1RP-401

MONITORING REPORTS

DATE: 2007

DCP Midstream 370 17th Street, Suite 2500 Denver, CO 80202 303-595-3331 303-605-2226 *FAX*

February 5, 2007 2007 FEB 8 AM 9 12

Mr. Wayne Price Environmental Bureau Chief New Mexico Oil Conservation Division 1220 S. St. Francis Dr. Santa Fe, NM 87505

SCAN IRP-401-0

RE: 4th Quarter 2006 Groundwater Monitoring Results DCP C-Line Pipeline Release (1RP-401-0), Lea County, NM Unit O Section 31, T19S, R37E

Dear Mr. Price:

DCP Midstream, LP (DCP) formerly Duke Energy Field Services, LP is pleased to submit for your review, one copy of the 4th Quarter 2006 Groundwater Monitoring Results for the DEFS C-Line Pipeline Release Site located in Lea County, New Mexico (Unit O Section 31, T19S, R37E, Latitude 32° 31' 29.7" N Longitude 103° 17' 11.7 W).

If you have any questions regarding the report, please call me at 303-605-1718.

Sincerely

DCP Midstream, LP

Stephen Weathers, PG Sr. Environmental Specialist

cc: Carl Chavez, OCD Santa Fe Office Larry Johnson, OCD Hobbs District Office (Copy on CD) Lynn Ward, DCP Midland Office Environmental Files

DCP Midstream 370 17th Street, Suite 2500 Denver, CO 80202 303-595-3331 303-605-2226 *FAX*

February 5, 2007

Mr. Wayne Price Environmental Bureau Chief New Mexico Oil Conservation Division 1220 S. St. Francis Dr. Santa Fe, NM 87505

RE: 4th Quarter 2006 Groundwater Monitoring Results DCP C-Line Pipeline Release (1RP-401-0), Lea County, NM Unit O Section 31, T19S, R37E

Dear Mr. Price:

DCP Midstream, LP (DCP) formerly Duke Energy Field Services, LP is pleased to submit for your review, one copy of the 4th Quarter 2006 Groundwater Monitoring Results for the DEFS C-Line Pipeline Release Site located in Lea County, New Mexico (Unit O Section 31, T19S, R37E, Latitude 32° 31' 29.7" N Longitude 103° 17' 11.7 W).

If you have any questions regarding the report, please call me at 303-605-1718.

Sincerely

DCP Midstream, LP

Stephen Weathers, PG Sr. Environmental Specialist

cc: Carl <u>Chavez</u>, <u>OCD Santa Fe Office</u> Larry Johnson, OCD Hobbs District Office (Copy on CD) Lynn Ward, DCP Midland Office Environmental Files January 30, 2007

Mr. Stephen Weathers DCP Midstream, LP 370 17th Street, Suite 2500 Denver, CO 80202

Re: Summary of the Fourth Quarter 2006 Groundwater Monitoring Results for the C-Line 50602 Release Location in Lea County New Mexico Unit O, Section 31, Township 19 South, Range 37 East (1RP-401-0)

Dear Mr. Weathers:

This report summarizes the fourth quarter 2006 groundwater monitoring activities completed at the C-Line 50602 release location for DCP Midstream, LP (DCP), formerly Duke Energy Field Services, LP. The monitoring activities were completed on December 11, 2006. The site is located in the southwestern quarter of the southeastern quarter (Unit O) of Section 31, Township 19 South, Range 37 East (Figure 1). The approximate coordinates are 32 degrees 31 minutes north, 103 degrees 17 minutes west.

The monitoring system includes the nine groundwater monitoring wells shown on Figure 2. Table 1 summarizes construction information for each well.

GROUNDWATER SAMPLING

Trident Environmental collected groundwater samples on December 11, 2006. The soil vapor extraction (SVE) system has been turned off since June 26, 2006. The system was left turned off after the June sampling event because no free phase hydrocarbon (FPH) were measured.

The depth to water in each well was measured prior to the sampling activities. The calculated groundwater elevations for all monitoring episodes are summarized in Table 2. The FPH thickness values for MW-1 and MW-4 for all monitoring episodes are summarized in Table 3. Well MW-1 contained no FPH for the sixth consecutive quarter. Well MW-4 also contained no FPH for the third consecutive quarter.

The nine wells were purged and sampled using the standard protocols for this site. Purging was completed using dedicated bailers until a minimum of three casing volumes of water was removed and the field parameters temperature, pH and conductivity stabilized. The well purging forms are attached. The affected purge water was disposed of at the DCP Linam Ranch facility.

6885 South Marshall St., Suite 3, Littleton, CO 80128 phone 303-948-7733 fax 303-948-7739

Mr. Stephen Weathers January 30, 2007 Page 2

Unfiltered samples were then collected using the same dedicated bailers. All samples were placed in an ice-filled chest immediately upon collection and delivered to the analytical laboratory (Environmental Labs of Texas) using standard chain-of-custody protocol. The samples were analyzed for benzene, toluene, ethylbenzene and total xylenes (BTEX).

The laboratory analyses for the sampling episode are summarized in the upper part of Table 4. The laboratory report is attached.

The lower part of Table 4 includes the quality assurance/quality control (QA/QC) information. The QA/QC evaluation includes:

- The sample temperature was 2.5° centigrade when the lab received them.
- No BTEX constituents were detected in the trip blank.
- All of the individual surrogate spikes were within their control limits.
- The relative percentage difference (RPD) values for the constituents from MW-3 and its duplicate all exhibited good agreement.
- The matrix spike and matrix spike duplicate results from the MW-7 sample were all within the control limits for all four constituents.

The above data indicate that the data is suitable for all uses.

RESULTS AND INTERPRETATIONS

Figure 3 includes hydrographs for the corrected water-table elevations for all site wells. The water table elevations remained relatively consistent in all wells.

Figure 4 shows the December 2006 calculated groundwater contours as generated using the Surfer® program with the kriging option. The water table exhibits a consistent gradient toward the southeast. This pattern reflects the historic trends.

Figure 5 depicts the spatial December 2006 benzene distribution. Benzene was reported at below the method reporting limit of 0.001 in MW-1 and at an average value of 7.49 mg/l in the two samples from MW-3. MW-4 contained 0.17 mg/l of benzene. The remaining wells did not contain benzene at the method-reporting limit of 0.001 mg/l.

Table 5 summarizes all of the analytical data collected to date. The changes in benzene concentrations are plotted for wells MW-1 and MW-3 on Figure 6. Sampling in MW-1 begin in December 2003 after removal of the FPH was completed. The sampling in MW-3 begin at the start of the project in November 2002. The benzene concentration in both

Mr. Stephen Weathers January 30, 2007 Page 3

wells both decreased between September 2006 and December 2006. The concentration in MW-3 continues the cyclical variations that began in 2004. The concentration in MW-1 was reported as below the method reporting limit even though the September 2006 value was 4.27 mg/l.

The time-benzene concentration plots MW-2 and MW-5 are on Figure 7. Benzene was not detected at or above the 0.001 mg/l method reporting limit for the sixth consecutive monitoring episode. This trend indicates that the dissolved-phase plume is stable.

Operation of the SVE remediation system was discontinued on June 26, 2006. The system remains intact, and it could be restarted if additional remediation was found to be necessary.

The next groundwater-monitoring event is scheduled for the first quarter of 2007. Do not hesitate to contact me if you have any questions or comments on this letter.

Sincerely, AMERICAN ENVIRONMENTAL CONSULTING, LLC

Mechael H. Stewart

Michael H. Stewart, P.E., C.P.G. Principal Engineer MHS/tbm TABLES

i,

ς.

4 (Dec 1 - 1

•

•

Well	Top of Casing Elevation	Ground Elevation	Screen Diameter	Screened Interval	Sand Interval	Total Depth
MW-1	3,541.21	3,538.64	4"	82.5-97.5	81-98	98
MW-2	3,540.91	3,537.70	2"	81-101	77-102	102
MW-3	3,541.41	3,539.30	2"	80-100	78-103	103
MW-4	3,541.40	3,538.51	2"	80-100	78-103	103
MW-5	3,541.45	3,538.69	2"	80-100	78-102	102
MW-6	3,543.98	3,540.94	2"	79-99	75-102	102
MW-7	3,542.42	3,540.20	2"	82.5-97.5	77-98*	98
MW-8	3,540.29	3,538.08	2"	82.5-97.5	81-98	98
MW-9	3,539.62	3,537.33	2"	82.5-97.5	81-98	98

Table 1 – Summary of Well Construction Information

ه مرد د

بدون عوامدية محمد عوامدية

5 C - 64

14 F.S.

1 40 1

All units in feet except as noted * Well MW-7 has a natural sand pack from 93 to 98 feet

Table 2 - Summary of Corrected Water Table Elevations

.

in the second se

ter Share

A LAND TO AND A .

0.00 al

* o c . Mor.

Mar 06	3,451.96	3,451.52	3,451.34	3,451.18	3,448.26	3,450.86	3,450.18	3,449.99
Dec 05	3,451.88	3,451.46	3,450.42	3,451.32	3,448.50	3,450.86	3,450.40	3,450.25
Sep 05	3,451.96	3,451.58	3,451.38	3,451.18	3,448.44	3,450.99	3,450.24	3,450.04
Jun. 05	3,451.99	3,451.51	3,451.26	3,451.35	3,448.62	3,450.99	3,450.41	3,450.38
Mar. 05	3,451.22	3,451.37	3,451.25	3,451.14	3,448.64	3,450.80	3,450.23	3,450.11
Dec. 04	3,450.97	3,451.24	3,451.19	3,451.10	3,448.91	3,450.70	3,450.21	3,450.13
Sep. 04	3451.19	3451.01	3450.88	3450.75	3448.03	3450.47	3449.85	3449.67
Jun. 04	3,451.23	3,451.06	3,451.02	3,450.86	3,448.14	3,450.57	3,450.03	3,449.81
Jan. 04	3,451.34	3,451.22	3,451.19	3,451.11	3,448.37	3,450.72	3,450.22	3,450.03
Oct. 03	3,451.35	3,451.27	3,451.25	3,451.20	3,448.46	3,450.76	3,450.35	3,450.21
Apr. 03	3,451.73	3,451.33	3,451.21	3,451.09	3,448.38			F
Feb. 03	3,451.60 3,451.97	3,451.37	3,451.32	3,451.21	3,448.51			
Nov. 02	3,452.01	3,452.25	3,451.56	3,451.39	3,448.77			
Well	<u>MW-1</u> <u>MW-2</u>	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	<u>9-WM</u>

Well	Jun 06	Sep-06	Dec-06
MW-1	3,451.88	3,451.86	3,451.82
MW-2	3,452.13	3,452.12	3,452.06
MW-3	3,451.45	3,451.43	3,451.40
MW-4	3,451.40	3,451.34	3,451.33
MW-5	3,451.16	3,451.16	3,451.22
MW-6	3,448.28	3,448.27	3,448.30
MW-7	3,450.81	3,450.83	3,450.78
MW-8	3,450.14	3,450.21	3,450.28
WW-9	3,449.92	3,450.02	3,450.15
1 / 11			

All units in feet.
 The groundwater elevation values for MW-1 and MW-4 were corrected using the following formula (all values in feet): GWE_{corr} = MGWE + (PT*PD): where

 MGWE is the actual measured groundwater elevation;
 PT is the measured free-phase hydrocarbon thickness, and
 PD is the free phase hydrocarbon density (assumed 0.7).

Date	MW-1	MW-4
11/02/02	3.15	0.00
02/17/03	3.62	0.00
04/16/03	2.92	0.00
10/30/03	3.21	0.00
06/29/04	2.66	0.00
09/28/04	2.16	0.21
12/08/04	0.13	1.18
03/16/05	0.04	3.03
06/06/05	0.02	0.07
09/20/05	0.00	0.16
12/15/05	0.00	0.21
03/21/06	0.00	0.03
06/27/06	0.00	0.00
09/16/06	0.00	0.00
12/11/06	0.00	0.00

4

13 000 m

e e da merane Abre, pere a

A 2 4.

. . . .

4 10 m V

- 400° - -

to in stra

100-10 - 1 - C

Table 3 – C-Line Free Phase Hydrocarbon Thickness Measurements

Notes 1) Units are feet

Table 4 – December 2006 Sample Results and QA/QC Evaluation

				Total
Well	Benzene	Toluene	Ethylbenzene	Xylenes
MW-1	< 0.001	< 0.001	< 0.001	< 0.001
MW-2	< 0.001	< 0.001	< 0.001	< 0.001
MW-3	7.49	3.22	.361	0.514
MW-3 (duplicate)	7.48	3.48	.421	0.600
MW-4	0.170	0.139	0.111	0.466
MW-5	< 0.001	< 0.001	< 0.001	< 0.001
MW-6	< 0.001	< 0.001	< 0.001	< 0.001
MW-7	< 0.001	< 0.001	< 0.001	< 0.001
MW-8	< 0.001	< 0.001	< 0.001	< 0.001
MW-9	< 0.001	< 0.001	< 0.001	< 0.001
Trip Blank	< 0.001	<0.001	< 0.001	< 0.001

December 2006 Analytical Results

a

235 3

بالم (أن الم

u**6** . * . .

A 4 44

1.00

0,000

Notes: All units mg/l

December 2006 MW-3 Duplicate Sample Evaluation

	Benzene	Toluene	Ethylbenzene	Total Xylenes
MW-3 RPD	0.13%	7.76%	15.35%	15.44%

December 2006 MW-7 Matrix Spike Results

	Benzene	Toluene	Ethylbenzene	p/m Xylenes	o Xylenes
Matrix Spike	109	107	110	101	101
Matrix Spike Duplicate	111	109	116	102	103

Percent recovery limits are 80% to 120%

Benzene	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9
									<u>.</u>
11/15/02	FPH	< 0.001	0.017	0.114	< 0.001	<0.001			
02/18/03	FPH	0.29	2.52	1.12	0.328	0.001			
04/17/03	FPH	0.175	3.18	0.782	0.128	0.002			
10/28/03	FPH	0.018	5.01	0.077	0.164	< 0.001	<0.001	< 0.001	< 0.001
01/29/04	FPH	0.0848	6.06	0.320	0.226	0.00382	<0.001	0.00139	< 0.001
06/29/04	FPH	0.0582	9.84	0.461	0.249	< 0.00019	0.000456	0.00248	< 0.00019
09/28/04	FPH	0.329	11.2	FPH	0.0336	<0.001	<0.001	< 0.001	< 0.001
12/06/04	FPH	0.0355	12.0	FPH	0.0137	<0.001	<0.001	<0.001	< 0.001
03/16/05	FPH	0.00523	10.9	FPH	0.00371	< 0.001	< 0.001	< 0.001	< 0.001
06/06/05	FPH	0.0017	8.83	FPH	0.00169	< 0.001	0.000695J	0.000955J	<0.001
9/20/05	FPH	< 0.001	10.75	FPH	<0.001	< 0.001	< 0.001	<0.001	< 0.001
12/15/05	2.14	<0.001	9.57	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
3/21/06	1.32	< 0.001	6.55	FPH	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
6/26/06	2.17	< 0.001	9.67	9.08	< 0.001	<0.001	< 0.001	< 0.001	<0.001
9/16/06	4.27	< 0.001	10.55	0.51	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
12/11/06	< 0.001	<0.001	7.49	0.17	<0.001	< 0.001	< 0.001	< 0.001	< 0.001

Table 5 - Summary of Analytical Results

.

and the second

2.5 2.2

Share and the second

- 15 ×

A LANDARY A

Toluene	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9
11/15/02	FPH	<0.001	0.005	0.039	<0.001	< 0.001			_
02/18/03	FPH	0.014	0.634	0.436	0.056	< 0.001			
04/17/03	FPH	0.007	0.513	0.45	0.007	<0.001			
10/28/03	FPH	0.001	0.275	0.029	0.048	< 0.001	< 0.001	< 0.001	<0.001
01/29/04	FPH	0.0350	0.506	0.169	0.064	0.00140	<0.001	0.00109	< 0.001
06/29/04	FPH	0.000219J	0.0917	0.0202	0.00172	< 0.00014	< 0.00014	<0.00014	< 0.00014
09/28/04	FPH	0.0174	0.0218	FPH	0.00281	<0.001	<0.001	<0.001	<0.001
12/06/04	FPH	0.0017	0.0438	FPH	0.00318	<0.001	<0.001	< 0.001	<0.001
03/16/05	FPH	< 0.001	0.013J	FPH	.00038J	< 0.001	< 0.001	< 0.001	<0.001
06/06/05	FPH	< 0.001	0.056	FPH	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
9/20/05	FPH	< 0.001	0.1355	FPH	<0.001	< 0.001	< 0.001	<0.001	< 0.001
12/15/05	1.37	<0.001	0.414	FPH	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
3/21/06	0.931	< 0.001	1.575	FPH	< 0.001	< 0.001	<0.001	< 0.001	<0.001
6/26/06	1.42	< 0.001	2.93	5.73	< 0.001	<0.001	<0.001	<0.001	<0.001
9/16/06	0.508	<0.001	3.48	0.0415	< 0.001	<0.001	<0.001	<0.001	<0.001
12/11/06	< 0.001	< 0.001	3.35	0.139	<0.001	< 0.001	< 0.001	<0.001	< 0.001

 I2/11/00
 <0.001</td>
 5.33
 0.139

 Notes:
 I) All units mg/l
 2) Duplicate results averaged

 3) "J" qualifiers are not included in summary

 4) Wells not installed where blank cells are present

 5) FPH free phase hydrocarbons present so no sample collected

Ethylbenzene	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9
11/15/02	FPH	<0.001	< 0.001	0.002	<0.001	<0.001			
02/18/03	FPH	0.001	0.021	0.022	0.004	< 0.001			
04/17/03	FPH	<0.001	0.028	0.029	< 0.001	<0.001			
10/28/03	FPH	< 0.001	0.031	0.002	0.002	< 0.001	< 0.001	< 0.001	< 0.001
01/29/04	FPH	0.00292	0.0679	0.0203	0.00404	0.00133	< 0.001	0.00112	< 0.001
06/29/04	FPH	0.00534	0.0873	0.352	0.0603	< 0.00013	< 0.00013	0.000633J	< 0.00013
09/28/04	FPH	< 0.001	0.105	FPH	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
12/06/04	FPH	< 0.001	0.154	FPH	< 0.001	<0.001	< 0.001	< 0.001	< 0.001
03/16/05	FPH	< 0.001	0.150	FPH	<0.001	<0.001	<0.001	< 0.001	< 0.001
06/06/05	FPH	< 0.001	0.1535	FPH	< 0.001	<0.001	<0.001	< 0.001	<0.001
09/20/05	FPH	<0.001	0.288	FPH	<0.001	<0.001	<0.001	<0.001	<0.001
12/15/05	0.313	< 0.001	0.173	FPH	< 0.001	<0.001	< 0.001	<0.001	< 0.001
3/21/06	0.419	< 0.001	0.4085	FPH	< 0.001	<0.001	< 0.001	< 0.001	< 0.001
6/26/06	0.534	< 0.001	0.0333	1.03	< 0.001	<0.001	< 0.001	< 0.001	<0.001
9/16/06	0.153	<0.001	0.288	0.21	<0.001	<0.001	< 0.001	<0.001	<0.001
12/11/06	<0.001	<0.001	0.391	0.111	<0.001	<0.001	<0.001	<0.001	<0.001
				.					
Xylenes	MW-1	MW-2	MW-3	MW-4	MW-5	<u>MW-6</u>	MW-7	MW-8	MW-9
11/15/02	FPH	<0.001	< 0.001	0.003	<0.001	<0.001			
I			I .			1	1		1

Table 5 – Summary of Analytical Results (continued)

Xylenes	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9
11/15/02	FPH	< 0.001	< 0.001	0.003	< 0.001	< 0.001			
02/18/03	FPH	0.001	0.064	0.032	0.004	<0.001			
04/17/03	FPH	< 0.001	0.1	0.055	< 0.001	<0.001			
10/28/03	FPH	< 0.001	0.083	0.008	0.004	< 0.001	< 0.001	< 0.001	< 0.001
01/29/04	FPH	0.00474	0.0849	0.053	0.0074	0.00194	< 0.001	0.00217	< 0.001
06/29/04	FPH	0.001J	0.02404	0.074	0.004	< 0.0002	< 0.0002	< 0.0002	< 0.0002
09/28/04	FPH	< 0.001	0.0213	FPH	< 0.001	<0.001	< 0.001	< 0.001	<0.001
12/06/04	FPH	<0.001	0.0237	FPH	< 0.001	<0.001	< 0.001	< 0.001	<0.001
03/16/05	FPH	< 0.001	0.02842	FPH	< 0.001	<0.001	< 0.001	< 0.001	< 0.001
06/06/05	FPH	< 0.001	0.0502	FPH	< 0.001	<0.001	<0.001	< 0.001	< 0.001
09/20/05	FPH	< 0.001	0.221	FPH	< 0.001	<0.001	< 0.001	< 0.001	0.00105
12/15/05	1.334	< 0.001	0.177	FPH	<0.001	<0.001	< 0.001	<0.001	< 0.001
3/21/06	1.379	< 0.001	0.9015	FPH	< 0.001	<0.001	< 0.001	< 0.001	< 0.001
6/26/06	1.722	< 0.001	0.414	5.69	< 0.001	<0.001	< 0.001	< 0.001	< 0.001
9/16/06	0.323	< 0.001	0.384	1.028	< 0.001	<0.001	< 0.001	< 0.001	< 0.001
12/11/06	< 0.001	<0.001	0.557	0.466	<0.001	<0.001	< 0.001	<0.001	<0.001

Notes:

19 a 4

4 4 4

2 - 10 - 2 - 2

· . 34.

10, A

No. 14 . 8-44

100 P

12 84 14 - C

San S

Sec. 8.1.163

Notes: 1) All units mg/l 2) Duplicate results average 3) "J" qualifiers are not included in summary 4) Wells not installed where blank cells are present 5) FPH free phase hydrocarbons present so no sample collected

FIGURES

.

00 **0**

Ĥ

1.3. 50

. .

IJ

ľ

24.62

1.4.4

Į

B

ļ

I

B

H

ĺ

1 : 19 **1** -

Í

ļ

l

į

100 A

2

Ĥ

ł

ł

H

Į

Į

FIELD SAMPLING FORMS AND ANALYTICAL LABORATORY REPORT

.

14 F. 24

Ķ

l

: b. •

ŀ

l

4 4 4

	CLIENT:	Duke En	uke Energy Field Services WELL ID: MW-1						
SI	TE NAME:		C Line			DATE:	12/11/2006		
PRC	JECT NO.		F-107			SAMPLER:	J. Fergerson		
PURGING	METHOD:	:	🗹 Hand Bai	led 🗌 Pu	mp If Pui	mp, Type:			
SAMPLIN	G METHO	D:	🗹 Disposab	le Bailer	Direct 1	from Discha	arge Hose 🔲 Other:		
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METHO	DD BEFO	RE SAMPI	LING THE WELL:		
Glove:	s 🗌 Alcono	x 🗌 Distil	ed Water Ri	nse 🗌 C	Other:				
DISPOSA		OF PURG	E WATER:	Surface	e Discharç	ge 🗌 Drui	ms 🗹 Disposal Facility		
TOTAL DI DEPTH TO HEIGHT (EPTH OF V O WATER: DF WATER	VELL: COLUMN:	99.98 89.39 10.59	Feet Feet Feet		20.7	_Minimum Gallons to		
WELL DIAMETER: <u>4.0</u> Inch purge 3 well volumes (Water Column Height x 1.96)									
TIME	VOLUME PURGED	TEMP. °C	COND. mS/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS		
13:29	0.0	-	-	-	-		Began Hand Bailing!		
13:40	7.0						Did Not Collect Parameter		
13:53	14.0						Readings Due to Possible		
14:02	21.0						Damage to Probes!		
		······································							
0:33	:Total Time	e (hr:min)	21	:Total Vol	(gal)	0.63	:Flow Rate (gal/min)		
SAMP	LE NO.:	Collected S	ample No.:	061212	1410				
ANAL	YSES:	BTEX (802	1-B)						
COM	IENTS:								

4.

:

nut c

· · · · ·

5 - A - A - A

. . .

		Duke En	ergy Field	Services		WELL ID:	MW-2
S	ITE NAME:		C Line			DATE:	12/11/2006
PRC	JECT NO.		F-107			SAMPLER:	J. Fergerson
PURGING	G METHOD:		🗹 Hand Bai	iled 🗌 Pu	mp If Pu	mp, Type:	
SAMPLIN) :	🗹 Disposab	le Bailer	Direct	from Discha	arge Hose 🔲 Other:
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METHO	DD BEFC	RE SAMPI	LING THE WELL:
Glove	s 🗌 Alcono	x 🗌 Distil	led Water Ri	nse 🗌 C)ther:		
DISPOSA		OF PURG	E WATER:	Surface	Dischar	ge 🗌 Drui	ms 🗹 Disposal Facility
TOTAL D DEPTH T	epth of v o water:	VELL:	<u>100.94</u> 88.85	Feet Feet			
Height (Well Dia		COLUMN: 2.0	12.09 Inch	Feet		5.9	Minimum Gallons to purge 3 well volumes (Motor Column Height x 0.49)
TIME	E VOLUME TEMP. COND. pH DC PURGED ° C mS/cm pH mg					Turb	PHYSICAL APPEARANCE AND REMARKS
15:01	0.0	_	-	-	-	_	Begin Hand Bailing
15:07	2.1	20.6	2.98	7.46	I	-	
15:15	4.2	20.6	2.97	7.47	_		
15:23	6.3	20.6	2.96	7.47	-	-	
-							
0:22	:Total Time	e (hr:min)	6.3	:Total Vol ((gal)	0.29	:Flow Rate (gal/min)
SAMP	LE NO.:	Collected S	ample No.:	061211	1530		
ANAL	YSES:	BTEX (802	1-B)				
COMN							

ļ

16 G G V

1 a ar

40-1 vi

.

, : 1 ,

* • •

No. of the Party o

17.1 2010-10

2.01.6.15

1. . . .

	CLIENT:	Duke En	ergy Field	Services		WELL ID:	MW-3		
SI			C Line			DATE:	12/11/2006		
PRC	JECT NO.		F-107		. :	SAMPLER:	J. Fergerson		
PURGING	METHOD:		🗹 Hand Bai	led 🗌 Pu	mp If Pu	mp, Type:			
SAMPLIN	G METHOD) :	🗹 Disposab	le Bailer	Direct 1	from Discha	arge Hose 🗌 Other:		
DESCRIB	E EQUIPMI	ENT DECO	ΝΤΑΜΙΝΑΤΙ	ON METH	OD BEFO	RE SAMPL	LING THE WELL:		
Glove:	s 🗌 Alcono	x 🗌 Distill	ed Water Ri	nse 🗌 C	Other:				
DISPOSA	L METHOD	OF PURG	E WATER:	Surface	e Discharg	ge 🗌 Drur	ms 🗹 Disposal Facility		
TOTAL DEPTH OF WELL:102.44 FeetDEPTH TO WATER:90.01 FeetHEIGHT OF WATER COLUMN:12.43 FeetWELL DIAMETER:2.0 InchGate Column Height x 0.49)									
TIME VOLUME TEMP. COND. DO PURGED °C mS/cm pH mg\L Turb							PHYSICAL APPEARANCE AND REMARKS		
14:16	0.0	-	-	-	-		Begin Hand Bailing		
14:21	2.1	19.7	2.31	7.57		-			
14:28	4.2	19.6	2.31	7.61	-	-			
14:35	6.3	19.6	2.31	7.68					
							· · · · · · · · · · · · · · · · · · ·		
							· .		
0:19	:Total Time	e (hr:min)	6.3	:Total Vol ((gal)	0.33	:Flow Rate (gal/min)		
SAMPI	LE NO.:	Collected S	ample No.:	061211	1440				
ANAL	YSES:	BTEX (802	1-B)						
COMN	IENTS:	Collected D	uplicate Sar	mple No.:(06121117	00 for BTE	X <u>(</u> 8021-B)		

Į

l

Î

	CLIENT:	Duke En	ergy Field	Services	_	WELL ID:	MW-4				
SITE NAME: C Line DATE: 12/11/2006											
PRC	JECT NO.		F-107		_ ;	SAMPLER:	J. Fergerson				
PURGING	6 METHOD	:	🗌 Hand Bai	led 🗌 Pu	mp If Pu	mp, Type:					
SAMPLIN	G METHO	D:	🗌 Disposab	le Bailer	Direct	from Discha	arge Hose 🗌 Other:				
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPI	LING THE WELL:				
Glove	Gloves Alconox Distilled Water Rinse Other:										
DISPOSA	L METHOD) of Purg	E WATER:	Surface	e Discharç	ge 🗌 Drui	ms 🗹 Disposal Facility				
TOTAL DEPTH OF WELL: 103.42 Feet											
DEPTH TO WATER: <u>90.07</u> Feet HEIGHT OF WATER COLUMN: 13.35 Feet 6.5 Minimum Gallons to											
WELL DIAMETER: 2.0 Inch purge 3 well volumes											
(Water Column Height x 0.49)											
TIME PURGED °C mS/cm pH mg\L Turb PHYSICAL APPEARANC											
14:23	0.0	-	-	-	-		Begin Hand Bailing				
14:29	2.1	-	-	-	Did Not Collect Parame						
14:37	4.2	-	-	-	-	-	Readings Due to Possible				
14:44	6.3		-	-	-	-	Damage to Probes!				
						·····					
						<u>.</u>					
0.24		(hrimin)	6.2	·Totol Vol /	(col)	0.20	·Elow Boto (col/min)				
0.21 SAMDI				. Total Vol ((yai)	0.30					
ΔΝΙΔΙ	VSES	BTFX (802	1_R)	001212	1400						
COMM	IFNTS										
COMIN							·····				

AND AND ADDRESS

1 - 0 - 0 - 0

-- 92.00 - 01 --

1000 Barris

. . .

