

NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

BILL RICHARDSON

Governor

Joanna Prukop

Cabinet Secretary

Mark E. Fesmire, P.E.

Director

Oil Conservation Division

April 12, 2006

Ms. Camille Reynolds Plains Marketing, L.P. 3112 West Highway 82 Lovington, NM 88260

RE: 2005 Annual Monitoring Report

Plains Marketing, L.P. Saunders 8" #4 Site

SE/4 NW/4 Section 35, Township 13 South, Range 33 East

Lea County, New Mexico

Plains EMS Number: 2004-00184 NMOCD File Number: 1R-0453

Dear Ms. Reynolds:

The New Mexico Oil Conservation Division (NMOCD) has received and reviewed the above report submitted, on behalf of Plains Marketing, L.P. (Plains), by Basin Environmental Service Technologies, LLC. This report is hereby accepted and approved with the following understandings and conditions:

- 1. Plains will continue to monitor the groundwater throughout 2006 and report such activities in the 2006 Annual Report to be submitted to this office no later than April 1, 2007.
- 2. Plains will implement the previously approved "Remediation Work Plan" as soon as possible.
- 3. Such work will be followed by a soil remediation/closure report upon completion.

NMOCD approval does not relieve Plains of liability should its operations at this site prove to have been harmful to public health or the environment. Nor does it relieve Plains of its responsibility to comply with the rules and regulations of any other governmental agency.

If you have any questions, contact me at (505) 476-3492 or ed.martin@state.nm.us

NEW MEXICO OIL CONSERVATION DIVISION

Edwin E. Martin

Environmental Bureau

Copy: NMOCD, Hobbs

Ken Dutton, Basin

Basin Environmental Service Technologies, LLC

P. O. Box 301 Lovington, New Mexico 88260 kdutton@basinenv.com

Office: (505) 396-2378

Fax: (505) 396-1429

2005 ANNUAL MONITORING REPORT

NR-453

SAUNDERS 8" # 4

SE ¼ NW ¼ SECTION 35, TOWNSHIP 13 SOUTH, RANGE 33 EAST LATITUDE 33°, 08°, 55.6" NORTH, LONGITUDE 103°, 35°, 15.3" WEST LEA COUNTY, NEW MEXICO PLAINS EMS NUMBER: 2004-00184

PREPARED FOR:

PLAINS MARKETING, L.P. 333 CLAY STEET, SUITE 1600 HOUSTON, TEXAS 77002 Report is on the

PREPARED BY:

BASIN ENVIRONMENTAL SERVICE TECHNOLGIES, LLC

P. O. Box 301 Lovington, New Mexico 88260

March 2006

Ken Dutton
Project Manager

TABLE OF CONTENTS

INTRODUCTION	1
SITE DESCRIPTION AND BACKGROUND INFORMATION	,1
FIELD ACTIVITIES.	2
LABORATORY RESULTS	2
SUMMARY	2
ANTICIPATED ACTIONS	
LIMITATIONS	3
DISTRIBUTION	4
FIGURES Figure 1 – Site Location Map Figure 2 – Site Map Figure 3 – Inferred Groundwater Gradient Map Figure 4 - Groundwater Concentration Map (BTEX)	
TABLES Table 1 – Groundwater Elevation Data (2005) Table 2 – Concentrations of Benzene and BTEX in Groundwater (2005)	
APPENDICES Appendix A – Laboratory Reports Appendix B - Release Notification and Corrective Action (Form C-141)	

INTRODUCTION

Basin Environmental Service Technologies, LLC, (Basin) on behalf of Plains Marketing, L.P., (Plains), prepared this annual report in compliance with the New Mexico Oil Conservation Division (NMOCD) letter of May 1998, requiring submittal of an annual report by April 1 of each year. This report is intended to be viewed as a complete document with text, figures, tables, and appendices. This report presents the results of the initial quarterly groundwater monitoring event conducted in calendar year 2005 only. Additional site activities and remedial work is summarized in several letters and reports previously submitted to the NMOCD. For reference, the Site Location Map is provided as Figure 1.

Initial groundwater monitoring was conducted during the fourth (4th) quarter in 2005 to assess the levels and extent of dissolved phase constituents and presence of phase-separated hydrocarbons (PSH). The groundwater monitoring event consisted of measuring static water levels in the monitoring wells, checking for the presence of PSH atop the water column, and purging and sampling of each well exhibiting sufficient recharge. Monitoring or recovery wells containing a thickness of PSH greater than 0.01 foot were not sampled.

SITE DESCRIPTION AND BACKGROUND INFORMATION

The legal description of the site is SE ¼ NW ¼ Section 35, Township 13 South, Range 33 East. The site latitude is 32°, 08′, 55.6″ North and the site longitude is 103°, 35′, 15.3″ West. On 12 August 2004, Basin responded to the pipeline release on behalf of Plains to repair the pipeline and excavate the impacted soil. Approximately 15 barrels of crude oil were released from the Plains Pipeline and 0 barrels were recovered. The site is characterized by a right-of-way for the pipeline in a pasture utilized for cattle grazing. The initial visibly surface stained area includes the release point covering an area approximately 128 feet long by 89 feet wide. Excavation activities during the emergency response and subsequent remediation the site covered an area approximately 198 feet long by 194 feet wide and ranging from 12 to 18 feet below ground surface (bgs), respectively. All excavated soil was placed on a poly-liner for future remedial action.

A Revised Preliminary Site Investigation Report and Remediation Plan, dated 19 July 2005, was submitted and approved by NMOCD, Santa Fe. The Revised Plan proposed to conduct the following remedial activities; installation of a 20-ml poly liner at the floor of the excavation (22 feet bgs), backfill the excavation to 12 feet bgs with the stockpiled material on-site, collecting soil samples at 500 cubic yard intervals ensuring TPH constituent concentrations are below 1000 mg/kg. After backfilling to the 12 feet bgs level, install a second (2nd) 20-ml poly liner and backfill to surface, contour backfill and reseed with approved grass seed.

Additionally, the Revised Plan proposed to install three (3) monitoring wells to evaluate the quality of groundwater. During the installation of the three (3) groundwater monitor wells (03 October 2005), there were no visual signs of PSH and laboratory results of the selected soil samples indicated the twenty-seven (27) total soil samples analyzed for BTEX and TPH constituent concentrations were not detected above laboratory method detection limits.

Currently, there are three (3) monitoring wells, MW-1 which is up gradient, MW-2 and MW-3, which are down gradient, on site.

FIELD ACTIVITIES

The site monitoring wells were gauged and sampled on 24 October 2005. During the initial sampling event, the monitoring wells, designated to be sampled, were purged of approximately 3 well volumes of water or until the wells were dry using a PVC bailer or electrical Grundfos Pump. Groundwater was allowed to recharge and samples were obtained using disposable Teflon bailers. Water samples were stored in clean, glass containers provided by the laboratory and placed on ice in the field. Purge water was collected in polystyrene fifty-five gallon drums which remain temporarily stored on-site.

Locations of the monitoring wells and the groundwater elevations, which were constructed from the measurements collected during the initial 4th quarter monitoring event, are depicted on Figure 3. The groundwater elevation data are provided as Table 1.

The Groundwater Gradient Map, Figure 3, indicates a general gradient of approximately 0.002 ft/ft. to the southeast as measured between groundwater monitor wells MW-1 and MW-2. The corrected groundwater elevation ranged between 4129.48 and 4128.93 feet, in MW-1 and MW-2, 24 October 2005, respectively.

LABORATORY RESULTS

Groundwater samples were collected from the monitor wells MW-1, MW-2 and MW-3 during the initial fourth quarter monitoring event and were delivered to Environmental Laboratory of Texas, Odessa, Texas for determination of Benzene, Toluene, Ethylbenzene and Xylenes (BTEX) constituent concentrations by EPA Method SW846-8021b. A listing of BTEX constituent concentrations for 2005 is summarized in Table 2 and the laboratory reports are provided as Appendix A.

Laboratory results for the three (3) site groundwater samples, obtained during the 2005 annual period, indicate that benzene and total BTEX constituent concentrations were below laboratory detection limits for monitor wells MW-1, MW-2 and MW-3, as depicted on Figure 4.

Laboratory analytical results were compared to NMOCD regulatory limits based on the New Mexico groundwater standards found in section 20.6.2.3103 of the New Mexico Administrative Code.

SUMMARY

This report presents the results of monitoring activities for the 2005 annual monitoring period. Currently, there are three (3) groundwater monitoring wells (MW-1, MW-2 and MW-3) on-site. The initial groundwater sampling event on 24 October 2005, indicates a general gradient of

approximately 0.002 ft/ft to the southeast, as indicated on the Groundwater Gradient Map, Figure 3.

Laboratory results for the three (3) site groundwater samples, obtained during the 2005 annual period, indicated that benzene and BTEX constituent concentrations were below laboratory detection limits for monitor wells MW-1, MW-2 and MW-3.

ANTICIPATED ACTIONS

Groundwater monitoring and annual reporting will continue in 2006. A Remediation Work Plan has been approved NMOCD and remediation of the site will commence in calendar year 2006. A soil remediation/closure report will be prepared and submitted to the NMOCD upon completion of the proposed activities.

LIMITATIONS

Basin has prepared this Annual Monitoring Report to the best of its ability. No other warranty, expressed or implied, is made or intended.

Basin has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. Basin has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. Basin has prepared this report, in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Basin also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Plains. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Basin and/or Plains.

DISTRIBUTION

Copy 1: Ed Martin

New Mexico Energy, Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505 Ed.martin@state.nm.us

Copy 2: Larry Johnson

New Mexico Oil Conservation Division

1625 N. French Drive Hobbs, New Mexico 88240 Larry.Johnson@state.nm.su

Copy 3: Jeff Dann

Plains Marketing, L.P.

333 Clay Street Suite 1600

Houston, Texas 77002 jpdann@paalp.com

Copy 4: Camille Reynolds

Plains Marketing, L.P. 3112 Highway 82

Lovington, New Mexico 88260

cjreynolds@paalp.com

Copy 5: Basin Environmental Service Technologies, LLC

P. O. Box 301

Lovington, New Mexico 88260

kdutton@basinenv.com

Copy Number: 1

FIGURES

FIGURE 1 SITE LOCATION MAP

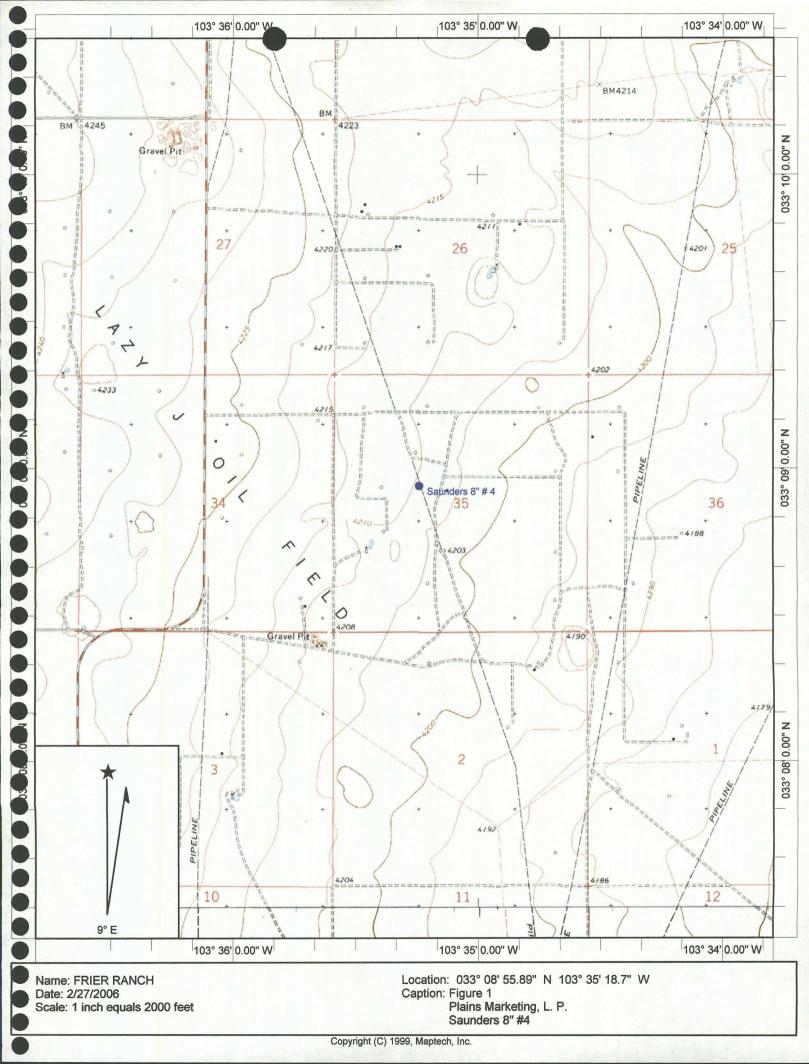
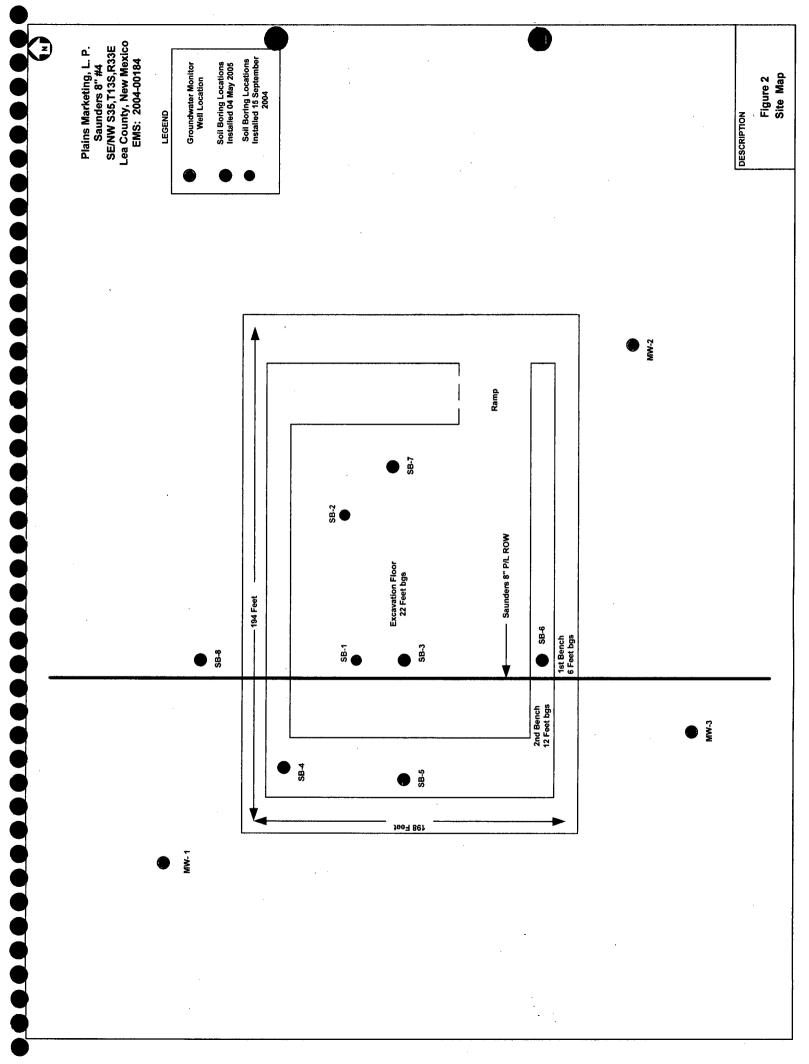
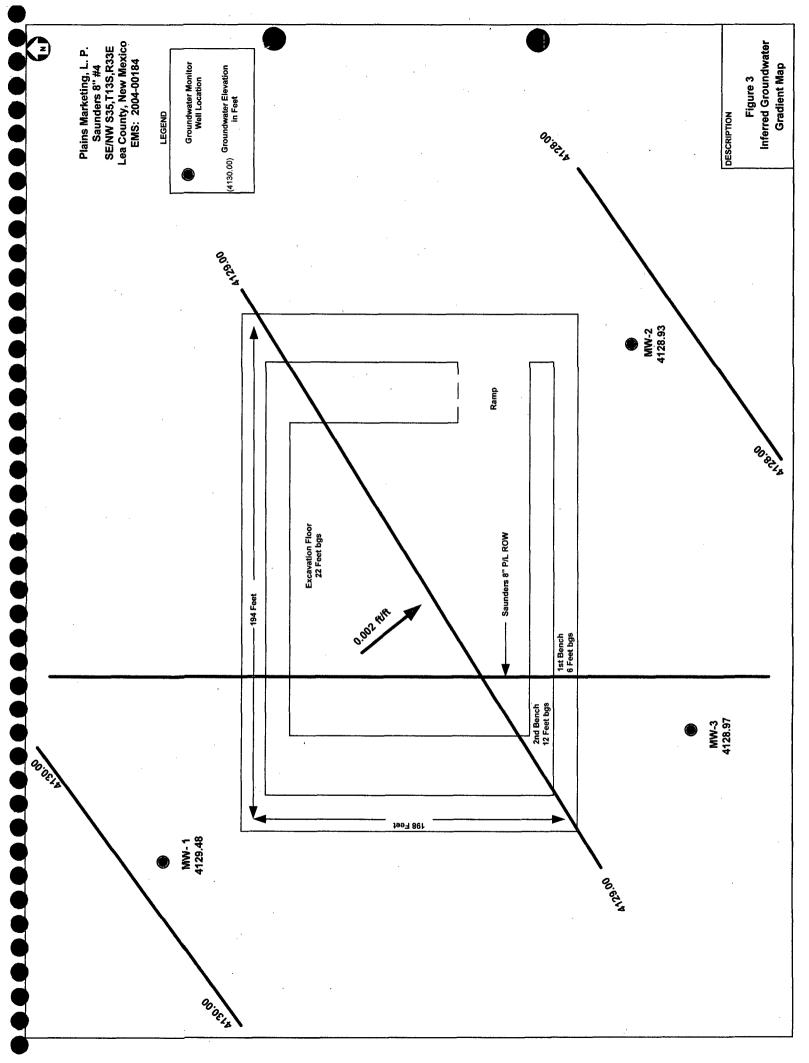




FIGURE 2

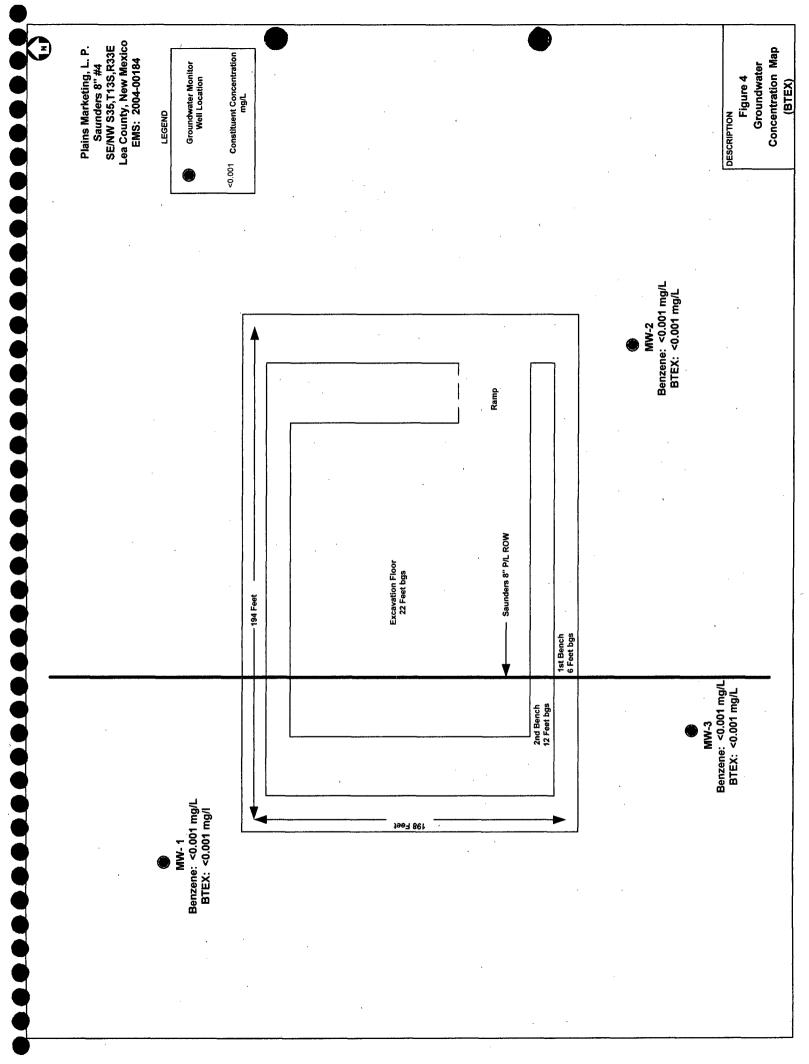

SITE MAP

FIGURE 3 INFERRED GROUNDWATER GRADIENT MAP

FIGURE 4 GROUNDWATER CONCENTRATION MAP (BTEX)

GROUNDWATER ELEVATION DATA (2005)

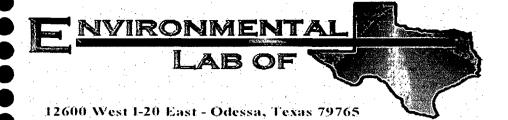
GROUNDWATER ELEVATION DATA (2005)

PLAINS MARKETING, L.P. SAUNDERS 8"#4 LEA COUNTY, NEW MEXICO PLAINS EMS NO. 2004-00184

WELL	WELL NUMBER DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
MW - 1	10/24/05	4,213.31	•	83.83	00.0	4,129.48
MW - 2	10/24/05	4,212.89	1	83.96	00'0	4,128.93
MW-3	10/24/05	4,213.71	•	84.74	00'0	4,128.97

COCENTRATIONS OF BENZENE AND BTEX IN GROUNDWATER (2005)

CONCENTRATIONS OF BENZENE AND BTEX IN GROUNDWATER (2005)


PLAINS MARKETING, L.P. SAUNDERS 8" #4 LEA COUNTY, NEW MEXICO PLAINS EMS NO: 2004-00184

SAMPLE		MET	HODS: EPA	METHODS: EPA SW 846-8021B	
DATE	BENZENE	TOLUENE	ETHYL-	M,P-	O-XYLENES
			BENZENE	XYLENES	
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
NMOCD REGULATORY STANDARD	0.01	0.75	0.75	TOTAL XYLENES 0.62	ES 0.62
10/24/05	<0.001	<0.001	<0.001	<0.001	<0.001
10/24/05	<0.001	<0.001	<0.001	<0.001	<0.001
10/24/05	<0.001	<0.001	<0.001	<0.001	<0.001
	DATE ANDARD 10/24/05 10/24/05	20 22	BENZENE TOLU (mg/L) (mg/ 0.01 0.7i 0.7i 0.5 <0.001 <0.0 0.5 <0.001 <0.0 0.5 <0.001 <0.0	(mg/L) (mg/ 0.01 0.7 5 <0.001 <0.0 5 <0.001 <0.0 5 <0.001 <0.0	BENZENE TOLUENE ETHYL- RENZENE XY

APPENDICES

APPENDIX A

ENVIRONMENTAL LABORATORY OF TEXAS ANALYTICAL RESULTS

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: Saunders 8" #4
Project Number: 2004-00184
Location: Lea County, NM

Lab Order Number: 5J27013

Report Date: 11/04/05

Project: Saunders 8" #4

Project Number: 2004-00184
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 11/04/05 08:58

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	5J27013-01	Water	10/24/05 11:40	10/27/05 13:22
MW-2	5J27013-02	Water	10/24/05 14:15	10/27/05 13:22
MW-3	5J27013-03	Water	10/24/05 15:30	10/27/05 13:22

Project: Saunders 8" #4

Project Number: 2004-00184
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 11/04/05 08:58

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (5J27013-01) Water									
Benzene	ND :	0.0100	mg/L	10	EK50220	11/02/05	11/02/05	EPA 8021B	
Toluene	ND	0.0100	"	11	n	n	Ħ	n	
Ethylbenzene	ND	0.0100	"	n	Ħ	."	**	H	
Xylene (p/m)	ND	0.0100	"	"	Ħ		n	n ·	
Xylene (o)	ND	0.0100	u .	17	n	Ħ	н	. "	
Surrogate: a,a,a-Trifluorotoluene		97.5 %	80-12	0 .	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		103 %	80-12	0	"	,	n	"	
MW-2 (5J27013-02) Water									
Benzene	ND	0.00100	mg/L	1	EK50220	11/02/05	11/02/05	EPA 8021B	· · · · · · · · · · · · · · · · · · ·
Toluene .	ND	0.00100	n	#	"	"	"	. "	
Ethylbenzene	ND	0.00100	11	Ħ	#	u u	u	"	
Xylene (p/m)	ND	0.00100	n	#	Ħ	u	75	*	
Xylene (o)	ND .	0.00100	"	"	. #	11	Ħ	"	
Surrogate: a,a,a-Trifluorotoluene		94.0 %	80-12	0	"	"	"	. "	
Surrogate: 4-Bromofluorobenzene	•	104 %	80-12	0	n.	"	" .	"	
MW-3 (5J27013-03) Water									
Benzene	ND	0.00100	mg/L	1	EK50220	11/02/05	11/02/05	EPA 8021B	
Toluene	ND	0.00100	n	"	"	**	u	**	
Ethylbenzene	ND	0.00100	н	n	n	, ,,	"	п	
Xylene (p/m)	ND	0.00100	**	n	u	Ħ	er ·	. п	
Xylene (o)	ND	0.00100	п	"	u		"	**	
Surrogate: a,a,a-Trifluorotoluene		99.2 %	80-12	0	"	n	. "	"	7,11
Surrogate: 4-Bromofluorobenzene		119 %	80-120	0	"	. "	н	n	

Project: Saunders 8" #4

Project Number: 2004-00184
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 11/04/05 08:58

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	Lmin	Ullis	LC/Cl	Kesuit	/OKEC	Lillia	KI D	Duni	140105
Batch EK50220 - EPA 5030C (GC)										
Blank (EK50220-BLK1)				Prepared 8	k Analyzed:	11/02/05				
Benzene	ND :	0.00100	mg/L							
Toluene	ND	0.00100	п							
Ethylbenzene	ND	0.00100	u							
Xylene (p/m)	ND	0.00100	п							
Xylene (o)	ND	0.00100	"							
Surrogate: a,a,a-Trifluorotoluene	38.4	-	ug/l	40.0		96.0	80-120			٠.,
Surrogate: 4-Bromofluorobenzene	37.2		"	40.0		93.0	80-120			
LCS (EK50220-BS1)				Prepared &	k Analyzed:	11/02/05				,
Benzene	0.0473	0.00100	mg/L	0.0500		94.6	80-120			
Toluene	0.0493	0.00100	n	0.0500		98.6	80-120			
Ethylbenzene	0.0486	0.00100	"	0.0500		97.2	80-120			
Xylene (p/m)	0.0916	0.00100	п	0.100		91.6	80-120			
Xylene (o)	0.0498	0.00100	и	0.0500		99.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	41.3		ug/l	40.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	42.4		"	40.0		106	80-120	٠		
Calibration Check (EK50220-CCV1)				Prepared &	k Analyzed:	11/02/05				
Benzene	41,5		ug/l	50.0		83.0	80-120			
Toluene	40.6		. "	50.0		81.2	80-120			
Ethylbenzene	40.7		"	50.0	•	81.4	80-120			
Xylene (p/m)	81.2		"	100		81.2	80-120			
Xylene (o)	41.5		"	50.0		83.0	80-120			
Surrogate: a,a,a-Trifluorotoluene	33.8		"	40.0		84.5	80-120			
Surrogate: 4-Bromofluorobenzene	37.0		"	40.0		92.5	80-120			
Matrix Spike (EK50220-MS1)	Sou	ırce: 5K02011-	01	Prepared:	11/02/05 Ar	alyzed: 11	/03/05			
Benzene	0.0431	0.00100	mg/L	0.0500	ND	86.2	80-120			
Foluene	0.0450	0.00100	u	0.0500	0.000346	89.3	80-120			
Ethylbenzene	0.0434	0.00100	"	0.0500	ND	86.8	80-120			
Xylene (p/m)	0.0849	0.00100	"	0.100	0.000799	84.1	80-120			
Xylene (o)	0.0445	0.00100	0 -	0.0500	ND	89.0	80-120			
Surrogate: a,a,a-Trifluorotoluene	36.6		ug/l	40.0		91.5	80-120			-
Surrogate: 4-Bromofluorobenzene	33,4		"	40.0		83.5	80-120			

