

ANNUAL MONITORING REPORT

CERTIFIED MAIL RETURN RECIEPT NO. 7099 3400 0017 1737 2268

February 7, 2007

RECEIVED

FEB - 9 2007

Environmental Bureau

Oil Conservation Division

Mr. Edward Hansen New Mexico Energy, Minerals, & Natural Resources Oil Conservation Division, Environmental Bureau 1220 S. St. Francis Drive Santa Fe, New Mexico 87504

RE: 2006 ANNUAL GROUNDWATER MONITORING REPORT EME D-1 JUNCTION BOX SITE T20S, R36E, SECTION 1, UNIT LETTER D Stage 1 Abatement Plan No.: AP-67

Mr. Hansen:

Trident Environmental takes this opportunity to submit the 2006 Annual Monitoring Well Report for the EME D-1 junction box site located in the Eunice-Monument-Eumont (EME) Salt Water Disposal (SWD) System.

Identification of soil and ground water impacts at this site occurred during line replacement being performed as part of the approved Junction Box Upgrade Program in October 2004. Groundwater monitoring activities have been conducted quarterly since December 21, 2004. The Stage 1 Abatement Plan (AP-67) for this site was verbally approved by the NMOCD on March 30, 2006. One downgradient (MW-2) and upgradient (MW-3) monitoring well were installed at the site in April, however, based on subsequent findings from these wells (analytical results and groundwater flow), we installed an additional downgradient well (MW-4) on December 14, 2006. A Stage 1 Final Investigation Report will be forthcoming to incorporate the findings described above.

ROC is the service provider (agent) for the EME Salt Water Disposal System and has no ownership of any portion of pipeline, well, or facility. The EME SWD System is owned by a consortium of oil producers, System Partners, who provide all operating capital on a percentage ownership/usage basis.

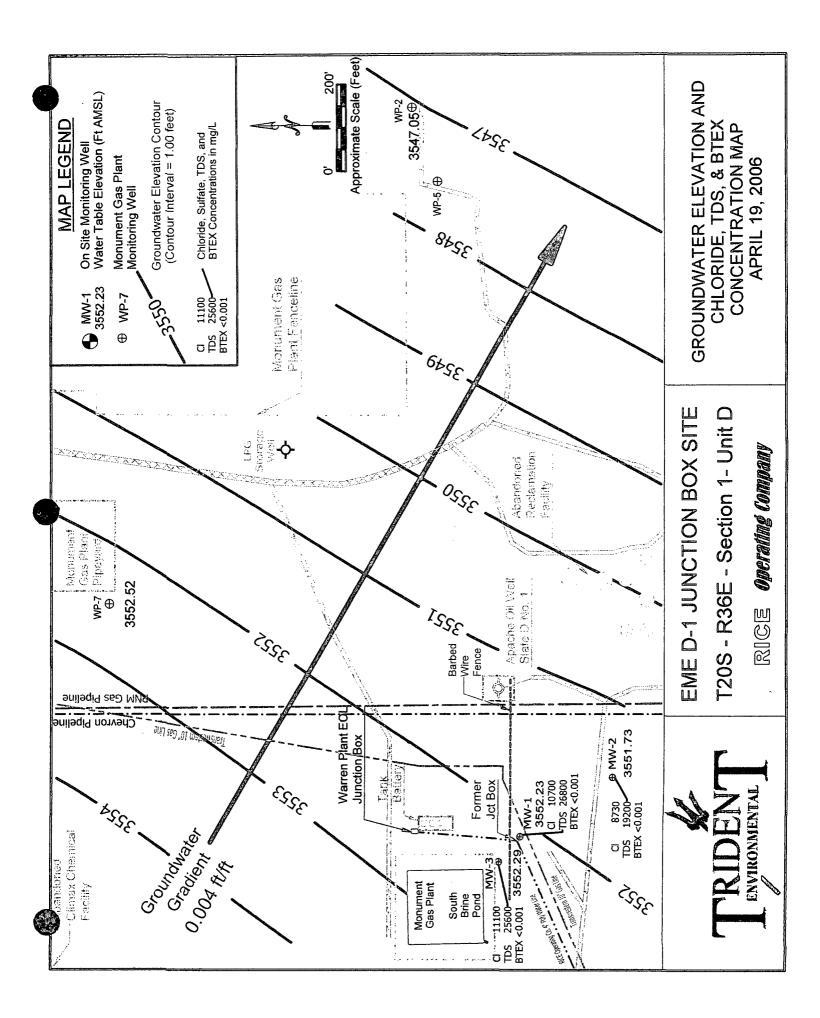
Thank you for your consideration concerning this annual summary of groundwater monitoring information. If you have any questions, do not hesitate to contact me at (432) 638-8740 or Kristin Farris Pope at (505) 393-9174.

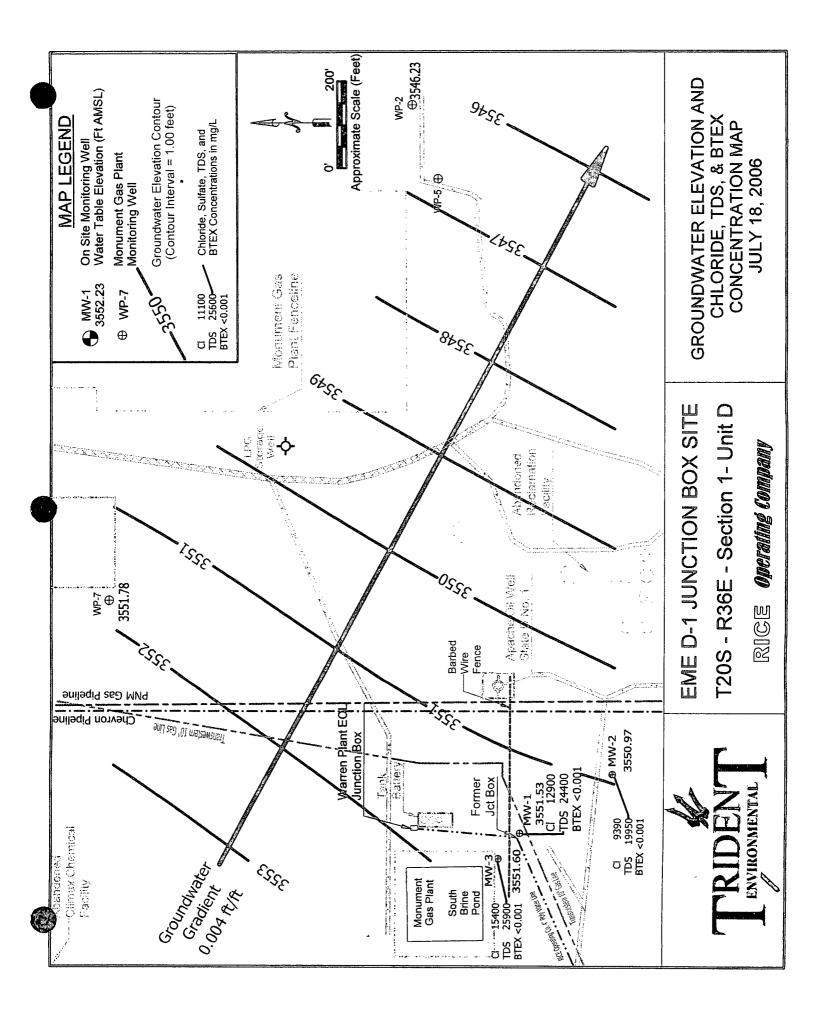
Sincerely

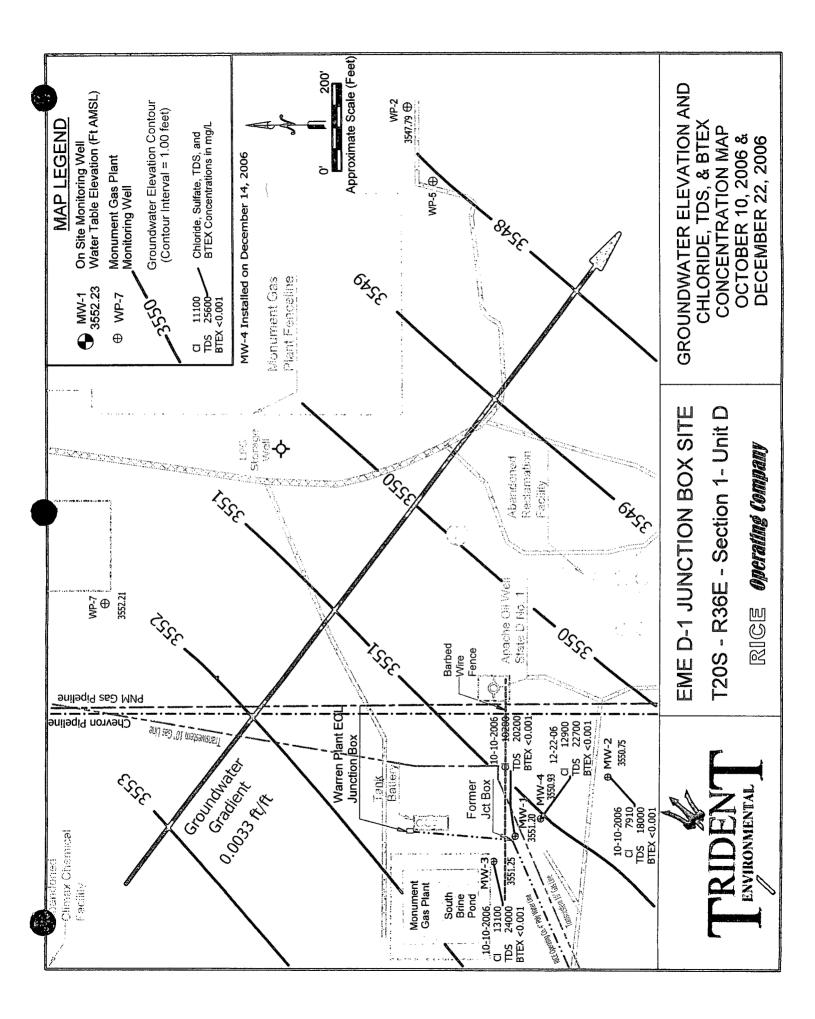
Gilbert J. Van Deventer, PG, REM

cc: CDH, KFP, file

enclosures: maps, table, graphs, and laboratory analytical reports.


