcc
<u>I</u>	ab Testing:	Rejected:	No I	emp: 0.5 C		
	8021B/5030 BTEX					

ENVIRONMENTAL LAB OF TEXAS ANALYTICAL REPORT

MR. STEVE TIS ARCADIS GERA 1004 N. BIG SPF MIDLAND, TX	CHER AGHTY & MILLER, NING STREET 79701	INC,		Order#: Project: Project Name Locatiou:	G020 None : MTO Key I	5083 Given 10764.0001 Ennice / NM	, ,	Δ
Lab ID: Sample ID:	0205083-06 SB-1 (20')			•				
				8015M				
	Method <u>Blank</u>	Date <u>Prepared</u>	Date <u>Analyzed</u> 11/23/02	Sample <u>Amount</u> 1	Dilution <u>Factor</u> 1	<u>Analyst</u> CK	<u>Method</u> 8015M	
		Parameter		Result mg/kg		RL		
		GRO, C6-C12		<10.0		10.0		
		TOTAL, C6-C3:	5	20.7		10.0		
		Surrog 1-Chlorooc 1-Chlorooc	ates itane tadecane	% Recovered 104% 99%	QC Lim 70 70	its (%) 130 130		
		L	8021E	3/5030 BTEX				
	Method <u>Blank</u> 0003876-02	Date <u>Prepared</u>	Date <u>Aualyzed</u> 11/25/02 1:17	Sample <u>Amount</u> I	Dilution <u>Factor</u> 25	<u>Analyst</u> CK	<u>Method</u> 8021B	
		Parameter		Result mg/kg	t	RL		
		Benzene		<0.024	5	0.025		
		Ethylbenzene		< 0.025	<u>.</u>	0.025		
		n/m-Xylens		<0.02	5	0.025		
		o-Xylene		<0.02	5	0.025		
		Surrog	jates	% Recovered	QC Lin	1its (%)	. *	
	<i>.</i>	aaa-Tolue Bromofluo	ne robenzene	90% 96%	80 80	120 120	-	

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

Page 1 of 9

ENVIRONMENTAL LAB OF TEXAS I, LTD. 12

TD. 12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

ENVIRONMENTAL LAB OF TEXAS

ANALYTICAL REPORT

MR. STEVE TR	SCHER	Order#:	G0205083	
MRCADIS GER	AGHTY & MILLER, INC.	Project:	None Given	
004 N. BIG SPI	RING STREET	Project Name:	MT000764.0001	
MIDLAND, TX	79701	Locatioa:	Key Eunice / NM	
Lab ID: Sample ID;	0205083-07 SB-1 (25')	· · · · ·		

			0013M			
Method Blank	Date Prepared	Date Analyzed	Sample <u>Amount</u>	Dilution <u>Factor</u>	Analyst	Method
		11/23/02	1	1	СК	8015M

Parameter	Result mg/kg	RL
GRO, C6-C12	<10.0	10.0
DRO, >C12-C35	60.8	10.0
TOTAL, C6-C35	60.8	10.0

Surrogates	% Recovered	QC Limits (
1-Chlorooctane	98%	70	130		
1-Chlorooctadecane	93%	70	130		

8021B/5030 BTEX

Method <u>Blank</u>	Date <u>Prepared</u>	Date <u>Analyzed</u>	Sample <u>Amount</u>	Dilution <u>Factor</u>	Analyst	Method
0003876-02		11/25/02 1:36	1	25	СК	8021B

Parameter	Result mg/kg	RL
Benzene	<0.025	0.025
Ethylbenzene	<0.025	0.025
Toluene	<0.025	0.025
p/m-Xylenc	< 0.025	0.025
o-Xylene	<0.025	0.025

Surrogates	% Recovered	QC Limits (%)	
aaa-Toluene	88%	80	120
Bromofluorobenzene	93%	80	120

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

12600 West 1-20 East, Odessa, TX 79765 Ph: 915-563-1800
MR. STEVE TIS ARCADIS GERA 1004 N. BIG SPR MIDLAND, TX	CHER AGHTY & MILLER, NING STREET 79701	INC.		Order#: Project: Project Name Locatiou:	GO20 None : MTO Key)5083 : Given 00764.0001 Eunice / NM)	
Lab ID: Sample ID:	0205083-11 SB-2 (10')							
•				801 SM				
	Method	Date	Date	Sample	Dilution			
	Blank	Prepared	Analyzed	Amount	Factor	Analyst	Method	_
			11/23/02	1	1	СК	8015M	
		· · · · · · · · · · · · · · · · · · ·						
		Parameter		Result mg/kg		RL		
		GRO, C6-C12		<10.0		10.0		
		DRO, >C12-C35		<10.0		10.0		
		TOTAL, C6-C35	i	<10.0		10.0		
		Surroga	ates	% Recovered	OC Lin	nits (%)		
		1-Chlorooc	tane	126%	70	130		
		1-Chlorooc	tadecane	116%	70	130		·.
		··	80211	B/5030 BTEX				
	Method	Date	Date	Sample	Dilutio	1		
	Blank	Prepared	Analyzed	Amount	Factor	Analyst	Method	
	0003876-02	2	11/25/02 1:55	1	25	СК	8021B	
		Parameter		Result mg/kg		RL		
	. •	Benzene		<0.025	5	0.025		
		Ethylbenzene		<0.025	5	0.025		
		Toluene		<0.02	5 ;	0.025		
		p/m-Xylene		<0.02	5	0.025		
		o-Xylene		<0.02	5	0.025		
		Surroz	ates	% Recovered	OC Li	mits (%)		
	•	aaa-Toluer	16	82%	80	120		
					+	400		

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

Order#:

Project:

Location:

Project Name:

MR. STEVE TISCHER ARCADIS GERAGHTY & MILLER, INC.