Project: Saunders 8" #4

Project Number: 2004-00184
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 11/04/05 08:58

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EK50220 - EPA 5030C (GC)										
BE-1.1 C. H. D. (FIXEDAGO RECIDA)	~	##/OBO44	01			11/00/05				

Matrix Spike Dup (EK50220-MSD1)	Sour	ce: 5K02011-	01	Prepared &	k Analyzed:	11/02/05				
Benzene	0.0443	0.00100	mg/L	0.0500	ND	88.6	80-120	2.75	20	
Toluene	0.0460	0.00100	**	0.0500	0.000346	91.3	80-120	2.21	20	
Ethylbenzene	0.0449	0.00100	n	0.0500	ND	89.8	80-120	3.40	20	
Xylene (p/m)	0.0849	0.00100	n	0.100	0.000799	84.1	80-120	0.00	20	
Xylene (o)	0.0467	0.00100	n	0.0500	ND	93.4	80-120	4.82	20	
Surrogate: a,a,a-Trifluorotoluene	38.1		ug/l	40.0		95.2	80-120			
Surrogate: 4-Bromofluorobenzene	42.7		"	40.0		107	80-120			

Project: Saunders 8" #4

Project Number: 2004-00184
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 11/04/05 08:58

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	\wedge
	1) 1 1 1 1 1 1
	Raland KItub
	Lacon C Louis
Danage Annuary ad Dry	

Date:

11/4/2005

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

TAT bisbusic aluberta&-erg) TAT HEUS Project # E115' 2004- 00184 PAHIL REYNOLDS CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Project Loc. LER PORNTY, NM Project Name: SAUNDERS 8" emmeo lato .M.R.O. KOŁ Temperature Upon Receipt Sample Containers Intact? Analyze For aboratory Comments B1EX 8021B/2030 As Ag Ba Cd Cr Pb Hg Se TCLP TOTAL SAR / ESP / CEC Allons (Ct. SO4, CO3, HCO3) 18,20 Catons (Ca, Mg, Na, K) Time PH:418.1 8015M 1005 1006 Other (epecity): 10/07/05 Soli aspnis Date Other (Specify) **OHO** #OS²H HOAN нсі ₩О9 No. of Containers **100** 530 1140 3741 beigme2 emiT Received by ELOT 150 2805 2805 Received by: Environmental Lab of Texas I, Ltd. CIVISTANCIP: LOVINGTON NM 88265 Date Sampled 24 どろび 1322 Time Phone: 915-563-1800 Fax: 915-563-1713 Company Address: P. O. 301 361 OWITON Telephone No: (585) 444-2124 MMZ 2200Te Date FIELD CODE Company Name BASIN Project Manager: KEN HW-Sampler Signature: 12600 West I-20 East Odessa, Texas 79763 Special Instructions:

Ereronmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

_1 _				
lient: Plays	•			
Date/Time: 102010S 13:22				
Order #: 6027013				
Λ <i>l</i> .				
nitials:			4	
Sample Receipt	t Checkli	st		
Femperature of container/cooler?	Yes	No	2.0	С
Shipping container/cooler in good condition?	<u> </u>	No		
Custody Seals intact on shipping container/cooler?	Væ5	No	Not present	
Custody Seals intact on sample bottles?	Xee.	No	Not present	<u>t</u>
Chain of custody present?	Yes	No		
Sample Instructions complete on Chain of Custody?	Yes	No		
Chain of Custody signed when relinquished and received?	Yes	No		
Chain of custody agrees with sample label(s)	(@s)	No		
Container labels legible and intact?	Yes	No	**************************************	
Sample Matrix and properties same as on chain of custody?	YES	No		
Samples in proper container/bottle?	YES	No	-	
Samples properly preserved?	ZĒ3	No		
Sample bottles intact?	(ES	No	14.00 TM agr. 11.00 TM agr. 11	
Preservations documented on Chain of Custody?	756	No		
Containers documented on Chain of Custody?	Yes	No	· · · · · · · · · · · · · · · · · · ·	
Sufficient sample amount for indicated test?		No		
All samples received within sufficient hold time? VOC samples have zero headspace?	Yes	No No	Not Applicab	
OO GETTING THE CONTRACT TO THE			110(1),0011000	1100
Other observations:				
Variance Docu	mentatio	on:		
Contact Person: Date/Time:			Contacted b	y:
Regarding:				

Corrective Action Taken:		-		
		·		
	·			
		······································		Maganin ^{Carro} (^A lah Manada Angkalan magan
				,
	.			

APPENDIX B

RELEASE NOTIFICATION AND CORRECTIVE ACTION (NMOCD FORM C-141)

Discrict | 1625 N. French Dr., Hobbs, NM 88240 District II

Date: 8-17-04

Attach Additional Sheets If Necessary

1301 W. Grand Avenue, Artesia, NM 88210 District III

District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

1000 Rio Brazos Road, Aztec, NM 87410

State of New Mexico nergy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr.

Form C-141 Revised October 10, 2003

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Attached

Santa Fe, NM 87505 **Release Notification and Corrective Action OPERATOR** x Initial Report Final Report Name of Company Plains Marketing, LP Contact Camille Reynolds Address 5805 East Hwy. 80, Midland, TX 79706 Telephone No. 505-441-0965 Facility Name Saunders 8" #4 Facility Type 8"Steel Pipeline Surface Owner Norman Hahn Mineral Owner Lease No. LOCATION OF RELEASE Unit Letter Feet from the North/South Line Section Township Range Feet from the East/West Line County F 33E 35. 138 Lca Latitude 33°08'55.6" Longitude 103°35'15.3" NATURE OF RELEASE Type of Release Crude Oil Volume of Release 15 barrels Volume Recovered 0 barrels Source of Release 8" Steel Pipeline Date and Hour of Occurrence Date and Hour of Discovery 8-12-04 @ 06:00 8-12-04@13:45 Was Immediate Notice Given? If YES, To Whom? Larry Johnson By Whom? Camille Reynolds Date and Hour 8-12-04 @ 19:00 Was a Watercourse Reached? If YES, Volume Impacting the Watercourse. ☐ Yes ☒ No If a Watercourse was Impacted, Describe Fully.* Describe Cause of Problem and Remedial Action Taken.* External corrosion of the 8" steel pipeline. A line clamp was installed to mitigate the release. The line is an 8 inch steel transmission pipeline that produces approximately 1,400 barrels of crude per day. The pressure on the line varies from 25 to 30 psi and the gravity of the sweet crude oil is 38-42. The sweet crude has an H₂S content of less than 10 ppm Describe Area Affected and Cleanup Action Taken.* The impacted soil was excavated and stockpiled on plastic. Aerial extent of surface impact was 7.176 ft². CCD SOCION I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for seleases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground which should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground which should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground which should be a solution of the contamination that pose a threat to ground which should be a solution of the contamination that pose a threat to ground which should be a solution of the contamination that pose a threat to ground which should be a solution of the contamination that pose a threat to ground which should be a solution of the contamination that pose a threat to ground which should be a solution of the contamination that pose a threat to ground which should be a solution of the contamination that pose a threat to ground which should be a solution of the contamination that pose a threat to ground which should be a solution of the contamination that pose a threat to ground which should be a solution of the contamination that pose a threat to ground which should be a solution of the contamination that the contaminatio or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Signature Approved by District Supervisor: Printed Name: Camille Reynolds Title: Remediation Coordinator Approval Date: **Expiration Date:** E-mail Address: cjrcynolds@paalp.com Conditions of Approval:

Phone:505-441-0965

NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

BILL RICHARDSON

Governor Joanna Prukop Cabinet Secretary Mark E. Fesmire, P.E.
Director
Oil Conservation Division

September 6, 2005

Ms. Camille Reynolds Plains Pipeline 3112 West Highway 82 Lovington, NM 88260

Re: Revised Preliminary Site Investigation Report and Remediation Plan

For the Plains Marketing, L.P. Saunders 8" #4 (EMS No. 2004-00184)

Unit Letter F, Section 35, Township 13 South, Range 33 East

Lea County, New Mexico NMOCD Ref: 1R-0453

Dear Ms. Reynolds:

The New Mexico Oil Conservation Division (NMOCD) has received and reviewed the report shown above, prepared on behalf of Plains Pipeline (Plains) by Basin Environmental Service Technologies, LLC (Basin), dated July 19, 2005. The remediation plan is approved with the following understandings and conditions:

- 1. Plains will install a 20-mil poly liner at the floor of the excavation (22 feet bgs) with six inches of mechanically screened material above and below the liner. Soil samples will be collected from the mechanically screened material and delivered to a certified laboratory. The mechanically screened material to be used as padding will be at or below 1000 ppm TPH.
- 2. Plains will backfill the excavation to 12 feet bgs with stockpiled material with TPH concentrations of less than 1000 ppm. Soil samples will be collected at approximately 500 cubic yard intervals to insure TPH concentration standards are met.
- 3. Plains will install a 20-mil poly liner at the resulting 12 feet bgs level with six inches of mechanically screened material above and below the liner. The liner at this level will extend beyond the lateral extent of the contamination. Excavation will then be backfilled to ground surface using stockpiled material with TPH concentrations of less than 1000 ppm.
- 4. Plains will install three groundwater-monitoring wells, one up gradient and two down gradient from the release area. Such monitoring wells will be sampled quarterly and the results of this monitoring will be included in annual reports to be submitted on the activities at this site. These annual reports will be submitted to the NMOCD Santa Fe office no later than March 31 of each year.

5. Plains will prepare a separate report to be submitted to the NMOCD Santa Fe office that describes the activities in items numbered 1-3 above and reports the laboratory analyses for the samples gathered during these activities.

NMOCD approval of this plan does not relieve Plains of responsibility should its activities at this site prove to have been harmful to public health or the environment. Nor does it relieve Plains of its responsibility to comply with the rules and regulations of any other local, state, or federal governmental agency.

If you have any questions, contact me at (505) 476-3492 or ed.martin@state.nm.us

NEW MEXICO OIL CONSERVATION DIVISION

Edwin E. Martin

Environmental Bureau

El Martin

cc: NMOCD, Hobbs

August 3, 2005

Mr. Ed Martin
New Mexico Oil Conservation Division
Environmental Bureau
1220 South St. Francis Drive
Santa Fe, New Mexico 87505

Re:

Plains Pipeline Revised Preliminary Site Investigation and

Remediation Plan

Saunders 8 Inch #4 Release Site

Section 35, T13S, R33E Lea County, New Mexico

Dear Mr. Martin:

Please find attached for your approval the Revised Preliminary Site Investigation and Remediation Work Plan, dated July 19, 2005, for the Saunders 8 Inch #4 release site located in Section 35 of Township 13 South, and Range 33 East of Lea County, New Mexico. The proposed Remediation Plan details site activities conducted to date and future activities for remediation and closure of the site.

Should you have any questions or comments, please contact me at (505) 441-0965.

Sincerely,

Camille Reynolds

Remediation Coordinator

Plains Pipeline

Enclosure

Basin Environmental Service Technologies, LLC

P. O. Box 301 Lovington, New Mexico 88260 kdutton@basinenv.com Office: (505) 396-2378 Fax: (505) 396-1429

REVISED PRELIMINARY SITE INVESTIGATION REPORT

and
REMEDIATION PLAN
(15 November 2004)

1R-453

PLAINS MARKETING L.P.
SAUNDERS 8" # 4
EMS No. 2004-00184
Lea County, New Mexico
UNIT F (SE½/NW ½), Section 35, Township 13 South, Range 33 East 33°, 08', 55.6" North, 103°, 35', 15.3" West

Prepared For:

Plains Marketing, L.P. 333 Clay Street Suite 1600 Houston, Texas 77002

Prepared By:
Basin Environmental Service Technologies, LLC
P. O. Box 301
Lovington, New Mexico 88260

19 July 2005

Ken Dutton

Basin Environmental Service Technologies, LLC

Table of Contents

Introduction		1
Summary of Field A	activities	1
New Mexico Oil Cor Soil Classification	nservation Division (NMOCD)	2
Distribution of Hydro	ocarbons in the Unsaturated Zone	3
Revised Recommen	ndations for Remediation/Closure	5
QA/QC Procedures Soil Samplin Groundwater Decontamina Laboratory P	g Sampling ation of Equipment	6 6 7 7
Limitations		7
Distribution		8
	Tables	
Table 1:	Soil Chemistry, Excavation/Soil Borings	
	Figures	
Figure 1: Figure 2: Figure 3: Figure 4: Figure 5:	Site Location Map Revised Site Map Revised Site Map, Sidewall Sampling Locations Digital Photo of Site Installation of 20-ml Poly Liner	
	Appendices	
Appendix A: Appendix B: Appendix C: Appendix D:	New Mexico Office of the State Engineer Water Well Databa Report Environmental Laboratory of Texas Analytical Results Soil Boring Logs NMOCD C-141 and NMOCD Approval Letter	se

INTRODUCTION

Allstate Environmental Services, LLC (AES) responded to a pipeline release for Plains Marketing L.P. (Plains), located on the Saunders 8" Pipeline on 12 August 2004. The Saunders 8" Pipeline was clamped and the impacted soils were excavated and stockpiled on a poly liner. Basin Environmental Service Technologies, LLC (Basin), will perform subsequent remediation of the site at the request of Plains.

This site is located in Unit F, Section 35, Township 13 South, Range 33 East, in Lea County, New Mexico (topographic Site Location Map is attached as Figure 1). The latitude is 33°, 08′, 55.6′ North, and longitude is 103°, 35′, 15.3″ West. The site is characterized by a right-of-way for the pipeline in a pasture utilized for cattle grazing. The stained area includes the release point and progresses east covering an area approximately 128 feet long by 89 feet wide. Approximately 15 barrels of crude oil were released from the Plains pipeline and 0 barrels were recovered.

An Emergency One-Call was initiated 12 August 2004 and all responding companies either cleared or marked their respective lines. Subsequent renewals of the one-call have been accomplished as required.

Mr. Larry Johnson, New Mexico Oil Conservation Division, Hobbs District 1 was verbally notified of the release on 12 August 2004.

The landowner, Mr. Norman Hahn, was out of state for an extended period of time when the release occurred, however; the ranch foreman, Mr. Kenneth Augustine was notified and is aware of the release and subsequent remedial actions taken. Contact with Mr. Hahn was accomplished 13 September 2004. Mr. Hahn was informed of all activities that have been accomplished to date and remedial actions that are being considered.

On 18 August 2004, Plains Pipeline replaced approximately 800 feet of the existing 8" steel pipeline with a 6" poly line. The 8" steel pipeline was purged of fluid and removed from the existing Plains right-of-way. After removal from the Plains right-of-way, the steel pipeline was cut into 30-foot joints and transported to the Plains Pipeline Lovington, New Mexico yard. The 6" poly line will be placed in the existing Plains right-of-way upon completion of remediation of the impacted soil.

SUMMARY OF FIELD ACTIVITIES

On 12 August 2004, AES employee Bobby Blackwood arrived at the Saunders 8" Pipeline release to repair and contain the crude oil pipeline release. After the release had been contained utilizing a pipeline repair clamp, excavation of the impacted soil was initiated. The impacted soil was placed on a poly liner adjacent to the release.

On 13 August 2004, AES employee Bobby Blackwood began extended excavation of the impacted area. The release point was excavated to approximately 128 feet long by 89 feet wide and 3 to 4 feet below ground surface (bgs). All excavated soil was placed on a poly liner for future remedial action.

On 15 September 2004, Basin employee, Ken Dutton, installed 2 boil borings, utilizing Straub Corporation, of Stanton, Texas, collecting soil samples every 5 feet in order to delineate the horizontal and vertical nature and extent of crude oil impacted soil at the pipeline release (see Site Map, Figure 2). The soil borings were installed at the floor of the excavation (4 feet bgs) at the release point, and continued east on the excavation floor (pooling area). The soil borings ranged in depth from 10 feet bgs to 44 feet bgs (soil boring logs are attached as Appendix C). Each sample was screened with a Photoionization Detector (PID) which was calibrated on 13 September 2004. The selected soil samples were analyzed for concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX), and total petroleum hydrocarbons – gasoline range organics/diesel range organics (TPH-GRO/DRO). On 04 November 2004, soil samples were collected from the excavation sidewalls, release point (floor), and pooling area and were analyzed for concentrations of BTEX and TPH-GRO/DRO.

On 04 May 2005, Basin installed 6 additional soil borings, utilizing Straub Corporation, of Stanton, Texas, collecting soil samples every 5 feet in order to delineate the horizontal and vertical nature and extent of crude oil impacted soil at the pipeline release (see Site Map, Figure 2). The soil borings were installed at the floor of the excavation (22 feet bgs) at the release point, the second tier benched area (12 feet bgs) and continued north and south adjacent to the excavated Plains pipeline right-of-way. The soil borings ranged in depth from 60 feet bgs to 87 feet bgs (soil boring logs are attached as Appendix C). Each sample was screened with a Photoionization Detector (PID), which was calibrated on 04 May 2005. The selected soil samples were analyzed for concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX), and total petroleum hydrocarbons — gasoline range organics/diesel range organics (TPH-GRO/DRO).

NEW MEXICO OIL CONSERVATION DIVISION (NMOCD) SOIL CLASSIFICATION

A search of the New Mexico State Engineers database revealed water depth information for that section averaged 87 feet bgs. Analytical results from the installation of Soil Boring (SB-3) indicated that crude oil contaminants exist to the saturated zone (87 feet bgs), which sets the TPH concentration remediation level at 100 ppm. There are no surface water bodies or water wells within 1000 feet of the release site. Based on this data, the site has an NMOCD Ranking Score of >19, which sets the remediation levels at:

Benzene:

10 ppm

BTEX:

50 ppm

TPH:

100 ppm

Distribution of Hydrocarbons in the Unsaturated Zone

The release point area has been excavated to a depth of approximately 22 feet bgs and evidence of crude oil impact still exist on the floor of the excavation. Analytical results and PID readings reflect elevated concentrations of Volatile Organic Compounds (VOC) remain. A drill rig was utilized to delineate the vertical and horizontal extent of crude oil impacted soil. Soil boring 1 was installed on the floor of the excavation (release point) and the soil boring 2 east of the release point and on the excavation floor (pooling area). Soil borings 3, 4, 5, 6, 7 and 8 were installed along the excavated Plains Pipeline right-of-way. Soil samples were collected in the subsurface from the soil borings at 5 feet intervals. No visual observations of free phase hydrocarbons were encountered during the installation of the 8 soil borings (as indicated on Appendix C) or excavation of the site. PID field screenings were utilized to determine which soil samples were to be submitted to the laboratory for analysis. Selected soil samples were analyzed for concentrations of BTEX and TPH. Laboratory data sheets and chain-of-custody forms are attached (Appendix B).

Soil Boring 1, as depicted on the Site Map (Figure 2), was installed on the floor of the excavation at 4 feet bgs. Samples collected at the 5, 15, 30 and 40 feet bgs were analyzed. The true depth below surface of each sample is determined by adding 4 feet to each soil boring depth due to the installation of the soil boring at 4 feet bgs on the floor of the excavation. Analytical results indicated that BTEX and TPH concentrations were above NMOCD regulatory standards at 5 and 15 feet bgs. Analytical results indicated that the soil samples were below NMOCD regulatory standards at 30 and 40 feet bgs for BTEX and TPH concentrations.

Soil Boring 2, as depicted on the Site Map (Figure 2), was installed east of the release point on the floor of the excavation at the pooling area. Soil samples collected at the 5 and 10 feet bgs were analyzed. Analytical results indicated that BTEX and TPH concentrations were not detected above the laboratory method detection limits from these 2 soil samples.

Soil samples were collected from the excavation on 04 November 2004, from the release point, pooling area and the sidewalls as depicted on the Site Map (Figure 2). The soil sample collected at the release point was actually backfill from the initial excavation to determine the vertical extent of contamination and is not an accurate depiction of the native soil. The soil sample collected from the pooling area was at a depth of approximately 4 feet bgs. Analytical results indicated that BTEX concentrations were below laboratory detection limits and TPH concentrations were above NMOCD regulatory standards at 226 mg/kg. The four soil samples from the sidewalls were collected at a depth of approximately 2 feet bgs. Analytical results indicated that BTEX concentrations were below laboratory detection limits on all four-soil samples. Analytical results for the four sidewall samples indicated that TPH concentrations were below NMOCD regulatory standards on the east sidewall and

the north, west and south sidewall soil samples exceeded NMOCD regulatory standards at 1200 mg/kg, 772 mg/kg and 307 mg/kg, respectively.

Soil Boring 3, as depicted on the Site Map (Figure 2), was installed on the floor of the excavation at 22 feet bgs. Samples collected at the 5, 10, 20, 30, 50 and 65 feet bgs were analyzed. The true depth below surface of each sample is determined by adding 22 feet to each soil boring depth due to the installation of the soil boring at 22 feet bgs on the floor of the excavation. Analytical results indicated that BTEX concentrations were below NMOCD regulatory standards at 5, 10, 20, 30, 50 and 65 feet bgs. Analytical results indicated that TPH concentrations exceeded NMOCD regulatory standards at 5, 10, 20, 30, 50 and 65 feet bgs at 1900 mg/kg, 1640 mg/kg, 1130 mg/kg, 1300 mg/kg, 2210 mg/kg and 1100 mg/kg, respectively.

Soil Boring 4, as depicted on the Site Map (Figure 2), was installed on the second bench of the excavation at 12 feet bgs. Samples collected at the 5, 10, 20, 30, 40, 50 and 60 feet bgs were analyzed. The true depth below surface of each sample is determined by adding 12 feet to each soil boring depth due to the installation of the soil boring at 12 feet bgs on the second bench of the excavation. Analytical results indicated that BTEX concentrations were below NMOCD regulatory standards at 5, 10, 20 and 30, feet bgs. Analytical results indicated that BTEX concentrations were not detected above laboratory method detection limits at 40, 50 and 60 feet bgs. Analytical results indicated that TPH concentrations exceeded NMOCD regulatory standards at 5, 10, 20, 30 and 40 feet bgs at 2200 mg/kg, 2780 mg/kg, 2770 mg/kg, 2610 mg/kg, and 145 mg/kg, respectively. Analytical resulted indicated that TPH concentrations were below NMOCD regulatory standards at 50 and 60 feet bgs.

Soil Boring 5, as depicted on the Site Map (Figure 2), was installed on the second bench of the excavation at 12 feet bgs. Samples collected at the 10, 20, 30, and 50 feet bgs were analyzed. The true depth below surface of each sample is determined by adding 12 feet to each soil boring depth due to the installation of the soil boring at 12 feet bgs on the second bench of the excavation. Analytical results indicated that BTEX and TPH concentrations were not detected above laboratory method detection limits at 10, 20, 30, and 50 feet bgs.

Soil Boring 6, as depicted on the Site Map (Figure 2), was installed on the second bench of the excavation at 12 feet bgs. Samples collected at the 5, 10, 20, 30, and 50 feet bgs were analyzed. The true depth below surface of each sample is determined by adding 12 feet to each soil boring depth due to the installation of the soil boring at 12 feet bgs on the second bench of the excavation. Analytical results indicated that BTEX concentrations were below NMOCD regulatory standards at 5 and 10 feet bgs. Analytical results indicated that BTEX concentrations were not detected above laboratory method detection limits at 20, 30, and 50 feet bgs. Analytical results indicated that TPH concentrations exceeded NMOCD regulatory standards at 5 and 10 feet bgs at 2840 mg/kg and 1260 mg/kg, respectively. Analytical results indicated that TPH concentrations were below NMOCD regulatory standards at 20 and 30 feet bgs and not detected above laboratory method detection limits at 50 feet bgs.

Soil Boring 7, as depicted on the Site Map (Figure 2), was installed on the floor of the excavation at 22 feet bgs. Samples collected at the 10, 20, 30, 50 and 65 feet bgs were analyzed. The true depth below surface of each sample is determined by adding 22 feet to each soil boring depth due to the installation of the soil boring at 22 feet bgs on the floor of the excavation. Analytical results indicated that BTEX and TPH concentrations were not detected above laboratory method detection limits at 10, 20, 30, 50 and 65 feet bgs.

Soil Boring 8, as depicted on the Site Map (Figure 2), was installed at normal surface grade north of the excavation adjacent to the Plains Pipeline right-of-way. Samples collected at the 10, 20, 30 and 60 feet bgs were analyzed. Analytical results indicated that BTEX and TPH concentrations were not detected above laboratory method detection limits at 10, 20, 30 and 60 feet bgs.

RECOMMENDATIONS FOR REMEDIATION/CLOSURE PROPOSAL

As stated above, the depth of the excavation is 22 feet bgs and measures approximately 198 feet long and 194 feet wide. Approximately 14, 566 cubic yards of hydrocarbon impacted soil and clean overburden has been stockpiled on site. Due to the depth of the excavation (22 feet bgs), a professional engineer was consulted to ascertain the OSHA Shoring and Benching requirements. To meet the benching standards, the original stockpiled material was transported away from the excavation, resulting in blending the hydrocarbon-impacted soil with clean overburden. Basin and Plains has evaluated the site conditions related to use of the surrounding land, soil types, laboratory results, depth to groundwater, and potential risk to human health and the environment. Based on this information, Plains proposes to the following:

- Install a 20-ml poly liner at the floor of the excavation (22 feet bgs) with six inches of mechanically screened material above and below the poly liner (see Figure 5, Installation of 20-ml poly liner). Soil samples will be collected from the mechanically screened material and delivered to a certified laboratory. The mechanically screened material to be used as padding will be at or below 1000 ppm, TPH concentration.
- Backfill the excavation to 12 feet bgs with stockpiled material with TPH concentrations of less than 1000 ppm. Soil samples will be collected at approximately 500 cubic yard intervals to insure TPH concentrations are met.
- Install a 20-ml poly liner at the 12 feet bgs level with six-inches of mechanically screened material above and below the poly liner (see Figure 5, Installation of 20-ml poly liner). Sidewall soil samples have been collected to determine the size of the 20-ml poly liner. Backfill the remaining excavation with stockpiled material with TPH concentrations of less than 1000 ppm.

• Install three (3) groundwater monitoring wells, one up gradient and two down gradient to evaluate the quality of groundwater. These monitoring wells will be sampled on a quarterly basis as required by NMOCD guidelines. During installation of the groundwater monitoring wells, soil samples will be collected at 5 feet intervals in order to delineate the horizontal and vertical nature and extent of crude oil impacted soil at the release site. Each soil sample will be field screened with a PID and the selected soil samples will be analyzed for concentrations of benzene, toluene, ethylbenzene, and exlyenes (BTEX), and total petroleum hydrocarbons – gas range organics/diesel range organics (TPH-GRO/DRO).

QA/QC PROCEDURES

Soil Sampling

Soil samples were delivered to Environmental Lab of Texas, Inc. in Midland, Texas for BTEX, TPH analyses using the methods described below. Soil samples were analyzed for BTEX, TPH-GRO/DRO within fourteen days following the collection date.

The soil samples were analyzed as follows:

- BTEX concentrations in accordance with EPA Method 8021B, 5030
- TPH concentrations in accordance with modified EPA Method 8015M GRO/DRO

Groundwater Sampling

The groundwater monitoring wells will be developed utilizing the Environmental Protection Agency (EPA) protocol of approximately nine well volumes of groundwater or until the monitoring wells are dry using an electrical Grundfos Pump. With forty-eight hours of development, the monitoring wells will be measured and purged of approximately three well volumes utilizing and electrical Grundfos Pump. Groundwater samples will be collected using a disposable Teflon sampler and the groundwater samples will be stored in clean, glass containers provided by the laboratory and placed on ice in the field. Purge water will be collected in a polystyrene tank and disposed of at a licensed New Mexico disposal facility. Groundwater samples will be delivered to Environmental Lab of Texas, Odessa, Texas for analysis of BTEX concentrations using the method described below. All samples will be analyzed within approved holding times following the collection date.