ATTACHMENT A


٠


Site Maps

Table

Graphs

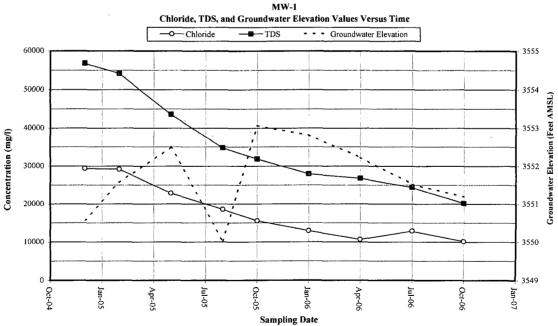
2006 Annual Groundwater Monitoring Report EME D-1 Junction Box Site (AP-67) T20S-R36E - Section 1, Unit D

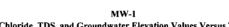
Summary of Groundwater Sampling Results											
Monitoring Well	Sample Date	Depth to Groundwater (feet BTOC)	Groundwater Elevation (feet AMSL)	Chloride (mg/L)	TDS (mg/L)	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylene (mg/L)		
	12/21/04	37.20	3550.57	29,400	56,800	< 0.001	< 0.001	< 0.001	< 0.001		
	02/09/05	36.20	3551.57	29,200	54,200	< 0.001	< 0.001	< 0.001	< 0.001		
	05/03/05	35.27	3552.50	22,900	43,600	< 0.001	< 0.001	< 0.001	< 0.001		
	08/13/05	37.74	3550.03	18,600	34,800	< 0.001	< 0.001	< 0.001	< 0.001		
MW-1	10/19/05	34.70	3553.07	15,600	31,900	< 0.001	< 0.001	< 0.001	< 0.001		
	01/18/06	34.95	3552.82	13,000	28,000	< 0.001	< 0.001	< 0.001	< 0.001		
	04/19/06	35.54	3552.23	10,700	26,800	< 0.001	< 0.001	< 0.001	< 0.001		
	07/18/06	36.24	3551.53	12,900	24,400	< 0.001	< 0.001	< 0.001	< 0.001		
	10/10/06	36.57	3551.20	10,200	20,200	< 0.001	< 0.001	< 0.001	< 0.001		
	04/19/06	33.89	3551.73	8,730	19,200	< 0.001	< 0.001	< 0.001	< 0.001		
MW-2	07/18/06	34.65	3550.97	9,390	19,950	< 0.001	< 0.001	< 0.001	< 0.001		
	10/10/06	34.87	3550.75	7,910	18,000	< 0.001	< 0.001	< 0.001	< 0.001		
	04/19/06	37.55	3552.29	11,100	25,600	< 0.001	< 0.001	< 0.001	< 0.001		
MW-3	07/18/06	38.24	3551.60	15,400	25,900	< 0.001	< 0.001	< 0.001	< 0.001		
	10/10/06	38.59	3551.25	13,100	24,000	< 0.001	< 0.001	< 0.001	< 0.001		
MW-4	12/22/06	35.97	3550.93	12,900	22,700	< 0.001	< 0.001	< 0.001	< 0.001		
		WQ	CC Standards	250	1000	0.01	0.75	0.75	0.62		

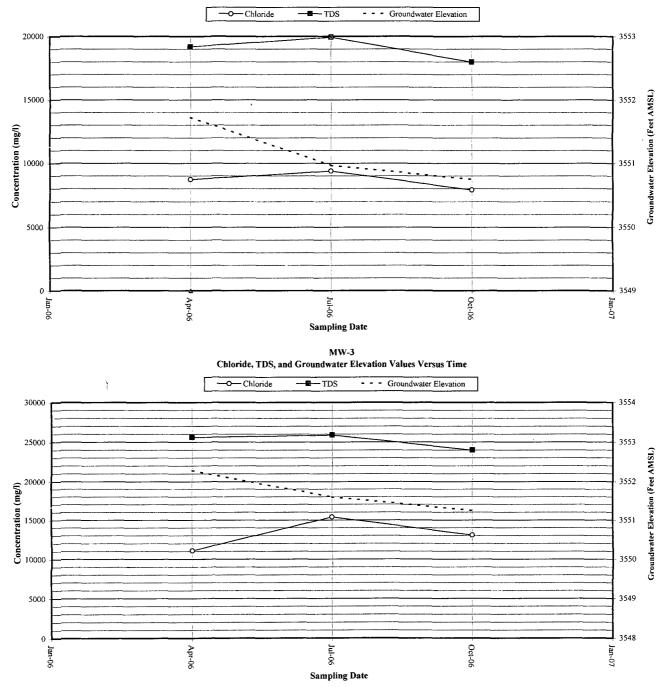
Table 1

 WQCC Standards
 250

 Total Dissolved Solids (TDS), chloride, and BTEX concentrations listed in milligams per liter (mgL)


 Analyses performed by Cardinal Labs, Hobbs, NM (1995-1998) and Environmential Lab of Texas, Odesa, TX (1999-2003).

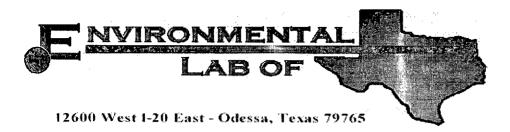

 Values in boldface type indicate concentrations exceed New Mexico Water Quality Commission (WQCC) standards.


 AMSL - Above Mean Sea Level: BTCO - Below Top of Casing

 Elevations and state plane coordinates surveyed by Basin Surveys, Hobbs, NM.

÷

MW-2 Chloride, TDS, and Groundwater Elevation Values Versus Time


ATTACHMENT B

Laboratory Analytical Reports

And

Chain of Custody Documentation

.

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: EME Jct. D-1 Leak Project Number: None Given Location: Lea County

Lab Order Number: 6A19007

Report Date: 02/02/06

Hobbs NM, 88240	Project Manager: Kristin Farris-Pope	02/02/06 08:29
_	Project Number: None Given	Reported:
122 W. Taylor	Briest New Law, None Given	
Rice Operating Co.	Project: EME Jct. D-1 Leak	Fax: (505) 397-1471

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received		
Monitor Well #1	6A19007-01	Water	01/18/06 09:10	01/19/06 11:10		

[Rice Operating Co.	Project: EME Jct. D-1 Leak	Fax: (505) 397-1471
	122 W. Taylor	Project Number: None Given	Reported:
	Hobbs NM, 88240	Project Manager: Kristin Farris-Pope	02/02/06 08:29

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6A19007-01) Water		······							
Benzene	ND	0.00100	mg/L	1	EA62304	01/23/06	01/24/06	EPA 8021B	
Toluene	ND	0.00100	*	"	"	"	n	**	
Ethylbenzene	ND	0.00100	"	"	"	"	"	"	
Xylene (p/m)	ND	0.00100	"	"	"	"	n	"	
Xylene (0)	ND	0.00100	"	"	"	n	n	**	
Surrogate: a,a,a-Trifluorotoluene		87.0 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		82.2 %	80-12	0	"	"	n	"	

ironmental Lab of Texas

Project: EME Jct. D-1 Leak Project Number: None Given Project Manager: Kristin Farris-Pope

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte Monitor Well #1 (6A19007-01) Water	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Total Alkalinity	406	2.00	mg/L	1	EA62406	01/26/06	01/26/06	EPA 310.1M	
Chloride	13000	250	"	500	EA62018	01/20/06	01/20/06	EPA 300.0	
Total Dissolved Solids	28000	5.00		1	EA62307	01/19/06	01/20/06	EPA 160.1	
Sulfate	3580	250	"	500	EA62018	01/20/06	01/20/06	EPA 300.0	

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240

Project: EME Jct. D-1 Leak Project Number: None Given Project Manager: Kristin Farris-Pope

Reported: 02/02/06 08:29

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6A19007-01) Water									
Calcium	965	5.00	mg/L	500	EA62615	01/26/06	01/26/06	EPA 6010B	
Magnesium	283	0.0500	n	50	"	"	"	"	
Potassium	251	2.50	n	"		"	"	"	
Sodium	10300	50.0	n	5000	"	"		"	

	Rice Operating Co.	Project:	EME Jct. D-1 Leak	Fax: (505) 397-1471	
	122 W. Taylor	Project Number:	None Given	Reported:	
l Incread	Hobbs NM, 88240	Project Manager:	Kristin Farris-Pope	02/02/06 08:29	

Organics by GC - Quality Control

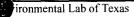
Environmental	Lab o	of Texas
---------------	-------	----------

	Densit	Reporting	T Incide	Spike	Source	4/DEC	%REC	DDD	RPD	Net
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EA62304 - EPA 5030C (GC)										
Blank (EA62304-BLK1)				Prepared &	Analyzed:	01/23/06				
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100								
Xylene (p/m)	ND	0.00100								
Xylene (o)	ND	0.00100	"							
Surrogate: a,a,a-Trifluorotoluene	37.5		ug/l	40.0		93.8	80-120			
Surrogate: 4-Bromofluorobenzene	32.6		"	40.0		81.5	80-120			
LCS (EA62304-BS1)				Prepared &	Analyzed:	01/23/06				
Benzene	0.0461	0.00100	mg/L	0.0500		92.2	80-120			
Toluene	0.0462	0.00100	"	0.0500		92.4	80-120			
Ethylbenzene	0.0427	0.00100	"	0.0500		85.4	80-120			
Xylene (p/m)	0,0846	0.00100		0.100		84.6	80-120			
Xylene (0)	0.0451	0.00100	"	0.0500		90.2	80-120			
Surrogate: a,a,a-Trifluorotoluene	38.5		ug/l	40.0		96.2	80-120			
Surrogate: 4-Bromofluorobenzene	37.9		"	40.0		94.8	80-120			
alibration Check (EA62304-CCV1)				Prepared &	Analyzed:	01/23/06				
Benzene	44.4		ug/l	50.0		88.8	80-120			
Toluene	45.2		"	50.0		90.4	80-120			
Ethylbenzene	42.5		"	50.0		85.0	80-120			
Xylene (p/m)	83.1		"	100		83.1	80-120			
Xylene (0)	44.5		11	50.0		89.0	80-120			
Surrogate: a,a,a-Trifluorotoluene	35.8		"	40.0		89.5	80-120			
Surrogate: 4-Bromofluorobenzene	35.5		"	40.0		88.8	80-120			
Matrix Spike (EA62304-MS1)	Sou	ırce: 6A20019-	01	Prepared &	: Analyzed:	01/23/06				
Benzene	0.0455	0.00100	mg/L	0.0500	ND	91.0	80-120			
Toluene	0.0452	0.00100	"	0.0500	ND	90.4	80-120			
Ethylbenzene	0.0417	0.00100	"	0.0500	ND	83.4	80-120			
Xylene (p/m)	0.0829	0.00100	"	0.100	ND	82.9	80-120			
Xylene (o)	0.0445	0.00100	"	0.0500	ND	89.0	80-120			
Surrogate: a,a,a-Trifluorotoluene	38.2		ug/l	40.0		95.5	80-120			
Surrogate: 4-Bromofluorobenzene	36.2		"	40.0		90.5	80-120			

Rice Operating Co.	Project: EME Jct. D-1 Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager: Kristin Farris-Pope	02/02/06 08:29

Organics by GC - Quality Control

Environmental Lab of Texas


		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EA62304 - EPA 5030C (GC)

Matrix Spike Dup (EA62304-MSD1)	Source: 6A20019-01			Prepared & Analyzed: 01/23/06					
Benzene	0.0427	0.00100	mg/L	0.0500	ND	85.4	80-120	6.35	20
Toluene	0.0428	0.00100	"	0.0500	ND	85.6	80-120	5.45	20
Ethylbenzene	0.0404	0.00100	"	0.0500	ND	80.8	80-120	3.17	20
Xylene (p/m)	0.0802	0.00100	17	0.100	ND	80.2	80-120	3.31	20
Xylene (o)	0.0427	0.00100	"	0.0500	ND	85.4	80-120	4.13	20
Surrogate: a,a,a-Trifluorotoluene	37.2		ug/l	40.0		93.0	80-120		
Surrogate: 4-Bromofluorobenzene	35.4		"	40.0		88.5	80-120		

Rice Operating Co.		Pr	roject: El	ME Jct. D-1 L	eak				Fax: (505)	397-147	
122 W. Taylor	Project Number: None Given Project Manager: Kristin Farris-Pope								Reported:		
Hobbs NM, 88240									-	02/02/06 08:29	
General	Chemistry Para	-				ls - Qua	lity Con	trol			
		Environm	iental l	Lab of Tex	Kas	<u> </u>	<u> </u>				
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch EA62018 - General Preparatio	n (WetChem)										
Blank (EA62018-BLK1)				Prepared &	Analyzed:	01/20/06					
Sulfate	ND	0.500	mg/L								
Chloride	ND	0.500	н								
LCS (EA62018-BS1)			_	Prepared &	z Analyzed:	01/20/06					
Chloride	8.74		mg/L	10.0		87.4	80-120				
Sulfate	9.62		"	10.0		96.2	80-120				
Calibration Check (EA62018-CCV1)				Prepared &	z Analyzed:	01/20/06					
Sulfate	9.77		mg/L	10.0		97.7	80-120				
Chloride	8.88		*	10.0		88.8	80-120				
Duplicate (EA62018-DUP1)	Sou	rce: 6A19008-	-01	Prepared &	z Analyzed:	01/20/06					
Sulfate	110	5.00	mg/L		111			0.905	20		
Chloride	61.5	5.00	"		62.2			1.13	20		
Batch EA62307 - General Preparatio	n (WetChem)										
Biank (EA62307-BLK1)				Prepared: ()1/19/06 A	nalyzed: 01	/20/06				
Total Dissolved Solids	ND	5.00	mg/L								
plicate (EA62307-DUP1)	Sou	rce: 6A19005-	-01	Prepared: ()1/19/06 A	nalyzed: 01	/20/06				
Total Dissolved Solids	2400	5.00	mg/L		2480			3.28	5		
Batch EA62406 - General Preparatio	n (WetChem)										
Blank (EA62406-BLK1)			,	Prepared &	: Analyzed:	01/26/06					
Total Alkalinity	ND	2.00	mg/L								