CLIENT	ergy Field	Services		WELL ID:	MW-5				
SITE NAME	: 	<u>C Line</u>			DATE:	12/11/2006			
PROJECT NO)	F-107			SAMPLER:	J. Fergerson			
		-		-					
PURGING METHO	D:	🗸 Hand Bai	led 🗌 Pu	mp If Pur	mp, Type:				
SAMPLING METHO	DD:	🗹 Disposab	le Bailer	Direct f	rom Discha	arge Hose 🗌 Other:			
DESCRIBE EQUIP	MENT DECO	NTAMINATI	ON METH	DD BEFO	RE SAMPI	LING THE WELL:			
Gloves 🗌 Alcor	nox 🗌 Distil	led Water Ri	nse 🗌 C	Other:					
DISPOSAL METHO	D OF PURG	E WATER:	Surface	Discharg	je 🗌 Drui	ms 🗌 Disposal Facility			
TOTAL DEPTH OF WELL:102.05FeetDEPTH TO WATER:90.23FeetHEIGHT OF WATER COLUMN:11.82FeetWELL DIAMETER:2.0Inchpurge 3 well volumes									
(Water Column Height x 0.49)									
	E TEMP. D <u>°</u> C	COND. <i>m</i> S/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS			
12:01 0.0	-	-	-	-		Begin Hand Bailing			
12:07 2.1	19.7	3.24	7.27	-					
12:15 4.2	19.4	3.22	7.52	-					
12:22 6.0	19.2	3.20	7.58	-	-				
· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·			
·····									
0:21 :Total Tir	ne (hr:min)	6	:Total Vol	(gal)	0.28	Flow Rate (gal/min)			
SAMPLE NO.:	Collected S	ample No.:	061211	1230					
ANALYSES:	BTEX (802	1-B)							
COMMENTS:		········	· · · · · · · · · · · · · · · · · · ·						

2

ŀ

÷

CLIENT: Duke E			ergy Field	Services		WELL ID:	MW-6				
SI	TE NAME:		C Line			DATE:	12/11/2006				
PRC	JECT NO.		F-107		Ś	SAMPLER:	J. Fergerson				
PURGING			🗸 Hand Bai	led 🗌 Pu	mp If Pu	mp, Type:					
SAMPLIN	G METHOD	D:	🗹 Disposab	le Bailer 🏾	Direct f	rom Discha	arge Hose 🗌 Other:				
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METHO	DD BEFO	RE SAMPL	LING THE WELL:				
Glove:	Gloves Alconox Distilled Water Rinse Other:										
DISPOSA	DISPOSAL METHOD OF PURGE WATER: 🗹 Surface Discharge 🗌 Drums 🗌 Disposal Facility										
TOTAL DEPTH OF WELL:103.20 FeetDEPTH TO WATER:95.68 FeetHEIGHT OF WATER COLUMN:7.52 FeetWELL DIAMETER:2.0 InchJunch9000000000000000000000000000000000000											
TIME	VOLUME PURGED	TEMP. °C	COND. <i>m</i> S/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS				
10:49	0.0		-	_	-		Begin Hand Bailing				
10:56	1.3	19.2	8.16	7.28	-						
11:01	2.6	19.4	8.59	7.27	-						
11:05	3.9	19.4	8.64	7.28	-						
0:16	:Total Time	e (hr:min)	3.9	:Total Vol ((gal)	0.24	:Flow Rate (gal/min)				
SAMP	LE NO.:	Collected S	ample No.:	061211	1110						
ANAL	YSES:	BTEX (802	1-B)								
COMN	COMMENTS:										

Ø

H

	CLIENT:	Duke En	ergy Field	Services		WELL ID:	MW-7				
SI	TE NAME:		C Line			DATE:	12/11/2006				
PRC	JECT NO.		F-107		Ś	SAMPLER:	J. Fergerson				
PURGING	METHOD	:	🗹 Hand Bai	led 🗌 Pu	mp If Pur	np, Type:					
SAMPLIN	G METHO	D:	🗹 Disposab	le Bailer	Direct f	rom Discha	arge Hose 🔲 Other:				
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METHO	DD BEFO	RE SAMPI	LING THE WELL:				
Glove:	Gloves Alconox Distilled Water Rinse Other:										
DISPOSA	L METHOD) of Purg	E WATER:	Surface	Discharg	je 🗌 Drui	ms 🗌 Disposal Facility				
TOTAL DEPTH OF WELL:100.40FeetDEPTH TO WATER:91.64FeetHEIGHT OF WATER COLUMN:8.76FeetWELL DIAMETER:2.0InchDIAMETER:2.0Inch											
							(Water Column Height x 0.49)				
TIME	PURGED	°C	COND. <i>m</i> S/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS				
13:21	0.0	-	_	-		-	Begin Hand Bailing				
13:26	1.5	19.4	2.21	7.63	-	-					
13:31	3.0	19.4	2.22	7.66	-	-					
13:37	4.5	19.4	2.22	7.68							
0.40		(hwa:		.Totol \/r	(mal)	0.00					
0:76		e (nr:min)	4.5	. 10tal VOI	(gai)	0.28	Plow Rate (gai/min)				
SAIVIPI ANAI	LE NU	BTEY (902		001211	1343						
COM	AENTS	Collected N		nnlesi							
COMM			Johnon Odli	inhico:							

.

1 - ---- Pac

20-0100-0

1.1.1

•

	CLIENT:	Duke En	ergy Field	Services		WELL ID:	MW-8				
SI	TE NAME:		C Line			DATE:	12/11/2006				
PRO	JECT NO.		F-107			SAMPLER:	J. Fergerson				
PURGING	METHOD:		🗹 Hand Bai	led 🗌 Pu	mp If Pur	np, Type:					
SAMPLIN) :	🗹 Disposab	le Bailer	Direct f	rom Discha	arge Hose 🗌 Other:				
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METH	DD BEFO	RE SAMPI	LING THE WELL:				
	s 🗌 Alcono	x 🗌 Distill	led Water Ri	nse 🗌 C	Other:						
DISPOSA	L METHOD	OF PURG	E WATER:	Surface	e Discharg	ge 🗌 Drui	ms 🗌 Disposal Facility				
TOTAL DE	EPTH OF V	VELL:	100.50	Feet							
DEPTH TO	JEPTH TO WATER:90.01 Feet HEIGHT OF WATER COLUMN:10.49 Feet5.1 Minimum Gallons to										
WELL DIAMETER: 2.0 Inch purge 3 well volumes											
(Water Column Height x 0.49)											
TIME	PURGED	°C	m S/cm	рН	_mg\L	Turb	REMARKS				
12:46	0.0	-	-	-	-		Begin Hand Bailing				
12:51	1.8	19.6	2.77	7.60							
12:57	3.6	19.9	2.75	7.62	-	_					
13:03	5.4	19.9	2.74	7.64	-						
0:17	:Total Time	e (hr:min)	5.4	:Total Vol	(gal)	0.32	:Flow Rate (gal/min)				
SAMPI	LE NO.:	Collected S	ample No.:	061211	<u>1</u> 310						
ANAL	YSES:	BTEX (802	1-B)								
COMM											

a: _____

	CLIENT:	Duke En	ergy Field	Services		WELL ID:	<u>MW-9</u>				
Sľ	TE NAME:		C Line			DATE:	12/11/2006				
PRO	JECT NO.		F-107			SAMPLER:	J. Fergerson				
PURGING	METHOD:		🗸 Hand Bai	led 🗌 Pu	mp If Pui	np, Type:					
SAMPLIN	G METHOD	D:	🗸 Disposab	le Bailer	Direct f	rom Discha	arge Hose 🗌 Other:				
DESCRIB	E EQUIPMI	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPI	LING THE WELL:				
Gloves	Gloves Alconox Distilled Water Rinse Other:										
DISPOSA	L METHOD	OF PURG	E WATER:	Surface	e Discharg	je 🗌 Drui	ms 🗌 Disposal Facility				
TOTAL DE	TOTAL DEPTH OF WELL: 100.50 Feet										
DEPTH TO WATER: 89.47 Feet HEIGHT OF WATER COLUMN: 11.03 Feet 5.4 Minimum Gallons to											
WELL DIAMETER: 2.0 Inch purge 3 well volumes											
	VOLUME	TEMP.	COND.		DO		PHYSICAL APPEARANCE AND				
	PURGED	°C	<i>m</i> S/cm	рн	mg\L		REMARKS				
11:25	0.0		-	-	_		Begin Hand Bailing				
11:30	1.8	19.2	2.97	7.54	-	_					
11:35	3.6	19.2	2.99	7.60		_					
11:41	5.4	19.2	3.02	7.65	-						
0:16	:Total Time	e (hr:min)	5.4	:Total Vol	(gal)	0.34	:Flow Rate (gal/min)				
SAMPI	E NO.:	Collected S	ample No.:	061211	1145						
ANAL	YSES:	BTEX (802	1-B)								
COMN	COMMENTS:										

1. B. B.

Ì

Ħ

Analytical Report

Prepared for:

Michael Stewart American Envionmental Consultants 6885 South Marshall St., Ste. 3 Littleton, CO 80128

Project: DEFS- C Line Project Number: None Given Location: C-Line

Lab Order Number: 6L12016

Report Date: 12/20/06

American Envionmental Consultants 6885 South Marshall St., Ste. 3 Littleton CO, 80128

.

1

Project: DEFS- C Line Project Number: None Given Project Manager: Michael Stewart

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-6 (0612111110)	6L12016-01	Water	12/11/06 11:10	12-12-2006 17:00
MW-9 (0612111145)	6L12016-02	Water	12/11/06 11:45	12-12-2006 17:00
MW-5 (0612111230)	6L12016-03	Water	12/11/06 12:30	12-12-2006 17:00
MW-8 (0612111310)	6L12016-04	Water	12/11/06 13:10	12-12-2006 17:00
MW-7 (0612111345)	6L12016-05	Water	12/11/06 13:45	12-12-2006 17:00
MW-3 (0612111440)	6L12016-06	Water	12/11/06 14:40	12-12-2006 17:00
MW-2 (0612111530)	6L12016-07	Water	12/11/06 15:30	12-12-2006 17:00
Duplicate (0612111700)	6L12016-08	Water	12/11/06 17:00	12-12-2006 17:00
RW-1 (0612121410)	6L12016-09	Water	12/12/06 14:10	12-12-2006 17:00
MW-4 (0612121450)	6L12016-10	Water	12/12/06 14:50	12-12-2006 17:00
Trip Blank	6L12016-11	Water	12/12/06 00:00	12-12-2006 17:00

American Envionmental Consultants 6885 South Marshall St., Ste. 3 Littleton CO, 80128

.

1

9

Project: DEFS- C Line Project Number: None Given Project Manager: Michael Stewart

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-6 (0612111110) (6L12016-01) Water			<u> </u>					<u></u>	<u></u>
Benzene	ND	0.00100	mg/L	1	EL61809	12/18/06	12/18/06	EPA 8021B	
Toluene	ND	0.00100	11	11	"	"	**	31	
Ethylbenzene	ND	0.00100	11	0	11	и	"		
Xylene (p/m)	ND	0.00100			11		"	"	
Xylene (o)	ND	0.00100	"	"	"	n	"	11	
Surrogate: a,a,a-Trifluorotoluene		94.0 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.8 %	80-12	0	"	"	"	n	
MW-9 (0612111145) (6L12016-02) Water									
Benzene	ND	0.00100	mg/L	1	EL61809	12/18/06	12/18/06	EPA 8021B	
Toluene	ND	0.00100		"	"	"	"	**	
Ethylbenzene	ND	0.00100	"		**	11	"	11	
Xylene (p/m)	ND	0.00100	"	"	u.	11	n	"	
Xylene (o)	ND	0.00100	**	11		"	u	"	
Surrogate: a,a,a-Trifluorotoluene		106 %	80-12	0	n	"	"	"	
Surrogate: 4-Bromofluorobenzene		100 %	80-12	0	"	"	"	"	
MW-5 (0612111230) (6L12016-03) Water									
Benzene	ND	0.00100	mg/L	1	EL61809	12/18/06	12/18/06	EPA 8021B	
Toluene	ND	0.00100	"	n	n	"	"	"	
Ethylbenzene	ND	0.00100		"	"	**	"	11	
Xylene (p/m)	ND	0.00100	"	"	It	"		"	
Xylene (o)	ND	0.00100	"		u	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		106 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.5 %	80-12	0	"		"	".	
MW-8 (0612111310) (6L12016-04) Water									
Benzene	ND	0.00100	mg/L	1	EL61809	12/18/06	12/18/06	EPA 8021B	
Toluene	ND	0.00100	"	11	"	"	n	11	
Ethylbenzene	ND	0.00100			"	"	0	**	
Xylene (p/m)	ND	0.00100	17	н	11	"	0		
Xylene (o)	ND	0.00100	"	"	"			"	
Surrogate: a,a,a-Trifluorotoluene		109 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		100 %	80-12	0	"	n	"	"	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. American Envionmental Consultants 6885 South Marshall St., Ste. 3 Littleton CO, 80128

.

Project:DEFS- C LineProject Number:None GivenProject Manager:Michael Stewart

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-7 (0612111345) (6L12016-05) Water									
Benzene	ND	0.00100	mg/L	1	EL61809	12/18/06	12/18/06	EPA 8021B	
Toluene	ND	0.00100	"	"	17	"	"	"	
Ethylbenzene	ND	0.00100	"	"	11	"	n	11	
Xylene (p/m)	ND	0.00100	"	"	"		**	"	
Xylene (o)	ND	0.00100	"	n	"	"	**	17	
Surrogate: a,a,a-Trifluorotoluene		90.5 %	80-	120	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		81.0 %	80-	120	"	"	"	"	
MW-3 (0612111440) (6L12016-06) Water									
Benzene	7.49	0.100	mg/L	100	EL61809	12/18/06	12/19/06	EPA 8021B	
Toluene	3.22	0.100	"	"		"	"	"	
Ethylbenzene	0.361	0.100	"	"	17		"	0	
Xylene (p/m)	0.337	0.100	"	"	**	11	11	"	
Xylene (o)	0.177	0.100	n	"	**	"	"	11	
Surrogate: a,a,a-Trifluorotoluene		124 %	80-	120	"	"	"	"	S-04
Surrogate: 4-Bromofluorobenzene		82.8 %	80-	120	"	"	"	"	
MW-2 (0612111530) (6L12016-07) Water									
Benzene	ND	0.00100	mg/L	l	EL61809	12/18/06	12/19/06	EPA 8021B	
Toluene	ND	0.00100	н	n	n	14	11		
Ethylbenzene	ND	0.00100		n	"	"	**	**	
Xylene (p/m)	ND	0.00100	11	"	"	"	*1	11	
Xylene (o)	ND	0.00100	"	11	11	"		11	
Surrogate: a,a,a-Trifluorotoluene		100 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.8 %	80-	120	"	"	"	"	
Duplicate (0612111700) (6L12016-08) Wa	ter								
Benzene	7.48	0.100	mg/L	100	EL61809	12/18/06	12/19/06	EPA 8021B	
Toluene	3.48	0.100	"	•		"	**		
Ethylbenzene	0.421	0,100		**				0	
Xylene (p/m)	0.377	0.100	11	"	"	**	"	11	
Xylene (o)	0.223	0.100	"	"	**	D.	"	"	
Surrogate: a,a,a-Trifluorotoluene		103 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.0 %	80-	120	"	"	"	"	

l

5 Sec. 2

- Co. + - 5 - 50

A Ball

2 4 A.B. -

\$* 0 m

Sec. 1

1 a a 2

Project: DEFS- C Line Project Number: None Given Project Manager: Michael Stewart

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
RW-1 (0612121410) (6L12016-09) Water		·····							
Benzene	ND	0.100	mg/L	100	EL61809	12/18/06	12/19/06	EPA 8021B	
Toluene	ND	0.100	11			"	"	"	
Ethylbenzene	ND	0.100	n	11	"	'n	11		
Xylene (p/m)	ND	0.100	0	11	"	"	"	"	
Xylene (o)	ND	0.100	н	11	11	17	"	"	
Surrogate: a,a,a-Trifluorotoluene		108 %	80-	120	"	n	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	80-	120	"	"	"	11	
MW-4 (0612121450) (6L12016-10) Water									
Benzene	0.170	0.0100	mg/L	10	EL61809	12/18/06	12/19/06	EPA 8021B	<u></u>
Toluene	0.139	0.0100	"	11		"	н	"	
Ethylbenzene	0.111	0.0100	11	"	"	"	"	"	
Xylene (p/m)	0.345	0.0100		"	n	"	11	"	
Xylene (0)	0.121	0.0100			"	u	11	11	

Surrogate: a,a,a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene

Trip Blank (6L12016-11) Water

Benzene	ND	0.00100	mg/L	1	EL61809	12/18/06	12/19/06	EPA 8021B	
Foluene	ND	0.00100	"	"	"	"	11	u.	
Ethylbenzene	ND	0.00100	"	11	n			"	
Xylene (p/m)	ND	0.00100	11	и	"		"	"	
Xylene (o)	ND	0.00100	u		0	"	"	0	
Surrogate: a,a,a-Trifluorotoluene		103 %	80-120		"	"	11	"	
Surrogate: 4-Bromofluorobenzene		84.0 %	80-120		"	"	"	"	

80-120

80-120

,,

"

,,

,,

8-04

128 %

85.8 %

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.
- 1 ale . A

8. X. A

Project: DEFS- C Line Project Number: None Given Project Manager: Michael Stewart

Organics by GC - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL61809 - EPA 5030C (GC)	<u> </u>									
Blank (EL61809-BLK1)				Prepared &	Analyzed	12/18/06				
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100								
Ethylbenzene ,	ND	0.00100	"							
Xylene (p/m)	ND	0.00100	**							
Xylene (0)	ND	0.00100								
Surrogate: a,a,a-Trifluorotoluene	36.6		ug/l	40.0		91.5	80-120			
Surrogate: 4-Bromofluorobenzene	35.8		n	40.0		89.5	80-120			
LCS (EL61809-BS1)				Prepared &	Analyzed	: 12/18/06				
Benzene	0.0456	0.00100	mg/L	0.0500		91.2	80-120			
Toluene	0.0439	0.00100	"	0.0500		87.8	80-120			
Ethylbenzene	0.0452	0.00100	"	0.0500		90.4	80-120			
Xylene (p/m)	0.0825	0.00100		0.100		82.5	80-120			
Xylene (0)	0.0420	0.00100	"	0.0500		84.0	80-120			
Surrogate: a,a,a-Trifluorotoluene	32.1		ug/l	40.0		80.2	80-120			
Surrogate: 4-Bromofluorobenzene	32.5		11	40.0		81.2	80-120			
Calibration Check (EL61809-CCV1)				Prepared: 12	2/18/06 A	.nalyzed: 12	/19/06			
Benzene	49.6		ug/l	50.0		99.2	80-120			
Toluene	48.9			50.0		97.8	80-120			
Ethylbenzene	50.1		"	50.0		100	80-120			
Xylene (p/m)	88.8		**	100		88.8	80-120			
Xylene (o)	43.8		It	50.0		87.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	40.0		"	40.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	39.7		"	40.0		99.2	80-120			
Matrix Spike (EL61809-MS1)	Sou	rce: 6L12016-	05	Prepared: 1	2/18/06 A	nalyzed: 12	/19/06			
Benzene	0.0547	0.00100	mg/L	0.0500	ND	109	80-120			
Toluene	0.0534	0.00100	"	0.0500	ND	107	80-120			
Ethylbenzene	0.0551	0.00100	"	0.0500	ND	110	80-120			
Xylene (p/m)	0.101	0.00100	0	0.100	ND	101	80-120			
Xylene (o)	0.0505	0.00100	"	0.0500	ND	101	80-120			
Surrogate: a,a,a-Trifluorotoluene	43.0		ug/l	40.0		108	80-120			
Surrogate: 4-Bromofluorobenzene	39.1		"	40.0		97.8	80-120			

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: DEFS- C Line Project Number: None Given Project Manager: Michael Stewart

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EL61809 - EPA 5030C (GC)

Matrix Spike Dup (EL61809-MSD1)	Sou	rce: 6L12016-	05	Prepared: 1	2/18/06 A	nalyzed: 1	2/19/06		
Benzene	0.0556	0.00100	mg/L	0.0500	ND	111	80-120	1.82	20
Toluene	0.0546	0.00100	**	0.0500	ND	109	80-120	1.85	20
Ethylbenzene	0.0581	0.00100		0.0500	ND	116	80-120	5.31	20
Xylene (p/m)	0.102	0.00100	11	0.100	ND	102	80-120	0.985	20
Xylene (o)	0.0513	0.00100	"	0.0500	ND	103	80-120	1.96	20
Surrogate: a,a,a-Trifluorotoluene	44.9		ug/l	40.0		112	80-120		<u></u> ,
Surrogate: 4-Bromofluorobenzene	34.1		"	40.0		85.2	80-120		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

American Envionmental Consultants 6885 South Marshall St., Ste. 3 Littleton CO, 80128

Project: DEFS- C Line Project Number: None Given Project Manager: Michael Stewart

Notes and Definitions

- S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike

Dup Duplicate

Report Approved By:

Raland K Just Date:

12/20/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

		كنعالا				DES	Γ	z yuz	Z '87 '	25 (olubərləz-ərqi TX TAT	RUSH T	2								z z	222	N N e Star	0
		Ś										_									1	X For	52
		da								· · · ·											2 2 2	Fedi	
JEST	-1800	(2)				тққр					R.O.R.M.				-+			\rightarrow			₹ Nub		
n NEQL	2-563 2-563	74				Ċ	i c	i 🔤	2-00	18\2030-01-01EX-85	208 X∃T8	Z								s: ace?	ainer(n en c	cept
SIS F	e: 43	24		Y		-					Volatiles Semivolati								_	umen Arstan		liènt R UF	on Re
AL A	Phon Fax:	5		L'ŵ		indar	V	Ī	9S	Ag Ba Cd Cr Pb Hg	eA :slefaM										ontal als of als of	E S	en e
AN I	_	3		\sim] Ste		TCLP		CEC	ISE / ESE									raton le Co Free	dy se dy se dy se	E H	eratu
AND		e F	 #€	ې د	¥	ليا			-	a, Mg, Va, K)	 anoite.) anoite.) 			-						0Cs	aber Visto	d na G	emp
RD		Nam	oject	ct Lo	od	mat				9001 X1 9001	хт :нат					Ť							
ECC		oject	Pro	roje		t For			991	08 MB108 1.8	IIF HAT								_	:	Ě.	Time	ğ ğ
1 ×		Ъ		-		tepor	I		atrix	able Specify Ofher	nuon9 = Wo Ioq-noN=9N	Ž											
						œ.			Ë	agbul≳≂JS najeW (ov+Drinking	G								1	ê.	e e	5 1
cns						1			Se la	eqi))	Other (Sp			<u> </u>							ä	ă	ñ i
OF	ist '65					3			ontain		Vans. Sand			+					-				
AIN	20 Ea					2			# of C		HOPN			+		-							
E.	st I-: Fexa					2			tion &	··· ··· ··· ··· ··· ··· ··· ··· ··· ··	²OS²H												
n	0 We sa, 1					94			serva		HCI	4				-							
	1260(Ddes					3			Pre			7		+									
			7			3		2	57/2	imdy eraniatios	Total #, of (5				+							3
N			¢.				<u></u>			ρ	erotii bloif			•		_							2
0 , , , ,			10 Sus			Fax No	e-mail			pəįdu	eS əmíT												3 M
		- - - -	rental C	Suite 3	128					pəjdu	ne2 9180									1	Received by:	Received by:	Received by ELOT
6			2.12		·d				-	បុរ្ស	a pribra								·	3			
exa		.+ <u>,</u>	a bise	5 hal	0	733				di Depth	ninnige8									Servi	1in 170/		L.
ab of T		Le Stowe	crican E	Sis S. Mari	theton, C	3-948-7	h Find													55 Field	Date 12/2/06	Date	Date
		ž.	Am	5: 686	1:4	30	S,		و 0		ELD CODE									ic the			
men		Manager:	ly Name	ly Addres:	te/Zip:	ne No:	r Signatur		<u>ک</u> ا		FIL	Blank								s: Duku	N		
Į		oject /	ompan	ompan	ity/Sta	slepho	amplei					r : 0	-				1			L C	1		ž
		ď	Ŭ	Ŭ	ō	Ť	ű	se onl	ER#		S COLOR	. GS	<u>33</u> 1							al Inst	lished	lished	ished
								(lab u	ORD	(Aiùo əsn	9ei) # 841									Spech	Relim	Beling	Retingu

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Client:	American Environmental Consulting
Date/ Time:	12-12-06@ 1700
Lab ID # :	6L12016
Initials:	JMM

Sample Receipt Checklist

				Client	Initials
#1	Temperature of container/ cooler?	(Yes)	No	2.5 °C	
#2	Shipping container in good condition?	(es)	No		
#3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present	
#4	Custody Seals intact on sample bottles/ container? /label	(Yes)	No	Not Present	
#5	Chain of Custody present?	(es)	No		
#6	Sample instructions complete of Chain of Custody?	(Yes)	No		
#7	Chain of Custody signed when relinquished/ received?	(Yes)	No		
#8	Chain of Custody agrees with sample label(s)?	(Yes)	No	ID written on Cont./ Lid	
#9	Container label(s) legible and intact?	Tes	No	Not Applicable	
#10	Sample matrix/ properties agree with Chain of Custody?	Tes	No		
#11	Containers supplied by ELOT?	(Ves)	No		
#12	Samples in proper container/ bottle?	(Yes)	No	See Below	
#13	Samples properly preserved?	Yes	No	See Below	
#14	Sample bottles intact?	Yes	No		
#15	Preservations documented on Chain of Custody?	Yes	No		
#16	Containers documented on Chain of Custody?	Yes	No		
#17	Sufficient sample amount for indicated test(s)?	(Yes)	No	See Below	
#18	All samples received within sufficient hold time?	(Yes)	No	See Below	
#19	Subcontract of sample(s)?	Yes	No	Not Applicable	
#20	VOC samples have zero headspace?	(Yes)	No	Not Applicable	

Variance Documentation

Contact:	Contacted by:	Date/ Time:
Regarding:		
Corrective Action Taken:		

Check all that Apply:

See attached e-mail/ fax

Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

DCP Midstream 370 17th Street, Suite 2500 Denver, CO 80202 303-595-3331 303-605-2226 FAX

October 29, 2007

Mr. Wayne Price Environmental Bureau Chief New Mexico Oil Conservation Division 1220 S. St. Francis Dr. Santa Fe, NM 87505

RE: 3rd Quarter 2007 Groundwater Monitoring Results DCP C-Line Pipeline Release (1RP-401-0), Lea County, NM Unit O Section 31, T19S, R37E

Dear Mr. Price:

DCP Midstream, LP (DCP) is pleased to submit for your review, one copy of the 3rd Quarter 2007 Groundwater Monitoring Results for the DCP C-Line Pipeline Release Site located in Lea County, New Mexico (Unit O Section 31, T19S, R37E, Latitude 32° 31' 29.7" N Longitude 103° 17' 11.7 W).

Based on the recommendations of American Environmental Consulting (AEC), DCP would like to decrease the groundwater monitoring from quarterly monitoring to semiannual (spring and fall). The next sampling event will be scheduled for March of 2008 unless DCP is notified by the OCD to continue quarterly monitoring.

If you have any questions regarding the report, please call me at 303-605-1718.