1004 N. BIG SPRING STREET MIDLAND, TX 79701

Lab ID: 0205083-12 Sample ID:

SB-2 (15')

Method

Blank

Date	
Prepared	

8015M

Date

Analyzed

11/23/02

Sample	
Amount	
1	

Method 8015M

sult	RL	

Analyst

CK

G0205083

None Given

Dilution

Factor

1

MT000764.0001

Key Eunice / NM

Parameter	mg/kg	RL
GRO, C6-C12	<10.0	10.0
DRO, >C12-C35	16.8	10.0
TOTAL, C6-C35	16.8	10.0

Surrogates	% Recovered	QC Li	mits (%)
1-Chlorooctane	100%	70	130
1-Chlorooctadecane	95%	70	130

8021B/5030 BTEX

Method	Date	Date	Sample	Dilution		
Blank	Prepared	Analyzed	Amount	Factor	Analyst	Method
0003876-02		11/25/02 2:14	t	25	CK	8021B

Parameter	Result mg/kg	RL
Benzene	<0.025	0.025
Ethylbenzene	<0.025	0.025
Toluene	<0.025	0.025
p/m-Xylene	<0.025	0.025
o-Xylene	<0.025	0.025

Surrogates	% Recovered	QC LI	mits (%)
aaa-Toluene	83%	80	120
Bromofluorobenzene	91%	80	120

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

MR. STEVE TIS ARCADIS GER 1004 N. BIG SPI MIDLAND, TX	SCHER AGHTY & MILLER, RING STREET 79701	INC.		Order#: Project: Project Name Location:	G02 Non :: MT Key	95083 e Glven 908764.0001 Eunice / NM	<u>, </u>	
Lab ID: Sample ID:	0205083-15 SB-3 (2')	. ·						
	1			8015M			÷	
	Method <u>Blank</u>	Date <u>Prepared</u>	Date <u>Analyzed</u> 11/23/02	Sample <u>Amount</u> 1	Dilutio <u>Factor</u> 1	n <u>Analyst</u> CK	Method 8015M	
				,				
		Parameter		Result mg/kg	:	RL		
		GRO, C6-C12		<10.0		10.0		
		DRO, >C12-C3	5	110		10.0		•
		TOTAL, C6-C3	5	110		10.0		
		Surrog	ates	% Recovered	QC Li	mits (%)		
		1-Chlorood	tane	103%	70	130		
		1-Chlorooc	tadecane	94%	70	130		
			8021B	R/5030 BTEX				
	Method	Date	Date	Sample	Dilutio	۵		
	Blank	Prepared	Analyzed	Amount	Factor	Aualyst	Method	
	0003876-02	2	11/25/02 2:33	1	25	СК	8021B	
		Parameter		Resul mg/kg	t	RL		
		Benzene		<0.02	5	0.025		
		Ethylbenzene	· · · · · · · · · · · · · · · · · · ·	<0.02	5	0.025		
÷		Toluene	· · · · · · · · · · · · · · · · · · ·	<0.02	5 .	0.025		
		p/m-Xylene		<0.02	5	0.025		
		o-Xylene		<0.02	5	0.025		
		Surrog	ates	% Recovered	QC LI	mits (%)		
		aaa-Tolue	ne	86%	80	120		
		Bromofiuo	robenzene	94%	80	120		

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

Page 5 of 9

ENVIRONMENTAL LAB OF TEXAS I, LTD.

MR. STEVE TIS ARCADIS GER 1004 N. BIG SPI MIDLAND, TX	SCHER AGHTY & MILLER, RING STREET 79701	INC.		Order#: Project: Project Nar Location:	GO: Nor ne: MI Key	205083 2e Given 200764.00 / Eunice / 1	01 NM	
Lab ID: Sample ID:	0295083-16 SB-3 (5')							
			8	015M				
	Method <u>Blank</u>	Date Prepared	Date <u>Analyzed</u> [1/23/02	Sample <u>Amount</u> 1	Dilutio <u>Facto</u> 1	n <u>r Ana</u> C	l <u>yst Method</u> K 8015M	
		Parameter		Resu mg/l	ılt (g	RL		
		GRO, C6-C12		<10.	0	10.0		
		DRO, >C12-C35	·····	<10	.0	10.0		
		101AL, C6-C35	· 	<10	.0	10.0		
		Surroge	ites	% Recovered	LOC L	mits (%)		
		1-Chlorooct	lane	105%	70	130		
	· ·	1-Chlorooct	ladecane	98%	70	130		
			8021 B /	5030 BTE	X			
	Method	Date	Date	Sample	Dilutio	NI		,
	Blank	Prepared	Analyzed	Amount	Facto	r <u>Aus</u>	lyst Method	
	0003876-02		2:52	1	25	, C	K 8021B	
		Parameter		Rest mg/	ult kg	RL		
		Benzene		<0.0	25	0.025		
		Ethylbenzene		<0.0	25	0.025		
		Toluene		<0.0	25	0.025		
		p/m-Xylene			25	0.025		
		o-Aylene		<0.0	43	0.025	l	
		Surreg	ates	% Recovered		imits (%)		
		aaa-Toluer	16	88%	80	120		
	-	Bromofluor	obenzene	94%	80	120		

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

Page 6 of 9

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

ARCADIS GERAGHTY & MILLER, INC. 1004 N. BIG SPRING STREET MIDLAND, TX 79701				Order#: Project: Project Name Location:	G020 None : MT0 Key I	5083 Given 00764.0001 Eunice / NM	
Lab ID: Sample ID:	0205083-19 SB-4 (2')						
				8015M			
	Method <u>Blank</u>	Date <u>Prepared</u>	Date <u>Analyzed</u> 11/23/02	Sample Amount	Dilution Factor	<u>Analyst</u>	Method 8015M
				•	•	ÇŔ	0013112
		Parameter		Result mg/kg	:	RL	
		GRO, C6-C12		<10.0		10.0	
		DRO, >C12-C35		33.3		10.0	
		TOTAL, C6-C3:	j	33.3		10.0	
		Surrog	ates	% Recovered	OC Lin	its (%)	
		1-Chlorooc	tane	100%	70	130	
		1-Chlorooc	tadecane	94%	70	130	
			80211	3/5030 BTEX			
	Method	Date	Date	Sampie	Dilution	I 	
	Blank	Prepared	Analyzed	Amount	Factor	Aualyst	Method
	0003876-02		3:11	I	45	CK	892113
	· · ·	Parameter		Resul mg/kg	t	RL	
		Benzene		<0.025	5	0.025	
		Ethylbenzene		<0.02	5	0.025	
		Toluene		<0.02	5	0.025	
		p/m-Xylene		<0.025	5	0.025	
		o-Xylene		<0.02	5	0.025	
		Surros	rates	% Recovered	QC Li	nits (%)	
		aaa-Tolue	ne	84%	80	120	
		Bromofiuo	robenzene	94%	80	120	