Rice Operating Co.	Project:	EME Jct. D-1 Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number:	None Given	Reported:
lobbs NM, 88240	Project Manager:	Kristin Farris-Pope	02/02/06 08:29

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EA62406 - General Preparati	on (WetChem)									
LCS (EA62406-BS1)				Prepared &	Analyzed:	01/26/06				
Bicarbonate Alkalinity	220		mg/L	200		110	85-115			
Duplicate (EA62406-DUP1)	Sourc	e: 6A19005-	01	Prepared &	Analyzed:	01/26/06				
Total Alkalinity	258	2.00	mg/L		256			0.778	20	
Reference (EA62406-SRM1)				Prepared &	: Analyzed:	01/26/06				
Total Alkalinity	97.0		mg/L	100		97.0	90-110			

	Rice Operating Co.	Project:	EME Jct. D-1 Leak	Fax: (505) 397-1471
	122 W. Taylor	Project Number:	None Given	Reported:
i.	Jobbs NM, 88240	Project Manager:	Kristin Farris-Pope	02/02/06 08:29

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

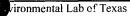
			· · · · · · · · · · · · · · · · · · ·						
	Reporting		Spike	Source		%REC		RPD	
Analyte Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EA62615 - 6010B/No Digestion

						·····		·····	
Blank (EA62615-BLK1)				Prepared & Anal	lyzed: 01/26/06				
Calcium	ND	0.0100	mg/L						
Magnesium	ND	0.00100	"						
Potassium	ND	0.0500	n						
Sodium	ND	0.0100	"						
Calibration Check (EA62615-CCV1)				Prepared & Anal	lyzed: 01/26/06				
Calcium	2.12		mg/L	2.00	106	85-115			
Magnesium	1.99		n	2.00	99.5	85-115			
Potassium	1.88		"	2.00	94.0	85-115			
Sodium	1.94		н	2.00	97.0	85-115			
Duplicate (EA62615-DUP1)	Sour	ce: 6A19005-	01	Prepared & Anal	lyzed: 01/26/06				
Calcium	224	0.500	mg/L	2	22		0.897	20	
Magnesium	115	0.0500	"	· 1:	20		4.26	20	
Potassium	14.6	0.500	n	15	5.2		4.03	20	
Sodium	306	0.500		3	13		2.26	20	

	Rice Operating Co.	Project:	EME Jct. D-1 Leak	Fax: (505) 397-1471
	122 W. Taylor	Project Number:	None Given	Reported:
5	Hobbs NM, 88240	Project Manager:	Kristin Farris-Pope	02/02/06 08:29

Total Metals by EPA / Standard Methods - Quality Control


Environmental Lab of Texas

	· · · · · · · · · · · · · · · · · · ·									
]		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EA62615 - 6010B/No Digestion

									_
Blank (EA62615-BLK1)				Prepared & Ana	lyzed: 01/26/06				
Calcium	ND	0.0100	mg/L						
Magnesium	ND	0.00100	"						
Potassium	ND	0.0500	"						
Sodium	ND	0.0100	"						
Calibration Check (EA62615-CCV1)				Prepared & Ana	lyzed: 01/26/06				
Calcium	2.12		mg/L	2.00	106	85-115			
Magnesium	1.99		"	2.00	99.5	85-115			
Potassium	1.88		"	2.00	94.0	85-115			
Sodium	1.94		u	2.00	97.0	85-115			
Duplicate (EA62615-DUP1)	Sou	·ce: 6A19005-	-01	Prepared & Ana	lyzed: 01/26/06				
Calcium	224	0.500	mg/L	2	22		0.897	20	
Magnesium	115	0.0500	**	I	20		4.26	20 .	
Potassium	14.6	0.500	"	1	5.2		4.03	20	
Sodium	306	0.500	"	3	13		2.26	20	

Rice Operating Co. Project: EME Jct. D-1 Leak 122 W. Taylor Project Number: None Given Hobbs NM, 88240 Project Manager: Kristin Farris-Pope **Notes and Definitions** DET Analyte DETECTED

Analyte NOT DETECTED at or above the reporting limit

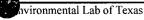
Sample results reported on a dry weight basis

Report Approved By:

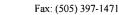
Raland K thut

2/2/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer


Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:


This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Reported: 02/02/06 08:29

ND

NR

dry RPD

LCS

MS

Dup

Not Reported

Matrix Spike Duplicate

Relative Percent Difference

Laboratory Control Spike

CORD AND AMAL YSIS REQUEST Project Name: EME Jct. D-1 Leak Project 4: Project Loc: Lea County Project Loc: Lea County	ТССР: Т	TPH: 418.1 8015M 100 X Cations (Cat, Mg, Na, K) X Anions (Cat, Mg, Na, K) X Anions (Cat, Mg, Na, K) SAR / Esp / CEC Motals: Na Ag Ba Cd Cr P Motals: Na Ag Ba Cd Cr P Volatiles Motals: Na Ag Ba Cd Cr P N.O.R.M. X BitEX 80218/5030 X Total Dissolved 50ilds X Total Dissolved 50ilds		Sample Containers Intact? V N Labels on container? N N Custody Seals: Containers? Containers? Temperature: Upon Receipt: Time Laboratory Comments:
Exercise from mental Lab of Texas Exercise from the contract of	471			Special Instructions: PLEASE Email RESULTS TO: kpriceswd@valomet.com & mfranks@riceswd.com Relinquished by Plate I fine Received by: Relinquished by: Relin

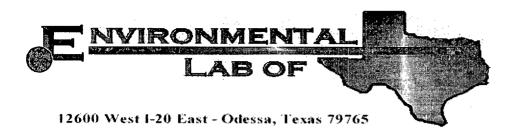
a,

ł

٠,

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

CI.	pice op.
Date/Time:	1/19/06 11-10
Order #:	6A19007
Initials:	(ik


Sample Receipt Checklist

Temperature of container/cooler?	Yes	No	-210 C
Shipping container/cooler in good condition?	XES	No	
Custody Seals intact on shipping container/cooler?	85	No	Not present
Custody Seals intact on sample bottles?	123	No	 Not present
Chain of custody present?	YES	No	
Sample Instructions complete on Chain of Custody?	YES	No I	
Chain of Custody signed when relinquished and received?	Yes)	No	······································
Chain of custody agrees with sample label(s)	(25)	Na	
Container labels legicle and intact?	Yes	No	
Sample Matrix and properties same as on chain of custody?	Yes	No	
Samples in proper container/cottle?	Y=5.	No	
Samples properly preserved?	Ves,	No	· ·
Sample bottles intact?	Yes	No	
Preservations documented on Chain of Custody?	1 735	No	
Containers documented on Chain of Custody?	1 825	No I	
Suggest sample amount for indicated test?	1 Yes	No	
All sencies received within sufficient hold time?	(Tes	No	
VOC samples have zero headspace?	YES.	No	Nct Applicable

Other observations:

Circular total Circleron	
SUMPRIS NOT ANNEN	
1	

Contact Person: Regarding:	Variance Documentation: _ Date/Time:	_ Contacted by:
Corrective Action Taken:		

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: EME Jct. D-1 Leak Project Number: None Given Location: Lea County

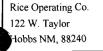
Lab Order Number: 6D20008

Report Date: 05/03/06

	Rice Operating Co.	Project: EME Jct. D-1 Leak	Fax: (505) 397-1471
	122 W. Taylor	Project Number: None Given	Reported:
-	łobbs NM, 88240	Project Manager: Kristin Farris-Pope	05/03/06 11:49

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1	6D20008-01	Water	04/19/06 10:35	04/20/06 15:05
Monitor Well #2	6D20008-02	Water	04/19/06 11:55	04/20/06 15:05
Monitor Well #3	6D20008-03	Water	04/19/06 09:05	04/20/06 15:05


Rice Operating Co. 122 W. Taylor			roject: EM mber: Nor		Leak			Fax: (505) 3 Report	
Hobbs NM, 88240		Project Ma			Pope			05/03/06	
		Or	ganics b	y GC					
		Environn	nental La	ab of Te	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6D20008-01) Water									
Benzene	ND	0.00100	mg/L	1	ED62607	04/26/06	04/26/06	EPA 8021B	
Toluene	ND	0.00100	n	"	"	"	"	"	
Ethylbenzene	ND	0.00100	"	"	"	11	"		
Xylene (p/m)	ND	0.00100		"	"	"	"	u	
Xylene (0)	ND	0.00100	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		103 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.2 %	80-1	20	"	"	"	"	

Benzene	ND	0.00100	mg/L	1	ED62607	04/26/06	04/26/06	EPA 8021B	
Toluene	ND	0.00100	"	"	н	"	"	"	
Ethylbenzene	ND	0.00100	n	"	"	"	"	"	
Xylene (p/m)	ND	0.00100	"	"	n	11	11	"	
Xylene (o)	ND	0.00100	n	"	**	"	"	n	
		104 %	80-120		"	"	"	"	
rrogate: 4-Bromofluorobenzene		97.8 %	80-120		"	.11	"	"	

Monitor Well #3 (6D20008-03) Water

Benzene ND 0.00100 mg/L 1 ED62607 04/26/06 04/26/06 EP Toluene ND 0.00100 " <	
Ethylbenzene ND 0.00100 "	PA 8021B
Xylene (p/m) ND 0.00100 "	н
	"
Xylene (o) ND 0.00100 " " " " "	n
	n
Surrogate: a,a,a-Trifluorotoluene 92.2 % 80-120 " " "	"
Surrogate: 4-Bromofluorobenzene 91.0 % 80-120 " " "	<i>n</i>

Reported: 05/03/06 11:49

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6D20008-01) Water	· · · · ·								
Total Alkalinity	448	2.00	mg/L	1	ED62402	04/25/06	04/25/06	EPA 310.1M	
Chloride	10700	250	"	500	ED62120	04/24/06	04/24/06	EPA 300.0	
Total Dissolved Solids	26800	5.00	••	1	ED62405	04/20/06	04/21/06	EPA 160.1	
Sulfate	3320	250	"	500	ED62120	04/24/06	04/24/06	EPA 300.0	
Monitor Well #2 (6D20008-02) Water									
Total Alkalinity	434	2.00	mg/L	1	ED62402	04/25/06	04/25/06	EPA 310.1M	
Chloride	8730	100	"	200	ED62120	04/24/06	04/24/06	EPA 300.0	
Total Dissolved Solids	19200	5.00	"	1	ED62405	04/20/06	04/21/06	EPA 160.1	
Sulfate	3840	100	**	200	ED62120	04/24/06	04/24/06	EPA 300.0	
Monitor Well #3 (6D20008-03) Water									
Total Alkalinity	474	2.00	mg/L	1	ED62402	04/25/06	04/25/06	EPA 310.1M	
Chloride	11100	250	"	500	ED62120	04/24/06	04/24/06	EPA 300.0	
Total Dissolved Solids	25600	5.00	*	1	ED62405	04/20/06	04/21/06	EPA 160.1	
lfate	3480	250		500	ED62120	04/24/06	04/24/06	EPA 300.0	

Rice Operating Co.	Project:	EME Jct. D-1 Leak	Fax: (505) 397-1471
	Project Number:	None Given	Reported:
Hobbs NM, 88240	Project Manager:	Kristin Farris-Pope	05/03/06 11:49

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

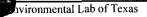
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6D20008-01) Water									
Calcium	544	0.500	mg/L	50	ED62106	04/21/06	04/21/06	EPA 6010B	
Magnesium	252	0.0500	"	"		**	"	11	
Potassium	248	2.50	n	"		"	11	11	
Sodium	9370	25.0	11	2500	"		11	"	
Monitor Well #2 (6D20008-02) Water									
Calcium	382	0.500	mg/L	50	ED62106	04/21/06	04/21/06	EPA 6010B	
Magnesium	175	0.0500	"	"	"	"	"	"	
Potassium	146	2.50	n		"	"		11	
Sodium	8220	25.0	n	2500	"	••	"	n	
Monitor Well #3 (6D20008-03) Water									
Calcium	409	0.500	mg/L	50	ED62106	04/21/06	04/21/06	EPA 6010B	
Magnesium	230	0.0500	"	"	u.	"	"	"	

2.50

25.0

...

n


,,

2500

...