BTEX concentrations in accordance with EPA method 8260B/5030

Decontamination Of Equipment

Cleaning of the sampling equipment was the responsibility of the environmental technician. Prior to use, and between each sample, the sampling equipment was cleaned with Liqui-Nox® detergent and rinsed with distilled water.

Laboratory Protocol

The laboratory was responsible for proper QA/QC procedures after signing the chainof-custody form. These procedures were either transmitted with the laboratory reports or are on file at the laboratory.

LIMITATIONS

Basin Environmental Service Technologies, LLC has prepared this Preliminary Investigation Report and General Remediation Plan to the best of its ability. No other warranty, expressed or implied, is made or intended.

Basin Environmental Service Technologies, LLC has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. Basin Environmental Service Technologies, LLC has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. Basin Environmental Service Technologies, LLC has prepared this report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Basin Environmental Service Technologies, LLC also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Plains Marketing, L.P. The information contained in this report including all exhibits and attachments, may not be used by any other party without the express consent of Basin Environmental Service Technologies, LLC, and Plains Marketing, L.P.

DISTRIBUTION

Copy 1:

Jeff Dann

Plains All American 333 Clay Street

Suite 1600

Houston, Texas 77002 jpdann@paalp.com

Copy 2:

Camille Reynolds

Plains All American

214 W. C-61

Hobbs, New Mexico 88240 cireynolds@paalp.com

Copy 3:

Mr. Ed Martin

New Mexico Energy, Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Ed.Martin@state.nm.us

Copy 4:

Basin Environmental Service Technologies LLC

P. O. Box 301

Lovington, New Mexico 88260

kdutton@basinenv.com

Copy <u>3</u>

TABLES

TABLE 1

SOIL CHEMISTRY, EXCAVATION/SOIL BORINGS

TABLE 1

SOIL CHEMISTRY

PLAINS MARKETING L.P. SAUNDERS 8" #4 LEA COUNTY, NEW MEXICO EMS: 2004-00184

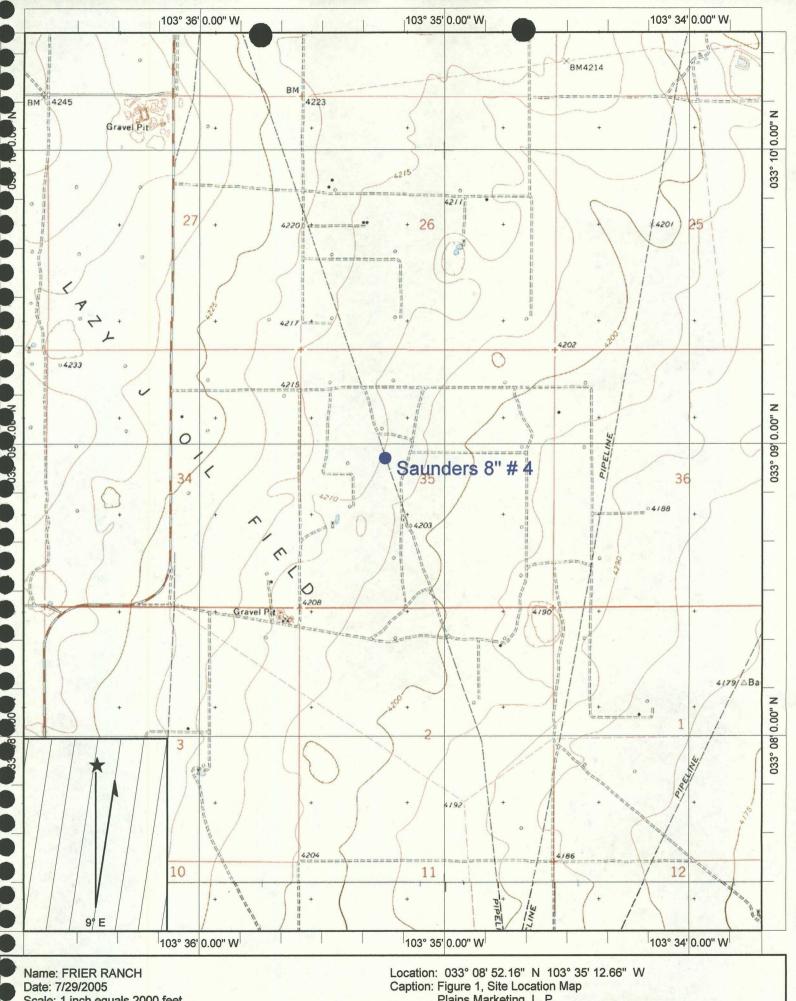
SAMPLE	SAMPLE	SAMPLE		METHOD: E	METHOD: EPA SW 846-8021B, 5030	3021B, 5030		METHOD: 8015M): 8015M	TOTAL
LOCATION	DEPTH	DATE	BENZENE	BENZENE TOLUENE	ETHYL-	M,P-	O-XYLENE	GRO	DRO	ТРН
	(Below				BENZENE XYLENES	XYLENES				
	Normal Surface						,			
	Grade)									
•	ō	100,71,00	(mg/kg)	(IIIg/kg)	(IIIg/Kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	Ò	09/15/04	0.604	9.36	3.75	18.8	7.5	1730	3900	5630
SB-1 15'	19,	09/15/04	0.216	3.96	2.57	14.3	5.34	1800	4210	6010
SB-1 30'	34,	09/15/04	<0.025	<0.025	<0.025	<0.025	<0.025	<10	26.7	26.7
SB-1 40'	44,	09/15/04	<0.025	<0.025	<0.025	<0.025	<0.025	<10	<10	<10
SB-2	:5	09/15/04	<0.025	<0.025	<0.025	0.050	<0.025	× 10	<10	<10
SB-2	10,	09/15/04	<0.025	<0.025	<0.025	<0.025	<0.025	<10	<10	<10
			Mary Control of the State of th			The state of the s			A STATE OF THE PARTY OF THE PAR	
Exc Floor-RP	4' bgs	11/04/04	<0.025	968.0	0.074	0.506	0.264	103	1030	1130
Exc Floor Pooling	4' bgs	11/04/04	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	226	226
West Wall-Exc	2' bgs	11/04/04	<0.025	960'0	0.042	0.281	0.141	77.4	695	772
East Wall-Exc	2' bgs	11/04/04	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	81.8	81.8
North Wall-Exc	2' bgs	11/04/04	<0.025	<0.025	<0.025	0.052	<0.025	44.7	1150	1200
South Wall-Exc	2' bgs	11/04/04	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	307	307
			逐渐逐		\$5.300.32%					BARRY TANKS
SB-3 5'	27' bgs	05/04/05	<0.025	0.302	0.522	4.34	1.79	829	1070	1900
SB-3 10'	32' bgs	05/04/05	<0.025	0.546	0.460	3.31	1.25	625	1010	1640
SB-3 20'	42' bgs	05/04/05	<0.025	<0.025	660.0	208.0	0.134	292	834	1130
SB-3 30'	52' bgs	05/04/05	<0.025	<0.025	0.034	0.249	0.124	312	988	1300
SB-3 50'	72' bgs	05/04/05	<0.025	0.104	0.211	1.37	0.687	598	1620	2210
SB-3 65'	87' bgs	05/04/05	<0.025	0.046	0.061	0.387	0.162	242	859	1100

TABLE 1 (continued)

SOIL CHEMISTRY

PLAINS MARKETING L.P. SAUNDERS 8" #4 LEA COUNTY, NEW MEXICO EMS: 2004-00184

SAMPLE	SAMPLE SAMPLE	SAMPLE		METHOD: E	METHOD: EPA SW 846-8021B, 5030	8021B, 5030		METHOD: 8015M): 8015M	TOTAL
LOCATION	DEPTH	DATE	BENZENE TOLUENE	TOLUENE	ETHYL-	M,P-	O-XYLENE	GRO	DRO	TPH
	(Below				BENZENE	XYLENES				
	Surface Grade)									
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SB-4 5'	17' bgs	05/04/05	<0.025	0.328	0.785	5.71	2.21	811	1410	2220
SB-4 10'	22' bgs	05/04/05	<0.025	0.833	0.837	5.84	2.11	943	1840	2780
SB-4 20'	32' bgs	05/04/05	<0.025	0.137	0.250	1.62	0.655	750	2020	2770
SB-4 30'	42' bgs	05/04/05	<0.025	0.032	0.093	0.601	0.272	580	2030	2610
SB-4 40'	52' bgs	05/04/05	<0.025	<0.025	<0.025	<0.025	<0.025	19.2	126	145
SB-4 50'	62' bgs	05/04/05	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	62.0	62.0
SB-4 60'	72' bgs	05/04/05	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	52.5	52.5
SB-5 10'	22' bgs	05/04/05	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-5 20'	32' bgs	05/04/05	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-5 30'	42' bgs	05/04/05	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-5 50'	62' bgs	05/04/05	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-6 5'	17' bgs	05/04/05	0.141	5.67	2.670	14.8	4.94	1000	1840	2840
SB-6 10'	22' bgs	05/04/05	<0.025	0.075	0.114	0.661	0.257	258	1000	1260
SB-6 20'	32' bgs	05/04/05	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	24.5	24.5
SB-6 30'	42' bgs	05/04/05	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	18.6	18.6
SB-6 50'	62' bgs	05/04/05	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-7 10'	22' bgs	05/04/05	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-7 20'	42' bgs	05/04/05	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-7 30'	52' bgs	05/04/05	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-7 50'	72' bgs	05/04/05	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0

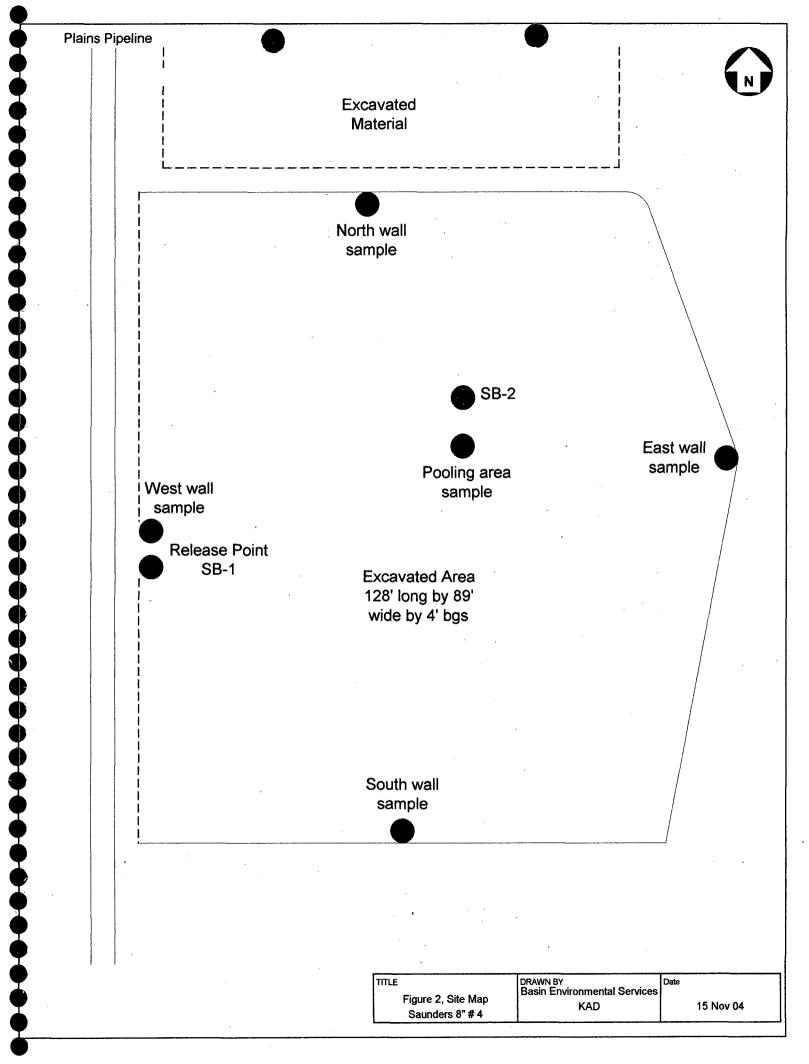

TABLE 1 (continued)

SOIL CHEMISTRY

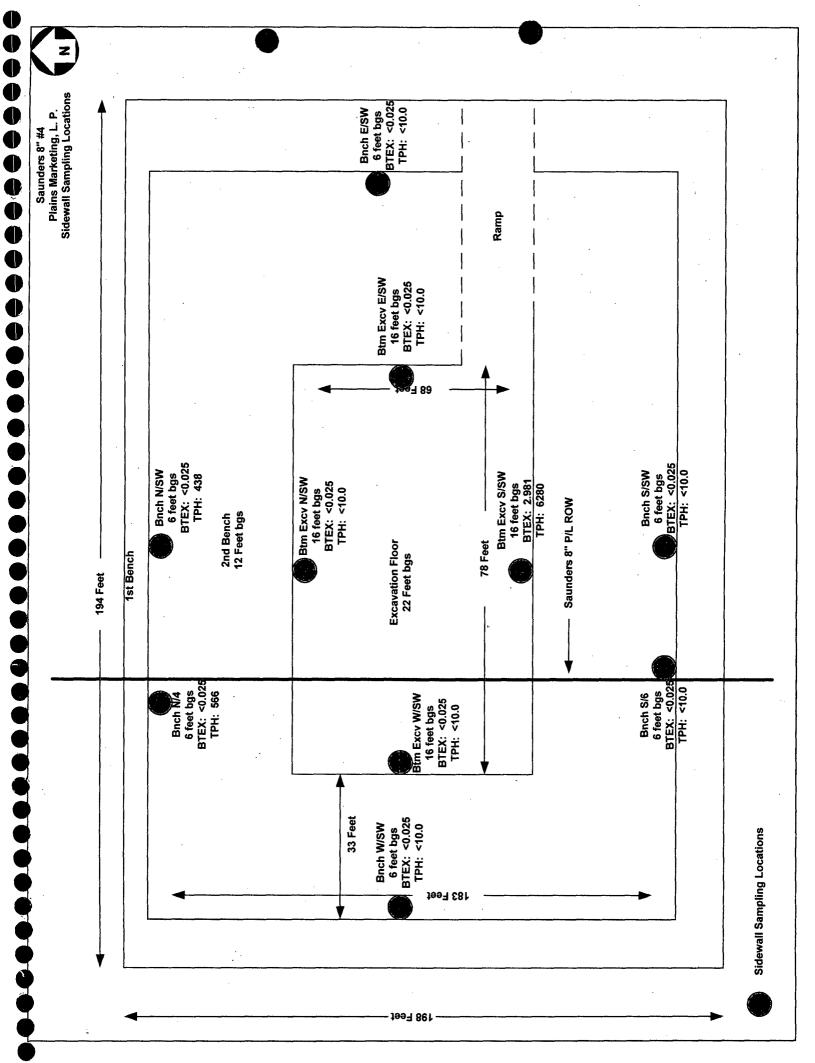
PLAINS MARKETING L.P. SAUNDERS 8" #4 LEA COUNTY, NEW MEXICO EMS: 2004-00184

SAMPLE	SAMPLE SAMPLE	SAMPLE		METHOD: E	METHOD: EPA SW 846-8021B, 5030	3021B, 5030		METHOL	METHOD: 8015M	TOTAL
LOCATION	DEPTH	DATE	BENZENE TOLUENE	TOLUENE	ETHYL-	M,P-	O-XYLENE	GRO	DRO	TPH
	(Below				BENZENE XYLENES	XYLENES				
	Normal Surface Grade)									
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SB-7 65'	87' bgs	05/04/05	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-8 10'	10' bgs	05/04/05	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-8 20'	20' bgs	05/04/05	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-8 30'	30, pas	05/04/05	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-8 60'	60' bgs	05/04/05	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
			100000		がなるない	があれた	The state of the s	A See Section 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	医学院运用的	
Btm Excv N/SW	16' bgs	06/15/05	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
Btm Excv W/SW	16' bgs	06/15/05	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
Btm Excv S/SW	16' bgs	06/15/05	0:030	0.670	0.271	1.47	0.540	240	6040	6280
Btm Excv E/SW	16' bgs	06/15/05	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
Bnch N/SW	sbq ,9	06/15/05	<0.025	<0.025	<0.025	<0.025	<0.025	11.8	426	438
Brich W/SW	e, bgs	06/15/05	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
Brich S/SW	e, pas	06/12/05	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
Bnch E/SW	sbq ,9	06/15/05	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
Bnch N/4	e, bgs	06/15/05	<0.025	<0.025	<0.025	<0.025	<0.025	19.1	547	566
Bnch S/6	6' bgs	06/15/05	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
	NMOCD (CRITERIA	10	TOTAL BTEX 50	EX 50		-			100

SITE LOCATION MAP

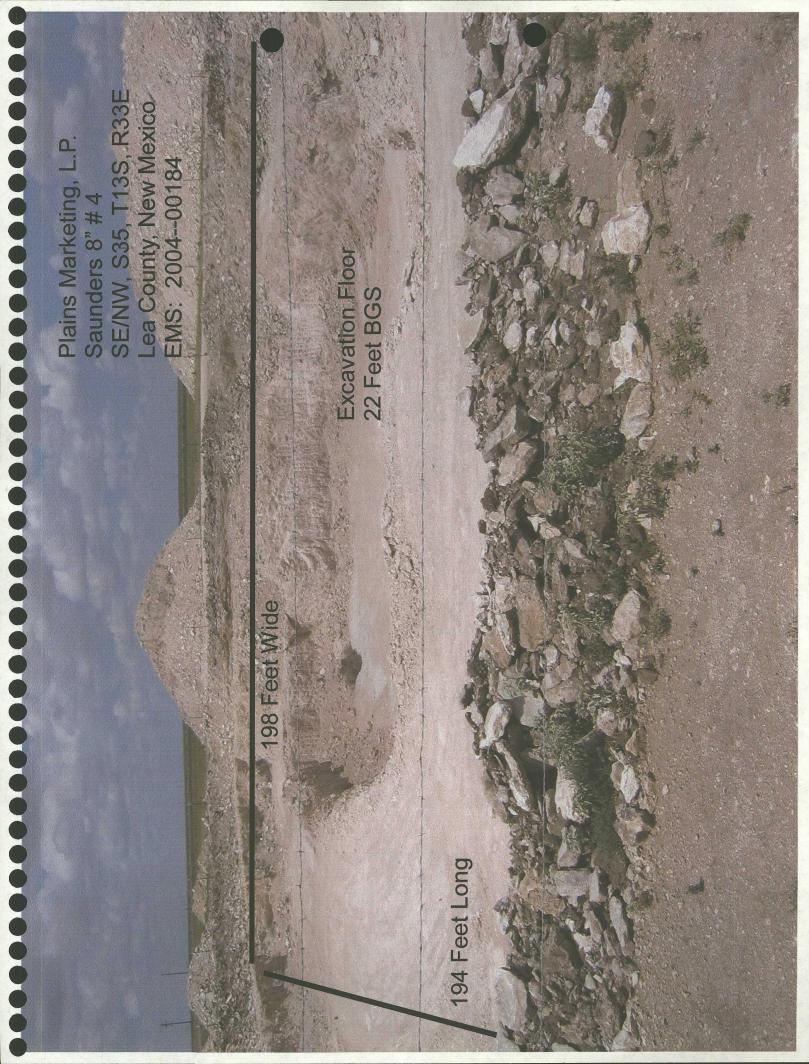


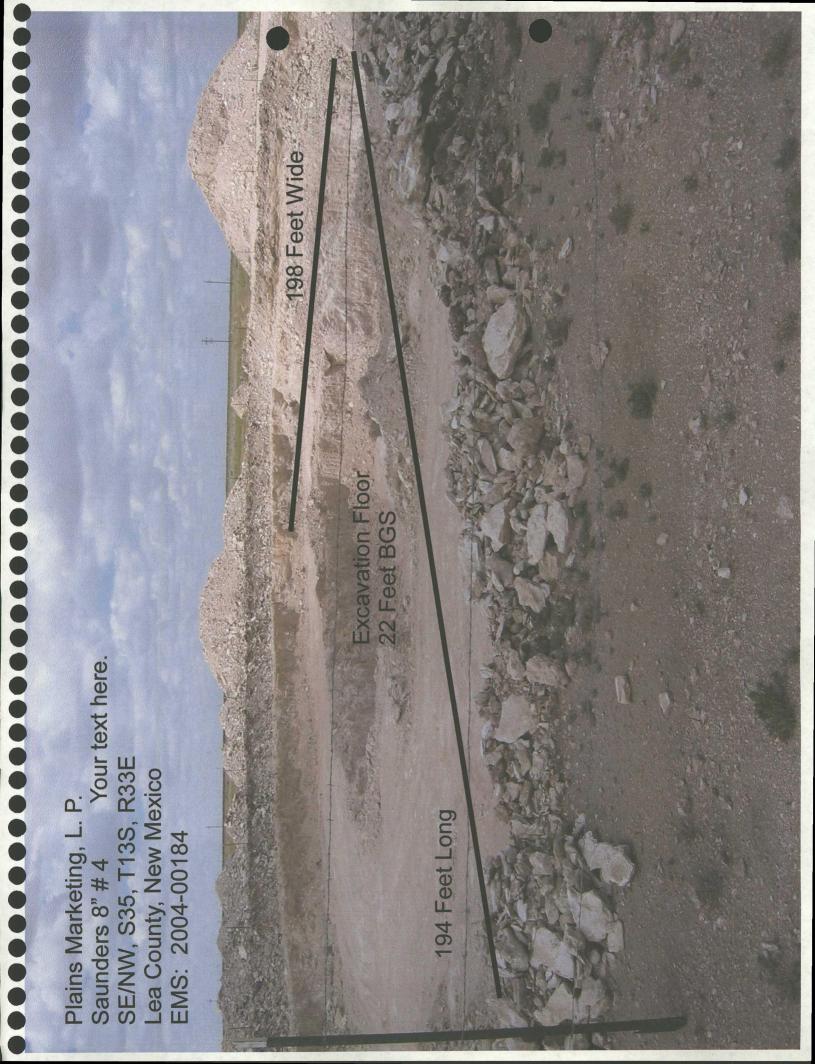
Scale: 1 inch equals 2000 feet


Location: 033° 08' 52.16" N 103° 35' 12.66" W Caption: Figure 1, Site Location Map Plains Marketing, L. P. Saunders 8" # 4

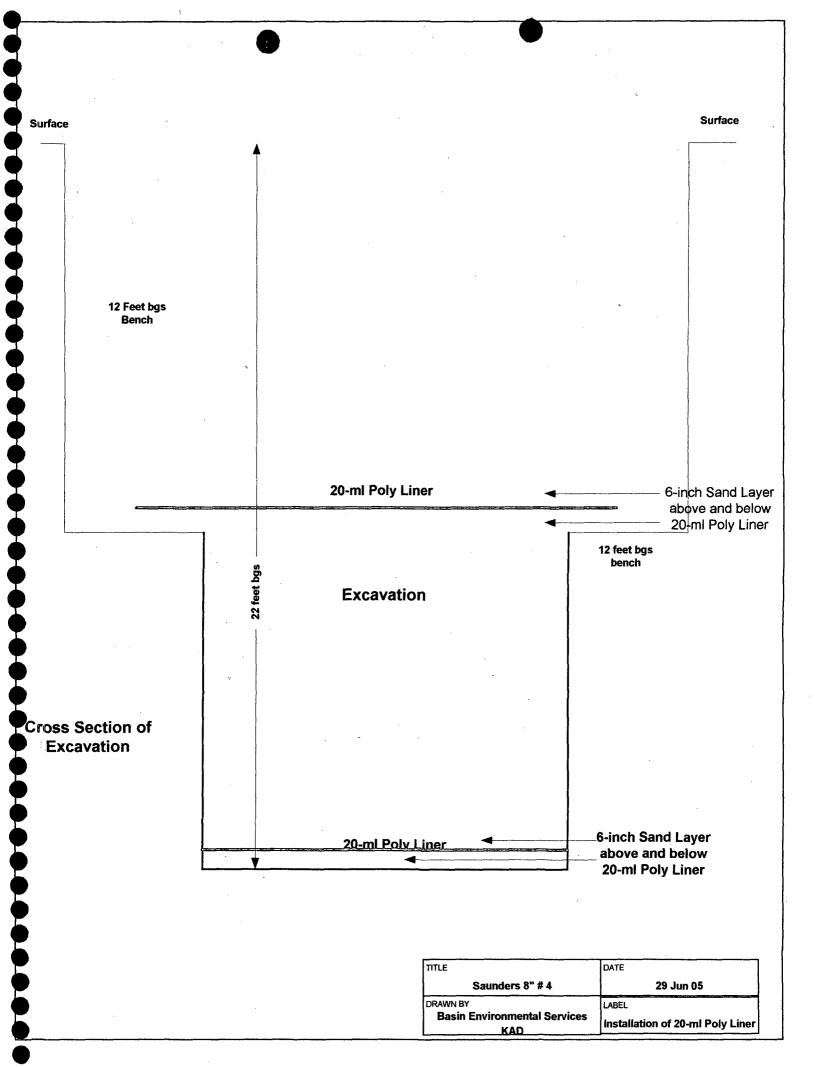
REVISED SITE MAP

REVISED SITE MAP, SIDEWALL SAMPLING LOCATIONS




DIGITAL PHOTO OF SITE

Millo- assenie


•••••••••••••••••••••••••

Saunders 8"#4 Plains Marketing Unit L, \$24, F14S, R33F

INSTALLATION OF 20-ml POLY LINER

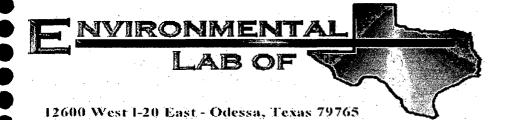
APPENDICES

APPENDIX A

NEW MEXICO OFFICE OF THE STATE ENGINEER WATER WELL DATABASE REPORT

New Mexico Office of the State Engineer Well Reports and Downloads

Township: 13S Range: 33E Sections: 35
NAD27 X: Y: Zone: Search Radius:
County: Basin: Number: Suffix:
Owner Name: (First) (Last) O Non-Domestic O Domestic All
Well / Surface Data Report Avg. Depth. to Water Report
Water Column Report Clear Form WATERS Menu Help


AVERAGE DEPTH OF WATER REPORT 11/15/2004

							(Depth	Water in	Feet)
Bsn	Tws	Rng Sec	Zone	X	Y,	Wells	Min	Max	Αvç
L	13S	33E 35				4	80	95	87

Record Count: 4

APPENDIX B

ENVIRONMENTAL LABORATORY OF TEXAS ANALYTICAL RESULTS

Analytical Report

Prepared for:

Ken Dutton

Basin Environmental Services
P.O. Box 301

Lovington, NM 88260

Project: Saunders 8 inch #4
Project Number: 2004-00184
Location: Lea County, NM

Lab Order Number: 4K05015

Report Date: 11/11/04

Basin Environmental Services

Project: Saunders 8 inch #4

Fax: (505) 396-1429

P.O. Box 301

Project Number: 2004-00184

Reported: 11/11/04 10:22

Lovington NM, 88260

Project Manager: Ken Dutton

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Exc. Floor-RP-5' BGS	4K05015-01	Soil	11/04/04 13:05	11/05/04 15:27
Exc. Floor-Pooling Area 4'	4K05015-02	Soil	11/04/04 13:10	11/05/04 15:27
West Wall-Exc	4K05015-03	Soil	11/04/04 13:20	11/05/04 15:27
East Wall-Exc	4K05015-04	Soil	11/04/04 13:25	11/05/04 15:27
North Wall-Exc	4K05015-05	Soil	11/04/04 13:30	11/05/04 15:27
South Wall-Exc	4K05015-06	Soil	11/04/04 13:40	11/05/04 15:27