Sincerely

DCP Midstream, LP

Stephen Weathers, PG Sr. Environmental Specialist

MW A MWS. 7 & 8 to worth BTEX domigrade for worth - 3. & domigrade it hat

cc: Carl Chavez, OCD Santa Fe Office Larry Johnson, OCD Hobbs District Office (Copy on CD) Lynn Ward, DCP Midland Office Environmental Files

www.dcpmidstream.com

DCP Midstream 370 17th Street, Suite 2500 Denver, CO 80202 303-595-3331 303-605-2226 *FAX*

October 29, 2007

Mr. Wayne Price Environmental Bureau Chief New Mexico Oil Conservation Division 1220 S. St. Francis Dr. Santa Fe, NM 87505

RE: 3rd Quarter 2007 Groundwater Monitoring Results DCP C-Line Pipeline Release (1RP-401-0), Lea County, NM Unit O Section 31, T19S, R37E

Dear Mr. Price:

DCP Midstream, LP (DCP) is pleased to submit for your review, one copy of the 3rd Quarter 2007 Groundwater Monitoring Results for the DCP C-Line Pipeline Release Site located in Lea County, New Mexico (Unit O Section 31, T19S, R37E, Latitude 32° 31' 29.7" N Longitude 103° 17' 11.7 W).

Based on the recommendations of American Environmental Consulting (AEC), DCP would like to decrease the groundwater monitoring from quarterly monitoring to semiannual (spring and fall). The next sampling event will be scheduled for March of 2008 unless DCP is notified by the OCD to continue quarterly monitoring.

If you have any questions regarding the report, please call me at 303-605-1718.

Sincerely

DCP Midstream, LP

Stephen Weathers, PG Sr. Environmental Specialist

cc: Carl Chavez, OCD Santa Fe Office
 Larry Johnson, OCD Hobbs District Office (Copy on CD)
 Lynn Ward, DCP Midland Office
 Environmental Files

www.dcpmidstream.com

AEC AMERICAN ENVIRONMENTAL CONSULTING, LLC

October 16, 2007

Mr. Stephen Weathers DCP Midstream, LP 370 17th Street, Suite 2500 Denver, CO 80202

Re: Summary of the Third Quarter 2007 Groundwater Monitoring Results for the C-Line 50602 Release Location in Lea County New Mexico Unit O, Section 31, Township 19 South, Range 37 East (1RP-401-0)

Dear Mr. Weathers:

This report summarizes the third quarter 2007 groundwater monitoring activities completed at the C-Line 50602 release location for DCP Midstream, LP (DCP). The monitoring activities were completed on September 26, 2007. The site is located in the southwestern quarter of the southeastern quarter (Unit O) of Section 31, Township 19 South, Range 37 East (Figure 1). The approximate coordinates are 32 degrees 31 minutes north, 103 degrees 17 minutes west.

The groundwater-monitoring network includes the nine wells shown on Figure 2. Table 1 summarizes construction information for each well.

GROUNDWATER SAMPLING

Trident Environmental collected groundwater samples on September 26, 2007. The depth to water and free phase hydrocarbons (FPH), if present, were measured in each well prior to purging and sampling. The calculated groundwater elevations for all monitoring episodes are summarized in Table 2.

None of the wells contained FPH in this monitoring event. The historical FPH thickness values for MW-1 and MW-4 are summarized in Table 3

Eight of the nine wells were purged and sampled. Well MW-6 was not sampled because it is located down gradient from boundary wells MW-7, MW-8 and MW-9 so it does not provide useful information relative to this study.

Purging was completed using dedicated bailers until a minimum of three casing volumes were removed and the field parameters temperature, pH and conductivity stabilized. The well purging forms are attached. The affected purge water was disposed of at the DCP Linam Ranch facility.

Mr. Stephen Weathers October 16, 2007 Page 2

Unfiltered samples were collected following well stabilization using the same dedicated bailers. All of the samples were placed in an ice-filled chest immediately upon collection and delivered to the analytical laboratory (Environmental Labs of Texas) using standard chain-of-custody protocol. The samples were analyzed for benzene, toluene, ethylbenzene and total xylenes (BTEX).

The laboratory analyses for the sampling episode are summarized in the upper part of Table 4. The laboratory report is attached.

The lower part of Table 4 includes the quality assurance/quality control (QA/QC) information. The QA/QC evaluation includes:

- Benzene was detected in the trip blank at a concentration of 0.0011 mg/l.
- All of the individual surrogate spikes were within their control limits.
- The relative percentage difference (RPD) values exhibited poor agreement.
- The matrix spike and matrix spike duplicate results from the MW-7 exhibited good agreement.

The information above indicates that the data is suitable for evaluating routine groundwater monitoring data.

RESULTS AND INTERPRETATIONS

Figure 3 includes hydrographs for the corrected water-table elevations for all site wells. The water table elevations increased by varying degrees in all of the wells except MW-1. The water table declined slightly in MW-1

Figure 4 shows the September 2007 calculated groundwater contours as generated using the Surfer® program with the kriging option. The water table exhibits a consistent gradient toward the southeast. This pattern reflects the historic trends.

Figure 5 depicts the spatial September 2007 benzene distribution. Benzene was reported at 1.75 mg/l in MW-1, an average value of 5.54 mg/l in the two samples from MW-3, and 0.43 mg/l in MW-4. The remaining wells, particularly down-gradient boundary wells MW-7, MW-8 and MW-9, did not contain benzene above the 0.001 mg/l method reporting limit.

Table 5 summarizes all of the analytical data collected to date. The changes in benzene concentrations are plotted for wells MW-1 and MW-3 on Figure 6. Sampling in MW-1 begin in December 2005 after removal of the FPH was completed. The sampling in MW-3 begin at the start of the project in November 2002. The benzene concentration in MW-1 exhibited the second substantial decline (3.82 mg/l to 1.75 mg/l). The benzene concentration appears to have declined based upon the average value; however, one of the

Mr. Stephen Weathers October 16, 2007 Page 3

samples had a concentration of 6.59 mg/l (Table 4) that is close to the values measured in the first and second quarters of 2007 (Table 5).

Benzene was not detected at or above the 0.001 mg/l method reporting limit in either MW-2 or MW- 5 for the eighth consecutive monitoring episode.

The wells are gauged weekly for FPH and the soil vapor extraction (SVE) remediation system is operated as necessary to ensure that no FPH is present in the wells. The SVE remediation system was restarted August 29, 2007 to remove 0.0016 feet of FPH. The system was shut down the next week when no FPH was measured, and none has been noted either before or after that week during the third quarter. The SVE system will be stopped (if operating) two weeks before the next sampling event to ensure accurate FPH measurement.

RECOMMENDATIONS

AEC recommends that groundwater monitoring be decreased from quarterly to semiannually (spring and fall) for the following reasons.

- 1. The site has be monitored for 4.75 years and no BTEX has ever been measured in down-gradient boundary wells MW-7, MW-8 and MW-9.
- 2. The BTEX concentrations in wells MW-2 and MW-5 declined to non-detect from November 2002 to June 2005, and they have remained below the method reporting limit since then.
- 3. The FPH concentrations are monitored weekly and any measured FPH is promptly removed.
- 4. The concentrations in MW-1 and MW-3, although elevated, are generally declining. This fact indicates, at the very least, that the dissolved phase hydrocarbon plume is not expanding.

AEC will schedule the next monitoring episode for March 2008 unless notified otherwise.

Sincerely, AMERICAN ENVIRONMENTAL CONSULTING, LLC

Muchael H. Stewart

Michael H. Stewart, P.E., C.P.G. Principal Engineer MHS/tbm TABLES

	Top of			, , , , , , , , , , , , , , , , , , ,		en e
	🔭 Casing 👐	Ground	Screen	Screened	Sand	Total
Well	Elevation	Elevation	Diameter	Interval	Interval	Depth
MW-1	3,541.21	3,538.64	4"	82.5-97.5	81-98	98
MW-2	3,540.91	3,537.70	2"	81-101	77-102	102
MW-3	3,541.41	3,539.30	2"	80-100	78-103	103
MW-4	3,541.40	3,538.51	2"	80-100	78-103	103
MW-5	3,541.45	3,538.69	2"	80-100	78-102	102
MW-6	3,543.98	3,540.94	2"	79-99	75-102	102
MW-7	3,542.42	3,540.20	2"	82.5-97.5	77-98*	98
MW-8	3,540.29	3,538.08	2"	82.5-97.5	81-98	98
MW-9	3,539.62	3,537.33	2"	82.5-97.5	81-98	98

Table 1 – Summary of Well Construction Information

All units in feet except as noted * Well MW-7 has a natural sand pack from 93 to 98 feet

Table 2 – Summary of Corrected Water Table Elevations

Dec 05 Mar 06	 3451.88 3451.96	3452.10 3452.18	3451.46 3451.52	3450.42 3451.34	3451.32 3451.18	3448.50 3448.26	3450.86 3450.86	3450.40 3450.18	3450.25 3449.99
Sep 05 I	3451.96 3	3452.19 3	3451.58 3	3451.38 3	3451.18 3	3448.44 3	3450.99 3	3450.24 3	3450.04
Jun. 05	3451.99	3452.22	3451.51	3451.26	3451.35	3448.62	3450.99	3450.41	3450.38
Mar. 05	3451.22	3452.08	3451.37	3451.25	3451.14	3448.64	3450.80	3450.23	3450.11
Dec. 04	3450.97	3451.91	3451.24	3451.19	3451.10	3448.91	3450.70	3450.21	3450.13
Sep. 04	3451.19	3451.72	3451.01	3450.88	3450.75	3448.03	3450.47	3449.85	3449.67
Jun. 04	3451.23	3451.73	3451.06	3451.02	3450.86	3448.14	3450.57	3450.03	3449.81
Jan. 04	3451.34	3451.84	3451.22	3451.19	3451.11	3448.37	3450.72	3450.22	3450.03
Oct. 03	3451.35	3451.87	3451.27	3451.25	3451.20	3448.46	3450.76	3450.35	3450.21
Apr. 03	3451.73	3451.96	3451.33	3451.21	3451.09	3448.38			
Feb. 03	3451.60	3451.97	3451.37	3451.32	3451.21	3448.51			
Nov. 02	3452.01	3452.11	3452.25	3451.56	3451.39	3448.77			
Well	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9

-07	.62	.13	.36	.07	.05	.15	.72	.08	.95
Sep	3451	3452	3451	3451	3451	3448	3450	3450	3449
n-07	51.64	52.04	51.21	50.99	50.87	17.97	50.52	19.86	t9.79
Ju	34;	34,	34,	345	34,	344	34;	344	34
-0	l.83	2.07	.40	1.36	1.27	3.36).80).35	.19
Mar	345]	3452	345]	345]	345]	3448	345(345(345(
-06	.82	00:	.40	.33	.22	30	.78	.28	.15
Dec	3451	3452	3451	3451	3451	3448	3450	3450	3450
90	.86	12	.43	.34	.16	.27	.83	.21	.02
Sep	3451	3452	3451	3451	3451	3448	3450	3450	3450
90	 .88	13	.45	.40	.16	3.28	.81	.14	.92
Jun	3451	3452	3451	3451	3451	3448	3450	3450	3449
/ell	W-1	W-2	W-3	W-4	W-5	W-6	V-7	W-8	0-W
3	N	М	ž	ź	ź	ž	ž	Z	Z

Notes:

All units in feet. The groundwater elevation values for MW-1 and MW-4 were corrected using the following formula (all values in feet): $GWE_{corr} = MGWE + (PT*PD)$: where

MGWE is the actual measured groundwater elevation;
 PT is the measured free-phase hydrocarbon thickness, and
 PD is the free phase hydrocarbon density (assumed 0.7).

Date	MW-1	MW-4
11/02/02	3.15	0.00
02/17/03	3.62	0.00
04/16/03	2.92	0.00
10/30/03	3.21	0.00
06/29/04	2.66	0.00
09/28/04	2.16	0.21
12/08/04	0.13	1.18
03/16/05	0.04	3.03
06/06/05	0.02	0.07
09/20/05	0.00	0.16
12/15/05	0.00	0.21
03/21/06	0.00	0.03
06/27/06	0.00	0.00
09/16/06	0.00	0.00
12/11/06	0.00	0.00
3/14/07	0.00	0.06
6/20/07	0.00	0.00
9/26/07	0.00	0.00

Table 3 - C-Line Free Phase Hydrocarbon Thickness Measurements

Units are feet

Analytical Results				
	and the second			Total
Well	Benzene	Toluene	Ethylbenzene	Xylenes
-MW-1	1.75	0.097	0.37	0.47
MW-2	< 0.001	< 0.001	< 0.001	< 0.002
MW-3	6.59	3.06	0.42	0.61
MW-3 (duplicate)	4.49	2.05	0.28	0.42
M W-4	0.43	0.35	0.19	0.93
MW-5	< 0.001	< 0.001	< 0.001	< 0.002
MW-6	NS	NS	NS	NS
MW-7	< 0.001	< 0.001	< 0.001	< 0.002
MW-8	< 0.001	< 0.001	< 0.001	< 0.002
MW-9	< 0.001	< 0.001	< 0.001	< 0.002
Trip Blank	0.0011	< 0.001	< 0.001	< 0.002

Table 4 – September 2007 Sample Results and QA/QC Evaluation

Notes: All units mg/l

NS: Well not sampled

MW-3 Duplicate Sample Evaluation

	Benzene		Ethylbenzene	Total Xylenes
MW-3 RPD	37.9%	39.5%	40.0%	36.9%

Matrix Spike and Matrix Spike Duplicate Results

	Benzene	Toluene	Ethylbenzene	p/m Xylenes	o Xylenes
Matrix Spike	89	90	85	87	87
Matrix Spike Duplicate	86	87	83	85	84

Percent recovery limits are 80% to 120%

Benzene	MW-1	= MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	_MW-9
11/15/02	FPH	< 0.001	0.017	0.114	< 0.001	< 0.001	·····		
02/18/03	FPH	0.29	2.52	1.12	0.328	0.001			
04/17/03	FPH	0.175	3.18	0.782	0.128	0.002			
10/28/03	FPH	0.018	5.01	0.077	0.164	< 0.001	< 0.001	< 0.001	< 0.001
01/29/04	FPH	0.0848	6.06	0.320	0.226	0.00382	< 0.001	0.00139	<0.001
06/29/04	FPH	0.0582	9.84	0.461	0.249	< 0.00019	0.000456	0.00248	< 0.00019
09/28/04	FPH	0.329	11.2	FPH	0.0336	< 0.001	< 0.001	< 0.001	<0.001
12/06/04	FPH	0.0355	12.0	FPH	0.0137	< 0.001	< 0.001	< 0.001	< 0.001
03/16/05	FPH	0.00523	10.9	FPH	0.00371	< 0.001	< 0.001	< 0.001	< 0.001
06/06/05	FPH	0.0017	8.83	FPH	0.00169	<0.001	0.000695J	0.000955J	< 0.001
09/20/05	FPH	< 0.001	10.75	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
12/15/05	2.14	< 0.001	9.57	FPH_	< 0.001	<0.001	< 0.001	< 0.001	<0.001
03/21/06	1.32	< 0.001	6.55	FPH	< 0.001	<0.001	< 0.001	< 0.001	<0.001
06/26/06	2.17	< 0.001	9.67	9.08	< 0.001	< 0.001	< 0.001	<0.001	< 0.001
09/16/06	4.27	< 0.001	10.55	0.51	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
12/11/06	< 0.001	< 0.001	7.49	0.17	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
03/14/07	5.59	< 0.001	6.41	FPH	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
06/20/07	3.82	< 0.001	6.41	1.80	< 0.001	NS	< 0.001	< 0.001	< 0.001
09/26/07	1.75	< 0.001	5.54	0.43	< 0.001	NS	< 0.001	< 0.001	< 0.001

Table 5 - Summary of	Analytical Results
----------------------	--------------------

Toluene	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9
11/15/02	FPH	< 0.001	0.005	0.039	<0.001	< 0.001			
02/18/03	FPH	0.014	0.634	0.436	0.056	< 0.001			
04/17/03	FPH	0.007	0.513	0.45	0.007	< 0.001			
10/28/03	FPH	0.001	0.275	0.029	0.048	< 0.001	< 0.001	< 0.001	< 0.001
01/29/04	FPH	0.0350	0.506	0.169	0.064	0.00140	< 0.001	0.00109	< 0.001
06/29/04	FPH	0.000219J	0.0917	0.0202	0.00172	< 0.00014	< 0.00014	< 0.00014	< 0.00014
09/28/04	FPH	0.0174	0.0218	FPH	0.00281	< 0.001	< 0.001	< 0.001	< 0.001
12/06/04	FPH	0.0017	0.0438	FPH	0.00318	< 0.001	< 0.001	< 0.001	< 0.001
03/16/05	FPH	< 0.001	0.013J	FPH	.00038J	< 0.001	< 0.001	< 0.001	< 0.001
06/06/05	FPH	< 0.001	0.056	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
9/20/05	FPH	< 0.001	0.1355	FPH	<0.001	< 0.001	< 0.001	< 0.001	< 0.001
12/15/05	1.37	< 0.001	0.414	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
03/21/06	0.931	< 0.001	1.575	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
06/26/06	1.42	< 0.001	2.93	5.73	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
09/16/06	0.508	< 0.001	3.48	0.0415	< 0.001	< 0.001	< 0.001	<0.001	<0.001
12/11/06	< 0.001	< 0.001	3.35	0.139	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
03/14/07	0.232	< 0.001	2.75	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
06/20/07	0.43	< 0.001	3.49	0.98	< 0.001	NS	< 0.001	< 0.001	< 0.001
09/26/07	0.097	< 0.001	2.555	0.35	< 0.001	NS	< 0.001	< 0.001	< 0.001

Notes: 1) All units mg/l, 2) Duplicate results averaged, 3) "J" qualifiers are not included in summary 4) Wells not installed where blank cells are present, 5) FPH free phase hydrocarbons present so no sample collected 6) NS: Well not sampled, see text for explanation

,

Ethylbenzene	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9
11/15/02	FPH	< 0.001	< 0.001	0.002	< 0.001	< 0.001			
02/18/03	FPH	0.001	0.021	0.022	0.004	< 0.001			
04/17/03	FPH	< 0.001	0.028	0.029	< 0.001	< 0.001			
10/28/03	FPH	< 0.001	0.031	0.002	0.002	< 0.001	< 0.001	< 0.001	< 0.001
01/29/04	FPH	0.00292	0.0679	0.0203	0.00404	0.00133	<0.001	0.00112	< 0.001
06/29/04	FPH	0.00534	0.0873	0.352	0.0603	< 0.00013	< 0.00013	0.000633J	< 0.00013
09/28/04	FPH	< 0.001	0.105	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
12/06/04	FPH	< 0.001	0.154	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
03/16/05	FPH	< 0.001	0.150	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
06/06/05	FPH	< 0.001	0.1535	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
09/20/05	FPH	< 0.001	0.288	FPH	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
12/15/05	0.313	< 0.001	0.173	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
03/21/06	0.419	< 0.001	0.4085	FPH	< 0.001	< 0.001	<0.001	< 0.001	<0.001
06/26/06	0.534	< 0.001	0.0333	1.03	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
09/16/06	0.153	< 0.001	0.288	0.21	< 0.001	<0.001	< 0.001	< 0.001	<0.001
12/11/06	< 0.001	< 0.001	0.391	0.111	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
03/14/07	0.453	< 0.001	0.3185	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
06/20/07	0.40	< 0.001	0.52	0.61	< 0.001	NS	< 0.001	< 0.001	< 0.001
09/26/07	0.37	< 0.001	0.35	0.19	< 0.001	NS	< 0.001	< 0.001	< 0.001

Table 5 – Summary of Analyt	ical Results (continued)

Xylenes	MW-1	<u>MW-</u> 2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9
11/15/02	FPH	< 0.001	< 0.001	0.003	< 0.001	< 0.001			
02/18/03	FPH	0.001	0.064	0.032	0.004	< 0.001			
04/17/03	FPH	<0.001	0.1	0.055	< 0.001	< 0.001			
10/28/03	FPH	< 0.001	0.083	0.008	0.004	< 0.001	< 0.001	< 0.001	< 0.001
01/29/04	FPH	0.00474	0.0849	0.053	0.0074	0.00194	< 0.001	0.00217	< 0.001
06/29/04	FPH	0.001J	0.02404	0.074	0.004	< 0.0002	< 0.0002	< 0.0002	< 0.0002
09/28/04	FPH	< 0.001	0.0213	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
12/06/04	FPH	< 0.001	0.0237	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
03/16/05	FPH	< 0.001	0.02842	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
06/06/05	FPH	< 0.001	0.0502	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
09/20/05	FPH	< 0.001	0.221	FPH	< 0.001	< 0.001	< 0.001	< 0.001	0.00105
12/15/05	1.334	< 0.001	0.177	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
03/21/06	1.379	< 0.001	0.9015	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
06/26/06	1.722	< 0.001	0.414	5.69	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
09/16/06	0.323	< 0.001	0.384	1.028	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
12/11/06	< 0.001	< 0.001	0.557	0.466	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
03/14/07	0.27	< 0.001	0.501	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
06/20/07	0.79	< 0.002	0.78	2.65	< 0.002	NS	< 0.002	< 0.002	< 0.002
09/26/07	0.47	< 0.002	0.515	0.93	< 0.002	NS	< 0.002	< 0.002	< 0.002

Notes: 1) All units mg/l, 2) Duplicate results averaged, 3) "J" qualifiers are not included in summary 4) Wells not installed where blank cells are present, 5) FPH free phase hydrocarbons present so no sample collected 6) NS: Well not sampled, see text for explanation

FIGURES

l h s

ì

FIELD SAMPLING FORMS AND ANALYTICAL LABORATORY REPORT

.....

.

	CLIENT:	DC	P Midstre	am	_	WELL ID:	RW-1				
S	ITE NAME:		C Line		_	DATE:	9/26/2007				
PRC	JECT NO.		F-107			SAMPLER:	J. Fergerson				
				-							
PURGING	METHOD:		☑ Hand Bai	led 🗆 Pu	mp If Pur	np, Type:					
SAMPLIN	G METHOD	D:	Disposab	le Bailer	Direct f	rom Discha	arge Hose 🔲 Other:				
DESCRIB	E EQUIPMI	ENT DECO		ON METHO	DD BEFO	RE SAMPL	ING THE WELL:				
Gloves	☑ Gloves ☐ Alconox										
DISPOSAL METHOD OF PURGE WATER: 🔲 Surface Discharge 🔲 Drums 🗹 Disposal Facility											
TOTAL DEPTH OF WELL: 99.98 Feet DEPTH TO WATER: 89.59 Feet HEIGHT OF WATER COLUMN: 10.39 Feet WELL DIAMETER: 4.0 Inch Well Diameter: 4.0 Inch											
TIME	VOLUME PURGED	TEMP. °C	COND. mS/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS				
9:48	0.0	_	-	_	-	_	Began Hand Bailing!				
10:15	21.0	-	-	-	-		Did Not Collect Parameter				
							Readings Due to Possible				
							Damage to Probes!				
0.07		0			[
<u>0:27</u>		Collected S			(gai)	0.78	Flow Rate (gal/min)				
ΔΝΔΙ	YSES	BTEX (802		070920	1030						
COMM	IENTS:					<u> </u>					

/

	CLIENT:	DCP Midstream			_	WELL ID:	MW-2		
S	ITE NAME:		C Line		_	DATE:	9/26/2007		
PRO	DJECT NO.		F-107			SAMPLER:	J. Fergerson		
PURGING	G METHOD:	:	🖸 Hand Bai	led 🛯 Pu	mp If Pur	тр, Туре:			
SAMPLIN) :	🖸 Disposab	le Bailer	Direct f	from Discha	arge Hose 🛛 Other:		
DESCRIE		ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPI	ING THE WELL:		
Glove	s 🗆 Alcono	x 🛛 Distill	ed Water Ri	nse 🗆 C	Other:				
DISPOSA		OF PURG	E WATER:	Surface	e Discharg	ge 🗆 Drui	ms 🗹 Disposal Facility		
TOTAL D DEPTH T HEIGHT (WELL DI/	EPTH OF W O WATER: OF WATER AMETER:	VELL: COLUMN: 2.0	100.94 88.78 12.16 Inch	Feet Feet Feet		6.0	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)		
TIME	VOLUME PURGED	TEMP. ° C	COND. <i>m</i> S/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS		
14:27	0.0	-		-	-	_	Begin Hand Bailing		
14:33	2.0	21.5	2.69	6.99	-				
14:41	4.0	21.3	2.69	7.00	-				
14:48	6.0	22.4	2.74	7.08	-				
				<u> </u>					
							· · · · · · · · · · · · · · · · · · ·		
0:21	:Total Time	e (hr:min)	6	:Total Vol	(gal)	0.28	:Flow Rate (gal/min)		
SAMP	LE NO.:	Collected S	ample No.:	070926	1450				
ANAL	YSES:	BTEX (802	1-B)				·····		
COM	IENTS:								

Ĩ

Ń

	CLIENT:	DC	P Midstre	am		WELL ID:	MW-3				
SI	TE NAME:		C Line		-	DATE:	9/26/2007				
PRC	JECT NO.		F-107			SAMPLER:	J. Fergerson				
					-						
PURGING	METHOD:	: 1	Hand Bai	led 🗆 Pu	mp If Pu	mp, Type:					
SAMPLIN	g metho	D:	Disposab	le Bailer] Direct 1	from Disch	arge Hose 📋 Other:				
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METHO	OD BEFO	RE SAMP	LING THE WELL:				
Gloves Alconox Distilled Water Rinse Other:											
DISPOSAL METHOD OF PURGE WATER: 🛛 Surface Discharge 🗇 Drums 🗹 Disposal Facility											
TOTAL DEPTH OF WELL: 102.44 Feet											
DEPTH T	O WATER:		90.05	Feet							
	OF WATER	COLUMN: <u>12.39</u> Feet <u>6.1</u> Minimum Gallons to									
							(Water Column Height x 0.49)				
TIME	VOLUME	TEMP. ° C	COND. <i>m</i> S/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS				
13:30	0.0	-	-		-	-	Begin Hand Bailing				
13:34	2.1	21.3	2.29	7.18	-						
13:40	4.2	21.2	2.29	7.19	-	-					
13:55	6.3	22.0	2.31	7.24	-						
					_						
							[
0:25	:Total Time	e (hr:min)	6.3	:Total Vol	(gal)	0.25	:Flow Rate (gal/min)				
SAMP	LE NO.:	Collected S	ample No.:	070926	1400						
ANAL	YSES:	BTEX (802	1-B)	•							
COMMENTS: Collected Duplicate Sample No.: 0709261600 for BTEX (8021-B)											

Ĩ

Į

Ì

Į

Ų

CLIENT: DCI			P Midstre	am		WELL ID:	MW-4				
SITE NAME:			C Line		DATE:		9/26/2007				
PROJECT NO.			F-107			SAMPLER	J. Fergerson				
PURGING METHOD: If Pump If Pump, Type:											
SAMPLING METHOD: I Disposable Bailer I Direct from Discharge Hose I Other:											
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:											
Gloves Alconox Distilled Water Rinse Other:											
DISPOSA	DISPOSAL METHOD OF PURGE WATER: Surface Discharge Drums Disposal Facility										
TOTAL DEPTH OF WELL:103.42 FeetDEPTH TO WATER:90.33 FeetHEIGHT OF WATER COLUMN:13.09 FeetWELL DIAMETER:2.0 InchGlameter Column Height x 0											
TIME	VOLUME PURGED	TEMP. ° C	COND. <i>m</i> S/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS				
10:39	0.0	-				-	Begin Hand Bailing				
11:18	6.9			-		~	Did Not Collect Parameter				
							Readings Due to Possible				
							Damage to Probes!				
0:39 :Total Time (hr:min) 6.9 :Total Vol (gal) 0.18 :Flow Rate (gal/min)											
SAMP	LE NO.:	Collected S	ample No.:	070926	1125						
ANALYSES: BTEX (802			1-B)								
COMM	IENTS:										

CLIENT: DC		P Midstream		WELL ID:		MW-5				
SITE NAME:			C Line		DATE:		9/26/2007			
PROJECT NO.		F-107			SAMPLER:	J. Fergerson				
PURGING METHOD: If Hand Bailed Pump If Pump, Type:										
SAMPLING METHOD: I Disposable Bailer I Direct from Discharge Hose I Other:										
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:										
Gloves 🗆 Alconox 🗆 Distilled Water Rinse 🗆 Other:										
DISPOSAL METHOD OF PURGE WATER: Surface Discharge Drums Disposal Facility										
TOTAL D	EPTH OF W	VELL:	102.05	Feet						
DEPTH T	O WATER:	COLUMN	90.40	Feet		57	Minimum Gallons to			
WELL DIA	METER:	2.0	Inch	i eet			purge 3 well volumes			
Г							(Water Column Height x 0.49)			
TIME	PURGED	°C	<i>m</i> S/cm	pН	mg\L_	Turb	REMARKS			
10:34	0.0	-					Begin Hand Bailing			
10:41	2.0	20.8	3.11	7.13						
10:51	4.0	20.8	3.04	7.15		-				
10:58	6.0	21.0	3.05	7.16	-					
ļ										
ļ										
							· · · · · · · · · · · · · · · · · · ·			
				· · · · · · · · · · · · · · · · · · ·						
┝────┴───┴───┴───┴───┴───┴───┴───┤╶──┴────────										
0:24	:Total Time	e (hr:min)	6	:Total Vol ((gal)	0.25	:Flow Rate (gal/min)			
SAMP	LE NO.:	Collected S	ample No.:	070926	1100	·····	<u> </u>			
ANALYSES: BTEX (802			1-B)			<u></u>	<u> </u>			
COMN	IENTS:									