188

10400

Potassium

dium

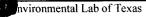
Rice Operating Co.	Project: EME Jct. D-1 Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Jobbs NM, 88240	Project Manager: Kristin Farris-Pope	05/03/06 11:49

Organics by GC - Quality Control

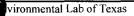
Environmental	Lab	of	Texas
---------------	-----	----	-------

	<u> </u>	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch ED62607 - EPA 5030C (GC)										
Blank (ED62607-BLK1)				Prepared &	Analyzed:	04/26/06				
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100								
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00100	"							
Xylene (o)	ND	0.00100	"							
Surrogate: a,a,a-Trifluorotoluene	39.1		ug/l	40.0		97.8	80-120			
Surrogate: 4-Bromofluorobenzene	41.4		"	40.0		104	80-120			
LCS (ED62607-BS1)				Prepared &	: Analyzed:	04/26/06				
Benzene	0.0503	0.00100	mg/L	0.0502		100	80-120			
Toluene	0.0550	0.00100	"	0.0502		110	80-120			
Ethylbenzene	0.0584	0.00100	"	0.0502		116	80-120			
Xylene (p/m)	0.120	0.00100	"	0.100		120	80-120			
Xylene (0)	0.0582	0.00100	"	0.0502		116	80-120			
Surrogate: a,a,a-Trifluorotoluene	42.9		ug/l	40.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	47.2		"	40.0		118	80-120			
libration Check (ED62607-CCV1)				Prepared: 0	4/26/06 A	nalyzed: 04	/27/06			
inzene	57.8		ug/l	50.0		116	80-120			
Foluene	56.3		"	50.0		113	80-120			
Ethylbenzene	58.2		"	50.0		116	80-120			
Xylene (p/m)	118		"	100		118	80-120			
Xylene (0)	58.8		"	50.0		118	80-120			
Surrogate: a,a,a-Trifluorotoluene	35.5		"	40.0		88.8	80-120			
Surrogate: 4-Bromofluorobenzene	36.6		"	40.0		91.5	80-120			
Matrix Spike (ED62607-MS1)	Sou	rce: 6D20008-	01	Prepared: 0	4/26/06 A	nalyzed: 04	/27/06			
Benzene	0.0595	0.00100	mg/L	0.0502	ND	119	80-120			
Toluene	0.0573	0.00100		0.0502	ND	114	80-120			
Ethylbenzene	0.0559	0.00100	**	0.0502	ND	111	80-120			
Xylene (p/m)	0.120	0.00100	"	0.100	ND	120	80-120			
Xylene (0)	0.0582	0.00100		0.0502	ND	116	80-120			
Surrogate: a,a,a-Trifluorotoluene	37.1		ug/l	40.0		92.8	80-120			<u> </u>
Surrogate: 4-Bromofluorobenzene	40.0		"	40.0		100	80-120			

	Rice Operating Co.	Project:	EME Jct. D-1 Leak	Fax: (505) 397-1471
		Project Number:	None Given	Reported:
4	Hobbs NM, 88240	Project Manager:	Kristin Farris-Pope	05/03/06 11:49


Organics by GC - Quality Control

Environmental Lab of Texas


										1
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch ED62607 - EPA 5030C (GC)

Matrix Spike Dup (ED62607-MSD1)	Sour	Source: 6D20008-01			Prepared: 04/26/06 Analyzed: 04/27/06					
Benzene	0.0600	0.00100	mg/L	0.0502	ND	120	80-120	0.837	20	
Toluene	0.0579	0.00100	"	0.0502	ND	115	80-120	0.873	20	
Ethylbenzene	0.0590	0.00100	"	0.0502	ND	118	80-120	6.11	20	
Xylene (p/m)	0.120	0.00100	*	0.100	ND	120	80-120	0.00	20	
Xylene (o)	0.0584	0.00100	"	0.0502	ND	116	80-120	0.00	20	
Surrogate: a,a,a-Trifluorotoluene	41.9		ug/l	40.0		105	80-120			
Surrogate: 4-Bromofluorobenzene	42.5		"	40.0		106	80-120			

Rice Operating Co.		Рт	oject: EN	ME Jct. D-1 L	eak				Fax: (505)	397-1471
122 W. Taylor		Project Nu	mber: No	one Given					Repo	rted:
Hobbs NM, 88240	Project Manager: Kristin Farris-Pope									6 11:49
General C	hemistry Para					ls - Qua	lity Con	trol		
		Environmental Lab of Texas								
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED62120 - General Preparation (WetChem)									
Blank (ED62120-BLK1)				Prepared &	Analyzed:	04/24/06				
Sulfate	ND	0.500	mg/L							
hloride	ND	0.500	"							
LCS (ED62120-BS1)				Prepared &	Analyzed:	04/24/06				
Sulfate	8.76		mg/L	10.0		87.6	80-120			
Chloride	9.01		"	10.0		90.1	80-120			
Calibration Check (ED62120-CCV1)				Prepared &	Analyzed:	04/24/06				
Sulfate	9.38		mg/L	10.0		93,8	80-120			
Chloride	9.40		"	10.0		94.0	80-120			
Duplicate (ED62120-DUP1)	Sou	rce: 6D20005-	01	Prepared &	Analyzed:	04/24/06				
Sulfate	86.7	5.00	mg/L		86.4			0.347	20	
Chloride	56.7	5.00	"		55.9			1.42	20	
Batch ED62402 - General Preparation (WetChem)									
Blank (ED62402-BLK1)				Prepared &	Analyzed:	04/25/06				
Total Alkalinity	ND	2.00	mg/L							
S (ED62402-BS1)				Prepared &	Analyzed:	04/25/06				
Bicarbonate Alkalinity	214	2.00	mg/L	200		107	85-115			
Duplicate (ED62402-DUP1)	Sou	rce: 6D20005-	01	Prepared &	: Analyzed:	04/25/06				
Total Alkalinity	197	2.00	mg/L		198			0.506	20	
Reference (ED62402-SRM1)				Prepared &	Analyzed:	04/25/06				
Fotal Alkalinity	97.0		mg/L	100		97.0	90-110			

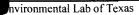
Rice Operating Co.	Project: EME Jct. D-1 Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
lobbs NM, 88240	Project Manager: Kristin Farris-Pope	05/03/06 11:49

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED62405 - Filtration Preparation			-							
Blank (ED62405-BLK1)				Prepared: (04/20/06 A	nalyzed: 04	/21/06			
Total Dissolved Solids	ND	5.00	mg/L							
Duplicate (ED62405-DUP1)	Sou	rce: 6D20006-	01	Prepared: (04/20/06 A	nalyzed: 04	/21/06			
Total Dissolved Solids	2390	5.00	mg/L		2290			4.27	5	

	Rice Operating Co.	Project:	EME Jct. D-1 Leak	Fax: (505) 397-1471
	122 W. Taylor	Project Number:	None Given	Reported:
. f e.	Hobbs NM, 88240	Project Manager:	Kristin Farris-Pope	05/03/06 11:49


Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch ED62106 - 6010B/No Digestion

Blank (ED62106-BLK1)				Prepared & Analyze	d: 04/21/06				
Calcium	ND	0.0100	mg/L						
Magnesium	ND	0.00100	"						
Potassium	ND	0.0500	"						
Sodium	ND	0.0100	"						
Calibration Check (ED62106-CCV1)				Prepared & Analyze	d: 04/21/06				
Calcium	1.98		mg/L	2.00	99.0	85-115			
Magnesium	2.10		**	2.00	105	85-115			
Potassium	2.06		"	2.00	103	85-115			
Sodium	2.06		**	2.00	103	85-115			
Duplicate (ED62106-DUP1)	Sour	·ce: 6D20005-	01	Prepared & Analyze	d: 04/21/06				
Calcium	25.1	0.100	mg/L	28.8			13.7	20	
Magnesium	15.9	0.0100	н	13.4			17.1	20	
Potassium	8.87	0.500	н	10.0			12.0	20	
Sodium	122	0.500	**	122			0.00	20	

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240			EME Jct. D-1 Leak	Fax: (505) 397-1471		
		Project Number: Project Manager:	None Given Kristin Farris-Pope	Reported: 05/03/06 11:49		
				05/05/06 11.47		
		Notes and De	finitions			
DET	Analyte DETECTED					
ND	Analyte NOT DETECTED at or above the reporting limit	t				
NR	Not Reported					
dry	Sample results reported on a dry weight basis					
RPD	Relative Percent Difference					
LCS	Laboratory Control Spike					
MS	Matrix Spike					

Dup Duplicate

Report Approved By:

Raland K Juits

5/3/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

nvironmental Lab of Texas

is request	EME Jct. D-1 Leak		Lea County				Analyze For:		kelaks: As Ag Ba Cd Cr PD Hg S olafites emivolatilas Cri Cri Cri Cri Cri Cri Cri Cri Cri Cri		X X X X X X X X X X X X X X X X X X X	× × ×					Sample Containers Intact? No N Labels on container? Of N Custody Seals Containers (pooler) Temperature Upon Receipt:	Laboratory Comments: 25	
CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST	Project Name: EM	Project #:	Project Loc:	PO #			TCLP: TOTAL:	g	30îl Dîher (epecîfy): Pî-Li, 418, 1 8015M, 1005, 100 Bîlons (Cl, S04, C03, HC03) Dinons (Cl, S04, C03, HC03)			XX						Time Laborat	15.05
AAIN OF CUSTODY F					-			/ative Matrix	I _s SO _¢ Vone (1) 1 Liter HDPE Vater Vater	×	1 X II	1 X					s@riceswd.cor	Date	$\frac{Date}{A[\mathcal{D}A]\mathcal{O}U}$
ъ					(505) 397-147			Preservative	Vo. of Containers ce HCI (\$) 40 ml glass visis HCI (\$) 40 ml glass visis	× ×	3 X 2	3 X 2					com & mfranks		X
U	d.com				Fax No:	i i	H		Time Sampled	06 10:35	06 11:55	2006 9:05					ope@riceswd.		WELOT UCUT (CD
35 800 113	kpope@riceswo	2		40	ſ	631-9310	All Gut	A	Date Sampled	4/19/2006	4/19/2006	4/19/20	 	, 		-	ULTS TO: kpc	Time Received by:	Time Received by ELOT
II Lab Of Texas Phone: 432-663-1800 Fax: 432-663-1713	Project Manager: Kristin Farris Pope	company Name RICE Operating Company	company Address: 122 W. Taylor Street	city/state/Zip: Hobbs, New Mexico 88240	05) 393-9174	sampler signature: Rozanne Johnson (505) 631-9310	Email: rozanne@valornet.com	.			/eil #2	/el) #3					PLEASE Email RESULTS TO: kpope@riceswd.com & mfranks@riceswd.com	2 1/2 / 00 13	Date
Enconmental 12600 west i-20 East Odessa, Texas 79765	Project Manager: KI	Company Name R	Company Address: <u>1</u> 2	city/State/Zip: <u>H</u>	Telephone No: (505) 393-9174	Sampler Signature: R	Email: [0		Cool Co	Monitor Well #1	OCC Monitor Well #2	CP Monitor Well #3				$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$	Special Instructions:	Relinguaned by Rozanne Jornacog	Relinquished By:
臣 n 12600 1 Odessé									B			A				Maria .	Specia	Relief	Relinqui