Project: Saunders 8 inch #4

Fax: (505) 396-1429

P.O. Box 301

Project Number: 2004-00184

Reported: 11/11/04 10:22

Lovington NM, 88260

Project Manager: Ken Dutton

Organics by GC **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	, Notes
Exc. Floor-RP-5' BGS (4K05015-01) Soi	•			Diduoli	Dateii	Troparou	, maryzod	111011100	14016
Benzene	ND	0.0250	mg/kg dry	25	EK41003	11/09/04	11/09/04	EPA 8021B	·
Toluene	0.0895	0.0250	"	н '	"	н	н	"	
Ethylbenzene	0.0747	0.0250		. "	"		**	· н	
Xylene (p/m)	0.506	0.0250	п		"		n - 1.	,,	
Xylene (o)	0.264	0.0250	11	0	*	11		. "	
Surrogate: a,a,a-Trifluorotoluene		93.3 %	80-1	20	"	· "	"	"	
Surrogate: 4-Bromofluorobenzene		111 %	80-1	20	"	"	"	• н	
Gasoline Range Organics C6-C12	103	10.0	mg/kg dry	1	EK40508	11/05/04	11/06/04	EPA 8015M	
Diesel Range Organics >C12-C35	1030	10.0	11	,,		**	"	H	
Total Hydrocarbon C6-C35	1130	10.0	. "	.,	п	Ħ .	. "	u	
Surrogate: 1-Chlorooctane		99.4 %	70-1	30	. "	·. "	"	#	
Surrogate: 1-Chlorooctadecane	*	123 %	70-1	30	"	"	<i>u</i> `	"	
Exc. Floor-Pooling Area 4' (4K05015-02) Soil								
Benzene	ND	0.0250	mg/kg dry	25	EK41003	11/09/04	11/10/04	EPA 8021B	
Toluene	ND	0.0250	n	**	"	*	11	**	
Ethylbenzene	ND	0.0250	**	**	и		Ħ		
Xylene (p/m)	ND	0.0250	,,		11	•	n	n	
Xylene (o)	ND	0.0250	#	"	n	u	н	**	
Surrogate: a,a,a-Trifluorotoluene		85.2 %	80-1	20	"	n	"	"	
Surrogate: 4-Bromofluorobenzene		94.9 %	80-1	20	"	"	u	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EK40508	11/05/04	11/06/04	EPA 8015M	
Diesel Range Organics >C12-C35	226	10.0	н		"	#	n	**	
Total Hydrocarbon C6-C35	226	10.0	n	n		**	*	п	
Surrogate: 1-Chlorooctane		87.4 %	70-1	30	. "	"	"	. "	
Surrogate: 1-Chlorooctadecane	•	. 100 %	70-1	30	"	"	"	,,	
West Wall-Exc (4K05015-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EK41003	11/09/04	11/10/04	EPA 8021B	
Toluene	0.0964	0.0250			,	**	**	**	
Ethylbenzene	0.0427	0.0250	H	rr	"	"	•	н	
Xylene (p/m)	0.281	0.0250	**	"	11		11	"	
Xylene (0)	0.141	0.0250		н	u		* п	"	
Surrogate: a,a,a-Trifluorotoluene		91.5 %	80-1	20	"	,, '	"	"	
Surrogate: 4-Bromofluorobenzene		98.4 %	80-1	20	"	· "	"	, ,	
Gasoline Range Organics C6-C12	77.4	10.0	mg/kg dry	· 1	EK40508	11/05/04	11/06/04	EPA 8015M	
Diesel Range Organics >C12-C35	695	10.0		н	. "		**	u	
Total Hydrocarbon C6-C35	772	10.0	n	**			"		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, $with \ written \ approval \ of \ Environmental \ Lab \ of \ Texas.$

P.O. Box 301

Lovington NM, 88260

Project: Saunders 8 inch #4

Project Number: 2004-00184

Project Manager: Ken Dutton

Fax: (505) 396-1429

Reported: 11/11/04 10:22

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
West Wall-Exc (4K05015-03) Soil									
Surrogate: 1-Chlorooctane	·	102 %	70-	130	EK40508	11/05/04	11/06/04	EPA 8015M	
Surrogate: 1-Chlorooctadecane		117 %	70-	130	"	"	"	#	
East Wall-Exc (4K05015-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EK41003	11/09/04	11/10/04	EPA 8021B	
Toluene	ND	0.0250	n	**	u u	"		n	
Ethylbenzene	ND	0.0250	ÎH		"	n	"	11	•
Xylene (p/m)	ND	0.0250	н	**	n	"	•	n	
Xylene (o)	ND	0.0250	II	. "	"	"	"	u	
Surrogate: a,a,a-Trifluorotoluene		93.2 %	80-	120	"	"	, H	"	
Surrogate: 4-Bromofluorobenzene		97.4 %	80-1	120	"	u	"	#	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EK40508	11/05/04	11/06/04	EPA 8015M	
Diesel Range Organics >C12-C35	81.8	10.0	n	**	n	"	н	."	
Total Hydrocarbon C6-C35	81.8	10.0	11		**	. "	11	11	
Surrogate: 1-Chlorooctane		96.2 %	70-	130	n	"	"	"	
Surrogate: 1-Chlorooctadecane		101 %	70-2	130	"	. "	"	n	
North Wall-Exc (4K05015-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EK41003	11/09/04	11/10/04	EPA 8021B	
Toluene	J [0.0126]	0.0250	"	"	**	"	"	"	J
Ethylbenzene	ND	0.0250	"	"	•	**	#	**	
Xylene (p/m)	0.0524	0.0250	"	,,	н	11	II .	H	
Xylene (o)	J [0.0149]	0.0250	"	,,	*	"	н	**	J
Surrogate: a,a,a-Trifluorotoluene		89.3 %	80-1	20	и	"	и	"	
Surrogate: 4-Bromofluorobenzene		87.1 %	80-1	20	"	"	"	H	
Gasoline Range Organics C6-C12	44.7	10.0	mg/kg dry	1	EK40508	11/05/04	11/06/04	EPA 8015M	
Diesel Range Organics >C12-C35	1150	10.0	**	"	**	n	**	"	
Total Hydrocarbon C6-C35	1200	10.0	u	**	"	*		n	
Surrogate: 1-Chlorooctane		102 %	70-1	30	,,	"	,,	"	
Surrogate: 1-Chlorooctadecane		109 %	70-1	30	u	"	u	#	

P.O. Box 301

Lovington NM, 88260

Project: Saunders 8 inch #4

Project Number: 2004-00184

Project Manager: Ken Dutton

Fax: (505) 396-1429

Reported:

11/11/04 10:22

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
South Wall-Exc (4K05015-06) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EK41003	11/09/04	11/10/04	EPA 8021B	
Toluene	ND	0.0250	Ħ		**		"	"	
Ethylbenzene	ND	0.0250	•	"	**	**	*	. "	
Xylene (p/m)	ND	0.0250	, u	"	**	n n	н	н	
Xylene (o)	ND	0.0250	"	"	**	n	u	Ħ	
Surrogate: a,a,a-Trifluorotoluene		92.2 %	80-1	20	H	n	"	и	
Surrogate: 4-Bromofluorobenzene		96.6 %	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	J [7.62]	10.0	mg/kg dry	1	EK40508	11/05/04	11/06/04	EPA 8015M	J
Diesel Range Organics >C12-C35	307	10.0	+1	**	**	· п	n	u	
Total Hydrocarbon C6-C35	307	10.0	11	*	**	n	**	"	
Surrogate: 1-Chlorooctane		105 %	70-1	30	"	n	"	"	
Surrogate: 1-Chlorooctadecane		121 %	70-1.	30	"	. "	"	"	

P.O. Box 301

Lovington NM, 88260

Project: Saunders 8 inch #4

Project Number: 2004-00184

Project Manager: Ken Dutton

Fax: (505) 396-1429

Reported: 11/11/04 10:22

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Exc. Floor-RP-5' BGS (4K05015-01) Soil						······································			
% Moisture	12.0		%	1	EK40804	11/08/04	11/08/04	% calculation	
Exc. Floor-Pooling Area 4' (4K05015-02) S	oil								
% Moisture	7.0		%	1	EK40804	11/08/04	11/08/04	% calculation	
West Wall-Exc (4K05015-03) Soil		•	٠						
% Moisture	11.0		%	1	EK40804	11/08/04	11/08/04	% calculation	
East Wall-Exc (4K05015-04) Soil									
% Moisture	14.0		%	1	EK40804	11/08/04	11/08/04	% calculation	
North Wall-Exc (4K05015-05) Soil									
% Moisture	6.0		%	1	EK40804	11/08/04	11/08/04	% calculation	
South Wall-Exc (4K05015-06) Soil									
% Moisture	7.0		%	1	EK40804	11/08/04	11/08/04	% calculation	- Mariana - Mari

Project: Saunders 8 inch #4

Fax: (505) 396-1429

P.O. Box 301

Lovington NM, 88260

Project Number: 2004-00184 Project Manager: Ken Dutton

Reported: 11/11/04 10:22

·		Reporting		Spike	Source	*	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EK40508 - Solvent Extraction	(GC)									
Blank (EK40508-BLK1)	•			Prepared 8	k Analyzed:	11/05/04				
Gasoline Range Organics C6-C12	· ND	10.0	mg/kg wet			· · · · · · · · · · · · · · · · · · ·				
Diesel Range Organics >C12-C35	ND	10.0	*							
Total Hydrocarbon C6-C35	ND	10.0	"							
urrogate: 1-Chlorooctane	42.8		mg/kg	50.0		85.6	70-130			
Surrogate: 1-Chlorooctadecane	52.7		"	50.0		105	70-130			
Blank (EK40508-BLK2)				Prepared:	11/05/04 Aı	nalyzed: 11	/06/04			
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet					,		
Diesel Range Organics >C12-C35	ND	10.0	u							*
Total Hydrocarbon C6-C35	ND	10.0	н							
Surrogate: 1-Chlorooctane	44.9	· · · · · · · · · · · · · · · · ·	mg/kg	50.0		89.8	70-130		,	
urrogate: 1-Chlorooctadecane	52.4		"	50.0		105	70-130			
.CS (EK40508-BS1)				Prepared &	Analyzed:	11/05/04				
Basoline Range Organics C6-C12	446	10.0	mg/kg wet	500		89.2	75-125			
Diesel Range Organics >C12-C35	477	10.0	u	500		95.4	75-125			
Cotal Hydrocarbon C6-C35	923	10.0		1000	٠.	92.3	75-125			
lurrogate: 1-Chlorooctane	52.2		mg/kg	50.0		104	70-130			
urrogate: 1-Chlorooctadecane	50.9		"	50.0		102	70-130			
.CS (EK40508-BS2)				Prepared: 1	11/05/04 Aı	nalyzed: 11	/06/04			
Gasoline Range Organics C6-C12	430	10.0	mg/kg wet	500		86.0	75-125			
Diesel Range Organics >C12-C35	502	10.0	••	500		100	75-125			
Total Hydrocarbon C6-C35	932	10.0	u	1000		93.2	75-125			
urrogate: 1-Chlorooctane	53.0		mg/kg	50.0		106	70-130			***************************************
iurrogate: 1-Chlorooctadecane	45.7		"	50.0		91.4	70-130			
LCS Dup (EK40508-BSD1)				Prepared &	Analyzed:	11/05/04				
Gasoline Range Organics C6-C12	437	10.0	mg/kg wet	500 .		87.4	75-125	2.04	20	
Diesel Range Organics >C12-C35	477	10.0	"	500		95.4	75-125	0.00	20	
Total Hydrocarbon C6-C35	914	10.0	u	1000		91.4	75-125	0.980	20	
urrogate: 1-Chlorooctane	50.1		mg/kg	50.0		100	70-130			
Surrogate: 1-Chlorooctadecane	53.3		"	50.0	•,	107	70-130			

Project: Saunders 8 inch #4

Fax: (505) 396-1429

P.O. Box 301

Project Number: 2004-00184

Reported: 11/11/04 10:22

Lovington NM, 88260

Project Manager: Ken Dutton

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EK40508 - Solvent Extraction (GC)										
Calibration Check (EK40508-CCV1)				Prepared &	k Analyzed	: 11/05/04	:			
Gasoline Range Organics C6-C12	503		mg/kg	500		101	80-120			
Diesel Range Organics >C12-C35	551		"	500		110	80-120			
Total Hydrocarbon C6-C35	1050		"	1000		105	80-120			
Surrogate: 1-Chlorooctane	55.5		"	50.0		111	70-130			
Surrogate: 1-Chlorooctadecane	53.2		"	50.0		106	70-130			
Calibration Check (EK40508-CCV2)				Prepared: 1	11/05/04 A	nalyzed: 11	/06/04			
Gasoline Range Organics C6-C12	493		mg/kg	500		98.6	80-120			,
Diesel Range Organics >C12-C35	567		"	500		113	80-120			
Total Hydrocarbon C6-C35	1060		**	1000		106 ·	80-120			
Surrogate: 1-Chlorooctane	55.6		"	50.0 .		111	70-130			
Surrogate: 1-Chlorooctadecane	54.5		"	50.0		109	70-130			
Matrix Spike (EK40508-MS2)	Sou	rce: 4K0501	3-14	Prepared: 1	11/05/04 A	nalyzed: 11	/06/04			
Gasoline Range Organics C6-C12	567	10.0	mg/kg dry	521	ND	109	75-125			1
Diesel Range Organics >C12-C35	593	10.0	"	521	ND	114	75-125			
Total Hydrocarbon C6-C35	1160	10.0	"	1040	ND	112	75-125			
Surrogate: 1-Chlorooctane	58.8		mg/kg	50.0		118	70-130			
Surrogate: 1-Chlorooctadecane	56.0		"	50.0		. 112	70-130			
Matrix Spike Dup (EK40508-MSD2)	Sou	rce: 4K05013	3-14	Prepared: 1	1/05/04 A	nalyzed: 11	/06/04			
Gasoline Range Organics C6-C12	594	10.0	mg/kg dry	521	ND	114	75-125	4.65	20	
Diesel Range Organics >C12-C35	604	10.0	n	521	ND	116	75-125	1.84	20	
Total Hydrocarbon C6-C35	1200	10.0	"	1040	ND	115 -	75-125	3.39	20	
Surrogate: 1-Chlorooctane .	59.4		mg/kg	50.0	· · · · · · · · · · · · · · · · · · ·	119	70-130			
Surrogate: 1-Chlorooctadecane	53.1		"	50.0	•	106	70-130			

Project: Saunders 8 inch #4

Fax: (505) 396-1429

P.O. Box 301

Project Number: 2004-00184

Reported:

Lovington NM, 88260

Project Manager: Ken Dutton

11/11/04 10:22

Organics by GC - Quality Control **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	, Notes
Analyte	Result	Limi	Omis	Pevel	Kesuit	/UKLAC	Linns	KI D	Dillit	110103
Batch EK41003 - EPA 5030C (GC)										
Blank (EK41003-BLK1)				Prepared &	Analyzed:	11/09/04			1	
Benzene	ND	0.0250	mg/kg wet							
Toluene ·	ND	0.0250	**							
Ethylbenzene	ND	0.0250	"					-		
Kylene (p/m)	ND	0.0250	"							
Kylene (o)	ND	0.0250	11							
Surrogate: a,a,a-Trifluorotoluene	88.3		ug/kg	100		88.3	80-120			
Surrogate: 4-Bromofluorobenzene	102		"	100		102	80-120			
LCS (EK41003-BS1)				Prepared &	: Analyzed:	11/09/04				
Benzene	88.8		ug/kg	100		88.8	80-120			
foluene	98.0			100		98.0	80-120			
Sthylbenzene	98.8		"	100		98.8	80-120			
Kylene (p/m)	220		"	200		110	80-120			
Kylene (o)	102		. "	100		102	80-120			
Surrogate: a,a,a-Trifluorotoluene	102		"	100		102	80-120			
Surrogate: 4-Bromofluorobenzene	117		"	100		117	80-120			
Calibration Check (EK41003-CCV1)				Prepared: 1	1/09/04 A	nalyzed: 11	/10/04			
Benzene	88.4		ug/kg	100		88.4	80-120			
foluene	98.0		n	100		98.0	80-120			
Ethylbenzene	92.2		u	100		92.2	80-120			
Kylene (p/m)	199		**	200		99.5	80-120			
Xylene (o)	95.5		**	100		95.5	80-120			
Surrogate: a,a,a-Trifluorotoluene	105		"	100	· · ·	105	80-120			
Surrogate: 4-Bromofluorobenzene	102		"	100		102	80-120			
Matrix Spike (EK41003-MS1)	Sou	rce: 4K08003	3-01	Prepared: 1	1/09/04 A	nalyzed: 11	/10/04			
Benzene	87.9		ug/kg	100	ND	87.9	80-120			
Toluene	98.0		"	100	ND	98.0	80-120			
Ethylbenzene	103		**	100	ND	103	80-120			
Kylene (p/m)	225		"	200	ND	112	80-120			
(ylene (o)	106		"	100	ND	106	80-120			

Surrogate: a,a,a-Trifluorotoluene

Surrogate: 4-Bromofluorobenzene

106

115

80-120

80-120

100

100

106

115

Project: Saunders 8 inch #4

Fax: (505) 396-1429

P.O. Box 301 Lovington NM, 88260 Project Number: 2004-00184 Project Manager: Ken Dutton Reported: 11/11/04 10:22

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike Dup (EK41003-MSD1)	Source: 4	Prepared:	11/09/04 A						
Benzene	90.9	ug/kg	100	ND	90.9	80-120	3.36	20	
Toluene	103	"	100	, ND	103	80-120	4.98	20	
Ethylbenzene	. 106	н	100	ND	106	80-120	2.87	20 .	
Xylene (p/m)	. 235	n	200	ND	118	80-120	5.22	20	
Xylene (o)	110	14	100	ND	110	80-120	3.70	20	
Surrogate: a,a,a-Trifluorotoluene	110	rr rr	100		110	80-120			
Surrogate: 4-Bromofluorobenzene	116	"	100		116	80-120			

Project: Saunders 8 inch #4

Fax: (505) 396-1429

P.O. Box 301

Project Number: 2004-00184

Reported:

Lovington NM, 88260

Project Manager: Ken Dutton

11/11/04 10:22

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EK40804 - General Preparation (Prep)

Blank (EK40804-BLK1) Prepared & Analyzed: 11/08/04

% Moisture 0.0

Duplicate (EK40804-DUP1) Source: 4K05006-01 Prepared & Analyzed: 11/08/04

% Moisture 20.0 20.0 0.00
 Basin Environmental Services
 Project
 Saunders 8 inch #4
 Fax: (505) 396-1429

 P.O. Box 301
 Project Number:
 2004-00184
 Reported:

 Lovington NM, 88260
 Project Manager:
 Ken Dutton
 11/11/04 10:22

Notes and Definitions

Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag). DET Analyte DETECTED ND Analyte NOT DETECTED at or above the reporting limit NR Not Reported dry Sample results reported on a dry weight basis RPD Relative Percent Difference LCS Laboratory Control Spike MS Matrix Spike Duplicate

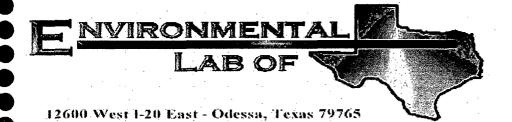
	Kaland K July		,
Report Approved By:	Committee of the	Date:	11/11/2004

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.


Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

TAT brabnat2 elubarto&-enq) TAT H2UR Project Name: SAUN DAS 8" #4 CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Project 8: EMS: 2004-184 Q ~ POUNT! NH M.R.O.P Temperature Upon Receipt: Sample Containers Intact? Analyze For Laboratory Comments: N BTEX 8260 0002/B1208 X3T6 Project Loc: 48A Aetals: As Ag Ba Cd Cr Pb Hg Se TOTAL PO #: SO4, CO3, HCO3) 1527 8015M) 1005 1000 Other (specify): 11-05-04 1-05-04 105 Studge Date Fan No: (505) 396-1426, Other (Specify) BUON Preservalive *OS*H HOSN HCI **CONH** your monum **e**2| 550/620/ No. of Containers 1326 13a5 1325 1336 1310 1340 Time Sampled OVINGTON, NM SSZEB ceived by ELOT BYNOV 2004 Received by Date Sampled -02 EX FLOOR-POOLT NG AREAM O. BOX301 1505/441-2124 BINOVØ41266 <u>F</u> Phone; 432-563-1900 Fax: 432-563-1713 EXC. FLOOR-RP- 5' BLS 1)KTTOA Date OU FAST WALL-EXC -05 NORTH WALL - EXC FIELD CODE -06 SOUTH WALL-EXE -03 WEST WALL-EXC Project Manager: KEN BES Company Name Company Address: City/State/Zip: Telephone No: Sampler Signature: 12600 West F20 East Odessa, Texas 70765 1 2000 ALL 10-Special Instructions: LAB # (lab use only)

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client: Basin Environmental				
Date/Time: 11-05-04@ 1600				•
Order #: 4K 05 0 15				
Initials: JMM				
Sample Receipt	Checkl	ist		
Temperature of container/cooler?	Yes	No	1.0 0	7
Shipping container/cooler in good condition?	(Yes)	No	1.0	-1
Custody Seals intact on shipping container/cooler?	Yes	No	(Not present)	_
Custody Seals intact on sample bottles?	Yes	No	Not present	1
Chain of custody present?	Pes		ASC DISSOID	7
Sample Instructions complete on Chain of Custody?	(YES)	No		7
Chain of Custody signed when relinquished and received?	Yes	No		j
Chain of custody agrees with sample label(s)	Tes	No		
Container labels legible and intact?	(Yes	No		7
Sample Matrix and properties same as on chain of custody?	Yes	No		7
Samples in proper container/bottle?	(Yes)	No		7
Samples properly preserved?	(Yes)	No		7
Sample bottles intact?	YES	No		Ī .
Preservations documented on Chain of Custody?	Yes	No		
Containers documented on Chain of Custody?	(Yes)	No		
Sufficient sample amount for indicated test?	Yes	No		J
All samples received within sufficient hold time?	YES	No		
VOC samples have zero headspace?	(Yes	No	Not Applicable	_i
Other observations:				
· · · · · · · · · · · · · · · · · · ·				
	•		•	* ·
Variance Docum	entatio	n:		
Contact Person: Date/Time:			Contacted by:	
Regarding:				
Corrective Action Taken:				
Conscilve Action Taken.			•	
		·····		
				

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: Saunders 8" #4
Project Number: EMS: 2004-00184
Location: Lea County, NM

Lab Order Number: 5E13023

Report Date: 05/17/05

Project Number: EMS: 2004-00184
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 05/17/05 14:49

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-3 5'	5E13023-01	Soil	05/04/05 10:10	05/13/05 09:40
SB-3 10'	5E13023-02	Soil	05/04/05 10:15	05/13/05 09:40
SB-3 20'	5E13023-03	Soil	05/04/05 10:30	05/13/05 09:40
SB-3 30'	5E13023-04	Soil	05/04/05 10:50	05/13/05 09:40
SB-3 50'	5E13023-05	Soil	05/04/05 11:30	05/13/05 09:40
SB-3 65'	5E13023-06	Soil	05/04/05 11:55	05/13/05 09:40
SB-4 5'	5E13023-07	Soil	05/04/05 12:51	05/13/05 09:40
SB-4 10'	5E13023-08	Soil	05/04/05 12:55	05/13/05 09:40
SB-4 20'	5E13023-09	Soil	05/04/05 13:06	05/13/05 09:40
SB-4 30'	5E13023-10	Soil	05/04/05 13:18	05/13/05 09:40
SB-4 40'	5E13023-11	Soil	05/04/05 13:28	05/13/05 09:40
SB-4 50'	5E13023-12	Soil	05/04/05 13:35	05/13/05 09:40
SB-4 60'	5E13023-13	Soil	05/04/05 13:43	05/13/05 09:40
SB-5 10'	5E13023-14	Soil	05/04/05 13:55	05/13/05 09:40
SB-5 20'	5E13023-15	Soil	05/04/05 14:06	05/13/05 09:40
SB-5 30'	5E13023-16	Soil	05/04/05 14:18	05/13/05 09:40
SB-5 50'	5E13023-17	Soil	05/04/05 14:36	05/13/05 09:40
SB-6 5'	5E13023-18	Soil	05/04/05 15:05	05/13/05 09:40
SB-6 10'	5E13023-19	Soil	05/04/05 15:08	05/13/05 09:40
SB-6 20'	5E13023-20	Soil	05/04/05 15:15	05/13/05 09:40
SB-6 30'	5E13023-21	Soil	05/04/05 15:21	05/13/05 09:40
SB-6 50'	5E13023-22	Soil	05/04/05 15:35	05/13/05 09:40
SB-7 10'	5E13023-23	Soil	05/04/05 16:13	05/13/05 09:40
SB-7 20'	5E13023-24	Soil	05/04/05 16:17	05/13/05 09:40
SB-7 30'	5E13023-25	Soil	05/04/05 16:27	05/13/05 09:40
SB-7 50'	5E13023-26	Soil	05/04/05 16:46	05/13/05 09:40
SB-7 65'	5E13023-27	Soil	05/04/05 16:55	05/13/05 09:40
SB-8 10'	5E13023-28	Soil	05/04/05 17:20	05/13/05 09:40
SB-8 20'	5E13023-29	Soil	05/04/05 17:29	05/13/05 09:40
SB-8 30'	5E13023-30	Soil	05/04/05 17:39	05/13/05 09:40
SB-8 60'	5E13023-31	Soil	05/04/05 18:06	05/13/05 09:40

Project: Saunders 8" #4

Project Number: EMS: 2004-00184 Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported: 05/17/05 14:49

Organics by GC Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-3 5' (5E13023-01) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE51402	05/14/05	05/15/05	EPA 8021B	
Toluene	0.302	0.0250	"	"	u	**	"	**	
Ethylbenzene	0.522	0.0250	**	"		"	n	i	
Xylene (p/m)	4.34	0.0250	и .	n.	10	n	11	u	
Xylene (o)	1.79	0.0250	#	n		"	"	H	
Surrogate: a,a,a-Trifluorotoluene		94.3 %	80-12	20	"	"	"		
Surrogate: 4-Bromofluorobenzene		110 %	80-12	20	"	"	#	. "	
Gasoline Range Organics C6-C12	829	10.0	mg/kg dry	1	EE51305	05/13/05	05/14/05	EPA 8015M	
Diesel Range Organics >C12-C35	1070	. 10.0	**	"	. "	,,	*		
Total Hydrocarbon C6-C35	1900	10.0	n		"	**	. "	. "	
Surrogate: 1-Chlorooctane		99.8 %	70-1.	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		90.0 %	70-1.	30	"	"	"	"	
SB-3 10' (5E13023-02) Soil									
Benzene	J [0.0220]	0.0250	mg/kg dry	25	EE51402	. 05/14/05	05/15/05	EPA 8021B	
Toluene	0.546	0.0250	11	"	**	н	п	n	
Ethylbenzene	0.460	0.0250	**	**		**	. "	**	
Xylene (p/m)	3.31	0.0250	**	**		п	**		
Xylene (o)	1.25	0.0250	**	u			**	п	
Surrogate: a,a,a-Trifluorotoluene		120 %	80-12	20	"	н	"	"	
Surrogate: 4-Bromofluorobenzene		111 %	80-12	20	u	u	"	n .	
Gasoline Range Organics C6-C12	625	10.0	mg/kg dry	1	EE51305	05/13/05	05/14/05	EPA 8015M	
Diesel Range Organics >C12-C35	1010	10.0	"	*	**	**	**	**	
Total Hydrocarbon C6-C35	1640	10.0	**	**	в.,	**	н	н .	
Surrogate: 1-Chlorooctane		. 95.0 %	70-1.	30	"	n	"	"	
Surrogate: 1-Chlorooctadecane		89.4 %	70-13	80	"	"	"	"	
SB-3 20' (5E13023-03) Soil						*			
Benzene	ND	0.0250	mg/kg dry	25	EE51603	05/16/05	05/16/05	EPA 8021B	· · · · · ·
Toluene	J [0.0101]	0.0250	"	**	**	**	н	*	J
Ethylbenzene	0.0392	0.0250	"	*	**	"	**	**	
Xylene (p/m)	0.307	0.0250	n	**	*.	"	"	*	
Xylene (o)	0.134	0.0250	# .	и,	"	"	*	Ħ	
Surrogate: a,a,a-Trifluorotoluene		96.7 %	80-12	20	n	. "	и .	. "	
Surrogate: 4-Bromofluorobenzene		103 %	80-12	20	"	"	" .	"	
Gasoline Range Organics C6-C12	292	10.0	mg/kg dry	1	EE51313	05/13/05	. 05/14/05	EPA 8015M	
Diesel Range Organics >C12-C35	834	10.0	"	**	. 11	N	11	"	
Total Hydrocarbon C6-C35	1130	10.0	. "	п				"	•