ļ

ļ

Ì

ļ

Í

CLIENT:		DCP Midstream			_	WELL ID:	MW-7			
SITE NAME:		C Line			-	DATE:	9/26/2007			
PROJECT NO.		F-107				SAMPLER:	J. Fergerson			
PURGING	METHOD	:	Hand Bai	led 🗆 Pu	mp If Pu	тр, Туре:				
SAMPLIN	G METHO	D:	🖸 Disposab	le Bailer	Direct 1	from Disch	arge Hose 📋 Other:			
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:										
☑ Gloves □ Alconox □ Distilled Water Rinse □ Other:										
DISPOSAL METHOD OF PURGE WATER: 🗹 Surface Discharge 🛛 Drums 🗔 Disposal Facility										
TOTAL D	EPTH OF V	VELL:	100.40	Feet						
DEPTH T	O WATER:		91.70	Feet		4.0	Minimum Onlines to			
WELL DIA	METER:	2.0	8.70 Inch	Feet		4.3	purge 3 well volumes			
r					<u> </u>		(Water Column Height x 0.49)			
TIME	PURGED	° C	COND. <u><i>m</i> S/cm</u>	pН	mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS			
12:10	0.0		-	-	-		Begin Hand Bailing			
12:19	1.7	22.0	2.15	7.23	-					
12:26	3.3	21.0	2.15	7.22	-	-				
12:34	5.0	21.3	2.13	7.33	-					
			<u></u>							
ļ				· · · · · · · · · · · · · · · · · · ·						
						<u></u>				
0:24 :Total Time (hr:min)			5	: I otal Vol	(gal)	0.21	:Flow Rate (gal/min)			
SAMPLE NO.: (070926	1235					
COMMENTS:										

Æ

Ĵ

l

Ĵ

Ì

Ĩ

Z

CLIENT: DC		P Midstre	am	WELL ID:		MW-8				
SITE NAME:			C Line			DATE:	9/26/2007			
PROJECT NO.			F-107	_		SAMPLER:	J. Fergerson			
PURGING METHOD: If Hand Bailed I Pump If Pump, Type:										
SAMPLING METHOD: I Disposable Bailer Direct from Discharge Hose Other:										
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:										
☑ Gloves □ Alconox □ Distilled Water Rinse □ Other:										
DISPOSAL METHOD OF PURGE WATER: Surface Discharge Drums Disposal Facility										
TOTAL D	EPTH OF W	/ELL:	100.50	Feet						
DEPTH T	O WATER:		90.21	Feet						
	OF WATER	COLUMN:	10.29	Feet		5.0	Minimum Gallons to			
							(Water Column Height x 0.49)			
TIME	VOLUME PURGED	ТЕМР. ° С	COND. <u>m S/cm</u>	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS			
11:20	0.0		-		_	-	Begin Hand Bailing			
11:25	1.7	21.1	2.67	7.20	-	-				
11:31	3.3	20.0	2.68	7.23	-					
11:47	5.0	21.8	2.64	7.31	-	_				
						L				
·										
0:27 :Total Time (hr:min) 5 :Total Vol (gal) 0.18 :Flow Rate (gal/min)										
SAMPLE NO.: Collected Sample No.: 070926 1150										
ANAL	YSES:	BTEX (8021-B)								
COM	IENTS:		···							

CLIENT:		DCP Midstream				WELL ID:	MW-9			
SITE NAME:			C Line			DATE:	9/26/2007			
PROJECT NO.			F-107		SAMPLER:		J. Fergerson			
PURGING	B METHOD:	I	☑ Hand Bai	led 🗆 Pu	mp If Pu	mp, Type:				
SAMPLIN	G METHOD) :	🗹 Disposab	le Bailer	Direct 1	from Discha	arge Hose 🛛 Other:			
DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL:										
Gloves Alconox Distilled Water Rinse Other:										
DISPOSAL METHOD OF PURGE WATER: 🗹 Surface Discharge 🛛 Drums 🗔 Disposal Facility										
TOTAL D	EPTH OF W	/ELL:	100.50	Feet						
DEPTH T	O WATER:	COLUMN:	<u> </u>	Feet Feet		5.3	Minimum Gallons to			
WELL DIA	METER:	2.0	Inch				purge 3 well volumes			
		TEMP.					(Water Column Height x 0.49)			
	PURGED	°C	<i>m</i> S/cm	PH	mg\L	Turb	REMARKS			
9:42	0.0		-	-	-	-	Begin Hand Bailing			
9:52	2.0	21.0	2.86	7.23	-	-				
10:01	4.0	20.2	2.89	7.26	-	-				
10:14	6.0	20.3	2.90	7.21	-					
L										
			<u>.</u>							
			_							
		_								
0:32 :Total Time (hr:min) 6 :Total Vol (gal) 0.19 :Flow Rate (gal/min)										
SAMP	LE NO.:	Collected S	ample No.:	070926	1015					
ANALYSES: BTEX (80			1-B)				·····			
COMN	MENTS:	u								

Analytical Report 290395

for

American Environmental Consulting

Project Manager: Mike Stewart

DCP Midstream -C Line

05-OCT-07

12600 West I-20 East Odessa, Texas 79765

A Xenco Laboratories Company

Texas certification numbers: Houston, TX T104704215

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

05-OCT-07

Project Manager: **Mike Stewart American Environmental Consulting** 6885 S. Marshall Suite 3 Littleton, CO 80128

Reference: XENCO Report No: 290395 DCP Midstream -C Line Project Address: Lea County, New Mexico

Mike Stewart:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 290395. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 290395 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully

Brent Barron Odessa Laboratory Director

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Sample Cross Reference 290395

Sample Cross Reference 290395

American Environmental Consulting, Littleton, CO

DCP Midstream -C Line

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
RW-1 (0709261030)	W	Sep-26-07 10:30		290395-001
MW-2 (0709261450)	W	Sep-26-07 14:50		290395-002
MW-3 (0709261400)	W	Sep-26-07 14:00		290395-003
MW-4 (0709261125)	W	Sep-26-07 11:25		290395-004
MW-5 (0709261100)	W	Sep-26-07 11:00		290395-005
MW-7 (0709261235)	W	Sep-26-07 12:35		290395-006
MW-8 (0709261150)	W	Sep-26-07 11:50		290395-007
MW-9 (0709261014)	W	Sep-26-07 10:14		290395-008
Duplicate (0709261600)	W	Sep-26-07 16:00		290395-009
Trip Blank	W	Sep-24-07 16:55		290395-010

Ļ) ئى	WITH
	2	Q
	V CC	
	Z O	
÷		24224
ί.	A .	

XENCO Laboratorics

Certificate of Analysis Summary 290395 American Environmental Consulting, Littleton, CO Project Name: DCP Midstream -C Line

> Project Id: Contact: Mike Stewart Project Location: Lea County, New Mexico

Report Date: 05-OCT-07

Date Received in Lab: Thu Sep-27-07 04:10 pm

				Froject Manager: 1	STEIN DAITON, 11	
Lab Id:	290395-001	290395-002	290395-003	290395-004	290395-005	290395-006
Field Id:	RW-1 (0709261030)	MW-2 (0709261450)	MW-3 (0709261400)	MW-4 (0709261125)	MW-5 (0709261100)	MW-7 (0709261235)
Depth:						
Matrix:	WATER	WATER	WATER	WATER	WATER	WATER
Sampled:	Sep-26-07 10:30	Sep-26-07 14:50	Sep-26-07 14:00	Sep-26-07 11:25	Sep-26-07 11:00	Sep-26-07 12:35
Extracted:	Oct-03-07 14:48	Oct-05-07 09:17	Oct-03-07 14:48	Oct-03-07 14:48	Oct-03-07 14:48	Oct-03-07 14:48
Analyzed:	Oct-04-07 00:41	Oct-05-07 12:09	Oct-04-07 01:14	Oct-04-07 01:30	Oct-04-07 01:47	Oct-04-07 02:03
Units/RL:	mg/L RL	mg/L RL	mg/L RL	mg/L RL	mg/L RL	mg/L RL
	1.747 0.0500	0100'0 CIN	6.586 0.1000	0.4270 0.1000	ND 0.0010	ND 0.0010
	0.0970 0.0500	ND 0.0010	3.055 0.1000	0.3480 0.1000	ND 0.0010	ND 0.0010
	0.3700 0.0500	ND 0.0010	0.4170 0.1000	0.1860 0.1000	ND 0.0010	ND 0.0010
	0.3540 0.1000	ND 0.0020	0.4050 0.2000	0.6770 0.2000	ND 0.0020	ND 0.0020
	0.1155 0.0500	ND 0.0010	0.2080 0.1000	0.2570 0.1000	ND 0.0010	ND 0.0010
	0.4695	DN	0.613	0.934	QN	ND
	2.6835	QN	10.671	1.895	QN.	ND
	Lab Id: Field Id: Depth: Matrix: Analyzed: Units/RL: Units/RL:	Lab Id: 290395-001 Field Id: RW-1 (0709261030) Depth: WATER Matrix: WATER Analyzed: Oct-03-07114:48 Analyzed: Oct-04-0700:41 Units/RL: mg/L RL I.747 0.0500 0.0970 0.0500 0.1155 0.0000 0.1155 0.0500 0.1155 0.0500 0.14695 2.6835	Lab Id: 290395-001 290395-002 Field Id: RW-1 (070926 (030)) MW-2 (070926 (450)) Depth: WATER WATER Marrix: Sep-26-07 10:30 Sep-26-07 13:50 Analyzed: Oct-03-07 14:48 Oct-05-07 09:17 Analyzed: Oct-04-07 00:41 Oct-05-07 12:09 Inik/KL: mg/L RL R/L I.747 0.0500 ND 0.0010 0.3700 0.0500 ND 0.0010 0.1155 0.0500 ND 0.0010 0.14695 ND ND 0.0010	Lab Id: $290395-001$ $290395-003$ Field Id: $RW-1$ (0709261030) $MW-2$ (0709261450) $MW-3$ (0709261400)Depth: $WATER$ $WATER$ $WATER$ $WATER$ Marrix: $WATER$ $WATER$ $WATER$ $WATER$ Analyced: $Oct-03-0714:48$ $Oct-05-0712:09$ $Oct-03-0714:48$ Analyced: $Oct-03-0712:09$ $Oct-03-0712:09$ $Oct-03-0714:48$ Analyced: $Oct-03-0700:41$ $Oct-05-0712:09$ $Oct-03-0701:44$ Inix/ML: mg/L mg/L mg/L mg/L Analyced: $Oct-03-0700:0.0500$ ND $O.0010$ $O.40-0701:14$ Inix/ML: <th< th=""><th>Lab Id: 290395-001 290395-003 rroject manager: Field Id: RW-1 (0709261030) MW-2 (0709261400) MW-4 (0709261125) Depth: WATER WATER WATER WATER Marrix: Marrix: WATER WATER WATER Marrix: Marrix: WATER WATER WATER Marrix: Marrix: WATER WATER WATER Analyzed: Oct-03-0714:48 Oct-03-0701:448 Oct-03-0</th><th>Lab Id:290395-001290395-002290395-003Troject manager:Dention, IIField Id:RW-1 (0709261030)MW-2 (0709261130)MW-3 (0709261100)MW-3 (0709261100)Depti:WATERWATERWATERWATER290395-004290395-005Depti:WATERWATERWATERWATER290395-003Manix:WATERWATERWATERWATERWATERManix:WATERWATERWATERWATERSep-26-0711:25Sampled:Sep-26-0710:30Sep-26-0711:25Sep-26-0711:25Sep-26-0711:26Analyzed:Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Analyzed:Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Analyzed:Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Analyzed:Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Analyzed:Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Analyzed:Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Analyzed:Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Analyzed:Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Analyzed:Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Analyzed:Oct-03-0710:41Oct-03-0716:40Oct-03-0714:48Oct-03-0714:48Analyzed:0.030ND0.0010</th></th<>	Lab Id: 290395-001 290395-003 rroject manager: Field Id: RW-1 (0709261030) MW-2 (0709261400) MW-4 (0709261125) Depth: WATER WATER WATER WATER Marrix: Marrix: WATER WATER WATER Marrix: Marrix: WATER WATER WATER Marrix: Marrix: WATER WATER WATER Analyzed: Oct-03-0714:48 Oct-03-0701:448 Oct-03-0	Lab Id:290395-001290395-002290395-003Troject manager:Dention, IIField Id:RW-1 (0709261030)MW-2 (0709261130)MW-3 (0709261100)MW-3 (0709261100)Depti:WATERWATERWATERWATER290395-004290395-005Depti:WATERWATERWATERWATER290395-003Manix:WATERWATERWATERWATERWATERManix:WATERWATERWATERWATERSep-26-0711:25Sampled:Sep-26-0710:30Sep-26-0711:25Sep-26-0711:25Sep-26-0711:26Analyzed:Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Analyzed:Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Analyzed:Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Analyzed:Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Analyzed:Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Analyzed:Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Analyzed:Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Analyzed:Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Analyzed:Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Oct-03-0714:48Analyzed:Oct-03-0710:41Oct-03-0716:40Oct-03-0714:48Oct-03-0714:48Analyzed:0.030ND0.0010

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughou this analytical report resears the bush subgreant OX ENCO Laboratories XENCO Laboratories assumes to responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Brent Barron Odessa Laboratory Director the second

Certificate of Analysis Summary 290395 American Environmental Consulting, Littleton, CO

Contact: Mike Stewart

Project Location: Lea County, New Mexico

Date Received in Lab: Thu Sep-27-07 04:10 pm Report Date: 05-OCT-07

WITH

					Project Manager: Brent Barro	1, II
	Lab Id:	290395-007	290395-008	290395-009	290395-010	
A malunic Documentad	Field Id:	MW-8 (0709261150)	MW-9 (0709261014)	Duplicate (0709261600)	Trip Blank	
naisan hay sistinu v	Depth:					
	Matrix:	WATER	WATER	WATER	WATER	
	Sampled:	Sep-26-07 11:50	Sep-26-07 10:14	Sep-26-07 16:00	Sep-24-07 16:55	
BTEX hv EPA 8021B	Extracted:	Oct-03-07 14:48	Oct-04-07 08:43	Oct-04-07 08:43	Oct-04-07 08:43	
	Analyzed:	Oct-04-07 02:19	Oct-04-07 14:55	Oct-04-07 14:22	Oct-04-07 14:39	
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	mg/L RL	
Benzene		ND 0.0010	ND 0.0010	4.487 0.0100	0.0011 0.0010	
Toluene		ND 0.0010	ND 0.0010	2.049 0.0100	ND 0.0010	
Ethylbenzene		ND 0.0010	ND 0.0010	0.2820 0.0100	ND 0.0010	
m,p-Xylene		ND 0.0020	ND 0.0020	0.2666 0.0200	ND 0.0020	
o-Xylene		ND 0.0010	ND 0.0010	0.1502 0.0100	ND 0.0010	
Total Xylenes		QN	QN	0.4168	ND	
Total BTEX		QN	Ŋ	7.2348	0.0011	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the host juggment of XENCO Laboratories. XENCO Laboratories assumes to responsibility and makes no warranty to the end use of the data heeby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Since 1990

Odessa Laboratory Director Brent Barron

Page 5 of 16

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- RPD exceeded lab control limits. F
- J The target analyte was positively identified below the MOL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and OUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Phone	Fax
(281) 589-0692	(281) 589-0695
(214) 902 0300	(214) 351-9139
(210) 509-3334	(201) 509-3335
(813) 620-2000	(813) 620-2033
(305) 823-8500	(305) 823-8555
	Phone (281) 589-0692 (214) 902 0300 (210) 509-3334 (813) 620-2000 (305) 823-8500

Project Name: DCP Midstream -C Line

ork Order #: 290395			Project II):		
Lab Batch #: 705762	Sample: 290361-016 S / MS	Ba	tch: ¹ Matri	x: Water		
Units: mg/L	Г	SU	RROGATE RE	COVERY	STUDY	
BTEX by I	EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Alla		0.0299	0.0200	. ,	80.120	
4-Bromofluorobenzene		0.0288	0.0300	90	80-120	
Lab Batch #: 705762	Sample: 290361-016 SD / M	ISD Ba	tch: 1 Matri	x: Water		
Units: mg/L		SU	RROGATE RE	ECOVERY	STUDY	
BTEX by I	EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0296	0.0300	99	80-120	
4-Bromofluorobenzene	,,	0.0271	0.0300	90	80-120	
Lab Batch #: 705762	Sample: 290395-001 / SMP	Ba	tch: 1 Matri	x: Water		
Units: mg/L	Г	SU	RROGATE RI	COVERY	STUDY	
BTEX by I	EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		1.712	1.500	114	80-120	
4-Bromofluorobenzene		1.269	1.500	85	80-120	
Lab Batch #: 705762	Sample: 290395-003 / SMP	Ba	tch: 1 Matri	x: Water		
Units: mg/L	Г	SURROGATE RECOVERY STUDY				
BTEX by I	EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene	· ·	3.089	3.000	103	80-120	
4-Bromofluorobenzene		2.787	3.000	93	80-120	
Lab Batch #: 705762	Sample: 290395-004 / SMP	Ba	tch: 1 Matri	x: Water	·	_
Units: mg/L	Γ	SU	RROGATE RE	COVERY	STUDY	
BTEX by I	EPA 8021B lvtes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene	·	3.312	3.000	110	80-120	
4-Bromofluorobenzene		2.790	3.000	93	80-120	

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Project Name: DCP Midstream -C Line

/ork Order #: 290395			Project II):		
Lab Batch #: 705762	Sample: 290395-005 / SM	.P Bat	tch: 1 Matri	ix: Water		
Units: mg/L	Ĩ	SU	RROGATE RF	ECOVERY	STUDY	
BTEX by F	EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R ID]	Control Limits %R	Flags
	ytes		I'			
4 Bromofluorobenzene		0.0314	0.0300	105	80-120	
		0.0207	0.0300	07	00-120	<u> </u>
Lab Batch #: 705762	Sample: 290395-006 / SM	P Bat	.ch: 1 Matri	x: Water		
Units: mg/L		SU/	RROGATE RF	ECOVERY	STUDY	
BTEX by F Anal	EPA 8021B lytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0314	0.0300	105	80-120	
4-Bromofluorobenzene		0.0264	0.0300	88	80-120	[
Lab Batch #: 705762	Sample: 290395-007 / SM	iP Bat	tch: 1 Matri	ix: Water	<u> </u>	
Units: mg/L		SU'	RROGATE RJ	ECOVERY	STUDY	
BTEX by F	EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
Anal	lytes]	1	[D]	ļļ	I
1,4-Difluorobenzene		0.0316	0.0300	105	80-120	
4-Bromofluorobenzene		0.0261	0.0300	87	80-120	
Lab Batch #: 705762	Sample: 500078-1-BKS / 1	BKS Bat	ich: 1 Matri	ix: Water		
Units: mg/L		SU	RROGATE RF	COVERY	STUDY	
BTEX by E	EPA 8021B lytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
1,4-Difluorobenzene		0.0284	0.0300	95	80-120	í
4-Bromofluorobenzene		0.0279	0.0300	93	80-120	(
Lab Batch #: 705762	Sample: 500078-1-BLK / /	BLK Bat	tch: 1 Matri	ix: Water		
Units: mg/L		SU	RROGATE RF	COVERY	STUDY	
BTEX by F	EPA 8021B lvtes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0312	0.0300	104	80-120	
4-Bromofluorobenzene		0.0259	0.0300	86	80-120	ı

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

XEN	
Labora	atories

Project Name: DCP Midstream -C Line

ork Order #: 290395			Project ID):		
Lab Batch #: 705762 Sample:	500078-1-BSD / BSD	Ba	tch: 1 Matri	x: Water		
Units: mg/L		SU	RROGATE RE	COVERY	STUDY	
BTEX by EPA 8021B		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
Analytes						
1,4-Difluorobenzene		0.0278	0.0300	93	80-120	
		0.0275	0.0300		80-120	
Lab Batch #: 705779 Sample: Units: mg/L	290395-008 / SMP	Ba SU	tch: ¹ Matri RROGATE RE	x: Water	STUDY	
BTEX by EPA 8021B		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0316	0.0300	105	80-120	
4-Bromofluorobenzene		0.0268	0.0300	89	80-120	
Lab Batch #: 705779 Sample:	290395-009 / SMP	Ba	tch: ¹ Matri	x: Water	·	
Units: mg/L SURROGATE RECOVERY ST			STUDY			
BTEX by EPA 8021B		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
Analytes				[D]		
1,4-Difluorobenzene		0.3089	0.3000	103	80-120	-
4-Bromofluorobenzene		0.2532	0.3000	84	80-120	
Lab Batch #: 705779 Sample:	290395-010 / SMP	Ba	tch: 1 Matri	x: Water		
Units: mg/L		SU	RROGATE RE	COVERY	STUDY	
BTEX by EPA 8021B Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0316	0.0300	105	80-120	
4-Bromofluorobenzene		0.0270	0.0300	90	80-120	
Lab Batch #: 705779 Sample:	500099-1-BKS / BKS	Ba	tch: 1 Matri	x: Water		
Units: mg/L		SU	RROGATE RE	COVERY	STUDY	
BTEX by EPA 8021B Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0293	0.0300	98	80-120	
4-Bromofluorobenzene		0.0275	0.0300	92	80-120	

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: DCP Midstream -C Line

/ork Order #: 290395		Project I	D:		
Lab Batch #: 705779 Sample:	500099-1-BLK / BLK Bat	tch: 1 Matr	ix: Water		
Units: mg/L	SU	RROGATE R	ECOVERY S	STUDY	-
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0312	0.0300	104	80-120	
4-Bromofluorobenzene	0.0265	0.0300	88	80-120	
Lab Batch #: 705779 Sample:	500099-1-BSD / BSD Ba	tch: 1 Matr	ix: Water	<u> </u>	
Units: mg/L	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0291	0.0300	97	80-120	
4-Bromofluorobenzene	0.0278	0.0300	93	80-120	
Lab Batch #: 705823 Sample:	290395-002 / SMP Ba	tch: 1 Matr	ix: Water		
Units: mg/L	SU	RROGATE R	ECOVERYS	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			ען (
1,4-Difluorobenzene	0.0316	0.0300	105	80-120	
	0.0248	0.0300	83	80-120	
Lab Batch #: 705823 Sample:	500116-1-BKS / BKS Ba	/BKS Batch: 1 Matrix: Water			
	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0289	0.0300	96	80-120	_
4-Bromofluorobenzene	0.0256	0.0300	85	80-120	
Lab Batch #: 705823 Sample:	500116-1-BLK / BLK Ba	tch: 1 Matr	ix: Water		
Units: mg/L	SU	RROGATE R	ECOVERY S	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0313	0.0300	104	80-120	
4-Bromofluorobenzene	0.0272	0.0300	91	80-120	

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Project Name: DCP Midstream -C Line

Vork Order #: 29 Lab Batch #: 70 Units: mg	90395 95823 S a g/L	ample: 500116-1-BSD / I	BSD Bat	Project I tch: 1 Matu RROGATE R	D: ix: Water ECOVERY S	STUDY	
]	BTEX by EPA 80 Analytes	21B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene			0.0290	0.0300	97	80-120	
4-Bromofluorobenzen	e		0.0278	0.0300	93	80-120	-

** Surrogates outside limits; data and surrogates confirmed by reanalysis *** Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.

_	
A Contraction	at he she water
Warnen Barrana	
_	Bein Color
	2 6
- Là	
504	A-ML.

BS / BSD Recoveries

I

Project Name: DCP Midstream -C Line

.95		Sample: 500078-1-BK	
#: 2903	SHE	705762	mg/L
Work Order	Analyst:	Lab Batch ID:	Units:

Date Prepared: 10/03/2007 Batch #: 1

Project ID: Date Analyzed: 10/03/2007 Matrix: Water

	\sim
	6
	5
i	ST
	$\mathbf{>}$
	K
	VF
	Q
	B
	R
	E
	ΰ
	Ē
	<u>d</u>
	Da
	E
	IK
	P
	Ň
	Ζ
	Y
	BI
	1
	M
	E
	S
İ	¥
	A
	Ĩ.
	Ξ
	¥
	A
	3L
1	

BTEX by EPA §	8021B	Blank Sample Result	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	Blk. Spk Dup.	RPD	Control Limits	Control Limits	Flag
Analytes		[A]	[8]	Result [C]	%R [D]	[E]	Duplicate Result [F]	%R [G]	%	%R	%RPD	}
Benzene		Q	0.1000	0.0926	93	0.1	0.0912	16	2	70-125	25	
Toluene		QN	0.1000	0.0913	91	0.1	0.0902	66	-	70-125	25	
Ethylbenzene		Q	0.1000	0.0935	94	0.1	0.0921	92	2	71-129	25	
m,p-Xylene		ŊŊ	0.2000	0.1895	95	0.2	0.1858	93	2	70-131	25	
o-Xylene		QN	0.1000	0.0938	94	0.1	0.0925	93	1	71-133	25	
Analyst: SHE Lab Batch ID: 705779	Sample: 500099-1-B	Da	te Prepare Batch	:d: 10/04/200 #: 1	2			Date Ar	nalyzed: 1 Matrix: V	0/04/2007 Vater		
Units: mg/L			BLANF	<pre></pre>	PIKE / B	LANK S	PIKE DUPL	ICATE I	RECOVE	RY STUD	Y	
		-					1	-				

BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	QN	0.1000	0.0882	88	0.1	0.0884	88	0	70-125	25	r
Toluene	DN	0.1000	0.0879	88	0.1	0.0884	88	I	70-125	25	
Ethylbenzene	QN	0.1000	0.0901	06	0.1	0160.0	16	-	71-129	25	
m,p-Xylene	DN	0.2000	0.1798	06	0.2	0.1816	16	1	70-131	25	
o-Xylene	ND	0.1000	0.0901	96	0.1	0.0908	91	1	71-133	25	

Relative Percent Difference RPD = 200*([D-F)/(D+F)] Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: DCP Midstream -C Line

Date Analyzed: 10/05/2007

Date Prepared: 10/05/2007

Batch #: 1

Project ID:

Matrix: Water

:	
Work Order #: 290395	
Analyst: SHE	
Lab Batch ID: 705823	Sample: 500116-1-BKS
Units: mg/L	

Flag Limits %RPD Control 25 25 25 25 25 **BLANK / BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY** Control Limits %R 70-125 71-133 70-125 71-129 70-131 RPD % S 9 × × 6 Blk. Spk Dup. %R [G] 101 66 98 98 67 Blank Spike Duplicate Result [F] 0.1950 0.0973 0.1007 0.0989 0.0977 Spike Added 0.1 0.1 0.2 0.1 Ε 0.1 Blank Spike %R [D] 96 93 90 90 89 Blank Spike Result [C] 0.0960 0.0902 0.1798 0.0889 0.0932 0.1000 0.1000 0.1000 0.2000 Spike Added 0.1000 <u>B</u> Sample Result [A] Blank g 99 g QN **BTEX by EPA 8021B** Analytes Ethylbenzene m,p-Xylene o-Xylene Benzene Toluene

Relative Percent Difference RPD = 200*[(D-F)/(D+F)] Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries ALC: N. W. SOLD Service second state And interventers

a dinin kutuary

A. Would Dive

Project Name: DCP Midstream -C Line

Work Order #: 290395

Date Analyzed: 10/04/2007 Lab Batch ID: 705762

Reporting Units: mg/L

Matrix: Water -Batch #:

Project ID:

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY SHE Analyst: QC- Sample ID: 290361-016 S Date Prepared: 10/03/2007