Environmental Lab of Texas Variance / Corrective Action Report - Sample Log-In

nt:	Rice Op.
s/Time: _	-4/20/00 15:05
er #:	6020008
als:	CK

Sample Receipt Checklist

Sample Receipt	Checkli	st	
perature of container/cooler?	Yes	No	25 CI
pping container/cooler in good condition?	Cesi	No	
tody Seals intact on shipping container/cooler?	Yes 1	No ,	Not present
stody Seals intact on sample bottles?	145	No	Not present
ain of custody present?	YES	No	
nple Instructions complete on Chain of Custody?	Yes	No	}
ain of Custody signed when relinquished and received?	63	No	······································
ain of custody agrees with sample label(s)	XBD	No	
ntainer labels legible and intact?	Res	No	
mple Matrix and properties same as on chain of custody?	123	No	
mples in procer container/bottle?	1 Xee	No	
mples properly preserved?	Yes	Na	
mple bottles intact?	1283	No	
eservations documented on Chain of Custody?	Xes	No	
ontainers documented on Chain of Custody?	Xas	No	
ifficient sample amount for indicated test?	Yes	No	
sa s received within sufficient hold time?	1 Xas	I No	
DC samples have zero headspace?	63	No	Not Apolicable

ther observations:

ntact Person:	Variance Documentation:	_ Contacted by:
garding:		
rrective Action Taken:		

6701 Aberdeen Avenue, Suite 9 155 McCutcheon, Suite H Lubbock, Texas 79424 El Paso, Texas 79932

Lubbock, Texas 79424 800•378•1296 80 El Paso, Texas 79932 888•588•3443 91 E-Mail: lab@traceanalysis.com

806•794•1296 FAX 915•585•3443 FAX

96 FAX 806•794•1298 43 FAX 915•585•4944

Analytical and Quality Control Report

Kristen Farris-Pope Rice Operating Company 122 W Taylor Street Hobbs, NM, 88240

Report Date: August 17, 2006

Work Order: 6072142

Project Location: Lea County,NM Project Name: EME D-1 Leak Project Number: EME D-1 Leak

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
96137	Monitor Well #1	water	2006-07-18	11:00	2006-07-21
96138	Monitor Well #2	water	2006-07-18	09:25	2006-07-21
96139	Monitor Well #3	water	2006-07-18	08:05	2006-07-21

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 17 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

1.41.34

.....

1.1

1.11

Dr. Blair Leftwich, Director

Analytical Report

Sample: 96137 - Monitor Well #1

Analysis: Alkalinity Analytical Method:		SM 2320B	Prep Method:	N/A	
QC Batch: 28340		Date Analyzed:	2006-07-26	Analyzed By:	LJ
Prep Batch: 24777		Sample Preparation:	2006-07-25	Prepared By:	LJ
		RL			
Parameter	Flag	Result	Units	Dilution	RL
Hydroxide Alkalinity		<1.00	mg/L as CaCo3	1	1.00
Carbonate Alkalinity		<1.00	mg/L as CaCo3	1	1.00
Bicarbonate Alkalinity		494	mg/L as CaCo3	1	4.00
Total Alkalinity		494	mg/L as CaCo3	1	4.00

Sample: 96137 - Monitor Well #1

Analysis:BTEXQC Batch:28277Prep Batch:24759		Analytical M Date Analyz Sample Prep	ed:	S 8021B 2006-07-24 2006-07-24		Prep Metl Analyzed Prepared	By: MT
		R	L				
Parameter Flag		Resu	lt	Units]	Dilution	RL
Benzene		< 0.0010	0	mg/L		1	0.00100
Toluene		< 0.0010	0	mg/L		1	0.00100
Ethylbenzene		< 0.0010	0	mg/L		. 1	0.00100
Xylene		<0.0010	0	mg/L		1	0.00100
					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)	<u> </u>	0.0963	mg/L	1	0.100	96	66.2 - 127.7
4-Bromofluorobenzene (4-BFB)	1	0.0699	mg/L	1	0.100	70	70.6 - 129.2

Sample: 96137 - Monitor Well #1

Analysis:CationsQC Batch:28356Prep Batch:24749		Analytical Method: Date Analyzed: Sample Preparation:	S 6010B 2006-07-26 2006-07-24	Prep Method: Analyzed By: Prepared By:	
		RL			
Parameter	Flag	Result	Units	Dilution	RL
Dissolved Calcium		572	mg/L	10	0.500
Dissolved Potassium		249	mg/L	10	1.00
Dissolved Magnesium		299	mg/L	10	1.00
Dissolved Sodium		7270	mg/L	100	1.00

Sample: 96137 - Monitor Well #1

Analysis:	Ion Chromatography	Analytical Method:	E 300.0	Prep Method:	N/A
QC Batch:	28927	Date Analyzed:	2006-08-15	Analyzed By:	WB
Prep Batch:	25286	Sample Preparation:	2006-08-11	Prepared By:	WB

¹BFB surrogate recovery outside normal limits. ICV/CCV and TFT surrogate recovery show the method to be in control.

Report Date: August 17, 2006 EME D-1 Leak			rder: 6072142 D-1 Leak	-	ber: 3 of 17 County,NM
		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		12900	mg/L	1000	0.500
Sulfate		4730	mg/L	100	0.500
Sample: 96137 - Moni	tor Well #1				
Analysis: TDS		Analytical Method	: SM 2540C	Prep Me	thod: N/A
QC Batch: 29098		Date Analyzed:	2006-08-16	Analyze	
Prep Batch: 25437		Sample Preparation	n: 2006-08-15	Preparec	By: WB
		RL			
Parameter	Flag	Result	Units	Dilution	RL
Total Dissolved Solids	2	24400	mg/L	50	10.00
Analysis: Alkalinit QC Batch: 28340 Prep Batch: 24777	y	Analytical Metho Date Analyzed: Sample Preparati	2006-07-26	Prep Me Analyze Preparec	d By: LJ
Parameter	Flag	RL Result	Units	Dilution	RL
Hydroxide Alkalinity	1 145	<1.00	mg/L as CaCo3	1	1.00
Carbonate Alkalinity		<1.00	mg/L as CaCo3	1	1.00
Bicarbonate Alkalinity		484	mg/L as CaCo3	1	4.00
Total Alkalinity		484	mg/L as CaCo3	1	4.00
Sample: 96138 - Moni	tor Well #2				
Analysis: BTEX		Analytical Method:	S 8021B	Prep Method	
QC Batch: 28277		Date Analyzed:	2006-07-24	Analyzed By	
Prep Batch: 24759		Sample Preparation:	2006-07-24	Prepared By:	MT
		RL Result	Units	Dilution	RL
Parameter	Flag				
	Flag			1	0.00100
Parameter Benzene Toluene	Flag	<0.00100 <0.00100	mg/L	1	
Benzene	Flag	< 0.00100		1 1 1	0.00100 0.00100 0.00100

Xylene		< 0.0010	00	mg/L		1	0.00100
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)		0.0954	mg/L	1	0.100	95	66.2 - 127.7
4-Bromofluorobenzene (4-BFB)	3	0.0690	mg/L	1	0.100	69	70.6 - 129.2

²Reran out of hold time. •
 ³BFB surrogate recovery outside normal limits. ICV/CCV and TFT surrogate recovery show the method to be in control.

Sample: 96138 - Monitor Well #2

Analysis:CationsQC Batch:28356Prep Batch:24749		Analytical Method: Date Analyzed: Sample Preparation:	S 6010B 2006-07-26 2006-07-24	Prep Method: Analyzed By: Prepared By:	
		RL			
Parameter	Flag	Result	Units	Dilution	RL
Dissolved Calcium		379	mg/L	10	0.500
Dissolved Potassium		155	mg/L	10	1.00
Dissolved Magnesium		203	mg/L	10	1.00
Dissolved Sodium		6300	mg/L	100	1.00

Sample: 96138 - Monitor Well #2

Analysis: QC Batch:	Ion Chromatography 28782	Analytical			Prep Method:	
•		Date Analy	zeu. 2000-08-02		Analyzed By:	WD
Prep Batch:	25167	Sample Pro	eparation: 2006-08-02		Prepared By:	WB
		RL				
Parameter	Flag	Result	Units	Dilution		RL
Chloride		9390	mg/L	1000		0.500
Sulfate		5240	mg/L	1000		0.500

Sample: 96138 - Monitor Well #2

Analysis: QC Batch:	TDS 28406		Analytical Method: Date Analyzed:	SM 2540C 2006-07-27	Prep Method: Analyzed By	
Prep Batch:	24850		Sample Preparation:	2009-07-26	Prepared By:	SM
			RL			
Parameter		Flag	Result	Units	Dilution	RL
Total Dissolv	ved Solids		19950	mg/L	50	10.00

Sample: 96139 - Monitor Well #3

Analysis:AlkalinityQC Batch:28340Prep Batch:24777		Analytical Method: Date Analyzed: Sample Preparation:	SM 2320B 2006-07-26 2006-07-25	Prep Method: Analyzed By: Prepared By:	
		RL			
Parameter	Flag	Result	Units	Dilution	RL
Hydroxide Alkalinity		<1.00	mg/L as CaCo3	1	1.00
Carbonate Alkalinity		<1.00	mg/L as CaCo3	1	1.00
Bicarbonate Alkalinity		544	mg/L as CaCo3	1	4.00
Total Alkalinity		544	mg/L as CaCo3	1	4.00

		R	L				
Parameter	Flag	Resu	ılt	Units	Ι	Dilution	RL
Benzene		< 0.0010)0	mg/L		1	0.00100
Toluene		< 0.0010)0	mg/L		1	0.00100
Ethylbenzene		< 0.0010)0	mg/L		1	0.00100
Xylene		< 0.0010)0	mg/L		1	0.00100
					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.0972	mg/L	1	0.100	97	66.2 - 127.7
4-Bromofluorobenzene (4-BFI	3) 4	0.0699	mg/L	1	0.100	70	70.6 - 129.2

Sample: 96139 - Monitor Well #3

				·		
Parameter		Flag	Result	Units	Dilution	RL
			RL			
Prep Batch:	24749		Sample Preparation:	2006-07-24	Prepared By:	TS
QC Batch:	28356		Date Analyzed:	2006-07-26	Analyzed By:	ТР
Analysis:	Cations		Analytical Method:	S 6010B	Prep Method:	S 3005A

Dissolved Calcium	581	mg/L	10	0.500
Dissolved Potassium	268	mg/L	10	1.00
Dissolved Magnesium	379	mg/L	10	1.00
Dissolved Sodium	7990	mg/L	100	1.00

Sample: 96139 - Monitor Well #3

Analysis: QC Batch: Prep Batch:	lon Chromatography 28782 25167	Analytical Date Analy Sample Pro	yzed: 2006-08-02		Prep Method:N/AAnalyzed By:WBPrepared By:WB
		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		15400	mg/L	1000	0.500
Sulfate		4770	mg/L	100	0.500

Sample: 96139 - Monitor Well #3

Analysis:	TDS	Analytical Method:	SM 2540C	Prep Method:	N/A
QC Batch:	28406	Date Analyzed:	2006-07-27	Analyzed By:	SM
Prep Batch:	24850	Sample Preparation:	2009-07-26	Prepared By:	SM

continued . . .

⁴BFB surrogate recovery outside normal limits. ICV/CCV and TFT surrogate recovery show the method to be in control.