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Saunders 8" #4
Project Number: EMS: 2004-00184
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:

Reported: 05/17/05 14:49

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-3 20' (5E13023-03) Soil				 					
Surrogate: 1-Chlorooctane		80.4 %	70-	130	EE51313	05/13/05	05/14/05	EPA 8015M	
Surrogate: 1-Chlorooctadecane		72.4 %	70-	130	, ,	**	"	#	
SB-3 30' (5E13023-04) Soil		,							
Benzene	ND	0.0250	mg/kg dry	25	EE51603	05/16/05	05/16/05	EPA 8021B	
Toluene	ND	0.0250	"	**	"	11	"	**	
Ethylbenzene	0.0346	0.0250	*#	"		"	**	"	
Xylene (p/m)	0.249	0.0250	**	n	**	" " ·	"	"	
Xylene (0)	0.124	0.0250	*	"	*	"	41	**	
Surrogate: a,a,a-Trifluorotoluene		94.1 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		100 %	80-	120	" .	"	"	,,	
Gasoline Range Organics C6-C12	312	10.0	mg/kg dry	1	EE51313	05/13/05	05/14/05	EPA 8015M	
Diesel Range Organics >C12-C35	988	10.0	11	n	**		n	н ,	
Total Hydrocarbon C6-C35	1300	10.0	*	n		"	•	"	
Surrogate: 1-Chlorooctane		83.8 %	70-	130	"	"	n	"	
Surrogate: 1-Chlorooctadecane	•	78.6 %	70-3	130	"	"	"	. "	
SB-3 50' (5E13023-05) Soil									•
Benzene	ND	0.0250	mg/kg dry	25	EE51603	05/16/05	05/16/05	EPA 8021B	
Toluene	0.104	0.0250	н	"	"	"	**	Ħ	
Ethylbenzene	0.211	0.0250	#	"	**	"		n n	
Xylene (p/m)	1.37	0.0250	"	"	,,	"	u	#	
Xylene (o)	0.687	0.0250	n	"	**	. "	,	ч	
Surrogate: a,a,a-Trifluorotoluene		95.5 %	80-1	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.7 %	80-1	120	"	#	u	. "	
Gasoline Range Organics C6-C12	598	10.0	mg/kg dry	1	EE51313	05/13/05	05/14/05	EPA 8015M	
Diesel Range Organics >C12-C35	1620	10.0	**	"	"	W	**	"	
Total Hydrocarbon C6-C35	2210	10.0	n .	**	и	"	*	"	
Surrogate: 1-Chlorooctane		95.2 %	70-1	130	"	"	"	"	1.4
Surrogate: 1-Chlorooctadecane		81.0 %	70-1	130	"	"	"	"	

Project Number: EMS: 2004-00184
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
05/17/05 14:49

Organics by GC Environmental Lab of Texas

	•	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-3 65' (5E13023-06) Soil	· · · · · · · · · · · · · · · · · · ·								
Benzene	ND	0.0250	mg/kg dry	25	EE51603	05/16/05	05/16/05	EPA 8021B	
Toluene	0.0461	0.0250	u		n	и ,	a	н	
Ethylbenzene	0.0612	0.0250	u	**	**	"	"	н	
Xylene (p/m)	0.387	0.0250	**	"	*	"	n	u	
Xylene (o)	0.162	0.0250	u	"	"	n	•	**	
Surrogate: a,a,a-Trifluorotoluene		98.3 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		105 %	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	242	10.0	mg/kg dry	1	EE51313	05/13/05	05/14/05	EPA 8015M	
Diesel Range Organics >C12-C35	859	10.0	и .	н		н	**	**	
Total Hydrocarbon C6-C35	1100	10.0	**	n	u	"		*	
Surrogate: 1-Chlorooctane		86.2 %	70-1	30	"	. "	"	"	
Surrogate: 1-Chlorooctadecane		77.6 %	70-1	30	"	"	"	"	
SB-4 5' (5E13023-07) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE51603	05/16/05	05/16/05	EPA 8021B	
Toluene	0.328	0.0250	**	**			11	u	
Ethylbenzene	0.785	0.0250	u	11	"	**	**	н	
Xylene (p/m)	5.71	0.0250	ıı	"	**		**	19	
Xylene (o)	2.21	0.0250	***	h		"	**	**	:
Surrogate: a,a,a-Trifluorotoluene		89.8 %	80-1	20	"	,,	n	"	
Surrogate: 4-Bromofluorobenzene		126 %	80-1	20	"	"	. "	"	S-0
Gasoline Range Organics C6-C12	811	10.0	mg/kg dry	1	EE51313	05/13/05	05/14/05	EPA 8015M	
Diesel Range Organics >C12-C35	1410	10.0	u	. "	н .	"	"	**	
Total Hydrocarbon C6-C35	2220	10.0	11	**	**		n	· n	
Surrogate: 1-Chlorooctane		94.8 %	70-1	30	"	"	n	"	
Surrogate: 1-Chlorooctadecane		78.6 %	70-1	30	"	. "	"	"	
SB-4 10' (5E13023-08) Soil		•				,			
Benzene	ND	0.0250	mg/kg dry	25	EE51603	05/16/05	05/16/05	EPA 8021B	
Toluene	0.833	0.0250	"		n	ti .	H	. "	
Ethylbenzene	0.837	0.0250		**	**	**	*	н	
Xylene (p/m)	5.84	0.0250	"	"	n	11	n	n	
Xylene (o)	2.11	0.0250		"	11	II .	11	"	
Surrogate: a,a,a-Trifluorotoluene		110 %	80-1	20	, н	"	п.	"	
Surrogate: 4-Bromofluorobenzene		115 %	80-1	20	"	"	н	, ,,	
Gasoline Range Organics C6-C12	943	10.0	mg/kg dry	1	EE51313	05/13/05	05/14/05	EPA 8015M	
Diesel Range Organics >C12-C35	1840	10.0	"	"	11	н	•	n	
Total Hydrocarbon C6-C35	2780	10.0	"		**	н	Ħ	**	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project Number: Saunders 8" #4
Project Manager: EMS: 2004-00184
Project Manager: Camille Reynolds

Reported: 05/17/05 14:49

Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Dramarad	Analyzed	Method	Note
SB-4 10' (5E13023-08) Soil	Resurt	- Emile		Ditution	Batch	Prepared	Analyzed	Method	Note
									·
Surrogate: 1-Chlorooctane		98.8 %	70		EE51313	05/13/05	05/14/05	EPA 8015M	
Surrogate: 1-Chlorooctadecane	•	79.0 %	70	130	n	"	".	"	
SB-4 20' (5E13023-09) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE51603	05/16/05	05/16/05	ĖPA 8021B	
Toluene	0.137	0.0250	17	"	**		*	**	
Ethylbenzene	0.250	0.0250	"	**	**	"	**	n	
Xylene (p/m)	1.62	0.0250	н	n		"	**	**	
Xylene (o)	0.655	0.0250	"	н	**	•	"	. "	
Surrogate: a,a,a-Trifluorotoluene		94.5 %	80-	120	"	,,	"	ll .	
Surrogate: 4-Bromofluorobenzene		101 %	80-	120	"	"	"	"	
Gasoline Range Organics C6-C12	750	10.0	mg/kg dry	1	EE51313	05/13/05	05/14/05	EPA 8015M	
Diesel Range Organics >C12-C35	2020	10.0	"	n	,,	n	w	"	
Total Hydrocarbon C6-C35	2770	10.0	"	n	*	"	•	H	
Surrogate: 1-Chlorooctane		94.4 %	70-1	130	"	n	"	"	
Surrogate: 1-Chlorooctadecane		80.2 %	70-1	130	Ħ		н	"	
SB-4 30' (5E13023-10) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE51603	05/16/05	05/16/05	EPA 8021B	
Toluene .	0.0320	0.0250	"	*	н	"	*		
Ethylbenzene	0.0935	0.0250	. "	*	п	*	n	"	
Xylene (p/m)	0.601	0.0250	n	**	и		u	**	•
Xylene (o)	0.272	0.0250	**	**	#		*	n	
Surrogate: a,a,a-Trifluorotoluene	•	84.0 %	80-1	120	п	н	"	"	
Surrogate: 4-Bromofluorobenzene		82.9 %	80-1	120	n	"	"	#	
Gasoline Range Organics C6-C12	580	10.0	mg/kg dry	1	EE51313	05/13/05	05/14/05	EPA 8015M	
Diesel Range Organics >C12-C35	2030	10.0	**	**	#	**	n .	**	
Total Hydrocarbon C6-C35	2610	10.0	"	n	*	н	"	**	
Surrogate: 1-Chlorooctane		89.0 %	70-1	130	"	"	n	"	
Surrogate: 1-Chlorooctadecane		82.4 %	70-1	130	"	"	"	"	

Project: Saunders 8" #4
Project Number: EMS: 2004-00184

Project Number: EMS. 2004-00182
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 05/17/05 14:49

Organics by GC Environmental Lab of Texas

Analysis	T . 4:	Reporting						•	
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-4 40' (5E13023-11) Soil						····			
Benzene	ND	0.0250	mg/kg dry	25	EE51603	05/16/05	05/16/05	EPA 8021B	
Toluene	ND ·	0.0250	Ħ	"	11	"	п	**	
Ethylbenzene	ND	0.0250	Ħ	"	**	и.	и	*	
Xylene (p/m)	ND	0.0250	**	"	n	n .	n ·	"	
Xylene (o)	ND	0.0250	Ħ		"	"	**	#	
Surrogate: a,a,a-Trifluorotoluene		86.7 %	80-1	20	"	*	"	ı,	
Surrogate: 4-Bromofluorobenzene		92.1 %	80-1	20	,,	,,	"	n	
Gasoline Range Organics C6-C12	19.2	10.0	mg/kg dry	1	EE51313	05/13/05	05/14/05	EPA 8015M	
Diesel Range Organics >C12-C35	126	10.0	Ħ		11	и	н	**	
Total Hydrocarbon C6-C35	145	10.0	n	**	n	u	. и	u	
Surrogate: 1-Chlorooctane		77.6 %	70-1	30	"	H	"	"	
Surrogate: 1-Chlorooctadecane		76.6 %	70-1	30	"	"	"	"	
SB-4 50' (5E13023-12) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE51603	05/16/05	05/16/05	EPA 8021B	
Toluene	ND	0.0250	**	**		"	u	н	
Ethylbenzene	ND	0.0250	"	**	п	n		"	
Xylene (p/m)	ND	0.0250	**	•	H	, ,	u	**	
Xylene (o)	ND	0.0250	"	**	"	**	**	u .	
Surrogate: a,a,a-Trifluorotoluene		82.4 %	80-1	20	"	n	n	"	
Surrogate: 4-Bromofluorobenzene		81.9 %	80-1	20	"	"	н	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EE51313	05/13/05	05/14/05	EPA 8015M	
Diesel Range Organics >C12-C35	62.0	10.0	н	"		#	#		
Total Hydrocarbon C6-C35	62.0	10.0	*	**	u	4	n		
Surrogate: 1-Chlorooctane		78.2 %	70-1	30	"	"	#	"	
Surrogate: 1-Chlorooctadecane		72.4 %	70-1	30	H	"	"	н .	•
SB-4 60' (5E13023-13) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE51603	05/16/05	05/16/05	EPA 8021B	
Toluene	ND	0.0250	n	**	"	h	**	ч	
Ethylbenzene	ND	0.0250	n	"	"	n	**	14	
Xylene (p/m)	ND	0.0250	**	"	**	**	**	**	
Xylene (o)	ND	0.0250	"	n		"	•	w	
Surrogate: a,a,a-Trifluorotoluene		90.4 %	80-1	20	и	н	"	u u	
Surrogate: 4-Bromofluorobenzene		95.6 %	80-1	20	"	н	"	u	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EE51313	05/13/05	05/15/05	EPA 8015M	
Diesel Range Organics >C12-C35	52.5	10.0	**	"	**	**	**		
Total Hydrocarbon C6-C35	52.5	10.0	u	**		ff	"	11	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Saunders 8" #4
Project Number: EMS: 2004-00184

Project Number: EMS: 2004-00184
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 05/17/05 14:49

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Droporod	Analysis d	Method	Meder
SB-4 60' (5E13023-13) Soil	Rosuit	Limit	·	Dilution	Batch	Prepared	Analyzed	Memod	Note
Surrogate: 1-Chlorooctane		86.2 %	70-1	130	EE51313	05/13/05	05/15/05	EPA 8015M	
Surrogate: 1-Chlorooctadecane		78.6 %	70-1	130	"	"	n .	n	
SB-5 10' (5E13023-14) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE51603	05/16/05	05/16/05	EPA 8021B	
Toluene	ND	0.0250	n	11	**	"	**	. "	
Ethylbenzene	ND	0.0250	q	"	"	11		n	
Xylene (p/m)	· ND	0.0250	"	"	*1	n .	,	**	
Xylene (o)	ND	0.0250	"	"	•	н	W		
Surrogate: a,a,a-Trifluorotoluene		87.7 %	80-1	20	"	н	"	"	
Surrogate: 4-Bromofluorobenzene		91.1 %	80-1	120	"	"	"	"	•
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	ī	EE51313	05/13/05	05/15/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	**	**		•	•	**	
Total Hydrocarbon C6-C35	ND	10.0	"	"	"	**	. "	65	
Surrogate: 1-Chlorooctane		85.0 %	70-1	30	#	"	ıı .	"	
Surrogate: 1-Chlorooctadecane	•	77.8 %	70-1	30	"	u	,,	n	
SB-5 20' (5E13023-15) Soil						,			
Benzene	ND	0.0250	mg/kg dry	25	EE51603	05/16/05	05/16/05	EPA 8021B	
Toluene	ND	0.0250	"	**	n .	n	n	**	
Ethylbenzene	ND	0.0250	"		n	H	",	n'	
Xylene (p/m)	ND	0.0250	**	. "	"	**	*	"	
Xylene (o)	ND	0.0250	**	*	n	и	"	**	
Surrogate: a,a,a-Trifluorotoluene		88.7 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		89.1 %	80-1	20	"	"	"	. "	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EE51313	05/13/05	05/15/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	**	"	"	п	u	**	
Total Hydrocarbon C6-C35	ND	10.0	**	и	"	".	H	**	
Surrogate: 1-Chlorooctane	•	84.4 %	70-1	30	" .	"	"	"	
Surrogate: 1-Chlorooctadecane	•	76.8 %	70-1	30	"	n	"	н	

Project: Saunders 8" #4
Project Number: EMS: 2004-00184

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 05/17/05 14:49

Organics by GC Environmental Lab of Texas

	·	EHVITOR	Environmental Lab of Texas												
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note						
SB-5 30' (5E13023-16) Soil	-														
Benzene	ND	0.0250	mg/kg dry	25	EE51603	05/16/05	05/16/05	EPA 8021B							
Toluene	ND	0.0250	н	**	п	# .	"	и							
Ethylbenzene	ND	0.0250	n	"	"	**	**	"							
Xylene (p/m)	ND	0.0250	*	**	".	**	"	"							
Xylene (o)	ND	0.0250	"	. "	"	•	n	u							
Surrogate: a,a,a-Trifluorotoluene		89.6 %	80-1	20 .	"	, ,	"	"							
Surrogate: 4-Bromofluorobenzene		92.2 %	80-1	20	"	u	"	*							
Gasoline Range Organics C6-C12	ND .	10.0	mg/kg dry	1	EE51313	05/13/05	05/15/05	EPA 8015M							
Diesel Range Organics >C12-C35	ND	10.0	"	н	,,	**	"	**							
Total Hydrocarbon C6-C35	ND	10.0	"	**	**	•	n	H							
Surrogate: 1-Chlorooctane	•	80.0 %	70-1	30	"	"	"	ll							
Surrogate: 1-Chlorooctadecane	•	74.4 %	70-1	30	н	#	"	"							
SB-5 50' (5E13023-17) Soil							•								
Benzene	ND	0.0250	mg/kg dry	25	EE51603	05/16/05	05/16/05	EPA 8021B	· · · · · · · · · · · · · · · · · · ·						
Toluene	ND	0.0250	"			**	11	10							
Ethylbenzene	ND	0.0250	n		"		**	**							
Xylene (p/m)	ND	0.0250	и.	**	n	,	. н								
Xylene (o)	ND	0.0250	n	**	**	**	"	u							
Surrogate: a,a,a-Trifluorotoluene	and the second s	89.3 %	80-1	20	"	n	"	#							
Surrogate: 4-Bromofluorobenzene		91.7 %	80-1	20	"	"	"	"							
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EE51313	05/13/05	05/15/05	EPA 8015M							
Diesel Range Organics >C12-C35	ND	10.0	"	"	"	"	n	te							
Total Hydrocarbon C6-C35	ND	10.0	n	,,	**	"	**	**							
Surrogate: 1-Chlorooctane	· · · · · · · · · · · · · · · · · · ·	77.6 %	70-1	30	"	"	"	"							
Surrogate: 1-Chlorooctadecane		. 70.8 %	70-1	30	"	" .		,,							
SB-6 5' (5E13023-18) Soil								,							
Benzene	0.141	0.0250	mg/kg dry	25	EE51603	05/16/05	05/16/05	EPA 8021B							
Toluene	5.67	0.0250	п	'. u		**	,,	19							
Ethylbenzene	2.67	0.0250	' и	"		n	**	**							
Xylene (p/m)	14.8	0.0250	. "	"		**	n								
Kylene (o)	4.94	0.0250	"	n	н	а	"	"							
Surrogate: a,a,a-Trifluorotoluene		137 %	80-1	20	"	"	"	"	S-1						
Surrogate: 4-Bromofluorobenzene		130 %	80-1	20	"	"	"	п	S-1						
Gasoline Range Organics C6-C12	1000	10.0	mg/kg dry	1	EE51313	05/13/05	05/15/05	EPA 8015M							
Diesel Range Organics >C12-C35	1840	10.0	**	**	"	и	11	*							
Total Hydrocarbon C6-C35	2840	10.0	"	"			*	n .							

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Saunders 8" #4

Project Number: EMS: 2004-00184 Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported: 05/17/05 14:49

Organics by GC Environmental Lab of Texas

Andre	n 1:	Reporting	· ***		_			•	
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-6 5' (5E13023-18) Soil								·····	
Surrogate: 1-Chlorooctane		97.8 %	70-1	130	EE51313	05/13/05	05/15/05	EPA 8015M	
Surrogate: 1-Chlorooctadecane		78.0 %	70-1	130	"	"	"		
SB-6 10' (5E13023-19) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE51603	05/16/05	05/16/05	EPA 8021B	
Toluene	0.0758	0.0250	"	"	н	"	"	*	
Ethylbenzene	0.114	0.0250	"	"	**	11	н	11	
Xylene (p/m)	0.661	0.0250	"		**	,	11	#	
Xylene (o)	0.257	0.0250	. "		n		**	**	
Surrogate: a,a,a-Trifluorotoluene		92.5 %	80-1	20	"	"	"	"	٠.
Surrogate: 4-Bromofluorobenzene		106 %	80-1	20	"	· #	"	n .	
Gasoline Range Organics C6-C12	258	10.0	mg/kg dry	1	EE51313	05/13/05	05/15/05	EPA 8015M	
Diesel Range Organics >C12-C35	1000	10.0	. "		n	u	u	Ħ	
Total Hydrocarbon C6-C35	1260	10.0	"		**				
Surrogate: 1-Chlorooctane		86.4 %	70-1	30	"	"	. "	n	
Surrogate: 1-Chlorooctadecane		80.4 %	70-1	30	n	"	H	"	
SB-6 20' (5E13023-20) Soil							•		
Benzene	ND	0.0250	mg/kg dry	25	EE51603	05/16/05	05/16/05	EPA 8021B	
Toluene	ND	0.0250	"	"	"	"	*	W	
Ethylbenzene	ND	0.0250	w	**		*	**	ų	
Xylene (p/m)	ND	0.0250	*	"	"	н	11	u	
Xylene (o)	ND	0.0250	"	"	"	Ħ	**	"	
Surrogate: a,a,a-Trifluorotoluene		89.1 %	80-1	20	"	н	"	"	
Surrogate: 4-Bromofluorobenzene	-	91.6 %	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EE51313	05/13/05	05/15/05	EPA 8015M	
Diesel Range Organics >C12-C35	24.5	10.0	**	"	. "	*	11	**	
Total Hydrocarbon C6-C35	24.5	10.0	u	**	. "	**	u	#	
Surrogate: 1-Chlorooctane		83.6 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		76.2 %	70-1	30	"	"	"	"	

Project: Saunders 8" #4

Project Number: EMS: 2004-00184 Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported: 05/17/05 14:49

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-6 30' (5E13023-21) Soil				Diminon	Daltii	1 repared	Audyzed	Medion	11016
Benzene	ND	0.0250	mg/kg dry	25	EE51603	05/16/05	05/16/05	EPA 8021B	
Toluene	ND	0.0250	11	. "	"		н	H	
Ethylbenzene	ND	0.0250	"	и .	•	"		"	
Xylene (p/m)	ND	0.0250	"	n	n	"		rr	
Xylene (o)	ND	0.0250	**	"	*		*	н	
Surrogate: a,a,a-Trifluorotoluene		88.5 %	80-1	20	н	н .	н	"	
Surrogate: 4-Bromofluorobenzene		95.0 %	80-1	20	"	"	"	u	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EE51313	05/13/05	05/15/05	EPA 8015M	
Diesel Range Organics >C12-C35	18.6	10.0	**	"	n	11	"		
Total Hydrocarbon C6-C35	18.6	10.0	**	**	11	n	II	**	
Surrogate: 1-Chlorooctane		100 %	70-1	30	"	n .	. "	#	
Surrogate: 1-Chlorooctadecane		89.8 %	70-1	30	n	n	"	и .	
SB-6 50' (5E13023-22) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE51701	05/16/05	05/16/05	EPA 8021B	
Toluene	ND	0.0250	"	•	u	*	*	*	
Ethylbenzene	ND	0.0250	19		u	"	,,	n	
Xylene (p/m)	ND	0.0250	n	**	u	n	"	Ħ	
Xylene (o)	ND	0.0250	"	"		**	11	*	
Surrogate: a,a,a-Trifluorotoluene		84.3 %	80-1	20	" .	"	"	"	
Surrogate: 4-Bromofluorobenzene		80.9 %	80-1	20	<i>#</i>	"	"	n	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1.	EE51313	05/13/05	05/15/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	*	"	Ħ	. "	**	**	
Total Hydrocarbon C6-C35	ND	10.0	**		"		"	11	
Surrogate: 1-Chlorooctane		80.0 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		72.4 %	70-1	30	"	"	"	n	
SB-7 10' (5E13023-23) Soil									
Benzene	. ND	0.0250	mg/kg dry	25	EE51701	05/16/05	05/16/05	EPA 8021B	
Toluene	ND	0.0250		**	•	**	**	Ħ	
Ethylbenzene	. ND	0.0250	. 19	**	*	n ·	"	*	
Xylene (p/m)	ND	0.0250	"		"	"	"	н	
Xylene (o)	ND	0.0250	u '	#	"	"	11		
Surrogate: a,a,a-Trifluorotoluene		88.5 %	80-1	20	"		"	н	
Surrogate: 4-Bromofluorobenzene		82.4 %	80-1	20	"	,	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EE51314	05/13/05	05/15/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0		**	**	u	"	*	
Total Hydrocarbon C6-C35	ND	10.0	н	*	"	*	*	41	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Saunders 8" #4

Project Number: EMS: 2004-00184 Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported: 05/17/05 14:49

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-7 10' (5E13023-23) Soil						•			
Surrogate: 1-Chlorooctane		81.4 %	70-1.	30	EE51314	05/13/05	05/15/05	EPA 8015M	
Surrogate: 1-Chlorooctadecane		74.0 %	70-1.	30	"	n	"	n	
SB-7 20' (5E13023-24) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE51701	05/16/05	05/17/05	EPA 8021B	
Toluene	ND	0.0250	**	,		**	**	Ħ	
Ethylbenzene	ND	0.0250	11	"	"	" .	* 16	n	
Xylene (p/m)	ND	0.0250	" .	**	"	. "	"	Ħ	
Xylene (o)	ND	0.0250	n	**	11	11	**	*	
Surrogate: a,a,a-Trifluorotoluene	, , , , , , , , , , , , , , , , , , , ,	91.0 %	80-12	20	"	"	"	. #	
Surrogate: 4-Bromofluorobenzene		85.9 %	80-12	20	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EE51314	05/13/05	05/15/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	н	"	"	"		"	
Total Hydrocarbon C6-C35	ND	10.0			**	u	n	n	
Surrogate: 1-Chlorooctane		91.0 %	70-13	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		79.8 %	70-13	30	"	n	"	"	
ST = 401 (ST14004 AT 6 1)					•		•		
SB-7 30' (5E13023-25) Soil			<u>,</u>					· · · · · · · · · · · · · · · · · · ·	
Benzene	ND	0.0250	mg/kg dry	25	EE51701	05/16/05	05/17/05	EPA 8021B	
Toluene	ND	0.0250	"	n		"	**	п	
Ethylbenzene	ND	0.0250	n	"	"	*	"	11	
Xylene (p/m)	ND	0.0250	"	H	**	"	. "	"	
Xylene (o)	ND	0.0250	"	"			н .	"	
Surrogate: a,a,a-Trifluorotoluene		89.1 %	80-12	20	, ,,	"	"	н	
Surrogate: 4-Bromofluorobenzene		96.8 %	80-12	20	"	"	"	. "	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EE51314	05/13/05	05/15/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	н	"	. #	**	H	H	
Total Hydrocarbon C6-C35	ND	10.0	**	**	41	**	#	"	
Surrogate: 1-Chlorooctane	······································	86.0 %	70-13	30	n	п	"	"	
Surrogate: 1-Chlorooctadecane		77.8 %	70-13	80	н	"	<i>n</i> .	"	

Project Number: EMS: 2004-00184
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
05/17/05 14:49

Organics by GC Environmental Lab of Texas

Analyte	Danuls	Reporting	Units	75/1 · · ·	D. C.	D.		N.E.A. T	37
Analyte	Result	Limit	Onts	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-7 50' (5E13023-26) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE51701	05/16/05	05/17/05	EPA 8021B	
Toluene	ND	0.0250	**	"	11	۳.	**	H	
Ethylbenzene	ND	0.0250	н	"	n	**	"	#) ***	
Xylene (p/m)	ND	0.0250	**	"	n	**		n .	
Xylene (o)	ND	0.0250	"		"	"			
Surrogate: a,a,a-Trifluorotoluene		90.9 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.3 %	80-1	20		Ħ	"	H	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EE51314	05/13/05	05/15/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	"	11		**	"	**	
Total Hydrocarbon C6-C35	ND	10.0	"		*	*	"	Ħ	
Surrogate: 1-Chlorooctane		82.6 %	70-1	30	"	"	u	. 11	
Surrogate: 1-Chlorooctadecane	•	74.0 %	70-1	30	,	"	"	"	
SB-7 65' (5E13023-27) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE51701	05/16/05	05/17/05 .	EPA 8021B	
Toluene	ND	0.0250	"	**	**	**	u	44	
Ethylbenzene	ND	0.0250	•	**	"	"	"	**	
Xylene (p/m)	ND	0.0250	15	**	n	n.	n	11	
Xylene (o)	ND	0.0250	*		"	"	n	"	
Surrogate: a,a,a-Trifluorotoluene		90.5 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		89.1 %	80-1	20	"	u .	n	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EE51314	05/13/05	05/15/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	"	**	**	**	n	N	
Total Hydrocarbon C6-C35	ND	10.0	,		. "	**	**	"	
Surrogate: 1-Chlorooctane		81.8 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		71.4 %	70-1	30	"	. "	n	"	
SB-8 10' (5E13023-28) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE51701	05/16/05	05/17/05	EPA 8021B	
Toluene	ND	0.0250		**	"	"	•	*	
Ethylbenzene	ND	0.0250		**	n	и	n	u	
Xylene (p/m)	ND	0.0250	"	"	n	n	•	n	
Xylene (o)	ND	0.0250	"	**	"	n	**	ij	
Surrogate: a,a,a-Trifluorotoluene		90.6 %	80-1	20	"	"	#	н	
Surrogate: 4-Bromofluorobenzene		87.6 %	80-1	20	"	"	u	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EE51314	05/13/05	05/15/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	"	**	"	11	11	n	
Total Hydrocarbon C6-C35	ND	10.0	**	**	•	н	"	**	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Saunders 8" #4