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

Page 7 of 9

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

MR. STEVE TIS ARCADIS GER 1004 N. BIG SPI MIDLAND, TX	CADIS GERAGHTY & MILLER, INC. M N. BIG SPRING STREET DLAND, TX 79701				G02 Non : MTC Key	05083 e Given 100764.0001 Eunice / NM		
Lab ID:	0205083-20							
Sample ID:	SB-4 (5')							
•				8015M				
	Method Blank	Date Prepared	Date <u>Analyzed</u>	Sample Amount	Dilution Factor	n <u>Analyst</u>	Method	
			11/22/02	1	1	СК	8015M	
		Parameter		Resul mg/kg	:	RL		
		GRO, C6-C12	·····	<10.0		10.0		
		DRO, >C12-C35		<10.0		10.0		
		TOTAL, C6-C35	5	<10.0		10.0		
		Surrog	ates	% Recovered	QC Li	mits (%)		
		1-Chiorooc	tane	112%	70	130		
		1-Chlorooc	tadecane	104%	70	130		
			80211	B/5030 BTEX				
	Method	Date	Date	Sample	Dilutio	D .		
	<u>Blank</u>	Prepared	Analyzed	Amount	Factor	<u>Analyst</u>	Method	
	0003876-02	2	11/25/02 3:30	1	25	СК	8021B	
		Parameter		Resul mg/kg	t	RL	; .	
		Benzene		<0.02	5	0.025		
		Ethylbenzene	· · · · ·	<0.02	5	0.025		

Toluene	<0.025	0.025
o/m-Xylene	<0.025	0.025
-Xylene	<0.025	0.025
	······································	

Surrogates	% Recovered	QC Li	nits (%)
aaa-Toluene	82%	80	120
Bromofluorobenzene	88%	80	120

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

MR. STEVE TISCHER Order#: G0205083 **ARCADIS GERAGHTY & MILLER, INC.** Project: None Given **1004 N. BIG SPRING STREET** Project Name: MT000764.0001 MIDLAND, TX 79701 Location: Key Eunice / NM

Lab ID: Sample ID: 0205083-23 TRIP BLANK

		8021E	R/5030 BTEX	X		
Method <u>Blank</u> 0003877-02	Date <u>Prepared</u>	Date <u>Analyzed</u> 11/23/02 14:51	Sample <u>Amount</u> 1	Dilution <u>Factor</u> 1	<u>Analyst</u> CK	Method 8921B
	Parameter		Resu mg/	ılt L	RL	
	Benzene		<0.0	01	0.001	
	Ethylbenzene		<0.0	01	0.001	
	Toluene		<0.0	01	0.001	

<0.001

< 0.001

Surrogates	% Recovered	QC Li	mits (%)
aaa-Toluene	86%	80	120
Bromofluorobenzene	87%	80	120

12-02-02 Approval: Date

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

0.001 0.001

DL = Diluted out N/A = Not Applicable RL = Reporting Limit

p/m-Xylene

o-Xylene

ENVIRONMENTAL LAB OF TEXAS I, LTD.

MR. STEVE TISCHER ARCADIS GERAGHTY & MILLER, INC. 1004 N. BIG SPRING STREET MIDLAND, TX 79701			Order#: Project: Project Na Location:	GQ No me: MI Kc	205083 ne Given F000764.0001 y Eunice / NM	-		
Lab 1D: 0205083-06 Sample ID: SR 1 (70')		· · · · · · · · · · · · · · · · · · ·						
METALS KCKA / Total			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	< 0.40	mg/kg	50	0.40	3050/6010B	11/24/2002	11/26/02	SM
Barium	196	mg/kg	50	0.050	3050/6010B	11/24/2002	11/26/02	SM
Cadmium	0.677	mg/kg	50	0.050	3050/6010B	11/24/2002	11/26/02	SM
Chromium	4.35	mg/kg	50	0.10	3050/6010B	11/24/2002	11/26/02	SM
Lead	< 0.550	mg/kg	50	0.550	3050/6010B	11/24/2002	11/26/02	SM
Selenium	< 0.20	mg/kg	50	0.20	3050/6010B	11/24/2002	11/26/02	SM
Silver	< 0.10	mg/kg	50	0.10	3050/6010B	11/24/2002	11/26/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	Analyst
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	11/23/2002	11/24/02	SM
Lab ID: 0205083-07 Sample ID: SB-1 (25')							·····	
METALS RCRA 7 Total			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	< 0.40	mg/kg	50	0.40	3050/6010B	11/24/2002	11/26/02	SM
Barium	98.3	mg/kg	50	0.050	3050/6010B	11/24/2002	11/26/02	SM
Cadmium	0.652	mg/kg	50	0.050	3050/6010B	11/24/2002	11/26/02	SM
Chromium	4.29	mg/kg	50	0.10	3050/6010B	11/24/2002	11/26/02	SM
Lead	1.09	mg/kg	50	0.550	3050/6010B	11/24/2002	11/26/02	SM
Selenium	< 0.20	mg/kg	50	0.20	3050/6010B	11/24/2002	11/26/02	SM
Silver	< 0.10	mg/kg	. 50	0.10	3050/6010B	11/24/2002	11/26/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	Analyst
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	11/23/2002	11/24/02	SM
Lab ID: 0205083-11 Sample ID: SB-2 (10')								
METALS RCRA 7 Total			Dilution			Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic	1.72	mg/kg	50	0.40	3050/6010B	11/24/2002	11/26/02	SM
Barium	130	mg/kg	50	0.050	3050/6010B	11/24/2002	11/26/02	SM
Cadmium	0.431	mg/kg	50	0.050	3050/6010B	11/24/2002	11/26/02	SM
Chromium	2,48	mg/kg	50	0.10	3050/6010B	11/24/2002	11/26/02	SM
Lead	< 0.550	mg/kg	50	0.550	3050/6010B	11/24/2002	11/26/02	SM
Selenium	< 0.20	mg/kg	50	0.20	3050/6010B	11/24/2002	11/26/02	SM
Si Iver	< 0.10	mg/kg	50	0.10	3050/6010B	11/24/2002	11/26/02	SM

RL = Reporting Limit N/A = Not Applicable ENVIRONMENTAL LAB OF TEXAS I, LTD.