	•									-	T
BTEX by EPA 8021B	Parent Sample	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]		%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Benzene	0.0028	0.1000	9160.0	68	0.1000	0.0890	86	3	70-125	25	
Toluene	ND	0.1000	0.0901	90	0.1000	0.0873	87	e	70-125	25	
Ethylbenzene	0.0045	0.1000	0.0898	85	0.1000	0.0876	83	2	71-129	25	
m,p-Xylene	0.0023	0.2000	0.1768	87	0.2000	0.1721	85	2	70-131	25	
o-Xylene	0.0034	0.1000	0.0902	87	0.1000	0.0873	84	4	71-133	25	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Environmenta Axenco Laboratories Company Project Manager. Company Name Company Name Company Name Company Name Company Name Company Name Company Address: Company Name Company Company Sampler Signature:	Lab of Lab of The Steward	Texas Lexas Lexilor Co 2 T133 T133	Suite 1	Doursell Li		⇔ 8	es sa	Alexandree C.	44II		S	Mattix		1000 Martin PO Leo Ct Lo Ct Lo		Star Star		43 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
C L L (Aulo esin as) s tryn	벙	հյզբ Մօրին հյցեն քոնութքե	balqms2 alsO	telqms2 emi⊺	Field Fillered	100	солн	105 ^t H	HOPN	CO'SSEN	(Other (Specify)	gourses and out of and	MS108 Lath Hat	XT EDOLXT HET	Aniona (CI, SO4, Alkalinity	SAR / ESP / CEC	Matalas: As Ag Ba Cd Cr P	seitsiovime8	BTEX 80218/5030	и <i>ов</i>		0,0,04	VICI / CO /	TAT bisbrist	
01 RW-1 (070926	(030)		10/2/10	10:30	2	Ŋ	7				\rightarrow	6 M		-+	4		-+	_	芧	-+		+	-+	Y	
02 114-2 (0 70524	(450)	-+	9124/07	1450	4	\geq	7	+		-	-	GW	1	╉		二	+	_	1	+	1	+	4-	\geq	
03 MW-3 (070926	(12S)		9/21/07	125	40	> >					+	City City			_		+		> >	+				27	
- 65 MW-5 (070726	00		9/24/07	0011	2	5	13	-		+-		5 %			 		+		5	<u> </u>				1	
06 746 M4 7 6 70	1261235)		201702	1235	6	\mathbf{N}		$\left \cdot \right $		┝╌┼	1	6 W		\vdash	-+		\vdash			┝╌╽				51	
107 MT 3 MW-8 (674	126150		Filer	1150	2	\leq	7	-	-	-	_	GW		+	4		+	_	5	+		-+	4	\overline{A}	
05 MM-91070926	(1-1-0)	-+	9/20/02	1-101	010	2	4			-+-	-	EW.		-+-			~+	_	₅⊧	-+		-+-	-	\sum	
Or Oplingt 10704	26 1600)		6/11/02	1600	240	515	7		1		_	Girl		+	+		_ 		5	-		-+-	+	2	
10 Ilvio Olynck Special Instructions: Invorce	USCPA.	0 ten m			4	3	거	7	-	4	7	Í	1	1.36%		G	- [讀潔]		ゴ 鬻				」 劉	J M	
happenter the	Dale Dale	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Received by:			1					Da		Time	<u>5 顧</u> (3)		Bear of the second	1 Ba	adsp Bullo	S 開 記 開 記				z		
deinquished ey.	Date	2 mm	Received by:				1	}		+	D B		Time	100		Hand	See e	n n n n					an zz s	5 3	
telinquisted by.	Date	Time	Received by ELC	the D	Ş)				10	Dat	1	£	┯≝	, age	ature	, por	, B	, Š	ł	<u>نہ</u> ا	20	, r		

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Client	American Env.
Date/ Time.	92707 410
Lab ID # :	290395
Initials:	<u> </u>

Sample Receipt Checklist

		~~		Client Initia	als
#1	Temperature of container/ cooler?	Ves	No	-1.0 °C	
#2	Shipping container in good condition?	Kes>	No		
#3	Custody Seals intact on shipping container/ cooler?	Yes	No	< Not Present >	
#4	Custody Seals intact on sample bottles/ container?	Yes?	No	Not Present	
#5	Chain of Custody present?	Res	No		
#6	Sample instructions complete of Chain of Custody?	des)	No		
#7	Chain of Custody signed when relinquished/ received?	Yes	No		
#8	Chain of Custody agrees with sample label(s)?	des?	No	ID written on Cont./ Lid	
#9	Container label(s) legible and intact?	des	No	Not Applicable	
#10	Sample matrix/ properties agree with Chain of Custody?	Yes>	No		
#11	Containers supplied by ELOT?	Xes	No		-
#12	Samples in proper container/ bottle?	Yes	No	See Below	-
#13	Samples properly preserved?	Yes	No	See Below	
#14	Sample bottles intact?	tes	No		-
#15	Preservations documented on Chain of Custody?	Yes	No		
#16	Containers documented on Chain of Custody?	Yes	No	1	
#17	Sufficient sample amount for indicated test(s)?	Yes	No	See Below	-1
#18	All samples received within sufficient hold time?	Yes	No	See Below	-
#19	Subcontract of sample(s)?	Yes	No		
#20	VOC samples have zero headspace?	Yes	No	Not Applicable	

Variance Documentation

Date/ Time:

Contact:

Regarding:

Corrective Action Taken:

Check all that Apply:

See attached e-mail/ fax

Contacted by:

Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

DCP Midstream 370 17th Street, Suite 2500 Denver, CO 80202 303-595-3331 303-605-2226 FAX

August 22, 2007

Mr. Wayne Price Environmental Bureau Chief New Mexico Oil Conservation Division 1220 S. St. Francis Dr. Santa Fe, NM 87505

RE: 2nd Quarter 2007 Groundwater Monitoring Results DCP C-Line Pipeline Release (1RP-401-0), Lea County, NM Unit O Section 31, T19S, R37E

Dear Mr. Price:

DCP Midstream, LP (DCP) is pleased to submit for your review, one copy of the 2nd Quarter 2007 Groundwater Monitoring Results for the DCP C-Line Pipeline Release Site located in Lea County, New Mexico (Unit O Section 31, T19S, R37E, Latitude 32° 31' 29.7" N Longitude 103° 17' 11.7 W).

If you have any questions regarding the report, please call me at 303-605-1718.

Sincerely

DCP Midstream, LP

Stephen Weathers, PG Sr. Environmental Specialist

cc: Carl Chavez, OCD Santa Fe Office
 Larry Johnson, OCD Hobbs District Office (Copy on CD)
 Lynn Ward, DCP Midland Office
 Environmental Files

AEC AMERICAN ENVIRONMENTAL CONSULTING, LLC

August 15, 2007

Mr. Stephen Weathers DCP Midstream, LP 370 17th Street, Suite 2500 Denver, CO 80202

Re: Summary of the Second Quarter 2007 Groundwater Monitoring Results for the C-Line 50602 Release Location in Lea County New Mexico Unit O, Section 31, Township 19 South, Range 37 East (1RP-401-0)

Dear Mr. Weathers:

This report summarizes the second quarter 2007 groundwater monitoring activities completed at the C-Line 50602 release location for DCP Midstream, LP (DCP), formerly Duke Energy Field Services, LP. The monitoring activities were completed on June 20, 2007. The site is located in the southwestern quarter of the southeastern quarter (Unit O) of Section 31, Township 19 South, Range 37 East (Figure 1). The approximate coordinates are 32 degrees 31 minutes north, 103 degrees 17 minutes west.

The groundwater-monitoring network includes the nine wells shown on Figure 2. Table 1 summarizes construction information for each well.

GROUNDWATER SAMPLING

Trident Environmental collected groundwater samples on June 20, 2007. The depth to water and free phase hydrocarbons (FPH), if present, were measured in each well prior to purging and sampling. The calculated groundwater elevations for all monitoring episodes are summarized in Table 2.

None of the wells contained FPH in this monitoring event. The historical FPH thickness values for MW-1 and MW-4 are summarized in Table 3

Eight of the nine wells were purged and sampled. Well MW-6 was not sampled because it is located down gradient from boundary wells MW-7, MW-8 and MW-9 so it does not provide useful information.

Purging was completed using dedicated bailers until a minimum of three casing volumes of water was removed and the field parameters temperature, pH and conductivity stabilized. The well purging forms are attached. The affected purge water was disposed of at the DCP Linam Ranch facility.

6885 South Marshall St., Suite 3, Littleton, CO 80128 phone 303-948-7733 fax 303-948-7739

Mr. Stephen Weathers August 15, 2007 Page 2

Unfiltered samples were collected following well stabilization using the same dedicated bailers. All of the samples were placed in an ice-filled chest immediately upon collection and delivered to the analytical laboratory (Environmental Labs of Texas) using standard chain-of-custody protocol. The samples were analyzed for benzene, toluene, ethylbenzene and total xylenes (BTEX).

The laboratory analyses for the sampling episode are summarized in the upper part of Table 4. The laboratory report is attached.

The lower part of Table 4 includes the quality assurance/quality control (QA/QC) information. The QA/QC evaluation includes:

- No BTEX constituents were detected in the trip blank.
- All of the individual surrogate spikes were within their control limits.
- The relative percentage difference (RPD) values for the constituents from the two MW-3 samples exhibited good agreement.
- The matrix spike and matrix spike duplicate results from the MW-7 sample were all within the control limits for all four constituents.

The evaluations indicate that the data is suitable for all uses.

RESULTS AND INTERPRETATIONS

Figure 3 includes hydrographs for the corrected water-table elevations for all site wells. The water table elevations declined by varying degrees in all of the wells.

Figure 4 shows the June 2007 calculated groundwater contours as generated using the Surfer® program with the kriging option. The water table exhibits a consistent gradient toward the southeast. This pattern reflects the historic trends.

Figure 5 depicts the spatial June 2007 benzene distribution. Benzene was reported at 3.82 mg/l in MW-1, an average value of 6.41 mg/l in the two samples from MW-3, and 1.80 mg/l in MW-4. The remaining wells, particularly down-gradient boundary wells MW-7, MW-8 and MW-9, did not contain benzene above the 0.001 mg/l method reporting limit.

Table 5 summarizes all of the analytical data collected to date. The changes in benzene concentrations are plotted for wells MW-1 and MW-3 on Figure 6. Sampling in MW-1 begin in December 2003 after removal of the FPH was completed. The sampling in MW-3 begin at the start of the project in November 2002. The benzene concentration in MW-1 declined to the October 2006 level while the concentration in MW-3 remained constant for the second consecutive sampling episode.

Mr. Stephen Weathers August 15, 2007 Page 3

The time-benzene concentration plots MW-2 and MW-5 are shown on Figure 7. Benzene was not detected at or above the 0.001 mg/l method reporting limit in either well for the eighth consecutive monitoring episode.

The soil vapor extraction (SVE) remediation system was restarted after sampling was completed on March 14, 2007 to remove the FPH from MW-4. The system will be operated as necessary to ensure that no FPH is present in the well. The SVE system will be stopped (if operating) two weeks before the third quarter sampling event to ensure accurate FPH measurement.

The next groundwater-monitoring event is scheduled for the third quarter of 2007. Do not hesitate to contact me if you have any questions or comments on this letter.

Sincerely, AMERICAN ENVIRONMENTAL CONSULTING, LLC

Muchael H. Stewart

Michael H. Stewart, P.E., C.P.G. Principal Engineer MHS/tbm

TABLES

1

Well	Top of Casing Elevation	Ground Elevation	Screen Diameter	Screened Interval	Sand Interval	Total Depth
MW-1	3,541.21	3,538.64	4"	82.5-97.5	81-98	98
MW-2	3,540.91	3,537.70	2"	81-101	77-102	102
MW-3	3,541.41	3,539.30	2"	80-100	78-103	103
MW-4	3,541.40	3,538.51	2"	80-100	78-103	103
MW-5	3,541.45	3,538.69	2"	80-100	78-102	102
MW-6	3,543.98	3,540.94	2"	79-99	75-102	102
MW-7	3,542.42	3,540.20	2"	82.5-97.5	77-98*	98
MW-8	3,540.29	3,538.08	2"	82.5-97.5	81-98	98
MW-9	3,539.62	3,537.33	2"	82.5-97.5	81-98	98

Table 1 – Summary of Well Construction Information

All units in feet except as noted * Well MW-7 has a natural sand pack from 93 to 98 feet

Table 2 - Summary of Corrected Water Table Elevations

Well	Nov. 02	Feb. 03	Apr. 03	Oct. 03	Jan. 04	Jun. 04	Sep. 04	Dec. 04	Mar. 05	Jun. 05	Sep 05	Dec 05	Mar 06
MW-1	3,452.01	3,451.60	3,451.73	3,451.35	3,451.34	3,451.23	3451.19	3,450.97	3,451.22	3,451.99	3,451.96	3,451.88	3,451.96
MW-2	3,452.11	3,451.97	3,451.96	3,451.87	3,451.84	3,451.73	3451.72	3,451.91	3,452.08	3,452.22	3,452.19	3,452.10	3,452.18
MW-3	3,452.25	3,451.37	3,451.33	3,451.27	3,451.22	3,451.06	3451.01	3,451.24	3,451.37	3,451.51	3,451.58	3,451.46	3,451.52
MW-4	3,451.56	3,451.32	3,451.21	3,451.25	3,451.19	3,451.02	3450.88	3,451.19	3,451.25	3,451.26	3,451.38	3,450.42	3,451.34
MW-5	3,451.39	3,451.21	3,451.09	3,451.20	3,451.11	3,450.86	3450.75	3,451.10	3,451.14	3,451.35	3,451.18	3,451.32	3,451.18
MW-6	3,448.77	3,448.51	3,448.38	3,448.46	3,448.37	3,448.14	3448.03	3,448.91	3,448.64	3,448.62	3,448.44	3,448.50	3,448.26
MW-7	9			3,450.76	3,450.72	3,450.57	3450.47	3,450.70	3,450.80	3,450.99	3,450.99	3,450.86	3,450.86
MW-8				3,450.35	3,450.22	3,450.03	3449.85	3,450.21	3,450.23	3,450.41	3,450.24	3,450.40	3,450.18
WW-9				3,450.21	3,450.03	3,449.81	3449.67	3,450.13	3,450.11	3,450.38	3,450.04	3,450.25	3,449.99

Well	Jun 06	Sep-06	Dec-06	Mar-07	Jun-07
MW-1	3,451.88	3,451.86	3,451.82	3,451.83	3,451.64
MW-2	3,452.13	3,452.12	3,452.06	3,452.07	3,452.04
MW-3	3,451.45	3,451.43	3,451.40	3,451.40	3,451.21
MW-4	3,451.40	3,451.34	3,451.33	3,451.36	3,450.99
3-WM	3,451.16	3,451.16	3,451.22	3,451.27	3,450.87
MW-6	3,448.28	3,448.27	3,448.30	3,448.36	3,447.97
MW-7	3,450.81	3,450.83	3,450.78	3,450.80	3,450.52
MW-8	3,450.14	3,450.21	3,450.28	3,450.35	3,449.86
9-WM	3,449.92	3,450.02	3,450.15	3,450.19	3,449.79
Notes:					

All units in feet. All units in feet. The groundwater elevation values for MW-1 and MW-4 were corrected using the following formula (all values in feet): GWE_{corr} = MGWE + (PT*PD): where • MGWE is the actual measured groundwater elevation; • PT is the measured free-phase hydrocarbon thickness, and • PD is the free phase hydrocarbon density (assumed 0.7).

)

 \sim

Date	MW-1	MW-4
11/02/02	3.15	0.00
02/17/03	3.62	0.00
04/16/03	2.92	0.00
10/30/03	3.21	0.00
06/29/04	2.66	0.00
09/28/04	2.16	0.21
12/08/04	0.13	1.18
03/16/05	0.04	3.03
06/06/05	0.02	0.07
09/20/05	0.00	0.16
12/15/05	0.00	0.21
03/21/06	0.00	0.03
06/27/06	0.00	0.00
09/16/06	0.00	0.00
12/11/06	0.00	0.00
3/14/07	0.00	0.06
6/20/07	0.00	0.00

Table 3 - C-Line Free Phase Hydrocarbon Thickness Measurements

Units are feet

J

.

`

٠

Table 4 – June 2007 Sample Results and QA/QC Evaluation

Well	Benzene	Toluene	Ethylbenzene	Total Xylenes
MW-1	3.82	0.43	0.40	0.79
MW-2	< 0.001	< 0.001	< 0.001	< 0.002
MW-3	6.37	3.48	0.52	0.78
MW-3 (duplicate)	6.44	3.49	0.52	0.77
MW-4	1.80	0.98	0.61	2.65
MW-5	< 0.001	< 0.001	< 0.001	< 0.002
MW-6	NS	NS	NS	NS
MW-7	<0.001	< 0.001	< 0.001	< 0.002
MW-8	< 0.001	< 0.001	< 0.001	< 0.002
MW-9	< 0.001	< 0.001	< 0.001	< 0.002

June 2007 Analytical Results

Notes: All units mg/l

١

NS: Well not sampled

June 2007 MW-3 Duplicate Sample Evaluation

	Benzene	Toluene	Ethylbenzene	Total Xylenes
MW-3 RPD	1.1%	0.4%	0.3%	0.5%

June 2007 MW-7 Matrix Spike and Matrix Spike Duplicate Results

	Benzene	Toluene	Ethylbenzene	p/m Xylenes	o Xylenes
Matrix Spike	122	123	123	112	125
Matrix Spike Duplicate	115	116	121	104	120

Percent recovery limits are 80% to 120%

Benzene	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9
11/15/02	FPH	<0.001	0.017	0.114	< 0.001	< 0.001			
02/18/03	FPH	0.29	2.52	1.12	0.328	0.001			
04/17/03	FPH	0.175	3.18	0.782	0.128	0.002			
10/28/03	FPH	0.018	5.01	0.077	0.164	<0.001	< 0.001	< 0.001	< 0.001
01/29/04	FPH	0.0848	6.06	0.320	0.226	0.00382	< 0.001	0.00139	< 0.001
06/29/04	FPH	0.0582	9.84	0.461	0.249	< 0.00019	0.000456	0.00248	< 0.00019
09/28/04	FPH	0.329	11.2	FPH	0.0336	< 0.001	< 0.001	< 0.001	< 0.001
12/06/04	FPH	0.0355	12.0	FPH	0.0137	< 0.001	< 0.001	< 0.001	< 0.001
03/16/05	FPH	0.00523	10.9	FPH	0.00371	<0.001	< 0.001	< 0.001	< 0.001
06/06/05	FPH	0.0017	8.83	FPH	0.00169	< 0.001	0.000695J	0.000955J	< 0.001
9/20/05	FPH	<0.001	10.75	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
12/15/05	2.14	< 0.001	9.57	FPH	<0.001	<0.001	< 0.001	< 0.001	< 0.001
3/21/06	1.32	< 0.001	6.55	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
6/26/06	2.17	< 0.001	9.67	9.08	< 0.001	<0.001	< 0.001	< 0.001	< 0.001
9/16/06	4.27	< 0.001	10.55	0.51	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
12/11/06	< 0.001	< 0.001	7.49	0.17	< 0.001	<0.001	< 0.001	<0.001	< 0.001
3/14/07	5.59	<0.001	6.41	FPH	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
6/20/07	3.82	< 0.001	6.41	1.80	< 0.001	NS	< 0.001	< 0.001	< 0.001

Table 5 - Summary of Analytical

Toluene	MW-1	<u>MW-2</u>	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9
	-								
11/15/02	FPH	< 0.001	0.005	0.039	< 0.001	< 0.001			
02/18/03	FPH	0.014	0.634	0.436	0.056	< 0.001			
04/17/03	FPH	0.007	0.513	0.45	0.007	< 0.001			
10/28/03	FPH	0.001	0.275	0.029	0.048	< 0.001	< 0.001	< 0.001	< 0.001
01/29/04	FPH	0.0350	0.506	0.169	0.064	0.00140	<0.001	0.00109	< 0.001
06/29/04	FPH	0.000219J	0.0917	0.0202	0.00172	< 0.00014	< 0.00014	< 0.00014	< 0.00014
09/28/04	FPH	0.0174	0.0218	FPH	0.00281	< 0.001	<0.001	< 0.001	< 0.001
12/06/04	FPH	0.0017	0.0438	FPH	0.00318	< 0.001	<0.001	< 0.001	< 0.001
03/16/05	FPH	< 0.001	0.013J	FPH	.00038J	< 0.001	< 0.001	< 0.001	< 0.001
06/06/05	FPH	<0.001	0.056	FPH	< 0.001	<0.001	< 0.001	< 0.001	< 0.001
9/20/05	FPH	<0.001	0.1355	FPH	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
12/15/05	1.37	<0.001	0.414	FPH	< 0.001	<0.001	<0.001	< 0.001	< 0.001
3/21/06	0.931	<0.001	1.575	FPH	< 0.001	<0.001	< 0.001	< 0.001	<0.001
6/26/06	1.42	<0.001	2.93	5.73	< 0.001	<0.001	<0.001	< 0.001	< 0.001
9/16/06	0.508	< 0.001	3.48	0.0415	< 0.001	<0.001	< 0.001	< 0.001	< 0.001
12/11/06	< 0.001	<0.001	3.35	0.139	<0.001	<0.001	< 0.001	< 0.001	< 0.001
3/14/07	0.232	< 0.001	2.75	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
6/20/07	0.43	< 0.001	3.49	0.98	< 0.001	NS	< 0.001	< 0.001	< 0.001

Notes: 1) All units mg/l, 2) Duplicate results averaged, 3) "J" qualifiers are not included in summary 4) Wells not installed where blank cells are present, 5) FPH free phase hydrocarbons present so no sample collected 6) NS: Well not sampled, see text for explanation

Ethylbenzene	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9
11/15/02	FPH	<0.001	< 0.001	0.002	< 0.001	< 0.001			
02/18/03	FPH	0.001	0.021	0.022	0.004	< 0.001			
04/17/03	FPH	< 0.001	0.028	0.029	< 0.001	< 0.001			
10/28/03	FPH	< 0.001	0.031	0.002	0.002	< 0.001	< 0.001	< 0.001	< 0.001
01/29/04	FPH	0.00292	0.0679	0.0203	0.00404	0.00133	< 0.001	0.00112	< 0.001
06/29/04	FPH	0.00534	0.0873	0.352	0.0603	< 0.00013	< 0.00013	0.000633J	< 0.00013
09/28/04	FPH	< 0.001	0.105	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
12/06/04	FPH	<0.001	0.154	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
03/16/05	FPH	< 0.001	0.150	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
06/06/05	FPH	< 0.001	0.1535	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
09/20/05	FPH	< 0.001	0.288	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
12/15/05	0.313	< 0.001	0.173	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
3/21/06	0.419	< 0.001	0.4085	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
6/26/06	0.534	< 0.001	0.0333	1.03	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
9/16/06	0.153	< 0.001	0.288	0.21	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
12/11/06	< 0.001	< 0.001	0.391	0.111	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
3/14/07	0.453	< 0.001	0.3185	FPH	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
6/20/07	0.40	< 0.001	0.52	0.61	< 0.001	NS	< 0.001	< 0.001	< 0.001

Table 5 – Summary of Analytical Results (continued)

Xylenes	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	<u>M</u> W-9
11/15/02	FPH	< 0.001	< 0.001	0.003	< 0.001	< 0.001			
02/18/03	FPH	0.001	0.064	0.032	0.004	<0.001			
04/17/03	FPH	<0.001	0.1	0.055	< 0.001	< 0.001			
10/28/03	FPH	<0.001	0.083	0.008	0.004	<0.001	<0.001	<0.001	<0.001
01/29/04	FPH	0.00474	0.0849	0.053	0.0074	0.00194	<0.001	0.00217	<0.001
06/29/04	FPH	0.001J	0.02404	0.074	0.004	< 0.0002	< 0.0002	< 0.0002	<0.0002
09/28/04	FPH	<0.001	0.0213	FPH	< 0.001	< 0.001	< 0.001	<0.001	< 0.001
12/06/04	FPH	< 0.001	0.0237	FPH	< 0.001	<0.001	< 0.001	<0.001	< 0.001
03/16/05	FPH	< 0.001	0.02842	FPH	< 0.001	< 0.001	< 0.001	<0.001	< 0.001
06/06/05	FPH	< 0.001	0.0502	FPH	< 0.001	<0.001	<0.001	< 0.001	<0.001
09/20/05	FPH	< 0.001	0.221	FPH	<0.001	< 0.001	< 0.001	< 0.001	0.00105
12/15/05	1.334	<0.001	0.177	FPH	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
3/21/06	1.379	< 0.001	0.9015	FPH	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
6/26/06	1.722	< 0.001	0.414	5.69	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
9/16/06	0.323	< 0.001	0.384	1.028	< 0.001	<0.001	< 0.001	< 0.001	<0.001
12/11/06	< 0.001	< 0.001	0.557	0.466	< 0.001	<0.001	<0.001	< 0.001	<0.001
3/14/07	0.27	< 0.001	0.501	FPH	< 0.001	< 0.001	< 0.001	<0.001	< 0.001
6/20/07	0.79	< 0.002	0.78	2.65	< 0.002	NS	< 0.002	< 0.002	< 0.002

 0/20/07
 0.79
 <0.002</td>
 0.78
 2.65
 <0.002</td>
 NS
 <0.002</td>
 <0.002</td>
 <0.002</td>

 Notes:
 1) All units mg/l, 2) Duplicate results averaged, 3) "J" qualifiers are not included in summary
 4) Wells not installed where blank cells are present, 5) FPH free phase hydrocarbons present so no sample collected

 6) NS:
 Well not sampled, see text for explanation

FIGURES

.

٢

.

FIELD SAMPLING FORMS AND ANALYTICAL LABORATORY REPORT

WELL SAMPLING DATA FORM

	CLIENT:	DC	P Midstrea	am	-	WELL ID:	MW-1
s	ITE NAME:	C Line			_	DATE:	6/20/2007
PRO	DJECT NO.	F-107 SAMPLER:					J. Fergerson/D. Littlejohn
PURGING	METHOD:	i	🗹 Hand Bai	led 🗆 Pu	mp If Pur	np, Type:	
SAMPLIN):	🗹 Disposab	le Bailer	Direct f	rom Discha	arge Hose 🛛 Other:
DESCRIB		ENT DECO	NTAMINATIO	ОМ МЕТНО	DD BEFOR	RE SAMPL	ING THE WELL:
Glove	s 🗆 Alcono	x 🛛 Distille	ed Water Rir	nse 🗆 C	ther:		
DISPOSA		OF PURG	E WATER:	Surface	e Discharg	je 🗌 Drur	ns 🗹 Disposal Facility
TOTAL D	EPTH OF V	/ELL:	99.98	Feet			
DEPTH T	O WATER:		89.57	Feet		20.4	Minimum Gallons to
WELL DIA	AMETER:	4.0	Inch	1 000			purge 3 well volumes
		TEMP.	COND				(Water Column Height x 1.96)
	PURGED	°C	<i>m</i> S/cm	рН	mg\L	Turb	REMARKS
9:54	0.0		-	-		-	Began Hand Bailing!
10:03	7.0						Did Not Collect Parameter
10:11	14.0						Readings Due to Possible
10:20	21.0						Damage to Probes!
	_						
	ļ			•			
	ļ						
							· · · · · · · · · · · · · · · · · · ·
<u> </u>							
0.26	·Total Time	(hr:min)	21	·Total Vol	(gal)	0.80	Elow Rate (gal/min)
SAMP		Collected S	ample No	070620	1025	0.00	
ANAI	YSES:	BTEX (802	1-B)				
COM	MENTS:						<u> </u>
		· ····					

C:\DCP-C LINE\Purge & Sample

WELL SAMPLING DATA FORM

	CLIENT:	DC	P Midstrea	am		WELL ID:	MW-2
SI			C Line			DATE:	6/20/2007
PRO	JECT NO.		F-107		. 8	SAMPLER:	J. Fergerson/D. Littlejohn
PURGING	METHOD:	1	🗵 Hand Bai	led 🗆 Pu	mp If Pu	mp, Type:	
SAMPLIN) :	🖸 Disposab	le Bailer	Direct 1	from Discha	arge Hose 🔲 Other:
DESCRIB	E EQUIPMI	ENT DECO	NTAMINATI	ON METHO	DD BEFO	RE SAMPI	LING THE WELL:
Gloves	s 🗆 Alcono	x 🛛 Distill	ed Water Ri	nse 🗆 C	Other:		
DISPOSA	L METHOD	OF PURGI	E WATER:	Surface	e Discharg	ge 🗌 Drui	ms 🗹 Disposal Facility
TOTAL D	EPTH OF W	ELL:	100.94	Feet			
DEPTH TO	O WATER:	COLUMN	88.87	Feet		59	Minimum Gallons to
WELL DIA	METER:	2.0	Inch	1 001		0.0	purge 3 well volumes
		TEMP					(Water Column Height x 0.49)
TIME	PURGED	°C	mS/cm	pН	mg\L	Turb	REMARKS
9:40	0.0	-	-	_	-	-	Begin Hand Bailing
9:48	2.0	20.2	2.29	6.61	-	-	
9:57	4.0	20.2	2.30	6.47	-	-	
10:06	6.0	20.0	2.28	6.61	-		
					ļ		
					<u> </u>		
0:26	:Total Time	e (hr:min)	6	:Total Vol	(gal)	0.23	:Flow Rate (gal/min)
SAMP	LE NO.:	Collected S	ample No.:	070620	1009		
ANAL	YSES:	BTEX (802	1-B)				
COMN					<u>.</u>		······································

C:\DCP-C LINE\Purge & Sample
.