Report Date: August 17, 2006 EME D-1 Leak				der: 6072 D-1 Leak		Page Number: 6 of Lea County,N				
sample 96139 continued										
			RL							
Parameter	Flag	Re	sult		Units		Dilution		RI	
_		_	RL							
Parameter Total Dissolved Solids	Flag		sult 900		Units	. <u> </u>	Dilution 50		RI 10.0	
		23			mg/L				10.0	
Method Blank (1) QC Batch:	28277									
QC Batch: 28277		Date Anal	vzed:	2006-07	-24		Aı	nalyzed By:	МТ	
Prep Batch: 24759		QC Prepar		2006-07				repared By:	MT	
		-						-		
				MDL						
Parameter	Flag			Result		Unit	s		RL	
Benzene			<0.0	000255		mg/l	L		0.00	
Toluene				000210		mg/l	L		0.00	
Ethylbenzene		<0.000317			mg/l			0.00		
Xylene			<0.0	000603		mg/1	Ĺ		0.00	
Surrogate	Flag	Result	Unit	n D	ilution	Spike Amount	Percent Recover		covery imits	
Trifluorotoluene (TFT)	Tag	0.0949	mg/I		1	0.100	95	•	- 11	
4-Bromofluorobenzene (4-BFB)		0.0633	mg/I		1	0.100	63		5 - 11	
Method Blank (1) QC Batch:	28340									
QC Batch: 28340		Date Anal	lyzed:	2006-07	7-26		A	Analyzed By	: L)	
Prep Batch: 24777		QC Prepa	ration:	2006-07	7-25		Р	Prepared By:	L.	
				MDL						
Parameter	Flag			Result		Uni			R	
Hydroxide Alkalinity				<1.00		mg/L as			1	
Carbonate Alkalinity Bicarbonate Alkalinity				<1.00 <4.00		mg/L as (mg/L as (1 4	
Total Alkalinity				<4.00		mg/L as			4	
Method Blank (1) QC Batch: QC Batch: 28356	28356	Date Anal		2006-07				nalyzed By		
Prep Batch: 24749		QC Prepa	ration:	2006-07 MD			P.	repared By:	TS	
Parameter	Fla	g		Resu	lt		Jnits		RI	
Dissolved Calcium				0.13			ng/L		0.:	
Dissolved Potassium				1.0			ng/L		1	
Dissolved Magnesium				<0.70 0.83			ng/L		1	
Dissolved Sodium							ng/L		1	

Report Date: August 17, 2006 EME D-1 Leak				der: 6072142 D-1 Leak		Page Number: ' Lea Coun	
Method Blank (1)	QC Batch: 28406						
QC Batch: 28406			Date Analyzed:	2006-07-27		Analyzed By:	SM
Prep Batch: 24850			QC Preparation:	2006-07-26		Prepared By:	SM
				MDL			
Parameter		Flag		Result	Units		R
Total Dissolved Solids	3			<5.000	mg/L		10
Method Blank (1)	QC Batch: 28782						
QC Batch: 28782			Date Analyzed:	2006-08-02		Analyzed By:	WE
Prep Batch: 25167			QC Preparation:	2006-08-02		Prepared By:	WE
				MDL			
Parameter	Flag		F	Result	Units		R
Chloride				.0181	mg/L		0.
Sulfate	,	· · · · · · · · · · · · · · · · · · ·	<0.	.0485	mg/L		0.
Method Blank (1)	QC Batch: 28927						
QC Batch: 28927			Date Analyzed:	2006-08-15		Analyzed By:	WE
Prep Batch: 25286			QC Preparation:	2006-08-11		Prepared By:	WE
1			•			1 5	
Parameter	Flag			MDL Result	Units		R
Chloride	1 146			.0181	mg/L		0.
Sulfate			<0.	.0485	mg/L		0.
Method Blank (1)	QC Batch: 29098						
	20 2000 25050		Data Analyzada	2006 08 16		Analyzed Dev	WE
QC Batch: 29098 Prep Batch: 25437			Date Analyzed: QC Preparation:	2006-08-16 2006-08-15		Analyzed By: Prepared By:	WE WE
			< reparation.			parea 19,	
Do no no o to		121		MDL Begult	T T		n
Parameter Total Dissolved Solids		Flag		Result <5.000	Units mg/L		
				<3.000			
Duplicates (1)							
QC Batch: 28340			Date Analyzed:	2006-07-26		Analyzed By	: L.
•			QC Preparation:	2006-07-25		Prepared By:	
Prep Batch: 24777			0 1				RPE
Prep Batch: 24///	Γ	Duplicate	Sample				
-		Ouplicate Result	Sample Result	Units	Dilution	RPD	
Prep Batch: 24/// Param Hydroxide Alkalinity		Result <1.00	Result <1.00	mg/L as CaCo3	Dilution 1	RPD 0	Limi 20
Param		Result	Result		Dilution 1 1 1		Limi