Project Number: EMS: 2004-00184 Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported: 05/17/05 14:49

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units		D				•
	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-8 10' (5E13023-28) Soil							· · · · · · · · · · · · · · · · · · ·		
Surrogate: 1-Chlorooctane		82.8 %	70-1	30	EES1314	05/13/05	05/15/05	EPA 8015M	
Surrogate: 1-Chlorooctadecane		81.0 %	70-1	30	"	ıı .	n	· · · ·	
SB-8 20' (5E13023-29) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE51701	05/16/05	05/17/05	EPA 8021B	
Toluene	ND	0.0250	"	#	"	ш		"	
Ethylbenzene	ND	0.0250	"	n	"	**	"	n	
Xylene (p/m)	ND	0.0250	"	**	"	۳ .	11	**	
Xylene (o)	ND	0.0250			" .	H		u	
Surrogate: a,a,a-Trifluorotoluene		93.9 %	80-1	20	и	"	" ,	"	
Surrogate: 4-Bromofluorobenzene		87.6 %	80-1	20	"	n	"	"	
Gasoline Range Organics C6-C12	· ND	10.0	mg/kg dry	1	EE51314	05/13/05	05/15/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0		u	"	"	н	*	
Total Hydrocarbon C6-C35	ND	10.0	u	*	n	н	. "	•	
Surrogate: 1-Chlorooctane		91.0 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		81.8 %	70-1	30	"	"	n	"	
SB-8 30' (5E13023-30) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE51701	05/16/05	05/17/05	EPA 8021B	
Toluene	ND	0.0250	**	n	v	"	"	. и	
Ethylbenzene	ND	0.0250		н	**	"	"	**	
Xylene (p/m)	ND	0.0250	"	n	. "	n	**	11	
Xylene (o)	ND	0.0250	**	**	# .	11	**	"	
Surrogate: a,a,a-Trifluorotoluene		88.2 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.0 %	80-1	20	#	"	"	#	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EE51314	05/13/05	05/15/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	n	n	"		"	n	
Total Hydrocarbon C6-C35	ND ND	10.0	#	"	11	"	н	"	
Surrogate: 1-Chlorooctane	-	77.2 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		75.4 %	70-1	30	"	#	"	"	

Project: Saunders 8" #4

Project Number: EMS: 2004-00184 Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported: 05/17/05 14:49

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit		Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-8 60' (5E13023-31) Soil				***					
Benzene	ND	0.0250	mg/kg dry	25	EE51701	05/16/05	05/17/05	EPA 8021B	
Toluene	ND	0.0250	и	"	н	н	#1	n	
Ethylbenzene	ND	0.0250	"	"	"	· ·	tt	W	
Xylene (p/m)	ND	0.0250	**	u,	**	**	Ħ	14	
Xylene (o)	ND	0.0250	•	**	"	. "	**	H	
Surrogate: a,a,a-Trifluorotoluene		88.9 %	80-1	20	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		92.5 %	80-1	20	11	"	. "	tt.	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EE51314	05/13/05	05/15/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	**	**	*	W	*	ui.	
Total Hydrocarbon C6-C35	ND .	10.0	"	"	**	ņ	**		
Surrogate: 1-Chlorooctane	•	79.0 %	70-1.	30 .	"	"	. "	"	
Surrogate: 1-Chlorooctadecane		71.2 %	70-1.	30	"	"	"	"	

Project: Saunders 8" #4

Project Number: EMS: 2004-00184 Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported: 05/17/05 14:49

Analyte	Result	Reporting Limit	Units	Ditent	D-+-1	D	A	; } f-4b J	37.4
SB-3 5' (5E13023-01) Soil	Kesun	Lillit	Omes	Dilution	Batch	Prepared	Analyzed	Method	Notes
·····	150						•	0/11-4	
% Moisture	15.3	0.1	. %	1	EE51301	05/13/05	05/16/05	% calculation	
SB-3 10' (5E13023-02) Soil									
% Moisture	3.8	0.1	%	1	EE51301	05/13/05	05/16/05	% calculation	•
SB-3 20' (5E13023-03) Soil									
% Moisture	4.4	0.1	% .	1	EE51301	05/13/05	05/16/05	% calculation	
SB-3 30' (5E13023-04) Soil									
% Moisture	4.1	0.1	%	1	EE51301	05/13/05	05/16/05	% calculation	
SB-3 50' (5E13023-05) Soil									
% Moisture	4.4	0.1	%	1	EE51301	05/13/05	. 05/16/05	% calculation	
SB-3 65' (5E13023-06) Soil									
% Moisture	6.5	0.1	%	1	EE51301	05/13/05	05/16/05	% calculation	
SB-4 5' (5E13023-07) Soil						•			
% Moisture	6.5	0.1	%	1	EE51301	05/13/05	05/16/05	% calculation	
SB-4 10' (5E13023-08) Soil					_				
% Moisture	4.8	0.1	%	1	EE51301	05/13/05	05/16/05	% calculation	
SB-4 20' (5E13023-09) Soil									
% Moisture	4.0	0.1	%	1	EE51301	05/13/05	05/16/05	% calculation	
SB-4 30' (5E13023-10) Soil									
% Moisture	3.9	0.1	%	1	. EE51301	05/13/05	05/16/05	% calculation	
SB-4 40' (5E13023-11) Soil									
% Moisture	3.6	0.1	%	1	EE51301	05/13/05	05/16/05	% calculation	

Project: Saunders 8" #4

Project Number: EMS: 2004-00184 Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported: 05/17/05 14:49

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-4 50' (5E13023-12) Soil				Direction	·	1 Toparou	1 11111/1111		11000
% Moisture	4.1	0.1	%	1	EE51301	05/13/05	05/16/05	% calculation	
SB-4 60' (5E13023-13) Soil									
% Moisture	3.9	0.1	%	1	EE51301	05/13/05	05/16/05	% calculation	
SB-5 10' (5E13023-14) Soil									
% Moisture	6.4	0.1	%	1	EE51301	05/13/05	05/16/05	% calculation	
SB-5 20' (5E13023-15) Soil									
% Moisture	4.3	0.1	%	1	EE51301	05/13/05	05/16/05	% calculation	
SB-5 30' (5E13023-16) Soil									
% Moisture	4.6	0.1	%	1	EE51301	05/13/05	05/16/05	% calculation	
SB-5 50' (5E13023-17) Soil									
% Moisture	4.2	0.1	%	1	EE51301	05/13/05	05/16/05	% calculation	
SB-6 5' (5E13023-18) Soil									
% Moisture	7.9	0.1	%	1	EE51301	05/13/05	05/16/05	% calculation	
SB-6 10' (5E13023-19) Soil							v		
% Moisture	5.2	0.1	%	1	EE51301	05/13/05	05/16/05	% calculation	
SB-6 20' (5E13023-20) Soil					•	•			
% Moisture	4.0	0.1	%	1	EE51301	05/13/05	05/16/05	% calculation	
SB-6 30' (5E13023-21) Soil					·				
% Moisture	3.9	0.1	%	1	EE51301	05/13/05	05/16/05	% calculation	
SB-6 50' (5E13023-22) Soil									
% Moisture	3.8	0.1	%	1	EE51301	05/13/05	05/16/05	% calculation	

Project: Saunders 8" #4

Project Number: EMS: 2004-00184 Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported: 05/17/05 14:49

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-7 10' (5E13023-23) Soil								w	
% Moisture	4.0	0.1	%	1	EE51301	05/13/05	05/16/05	% calculation	
SB-7 20' (5E13023-24) Soil									
% Moisture	4.2	0.1	%	1	EE51301	05/13/05	05/16/05	% calculation	
SB-7 30' (5E13023-25) Soil									
% Moisture	4.2	0.1	%	1	EE51301	05/13/05	05/16/05	% calculation	
SB-7 50' (5E13023-26) Soil	,								
% Moisture	3.9	0.1	%	I	EE51301	05/13/05	05/16/05	% calculation	
SB-7 65' (5E13023-27) Soil								•	
% Moisture	8.2	0.1	%	1	EE51301	05/13/05	05/16/05	% calculation	
SB-8 10' (5E13023-28) Soil							,		
% Moisture	3.7	0.1	%	1	EE51301	05/13/05	05/16/05	% calculation	
SB-8 20' (5E13023-29) Soil								•	
% Moisture	5.4	0.1	%	1	EE51301	05/13/05	05/16/05	% calculation	
SB-8 30' (5E13023-30) Soil	·								
% Moisture	3.6	0.1	%	1	EE51301	05/13/05	05/16/05	% calculation	
SB-8 60' (5E13023-31) Soil									
% Moisture	2.9	0.1	%	1	EE51301	05/13/05	05/16/05	% calculation	

Project: Saunders 8" #4

Project Number: EMS: 2004-00184 Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported: 05/17/05 14:49

Analyte	Result	Reporting Limit		Spike Level	Source	%REC	%REC Limits	RPD	RPD Limit	Moto-
Aimiyic	Kesuit	Limit	Units	Level	Result	%KEC	Limits	KrD	Limit	Notes
Batch EE51305 - Solvent Extraction (GC)								,		
Blank (EE51305-BLK1)	*			Prepared: (05/13/05 A	nalyzed: 05	5/14/05		•	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet			,				
Diesel Range Organics >C12-C35	ND	10.0	"							
Total Hydrocarbon C6-C35	NĐ	10.0	"		,					
Surrogate: 1-Chlorooctane	39.4		mg/kg	50.0		78.8	70-130			,
Surrogate: 1-Chlorooctadecane	37.6		"	50.0		75.2	70-130			
LCS (EE51305-BS1)				Prepared: (05/13/05 A	nalyzed: 05	5/14/05			,
Gasoline Range Organics C6-C12	475	10.0	mg/kg wet	500		95.0	75-125			
Diesel Range Organics >C12-C35	505	10.0	н	500		101	75-125			
Total Hydrocarbon C6-C35	980	10.0	"	1000		98.0	75-125			
Surrogate: 1-Chlorooctane	38.6		mg/kg	50.0		77.2	70-130			
Surrogate: 1-Chlorooctadecane	36.2		"	50.0		72.4	70-130			
Calibration Check (EE51305-CCV1)				Prepared: (05/13/05 A	nalyzed: 05	5/14/05			
Gasoline Range Organics C6-C12	499		mg/kg	500		99.8	80-120			
Diesel Range Organics >C12-C35	530		u	500		106	80-120			
Fotal Hydrocarbon C6-C35	1030		11	1000		103	80-120			
Surrogate: 1-Chlorooctane	48.4		"	50.0		96.8	70-130			
Surrogate: 1-Chlorooctadecane	41.2		"	50.0		82.4	70-130			
Matrix Spike (EE51305-MS1)	Sou	rce: 5E13021	1-02	Prepared: ()5/13/05 A	nalyzed: 05	5/14/05		•	
Gasoline Range Organics C6-C12	477	10.0	mg/kg dry	517	ND	92.3	75-125			
Diesel Range Organics >C12-C35	502	10.0	**	517	ND	97.1	75-125			
Total Hydrocarbon C6-C35	979	10.0	**	1030	ND	95.0	75-125			
Surrogate: 1-Chlorooctane	52.8		mg/kg	50.0		106	70-130			
Surrogate: 1-Chlorooctadecane	47.0		"	50.0		94.0	70-130			
Matrix Spike Dup (EE51305-MSD1)	Sou	rce: 5E13021	-02	Prepared: ()5/13/05 A	nalyzed: 05	5/14/05			
Gasoline Range Organics C6-C12	488	10.0	mg/kg dry	517	ND	94.4	75-125	2.28	20	
Diesel Range Organics >C12-C35	511	10.0	"	517	ND	98.8	75-125	1.78	20	
Total Hydrocarbon C6-C35	999	10.0	"	1030	ND	97.0	75-125	2.02	20	
Surrogate: I-Chlorooctane	53.3	· · · · · · · · · · · · · · · · · · ·	mg/kg	50.0	,	107	70-130			
Surrogate: 1-Chlorooctadecane	48.5		p	50.0		97.0	70-130			

Project: Saunders 8" #4

Project Number: EMS: 2004-00184 Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported: 05/17/05 14:49

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
лицие	Result	Limit	Omis	Fevel	Result	70KEC	Limis	KPD	Limit	Notes
Batch EE51313 - Solvent Extraction (G	C)									
Blank (EE51313-BLK1)	*			Prepared: (05/13/05 A	nalyzed: 05	5/14/05			
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	10.0						•		
Total Hydrocarbon C6-C35	ND	10.0	. "							
Surrogate: 1-Chlorooctane	38.7		mg/kg	50.0		77.4	70-130	,		
Surrogate: 1-Chlorooctadecane	35.2		"	50.0		70.4	70-130			
LCS (EE51313-BS1)				Prepared: (05/13/05 A	nalyzed: 05	5/14/05			
Gasoline Range Organics C6-C12	438	10.0	mg/kg wet	500		87.6	75-125			
Diesel Range Organics >C12-C35	498	10.0	"	500		99.6	75-125			
Total Hydrocarbon C6-C35	936	10.0	" '	1000		93.6	75-125			
Surrogate: 1-Chlorooctane	37.5		mg/kg	50.0		75.0	70-130			• ;
Surrogate: 1-Chlorooctadecane	35.9		"	50.0		71.8	70-130			
Calibration Check (EE51313-CCV1)				Prepared: (05/13/05 A	nalyzed: 05	5/14/05		•	
Gasoline Range Organics C6-C12	470		mg/kg	500		94.0	80-120			
Diesel Range Organics >C12-C35	492		"	500	٠.	98.4	80-120			
Total Hydrocarbon C6-C35	962		n ,	1000		96.2	80-120			
Surrogate: 1-Chlorooctane	48.2		н	50.0		96.4	70-130			
Surrogate: 1-Chlorooctadecane	41.0		n	50.0		82.0	70-130			
Matrix Spike (EE51313-MS1)	Sou	rce: 5E13023	-12	Prepared: ()5/13/05 A	nalyzed: 05	5/14/05		*	
Gasoline Range Organics C6-C12	482	10.0	mg/kg dry	521	ND	92.5	75-125			
Diesel Range Organics >C12-C35	570	10.0		521	62.0	97.5	75-125			
Total Hydrocarbon C6-C35	1050	10.0	"	1040	62.0	95.0	75-125			
Surrogate: 1-Chlorooctane	45.0		mg/kg	50.0	*.	90.0	70-130			######################################
Surrogate: 1-Chlorooctadecane	38.6		. "	50.0		77.2	70-130			
Matrix Spike Dup (EE51313-MSD1)	Sou	rce: 5E13023	-12	Prepared: 0)5/13/05 A	nalyzed: 05	/14/05			
Gasoline Range Organics C6-C12	488	10.0	mg/kg dry	521	ND	93.7	75-125	1.24	20	

559

1050

45.6

39.1

10.0

10.0

mg/kg

521

1040

50.0

50.0

62.0

62.0

95.4

95.0

91.2

78.2

75-125

75-125

70-130

70-130

1.95

0.00

20

20

Diesel Range Organics >C12-C35

Total Hydrocarbon C6-C35

Surrogate: 1-Chlorooctane

Surrogate: 1-Chlorooctadecane

Project: Saunders 8" #4

Project Number: EMS: 2004-00184. Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported: 05/17/05 14:49

	D. 1	Reporting		Spike	Source	4/555	%REC	n.c.	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE51314 - Solvent Extraction (GC)	·									
Blank (EE51314-BLK1)				Prepared:	05/13/05 A	nalyzed: 05/	15/05			
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	10.0	н,							
Total Hydrocarbon C6-C35	ND	10.0	**			•				
Surrogate: 1-Chlorooctane	44.0		mg/kg	50.0		88.0	70-130			
Surrogate: 1-Chlorooctadecane	35.5		"	50.0		71.0	70-130			
LCS (EE51314-BS1)				Prepared: 0	05/13/05 A	nalyzed: 05/	15/05			
Gasoline Range Organics C6-C12	461	10.0	mg/kg wet	500		92.2	75-125			
Diesel Range Organics >C12-C35	. 496	10.0	"	500		99.2	75-125			
Total Hydrocarbon C6-C35	957	10.0	**	1000		95.7	75-125			
Surrogate: 1-Chlorooctane	38.6		mg/kg	50.0		77.2	70-130			
Surrogate: 1-Chlorooctadecane	35.6		"	50.0		71.2	70-130			
Calibration Check (EE51314-CCV1)				Prepared: (05/13/05 A	nalyzed: 05/	15/05			
Gasoline Range Organics C6-C12	475		mg/kg	500		95.0	80-120			
Diesel Range Organics >C12-C35	492		Ħ	500		98.4	80-120			
Total Hydrocarbon C6-C35	967		u	1000		96.7	80-120			
Surrogate: 1-Chlorooctane	47.5		"	50.0	***************************************	95.0	70-130			
Surrogate: 1-Chlorooctadecane	39.6		"	50.0		79.2	70-130			
Matrix Spike (EE51314-MS1)	Sou	rce: 5E13025	5-01	Prepared: (05/13/05 A	nalyzed: 05/	15/05			
Gasoline Range Organics C6-C12	485	10.0	mg/kg dry	534	ND	90.8	75-125			
Diesel Range Organics >C12-C35	530	10.0	"	534	ND	99.3	75-125			
Total Hydrocarbon C6-C35	1010	10.0	н	1070	ND	94.4	75-125			
Surrogate: 1-Chlorooctane	40.6		mg/kg	50.0		81.2	70-130			
Surrogate: I-Chlorooctadecane	35.6		u	50.0		71.2	70-130			
Matrix Spike Dup (EE51314-MSD1)	Sou	rce: 5E13025	5-01	Prepared: (05/13/05 A	nalyzed: 05/	15/05			
Gasoline Range Organics C6-C12	513	10.0	mg/kg dry	534	ND	96.1	75-125	5.61	20	
Diesel Range Organics >C12-C35	550	10.0	**	534	ND	103	75-125	3.70	20	
Total Hydrocarbon C6-C35	1060	10.0	n ·	1070	ND	99.1	75-125	4.83	20	
Surrogate: 1-Chlorooctane	43.1		mg/kg	50.0	**	86.2	70-130			
Surrogate: 1-Chlorooctadecane	37.4		"	50.0		74.8	70-130			

Project: Saunders 8" #4

Project Number: EMS: 2004-00184 Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported: 05/17/05 14:49

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE51402 - EPA 5030C (GC)										
Blank (EE51402-BLK1)		,		Prepared: (05/14/05 Aı	nalyzed: 05	/16/05			
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250								
Ethylbenzene	. ND	0.0250	**							
Kylene (p/m)	ND	0.0250	11							
Xylene (o)	ND	0.0250	"							
Surrogate: a,a,a-Trifluorotoluene	95.6		ug/kg	100		95.6	80-120			
Surrogate: 4-Bromofluorobenzene	83.0		"	100		83.0	80-120			
LCS (EE51402-BS1)				Prepared: 0)5/14/05 At	nalyzed: 05	/15/05			
Benzene	92.5		ug/kg	100	··	92.5	80-120			
Toluene .	84.8		"	100		84.8	80-120			
Ethylbenzene	83.1		"	100		83.1	80-120			
Kylene (p/m)	182		"	200		91.0	80-120			
Kylene (o)	85.1		u	100		85.1	80-120			
Surrogate: a,a,a-Trifluorotoluene	103		"	100		103	80-120			
Surrogate: 4-Bromofluorobenzene	107		"	100		107	80-120			
Calibration Check (EE51402-CCV1)				Prepared: 0)5/14/05 Ar	nalyzed: 05	/15/05			
Benzene .	92.8		ug/kg	100	and the state of t	92.8	80-120			
Foluene Foluene	86.8		**	100		86.8	80-120	•		
Ethylbenzene	82.8		**	100		82.8	80-120			
Kylene (p/m)	185			200		92.5	80-120			
Xylene (o)	89.6		"	100		89.6	80-120			
urrogate: a,a,a-Trifluorotoluene	114		,,	100		114	80-120			
Surrogate: 4-Bromofluorobenzene	110		"	100		110	80-120			
Matrix Spike (EE51402-MS1)	Sou	rce: 5E13025	-12	Prepared: 0)5/14/05 Ar	nalyzed: 05	/15/05			
Benzene .	96.6		ug/kg	100	ND	96.6	80-120	**************************************	*	
Coluene	88.0		"	100	ND	88.0	80-120			
Ethylbenzene	84.8		"	100	ND	84.8	80-120			
Kylene (p/m)	193		"	200	ND	96.5	80-120			
Kylene (o)	88.9		n -	100	ND	88.9	80-120			
Surrogate: a,a,a-Trifluorotoluene	115		n	100	,	115	80-120			
Surrogate: 4-Bromofluorobenzene	100		"	100		100	80-120			

Project: Saunders 8" #4

Project Number: EMS: 2004-00184 Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported: 05/17/05 14:49

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE51402 - EPA 5030C (GC)										
Matrix Spike Dup (EE51402-MSD1)	Sour	rce: 5E13025	-12	Prepared: (05/14/05 Ar	nalyzed: 05	/15/05			
Benzene	97.3	,	ug/kg	100	ND	97.3	80-120	0.722	20	
Toluene	93.9		"	100	ND	93.9	80-120	6.49	20	
Ethylbenzene	92.0		"	100	.ND	92.0	80-120	8.14	20	
Xylene (p/m)	210		"	200	ND	105	80-120	8.44	20	
Xylene (o)	93.2		'n	100	ND	93.2	80-120	4.72	20	
Surrogate: a,a,a-Trifluorotoluene	116		"	100		116	80-120			
Surrogate: 4-Bromofluorobenzene	110		"	100		110	80-120			
Batch EE51603 - EPA 5030C (GC)										
Blank (EE51603-BLK1)				Prepared &	Analyzed:	05/16/05				
Benzene	ND	0.0250	mg/kg wet							
l'oluene	ND	0.0250	" .							
Ethylbenzene	ND	0.0250	n							
Xylene (p/m)	ND	0.0250								
Xylene (o)	ND	0.0250	*							
Surrogate: a,a,a-Trifluorotoluene	95.3		ug/kg	100		95.3	80-120			
Surrogate: 4-Bromofluorobenzene	94.9		. "	100		94.9	80-120			
LCS (EE51603-BS1)	٠.			Prepared &	Analyzed:	05/16/05				
Benzene	90.3		ug/kg	100	,	90.3	80-120			
Гоішене	88.4		"	100	:	88.4	80-120			
Ethylbenzene	88.0		**	100		88.0	80-120			•
Xylene (p/m)	201			200		100	80-120			
Xylene (o)	91.7		**	100		91.7	80-120	•		
Surrogate: a,a,a-Trifluorotoluene	109		"	100		109	80-120			
Surrogate: 4-Bromofluorobenzene	113		"	100		113	80-120			

Project: Saunders 8" #4

Project Number: EMS: 2004-00184 Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported: 05/17/05 14:49

	Reporting			Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level .	Result	%REC	Limits	RPD	Limit	Notes
Batch EE51603 - EPA 5030C (GC)	_									
Calibration Check (EE51603-CCV1)		Prepared & Analyzed: 05/16/05								
Benzene	90.3	1	ug/kg	100		90.3	80-120			
Toluene	86.8		11	100		86.8	80-120			
Ethylbenzene	83.1		11	100		83.1	80-120			
(ylene (p/m)	. 187		п	200		93.5	80-120			
(ylene (o)	89.3		n	100		89.3	80-120			
Surrogate: a,a,a-Trifluorotoluene	115	9 · · · · · · · · · · · · · · · · · · ·	"	100		115	80-120			
urrogate: 4-Bromofluorobenzene	99.8		"	100		99.8	80-120			
Matrix Spike (EE51603-MS1)	Source: 5E13023-21			Prepared &	Analyzed:	05/16/05				
Benzene	89.4	. 1	ug/kg	100	ND	89.4	80-120			
foluene	86.2		"	100	ND	86.2	80-120			
Ethylbenzene	83.7		"	100	ND	83.7	80-120			
(ylene (p/m)	189		0	200	ND	94.5	80-120			
(ylene (o)	87.6		11	100	ND	87.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	106		"	100		106	80-120			
urrogate: 4-Bromofluorobenzene	109		"	100		109	80-120			
Matrix Spike Dup (EE51603-MSD1)	Source: 5E13023-21			Prepared &	Analyzed:	05/16/05				
Benzene	88.2	ı	ug/kg	100	ND	88.2	80-120	1.35	20	
Toluene	85.9		n	100	ND	85.9	80-120	0.349	20	
Ethylbenzene	83.9		"	100	ND	83.9	80-120	0.239	20	
Kylene (p/m)	194		11	200	ND	97.0	80-120	2.61	20	
(ylene (o)	90.6		*	100	ND	90.6	80-120	3.37	20	
Surrogate: a,a,a-Trifluorotoluene	111		"	100		111	80-120			
Surrogate: 4-Bromofluorobenzene			"	100		108	80-120			
Batch EE51701 - EPA 5030C (GC)										
Blank (EE51701-BLK1)	Prepared & Analyzed: 05/16/05									
Benzene	ND	0.0250 mg	/kg wet							
Coluene	ND	0.0250	"							
Ethylbenzene	ND	0.0250				,				
Kylene (p/m)	ND	0.0250	• .			•				
(vlene (o)	ND	0.0250								
urrogate: a,a,a-Trifluorotoluene	87.8	ı	ug/kg	100		87.8	80-120			
Surrogate: 4-Bromofluorobenzene	81.2		"	100		81.2	80-120			

Project: Saunders 8" #4

Project Number: EMS: 2004-00184 Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported: 05/17/05 14:49

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE51701 - EPA 5030C (GC)									
LCS (EE51701-BS1)			Prepared &	k Analyzed	: 05/16/05				
Benzene	93.4	ug/kg	100		93.4	80-120			
Toluene	91.6	"	100		91.6	80-120			
Ethylbenzene	88.7	н	100		88.7	80-120			
(yłene (p/m)	203	"	200		102	80-120			
(ylene (o)	95.1		100		95.1	80-120			
urrogate: a,a,a-Trifluorotoluene	113	н	100		113	80-120			
urrogate: 4-Bromofluorobenzene	111	. "	100		IÏI	80-120			
alibration Check (EE51701-CCV1)			Prepared &	Analyzed:	: 05/16/05				
enzene	90.3	ug/kg	100		90.3	80-120			
oluene	86.8	11	100		86.8	80-120			
thylbenzene	83.1	•	100		83.1	80-120			•
(ylene (p/m)	187	**	200		93.5	80-120			
(ylene (o)	89.3	*	100		89.3	80-120			
urrogate: a,a,a-Trifluorotoluene	115	"	100		115	80-120			
urrogate: 4-Bromofluorobenzene	99.8	"	100		99.8	80-120			
Matrix Spike (EE51701-MS1)	Sou	rce: 5E13023-22	Prepared: ()5/16/05 A	nalyzed: 05	5/17/05			
lenzene	86.7	ug/kg	100	ND	86.7	80-120	***************************************		
oluene	84.6	n	100	ND	84.6	80-120			
Ethylbenzene	83.0	u	100	ND	83.0	80-120			
(ylene (p/m)	188	n	200	ND	94.0	80-120			
(ylene (o)	88.5	п	100	ND	88.5	80-120			
urrogate: a,a,a-Trifluorotoluene	106	"	100		106	80-120			
urrogate: 4-Bromofluorobenzene	97.4		100		97.4	80-120			
Antrix Spike Dup (EE51701-MSD1)	Sour	rce: 5E13023-22	Prepared: (05/16/05 A	nalyzed: 05	5/17/05			
Benzene	87.6	ug/kg	100	ND	87.6	80-120	1.03	20	
oluene (85.7	u	100	ND	85.7	80-120	1.29	20	
Cthylbenzene	85.8	u	100	ND	85.8	80-120	3.32	20	
(ylene (p/m)	197	, ,	200	ND	98.5	80-120	4.68	20	
(ylene (o)	92.6	"	100	ND	92.6	80-120	4.53	20	
urrogate: a,a,a-Trifluorotoluene	111	"	100		111	80-120			
urrogate: 4-Bromofluorobenzene	110	"	100		110	80-120			