	CLIENT: DCP Midstream					WELL ID:	MW-3		
SI	TE NAME:		C Line			DATE:	6/20/2007		
PRC	JECT NO.		F-107		. 8	SAMPLER:	J. Fergerson/D. Littlejohn		
					-				
PURGING		: 1	🖸 Hand Bai	led 🗆 Pu	mp If Pu	mp, Type:			
SAMPLIN) :	🗹 Disposab	le Bailer 🛛] Direct f	from Disch	arge Hose 🛛 Other:		
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METHO	OD BEFO	RE SAMP	LING THE WELL:		
Glove:	s 🗆 Alcond	ox 🛛 Distill	ed Water Ri	nse 🗆 C	Other:				
DISPOSA	L METHOD) of Purgi	E WATER:	Surface	e Discharg	ge 🗌 Dru	ms 🗹 Disposal Facility		
TOTAL DI DEPTH TO HEIGHT (WELL DIA	EPTH OF V O WATER: DF WATER METER:	VELL: COLUMN: 2.0	102.44 90.20 12.24 Inch	Feet Feet Feet		6.0	_Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)		
TIME	VOLUME PURGED	TEMP. °C	COND. <i>m</i> S/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS		
10:47	0.0	-	-	-	-	-	Begin Hand Bailing		
10:55	2.1	19.8	1.90	7.06	-				
11:06	4.2	19.9	1.89	7.23	-	-			
11:15	6.3	20.7	1.90	7.26					
· · · · · · · · · · · · · · · · · · ·									
	ļ			L			· · · · · · · · · · · · · · · · · · ·		
0:28	Total Time	e (hr:min)	6.3	:Total Vol	(gal)	0.22	:Flow Rate (gal/min)		
SAMP	LE NO.:	Collected S	ample No.:	070620	1120		·····		
ANAL	YSES:	BTEX (802	1-B)						
COMMENTS: Collected Duplicate Sample No.: 0706201200 f					00 for BTE	-X (8021-B)			

.

9

		DC	P Midstrea	am		WELL ID:	MW-4		
SI	TE NAME:		C Line			DATE:	6/20/2007		
PRC	JECT NO.		F-107		5	SAMPLER:	J. Fergerson/D. Littlejohn		
PURGING	METHOD:	:	☑ Hand Bai	iled 🗆 Pu	mp If Pur	np, Type:			
SAMPLIN		D:	Disposab	le Bailer] Direct f	from Discha	arge Hose 🔲 Other:		
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METHO	DD BEFO	RE SAMPI			
Glove:	s 🗆 Alcono	x □ Distill	ed Water Ri	nse 🗆 C	Other:				
DISPOSA	L METHOD	OF PURG	E WATER:	□ Surface	Discharg	ge 🗌 Dru	ms 🗵 Disposal Facility		
TOTAL DI DEPTH TO HEIGHT (WELL DIA	EPTH OF W O WATER: DF WATER METER:	VELL: COLUMN: 2.0	103.42 90.41 13.01 Inch	Feet Feet Feet	;	6.4	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)		
TIME	VOLUME PURGED	TEMP. °C	COND. <i>m</i> S/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS		
8:52	0.0	-	-	-	-	-	Begin Hand Bailing		
8:59	2.2	-	-	~	-	-	Did Not Collect Parameter		
9:07	4.4	-	_	-	-	+	Readings Due to Possible		
9:15	6.6		-		Damage to Probes!				
	·								
	L				[
0:23	Total Time	e (hr:min)	6.6	: Iotal Vol	(gal)	0.29	:Flow Rate (gal/min)		
SAMP	LE NO.:	Collected S	ample No.:	070620	0920				
ANAL	YSES:	BIEX (802	1 -B)						
COMN	AENTS:						<u> </u>		

	CLIENT:	DC	P Midstrea	am		WELL ID:	MW-5		
S	TE NAME:		C Line			DATE:	6/20/2007		
PRC	JECT NO.		F-107			SAMPLER:	J. Fergerson/D. Littlejohn		
PURGING			🗹 Hand Bai	led 🗆 Pu	mp If Pu	mp, Type:			
SAMPLIN) :	🖸 Disposab	le Bailer	Direct f	from Discha	arge Hose 🛛 Other:		
DESCRIB	E EQUIPMI	ENT DECO	NTAMINATI	ON METHO	DD BEFO	RE SAMPL	ING THE WELL:		
Glove	s 🗆 Alcono	x 🗆 Distill	ed Water Ri	nse 🗆 C	Other:		• 		
DISPOSA	L METHOD		E WATER:	⊠ Surface	e Discharç	ge 🗆 Drur	ns 📋 Disposal Facility		
TOTAL D	EPTH OF W	/ELL:	102.05	Feet					
DEPTH T	O WATER:	COLUMN	90.58	Feet Feet		56	Minimum Gallons to		
WELL DIA	METER:	2.0	Inch	1 001			purge 3 well volumes		
	VOLUME	TEMP	COND				(Water Column Height x 0.49)		
TIME	PURGED	°C	m S/cm	pН	mg\L	Turb	REMARKS		
9:04	0.0	-	-		-	-	Begin Hand Bailing		
9:12	2.0	19.4	2.55	7.01	-	*			
9:18	4.0	19.4	2.54	7.06	-	-			
9:26	6.0	19.3	2.50	6.95	<u> </u>				
				·····			· · · · · · · · · · · · · · · · · · ·		
· ·									
							· · · · · · · · · · · · · · · · · · ·		
0:22	:Total Time	(hr:min)	6	:Total Vol ((gal)	_0.27	:Flow Rate (gal/min)		
SAMP	LE NO.:	Collected S	ample No.:	070620	0928				
ANAL	YSES:	BTEX (802	1-B)						
COMN	IENTS:		· <u></u> ==						

	CLIENT:	DC	P Midstrea	am		WELL ID:	MW-6	
SI	TE NAME:		C Line			DATE:	6/20/2007	
PRO	JECT NO.		F-107		. (SAMPLER:	J. Fergerson/D. Littlejohn	
PURGING		:	🛛 Hand Bai	iled 🗆 Pu	mp If Pu	mp, Type:		
SAMPLIN) :	Disposab	le Bailer	Direct	from Disch	arge Hose 🛛 Other:	
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METHO	OD BEFC	RE SAMP	LING THE WELL:	
Glove:	s 🗆 Alcono	ox 🗌 Distill	ed Water Ri	nse 🗆 C	Other:			
DISPOSA) of Purgi	E WATER:	Surface	e Discharç	ge 🗌 Dru	ms 📋 Disposal Facility	
Total de Depth To Height (Well dia	EPTH OF V O WATER: OF WATER METER:	VELL: COLUMN: 2.0	103.20 96.01 7.19 Inch	Feet Feet Feet		3.5	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)	
TIME	VOLUME PURGED	TEMP. °C	COND. mS/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS	
0:00	0.0	-	_	_	-		Begin Hand Bailing	
	1.3		-	-		-		
	2.6	-	-	-	-	-		
0:15	3.9	-	-	-	-	-		
0:15	:Total Time	e (hr:min)	3.9	:Total Vol ((gal)	0.26	:Flow Rate (gal/min)	
SAMPI	LE NO.:	Collected S	ample No.:	070620				
ANAL	YSES:	BTEX (802	1-B)			<u></u>		
COMN	IENTS:	Did Not Pur	ge & Sampl	e at Reque	st of PM!			

	CLIENT:	DC	P Midstrea	am	_	WELL ID:	MW-7
SI	TE NAME:		C Line		_	DATE:	6/20/2007
PRC	JECT NO.		F-107		-	SAMPLER:	J. Fergerson/D. Littlejohn
				······	•		
PURGING		: 1	🖸 Hand Bai	led 🗋 Pu	mp If Pu	mp, Type:	
SAMPLIN		D: I	🖸 Disposab	le Bailer	Direct	from Disch	arge Hose 🔲 Other:
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI		OD BEFC	RE SAMPI	LING THE WELL:
Glove:	s 🗆 Alconc	ox 🛛 Distill	ed Water Ri	nse 🗆 C	Other:		<u></u>
DISPOSA) of Purgi	E WATER:	⊡ Surface	e Dischar	ge 🗌 Dru	ms 🛛 Disposal Facility
TOTAL DI	EPTH OF V	VELL:	100.40	Feet			
DEPTH TO	O WATER:	COLUMNI	91.90	Feet Foot			Minimum Callons to
WELL DIA	METER:	2.0	Inch	reet		4.2	purge 3 well volumes
r							(Water Column Height x 0.49)
TIME	PURGED	°C	m S/cm	pН	mg\L	Turb	REMARKS
10:54	0.0	_	-	-	-	-	Begin Hand Bailing
11:02	2.0 .	19.8	1.78	7.26	-	-	
11:08	4.0	20.0	1.80	7.32	-	-	
11:14	6.0	20.5	1.81	7.27	-		
			_				
						•	
0:20	:Total Time	ə (hr:min)	6	:Total Vol	(gal)	0.30	:Flow Rate (gal/min)
SAMP	LE NO.:	Collected S	ample No.:	070620	1118		
ANAL	YSES:	BTEX (802	1-B)			·····	<u></u>
COMM	IENTS:	Collected M	IS/MSD San	nples!			

٦

C:\DCP-C LINE\Purge & Sample

c

CL	IENT:	DC	P Midstrea	am		WELL ID:	MW-8
SITEN	IAME:		C Line			DATE:	6/20/2007
PROJEC	T NO.		F-107			SAMPLER:	J. Fergerson/D. Littlejohn
PURGING ME	THOD:	l	I Hand Bai	led 🗆 Pu	mp If Pu	mp, Type:	
SAMPLING ME	ETHOD): (🖸 Disposab	le Bailer 🛛] Direct f	from Discha	arge Hose 📋 Other:
DESCRIBE EC	QUIPME	ENT DECO	NTAMINATI	ON METHO	DD BEFO	RE SAMPL	LING THE WELL:
	Alcono	x 🛛 Distill	ed Water Ri	nse 🗆 C	Other:		
DISPOSAL ME	ETHOD	OF PURG	E WATER:	⊡ Surface	Discharg	ge 🗆 Drui	ms 🛛 Disposal Facility
TOTAL DEPTH DEPTH TO W	H OF W ATER:	/ELL:	100.50 90.43	Feet Feet			
HEIGHT OF W		COLUMN:	10.07	Feet		4.9	Minimum Gallons to
		2.0	IIICH				(Water Column Height x 0.49)
	LUME	TEMP. °C	COND. mS/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
10:18 (0.0	-	-	_	-	_	Begin Hand Bailing
10:28	1.7	19.3	2.17	7.02	-	-	
10:35	3.3	19.4	2.17	7.06	-	-	
10:40	5.0	19.4	2.16	6.89	-	-	
						· ·	
0:22 ·Tot	l al Time	(hr:min)	5	:Total Vol ((gal)	0.23	Elow Rate (gal/min)
SAMPLE N	0.:	Collected S	ample No.:	070620	1042		
ANALYSE	- S:	BTEX (802	<u></u> 1-В)				
COMMENT	rs: _						

(

C:\DCP-C LINE\Purge & Sample

٨

	CLIENT:	DC	P Midstrea	am		WELL ID:	MW-9	
SI			C Line			DATE:	6/20/2007	
PRO	JECT NO.		F-107			SAMPLER:	J. Fergerson/D. Littlejohn	
					-			
PURGING	METHOD:		🗵 Hand Bai	led 🗋 Pu	mp If Pu	mp, Type:		
SAMPLIN	G METHOE) :	🗹 Disposab	le Bailer] Direct	from Discha	arge Hose 🔲 Other:	
DESCRIB	E EQUIPMI	ENT DECO	NTAMINATI	ON METHO	DD BEFO	RE SAMPI	ING THE WELL:	
Gloves	s 🗌 Alcono	x 🛛 Distill	ed Water Ri	nse 🗆 C	Other:			
DISPOSA	L METHOD	OF PURG	E WATER:	Surface	e Discharç	ge 🗌 Drui	ms 🛛 Disposal Facility	
TOTAL D	EPTH OF W	VELL:	100.50	Feet				
DEPTH TO	O WATER:		89.83	Feet		5.0	Minimum College to	
WELL DIA	METER:	2.0	Inch	reel		5.2	purge 3 well volumes	
		ТЕМР	COND			r	(Water Column Height x 0.49)	
TIME	PURGED	°C	<u></u>	pН	mg\L	Turb		
8:20	0.0	-	-	-	-	_	Begin Hand Bailing	
8:28	2.0	19.1	2.40	7.23	-	-		
8:39	4.0	18.8	2.31	6.98	-	-		
8:49	6.0	18.8	2.32	7.10	· ·			
				·				
	L				l			
0:29	:Total Time	e (hr:min)	6	:Total Vol	(gal)	0.21	:Flow Rate (gal/min)	
SAMP	LE NO.:	Collected S	ample No.:	070620	0851			
ANAL	YSES:	BTEX (802	1-B)		<u></u>			
COMN	IENTS:	·						

1

Analytical Report 284910

for

American Environmental Consulting

Project Manager: Mike Stewart

DCP Midstream - C-Line Pipeline

03-JUL-07

12600 West I-20 East Odessa, Texas 79765

NELAC certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

03-JUL-07

Project Manager: Mike Stewart American Environmental Consulting 6885 S. Marshall Suite 3 Littleton, CO 80128

Reference: XENCO Report No: 284910 DCP Midstream - C-Line Pipeline Project Address: Lea County, New Mexico

Mike Stewart:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 284910. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 284910 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully

Brent Barron Odessa Laboratory Director

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Sample Cross Reference 284910

American Environmental Consulting, Littleton, CO

DCP Midstream - C-Line Pipeline

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
RW-1 (0706201025)	W	Jun-20-07 10:25		284910-001
MW-2 (0706201009)	W	Jun-20-07 10:09		284910-002
MW-3 (0706201120)	W	Jun-20-07 11:20		284910-003
MW-4 (0706200920)	W	Jun-20-07 09:20		284910-004
MW-5.(0706200928)	W	Jun-20-07 09:28		284910-005
MW-7 (0706201118)	W	Jun-20-07 11:18		284910-006
MW-8 (0706201042)	W	Jun-20-07 10:42		284910-007
MW-9 (0706200851)	W	Jun-20-07 08:51		284910-008
Duplicate (0706201200)	W	Jun-20-07 12:00		284910-009

Certificate of Analysis Summary 284910 American Environmental Consulting, Littleton, CO

Project Name: DCP Midstream - C-Line Pipeline

Contact: Mike Stewart

Project Id:

Date Received in Lab: Mon Jun-25-07 05:00 pm

Report Date: 03-JUL-07

Project Location: Lea County, New Mexico					Keport Date: (10-10T-01	
					Project Manager:]	Srent Barron, II	
	Lab Id:	284910-001	284910-002	284910-003	284910-004	284910-005	284910-006
Auchicic Decuseded	Field Id:	RW-1 (0706201025)	MW-2 (0706201009)	MW-3 (0706201120)	MW-4 (0706200920)	MW-5 (0706200928)	MW-7 (0706201118)
Anuiysis Nequesieu	Depth:						
	Matrix:	WATER	WATER	WATER	WATER	WATER	WATER
	Sampled:	Jun-20-07 10:25	Jun-20-07 10:09	Jun-20-07 11:20	Jun-20-07 09:20	Jun-20-07 09:28	Jun-20-07 11:18
BTEX by EPA 8021B	Extracted:	Jun-27-07 15:48	Jun-27-07 15:48	Jun-27-07 15:48	Jun-27-07 15:48	Jun-27-07 15:48	Jun-27-07 15:48
	Analyzed:	Jun-29-07 06:26	Jun-29-07 06:47	Jun-29-07 07:08	Jul-02-07 19:15	Jun-29-07 08:55	Jun-29-07 09:16
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	mg/L RL	mg/L RL	mg/L RL
Benzene		3.821 0.0500	ND 0.0010	6.369 0.0500	1.797 0.0500	ND 0.0010	ND 0.0010
Toluene		0.4305 0.0500	ND 0.0010	3.480 0.0500	0.9825 0.0500	ND 0.0010	ND 0.0010
Ethylbenzene		0.4020 0.0500	ND 0.0010	0.5175 0.0500	0.6115 0.0500	ND 0.0010	ND 0.0010
m,p-Xylene		0.6135 0.1000	ND 0.0020	0.5035 0.1000	1.769 0.1000	ND 0.0020	ND 0.0020
o-Xylene		0.1715 0.0500	ND 0.0010	0.2740 0.0500	0.8810 0.0500	ND 0.0010	ND 0.0010
Total Xylenes		0.785	QN	0.7775	2.65	Q	Ð
Total BTEX		5.4385	DN	11.144	6.041	QN	Ð

This starbytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed trivogiout this mathical report repressent the basil adgement of XENOC Laboratories. XENOC Laboratories assumes to responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Since 1990

Dessa Laboratory Director

		Mike Stewart
E MIRONMERTAL	Project Id:	Contact:

Project Location: Lea County, New Mexico

Certificate of Analysis Summary 284910 American Environmental Consulting, Littleton, CO

Project Name: DCP Midstream - C-Line Pipeline

Date Received in Lab: Mon Jun-25-07 05:00 pm

Report Date: 03-JUL-07

					Project Manager: Brent Barron, II	
	Lab Id:	284910-007	284910-008	284910-009		
Analysis Dogustad	Field Id:	MW-8 (0706201042)	MW-9 (0706200851)	Duplicate (0706201200)		
nucleur active	Depth:					
	Matrix:	WATER	WATER	WATER		
	Sampled:	Jun-20-07 10:42	Jun-20-07 08:51	Jun-20-07 12:00		
BTEX hv EPA 8021B	Extracted:	Jun-27-07 15:48	Jun-27-07 15:48	Jun-27-07 15:48		
	Analyzed:	Jun-29-07 09:37	Jul-02-07 18:12	Jun-29-07 10:18		
	Units/RL:	mg/L RL	mg/L RL	mg/L RL		
Benzene		ND 0.0010	ND 0.0010	6.438 0.0500		
Toluene		ND 0.0010	ND 0.0010	3.494 0.0500		
Ethylbenzene		ND 0.0010	ND 0.0010	0.5160 0.0500		
m,p-Xylene		ND 0.0020	ND 0.0020	0.5035 0.1000		
o-Xylene		ND 0.0010	ND 0.0010	0.2700 0.0500		
Total Xylenes		Ð	Ê	0.7735		
Total BTEX		Q	QN	11.2215		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the basi, adjament of XENCO Laboratories. XENCO Laboratories astress to responsibility and makes no warmany to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Odessa Laboratory Director Brent Barron

1

Page 5 of 11

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

	Phone	Fax
11381 Meadowglen Lane Suite L Houston, Tx 77082-2647	(281) 589-0692	(281) 589-0695
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, Suite 104, San Antonio, TX 78238	(210) 509-3334	(201) 509-3335
2505 N. Falkenburg Rd., Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555

Form 2 - Surrogate Recoveries

Project Name: DCP Midstream - C-Line Pipeline

ork Order #: 284910			Project II):		
Lab Batch #: 699531	Sample: 284910-001 / SMP	Ba	tch: ¹ Matri	x: Water		
Units: mg/L	Γ	SU	RROGATE RE	COVERY	STUDY	
BTEX by	EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene		0.0590	0.0500	118	80-120	
Lab Batch #: 699531	Sample: 284910-002 / SMP	Ba	tch: Matri	v• Water	l	
Units: mg/L		SU	RROGATE RE	COVERY	STUDY	
BTEX by	EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R IDI	Control Limits %R	Flags
4-Bromofluorobenzene		0.0521	0.0500	104	80-120	
Leb Batch # 699531	Sample: 284910-003 / SMP	Ba	tahi l Matri	w. Water		
Units: mg/L	Sample. 201910 0037 BM	SU	RROGATE RE	COVERY	STUDY	
BTEX by	EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Ana 4-Bromofluorobenzene		0.0526	0.0500	105	80-120	
Lab Batch #• 699531	Sample: 284910-004 / SMP		tch· 1 Matri	x: Water		
Units: mg/L		SU	RROGATE RE	ECOVERY	STUDY	
BTEX by	EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
4-Bromofluorobenzene		0.0565	0.0500	113	80-120	
Lah Batch #• 699531		Ra	tch: Matri	x: Water		
Units: mg/L			RROGATE RE	COVERY	STUDY	
BTEX by	EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
A Decime flue web and the	·	·····		L	L	

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: DCP Midstream - C-Line Pipeline

Work Order #: 284910		Project ID:				
Lab Batch #: 699531	Sample: 284910-006 / SM	P Bat	tch: 1 Matri	x: Water		
Units: mg/L		SU	RROGATE RI	ECOVERY	STUDY	
BTEX by I Ana	EPA 8021B lytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene		0.0536	0.0500	107	80-120	
Lab Batch #: 699531	Sample: 284910-006 S / N	1S Bat	tch: 1 Matri	x: Water	·	
Units: mg/L		SU	RROGATE RI	ECOVERY	STUDY	
BTEX by	EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Ana	lytes					
4-Bromotluorobenzene		0.0579	0.0500	116	80-120	
Lab Batch #: 699531	Sample: 284910-006 SD /	MSD Bat	tch: ¹ Matri	x: Water		
Units: mg/L		SU	RROGATE RI	ECOVERY	STUDY	
BTEX by	EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R IDI	Control Limits %R	Flags
4-Bromofluorobenzene		0.0549	0.0500	110	80-120	
L I D (I II) 600521	a			Watar	00 120	
Lab Batch #: 099551	Sample: 204910-0077 SM	P Batch: 1 Matrix: Water				
BTEX by Ana	EPA 8021B lytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene		0.0528	0.0500	106	80-120	
Lab Batch #: 699531	Sample: 284910-008 / SM	IP Ba	tch: ¹ Matri	x: Water	<u> </u>	
Units: mg/L		SU	RROGATE RI	ECOVERY	STUDY	
BTEX by Ana	EPA 8021B lytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene		0.0457	0.0500	91	80-120	

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: DCP Midstream - C-Line Pipeline

ork Order #: 284910			Project II):		
Lab Batch #: 699531	Sample: 284910-009 / SM	P Ba	tch: l Matri	ix: Water		
Units: mg/L	,	SU	RROGATE RI	ECOVERY S	STUDY	
BTEX by	EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R D]	Control Limits %R	Flags
4-Bromofluorobenzene		0.0539	0.0500	108	80-120	
Lab Batch #: 699531	Sample: 496567-1-BKS /	BKS Ba	tch: 1 Matri	ix: Water	l	
Units: mg/L		SU	RROGATE RI	ECOVERY	STUDY	
BTEX by]	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Ana	lytes			[D]		
4-Bromofluorobenzene		0.0574	0.0500	115	80-120	
Lab Batch #: 699531	Sample: 496567-1-BLK /	BLK Ba	tch: 1 Matri	ix: Water	· · · · · · · · · · · · · · · · · · ·	
Units: mg/L		SU	RROGATE RI	ECOVERY	STUDY	
BTEX by	EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
	1y tes			[~]		
1,4-Dilluorobenzene		ND	ND		80-120	*U
4-Bromofluorobenzene		0.0532	0.0500	106	80-120	

** Surrogates outside limits; data and surrogates confirmed by reanalysis

.

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: DCP Midstream - C-Line Pipeline

Work Order #: 284910

Ş

Project ID:

Lab Batch #: 699531 Date Analyzed: 06/29/2007 Reporting Units: mg/L	Sample: 496567 Date Prepared: 06/27/20 Batch #: 1	-1-BKS 007 BLANK /I	Matr Analy BLANK SPI	ix: Water st: CELKI	EE COVERY S	TUDY
BTEX by EPA 8021B Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
Benzene	ND	0.0500	0.0594	119	70-125	
Toluene	ND	0.0500	0.0601	120	70-125	
Ethylbenzene	ND	0.0500	0.0568	114	71-129	
m,p-Xylene	ND	0.1000	0.1076	108	70-131	
o-Xylene	ND	0.0500	0.0603	121	71-133	

Blank Spike Recovery [D] = 100*[C]/[B]All results are based on MDL and validated for QC purposes.

XENCO Laboratories

Form 3 - MS / MSD Recoveries

Project Name: DCP Midstream - C-Line Pipeline

Work Order #: 284910

Lab Batch ID: 699531 Date Analyzed: 06/29/2007

Reporting Units: mg/L

,

QC- Sample ID: 284910-006 S Batch #:

Date Prepared: 06/27/2007

Project ID: 1 Matrix: Water

/2007 Analyst: CELKEE MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B	Parent Sample	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]		B] %	Added [E]	Result [F]	% R [G]	%	%R	%RPD	
Benzene	ŊŊ	0.0500	0.0612	122	0.0500	0.0573	115	6	70-125	25	
Toluene	QN	0.0500	0.0615	123	0.0500	0.0581	116	9	70-125	25	
Ethylbenzene	QN	0.0500	0.0616	123	0.0500	0.0606	121	2	71-129	25	
m,p-Xylene	ND	0.1000	0.1118	112	0.1000	0.1041	104	7	70-131	25	
o-Xylene	QN	0.0500	0.0623	125	0.0500	0.0602	120	4	71-133	25	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantization Limit Page 11 of 11

May 15, 2007

Mr. Wayne Price Environmental Bureau Chief New Mexico Oil Conservation Division 1220 S. St. Francis Dr. Santa Fe, NM 87505

RE: 1st Quarter 2007 Groundwater Monitoring Results DCP C-Line Pipeline Release (1RP-401-0), Lea County, NM Unit O Section 31, T19S, R37E

Dear Mr. Price:

DCP Midstream, LP (DCP) formerly Duke Energy Field Services, LP is pleased to submit for your review, one copy of the 1st Quarter 2007 Groundwater Monitoring Results for the DCP C-Line Pipeline Release Site located in Lea County, New Mexico (Unit O Section 31, T19S, R37E, Latitude 32° 31' 29.7" N Longitude 103° 17' 11.7 W).

If you have any questions regarding the report, please call me at 303-605-1718.

Sincerely

DCP Midstream, LP

Stephen Weathers, PG Sr. Environmental Specialist

cc: Carl Chavez, OCD Santa Fe Office
 Larry Johnson, OCD Hobbs District Office (Copy on CD)
 Lynn Ward, DCP Midland Office
 Environmental Files

www.dcpmidstream.com

May 14, 2007

Mr. Stephen Weathers DCP Midstream, LP 370 17th Street, Suite 2500 Denver, CO 80202

Re: Summary of the First Quarter 2007 Groundwater Monitoring Results for the C-Line 50602 Release Location in Lea County New Mexico Unit O, Section 31, Township 19 South, Range 37 East (1RP-401-0)

Dear Mr. Weathers:

This report summarizes the first quarter 2007 groundwater monitoring activities completed at the C-Line 50602 release location for DCP Midstream, LP (DCP), formerly Duke Energy Field Services, LP. The monitoring activities were completed on March 14, 2007. The site is located in the southwestern quarter of the southeastern quarter (Unit O) of Section 31, Township 19 South, Range 37 East (Figure 1). The approximate coordinates are 32 degrees 31 minutes north, 103 degrees 17 minutes west.

The groundwater monitoring network includes the nine wells shown on Figure 2. Table 1 summarizes construction information for each well.

GROUNDWATER SAMPLING

Trident Environmental collected groundwater samples on March 14, 2007. The depth to water in each well was measured prior to the sampling activities. The calculated groundwater elevations for all monitoring episodes are summarized in Table 2. The FPH thickness values for MW-1 and MW-4 for all monitoring episodes are summarized in Table 3. Well MW-1 contained no FPH for the sixth consecutive quarter. Well MW-4 contained 0.06 feet of FPH so it was not sampled.

The eight wells that did not contain FPH were purged and sampled using the standard protocols for this site. Purging was completed using dedicated bailers until a minimum of three casing volumes of water was removed and the field parameters temperature, pH and conductivity stabilized. The well purging forms are attached. The affected purge water was disposed of at the DCP Linam Ranch facility.

Mr. Stephen Weathers May 14, 2007 Page 2

Unfiltered samples were then collected using the same dedicated bailers. All samples were placed in an ice-filled chest immediately upon collection and delivered to the analytical laboratory (Environmental Labs of Texas) using standard chain-of-custody protocol. The samples were analyzed for benzene, toluene, ethylbenzene and total xylenes (BTEX).

The laboratory analyses for the sampling episode are summarized in the upper part of Table 4. The laboratory report is attached.

The lower part of Table 4 includes the quality assurance/quality control (QA/QC) information. The QA/QC evaluation includes:

- The sample temperature was 4.5° centigrade when the lab received them.
- No BTEX constituents were detected in the trip blank.
- All of the individual surrogate spikes were within their control limits.
- The relative percentage difference (RPD) values for the constituents from the two MW-3 samples all exhibited good agreement.
- The matrix spike and matrix spike duplicate results from the MW-7 sample were all within the control limits for all four constituents.

The above data indicate that the data is suitable for all uses.

RESULTS AND INTERPRETATIONS

Figure 3 includes hydrographs for the corrected water-table elevations for all site wells. The water table elevations remained relatively constent or climbed slightly in all wells.

Figure 4 shows the March 2007 calculated groundwater contours as generated using the Surfer® program with the kriging option. The water table exhibits a consistent gradient toward the southeast. This pattern reflects the historic trends.

Figure 5 depicts the spatial March 2007 benzene distribution. Benzene was reported at 5.59 mg/l in MW-1 and at an average value of 6.41 mg/l in the two samples from MW-3. MW-4 contained FPH. The remaining wells did not contain benzene at the method reporting limit of 0.001 mg/l.