,

	Duplicate	Sample					duplicat	e conti	nued RPD
Param	Result	Result		Units	Dil	ution	RPI	D	Limit
Total Alkalinity	110	108	mg	y/L as CaCo3		1	2		11.5
Duplicates (1)									
QC Batch: 28406	Ľ	ate Analyzed	l: 2006-0)7-27			Analy	yzed By	y: SM
Prep Batch: 24850		C Preparation		07-26				ared By	
	Duplicate	Sam	nple						RPD
Param	Result		sult	Units	Dilutic	on	RPD		Limi
Total Dissolved Solids	768.0	92	8.0	_mg/L	2		19		17.2
Duplicates (1)									
QC Batch: 29098	D	ate Analyzed	l: 2006-0	8-16			Analy	zed By	: WB
Prep Batch: 25437		C Preparation						red By	
							ı	5	
	Duplicate		nple	.					RPE
Param	Result		sult	Units	Dilutio	on	RPD		Lim
	740.0	80	0 0	mg/L	2		8		17.2
			0.0	mg/L					
Laboratory Control Spike (LCS-1 QC Batch: 28277	1) E	ate Analyzed	l: 2006-0)7-24			Analy	yzed By	y: MT
Total Dissolved Solids Laboratory Control Spike (LCS-1 QC Batch: 28277 Prep Batch: 24759	1) E		l: 2006-0)7-24			Analy	yzed By ared By	y: MT
Laboratory Control Spike (LCS-1 QC Batch: 28277	I) C LCS	ate Analyzed C Preparation	l: 2006-0 n: 2006-0)7-24	Matri	ix	Analy		y: MT : MT Rec.
Laboratory Control Spike (LCS- QC Batch: 28277 Prep Batch: 24759	1) C LCS Result	ate Analyzed C Preparation Units	l: 2006-0)7-24)7-24 Spike Amount	Matri Resu	lt	Analy Prepa Rec.	ared By	y: MT : MT Rec. Limit
Laboratory Control Spike (LCS- QC Batch: 28277 Prep Batch: 24759 Param Benzene	1) C LCS Result 0.109	ate Analyzed C Preparation Units mg/L	l: 2006-0 n: 2006-0)7-24)7-24 Spike Amount 0.100	Matri Resu <0.000	lt 255	Analy Prepa Rec. 109	ared By	y: MT : MT Rec. Limit 2.2 - 119
Laboratory Control Spike (LCS- QC Batch: 28277 Prep Batch: 24759 Param Benzene Toluene	1) LCS Result 0.109 0.108	Pate Analyzed C Preparation Units mg/L mg/L	l: 2006-0 n: 2006-0 Dil. 1 1)7-24)7-24 Spike <u>Amount</u> 0.100 0.100	Matri Resu <0.000 <0.000	lt 255 210	Analy Prepa Rec. 109 108	ared By	y: MT : MT Rec. Limit 2.2 - 119 .2 - 119
Laboratory Control Spike (LCS- QC Batch: 28277 Prep Batch: 24759 Param Benzene Toluene Ethylbenzene	1) LCS Result 0.109 0.108 0.109	ate Analyzed C Preparation Units mg/L mg/L mg/L	l: 2006-0 n: 2006-0 Dil. 1 1 1)7-24)7-24 Amount 0.100 0.100 0.100 0.100	Matri Resu <0.000 <0.000 <0.000	lt 255 210 317	Analy Prepa Rec. 109 108 109	82 81 81	y: MT : MT Rec. Limit 2.2 - 119 2 - 119 0 - 122
Laboratory Control Spike (LCS- QC Batch: 28277 Prep Batch: 24759 Param Benzene Toluene Ethylbenzene Xylene	1) LCS Result 0.109 0.108 0.109 0.322	ute Analyzed C Preparation Units mg/L mg/L mg/L mg/L	l: 2006-0 n: 2006-0 Dil. 1 1 1 1)7-24)7-24 Amount 0.100 0.100 0.100 0.300	Matri Resu <0.000 <0.000 <0.000 <0.000	lt 255 210 317	Analy Prepa Rec. 109 108	82 81 81	y: MT : MT Rec. Limit 2.2 - 119 2 - 119 0 - 122
Laboratory Control Spike (LCS- QC Batch: 28277 Prep Batch: 24759 Param Benzene Toluene Ethylbenzene Xylene	1) LCS Result 0.109 0.108 0.109 0.322 ike result. RPD is	ute Analyzed C Preparation Units mg/L mg/L mg/L mg/L	l: 2006-0 n: 2006-0 Dil. 1 1 1 1 spike and s)7-24)7-24 Mount 0.100 0.100 0.100 0.300 Spike duplicate	Matri Resu <0.000 <0.000 <0.000 <0.000	lt 255 210 317 603	Analy Prepa Rec. 109 108 109 107	82 81 81	y: MT : MT Limit 2.2 - 119
Laboratory Control Spike (LCS- QC Batch: 28277 Prep Batch: 24759 Param Benzene Toluene Ethylbenzene Xylene Percent recovery is based on the spi	1) LCS Result 0.109 0.108 0.109 0.322 ike result. RPD is LCSD	units Mg/L mg/L mg/L mg/L based on the	l: 2006-0 n: 2006-0 Dil. 1 1 1 spike and s Spike)7-24)7-24 Amount 0.100 0.100 0.100 0.300 spike duplicate Matrix	Matri Resu <0.000 <0.000 <0.000 result.	lt 255 210 317 603	Analy Prepa <u>Rec.</u> 109 108 109 107 ec.	82 81 83	y: MT : MT Limit 2.2 - 119 1.2 - 119 0 - 122 1.3 - 122 RPD
Laboratory Control Spike (LCS- QC Batch: 28277 Prep Batch: 24759 Param Benzene Toluene Ethylbenzene Xylene Percent recovery is based on the spi	1) LCS Result 0.109 0.108 0.109 0.322 ike result. RPD is LCSD Result Unit	ate Analyzed C Preparation Units mg/L mg/L mg/L based on the ts Dil.	l: 2006-0 n: 2006-0 Dil. 1 1 1 spike and s Spike Amount	07-24 07-24 Spike <u>Amount</u> 0.100 0.100 0.100 0.300 spike duplicate Matrix Result	Matri Resu <0.000 <0.000 <0.000 result. Rec.	lt 255 210 317 603 Re Lin	Analy Prepa Rec. 109 108 109 107 ec. mit	82 81 83 81 81 81	y: MT : MT Limit 2.2 - 119 1.2 - 119 0 - 122 1.3 - 122 RPD Limit
Laboratory Control Spike (LCS- QC Batch: 28277 Prep Batch: 24759 Param Benzene Toluene Ethylbenzene Xylene Percent recovery is based on the spi Param Benzene	1) LCS Result 0.109 0.108 0.109 0.322 ike result. RPD is LCSD Result Unit 0.104 mg.	Units Units mg/L mg/L mg/L based on the ts Dil. L 1	l: 2006-0 n: 2006-0 Dil. 1 1 1 spike and s Spike Amount 0.100	07-24 07-24 Spike Amount 0.100 0.100 0.100 0.300 spike duplicate Matrix Result <0.000255	Matri Resu <0.000 <0.000 <0.000 <0.000 result. <u>Rec.</u> 109	lt 255 210 317 603 Rd Liu 82.2	Analy Prepa Rec. 109 108 109 107 ec. mit - 119	82 81 83 81 81 81 81 81 81 81 81 81 81 81 81 81	y: MT : MT Limit 2.2 - 119 0 - 122 1.3 - 122 RPD Limi 20
Laboratory Control Spike (LCS- QC Batch: 28277 Prep Batch: 24759 Param Benzene Toluene Ethylbenzene Xylene Percent recovery is based on the spi Param Benzene Toluene	1) LCS Result 0.109 0.108 0.109 0.322 ike result. RPD is LCSD Result Unit 0.104 mg 0.103 mg.	Units Units mg/L mg/L mg/L based on the ts Dil. T_ 1 T_ 1 T_ 1	l: 2006-0 n: 2006-0 Dil. 1 1 1 spike and s Spike Amount 0.100 0.100	07-24 07-24 27-24 27-24 20100 0.100 0.100 0.100 0.100 0.300 20100 20	Matri Resu <0.000 <0.000 <0.000 <0.000 result. Rec. 109 108	lt 255 210 317 603 Rt Liu 82.2 81.2	Analy Prepa Rec. 109 108 109 107 ec. mit - 119 - 119	82 81 83 81 81 81 81 81 81 81 81 81 81 81 81 81	y: MT : MT Limit 2.2 - 119 0 - 122 1.3 - 122 RPD Limi 20 20
Laboratory Control Spike (LCS- QC Batch: 28277 Prep Batch: 24759 Param Benzene Toluene Ethylbenzene Xylene Percent recovery is based on the spi Param Benzene Toluene Ethylbenzene	1) LCS Result 0.109 0.108 0.109 0.322 ike result. RPD is LCSD Result Uni 0.104 mg 0.103 mg 0.101 mg	units Units mg/L mg/L mg/L based on the ts Dil. T 1 T 1 T 1 T 1	l: 2006-0 n: 2006-0 Dil. 1 1 1 spike and s Spike Amount 0.100 0.100 0.100	07-24 07-24 07-24 Spike Amount 0.100 0.100 0.100 0.300 Spike duplicate Matrix Result <0.000255 <0.000210 <0.000317	Matri Resu <0.000 <0.000 <0.000 <0.000 result. <u>Rec.</u> 109 108 109	lt 255 210 317 603 Rt Lin 82.2 81.2 80 -	Analy Prepa Rec. 109 108 109 107 ec. mit - 119	82 81 83 81 81 81 81 81 81 81 81 81 81 81 81 81	y: MT : MT Limit 2.2 - 119 .2 - 119 0 - 122 1.3 - 122 Limi 20 20 20 20
Laboratory Control Spike (LCS- QC Batch: 28277 Prep Batch: 24759 Param Benzene Toluene Ethylbenzene Xylene Percent recovery is based on the spi Param Benzene Toluene Ethylbenzene Toluene Ethylbenzene Xylene	1) LCS Result 0.109 0.108 0.109 0.322 ike result. RPD is LCSD Result Uni 0.104 mg 0.103 mg 0.101 mg 0.306 mg	units Units mg/L mg/L mg/L based on the ts Dil. L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1	l: 2006-0 n: 2006-0 Dil. 1 1 1 spike and s Spike Amount 0.100 0.100 0.100 0.300	07-24 07-24 Spike Amount 0.100 0.100 0.100 0.300 spike duplicate Matrix Result <0.000255 <0.000210 <0.000317 <0.000603	Matri Resu <0.000 <0.000 <0.000 <0.000 result. Rec. 109 108 109 107	lt 255 210 317 603 Rt Lin 82.2 81.2 80 -	Analy Prepa Rec. 109 108 109 107 ec. mit - 119 - 119 - 122	82 81 83 81 81 81 81 81 81 81 81 81 81 81 81 81	y: MT : MT Limit 2.2 - 119 0 - 122 1.3 - 122 RPD Limi 20 20
Laboratory Control Spike (LCS-1 QC Batch: 28277	1) LCS Result 0.109 0.108 0.109 0.322 ike result. RPD is LCSD Result Uni 0.104 mg 0.103 mg 0.101 mg 0.306 mg	units Units mg/L mg/L mg/L based on the ts Dil. L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1	l: 2006-0 n: 2006-0 Dil. 1 1 1 spike and s Spike Amount 0.100 0.100 0.100 0.300	07-24 07-24 Spike Amount 0.100 0.100 0.100 0.300 spike duplicate Matrix Result <0.000255 <0.000210 <0.000317 <0.000603 spike duplicate	Matri Resu <0.000 <0.000 <0.000 <0.000 result. Rec. 109 108 109 107 result.	lt 255 210 317 603 Rt Lin 82.2 81.2 80 -	Analy Prepa Rec. 109 108 109 107 ec. mit - 119 - 119 - 122	82 81 88 81 88 81 88 81 5 5 8 5 5	y: MT : MT Limit 2.2 - 119 0 - 122 1.3 - 122 Limi 20 20 20
Laboratory Control Spike (LCS- QC Batch: 28277 Prep Batch: 24759 Param Benzene Toluene Ethylbenzene Xylene Percent recovery is based on the spi Param Benzene Toluene Ethylbenzene Toluene Ethylbenzene Xylene	1) LCS Result 0.109 0.108 0.109 0.322 ike result. RPD is LCSD Result Uni 0.104 mg 0.103 mg 0.101 mg 0.306 mg ike result. RPD is	units Units mg/L mg/L mg/L based on the ts Dil. L 1 L 1 L 1 L 1 L 1 L 1 based on the	l: 2006-0 n: 2006-0 Dil. 1 1 1 spike and s Spike Amount 0.100 0.100 0.100 0.300	07-24 07-24 Spike Amount 0.100 0.100 0.100 0.300 spike duplicate Matrix Result <0.000255 <0.000210 <0.000317 <0.000603 spike duplicate Spike duplicate Spike duplicate	Matri Resu <0.000 <0.000 <0.000 <0.000 result. <u>Rec.</u> 109 108 109 107 result. ike	lt 255 210 317 603 Rt Liu 82.2 81.2 80 - 81.3	Analy Prepa Rec. 109 108 109 107 ec. mit - 119 - 119 - 122 - 122	82 81 88 81 88 81 88 81 5 5 8 5 5	y: MT : MT Rec. Limit 2.2 - 119 0 - 122 .3 - 122 RPD Limit 20 20 20 20
Laboratory Control Spike (LCS-1) QC Batch: 28277 Prep Batch: 24759 Param Benzene Toluene Ethylbenzene Xylene Param Benzene Toluene Ethylbenzene Xylene Param Benzene Toluene Ethylbenzene Xylene Percent recovery is based on the spi Param Benzene Toluene Ethylbenzene Xylene Percent recovery is based on the spi	1) LCS Result 0.109 0.108 0.109 0.322 ike result. RPD is LCSD Result Uni 0.104 mg 0.103 mg 0.101 mg 0.306 mg ike result. RPD is LCS	Pate Analyzed C Preparation Units mg/L mg/L mg/L based on the ts Dil. L 1 L 1 L 1 based on the LCSD	l: 2006-0 n: 2006-0 Dil. 1 1 1 spike and s Spike Amount 0.100 0.100 0.100 0.300 spike and s	07-24 07-24 Spike Amount 0.100 0.100 0.100 0.300 spike duplicate Matrix Result <0.000255 <0.000210 <0.000317 <0.000603 spike duplicate Spike Dil. Am	Matri Resu <0.000 <0.000 <0.000 <0.000 result. 109 108 109 107 result. ike ount 100	lt 255 210 317 603 Rt Liu 82.2 81.2 80 - 81.3 LCS	Analy Prepa Rec. 109 108 109 107 ec. mit - 119 - 119 - 122 - 122 LCSD	82 81 8 81 8 81 8 81 8 8 5 5 8 5	y: MT : MT Rec. Limit 2.2 - 119 0 - 122 1.3 - 122 .3 - 122 RPD Limi 20 20 20 20 20 Rec.

Laboratory Control Spike (LCS-1)

QC Batch:	28356	Date Analyzed:	2006-07-26	Analyzed By:	TP
Prep Batch:	24749	QC Preparation:	2006-07-24	Prepared By:	TS

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Dissolved Calcium	51.7	mg/L	1	50.0	< 0.0950	103	85 - 115
Dissolved Potassium	50.8	mg/L	1	50.0	< 0.377	102	85 - 113
Dissolved Magnesium	51.5	mg/L	1	50.0	< 0.704	103	85 - 113
Dissolved Sodium	50.5	mg/L	1	50.0	< 0.261	101	85 - 111

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Dissolved Calcium	51.7	mg/L	1	50.0	< 0.0950	103	85 - 115	0	20
Dissolved Potassium	49.3	mg/L	1	50.0	< 0.377	102	85 - 113	3	20
Dissolved Magnesium	49.8	mg/L	1	50.0	< 0.704	103	85 - 113	3	20
Dissolved Sodium	48.6	mg/L	1	50.0	< 0.261	101	85 - 111	4	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch:	28782	Date Analyzed:	2006-08-02	Analyzed By:	WB
Prep Batch:	25167	QC Preparation:	2006-08-02	Prepared By:	WB

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride	12.2	mg/L	1	12.5	< 0.0181	98	90 - 110
Sulfate	12.5	mg/L	1	12.5	< 0.0485	100	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	12.3	mg/L	1	12.5	< 0.0181	98	90 - 110	1	20
Sulfate	12.5	mg/L	1	12.5	< 0.0485	100	90 - 110	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch:	28927 25286		te Analyzed: C Preparation:	2006-08 2006-08			Analyzed Prepared	i By: WB By: WB
		LCS			Spike	Matrix		Rec.
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride		12.3	mg/L	1	12.5	<0.0181	98	90 - 110
Sulfate		12.1	mg/L	1	12.5	< 0.0485	97	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Param	LCSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	RPD	RPD Limit
Chloride	12.4	mg/L	1	12.5	<0.0181	98	90 - 110	1	20
Sulfate	12.2	mg/L	1	12.5	< 0.0485	97	90 - 110	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 96149

QC Batch:	28277	Date Analyzed:	2006-07-24	Analyzed By:	MT
Prep Batch:	24759	QC Preparation:	2006-07-24	Prepared By:	MT

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Benzene	0.107	mg/L	1	0.100	< 0.000255	107	70.9 - 126
Toluene	0.105	mg/L	1	0.100	< 0.000210	105	70.8 - 125
Ethylbenzene	0.106	mg/L	1	0.100	< 0.000317	106	74.8 - 125
Xylene	0.311	mg/L	1	0.300	< 0.000603	104	75.7 - 126

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene	5	NA	mg/L	1	0.100	< 0.000255	0	70.9 - 126	200	20
Toluene	6	NA	mg/L	1	0.100	< 0.000210	0	70.8 - 125	200	20
Ethylbenzene	7	NA	mg/L	1	0.100	< 0.000317	0	74.8 - 125	200	20
Xylene	8	NA	mg/L	1	0.300	< 0.000603	0	75.7 - 126	200	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MS	MSD			Spike	MS	MSD	Rec.
Surrogate		Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	9	0.101	NA	mg/L	1	0.1	101	0	73.6 - 121
4-Bromofluorobenzene (4-BFB)	10	0.110	NA	mg/L	1	0.1	110	0	81.8 - 114

Matrix Spike (MS-1) Spiked Sample: 96124

QC Batch:	28356	Date Analyzed:	2006-07-26	Analyzed By:	TP
Prep Batch:	24749	QC Preparation:	2006-07-24	Prepared By:	TS

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Dissolved Calcium	416	mg/L	. 1	50.0	361	110	68.4 - 138
Dissolved Potassium	73.8	mg/L	1	50.0	22	104	82 - 129
Dissolved Magnesium	208	mg/L	1	50.0	147	122	61.2 - 135
Dissolved Sodium	633	mg/L	1	50.0	578	110	81.8 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

⁵RPD is out of range because a matrix spike duplicate was not prepared.

⁶RPD is out of range because a matrix spike duplicate was not prepared.

⁷RPD is out of range because a matrix spike duplicate was not prepared.

⁸RPD is out of range because a matrix spike duplicate was not prepared.

⁹RPD is out of range because a matrix spike duplicate was not prepared. ¹⁰RPD is out of range because a matrix spike duplicate was not prepared.