Plains All American EH & S

1301 S. County Road 1150 Midland TX, 79706-4476 Project: Saunders 8" #4

Project Number: EMS: 2004-00184

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 05/17/05 14:49

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Reporting Spike Source %REC RPD Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes

Batch EE51301 - General Preparation (Prep)

Blank (EE51301-BLK1) Prepared & Analyzed: 05/13/05

% Moisture ND 0.1 %

 Duplicate (EE51301-DUP1)
 Source: 5E12011-01
 Prepared & Analyzed: 05/13/05

% Solids 98.2 % 97.4 0.818 20

Project Number: EMS: 2004-00184
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
05/17/05 14:49

Notes and Definitions

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

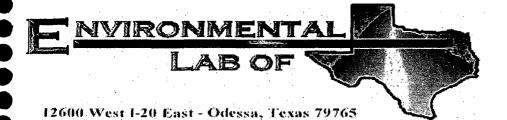
Dup Duplicate

	Raland	K 1 wh
Report Approved By:	Lacanc	1/1

Date:

5/17/2005

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer


Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Items for Project Manager Review

LabNumber	Analysis	Analyte	Exception
5E13023-18	8021B BTEX	a,a,a-Trifluorotoluene	S-04
5E13023-18	8021B BTEX	4-Bromofluorobenzene	S-04 .
· 5E13023-07	8021B BTEX	4-Bromofluorobenzene	S-04
5E13023-18	8021B BTEX	a,a,a-Trifluorotoluene	Exceeds upper control limit
5E13023-18	8021B BTEX	4-Bromofluorobenzene	Exceeds upper control limit
5E13023-07	8021B BTEX	4-Bromofluorobenzene	Exceeds upper control limit
	TPH 8015	(Soil)	J-Flags used
	8021B BTEX	(Soil)	J-Flags used
	8021B BTEX	(Soil)	RPD calculations based on %Recovery
,	TPH 8015	(Soil)	Result calculations based on MDL
	8021B BTEX	(Soil)	Result calculations based on MDL
			Default Report (not modified)

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: Saunders 8" #4

Project Number: EMS: 2004-00184

Location: Lea County, NM

Lab Order Number: 5F16006

Report Date: 06/17/05

Project: Saunders 8" #4
Project Number: EMS: 2004-00184

Project Number: EMS. 2004-0018Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 06/17/05 18:20

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BTM EXCV. N/SW	5F16006-01	Soil	06/15/05 13:45	06/16/05 14:00
BTM EXCV. W/SW	5F16006-02	Soil	06/15/05 14:00	06/16/05 14:00
BTM EXCV. S/SW	5F16006-03	Soil	06/15/05 14:15	06/16/05 14:00
BTM EXCV. E/SW	5F16006-04	Soil	06/15/05 14:30	06/16/05 14:00
BNCH N/SW	5F16006-05	Soil	06/15/05 14:45	06/16/05 14:00
BNCH W/SW	5F16006-06	Soil	06/15/05 15:00	06/16/05 14:00
BNCH S/SW	5F16006-07	Soil	06/15/05 15:15	06/16/05 14:00
BNCH E/SW	5F16006-08	Soil	06/15/05 15:30	06/16/05 14:00
BNCH N/4	5F16006-09	Soil	06/15/05 15:45	06/16/05 14:00
BNCH S/6	5F16006-10	Soil	06/15/05 16:00	06/16/05 14:00

Project: Saunders 8" #4

Project Number: EMS: 2004-00184 Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported: 06/17/05 18:20

Organics by GC Environmental Lab of Texas

Analisa	D- 1	Reporting	** **		_				
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
BTM EXCV. N/SW (5F16006-01) Soil			·····						
Benzene	ND	0.0250	mg/kg dry	25	EF51611	06/16/05	06/16/05	EPA 8021B	
Toluene	ND	0.0250	11	"	u	"	4	**	
Ethylbenzene	ND	0.0250	n	"	u	"	"	*	
Xylene (p/m)	ND	0.0250	n	**	"	**	n	**	
Xylene (o)	ND	0.0250	11	"	"	**	*	"	
Surrogate: a,a,a-Trifluorotoluene		86.0 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		110 %	80-1	20	"	"	tt	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EF51606	06/16/05	06/17/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	n	,,	**	#	"	"	
Total Hydrocarbon C6-C35	ND	10.0		**	u	**	"	9	
Surrogate: 1-Chlorooctane		72.0 %	70-1	30	"	"	И	"	-
Surrogate: 1-Chlorooctadecane		79.2 %	70-1	30	"	<i>u</i> .	,	н	
BTM EXCV. W/SW (5F16006-02) Soil									
Benzene	ND 4	0.0250	mg/kg dry	25	EF51611	06/16/05	06/16/05	EPA 8021B	
Toluene	ND	0.0250	"	•	. 18	Ħ	**	11	
Ethylbenzene	ND	0.0250	•	**	н	11		п	
Xylene (p/m)	ND	0.0250	79	**	**	*	n .	11	
Xylene (o)	ND	0.0250	**	"	n	"	*	n	•
Surrogate: a,a,a-Trifluorotoluene		84.9 %	80-1	20	n.	*	n	"	
Surrogate: 4-Bromofluorobenzene		108 %	80-1	20	"	. "	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EF51606	06/16/05	06/17/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	**	#	u	u	·	11	
Total Hydrocarbon C6-C35	ND	10.0	**	n	"	**	"		
Surrogate: 1-Chlorooctane		72.0 %	70-1	30	"	n	"	и	
Surrogate: 1-Chlorooctadecane		80.0 %	70-1	30	"	".	"	# ·	
BTM EXCV. S/SW (5F16006-03) Soil									
Benzene	0.0304	0.0250	mg/kg dry	25	EF51611	06/16/05	06/16/05	EPA 8021B	
Toluene	0.670	0.0250	"	n		n		W	
Ethylbenzene	0.271	0.0250	"		"	•	. "	n	
Xylene (p/m)	1.47	0.0250	"	"	"	11	•	"	
Xylene (o)	0.540	0.0250	H	. "	"	n		*	
Surrogate: a,a,a-Trifluorotoluene		93.5 %	80-1	20	"	" .	"	"	
Surrogate: 4-Bromofluorobenzene		112 %	80-1	20	"	"	"	. "	
Gasoline Range Organics C6-C12	240	10.0	mg/kg dry	1	EF51606	06/16/05	06/17/05	EPA 8015M	
Diesel Range Organics >C12-C35	6040	10.0	**		,	14	*		
Total Hydrocarbon C6-C35	6280	10.0	п	**		11	"	"	,

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Saunders 8" #4
Project Number: EMS: 2004-00184

Project Number: EMS: 2004-00182
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 06/17/05 18:20

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
BTM EXCV. S/SW (5F16006-03) Soil									
Surrogate: 1-Chlorooctane		74.8 %	70	130	EF51606	06/16/05	06/17/05	EPA 8015M	
Surrogate: 1-Chlorooctadecane		252 %	70-	130	"	"	n	"	S-0
BTM EXCV. E/SW (5F16006-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EF51611	06/16/05	06/16/05	EPA 8021B	
Toluene	ND	0.0250	**	"		n	**	**	
Ethylbenzene	ND	0.0250	н	**	"	H	H	**	
Xylene (p/m)	ND	0.0250	**	. "	"	*	n	**	
Xylene (o)	ND	0.0250		**	. "	n	п	re .	
Surrogate: a,a,a-Trifluorotoluene		. 86.4 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	80-	120	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EF51606	06/16/05	06/17/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0		"	"	u ·	*	"	
Total Hydrocarbon C6-C35	· ND	10.0	**	н	n	*	п	II.	
Surrogate: 1-Chlorooctane		71.0 %	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		83.2 %	70-1	130	n	"	"	"	
BNCH N/SW (5F16006-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EF51611	06/16/05	06/16/05	EPA 8021B	_
Toluene	ND	0.0250	"	, ,,	"	u	11	•	
Ethylbenzene	ND	0.0250	. "	n n	н	"	"	**	
Xylene (p/m)	ND ·	0.0250	**			u	•	U	
Xylene (o)	ND	0.0250	и	11	**	"	n	**	
Surrogate: a,a,a-Trifluorotoluene		83.5 %	80-1	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		100 %	80-1	120	Ħ	,	"	"	
Gasoline Range Organics C6-C12	11.8	10.0	mg/kg dry	1	EF51606	06/16/05	06/17/05	EPA 8015M	
Diesel Range Organics >C12-C35	426	10.0	"	•	**	"	*	11	
Total Hydrocarbon C6-C35	438	10.0	n n	"	n	**	"	11	_
Surrogate: 1-Chlorooctane		74.2 %	70-1	130	"	"	"	r	
Surrogate: 1-Chlorooctadecane		89.4 %	70-1	130	".	"	n	"	

Project: Saunders 8" #4

Project Number: EMS: 2004-00184 Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported:
06/17/05 18:20

Organics by GC Environmental Lab of Texas

	·····	Environ				• .			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
BNCH W/SW (5F16006-06) Soil						•		11.30 1.10 1.00	
Benzene	ND	0.0250	mg/kg dry	25	EF51611	06/16/05	06/16/05	EPA 8021B	
Toluene	ND	0.0250	"	"	"	"	"	**	
Ethylbenzene	ND	0.0250	"	"	"	n	"	"	
Xylene (p/m)	ND	0.0250	11	•	. "	"	и	**	
Xylene (o)	ND	0.0250	*	•	"		**	**	
Surrogate: a,a,a-Trifluorotoluene		87.8 %	80-1	20	н	"	"	#	
Surrogate: 4-Bromofluorobenzene		109 %	80-1	20 .	, "	n	n	<i>"</i>	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EF51606	06/16/05	06/17/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	u	"	**	*	n	re	
Total Hydrocarbon C6-C35	ND	10.0	н	n	**	. "	•	*	
Surrogate: 1-Chlorooctane		74.4 %	70-1	30	"	н	#	"	
Surrogate: 1-Chlorooctadecane		81.0 %	70-1	30	n	"	H	#	
BNCH S/SW (5F16006-07) Soil									•
Benzene	ND	0.0250	mg/kg dry	25	EF51611	06/16/05	06/16/05	EPA 8021B	
Coluene	ND	0.0250	"	**	"	**	H,	is	
Ethylbenzene	ND	0.0250	11	"	н		*	н	
(ylene (p/m)	ND	0.0250	**	*	"	**		n	
(ylene (o)	ND	0.0250	,	w ·	**	**	"	**	
Surrogate: a,a,a-Trifluorotoluene		83.9 %	80-1	20	" .	"	"	"	
Surrogate: 4-Bromofluorobenzene		111 %	80-1	20	,,	"	"	er .	
Sasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EF51606	06/16/05	06/17/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	"	••	и ,	*	"	u	
Total Hydrocarbon C6-C35	ND	10.0	"	11	. #	*	Ħ	**	
Surrogate: 1-Chlorooctane		73.8 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		79.8 %	70-1	30	. "	,,	"	. "	
BNCH E/SW (5F16006-08) Soil								ŧ	
Benzene	ND	0.0250	mg/kg dry	25	EF51611	06/16/05	06/17/05	EPA 8021B	
Toluene	ND	0.0250	**	•	н	**	u .	"	
Ethylbenzene	ND	0.0250	**	*	"	**	н	u	
(ylene (p/m)	ND	0.0250	*	"	н	**	"	н	
(v)lene (o)	ND	0.0250	"	**	"	"	• и	· ·	
urrogate: a,a,a-Trifluorotoluene		86.6 %	80-1	20	,,	"	"	"	
urrogate: 4-Bromofluorobenzene		100 %	80-1	20	"	"	N	"	
Sasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EF51610	06/16/05	06/17/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND .	10.0	n .	**	n		и .	и	
Total Hydrocarbon C6-C35	ND	10.0	н	"		. "	,,	н	•

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Saunders 8" #4

Project Number: EMS: 2004-00184 Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported: 06/17/05 18:20

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BNCH E/SW (5F16006-08) Soil									
Surrogate: 1-Chlorooctane	ν.	73.0 %	70	130	EF51610	06/16/05	06/17/05	EPA 8015M	
Surrogate: 1-Chlorooctadecane		77.8 %	70-	130	"	"	**	"	
BNCH N/4 (5F16006-09) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EF51611	06/16/05	06/17/05	EPA 8021B	
Toluene ·	ND	0.0250	**	"	"	н	**	. "	
Ethylbenzene	ND	0.0250	**	"	"	*	•	*	
Xylene (p/m)	ND	0.0250	"	п г	"	"	**	•	
Xylene (o)	ND	0.0250	u	"	"	h	- 11	и .	
Surrogate: a,a,a-Trifluorotoluene		85.7 %	80	120	"	"	"	,,	
Surrogate: 4-Bromofluorobenzene		105 %	80-	120	**	. "	. "	"	
Gasoline Range Organics C6-C12	19.1	10.0	mg/kg dry	1	EF51610	06/16/05	06/17/05	EPA 8015M	
Diesel Range Organics >C12-C35	547	10.0	"	н	**	*		11	
Total Hydrocarbon C6-C35	566	10.0	"	u	11	n	•	n	
Surrogate: 1-Chlorooctane		73.2 %	70-	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		95.6 %	70-	130	"	"	*	**	
BNCH S/6 (5F16006-10) Soil	* .						•		
Benzene	ND	0.0250	mg/kg dry	25	EF51611	06/16/05	06/17/05	EPA 8021B	
Toluene	ND	0.0250	"	"	"		n	**	
Ethylbenzene	ND	0.0250	**		u	m	"	**	
Xylene (p/m)	ND	0.0250	#	*	**		u	, H	
Xylene (o)	ND	0.0250	ч н		" .	,,		11	
Surrogate: a,a,a-Trifluorotoluene		86.7 %	80-	120	"	"	n	n	
Surrogate: 4-Bromofluorobenzene		103 %	80-	120	"	"	"	#	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EF51610	06/16/05	06/17/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	**	•		. "	"	n	
Total Hydrocarbon C6-C35	ND	10.0	17	*	n	n	#	n	
Surrogate: 1-Chlorooctane	· · · · · · · · · · · · · · · · · · ·	73.8 %	70-	130	"	. "	п	"	
Surrogate: 1-Chlorooctadecane		79.2 %	70-	130	"	"	"	"	

Project: Saunders 8" #4

Project Number: EMS: 2004-00184 Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported: 06/17/05 18:20

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BTM EXCV. N/SW (5F16006-01) Soil				Dittion	Daten	Tropared	riidiyzou	·	11000
% Moisture	0.6	0.1	%	1	EF51605	06/16/05	06/17/05	% calculation	···
BTM EXCV. W/SW (5F16006-02) Soil									
% Moisture	0.7	0.1	%	1	EF51605	06/16/05	06/17/05	% calculation	
BTM EXCV. S/SW (5F16006-03) Soil			•				*,	•	
% Moisture	1.0	0.1	%	1	EF51605	06/16/05	. 06/17/05	% calculation	
BTM EXCV. E/SW (5F16006-04) Soil									
% Moisture	0.2	0.1	%	1	EF51605	06/16/05	06/17/05	% calculation	
BNCH N/SW (5F16006-05) Soil									
% Moisture	6.3	0.1	%	1	EF51605	06/16/05	06/17/05	% calculation	
BNCH W/SW (5F16006-06) Soil									
% Moisture	1.9	0.1	%	1	EF51605	06/16/05	06/17/05	% calculation	
BNCH S/SW (5F16006-07) Soil									
% Moisture	4.2	0.1	%	1	EF51605	06/16/05	06/17/05	% calculation	
BNCH E/SW (5F16006-08) Soil									
% Moisture	7.7	0.1	%	1	EF51605	06/16/05	06/17/05	% calculation	
BNCH N/4 (5F16006-09) Soil									
% Moisture	4.4	0.1	%	1	EF51605	06/16/05	06/17/05	% calculation	1 <u></u>
BNCH S/6 (5F16006-10) Soil							•		
% Moisture	6.1	0.1	%	. 1	EF51605	06/16/05	06/17/05	% calculation	

Project: Saunders 8" #4

Project Number: EMS: 2004-00184 Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported: 06/17/05 18:20

Organics by GC - Quality Control Environmental Lab of Texas

A mala de	n. 1/	Reporting	TT 14	Spike	Source	A/DEG	%REC	nnn	RPD Limit	37
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EF51606 - Solvent Extraction (GC)								· · · · · · · · · · · · · · · · · · ·		
Blank (EF51606-BLK1)				Prepared &	દ Analyzed:	06/16/05				
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	10.0	"							
Total Hydrocarbon C6-C35	ND	10.0							,	
Surrogate: 1-Chlorooctane	51.9		mg/kg	50.0		104	70-130			***************************************
Surrogate: 1-Chlorooctadecane	65.0		#	50.0		130	70-130			
LCS (EF51606-BS1)				Prepared &	t Analyzed:	: 06/16/05				
Gasoline Range Organics C6-C12	457	10.0	mg/kg wet	500		91.4	75-125			
Diesel Range Organics >C12-C35	525	10.0	n	500		105	75-125			
Total Hydrocarbon C6-C35	981	10.0	*	1000		98.1	75-125			
Surrogate: 1-Chlorooctane	59.9		mg/kg	50.0		120	70-130			***
Surrogate: 1-Chlorooctadecane	64.9		"	50.0		130	70-130			
Calibration Check (EF51606-CCV1)				Prepared: (06/16/05 A	nalyzed: 06	5/17/05			
Gasoline Range Organics C6-C12	454	~	mg/kg	500		90.8	80-120			
Diesel Range Organics >C12-C35	504		**	500	*	101	80-120			
Total Hydrocarbon C6-C35	958			1000		95.8	80-120		. •	
Surrogate: 1-Chlorooctane	65.0		"	50.0		130	70-130			
Surrogate: 1-Chlorooctadecane	63.4		"	50.0		127	70-130			•
Matrix Spike (EF51606-MS1)	Sou	rce: 5F16003	3-02	Prepared: (06/16/05 A	nalyzed: 06	5/17/05			
Gasoline Range Organics C6-C12	595	10.0	mg/kg dry	574	ND	104	75-125			
Diesel Range Organics >C12-C35	647.	10.0	"	. 574	ND	113	75-125			
Total Hydrocarbon C6-C35	1240	10.0	"	1150	ND	108	75-125			
Surrogate: 1-Chlorooctane	. 49.3	, , ,	mg/kg	50.0		98.6	70-130			
Surrogate: 1-Chlorooctadecane	45.9		"	50.0		91.8	70-130 ·			
Matrix Spike Dup (EF51606-MSD1)	Sou	rce: 5F16003	i-02	Prepared: (06/16/05 A	nalyzed: 06	5/17/05			
Gasoline Range Organics C6-C12	578	10.0	mg/kg dry	574	ND	101	75-125	2.90	20	
Diesel Range Organics >C12-C35	632	10.0	**	574	ND	110	75-125	2.35	20	
Total Hydrocarbon C6-C35	1210	10.0	U	1150	· ND	105	75-125	2.45	20	
Surrogate: 1-Chlorooctane	49.4		mg/kg	50.0		98.8	70-130			
	45.0									

Surrogate: 1-Chlorooctadecane

91.8

70-130

50.0

45.9

Project: Saunders 8" #4

Project Number: EMS: 2004-00184 Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported: 06/17/05 18:20

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF51610 - Solvent Extraction (GC)		·								
Blank (EF51610-BLK1)				Prepared: (06/16/05 A	nalyzed: 06	5/17/05			
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	10.0	**					•		
Total Hydrocarbon C6-C35	ND	10.0	*	*			,			
Surrogate: 1-Chlorooctane	51.5		mg/kg	50.0		103	70-130			
Surrogate: 1-Chlorooctadecane	62.8		"	50.0		. 126	70-130			
LCS (EF51610-BS1)				Prepared: (06/16/05 A	nalyzed: 06	6/17/05			
Gasoline Range Organics C6-C12	429	10.0	mg/kg wet	500		85.8	75-125		.,	
Diesel Range Organics >C12-C35	510	10.0		500		102	75-125			
Total Hydrocarbon C6-C35	939	10.0	*	1000		93.9	75-125			
Surrogate: 1-Chlorooctane	64.3		mg/kg	50.0	· · · · · · · · · · · · · · · · · · ·	129	70-130			
Surrogate: 1-Chlorooctadecane	64.3		"	50.0		129	70-130			
Calibration Check (EF51610-CCV1)				Prepared: (06/16/05 At	nalyzed: 06	6/17/05			
Gasoline Range Organics C6-C12	472		mg/kg	500		94.4	80-120			-
Diesel Range Organics >C12-C35	532		U	500		106	80-120			
Total Hydrocarbon C6-C35	1000			1000		100	80-120			
Surrogate: 1-Chlorooctane	64.4		"	50.0		129	70-130			
Surrogate: 1-Chlorooctadecane	61.4		"	50.0		123	70-130			
Matrix Spike (EF51610-MS1)	Sour	ce: 5F16006	-08	Prepared: 0)6/16/05 Aı	nalyzed: 06	/17/05			
Gasoline Range Organics C6-C12	520	10.0	mg/kg dry	542	ND	.95.9	75-125			
Diesel Range Organics >C12-C35	583	10.0	**	542	ND	108	75-125			
Total Hydrocarbon C6-C35	1100	10.0	*	1080	ND	102	75-125			
Surrogate: 1-Chlorooctane	47.7		mg/kg	50.0		95.4	70-130		 	
Surrogate: 1-Chlorooctadecane	44.2		"	50.0		88.4	70-130			
Matrix Spike Dup (EF51610-MSD1)	Sour	ce: 5F16006	-08	Prepared: 0	06/16/05 Aı	nalyzed: 06	/17/05			
Gasoline Range Organics C6-C12	535	10.0	mg/kg dry	542	ND	98.7	75-125	2.84	20	*************
Diesel Range Organics >C12-C35	589	10.0	"	542	ND	109	75-125	1.02	20	
Total Hydrocarbon C6-C35	1120	10.0	"	1080	ND	104	75-125	1.80	20	
Surrogate: 1-Chlorooctane	47.5		mg/kg	50.0		95.0	70-130		 	

44.1

Surrogate: 1-Chlorooctadecane

88.2

70-130

Project: Saunders 8" #4

Project Number: EMS: 2004-00184 Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported: 06/17/05 18:20

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike	Source	%REC	%REC	RPD	RPD Limit	Notes
Aliaiyu	Kesuit	Limit	Onits	Level	Result	70KEU	Limits	KLD	Limit	Notes
Batch EF51611 - EPA 5030C (GC)										
Blank (EF51611-BLK1)				Prepared &	Analyzed:	06/16/05				
Benzene	ND	0.0250	mg/kg wet							
l'oluene	ND	0.0250	"							
Ethylbenzene	ND	0.0250	*				•			
Kylene (p/m)	ND	0.0250								
Kylene (o)	ND	0.0250	**							
Surrogate: a,a,a-Trifluorotoluene	80.0		ug/kg	100		80.0	80-120			
Surrogate: 4-Bromofluorobenzene	101		"	100		101	80-120			
LCS (EF51611-BS1)				Prepared &	Analyzed:	06/16/05				
Benzene	97.3		ug/kg	100		97.3	80-120			
Гoluene	95.8		**	100		95.8	80-120			
Ethylbenzene	95.1		ш	100		95.1	80-120			
Kylene (p/m)	216		"	200		108	80-120			
Kylene (o)	102		11	100		102	80-120			
Surrogate: a,a,a-Trifluorotoluene	96.3		. "	100		96.3	80-120		- :	
Surrogate: 4-Bromofluorobenzene	. 114		"	100		114	80-120			
Calibration Check (EF51611-CCV1)				Prepared: (06/16/05 A	nalyzed: 06	5/17/05			
Benzene	101	**************************************	ug/kg	100		101	80-120	-	· · · · · · · · · · · · · · · · · · ·	
Toluene	97.3		**	100		97.3	80-120			
Ethylbenzene	89.4		"	100		89.4	80-120			
Kylene (p/m)	197		u	200		98.5	80-120			
(v)lene (o)	90.0		"	100		90.0	80-120			
Surrogate: a,a,a-Trifluorotoluene	102		#	100		102	80-120	Were the second section of the second		
Surrogate: 4-Bromofluorobenzene	117		"	100		117	80-120			
Matrix Spike (EF51611-MS1)	Sou	rce: 5F16006	-10	Prepared: (06/16/05 A:	nalyzed: 06	5/17/05			
Benzene	98.7		ug/kg	100	ND	98.7	80-120			
foluene	94.7		"	100	ND	94.7	80-120			
Ethylbenzene	88.2		**	100	ND	88.2	80-120			
(ylene (p/m)	195		11	200	ND	97.5	80-120			
(ylene (o)	93.7		**	100	ND	93.7	80-120			
Surrogate: a,a,a-Trifluorotoluene	91.1		"	100		91.1	80-120			

Surrogate: 4-Bromofluorobenzene

117

80-120

100

117

Project: Saunders 8" #4

Project Number: EMS: 2004-00184 Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported: 06/17/05 18:20

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EF51611 - EPA 5030C (GC)

Matrix Spike Dup (EF51611-MSD1)	Source: 5	F16006-10	Prepared: (06/16/05 A	nalyzed: 0	5/17/05		
Benzene	94.6	ug/kg	100	ND	94.6	80-120	4.24	20
Toluene	91.8	"	100	ND	91.8	80-120	3.11	20
Ethylbenzene	85.8	11	100 200	ND	85.8		2.76 4.19	20
Xylene (p/m)	187	41		ND	93.5			20
Xylene (o)	89.9	**	100	ND	89.9	80-120	4.14	20
Surrogate: a,a,a-Trifluorotoluene	92.6	"	100		92.6	80-120		
Surrogate: 4-Bromofluorobenzene	119	"	100		119	80-120		

Plains All American EH & S

Project: Saunders 8" #4

Fax: (432) 687-4914

1301 S. County Road 1150

Project Number: EMS: 2004-00184

Reported: 06/17/05 18:20

Midland TX, 79706-4476

Project Manager: Camille Reynolds

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EF51605 - General Preparation (Prep)

 Blank (EF51605-BLK1)
 Prepared & Analyzed: 06/16/05

 % Moisture
 ND
 0.1
 %

Duplicate (EF51605-DUP1) Source: **5F16001-01** Prepared & Analyzed: 06/16/05

% Moisture 9.8 0.1 % 10.1 3.02 20

Fax: (432) 687-4914 Plains All American EH & S Project: Saunders 8" #4 1301 S. County Road 1150 Project Number: EMS: 2004-00184 Reported: Midland TX, 79706-4476 Project Manager: Camille Reynolds 06/17/05 18:20

Notes and Definitions

The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect. S-04

Analyte DETECTED DET

ND Analyte NOT DETECTED at or above the reporting limit

NR

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Duplicate Dup

Report Approved By:	Kaland Kitub
KCDOLL ADDIOVCU DV.	