Table 5 summarizes all of the analytical data collected to date. The changes in benzene concentrations are plotted for wells MW-1 and MW-3 on Figure 6. Sampling in MW-1 begin in December 2003 after removal of the FPH was completed. The sampling in MW-3 begin at the start of the project in November 2002. The benzene concentration in MW-1

Mr. Stephen Weathers May 14, 2007 Page 3

increased to its highest concentration in March 2007 while the concentration in MW-3 declined for the second consecutive sampling episode.

The time-benzene concentration plots MW-2 and MW-5 are shown on Figure 7. Benzene was not detected at or above the 0.001 mg/l method reporting limit in either well for the seventh consecutive monitoring episode.

The soil vapor extraction (SVE) remediation system was restarted after sampling was completed on March 14, 2007 to remove the FPH from MW-4. The system will be operated and then stopped to measure the FPH level in MW-4. SVE operation will continue as long as FPH is present in any well at the site.

The next groundwater-monitoring event is scheduled for the second quarter of 2007. BTEX sampling will cease in MW-6 because it is separated from the source area by the down-gradient boundary wells MW-7, MW-8 and MW-9. Water levels will continue to be measured in this well. Sampling will be restarted if any BTEX constituents are detected in the three down-gradient monitoring wells.

Do not hesitate to contact me if you have any questions or comments on this letter.

Sincerely, AMERICAN ENVIRONMENTAL CONSULTING, LLC

Muchael H. Stewart

Michael H. Stewart, P.E., C.P.G. Principal Engineer MHS/tbm

TABLES

.

Well	Top of Casing Elevation	Ground Elevation	Screen Diameter	Screened Interval	Sand Interval	Total Depth
MW-1	3,541.21	3,538.64	4"	82.5-97.5	81-98	98
MW-2	3,540.91	3,537.70	2"	81-101	77-102	102
MW-3	3,541.41	3,539.30	2"	80-100	78-103	103
MW-4	3,541.40	3,538.51	2"	80-100	78-103	103
MW-5	3,541.45	3,538.69	2"	80-100	78-102	102
MW-6	3,543.98	3,540.94	2"	79-99	75-102	102
MW-7	3,542.42	3,540.20	2"	82.5-97.5	77-98*	98
MW-8	3,540.29	3,538.08	2"	82.5-97.5	81-98	98
MW-9	3,539.62	3,537.33	2"	82.5-97.5	81-98	98

Table 1 – Summary of Well Construction Information

All units in feet except as noted * Well MW-7 has a natural sand pack from 93 to 98 feet

Table 2 - Summary of Corrected Water Table Elevations

Mar 06	3,451.96	3,452.18	3,451.52	3,451.34	3,451.18	3,448.26	3,450.86	3,450.18	3,449.99
Dec 05	3,451.88	3,452.10	3,451.46	3,450.42	3,451.32	3,448.50	3,450.86	3,450.40	3,450.25
Sep 05	3,451.96	3,452.19	3,451.58	3,451.38	3,451.18	3,448.44	3,450.99	3,450.24	3,450.04
Jun. 05	3,451.99	3,452.22	3,451.51	3,451.26	3,451.35	3,448.62	3,450.99	3,450.41	3,450.38
Mar. 05	3,451.22	3,452.08	3,451.37	3,451.25	3,451.14	3,448.64	3,450.80	3,450.23	3,450.11
Dec. 04	3,450.97	3,451.91	3,451.24	3,451.19	3,451.10	3,448.91	3,450.70	3,450.21	3,450.13
Sep. 04	3 3 4 5 1 . 1 9	3 3451.72	53451.01	2 3450.88	5 3450.75	t 3448.03	73450.47	3449.85	3449.67
Jun. 04	3,451.23	3,451.73	3,451.06	3,451.02	3,450.86	3,448.14	3,450.57	3,450.03	3,449.81
Jan. 04	3,451.34	3,451.84	3,451.22	3,451.15	3,451.11	3,448.37	3,450.72	3,450.22	3,450.03
Oct. 03	3,451.35	3,451.87	3,451.27	3,451.25	3,451.20	3,448.46	3,450.76	3,450.35	3,450.21
Apr. 03	3,451.73	73,451.96	3,451.33	3,451.21	3,451.09	3,448.38			
Feb. 03	3,451.60	3,451.97	3,451.37	3,451.32	3,451.21	3,448.51			
Nov. 02	3,452.01	3,452.11	3,452.25	3,451.56	3,451.39	3,448.77			
Well	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9

·Well	Jun 06	Sep-06	Dec-06	Mar-07
MW-1	3,451.88	3,451.86	3,451.82	3,451.83
MW-2	3,452.13	3,452.12	3,452.06	3,452.07
MW-3	3,451.45	3,451.43	3,451.40	3,451.40
MW-4	3,451.40	3,451.34	3,451.33	3,451.36
MW-5	3,451.16	3,451.16	3,451.22	3,451.27
MW-6	3,448.28	3,448.27	3,448.30	3,448.36
MW-7	3,450.81	3,450.83	3,450.78	3,450.80
MW-8	3,450.14	3,450.21	3,450.28	3,450.35
WW-9	3,449.92	3,450.02	3,450.15	3,450.19

1) All units in feet.
2) The groundwater elevation values for MW-1 and MW-4 were corrected using the following formula (all values in feet): GWE_{corr} = MGWE + (PT*PD): where

MGWE is the actual measured groundwater elevation;
PT is the measured free-phase hydrocarbon thickness, and
PD is the free phase hydrocarbon density (assumed 0.7).

Date	MW-1	MW-4
11/02/02	3.15	0.00
02/17/03	3.62	0.00
04/16/03	2.92	0.00
10/30/03	3.21	0.00
06/29/04	2.66	0.00
09/28/04	2.16	0.21
12/08/04	0.13	1.18
03/16/05	0.04	3.03
06/06/05	0.02	0.07
09/20/05	0.00	0.16
12/15/05	0.00	0.21
03/21/06	0.00	0.03
06/27/06	0.00	0.00
09/16/06	0.00	0.00
12/11/06	0.00	0.00
3/14/07	0.00	0.06

Table 3 – C-Line Free Phase Hydrocarbon Thickness Measurements

Notes 1) Units are feet

Table 4 – March 2007 Sample Results and QA/QC Evaluation

Well	Benzene	Toluene	Ethylbenzene	Total Xylenes
MW-1	5.59	0.232	0.453	0.270
MW-2	< 0.001	< 0.001	< 0.001	< 0.001
MW-3	6.66	2.87	0.318	0.511
MW-3 (duplicate)	6.16	2.63	0.319	0.491
MW-4		Free Phase	Hydrocarbons	
MW-5	< 0.001	< 0.001	< 0.001	< 0.001
MW-6	< 0.001	< 0.001	< 0.001	< 0.001
MW-7	< 0.001	< 0.001	< 0.001	< 0.001
MW-8	< 0.001	< 0.001	< 0.001	< 0.001
MW-9	< 0.001	< 0.001	<0.001	< 0.001
Trip Blank	< 0.001	< 0.001	< 0.001	< 0.001
Notor: All units mall				

March 2007 Analytical Results

Notes: All units mg/l

March 2007 MW-3 Duplicate Sample Evaluation

	Benzene	Toluene	Ethylbenzene	Total Xylenes
MW-3 RPD	7.8%	8.7%	0.3%	4.0%

March 2007 MW-7 Matrix Spike and Matrix Spike Duplicate Results

	Benzene	Toluene	Ethylbenzene	p/m Xylenes	o Xylenes
Matrix Spike	113	112	116	111	119
Matrix Spike Duplicate	111	114	115	112	119

Percent recovery limits are 80% to 120%

Benzene	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9
11/15/02	FPH	<0.001	0.017	0.114	<0.001	<0.001			
02/18/03	FPH	0.29	2.52	1.12	0.328	0.001			
04/17/03	FPH	0.175	3.18	0.782	0.128	0.002			
10/28/03	FPH	0.018	5.01	0.077	0.164	< 0.001	< 0.001	<0.001	<0.001
01/29/04	FPH	0.0848	6.06	0.320	0.226	0.00382	< 0.001	0.00139	<0.001
06/29/04	FPH	0.0582	9.84	0.461	0.249	< 0.00019	0.000456	0.00248	< 0.00019
09/28/04	FPH	0.329	11.2	FPH	0.0336	< 0.001	< 0.001	< 0.001	<0.001
12/06/04	FPH	0.0355	12.0	FPH	0.0137	<0.001	< 0.001	< 0.001	<0.001
03/16/05	FPH	0.00523	10.9	FPH	0.00371	<0.001	<0.001	<0.001	<0.001
06/06/05	FPH	0.0017	8.83	FPH	0.00169	<0.001	0.000695J	0.000955J	<0.001
9/20/05	FPH	< 0.001	10.75	FPH	< 0.001	< 0.001	<0.001	<0.001	<0.001
12/15/05	2.14	< 0.001	9.57	FPH	< 0.001	< 0.001	<0.001	< 0.001	<0.001
3/21/06	1.32	< 0.001	6.55	FPH	<0.001	<0.001	<0.001	<0.001	<0.001
6/26/06	2.17	< 0.001	9.67	9.08	<0.001	< 0.001	<0.001	< 0.001	<0.001
9/16/06	4.27	< 0.001	10.55	0.51	< 0.001	< 0.001	<0.001	<0.001	< 0.001
12/11/06	< 0.001	< 0.001	7.49	0.17	< 0.001	<0.001	< 0.001	< 0.001	<0.001
3/14/07	5.59	< 0.001	6.41	FPH	< 0.001	< 0.001	<0.001	<0.001	<0.001

Table 5 - Summary of Analytical Results

•

Toluene	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9 `
11/15/02	FPH	< 0.001	0.005	0.039	<0.001	< 0.001			
02/18/03	FPH	0.014	0.634	0.436	0.056	< 0.001			
04/17/03	FPH	0.007	0.513	0.45	0.007	< 0.001			
10/28/03	FPH	0.001	0.275	0.029	0.048	< 0.001	< 0.001	<0.001	<0.001
01/29/04	FPH	0.0350	0.506	0.169	0.064	0.00140	< 0.001	0.00109	<0.001
06/29/04	FPH	0.000219J	0.0917	0.0202	0.00172	< 0.00014	< 0.00014	< 0.00014	<0.00014
09/28/04	FPH	0.0174	0.0218	FPH	0.00281	< 0.001	< 0.001	< 0.001	<0.001
12/06/04	FPH	0.0017	0.0438	FPH	0.00318	<0.001	<0.001	< 0.001	<0.001
03/16/05	FPH	< 0.001	0.013J	FPH	.00038J	<0.001	<0.001	<0.001	<0.001
06/06/05	FPH	<0.001	0.056	FPH	<0.001	<0.001	<0.001	< 0.001	<0.001
9/20/05	FPH	<0.001	0.1355	FPH	<0.001	<0.001	<0.001	<0.001	<0.001
12/15/05	1.37	<0.001	0.414	FPH	<0.001	< 0.001	< 0.001	< <u>0.001</u>	<0.001
3/21/06	0.931	<0.001	1.575	FPH	<0.001	<0.001	<0.001	<0.001	<0.001
6/26/06	1.42	<0.001	2.93	5.73	< 0.001	<0.001	<0.001	<0.001	<0.001
9/16/06	0.508	<0.001	3.48	0.0415	<0.001	<0.001	<0.001	<0.001	<0.001
12/11/06	<0.001	<0.001	3.35	0.139	<0.001	<0.001	<0.001	< <u>0.001</u>	<0.001
3/14/07	0.232	<0.001	2.75	FPH	< 0.001	<0.001	<0.001	<0.001	< 0.001

 3/14/07
 0.232
 <0.001</td>
 2.73
 FFR

 Notes:
 1) All units mg/l

 2) Duplicate results averaged

 3) "J" qualifiers are not included in summary

 4) Wells not installed where blank cells are present

 5) FPH free phase hydrocarbons present so no sample collected

Ethylbenzene	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9
11/15/02	FPH	<0.001	<0.001	0.002	<0.001	<0.001			
02/18/03	FPH	0.001	0.021	0.022	0.004	<0.001			
04/17/03	FPH	<0.001	0.028	0.029	< 0.001	<0.001			
10/28/03	FPH	<0.001	0.031	0.002	0.002	<0.001	<0.001	<0.001	<0.001
01/29/04	FPH	0.00292	0.0679	0.0203	0.00404	0.00133	< 0.001	0.00112	<0.001
06/29/04	FPH	0.00534	0.0873	0.352	0.0603	< 0.00013	< 0.00013	0.000633J	< 0.00013
09/28/04	FPH	<0.001	0.105	FPH	<0.001	<0.001	< 0.001	<0.001	<0.001
12/06/04	FPH	< 0.001	0.154	FPH	< 0.001	<0.001	<0.001	<0.001	<0.001
03/16/05	FPH	< 0.001	0.150	FPH	< 0.001	<0.001	<0.001	<0.001	<0.001
06/06/05	FPH	<0.001	0.1535	FPH	<0.001	<0.001	<0.001	<0.001	<0.001
09/20/05	FPH	<0.001	0.288	FPH	<0.001	<0.001	<0.001	<0.001	<0.001
12/15/05	0.313	<0.001	0.173	FPH	<0.001	<0.001	<0.001	<0.001	<0.001
3/21/06	0.419	< 0.001	0.4085	FPH	<0.001	<0.001	< 0.001	<u> <0.001 </u>	<0.001
6/26/06	0.534	<0.001	0.0333	1.03	<0.001	<0.001	<0.001	<0.001	<0.001
9/16/06	0.153	< 0.001	0.288	0.21	< 0.001	<0.001	<0.001	<0.001	<0.001
12/11/06	<0.001	<0.001	0.391	0.111	< 0.001	<0.001	<0.001	<0.001	<0.001
3/14/07	0.453	<0.001	0.3185	FPH	< 0.001	<0.001	<0.001	<0.001	<0.001
	r		r						r
Xylenes	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	[•] MW-8	MW-9
11/15/02	FPH	<0.001	<0.001	0.003	<0.001	<0.001			
02/18/03	FPH	0.001	0.064	0.032	0.004	<0.001			
04/17/03	FPH	< 0.001	0.1	0.055	< 0.001	<0.001			
10/28/03	FPH	<0.001	0.083	0.008	0.004	<0.001	< 0.001	<0.001	<0.001
01/29/04	FPH	0.00474	0.0849	0.053	0.0074	0.00194	<0.001	0.00217	<0.001
06/29/04	FPH	0.001J	0.02404	0.074	0.004	<0.0002	< 0.0002	<0.0002	< 0.0002
09/28/04	FPH	<0.001	0.0213	FPH	<0.001	<0.001	< 0.001	<0.001	<0.001
12/06/04	FPH	<0.001	0.0237	FPH	<0.001	< 0.001	< 0.001	<0.001	<0.001
03/16/05	FPH	<0.001	0.02842	FPH	<0.001	<0.001	<0.001	<0.001	<0.001
06/06/05	FPH	<0.001	0.0502	FPH	<0.001	<0.001	<0.001	<0.001	<0.001
09/20/05	FPH	<0.001	0.221	FPH	<0.001	<0.001	<0.001	<0.001	0.00105
12/15/05	1.334	<0.001	0.177	FPH	<0.001	<0.001	<0.001	<0.001	<0.001
3/21/06	1.379	<0.001	0.9015	FPH	<0.001	<0.001	<0.001	<0.001	<0.001
6/26/06	1.722	<0.001	0.414	5.69	<0.001	<0.001	<0.001	<0.001	<0.001
<u>9/16/06</u>	0.323	<0.001	0.384	1.028	<0.001	<0.001	<0.001	<0.001	<0.001
12/11/06	<0.001	<0.001	0.557	0.466	<0.001	<0.001	<0.001	<0.001	<0.001
3/14/07	0.27	<0.001	0.501	FPH	<0.001	< 0.001	< 0.001	<0.001	<0.001

Table 5 – Summary of Analytical Results (continued)

 3/14/07
 0.27
 0.001
 0.301
 1.411

 Notes:
 1) All units mg/l
 2) Duplicate results average
 3) "J" qualifiers are not included in summary

 3) "Use the second secon

FIGURES

FIELD SAMPLING FORMS AND ANALYTICAL LABORATORY REPORT

	CLIENT:	DCP Mic	Istream			WELL ID:	MW-1		
SI	TE NAME:		C Line			DATE:	3/14/2007		
PRC	JECT NO.		F-107			SAMPLER:	J. Fergerson		
					-		,		
PURGING		: ·	Hand Bai	iled 🗆 Pu	mp If Pu	np, Type:			
SAMPLIN	G METHO) :	🗹 Disposab	le Bailer 🛛	Direct 1	rom Discha	arge Hose 🛛 Other:		
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METHO	DD BEFO	RE SAMPI	LING THE WELL:		
Glove:	s 🗆 Alcono	x 🛛 Distill	ed Water Ri	nse 🗆 C	Other:				
DISPOSA	L METHOD	OF PURG	E WATER:	Surface	e Discharç	je 🗆 Drui	ms 🗹 Disposal Facility		
TOTAL DEPTH OF WELL: 99.98 Feet									
DEPTH TO	O WATER:	COLUMN	89.38	Feet		20.8	Minimum Gallons to		
WELL DIAMETER: <u>4.0</u> Inch <u>purge 3 well volumes</u>									
(Water Column Height x 1.96)									
TIME	PURGED	°C	<i>m</i> S/cm	рН	mg\L	lurb	REMARKS		
15:35	0.0		-	-	_	-	Began Hand Bailing!		
15:46	7.0						Did Not Collect Parameter		
15:57	14.0						Readings Due to Possible		
16:10	21.0						Damage to Probes!		
							Sec		
						-			
0:35	:Total Time	ə (hr:min)	21	:Total Vol	(gal)	0.60	:Flow Rate (gal/min)		
SAMPI	LE NO.:	Collected S	ample No.:	070314	1613				
ANAL	YSES:	BTEX (802	1-B)						
COMM	IENTS:								

	CLIENT:	DCP Mic	Istream		_	WELL ID:	MW-2					
S	TE NAME:		C Line		-	DATE:	3/14/2007					
PRC	JECT NO.		<u>F-107</u>		SAMPLER: J. Fergerson							
PURGING	METHOD:		Hand Bai	iled 🗆 Pu	mp If Pu	mp, Type:						
SAMPLIN):	Disposab	le Bailer	Direct	from Discha	arge Hose 🛛 Other:					
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFC	RE SAMPI	LING THE WELL:					
Glove:	s 🗆 Alcono	x 🗋 Distill	ed Water Ri	nse 🗆 C	Other:							
DISPOSA		OF PURG	E WATER:	Surface	e Discharg	ge 🗆 Dru	ms 🗹 Disposal Facility					
TOTAL DEPTH OF WELL:100.94 Feet												
DEPTH TO WATER: 88.84 Feet HEIGHT OF WATER COLUMN: 12.10 Feet 5.9 Minimum Gallons to												
HEIGHT OF WATER COLUMN: <u>12.10</u> Feet <u>5.9</u> Minimum Gallons to WELL DIAMETER: 2.0 Inch purge 3 well volumes												
· · · · ·		TEMO	0.0110				(Water Column Height x 0.49)					
TIME	PURGED	°C	COND. <u>m S/cm</u>	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS					
14:56	0.0	-		-			Begin Hand Bailing					
15:05	2.0	21.8	3.01	7.28	-	-						
15:13	4.0	21.5	3.01	7.26	_	_	·					
15:20	6.0	21.4	3.03	7.27	_	-						
•.												
0:24	:Total Time	(hr:min)	6	:Total Vol	(gal)	0.25	:Flow Rate (gal/min)					
SAMPI	E NO.:	Collected S	ample No.:	070314	1524							
ANAL	YSES:	BTEX (802	<u>1-B)</u>				·					
COMN	IENTS:											

CLIENT: DCP Midstream						WELL ID:	MW-3			
SI	SITE NAME: C Line				_	DATE	3/14/2007			
PRC	JECT NO.		F-107			SAMPLER	J. Fergerson			
PURGING	METHOD	:	Hand Bai	iled 🗆 Pu	mp If Pu	mp, Type:				
SAMPLIN	G METHOI	D:	⊡ Disposab	le Bailer 🛛	Direct 1	from Disch	arge Hose 🛛 Other:			
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METHO	DD BEFO	RE SAMP	LING THE WELL:			
Gloves 🗌 Alconox 🔲 Distilled Water Rinse 🗌 Other:										
DISPOSAL METHOD OF PURGE WATER: 🔲 Surface Discharge 🔲 Drums 🗵 Disposal Facility										
Total di Depth to Height (Well dia	EPTH OF V O WATER: DF WATER METER:	VELL: COLUMN: 2.0	102.44 90.01 12.43 Inch	Feet Feet Feet		6.1	_Minimum Gallons to purge 3 well volumes (Water Column Height x 0 49)			
ТІМЕ	VOLUME	TEMP.	COND.	рН	DO	Turb	PHYSICAL APPEARANCE AND			
	PURGED	0°	<i>m</i> S/cm	P	mg\L		REMARKS			
13:39	0.0	-	-	-	-	-	Begin Hand Bailing			
13:47	2.1	21.8	2.35	7.37	-	-				
13:57	4.2	22.0	2.35	7.60	-	-				
14:06	6.3	21.8	2.34	7.55	-	-				
							<u> </u>			
				·						
						~				
0:27	:Total Time	e (hr:min)	6.3	:Total Vol	(gal)	0.23	:Flow Rate (gal/min)			
SAMP	LE NO.:	Collected S	ample No.:	070314	1412					
ANAL	YSES:	BTEX (802	1-B)							
COMM	IENTS:	Collected D	uplicate Sar	mple No.: (07031417	00 for BTE	EX (8021-B)			

	CLIENT: DCP Midstream					WELL ID:	MW-4
S	TE NAME:		C Line			DATE:	3/14/2007
PRC	JECT NO.		F-107		5	SAMPLER:	J. Fergerson
PURGING			🗆 Hand Bai	led 🗆 Pu	mp If Pu	mp, Type:	· · · · · · · · · · · · · · · · · · ·
SAMPLIN		D:	🗌 Disposab	le Bailer] Direct	from Discha	arge Hose 🛛 Other:
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METHO	DD BEFO	RE SAMPL	ING THE WELL:
Glove:	s 🗆 Alcono	x 🗆 Distill	ed Water Ri	nse 🗆 C	Other:		
DISPOSA	L METHOD	OF PURG	E WATER:	Surface	Discharg	ge 🗌 Drur	ns 🗹 Disposal Facility
	EPTH OF V	VELL:	103.42	Feet	-		
DEPTH T	O WATER:		90.08	Feet			
		COLUMN:	13.34	Feet		6.5	Minimum Gallons to
							(Water Column Height x 0.49)
TIME		TEMP. °C	COND. mS/cm	рН	DO ma\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	0.0	-	-	-	-	-	Begin Hand Bailing
	2.1	-	_	-	-	_	
	4.2	-	-	-	_	-	
	6.3	-	-	-	-	-	
	:Total Time	e (hr:min)	6.3	:Total Vol	(gal)	#DIV/0!	:Flow Rate (gal/min)
SAMP		Collected S	ample No.:	070315			
ANAL	ANALYSES: BTEX (8021-B)						
COM	IENIS:				IN WELL!	. <u> </u>	·

•

	CLIENT:	DCP Mid	Istream			WELL ID:	MW-5	
SI	TE NAME:		C Line			DATE	3/14/2007	
PRC	JECT NO.		F-107			SAMPLER	J. Fergerson	
PURGING			☑ Hand Bai	led 🗆 Pu	mn lf Pui	nn Type [.]	·	
SAMPLIN		זי ו	🖸 Nana bai	le Bailer 🗆	⊐ Direct f	from Disch	arge Hose	
			od Water Pi)ther:			
					liei.			
DISPOSA		OF PURGI	E WATER:	Surface	e Discharg	je 🗌 Dru	ıms 🔲 Disposal Facility	
TOTAL DI	EPTH OF V	VELL:	102.05	Feet				
DEPTH TO	O WATER:		90.18	Feet		. 5.8	Minimum Gallons to	
WELL DIA	METER:	2.0	Inch	i eet	,	0.0	purge 3 well volumes	
							(Water Column Height x 0.49)	
TIME	PURGED	°C	m S/cm	pН	mg\L_	Turb	REMARKS	
12:29	0.0	-	-	-	-	-	Begin Hand Bailing	
12:36	2.0	21.6	3.31	7.22	-	-		
12:43	4.0	21.3	3.27	7.22	-	-		
12:49	6.0	[`] 21.3	3.24	7.22	-	-		
							• .	
0:20 :Total Time (hr:min) 6 :Total Vol (gal) 0.30 :Flow Rate (gal/min)								
SAMP	LE NO.:	Collected S	ample No.:	070314	1254			
ANAL	YSES:	BTEX (802	1-B)					
COM	IENTS:							

٦

•

• •

	CLIENT:	DCP Mic	lstream		-	WELL ID:	MW-6				
S			C Line		-	DATE:	3/14/2007				
CLIENT: DCP Midstream WELL ID: MW-6 SITE NAME: C Line DATE: 3/14/2007 PROJECT NO. F-107 SAMPLER: J. Fergerson PURGING METHOD: Image: Constraint of the state of the											
PURGING METHOD: 🛛 Hand Bailed 🔲 Pump If Pump, Type:											
PURGING		:	Hand Bai	iled 🗆 Pu	mp If Pu	mp, Type:					
SAMPLIN	G METHO	D:	Disposab	le Bailer	Direct	from Disch	arge Hose 🛛 Other:				
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMP	LING THE WELL:				
☑ Glove	s 🗆 Alcono	x 🗌 Distill	ed Water Ri	nse 🗆 C	Other:						
DISPOSA	L METHOD	OF PURG	E WATER:	Surface	e Discharç	ge 🗆 Dru	ms 🛯 Disposal Facility				
TOTAL DEPTH OF WELL: 103.20 Feet DEPTH TO WATER: 95.62 Feet											
HEIGHT (COLUMN:	7.58	Feet		3.7	Minimum Gallons to				
		2.0					(Water Column Height x 0.49)				
TIME		TEMP. °C	COND. mS/cm	pН	DO ma\l	Turb	PHYSICAL APPEARANCE AND REMARKS				
11:20	0.0	-	-	_	-	-	Begin Hand Bailing				
11:23	1.3	21.8	>4.00	6.80	-	_					
11:35	2.6	21.1	>4.00	6.97	-						
11:46	3.9	21.1	>4.00	6.98	-	-					
L											
						-					
							· · · · · · · · · · · · · · · · · · ·				
·											
0:26	:Total Time	e (hr:min)	3.9	:Total Vol	(gal)	0.15	:Flow Rate (gal/min)				
SAMP	LE NO.:	Collected S	ample No.:	070314	1148						
ANALYSES: BTEX (802			1-B)								
COM	IENTS:										

	CLIENT:	DCP Mic	Istream			WELL ID:	MW-7			
S	TE NAME:		C Line			DATE	3/14/2007			
PRC	JECT NO.	DATE. 3/14/2007 D. F-107 SAMPLER: J. Fergerson								
PURGING		:	Hand Bai	led 🗆 Pu	mp If Pu	mp, Type:				
SAMPLIN	g method	D:	🗹 Disposab	le Bailer 🛛	Direct f	from Disch	arge Hose 🛛 Other:			
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METHO	DD BEFO	RE SAMP	LING THE WELL:			
Glove:	s 🗆 Alcono	x 🛛 Distill	ed Water Ri	nse 🗆 C	Other:					
DISPOSA	L METHOD	OF PURG	E WATER:	Surface	e Discharç	je 🗌 Dru	ms 🛛 Disposal Facility			
TOTAL DEPTH OF WELL:100.40 FeetDEPTH TO WATER:91.62 FeetHEIGHT OF WATER COLUMN:8.78 Feet4.3Minimum Gallons to										
WELL DIA	METER:	2.0	Inch				purge 3 well volumes (Water Column Height x 0.49)			
TIME		TEMP.	COND.	pН	DO mg\l	Turb	PHYSICAL APPEARANCE AND REMARKS			
13:04	0.0	-	-				Begin Hand Bailing			
13:08	1.7	21.3	2.26	7.33	-	_				
13:13	3.4	21.1	2.26	7.36	-	_				
13:21	5.1	21.2	2.26	7.35	-	_				
		`								
0:17	:Total Time	e (hr:min)	5.1	:Total Vol	(gal)	0.30	:Flow Rate (gal/min)			
SAMP	LE NO.:	Collected S	ample No.:	070314	1326		` <u></u>			
ANAL	YSES:	BTEX (802	1-B)	· · · ·			* <u> *2</u>			
COMN	IENTS:	Collected M	IS/MSD San	nples!						