Silver

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

Page 1 of 4

MR. STEVE TISCHER			Order#:	G0	205083		····	
ARCADIS GERAGHTY & MILLER, INC.			Project:	No	ne Given			
MIDLAND. TX 79701			Project Naz Location	ne: MT Ka	000764.0001 Fanice / NM	я.		
			LUCAUUM,	nc				
Lab ID: 0205083-11								·
Sample 1D: SB-2 (10')								
Test Parameters			Dilution		•	Date	Date	
Parameter	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	11/23/2002	11/24/02	SM .
Lab ID: 0205083-12				· · · · · · ·				
Sample 1D: SB-2 (15')								
METALS RCRA 7 Total			Dif. Alex			Date	Date	
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	Analyst
Arsenic	1.41	mg/kg	50	0.40	3050/6010B	11/24/2002	11/26/02	SM
Barium	559	mg/kg	500	0.50	3050/6010B	11/24/2002	11/26/02	SM
Cadmium	0.543	mg/kg	50	0.050	3050/6010B	11/24/2002	11/26/02	SM
Chromium	3.42	mg/kg	50	0.10	3050/6010B	11/24/2002	11/26/02	SM
L-cad	0.760	mg/kg	50	0.550	3050/6010B	11/24/2002	11/26/02	SM
Selenium	< 0.20	mg/kg	50	0.20	3050/6010B	11/24/2002	11/26/02	SM
Silver	< 0.10	mg/kg	50	0.10	3050/6010B	11/24/2002	11/26/02	SM
Test Parameters			Dilution			Date	Date	
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	Analyst
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	11/23/2002	11/24/02	SM
Lato ID: 0205083-15								v
Sample ID: SB-3 (2')								
METALS RCRA 7 Total			D 11			Dete	Date	
Parameter	Result	Units	Factor	RL	Method	Prepared	Analyzed	Analyst
Arsenic	1.32	mg/kg	50	0.40	3050/6010B	11/24/2002	11/26/02	SM
Barium	522	mg/kg	500	0.50	3050/6010B	11/24/2002	11/26/02	SM
Cadmium	0.606	mg/kg	50	0.050	3050/6010B	11/24/2002	11/26/02	SM
Charomium	3.58	mg/kg	50	0.10	3050/6010B	11/24/2002	1/26/02	SM
Lead	4.57	mg/kg	50	0.550	3050/6010B	11/24/2002	11/26/02	SM
Se leníum	< 0.20	mg/kg	50	0.20	3050/6010B	11/24/2002	11/26/02	SM
Silver	< 0.10	mg/kg	50	0.10	3050/6010B	11/24/2002	11/26/02	SM .
Test Parameters			Dilution		•	Date	Date	
Parameter	<u>Result</u>	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Mercury, Total	< 0.10	mg/kg	50	0.10	7470	11/23/2002	11/24/02	SM

N/A = Not Applicable RL = Reporting Limit

Page 2 of 4.

ENVIRONMENTAL LAB OF TEXAS I, LTD.

MR. STEVE TISCHER ARCADIS GERAGHTY & MILLER, INC. 1004 N. BIG SPRING STREET MIDLAND, TX 79701		·		Order#: Project: Project Nar Location:	G N me: M K	0205083 one Given T000764.0001 cy Eunice / NM	******		
Lab ID: Sample ID:	0205083-16 SB-3 (5')					· · · · · ·			
METAIS	PCP 4 7 Total	•				*			
Parameter	KCKA / IOlui	Result	Units	Dilution Factor	RÍ.	Method	Date Prepared	Date Analyzed	Analyst
Arsenic		2 97	malka	50	0.40	2050(60100	LIGADAD	11/06/00	SM SM
Barium		216	mg/kg	50	0.40	3050/601013	11/24/2002	11/26/02	SM
Cadmium		0.758	me/ke	50	0.050	3050/6010B	11/24/2002	11/26/02	SM
Chromium		3.5	mg/kg	50	0.10	3050/6010B	11/24/2002	11/26/02	SM
Lead		0.70	me/kg	50	0.550	3050/6010B	11/24/2002	11/26/02	SM
Selenium		< 0.20	me/ke	50	0.20	3050/6010B	11/24/2002	11/26/02	SM
Silver		< 0.10	mg/kg	50	0.10	3050/6010B	11/24/2002	11/26/02	SM
Test Dana	a atama						_	_ /	. · · ·
Lest Furt	neiers	N . 4		Dilution			Date	Date	A
Parameter		Result	Units	Factor	<u>RT</u>	Method	Prepared	Analyzed	Analyst
Mercury, Tot	al	< 0.10	mg/kg	50	0.10	7470	11/23/2002	11/24/02	SM
Lab ID:	0205083-19								······
S=ample ID:	SB-4 (2')					,			•
METALS	RCRA 7 Total	·		Dilution			Date	Date	
Parameter		Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Arsenic		0.945	me/kg	50	0.40	3050/6010B	11/24/2002	11/26/02	SM
Barium		169	mg/kg	50	0.050	3050/6010B	11/24/2002	11/26/02	SM
Cadmium		0.682	mg/kg	50	0.050	3050/6010B	11/24/2002	11/26/02	SM
Chromium		3.88	mg/kg	50	0.10	3050/6010B	11/24/2002	11/26/02	SM
Lead		6.14	mg/kg	50	0.550	3050/6010B	11/24/2002	11/26/02	SM
Selenium		< 0.20	mg/kg	50	0.20	3050/6010B	11/24/2002	11/26/02	SM
Silver		< 0.10	mg/kg	50	0.10	3050/6010B	11/24/2002	11/26/02	SM
T'est Para	meters			Dilution			Date	Date	
Parameter		Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
Mercury, Tot	al	< 0.10	mg/kg	50	0.10	7470	11/23/2002	11/24/02	SM
La h ID-	0705083.70				· ·			······································	
Sample ID:	SB-4 (5')								
METALS	RCRA 7 Total			Dilution			Date	Date	
Parameter	· · · · · · · · · · · · · · · · · · ·	Result	Units	Factor	<u>RL</u>	Method	Prepared	Analyzed	Analyst
A_rsenic		2.06	mg/kg	50	0.40	3050/6010B	11/24/2002	11/26/02	SM
B=arium		169	mg/kg	50	0.050	3050/6010B	11/24/2002	11/26/02	SM
C=admium		0.433	mg/kg	50	0.050	3050/6010B	11/24/2002	11/26/02	SM
Chromium		1.95	mg/kg	50	0.10	3050/6010B	11/24/2002	11/26/02	SM
Lead		1.68	mg/kg	. 50	0.550	3050/6010B	11/24/2002	11/26/02	SM
Selenium		< 0.20	mg/kg	50	0.20	3050/6010B	11/24/2002	11/26/02	SM
Si Iver		< 0 .10	mg/kg	50	0.10	3050/6010B	11/24/2002	11/26/02	SM
	N/A = Not Applicable	RL = Reporting Limit						1	Page 3 of 4