6/17/2005 Date:

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director

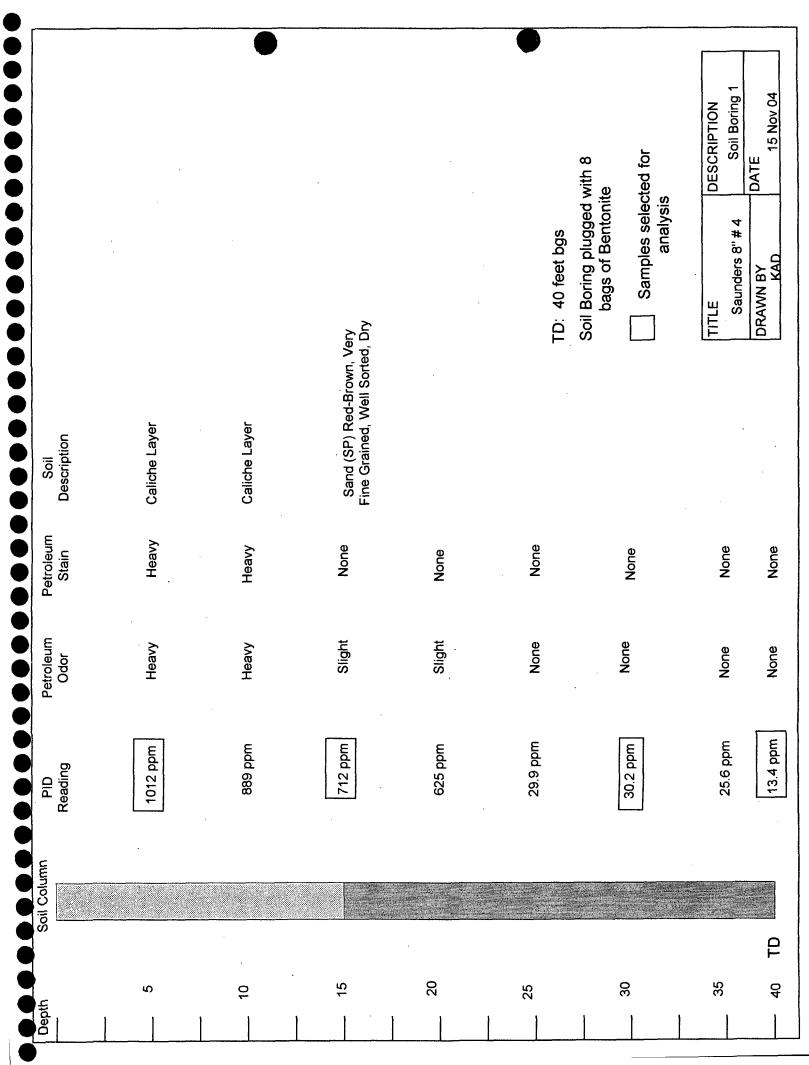
Peggy Allen, QA Officer

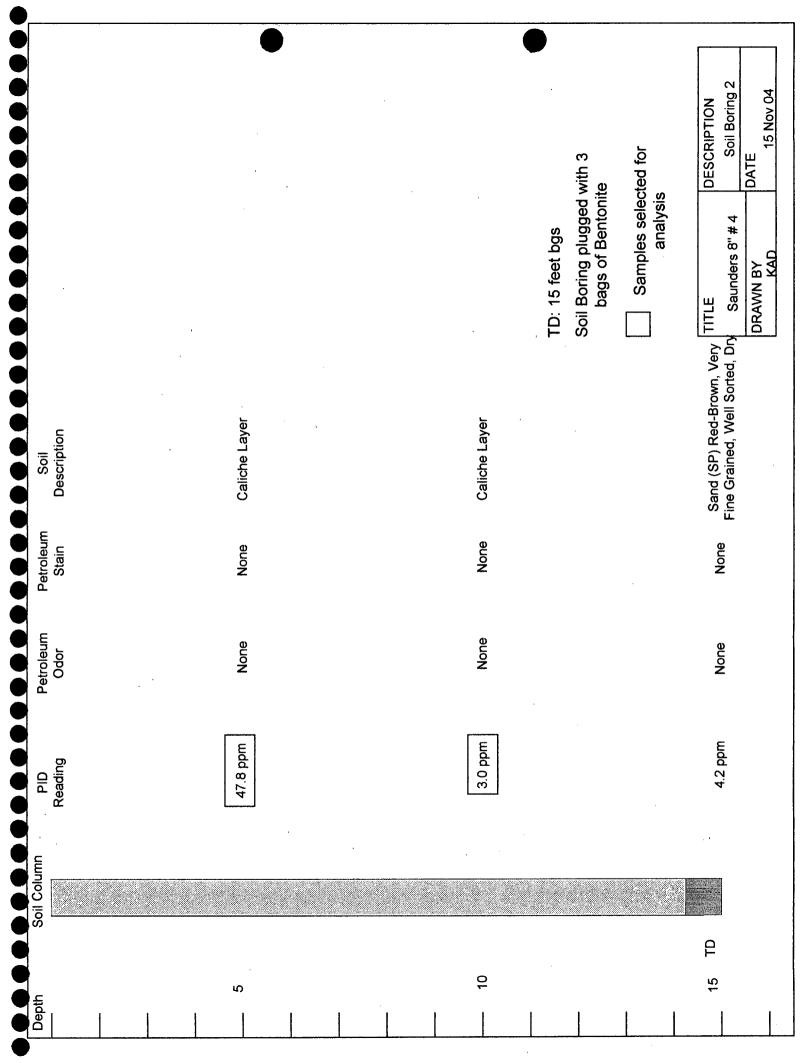
Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist

Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.


TAT insbrist alubaria2-er9) TAT H2U9 Project # 2001-00184 CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Project Name: SALLANDE 8" # 4 ബോള്വെട്ടി പ്രവ C. Ren MAOI Temperature Upon Receipt क्ष में BLEX EUST BY 2030 PAH/ As Ag Be Cd Cr Pb Hg Se SAR / ESP / CEC Project Loc: PO#: Aujous (C)' 204' CO3' HCO3) Silvara (Ca, Mg, Na, K) 8 8001 8001 (NEIOB) 1.814 HT Other (specify): eppul2 Officer (Specialy) OSTH HOPN HCI FONH No. of Containers 000 545 된함 500 nullanme ata 3 Dalqma2 smiT Qu | 15/05 Environmental Lab of Texas I, Ltd. Date Sampled Phone: 915-563-1800 Fax: 915-563-1713 **2** 5 5 5 5 5 5 5 5 5 5 5 HELD CODE Project Manager: Company Name Company Address: City/State/Zip: Telephone No: Sampler Signature: 12600 West i-20 East Odessa, Texas 79763


ik di v

Environmental Lab of Texas Variance / Corrective Action Report - San Log-In Date/Time: ___(0)/6/05 Order#: nitials: Sample Receipt Checklist Temperature of container/cooler? Yes Shipping container/cooler in good condition? Yes No Custody Seals intact on shipping container/cooler? **ES** No Not present Custody Seals intact on sample bottles? Not present CLES. No Chain of custody present? Yes, No Sample Instructions complete on Chain of Custody? No Chain of Custody signed when relinquished and received? (ZES No Chain of custody agrees with sample label(s) No (es Container labels legible and intact? Wes, No Sample Matrix and properties same as on chain of custody? No Samples in proper container/bottle? No Samples properly preserved? CEES No TES ! Sample bottles intact? No Preservations documented on Chain of Custody? No Containers documented on Chain of Custody? (Yes) No Sufficient sample amount for indicated test? Kes | No All samples received within sufficient hold time? No VOC samples have zero headspace? Not Applicable Other observations: Variance Documentation: Contact Person: -____ Date/Time: _____ Contacted by: _____ Regarding: Corrective Action Taken:

APPENDIX C

SOIL BORING LOGS

Sand (SP) White-Brown, Very B54 ppm Heavy None B47 ppm Heavy None S69 ppm Heavy None S63 ppm Heavy None S64 ppm Heavy None S64 ppm Heavy None S65 ppm Heavy None S65 ppm Heavy None S65 ppm Heavy None S66 ppm Heavy None S67 ppm Heavy None S67 ppm Heavy None S68 ppm Heavy None S68 ppm Heavy None S68 ppm Heavy None S69 ppm Heavy None	Excavation Floor	mn PID Reading	Petroleum Odor	Petroleum Stain	Soil Description	Plains Marketing, L. P. Saunders 8" #4 SB-3
847 ppm Heavy None \$47 ppm Heavy None \$58 ppm Heavy None \$38 ppm Heavy None \$38 ppm Heavy None \$38 ppm Heavy None \$413 ppm Heavy None \$54 ppm Heavy None \$54 ppm Heavy None \$55	. 5	1132 ppm	Heavy	None	Sand (SP) White-Brown, Very Fine Grained, Well Sorted, Dry	Lea County, New Mexico Unit F, S35, T13S, R33E
847 ppm Heavy None 369 ppm Heavy None 639 ppm Heavy None 534 ppm Heavy None 547 ppm Heavy None 413 ppm Heavy None 413 ppm Heavy None 413 ppm Heavy None 414 ppm Heavy None 554 ppm Heavy None 554 ppm Heavy None 64		854 ppm	Heavy	None		
548 ppm Heavy None 504 ppm Heavy None 534 ppm Heavy None 534 ppm Heavy None 547 ppm Heavy None 413 ppm Heavy None 359 ppm Heavy None 413 ppm Heavy None 359 ppm Heavy None 413 ppm Heavy None 359 ppm Heavy None	15	847 ppm	Неаvу	None		
369 ppm Heavy None 639 ppm Heavy None 639 ppm Heavy None 639 ppm Heavy None 534 ppm Heavy None 385 ppm Heavy None 647 ppm Heavy None 640 ppm Heavy None 67 ppm Heavy None 67 ppm Heavy None 67 ppm Heavy None 75 ppm Heavy None 67 ppm Heavy None 67 ppm Heavy None 75		548 ppm	Heavy	None		Soil Boring Completion Data
639 ppm Heavy None 534 ppm Heavy None 385 ppm Heavy None 413 ppm Heavy None 413 ppm Heavy None 359 ppm Heavy None 359 ppm Heavy None Grained, Well Sorted, Moist Eine Grained, Well Sorted, Well Sorted	25	369 ppm	Heavy	None		Groundwater Depth
639 ppm Heavy None 534 ppm Heavy None 547 ppm Heavy None 413 ppm Heavy None 359 ppm Heavy None 359 ppm Heavy None Grained, Well Sorted, Moist Fine Grained, Well Sorted, Wet, imbedded wigravel	000	504 ppm	Heavy	None		Samples selected for analysis
534 ppm Heavy None 385 ppm Heavy None 413 ppm Heavy None 359 ppm Heavy None 359 ppm Heavy None Grained, Well Sorted, Moist Grained, Well Sorted, Weit Eine Grained, Well Sorted, Weit imbedded wigravel	35	mdd 689	Heavy	None		TD: 87 Feet bgs
385 ppm Heavy None 547 ppm Heavy None 547 ppm Heavy None 359 ppm Heavy None Grained, Well Sorted, Wery Fine Grained, Well Sorted, Very Fine Grained, Well Sorted, Wet, imbedded wigravel		i i		;		Installed 04 May 05 Basin Environmental Services
64√ 1594 ppm Heavy None Sand (SP) White-Brown, Very Fine Grained, Well Sorted, Moist Heavy None Sand (SP) White-Brown-Red, Very Fine Grained, Well Sorted, Wet, imbedded w/gravel	04 45	385 ppm	неаvу Неаvy	None None		Plugged with 1 bag cement at depth, 12 bags of bentonite and water, and 1 bag cement at surface
413 ppm Heavy None Sand (SP) White-Brown, Very Fine Grained, Well Sorted, Moist Heavy None Sand (SP) White-Brown-Red, Very Fine Fine Grained, Well Sorted, Wet, imbedded w/gravel	20	547 ppm	Heavy	None		
359 ppm Heavy None Grained, Well Sorted, Moist Grained, Well Sorted, Moist Heavy None Sand (SP) White-Brown-Red, Very Fine Grained, Well imbedded w/gravel	- 22	413 ppm	Heavy	None		
64 ¹ √ Sand (SP) White-Brown-Red, Very Fine Grained, Well Sorted, Wet, imbedded w/gravel TITLE	09	359 mdd	Heavy	None	Sand (SP) White-Brown, Very Fine Grained, Well Sorted, Moist	
		1594 ppm	Heavy	None	Sand (SP) White-Brown-Red, Very Fine Grained, Well Sorted, Wet, imbedded w/gravel	• 9
unders 8" # 4	1				TITLE	DESCRIPTION Soil Boring 3

Plains Marketing, L. P.	Saunders 8" #4 SB-4 I ea County New Mexico	Unit F, S35, T13S, R33E			Soil Boring Completion Data	Samples selected for analysis	Installed 04 May 05 Basin Environmental Services	Plugged with 1 bag cement at depth, 11 bags of bentonite and water, and 1 bag cement at surface							DES	Saunders 8" # 4 Soil Boring 4 DRAWN BY DATE KAD 18 May 04
	Description	Sand (SP) White-Brown, Very Fine Grained, Well Sorted, Dry			Sand (SP) Red-Brown, Very Fine Grained, Well Sorted, Dry					Sand (SP) White-Brown, Very Fine Grained, Well Sorted, Dry						
Detrolog im	Stain	None	None	None	None	None	None	None	None	None	None	None	None			
Petroleum	Odor	Неаvу	Неаvу	Heavy	Moderate	Moderate	Moderate	Moderate	Moderate	Slight	Slight	Slight	Slight	·		
Old	Reading	1762 ppm	1366 ppm	mdd 856	552 ppm	. 546 ppm	468 ppm	331 ppm.	61.3 ppm	18.9 ppm	10.2 ppm	13.5 ppm	7.3 ppm			
Soil Column																
• • • • • • • • • • • • • • • • • • •	Bench Floor 12 feet bgs	5	- 1	15	50	52	30.	35	40	45	20	55	09			

Plains Marketing, L. P. Saunders 8" #4 SB-5	Lea County, New Mexico Unit F, S35, T13S, R33E	,		Soil Boring Completion Data	Samples selected for analysis	Installed 04 May 05 Basin Environmental Services	Plugged with 1 bag cement at depth, 10 bags of bentonite and water, and 1 bag cement at surface							DES(Saunders 8" # 4 Soil Boring 5 AWN BY DATE
Soil Description	Sand (SP) White-Brown, Very Fine Grained, Well Sorted, Dry													TITLE	Saunder
Petroleum Stain	None	None	None	None	None	None	None	None	None	None		-	,		
Petroleum Odor	None	None	None	None	None	None	None	None	None	None					
PID Reading	6.4 ppm	3.8 ppm	3.4 ppm	3.7 ppm	2.7 ppm	2.2 ppm	2.5 ppm	2.0 ppm	3.3 ppm	2.2 ppm					٠
Soil Column															
Depth Bench Floor 12 feet bas	ιο	10	15	50	25	30	35	40	45	20	1				

7.9 ppm
7.9 ppm 3.4 ppm 2.1 ppm

Periodential Policy	Depth Soil Column			Detroloum		Plains Marketing, L. P.
2.0 ppm None None Fine Grained, Well Sorted, Dry 2.4 ppm None None None 2.1 ppm None None 1.2 ppm None None 1.9 ppm None None 3.6 ppm None None Sand (SP) White-Brown, Very Fine 2.4 ppm None None Sand (SP) White-Brown, Very Fine 2.4 ppm None None Sand (SP) White-Brown, Very Fine 3.5 ppm None None Sand (SP) White-Brown, Very Fine 3.5 ppm None None Sand (SP) White-Brown, Very Fine 3.5 ppm None None Sand (SP) White-Brown, Very Fine 3.5 ppm None None Sand (SP) White-Brown, Very Fine 3.5 ppm None None Sand (SP) White-Brown, Very Fine 3.5 ppm None None Sand (SP) White-Brown, Very Fine 3.5 ppm None None Sand (SP) White-Brown, Very Fine 3.5 ppm None None Sand (SP) White-Brown, Very Fine 3.5 ppm None None Sand (SP) White-Brown, Very Fine 3.5 ppm None None Sand (SP) White-Brown, Very Fine 3.5 ppm None None Sand (SP) White-Brown, Very Fine 3.5 ppm Sand (SP) White-Brown, Very Fine 3.5 ppm None None Sand (SP) White-Brown, Very Fine 3.5 ppm Sand (SP) White-Brown, Very Fine	avation Floor 2 feet bas			Stain		Saunders 8" #4 SB-7
2.0 ppm None None 2.1 ppm None None 1.2 ppm None None 1.2 ppm None None 1.2 ppm None None 2.5 ppm None None 1.9 ppm None None 2.5 ppm None None 2.5 ppm None None 3.6 ppm None None 3.6 ppm None None 3.2 ppm None None 1.9 ppm None None 1.9 ppm None None 1.9 ppm None None 1.9 ppm None None 3.5 ppm None None 3.5 ppm None None 1.5 ppm None None 3.5 ppm None None 3.5 ppm None None 3.5 ppm None None 1.5 ppm None 1.5 p	S	2.0 ppm	None	None		Lea County, New Mexico Unit F, S35, T13S, R33E
2.0 ppm None None None 2.1 ppm None None 1.2 ppm None None 1.9 ppm None None 1.9 ppm None None 2.5 ppm None None 2.5 ppm None None 2.5 ppm None None 3.6 ppm None None 3.6 ppm None None 3.6 ppm None None 3.7 ppm None None 3.8 ppm None None 3.8 ppm None None 1.9 ppm None None 3.8 ppm None None 1.9 ppm None None 3.8 ppm None None 1.9 ppm None None 3.8 ppm None None 1.1 ppm None None 1.1 ppm None None 1.2 ppm None None 1.3 ppm None None 1.4 ppm None None 1.5 ppm None None 1.6 ppm None None 1.7 ppm None None 1.8 ppm None None 1.9 ppm None None 1.9 ppm None None 2.4 ppm None None 3.5 ppm None None 1.7 ppm None None 1.7 ppm None None 2.6 ppm None None 3.6 ppm None None 3.7 ppm None None 3.8 ppm None None 1.1 ppm None None 1.1 ppm None None 1.1 ppm None None 1.2 ppm None None 1.3 ppm None None 1.4 ppm None None 1.5 ppm None None 1.5 ppm None None 1.6 ppm None None 1.7 ppm None None 1.8 ppm None None 1.8 ppm None None 1.8 ppm None None 1.9 ppm None None None 1.9 ppm None None None None None None None None	. 10	2.4 ppm	None	None		
2.1 ppm None None None 1.2 ppm None None None 2.5 ppm None None None None 1.9 ppm None None None 3.6 ppm None None None Grained, Well Sorted, Moist 2.4 ppm None None None Sand (SP) White-Brown, Very Fine 3.2 ppm None None Sand (SP) White-Brown, Very Fine 3.2 ppm None None Fine Grained, Well Sorted, Wet Sand (SP) White-Brown, Very Fine 3.2 ppm None None Fine Grained, Well Sorted, Wet Saunder	. 15	2.0 ppm	None	None		
2.1 ppm None None 1.2 ppm None None 2.5 ppm None None 1.9 ppm None None 3.6 ppm None None 2.4 ppm None None 3.2 ppm None None None None None Sand (SP) White-Brown, Very Fine Grained, Well Sorted, Moist TITLE Saunder	. 20	2.4 ppm	None	None	Soil B	Soil Boring Completion Data
1.2 ppm None None None 2.5 ppm None None 1.9 ppm None None 3.6 ppm None None 2.4 ppm None None Grained, Well Sorted, Moist 2.4 ppm None None Grained, Well Sorted, Moist 3.2 ppm None None Fine Grained, Well Sorted, Wet Saunder	25	2.1 ppm	None	None	8 TT CT	Samples selected for analysis
1.2 ppm None None 2.5 ppm None None 1.9 ppm None None 3.6 ppm None None 3.2 ppm None None 3.2 ppm None None None Grained, Well Sorted, Moist 2.4 ppm None None Sand (SP) White-Brown, Very Fine Grained, Well Sorted, Moist Fine Grained, Well Sorted, Wet	30	2.3 ppm	None	None	Installi Basin Ervir	Installed 04 May 05 Basin Environmental Services
1.9 ppm None None None 1.9 ppm None None Sand (SP) White-Brown, Very Fine Grained, Well Sorted, Moist 2.4 ppm None None Sand (SP) White-Brown, Very Fine Saunders 8"#4	35	1.2 ppm	None	None	Plugged with 11 bags of bente cem	Plugged with 1 bag cement at depth, 11 bags of bentonite and water, and 1 bag cement at surface
1.9 ppm None None Sand (SP) White-Brown, Very Fine 3.6 ppm None None Grained, Well Sorted, Moist 2.4 ppm None None Sand (SP) White-Brown, Very Fine Grained, Well Sorted, West Fine Grained, Well Sorted, West Saunders 8"#4	40	2.5 ppm		None		Groundwater Depth
1.9 ppm None None Sand (SP) White-Brown, Very Fine Grained, Well Sorted, Moist 2.4 ppm None None Sand (SP) White-Brown, Very Fine Sand (SP) White-Brown, Very Fine Grained, Well Sorted, Wet Saunders 8"#4		1.9 ppm	None	None		,
3.6 ppm None None Grained, Well Sorted, Moist 2.4 ppm None None Sand (SP) White-Brown, Very 3.2 ppm None None Fine Grained, Well Sorted, Wet Saunders 8" # 4	09	1.9 ppm	None	None		
2.4 ppm None None Sand (SP) White-Brown, Very Sand (SP) White-Brown, Very Fine Grained, Well Sorted, Wet Saunders 8" # 4	255	3.6 ppm	None	None	Sand (SP) White-Brown, Very Fine Grained, Well Sorted, Moist	-
Sand (SP) White-Brown, Very Sand (SP) White-Brown, Very Fine Grained, Well Sorted, Wet TITLE Saunders 8" # 4	09	2.4 ppm	None	None		
unders 8" # 4		3.2 ppm	None	None	Sand (SP) White-Brown, Very Fine Grained, Well Sorted, Wet	
DRAWN BY DA					unders 8" # 4 N BY KAD	DESCRIPTION Soil Boring 7 DATE 18 May 04

Depth S	Soil Column	PID Reading	Petroleum Odor	Petroleum Stain	Soil Description	Plains Marketing, L. P. Saunders 8" #4 SB-8
		1.1 ppm	None	None	Caliche Layer	Unit F, S35, T13S, R33E
10		0.1 ppm	None	None	Sand (SP) White-Brown, Very Fine Grained, Well Sorted	
15		1.0 ppm	None	None	Sand (SP) Red-Brown, Very Fine Grained, Well Sorted	
50		0.8 ppm	None	None		Soil Boring Completion Data
- 25		0.4 ppm	None	None		Samples selected for analysis
30		0.6 ppm	None	None		Installed 04 May 05 Basin Ervironmental Services
36		1.0 ppm	None	None		Plugged with 1 bag cement at depth, 9 bags of bentonite and water, and 1 bag cement at surface
40		0.5 ppm	None	None		
45		2.0 ppm	None	None		
- 20		2.1 ppm	None	None		
- 55		0.8 ppm	None	None		
09		1.2 ppm	None	None		
					TITLE	DESCRIPTION
					Ö	Saunders 8" # 4 Soil Boring 8
		·			DRAV	DRAWN BY CALL KAD KAD 18 May 04

APPENDIX D

NMOCD C-141 and NMOCD APPROVAL LETTER

District II
1625 N. French Dr., Hobbs, NM 88240
District II
1301 W. Grand Avenue, Artesia, NM 88210
District III
1000 Pic Parent Port

1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fc, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised October 10, 2003

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Release Notification and Corrective Action

						OPERA	TOR	x Init	ial Report		Final Rep	ort
Name of Co	mpany Plai	ins Marketir	ng, LP			Contact Can	nille Reynolds					
Address 580	5 East Hw	y. 80, Midla	ind, TX 7	9706	,	Telephone N	No. 505-441-096	55 .				
Facility Nan	ne Saunder	s 8" #4			1	Facility Typ	e 8"Steel Pipeli	ne				
Surface Own	ner Normar	n Hahn	i	Mineral O	wner			Lease	No.	-		
			- : · · · · · · · · · · · · · · · · · · 			N OF REI	FASE					
Unit Letter	Section	Township	Range	Feet from the		South Line	Feet from the	East/West Line	County			_
F	35	138	33E		1,10141	DOGUI DINC.	T, ÇOC, II OIII GIC	LABO West Ellie	Lea			
		Latitu	de_33 <u>°08</u>	3'55.6"		Longitude	103°35'15.3"		_			
				NAT	URE	OF RELI	EASE					
Type of Relea						Volume of	Release 15 barrel		Recovered 0			
Source of Rel	ease 8" Stee	l Pipeline				Date and H 8-12-04 @	lour of Occurrence 06:00		Hour of Dis @ 13:45	covery		
Was Immedia	te Notice Gi					If YES, To	Whom?	***************************************				
		\boxtimes	Yes 🗌	No 🗌 Not Re	quired	Larry John	son					į
By Whom? C							lour 8-12-04 @ 1					
Was a Watero	ourse Reach		·ν 152	NI		If YES, Vo	lume Impacting the	he Watercourse.				
			Yes 🏻					-				
If a Watercou	rse was Imp	acted, Descri	be Fully.*		,				•			
7												
				Taken.* Externa								
				hat produces appraise. The sweet crude					on the line va	ries fr	om 25 to 30	ļ
bai and the Br	avity of the :	sweet crude () 5 JO-4/	The sweet crau	i n ₂ 3 comem	or iess than to be	अंग्र .					
						•		293031	-13			
Describe Ares	Affected or	nd Cleanum A	ction Tak	en.* The impacted	d coil w	nc avenuated	and stockniled on	nlogió Apriol e	xtent of surfa	i	ant item	_
7,176 ft ² .	i Ancticu ai	na Cicanap A	tchon rak	en. The impacted	u SUH W	as excavated	and stockpried on	/ CO		Ze mib	aci was	
							7	্রে sqq	OH.	α/ α/		a constant
1							1	المول على الله الله الله الله الله الله الله ال	עריי	9		
							Ţ					
I hereby certi	v that the in	formation ei	ven above	is true and comple	ete to th	to the best of my knowledge and understand that pursuant to NMDCD rules and						
regulations al	l operators a	re required to	report an	d/or file certain re	lease no	o the best of my knowledge and understand that pursuant to NMOCD rules and e notifications and perform corrective actions for releases which may endanger the NMOCD marked as "Final Report" days not relieve the operator of liability						
public health	or the enviro	nment. The	acceptanc	e of a C-141 repor	rt by the	: NMOCD m	arked as "Final Re	eport diges not re	lieve Hic oper	ator o	liability	Ĵ
				investigate and re tance of a C-141 r								
federal, state,				lance of a C-141 r	epon ac	des mot renev	e the operator of r	esponsibility for	compnance w	nın an	outer	
	7	. (· · · · · · · · · · · · · · · · · · ·	OIL CONS	SERVATION	DIVISIO	N		7
Since 4	ma	,000	K.	· malds	<							-
Signature:	<u> </u>	luce	112	HILL				4				1
Printed Name	: Camille Re	vnolds	- 0	U		Approved by	District Superviso	or:	-			
					 -		 	T T				-
Title: Remedi	ation Coordi	inator .			1.7	Approval Dat	e:	Expiration	Date:			_
E-mail Addre	ggi pjenumnid	la@noole oc-	.			Conditions of	Annoual					
is-man Addre	sa. cjicynolo	э(а;раагр.сог	<u> </u>		 -'	Continuons Of	Approvai:		Attached			
Date: 8-17-04				Phone:505-441-0	965							
Attach Addit	ional Chast	a If Nissans				-						

NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

BILL RICHARDSON

Governor

Joanna Prukop

Cabinet Secretary

Mark E. Fesmire, P.E.
Director
Oil Conservation Division

November 29, 2004

Ms. Camille Reynolds

cireynolds@paalp.com

Plains All American Pipeline

Re: Plan Approval, Saunders 8" #4

Site Reference UL-F Sec-35 T-13S R-33E

Initial C-144 Dated: 8-12-04 Request Plan Dated: 11-15-04

Dear Ms. Reynolds,

The Remediation Work Plan Proposal submitted to the New Mexico Oil Conservation Division (OCD) by Basin Environmental for Plains All American Pipeline (PAAP) is **hereby approved for 120 days** with the following considerations:

- Immediate notification if additional contamination is discovered during excavation (any contamination undetected by borehole delineation)
- 48 hour notification to OCD prior to final sampling
- Progress reports of lift installations
- Disturbed areas to be seeded for re-vegetation of native grasses and other plants must demonstrate growth within a reasonable time after site remediation operations cease

Please be advised that OCD approval of this plan does not relieve PAAP of responsibility should their operations fail to adequately investigate and remediate contaminants that threaten ground water, surface water, human health or the environment. Additionally, OCD approval does not relieve PAAP of responsibility for compliance with any other federal, state, or local laws and/or regulations.

If you have any questions or need assistance please call (505) 393-6161, x111 or e-mail lwjohnson@state.nm.us

Sincerely,

Dolinson

Larry Johnson - Environmental Engineer

Cc:

Chris Williams - District I Supervisor
Ed Martin - Environmental Engineer
Paul Sheeley - Environmental Engineer
Ken Dutton – Basin Environmental Project Consultant

kdutton@basinenv.com