	CLIENT:	DCP Mic	lstream			WELL ID:	MW-8			
S	TE NAME:		C Line		_	DATE:	3/14/2007			
PRC	JECT NO.	F-107 SAMPLER: J. Fergerson								
PURGING			☑ Hand Bai	led 🗆 Pu	mp If Pu	mp, Type:	·			
SAMPLIN) :	🗹 Disposab	le Bailer 🛛	Direct f	from Disch	arge Hose 🛛 Other:			
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METHO	DD BEFO	RE SAMP	LING THE WELL:			
Glove	s 🗆 Alcono	x 🛛 Distill	ed Water Ri	nse 📮 C	Other:					
DISPOSA	L METHOD	OF PURG	E WATER:	☑ Surface	Discharg	ge 🗆 Dru	ms 🛛 Disposal Facility			
TOTAL D	EPTH OF W	/ELL:	100.50	Feet						
DEPTH T	O WATER:		89.94	Feet		5.0	Minimum Collage to			
WELL DIA	METER:	2.0	Inch	reel		5.2	purge 3 well volumes			
r		TEMD					(Water Column Height x 0.49)			
TIME	PURGED	° C	m S/cm	рН	mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS			
14:23	0.0	-		-	-	-	Begin Hand Bailing			
14:30	1.7	22.9	2.77	7.55	-					
14:35	3.4	21.9	2.76	7.59	-	-				
14:42	5.4	21.6	2.76	7.56	-	-				
						-				
-	· ·									
0:19	:Total Time	e (hr:min)	<u>5</u> .4	:Total Vol ((gal)	0.28	:Flow Rate (gal/min)			
SAMP	LE NO.:	Collected S	ample No.:	070314	1446		• 			
ANAL	YSES:	BTEX (802	1-B)							
COMN										

CLIENT: DCP M			lstream		_	WELL ID:	MW-9		
SI	TE NAME:		C Line		_	DATE:	3/14/2007		
PRC	JECT NO.		F-107		-	SAMPLER:	J. Fergerson		
					-		• · · · · · · · · · · · · · · · ·		
PURGING			🗹 Hand Bai	led 🗆 Pu	imp If Pu	mp, Type:			
SAMPLIN	G METHO) :	🗹 Disposab	le Bailer	Direct	from Disch	arge Hose 🛛 Other:		
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METHO	OD BEFO	RE SAMP	LING THE WELL:		
Glove	s 🗆 Alcono	x 🛛 Distill	ed Water Ri	nse 🗆 C	Other:				
DISPOSA		OF PURG	E WATER:	Surface	e Discharç	ge 🗆 Dru	ms 📋 Disposal Facility		
TOTAL DEPTH OF WELL:100.50 FeetDEPTH TO WATER:89.43 FeetHEIGHT OF WATER COLUMN:11.07 FeetWELL DIAMETER:2.0 InchJob90 ruge 3 well volumes									
							(Water Column Height x 0.49)		
TIME	PURGED	°C	m S/cm	pН	mg\L_	Turb	REMARKS		
11:56	0.0	-				-	Begin Hand Bailing		
12:02	2.0	21.2	3.01	7.26	-	-			
12:11	4.0	21.0	3.04	7.35	-	-			
12:19	6.0	20.8	3.03	7.32		-			
	_								
						·			
	_	_							
0:23	:Total Time	(hr:min)	6	:Total Vol ((gal)	0.26	:Flow Rate (gal/min)		
SAMPI	E NO.:	Collected S	ample No.:	070314	1222				
ANAL	ANALYSES: BTEX (8021-B)								
COMN									

A Xenco Laboratories Company

Analytical Report

Prepared for:) Michael Stewart American Envionmental Consultants 6885 South Marshall St., Ste. 3 Littleton, CO 80128

Project: DCP Midstream - C Line Project Number: None Given Location: Lea County, New Mexico

Lab Order Number: 7C16001

Report Date: 03/21/07

Project: DCP Midstream - C Line Project Number: None Given Project Manager: Michael Stewart

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-6 (0703141148)	7C16001-01	Water	03/14/07 11:48	03-15-2007 16:50
MW-9 (0703141222)	7C16001-02	Water	03/14/07 12:22	03-15-2007 16:50
MW-5 (0703141254)	7C16001-03	Water	03/14/07 12:54	03-15-2007 16:50
MW-7 (07031411326)	7C16001-04	Water	03/14/07 13:26	03-15-2007 16:50
MW-3 (0703141412)	7C16001-05	Water	03/14/07 14:12	03-15-2007 16:50
MW-8 (0703141446)	7C16001-06	Water	03/14/07 14:46	03-15-2007 16:50
MW-2 (0703141524)	7C16001-07	Water	03/14/07 15:24	03-15-2007 16:50
RW-1 (0703141613)	7C16001-08	Water	03/14/07 16:13	03-15-2007 16:50
Duplicate (0703141700)	7C16001-09	Water	03/14/07 17:00	03-15-2007 16:50
Trip Blank	7C16001-10	Water	03/14/07 00:00	03-15-2007 16:50

Project: DCP Midstream - C Line Project Number: None Given Project Manager: Michael Stewart

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analvzed	Method	Notes
MW-6 (0703141148) (7C16001-01) Water									
Benzene	ND	0.00100	mg/L	1	EC71628	03/16/07	03/16/07	EPA 8021B	
Toluene	ND	0.00100	"	"	11	"	**	"	
Ethylbenzene	ND	0.00100	"	11	"	"		"	
Xylene (p/m)	ND	0.00100		*	"	"	**	"	
Xylene (o)	ND	0.00100		"		11	"		
Surrogate: a,a,a-Trifluorotoluene		117 %	80-12)	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		112 %	80-12)	"	<i>n</i> .	"	"	
MW-9 (0703141222) (7C16001-02) Water						,			
Benzene	ND	0.00100	mg/L	1	EC71902	03/19/07	03/19/07	EPA 8021B	
Toluene	ND	0.00100			**	"	"	"	
Ethylbenzene	ND	0.00100		"	"	"	11	"	
Xylene (p/m)	ND	0.00100	"	11	"	. "		° u	
Xylene (o)	ND	0.00100	"	17	"	"	"	u	
Surrogate: a,a,a-Trifluorotoluene		99.6 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.4 %	80-12	0	"	n	"	"	
MW-5 (0703141254) (7C16001-03) Water									
Benzene	ND	0.00100	mg/L	1	EC71902	03/19/07	03/20/07	EPA 8021B	
Toluene	ND	0.00100	"	"	"	"		n	
Ethylbenzene	ND	0.00100	**	"	**	'n	"	n	
Xylene (p/m)	ND	0.00100	"	"	"	"		n	
Xylene (o)	ND	0.00100	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		94.4 %	80-12	0	".	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.2 %	80-12	0	"	"	"	"	
MW-7 (07031411326) (7C16001-04) Water									
Benzene	ND	0.00100	mg/L	1	EC71902	03/19/07	03/20/07	EPA 8021B	
Toluene	ND	0.00100		"	"	n	**	n	
Ethylbenzene	ND	0.00100		"	"	".	"	"	
Xylene (p/m)	ND	0.00100	"	"	۳.	"	"	"	
Xylene (o)	ND	0.00100	"		11	"	H	"	
Surrogate: a,a,a-Trifluorotoluene		101 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.4 %	80-12	0	n	"	"	"	

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: DCP Midstream - C Line Project Number: None Given Project Manager: Michael Stewart

Fax: (303) 948-7793

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (0703141412) (7C16001-05) Water									
Benzene	6.66	0.100	mg/L,	100	EC71902	03/19/07	03/20/07	EPA 8021B	
Toluene	2.87	0.100	"		n	"	"	"	
Ethylbenzene	0.318	0.100	"	"	11	"	"		
Xylene (p/m)	0.333	0.100	"	"	11	"	"	"	
Xylene (o)	0.178	0.100	11	"		"	"	"	
Surrogate: a,a,a-Trifluorotoluene		101 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.4 %	80-	120	"	"	"	" .	
MW-8 (0703141446) (7C16001-06) Water									
Benzene	ND	0.00100	mg/L	1	EC71902	03/19/07	03/20/07	EPA 8021B	
Toluene	ND	0.00100	"	**	"	"	"	"	
Ethylbenzene	ND	0.00100	"		"	n	"		
Xylene (p/m)	ND	0.00100	"	u	"	"	"	· "	
Xylene (o)	ND	0.00100	"	"	"		"	"	
Surrogate: a,a,a-Trifluorotoluene		96.8 %	80-	120	"	11	"	"	
Surrogate: 4-Bromofluorobenzene		94.4 %	80-	120	"	"	"	"	
MW-2 (0703141524) (7C16001-07) Water									
Benzene	ND	0.00100	mg/L	1	EC71902	03/19/07	03/20/07	EPA 8021B	
Toluene	ND	0.00100	"	"	11	"	n	"	
Ethylbenzene	ND ·	0.00100	"	"		'n	"	"	
Xylene (p/m)	ND	0.00100	11	"	"	"	11	"	
Xylene (o)	ND	0.00100	"	"	"	"	"	11	
Surrogate: a,a,a-Trifluorotoluene		96.8 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene	×	98.6 %	80-	120	"	"	"	"	
RW-1 (0703141613) (7C16001-08) Water									
Benzene	5.59	0.0500	mg/L	50	EC71902	03/19/07	03/20/07	EPA 8021B	
Toluene	0.232	0.0500	"	"		11		**	
Ethylbenzene	0.453	0.0500	"	"		"	"	".	
Xylene (p/m)	0.242	0.0500	"	"	"	"	"	n	
Xylene (0)	J [0.0275]	0.0500	"	#	"	11	11	11	
Surrogate: a,a,a-Trifluorotoluene		115 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.8 %	-80-	120	"	"	"	"	

Surrogate: 4-Bromofluorobenzene

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: DCP Midstream - C Line Project Number: None Given Project Manager: Michael Stewart Fax: (303) 948-7793

Organics by GC

Environmental Lab of Texas

		Reporting	TT						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Duplicate (0703141700) (7C16001-09) Water	·								
Benzene	6.16	0.100	mg/L	100	EC71902	03/19/07	03/20/07	EPA 8021B	
Toluene	2.63	0.100	"	"	"	"	"		
Ethylbenzene	0.319	0.100		"	"	"	"	"	
Xylene (p/m)	0.324	0.100	"	"	n	"	"	u	
Xylene (0)	0.167	0.100	"	11	'n	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		98.2 %	80-1.	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	80-1.	20	"	"	"	"	
Trip Blank (7C16001-10) Water									
Benzene	ND	0.00100	mg/L	1	EC71902	03/19/07	03/20/07	EPA 8021B	
Toluene	ND	0.00100		"		"	"	"	
Ethylbenzene	ND	0.00100	"	"	**	11	"	"	
Xylene (p/m)	ND	0.00100	**	"	11	"	u		
Xylene (o)	ND	0.00100	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		98.8 %	80-1.	20	"	"	"	, "	
Surrogate: 4-Bromofluorobenzene		95.4 %	80-12	20	"	"	"	"	

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: DCP Midstream - C Line Project Number: None Given Project Manager: Michael Stewart

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EC71628 - EPA 5030C (GC)										
Blank (EC71628-BLK1)				Prepared &	2 Analyzed:	03/16/07				
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100								
Xylene (p/m)	ND	0.00100	"							
Xylene (0)	ND	0.00100	"							
Surrogate: a,a,a-Trifluorotoluene	58.7		ug/l	50.0		117	80-120			
Surrogate: 4-Bromofluorobenzene	57.7		"	50.0		115	80-120			
LCS (EC71628-BS1)				Prepared &	k Analyzed:	03/16/07				
Benzene	0.0548	0.00100	mg/L	0.0500		110	80-120			
Toluene	0.0592	0.00100	"	0.0500		118	80-120			
Ethylbenzene	0.0588	0.00100	"	0.0500		118	80-120			
Xylene (p/m)	0.120	0.00100	н	0.100		120	80-120			
Xylene (0)	0.0593	0.00100	"	0.0500		119	80-120			
Surrogate: a,a,a-Trifluorotoluene	58.9	······	ug/l	50.0		118	80-120			
Surrogate: 4-Bromofluorobenzene	58.5		"	50.0		117	80-120			
Calibration Check (EC71628-CCV1)				Prepared: ()3/16/07 Aı	nalyzed: 03	/19/07			
Benzene	47.2 ·		ug/l	50.0		94.4	80-120			
Toluene	46.4		11	50.0		92.8	80-120			
Ethylbenzene	47.9		"	50.0		95.8	80-120			
Xylene (p/m)	97.6		••	100		97.6	80-120			
Xylene (0)	48.8			50.0		97.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	41.8		"	50.0		83.6	80-120			
Surrogate: 4-Bromofluorobenzene	40.4		"	50.0		80.8	80-120			
Matrix Spike (EC71628-MS1)	Sou	rce: 7C14007-	01	Prepared: ()3/16/07 Ar	nalyzed: 03	/19/07			
Benzene	0.0525	0.00100	mg/L	0.0500	0.00134	102	80-120			
Toluene	0.0512	0.00100	"	0.0500	ND	102	80-120			
Ethylbenzene	0.0543	0.00100		0.0500	ND	109	80-120			
Xylene (p/m)	0.109	0.00100	"	0.100	ND	109	80-120			
Xylene (o)	0.0541	0.00100	"	0.0500	ND	108	80-120			
Surrogate: a,a,a-Trifluorotoluene	44.2		ug/l	50.0		88.4	80-120			
Surrogate: 4-Bromofluorobenzene	45.8		"	50.0		91.6	80-120			

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: DCP Midstream - C Line Project Number: None Given Project Manager: Michael Stewart

Organics by GC - Quality Control

Environmental Lab of Texas

									-	
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EC71628 - EPA 5030C (GC)

Matrix Spike Dup (EC71628-MSD1)	Sou	rce: 7C14007-	01	Prepared: (
Benzene	0.0536	0.00100	mg/L	0.0500	0.00134	105	80-120	2.90	20	
Toluene	0.0526	0.00100	"	0.0500	ND	105	80-120	2.90	20	
Ethylbenzene	0.0562	0.00100	"	0.0500	ND	112	80-120	2.71	20	
Xylene (p/m)	0.111	0.00100	"	0.100	ND	111	80-120	1.82	20	
Xylene (o)	0.0559	0.00100		0.0500	ND	112	80-120 ⁻	3.64	20	
Surrogate: a,a,a-Trifluorotoluene	46.1		ug/l	50.0		92.2	80-120			
Surrogate: 4-Bromofluorobenzene	50.2		"	50.0		100	80-120			

Batch EC71902 - EPA 5030C (GC)

Blank (EC71902-BLK1)			•	Prepared & Anal	lyzed: 03/19/07		
Benzene	ND	0.00100	mg/L				
Toluene	ND	0.00100					
Ethylbenzene	ND	0.00100	"				
Xylene (p/m)	ND	0.00100	"				
Xylene (o)	ND	0.00100	"				
Surrogate: a,a,a-Trifluorotoluene	52.1		ug/l	50.0	104	80-120	
Surrogate: 4-Bromofluorobenzene	46.3		"	50.0	92.6	80-120	
LCS (EC71902-BS1)				Prepared: 03/19/	07 Analyzed: 03	3/20/07	
Benzene	0.0571	0.00100	mg/L	0.0500	114	80-120	
Toluene	0.0568	0.00100	"	0.0500	114	80-120	
Ethylbenzene	0.0569	0.00100	"	0.0500	114	80-120	
Xylene (p/m)	.0.114	0.00100	"	0.100	114	80-120	
Xylene (o)	0.0590	0.00100		0.0500	118	80-120	
Surrogate: a,a,a-Trifluorotoluene	56.3		ug/l	50.0	113	80-120	
Surrogate: 4-Bromofluorobenzene	55.9		"	50.0	112	80-120	

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 6 of 9

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Project:DCP Midstream - C LineProject Number:None GivenProject Manager:Michael Stewart

Organics by GC - Quality Control

Environmental I	.ab of Texas
-----------------	--------------

Analyte	Recult	Reporting	Unite	Spike Level	Source Result	%RFC	%REC	RPD	RPD Limit	Notes
Batch EC71902 - EPA 5030C (GC)								<u> </u>		
Calibration Check (EC71902-CCV1)				Prepared: 0	3/19/07 A	nalyzed: 03	/20/07			
Benzene	57.7		ug/l	50.0		115	80-120			
Toluene	57.6		"	50.0		115	80-120			
Ethylbenzene	57.8	•	11	50.0		116	80-120			
Xylene (p/m)	111		"	100		111	80-120			
Xylene (o)	59.7		"	50.0		119	80-120			
Surrogate: a,a,a-Trifluorotoluene	48.7		"	50.0		97.4	80-120			
Surrogate: 4-Bromofluorobenzene	52.0		"	50.0		104	80-120			
Matrix Spike (EC71902-MS1)	Sou	rce: 7C16001-	04	Prepared: 0.	3/19/07 Ai	nalyzed: 03/	/20/07			
Benzene	0.0567	0.00100	mg/L	0.0500	ND	113	80-120			-
Toluene	0.0560	0.00100	n	0.0500	ND	112	80-120			
Ethylbenzene	0.0580	0.00100	n	0.0500	ND	116	80-120			
Xylene (p/m)	0.111	0.00100	"	0.100	ND	111	80-120			
Xylene (o)	0.0594	0.00100		0.0500	ND	119	80-120			
Surrogate: a,a,a-Trifluorotoluene	48.4		ug/l	50.0		96.8	80-120			
Surrogate: 4-Bromofluorobenzene	52.5		n	50.0		105	80-120			
Matrix Spike (EC71902-MS2)	Sou	rce: 7C16002-	05	Prepared: 0	3/19/07 Ai	nalyzed: 03/	/20/07			
Benzene	0.0573	0.00100	mg/L	0.0500	ND	115	80-120			
Toluene	0.0568	0.00100	"	0.0500	ND	114	80-120			
Ethylbenzene	0.0590	0.00100	"	0.0500	ND	118	80-120			
Xylene (p/m)	0.113	0.00100	"	0.100	ND	113	80-120			
Xylene (o)	0.0598	0.00100	"	0.0500	ND	120	80-120			
Surrogate: a,a,a-Trifluorotoluene	49.9		ug/l	50.0		99.8	80-120			
Surrogate: 4-Bromofluorobenzene	53.4		"	50.0		107	80-120			
Matrix Spike Dup (EC71902-MSD1)	Sou	rce: 7C16001-	04	Prepared: 0	3/19/07 A	nalyzed: 03	/20/07			
Benzene	0.0553	0.00100	mg/L	0.0500	ND	111	80-120	1.79	20	
Toluene	0.0569	0.00100	"	0.0500	ND	114	80-120	1.77	20	
Ethylbenzene	0.0577	0.00100		0.0500	ND	115	80-120	0.866	20	
Xylene (p/m)	0.112	0.00100	"	0.100	ND	112	80-120	0.897	20	
Xylene (o)	0.0593	0.00100	۳	0.0500	ND	119	80-120	0.00	20	
Surrogate: a,a,a-Trifluorotoluene	47.4		ug/l	50.0		94.8	80-120			
Surrogate: 4-Bromofluorobenzene	52 9		"	50.0		106	80-120			

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Project:DCP Midstream - C LineProject Number:None GivenProject Manager:Michael Stewart

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EC71902 - EPA 5030C (GC)

Sou	rce: 7C16002-	05	Prepared: 0	3/19/07 A	nalyzed: 0	3/20/07			
0.0571	0.00100	mg/L	0.0500	ND	114	80-120	0.873	20	
0.0559	0.00100		0.0500	ND	112	80-120	1.77	20	
0.0585	0.00100	"	0.0500	ND	117	80-120	0.851	20	
0.111	0.00100	"	0.100	ND	111	80-120	1.79	20	
0.0589	0.00100	n	0.0500	ND	118	80-120	1.68	20	
54.7		ug/l	50.0		109	80-120			
52.3		"	50.0		105	80-120			
	Sou 0.0571 0.0559 0.0585 0.111 0.0589 54.7 52.3	Source: 7C16002- 0.0571 0.00100 0.0559 0.00100 0.0585 0.00100 0.111 0.00100 0.0589 0.00100 54.7 52.3	Source: 7C16002-05 0.0571 0.00100 mg/L 0.0559 0.00100 " 0.0585 0.00100 " 0.111 0.00100 " 0.0589 0.00100 " 54.7 ug/l 52.3 "	Source: 7C16002-05 Prepared: 0 0.0571 0.00100 mg/L 0.0500 0.0559 0.00100 " 0.0500 0.0585 0.00100 " 0.0500 0.111 0.00100 " 0.0500 0.0589 0.00100 " 0.0500 54.7 ug/l 50.0 52.3 " 50.0	Source: 7C16002-05 Prepared: 03/19/07 Aj 0.0571 0.00100 mg/L 0.0500 ND 0.0559 0.00100 " 0.0500 ND 0.0585 0.00100 " 0.0500 ND 0.111 0.00100 " 0.100 ND 0.0589 0.00100 " 0.0500 ND 54.7 ug/l 50.0 52.3 " 50.0	Source: 7C16002-05 Prepared: 03/19/07 Analyzed: 0 0.0571 0.00100 mg/L 0.0500 ND 114 0.0559 0.00100 " 0.0500 ND 112 0.0585 0.00100 " 0.0500 ND 117 0.111 0.00100 " 0.100 ND 111 0.0589 0.00100 " 0.0500 ND 118 54.7 ug/l 50.0 109 52.3 " 50.0 105	Source: 7C16002-05 Prepared: 03/19/07 Analyzed: 03/20/07 0.0571 0.00100 mg/L 0.0500 ND 114 80-120 0.0559 0.00100 " 0.0500 ND 112 80-120 0.0585 0.00100 " 0.0500 ND 111 80-120 0.111 0.00100 " 0.100 ND 111 80-120 0.0589 0.00100 " 0.0500 ND 118 80-120 54.7 ug/l 50.0 109 80-120 52.3 " 50.0 105 80-120	Source: 7C16002-05 Prepared: 03/19/07 Analyzed: 03/20/07 0.0571 0.00100 mg/L 0.0500 ND 114 80-120 0.873 0.0559 0.00100 " 0.0500 ND 112 80-120 1.77 0.0585 0.00100 " 0.0500 ND 117 80-120 0.851 0.111 0.00100 " 0.100 ND 111 80-120 1.79 0.0589 0.00100 " 0.0500 ND 111 80-120 1.68 54.7 ug/l 50.0 109 80-120 1.68 52.3 " 50.0 105 80-120 1.68	Source: 7C16002-05 Prepared: 03/19/07 Analyzed: 03/20/07 0.0571 0.00100 mg/L 0.0500 ND 114 80-120 0.873 20 0.0559 0.00100 " 0.0500 ND 112 80-120 1.77 20 0.0585 0.00100 " 0.0500 ND 111 80-120 0.851 20 0.111 0.00100 " 0.100 ND 111 80-120 1.79 20 0.0589 0.00100 " 0.0500 ND 118 80-120 1.68 20 54.7 ug/l 50.0 109 80-120 1.68 20 52.3 " 50.0 105 80-120 1.68 20

Environmental Lab of Texas

A Xenco Laboratories Company

.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: DCP Midstream - C Line Project Number: None Given Project Manager: Michael Stewart

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Report Approved By:

Bun Barron

Date: 3/21/2007

Brent Barron, Laboratory Director/Corp. Technical Director Celey D. Keene, Org. Tech Director Raland K. Tuttle, Laboratory Consultant James Mathis, QA/QC Officer Jeanne Mc Murrey, Inorg. Tech Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 9 of 9

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

	·	Line		exico		NPDES	F	e.u	57 ,6	y '92	(siuberio	OUNU e-org) TAT HBUI TAT brebrief	s 🔪 1	>	2	2	\$` 		1				N N	Z Z Z	Lone Star	çç
ST	800 1713	2-43		Very M		KRP						.M.A.O.	N		1925								N. Star		HL FedEx	10.
sis reque	e: 432-563-1 : 432-563-1	Didstrue		A thu	>		alvaa Enr	aryzz i Ur.		0920	8 X318 *	CI LEX 80518/2030 V swivotetiles	8 8 8			2	2			2,	\$		nments: ersintact? eadspace?	mer(s), se s n container(s) n cooler(s) *	elivered Jient Rep. 7 UPS. *D	oon Receipt
ND ANALY	Phon Fax:	DCP1		Lea Co		□ Standan	Δn	TCLP:	TOTAL:	95 B	q Ct 6P H Kalinity)	ntiona (Cl. SO4, Al AR / ESP / CEC etals: As Ag Ba C	A 2 VI										boratory Cor mple Contain Cs Free of H	belsioniconta istody seals o istody seals o	mple Hand D by Sampland by Country	mperature
RECORD A		roject Name:	Project #:	Project Loc:	#Od	ort Format:				8 1012E	15M 8 15M 8 15M 8	**************************************											<u> </u>	Time CU CU	Time	times المجاوية الع
CUSTODY I		a. 			ļ	Rep			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	ers Mau	pilos/lios e8prijs=	ther (Specify) V=Drinking Water St V = Groundwater St	0 2 0 2 0 1	6W	16 W	GW	GW	GW	GW	- CW	C M			Date	Date	Date کے ا
	I-20 East xas 79765					-7739				1 & # of Contain		8389 852509 80H 800	N N N													
	12600 West Odessa, Te					3-948				Preservation	740	ci 000 त 103 8	н ^ н л ^	<u> </u> 	<u> </u>	$\sqrt{ V }$	V V		2		>	/ /				
			lt inc			 	 #		-		1	id Filtered al #. of Containers	ыт С	2	6	6	2	2	2	4	2	9				250
			وكيمك	3		Fax N	e-ma					bəlqms2 əmi		1222	12.54	1326	1412	1446	1524	1613	1700					01 10
			mental	Suitz '	18							belqms2 ets	2/11/67	LyINIE	3/14/07	3/14/07	JIHOT	3/4/07	3/14/07	314107	3/14/07	À		Received by:	Received by:	Received by EL
=)			a 11.	801		$\setminus $					ritqeQ gnib	uЭ										thes	ê S	e	em
EXa		ţ		rsh	ço	1133	7			ŀ		niqeQ gninnig	98	+	-								Wea			<u> </u>
		Stewa	(turk	S. Ma	cton.	948-	N			Property of			13		1		2	(7)	()	۲ <u>ا</u>	(200)		Stue Stue	alte 1/2//	Date	Date
tal La	Кu	Mike	Amer	6885	Litel.	303-	No.	L server		<u>NON</u>	Q		C IN CODE	314 172	314 0.2	3 14 132	3 14 141	314 144	314152	3141613	1715070		Attn:			
Iment	bries Compa	Manager:	ov Name	ny Address	ate/Zip:	one No:	sr Signature	A STATE COMPANY	1 S - 1		1622		FII	020/	~ (0) ~	1 2070	1070	8 676	2 1070	1 6070	cate h	Blawl	ourt :suc			
	nco Laborat	Project	Compa	Compa	City/St	Teleph	Sample	State VINS 22)ER #:			(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	- MIN - 20	·····································	-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-my -s	2-MW	うう (1)	S RW-	3 Ovoli	後上に	ial Instruction	yd befylling	quished by:	quished by:
Sū	A Xe							1 TO T		0RI		200 0001 (HU) # 1		的新	省省			l C					Sper	Rel	NE.	Relin

. . .

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Client:	American	n Env. Consult.
Date/ Time:	3-15-07	1450
_ab ID # :		,00(

om

Initials:

Sample Receipt Checklist

				CI	lient Initials
#1	Temperature of container/ cooler?	Yes	No	4.5 °C	
#2	Shipping container in good condition?	(Yes)	No		
#3	Custody Seals intact on shipping container/ cooler?	Yes	(No)	Not Present	
#4	Custody Seals intact on sample bottles/ container?	(Yes)	No	Not Present	
# 5	Chain of Custody present?	(Yes)	No		
#6	Sample instructions complete of Chain of Custody?	(Yes)	No		
#7	Chain of Custody signed when relinquished/ received?	Yes	No		
7 8	Chain of Custody agrees with sample label(s)?	Yes	No	ID written on Cont./ Lid	
#9	Container label(s) legible and intact?	Yes	No	Not Applicable	
#10	Sample matrix/ properties agree with Chain of Custody?	(Yes)	No]
#11	Containers supplied by ELOT?	Yes	No		
#12	Samples in proper container/ bottle?	Yes	No	See Below	
#13	Samples properly preserved?	des	No	See Below	
#14	Sample bottles intact?	(Yes)	No		
#15	Preservations documented on Chain of Custody?	(Yes)	No		
#16	Containers documented on Chain of Custody?	(Yes>	No		
#17	Sufficient sample amount for indicated test(s)?	(Yes)	No	See Below	
#18	All samples received within sufficient hold time?	(res)	No	See Below	
#19	Subcontract of sample(s)?	Yes	No	Not Applicable	
#20	VOC samples have zero headspace?	8es	No	Not Applicable	

Variance Documentation

Contact:

Date/ Time:

Regarding:

Corrective Action Taken:

Check all that Apply:

See attached e-mail/ fax

Contacted by:

Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event