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ANALYTICAL REPORT

MR. STEVE TISCHER ARCADIS GERAGHTY & MILLER, INC. 1004 N. BIG SPRING STREET MIDLAND, TX 79701			Order#: Project: Project Name; Location:		ae;	G0205083 None Given MT000764.0001 Key Eunice / NM			
Lab ID: Sample ID:	0205083-20 SB-4 (5')								
Test Paran Parameter	neters	Result	Units	Dilution <u>Factor</u>	RL	Method	Date <u>Prepared</u>	Date Analyzed	<u>Analyst</u>
Mercury, Tota	1	< 0.10	mg/kg	50	0,10) 7470	11/23/2002	11/24/02	SM
					<u> </u>				

12-02-02 Approval: Date

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

N/A = Not Applicable RL = Reporting Limit

ENVIRONMENTAL LAB OF TEXAS I, LTD.

MR. STEVE TISCHER ARCADIS GERAGHTY & MILLER, INC. 1004 N. BIG SPRING STREET MIDLAND, TX 79701		Order#: G0205083 Project: None Given Project Name: MT000764.0001 Location: Key Eunice / NM				001 ' NM		
Lab ID: Sample ID:	0205083-06 SB-1 (20')	· · ·	· .			#********	······ 4, 2 ····································	
Test Parar Parameter	neters	Result	Units	Dilution <u>Facto</u> r	RL	Method	Date Analyzed	Analyst
Chloride		1060	mg/kg	ţ.	20	9253	11/25/02	SB
Lab ID: Sample ID:	0205083-12 SB-2 (15')							-
Test Paran Parameter	neters	Result	<u>Units</u>	Dilution <u>Factor</u>	RL	Method	Date <u>Analyzed</u>	Analyst
Chloride		1660	mg/kg	1	20	9253	11/25/02	SB
Lab ID: Sample ID:	0205083-16 SB-3 (5')							
Test Parat Parameter	meters	Result	Units	Dilution <u>Factor</u>	n <u>r RL</u>	Method	Date Analyzed	<u>Analyst</u>
Chloride		2390	mg/kg	· 1	20	9253	11/25/02	SB
Lab ID: Sample ID;	0205083-20 SB-4 (5')							
Test Para	meters	Denult	¥1_34-	Dilutio	р - рт	Mothor	Date	A nalvet
<u>Chloride</u>		4520	mg/kg	<u>racto</u> 1	20	9253	11/25/02	SB

12-02-02 Approval: Kalandk Date

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

RL = Reporting Limit N/A = Not Applicable

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT

8015M

Order#: G0205083

BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Rccovery	RPD
TOTAL, C6-C35-mg/kg		0003857-02			<10.0	1	
TOTAL, C6-C35-mg/kg		0003870-02			<10.0		
CONTROL	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg		0003870-03		952	1160	121.8%	
CONTROL DU	P	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg		0003870-04		952	1240	130.3%	6.7%
MS	SOIL	LAB-ID #	Sample Concentr.	Spike Conceatr.	QC T es t Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg		0205083-20	0	952	1020	107.1%	
MSD	SOIL	LAB-LD #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg		0205083-20	0	952	1020	107.1%	0.%
SRM	SOIL	LAB-1D #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg		0003857-05		1000	983	98.3%	
TOTAL, C6-C35-mg/kg		0003870-05		1000	956	95.6%	

ENVIRONMENTAL LAB OF TEXAS I, LTD. 12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800

ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT 8021B/5030 BTEX

Order#: G0205083

BLANK SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg	0003876-02			<0.025		
Benzene-mg/L	0003877-02			<0.001		
Ethylbenzene-mg/kg	0003876-02			<0.025		
Ethylbenzene-mg/L	0003877-02			<0.001		
Toluenc-mg/kg	0003876-02			<0.025		
Toluene-mg/L	0003877-02			<0.001		
p/m-Xylene-mg/kg	0003876-02			<0.025		
p/m-Xylenc-mg/L	0003877-02			<0.001		
o-Xylene-mg/kg	0003876-02			<0.025		
o-Xylene-mg/L	0003877-02			<0.001	[
CONTROL LIQUID	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/L	0003877-03		0.1	0.096	96.%	
Ethylbenzene-mg/L	0003877-03		0.1	0.101	101.%	
Toluene-mg/L	0003877-03		0.1	0.099	99.%	
p/m-Xylene-mg/L	0003877-03		0.2	0.214	107.%	
o-Xylene-mg/L	0003877-03		0.1	0.102	102.%	
CONTROL DUP	LAB-1D #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/L	0003877-04		0.1	0.096	96.%	0.%
Ethylbenzene-mg/L	0003877-04		0.1	0.099	99.%	2.%
Toluene-mg/L	0003877-04		0.1	0.098	98.%	1.%
p/m-Xylene-mg/L	0003877-04		0.2	0.21	105.%	1.9%
o-Xylene-mg/L	0003877-04		0.1	0.101	101.%	1.%
MS SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg	0205083-20	0	0.1	0.106	106.%	
Ethylberizene-mg/kg	0205083-20	0	0.1	0.112	112.%	
Toluene-mg/kg	0205083-20	Ó	0.1	0.112	112.%	
p/m-Xylene-mg/kg	0205083-20	0	0.2	0.229	114.5%	
o-Xylene-mg/kg	0205083-20	0	0.1	0.112	112.%	
MSD SOIL	LAB-ID #	Sample Concentr.	Spike Concentr,	QC Test Result	Pet (%) Recovery	RPD
Benzene-mg/kg	0205083-20	0	0.1	0.103	103.%	2.9%
Ethylben.zene-mg/kg	0205083-20	0	0.1	0.111	111.%	0.9%
Toluene-mg/kg	0205083-20	. 0	0.1	0.108	108.%	3.6%
p/m-Xylene-mg/kg	0205083-20	0	0.2	0.225	112.5%	1.8%
o-Xylene-mg/kg	0205083-20	0	0.1	0.111	111.%	0.9%
SRM SOIL	LAB-1D #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/kg	0003876-05		0.1	0.101	101.%	

ENVIRONMENTAL LAB OF TEXAS I, LTD.

ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT 8021B/5030 BTEX

Order#: G0205083

SRM	SOIL LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-mg/L	0003877-05		0.1	0.096 ·	96.%	
Ethylbenzene-mg/kg	0003876-05	1	0.1	0.106	106.%	
Ethylbenzene-mg/L	0003877-05	+	0.1	0.099	99.%	
Toluene-mg/kg	0003876-05		0.1	0.104	104.%	
Toluene-mg/L	0003877-05		0.1	0.097	97.%	
p/m-Xylene-mg/kg	0003876-05		0.2	0.226	113.%	
p/m-Xylene-mg/L	0003877-05		0.2	0.213	106.5%	
o-Xylene-mg/kg	0003876-05	1	0.1	0.108	108.%	
o-Xylene-mg/L	0003877-05		0.1	0.1	100.%	

12600 West I-20 East, Odessa, TX 79765 Ph: 915-563-1800 ENVIRONMENTAL LAB OF TEXAS I, LTD.

ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT

METALS RCRA 7 Total

Order#: G0205083

BLANK SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pet (%) Recovery	RPD
Arsenic-mg/kg	0003899-02			< 0.40		
Barium-mg/kg	0003899-02	······		< 0.050		
Cadmium-mg/kg	0003899-02			< 0.050		
Chromium-mg/kg	0003899-02			< 0.10		
Lead-mg/kg	0003899-02	· · · · · · · · · · · · · · · · · · ·		< 0.55		
Selen ium-mg/kg	0003899-02			< 0.20		
Silver-mg/kg	0003899-02			< 0.10		
CONTROL SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/kg	0003899-03		40	35.7	89.3%	· · ·
Barium-mg/kg	0003899-03		10	10.8	108.%	
Cadmium-mg/kg	0003899-03		10	9.74	97.4%	
Chromium-mg/kg	0003899-03		10	10.3	103.%	· · · · · · · · · · · · · · · · · · ·
Lead-rng/kg	0003899-03		50	52.1	104.2%	
Selenium-mg/kg	0003899-03		20	20.3	101.5%	
Silver-mg/kg	0003899-03	· · ·	2.5	2.64	105.6%	
CONTROL DUP	LAB-ID #	Sample Coucentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/kg	0003899-04	· · · · · · · · · · · · · · · · · · ·	40	35.5	88.7%	0.6%
Barium-mg/kg	0003899-04		to	10.8	108.%	0.%
Cadmium-mg/kg	0003899-04		10	9.74	97.4%	0.%
Chromium-mg/kg	0003899-04		10	10.3	103.%	0.%
Lead-mg/kg	0003899-04		50	52.0	104.%	0.2%
Selenium-mg/kg	0003899-04		20	20.3	101.5%	0.%
Silver-rng/kg	0003899-04		2.5	2.34	93.6%	12.%
SRM SOIL	LAB-ID #	Sample Concentr.	Spike Concentr,	QC Test Result	Pct (%) Recovery	RPD
Arsenic-mg/kg	0003899-05		1	1.05	105.%	
Barium-mg/kg	0003899-05		1	1.08	108.%	
Cadmium-mg/kg	0003899-05		1.	1.07	107.%	
Chromi um-mg/kg	0003899-05		1	1.04	104.%	
Lead-m.g/kg	0003899-05		1	1.04	104.%	
Sclenium-mg/kg	0003899-05		1	1.04	104.%	
Silver-nng/kg	0003899-05		0.5	0.546	109.2%	

ENVIRONMENTAL LAB OF TEXAS QUALITY CONTROL REPORT

Test Parameters

Order#: G0205083

BLANK	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0003885-01			<20.0	++	
Mercury, Total-mg/kg		0003864-01			< 0.10	1	
MS	SOIL	LAB-ID #	Sample Coucentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0205083-06	1060	1250	2300	99.2%	
Mercury, Total-mg/kg		0204993-20	0.109	1	1.10	99.1%	
MSD	SOIL	LAB-ID #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0205083-06	1060	1250	2280	97.6%	0,9%
Mercury, Total-mg/kg		0204993-20	0.109	1	1.14	103.1%	3.6%
SRM	SOIL	1,AB-1D #	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0003885-04		5000	4960	99.2%	
Mercury, Total-mg/kg		0003864-04		0.75	0.700	93.3%	

ARCADIS Laboratory Task Order No.P.O. No. CHAIN-OF-CUSTODY RECORD Fage et winberhame ATT_OCCTERT Analysis infrintion Analysis infrintion is an analysis infrintion is analysis infrintion is an analysis infrintiane is an analysis infration is an analysis infratine is an analysis infration is an an	~~~~	1 of Z	-	4				Total						-	-	/	-		•	-	~			les/ /5	al Intact?	al Intact?	NO N/A	State Tise		
ARCADIS Laboratory Task Order No.Po. No. CHAIN-OF-CUSTODY RECC ARCADIS Laboratory Task Order No.Po. No. CHAIN-OF-CUSTODY RECC At Number/hame ATT DOT Tell Annursis Internor) size arony Lumcanmental Lifes Annursis Internor) size Annursis Internor) size arony Lumcanmental Lifes Annursis Internor) size Annursis Internor) size arony Lumcanmental Lifes Annursis Internor) size Annursis Internor) size arony Lumcanmental Lifes Annursis Internor) size Annursis Internor) size arony CORSin Annursis Internor) Size Annursis Internor) size Annursis Internor) Annursis Internor) size Annursis Internor) size Annursis Annursis Internor) Annursis Internor) size Annursis Annursis Internor) Annursis Internor) Annursis Annursi Internor) Annursis Internor) Annursi Annursi Internor) Annursi Internor) Annursi Annursi Intern	,	ORD Page						Remarks															-	Fotal No. of Bott Contair	100 Se			s per	1102 RBH	
ARCADIS Iaboratory Task Order No.P.O. No. CHAIN-OF-CUST ct to certion EXP ELULCE ANALYSIS INFIHOD 1st ct to certion Exp Enulation Interview ct to certion ANALYSIS INFIHOD 1st ANALYSIS INFIHOD 1st ct to certion ANALYSIS INFIHOD 1st ANALYSIS INFIHOD 1st ct to certion Interview ANALYSIS INFIHOD 1st ct to certion ANALYSIS INFIHOD 1st ANALYSIS INFIHOD 1st ct to certion ANALYSIS INFIHOD 1st ANALYSIS INFIHOD 1st ct to certion ANALYSIS INFIHOD 1st ANALYSIS INFIHOD 1st ct to certion ANALYSIS INFIHOD 1st ANALYSIS INFIHOD 1st ct to certion ANALYSIS INFIHOD 1st ANALYSIS INFIHOD 1st ct to certion ANALYSIS INFIHOD 1st ANALYSIS INFIHOD 1st ct to certion ANALYSIS INFIHOD 1st ANALYSIS INFIHOD 1st ct to certion ANALYSIS INFIHOD 1st ANALYSIS INFIHOD 1st ct to certion ANALYSIS INFIHOD 1st ANALYSIS INFIHOD 1st ct to cerition <td></td> <td>ODY RECO</td> <td>IJ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u>}</u></td> <td></td> <td>,</td> <td></td> <td>02 Time /</td> <td>Time</td> <td>Time</td> <td>RTEN .</td> <td>1/1</td> <td></td>		ODY RECO	IJ						<u>}</u>														,		02 Time /	Time	Time	RTEN .	1/1	
ARCADIS Laboratory Task Order No.Po. No. CHAIL ct Number/Name_ATT_0007[d/t] ct Number/Name_ATT_0007[d/t] ct Name_ATT_0007[d/t] ct Name_ATT_0007[d/t] ct to castion ct Number/Name_ATT_0007[d/t] ct Name_ATT_0007[d/t] ct Name_ATT_0007[d/t] ct Name_ATT_0007[d/t] ct to castion ct Namager ct Namager ct Name_ATT_0007[d/t] ct Name_ATT_0007[d/t] ct Name_ATT_0007[d/t] ct to castion ct Namager ct Namager ct Name_ATT_0007[d/t] ct Name_ATT_0007[d/t] ct Name_ATT_0000 ct Namager ct Namager ct Name_ATT_0007[d/t] ct Name_ATT_0000 ct Name_ATT_0000 ct Name_ATT_0000 ct Name matrix sampled page quote ct Name_ATT_0000 ct Name_ATT_0000 ct Co ct Name matrix sampled ct Name_ATT_0000 ct Name_ATT_0000 ct Co ct Co ct Name ct Name ct Name_ATT_0000 ct Co ct Co ct Name ct Name ct Name ct Co ct Co ct Name ct Name ct Name ct Co ct Co ct Name ct Name ct Name ct Co ct Co ct Name ct Name ct Name ct Co ct Co ct Name ct Name ct Name <td></td> <td>N-OF-CUST</td> <td>METHOD / SIZ</td> <td></td> <td>_</td> <td></td> <td>ere a</td> <td></td> <td>e 11 1 201</td> <td>e / /</td> <td>e</td> <td>N N N N</td> <td></td> <td></td>		N-OF-CUST	METHOD / SIZ		_		ere a																		e 11 1 201	e / /	e	N N N N		
ARCADIS Laboratory Task Order No. P.O. No. ct Number/Name $ATT OOOT[dcf: OOO]$ ct to cation $EEY ELULICE I MME.$ atory Curriconnechel LASS of Texts $EEY ELULICE I MME.$ atory Curriconnechel LASS of Texts $EEY ELULICE I MME.$ atory Curriconnechel LASS of Texts $EEY ELULICE I MME.$ atory Curriconnechel LASS of Texts $EEY ELULICE I MME.$ atory Curriconnechel LASS of Texts $EEY ELULICE I MME.$ atory Curriconnechel LASS of Texts $EEY ELULICE I MME.$ atory Curriconnechel LASS of Texts $EEY ELULICE I MME.$ $CSOS 3$ $Datomedia I Mos of the District MME.$ $CSOS 3$ $Datomedia I Mos of the District MME.$ $CSOS 3$ $Datomedia I Mos of the District MME.$ $CSOS 3$ $Datomedia I Mos of the District MME.$ $CSOS 3$ $Datomedia I Mos of the District MME.$ $CSOS 1 (CS) (CS) (CS) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C$		CHAI	ANALYSIS /	,	500		ice for	ore in the			↑	^	1	7	DTOH	1	1	\uparrow		7	入	\leftarrow	07017		TX Dat	Dat	Dat			ן
ARCADIS Laboratory Task Order No.P.O. ct Number/Name MT DOUTIGH: 000/ ct Number/Name MT DOUTIGH: 000/ ct Number/Name MT DOUTIGH: 000/ ct Iccation KeY ELMICE atory Education atory Education atory Education AT Location Main atory Education ator Education At Manager S. TISCHEK OSO83 Datement Amount Amount	e ^{r a}	No.		33	1210	Acco Acco	50 × 00		onoH on					2	7]				7		MS of			77	Ceth	
ARCADIS Laboratory Task 0 ct Number/Name_MT_0007[64].0001 ct Number/Name_MT_0007[64].0001 ct Number/Name_MT_0007[64].0001 ct Number/Name_MT_0007[64].0001 ct Manager_S.TISCHER atory Edutrication_D. M' NeESE etcs)/Affiliation_D. M' NEESE page/me_mt_00001 of 05083 Datermer_mainter page/me_mt_00001 of 0501 0750 page/me_mt_00001 of 0501 0750 page/me_mt_00001 of 0501 page/me_mt_00001	×	rder No./P.O.	L		4	8/3	00/ 2/2	AN STER	HOLD HO	thurp +	1000	HULD	HOLD-CLOH	7	7	- Onot	DTD	- onot	7	7	- O ²	101- (1-10)	1		ion: <u>AKCA</u> ion: <u>CMV- (</u>	ion:	ion:	7 271	haal	•
ARCADIS Labo ARCADIS A Number/Name MT DOD 7164 at ory Edunice / Mise atory Edunice / Mise atory Edunice / Mise atory Edunice / Mise atory Edune / Mise Descention / (20) / (20	ń	ratory Task O	/000	K	1 exer			RE TIME	2 0940	5460	0350	0955	0001	1030	1050	1245	1252	1308	13/3	1435	Ophi	1500 +	2 156	v = Air	Organizat V Organizat	Organizat	Organizat			
ARCADIS ct Number/Name MT ct Location Ket/EUM atory Education Ket/EUM thanager S. TISC ct Manager S. TISC ct Manager S. TISC ct Manager S. TISC ct Manager S. TISC ct (20) ct		Labo	792000	ICE LM	1 CHRS of	HER	MC NEESE	Date/Thr Friv Sampled	0-61-11													\mathbf{A}	11-4-02	$S = \int Solid; P$	Jum			26	 	
ARCA ARABEL A Location at Number/A at Location at Location at Location for Manager. A Manager Lec(s)/Affiliar		DIS	lame MT	KEY EUN	wronmenta	<u>S. Tisc</u>	tion D. A	Mat	2 ("			(())					7.5')	~ / \	5	A Liquid;	aum M			Remarks:		د ا
		ARCA	ject Number/N	ject Location_	oratory EW	ject Manager .	ıpler(s)/Affilia	205083	3-1 (0-6	1271-5	8-1 651	,01/1-2	-1 1121	,02 / /-:	-1/20	-260-6	-2 (2'	2-2(5)	-2 6 10'	8-2 (15'	2-2119-24	-310-6	.3(2)	ole Matrix: L	inquished by:	nauished by:	eived by:	al Instructions/		

.

							ī								_							٨. ٩	<u> </u>	∢		12/01
	of			•			Tot		-	~	~	1	~	\	~	/						Io N	ntact	2		¥0 02
	N																			tt les/	iners	es (s)	Seal I	es N		PECIFY
	age -						_ຽ													of Bo	Conta	 	1	<u>></u> 		Ĩ
	۵		\sim				emark													al No.	600	Sig N				
	COR .						æ													Tot						ther
	RE																					Time	Time	Time		
	λ																	 				16				
	JSTC	/ SIZE																				010	-	$\left \right $	8	Irier
	т Г	DOH																				NJ		-	15	Col
	- V	MET			à	5	, ter:													1		te fe	te	te	17] Lab
	HAII	YSIS .			2	20,	5 C		1	入	0	1	4	Å									Da	D	141	
	כ	ANAL		りょ	ط بر	3×	C. L.	7			HOL	7		Í								A			<i>A</i>	
				$\langle \cdot \rangle$	Er .	86	م کر					Ì										H				
			0	Al-Jia	_ 02	يزد م	eres.	7]	7										6				SPECIFY
					K.	So.		\backslash			1	. 1									6				1X	
	P.O.	L			<u> </u>	<u>چ</u> و		2			1	1													14	
	r No.			4	Ž¢;	28	مع بد		9	$\overline{\mathbf{x}}$	ŀ		1	9		1						W				arrie
	Orde						N So		ΡQ	HUC	7	ſ	Na	HON	7							ation	ation	ation	102	on C
	Task	1	. 1	Ŋ	1	1	AC AC	9	515	Ś	202	35	30	50	i	1						ganiz ganiz	ganiz	ganiz		mm
i i	atory	21		10X			. मृष्	5/2	1	16	116	16	11	2 16		1		 · · ·	 		₹ (=	δŏ	ð	ò		
	Labor	100	M	et.		1.1	e/ Him e npled	6-01						19-0						'	<	B			NT	
	, ,	764	V	405	2	lees	Dat	11-1					-	-11					ļ		pilor	E F			21	Lo Lo
		And	1K.E	al L	SCHE	NSW	atrix	S	5	5	հ	հ	۱.	6							2 2	E B				Pers
		M	S.W.	nent	Ŕ	1.	Σ						4			Z		 	 		ipin	X			<u>ы</u>	u u
	SIC	me	LE S	ronr	Ś	/ uo	<u>lo</u>		$\left(\cdot \right)$	$\left(\right)$															emark	+
	AL	er/Na	- no	NC	ger –	filiatio	3 Abcat	5	21-0	v 9-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$(\cdot \cdot)$	2	1.	je.	200							ا م		ons/R	thoc
	RC RC	lumb	ocati	N N	lana	s)/Afl		5		6)		57	アン	じ	SLAN	SII.					atrix:	ished d by:.	ished	yd P	structi	/ Me
	Z	ject N	ject L	oratc	ject N	apler(70 ¹	50	3-3	7-5	9-4	7-4	5-9	3-4	1012	an					ple M	lingu ceiver	lingu	ceive	cial In	iven
	· U	Pro	Pro	Lab	Pro	San	Q	Ŋ	ß	3	V	13	6	1 5		Ţ			Ì.	,	Sam	å å	Re	Re	Spe	Del
								9	Ē	8	0		<i>5</i> 2	16	5 25	·P	•									
	45.	d										•									qe	0:9	σ	20	20 c	Ded