Param Dissolved Calcium Dissolved Potassium Dissolved Magnesium Dissolved Sodium Percent recovery is based on the Matrix Spike (MS-1) Spik	MSD Result 406 81.3 194 637 the spike result. RF	Units mg/L mg/L mg/L	Dil.	MSD Spike Matrix						
Dissolved Calcium Dissolved Potassium Dissolved Magnesium Dissolved Sodium Percent recovery is based on t	406 81.3 194 637	mg/L mg/L	Dil		Matrix		Rec			
Dissolved Potassium Dissolved Magnesium Dissolved Sodium Percent recovery is based on t	81.3 194 637	mg/L	E III	Amount	Result	Rec.	Lim		RPD]
Dissolved Magnesium Dissolved Sodium Percent recovery is based on t	194 637	•	1	50.0	361	90	68.4 -		2	
Dissolved Sodium Percent recovery is based on t	637	mø/L	1	50.0	22	119	82 - 1		10	
Percent recovery is based on			1	50.0	147	94	61.2 -		7	
	the spike result. RI	mg/L	1	50.0	578	118	81.8 -	125	1	
Matrix Spike (MS-1) Spik		2D is bas	sed on the sp	orke and spil	ke duplicate	result.				
	ked Sample: 96141									
QC Batch: 28782		Date	Analyzed:	2006-08-0	02			Ana	lyzed By	<i>r</i> :
Prep Batch: 25167			Preparation:	2006-08-0					bared By:	
		a			0.1					P
Daram	. MS		Linita	Dil	Spike	Mat		Pas		R Li
Param Chloride	Res		Units ma/I	Dil. 100	Amount	Res 98		Rec. 98		5.4
Sulfate	221 158		mg/L mg/L	100	12.5 12.5	29		98 102		5.4 0 -
Percent recovery is based on t								102		<u> </u>
				Spike	Matrix		Rec).		
	MSD								RPD	
Param	MSD Result	Units	Dil.	Amount	Result	Rec.	Lim	iit.	KF D	
Param Chloride Sulfate		Units mg/L mg/L	Dil. 100 100	Amount 12.5 12.5	Result 988 298	Rec. 97 100	25.4 - 0 - 6	171	0 2	
Chloride Sulfate Percent recovery is based on t	Result 2200 1550 the spike result. RF	mg/L mg/L PD is bas	100 100	12.5 12.5	988 298	97 100	25.4 -	171	0	
Chloride Sulfate Percent recovery is based on t	Result 2200 1550	mg/L mg/L PD is bas Date	100 100	12.5 12.5	988 298 ke duplicate 15	97 100	25.4 -	171 77 Ana	0	/:
Chloride Sulfate Percent recovery is based on t Matrix Spike (MS-1) Spik QC Batch: 28927	Result 2200 1550 the spike result. RF ked Sample: 97976	mg/L mg/L PD is bas Date QC F	100 100 sed on the sp Analyzed:	12.5 12.5 bike and spit	988 298 ke duplicate 15 11	97 100	25.4 -	171 77 Ana	0 2 ilyzed By	/: :
Chloride Sulfate Percent recovery is based on t Matrix Spike (MS-1) Spik QC Batch: 28927 Prep Batch: 25286	Result 2200 1550 the spike result. RF ked Sample: 97976	mg/L mg/L PD is bas Date QC P S	100 100 sed on the sp Analyzed: Preparation:	12.5 12.5 bike and spit 2006-08- 2006-08-	988 298 ke duplicate 15 11 Spike	97 100 result. Ma	25.4 - 0 - 6	171 77 Ana Prep	0 2 Ilyzed By pared By:	7: : R
Chloride Sulfate Percent recovery is based on t Matrix Spike (MS-1) Spik QC Batch: 28927 Prep Batch: 25286 Param	Result 2200 1550 the spike result. RF ked Sample: 97976 M ² Res	mg/L mg/L PD is bas Date QC P S Sult	100 100 sed on the sp Analyzed: Preparation: Units	12.5 12.5 bike and spit 2006-08- 2006-08- Dil.	988 298 ke duplicate 15 11 Spike Amount	97 100 result. Ma Res	25.4 - 0 - 6	171 77 Ana Prep Rec.	0 2 Ilyzed By pared By:	7: : Li
Chloride Sulfate Percent recovery is based on t Matrix Spike (MS-1) Spik QC Batch: 28927 Prep Batch: 25286 Param Chloride	Result 2200 1550 the spike result. RF ked Sample: 97976 Mt Res 69.	mg/L mg/L PD is bas Date QC P S sult .2	100 100 sed on the sp Analyzed: Preparation: Units mg/L	12.5 12.5 bike and spit 2006-08- 2006-08- Dil. 5	988 298 ke duplicate 15 11 Spike Amount 12.5	97 100 result. Ma Res 9.2	25.4 - 0 - 6 trix sult 24	171 77 Ana Prep <u>Rec.</u> 96	0 2 Ilyzed By pared By: 25	7: : Li 5.4
Chloride Sulfate Percent recovery is based on t Matrix Spike (MS-1) Spik QC Batch: 28927 Prep Batch: 25286 Param	Result 2200 1550 the spike result. RF ked Sample: 97976 Mi Res 69. 63.	mg/L mg/L PD is bas Date QC P S sult .2 .7	100 100 sed on the sp Analyzed: Preparation: Units mg/L mg/L	12.5 12.5 bike and spit 2006-08- 2006-08- Dil. 5 5	988 298 ke duplicate 15 11 Spike Amount 12.5 12.5	97 100 result. Ma Res 9.2 5.2	25.4 - 0 - 6	171 77 Ana Prep Rec.	0 2 Ilyzed By pared By: 25	7: : Li
Chloride Sulfate Percent recovery is based on r Matrix Spike (MS-1) Spik QC Batch: 28927 Prep Batch: 25286 Param Chloride Sulfate Percent recovery is based on a	Result 2200 1550 the spike result. RF ked Sample: 97976 MSD MSD	mg/L mg/L PD is bas Date QC P S sult .2 .7 PD is bas	100 100 sed on the sp Analyzed: Preparation: Units mg/L mg/L sed on the sp	12.5 12.5 bike and spii 2006-08- 2006-08- Dil. 5 5 bike and spii Spike	988 298 ke duplicate 15 11 Spike Amount 12.5 12.5 ke duplicate Matrix	97 100 result. Ma Res 9.1 5.2 result.	25.4 - 0 - 6 trix sult 24 29 Rec	171 77 Ana Prep <u>Rec.</u> 96 93	0 2 Ilyzed By pared By: 25	7: : Li 5.4 0 -
Chloride Sulfate Percent recovery is based on t Matrix Spike (MS-1) Spik QC Batch: 28927 Prep Batch: 25286 Param Chloride Sulfate Percent recovery is based on t Param	Result 2200 1550 the spike result. RF ked Sample: 97976 MSD Result	mg/L mg/L PD is bas Date QC P S sult .2 .7 PD is bas Units	100 100 sed on the sp Analyzed: Preparation: Units mg/L mg/L sed on the sp Dil.	12.5 12.5 bike and spir 2006-08- 2006-08- Dil. 5 5 bike and spir Spike Amount	988 298 ke duplicate 15 11 Spike Amount 12.5 12.5 ke duplicate Matrix Result	97 100 result. Ma Res 9.1 5.2 result. Rec.	25.4 - 0 - 6 trix sult 24 29 Rec Lim	171 77 Ana Prep <u>Rec.</u> 96 93	0 2 alyzed By pared By: 25 0 RPD	7: : Li 5.4 0 -
Chloride Sulfate Percent recovery is based on r Matrix Spike (MS-1) Spik QC Batch: 28927 Prep Batch: 25286 Param Chloride Sulfate Percent recovery is based on a	Result 2200 1550 the spike result. RF ked Sample: 97976 MSD MSD	mg/L mg/L PD is bas Date QC P S sult .2 .7 PD is bas	100 100 sed on the sp Analyzed: Preparation: Units mg/L mg/L sed on the sp	12.5 12.5 bike and spii 2006-08- 2006-08- Dil. 5 5 bike and spii Spike	988 298 ke duplicate 15 11 Spike Amount 12.5 12.5 ke duplicate Matrix	97 100 result. Ma Res 9.1 5.2 result.	25.4 - 0 - 6 trix sult 24 29 Rec	171 77 Ana Preg Rec. 96 93 5. 171	0 2 Ilyzed By pared By: 25	7: : Li 5.4

Param	Flag	Units	ICVs True Conc.	ICVs Found Conc.	ICVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Benzene		mg/L	0.100	0.104	104	85 - 115	2006-07-24
Toluene		mg/L	0.100	0.104	104	85 - 115	2006-07-24
Ethylbenzene		mg/L	0.100	0.104	104	85 - 115	2006-07-24
Xylene		mg/L	0.300	0.314	105	85 - 115	2006-07-24

Standard (CCV-1)

QC Batch: 282	QC Batch: 28277			zed: 2006-07-	Analyzed By: MT		
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		mg/L	0.100	0.107	107	85 - 115	2006-07-24
Toluene		mg/L	0.100	0.105	105	85 - 115	2006-07-24
Ethylbenzene		mg/L	0.100	0.106	106	85 - 115	2006-07-24
Xylene		mg/L	0.300	0.311	104	85 - 115	2006-07-24

Standard (ICV-1)

QC Batch: 28340		Γ	Date Analyzed:	2006-07-26		Ana	alyzed By: LJ
			ICVs	ICVs	ICVs	Percent	
7			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Total Alkalinity		mg/L as CaCo3	250	240	96	90 - 110	2006-07-26

Standard (CCV-1)

QC Batch: 28	3340		Date Analyzed:	2006-07-26		Ana	alyzed By: LJ
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Fla	g Units	Conc.	Conc.	Recovery	Limits	Analyzed
Total Alkalinit	ý	mg/L as CaCo	o3 250	240	96	90 - 110	2006-07-26

Standard (ICV-1)

QC Batch: 28356			Date Analyzed:	2006-07-26		Ana	alyzed By: TP
			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Dissolved Calcium		mg/L	50.0	50.7	101	90 - 110	2006-07-26
Dissolved Potassium		mg/L	50.0	52.0	104	90 - 110	2006-07-26
Dissolved Magnesium		mg/L	50.0	49.6	99	90 - 110	2006-07-26
Dissolved Sodium		mg/L	50.0	50.9	102	90 - 110	2006-07-26

Number: 13 of 17 Lea County,NM	Page N		Work Order: 6072142 EME D-1 Leak			006	eport Date: August 17, 2 ME D-1 Leak
							andard (CCV-1)
alyzed By: TP	Ana		2006-07-26	e Analyzed:	Γ		C Batch: 28356
	Percent	CCVs	CCVs	CCVs			
Date	Recovery	Percent	Found	True			
Analyzed	Limits	Recovery	Conc.	Conc.	Units	Flag	iram
2006-07-26	90 - 110	102	51.2	50.0	mg/L		issolved Calcium
2006-07-26	90 - 110	109	54.6	50.0	mg/L		issolved Potassium
2006-07-26	90 - 110	100	50.0	50.0	mg/L		issolved Magnesium
2006-07-26	90 - 110	106	53.2	50.0	mg/L		issolved Sodium
							andard (ICV-1)
lyzed By: SM	Ana		2006-07-27	Analyzed:	D		C Batch: 28406
	Percent	ICVs	ICVs	ICVs			
Date	Recovery	Percent	Found	True			
Analyzed	Limits	Recovery	Conc.	Conc.	Units	Flag	iram
2006-07-27	90 - 110	106	1056	1000	mg/L		otal Dissolved Solids
							andard (CCV-1)
lyzed By: SM	Ana		2006-07-27	Analyzed:	D		C Batch: 28406
llyzed By: SM		CCVs		-	D		C Batch: 28406
	Percent	CCVs Percent	2006-07-27 CCVs Found	Analyzed: CCVs True	D		C Batch: 28406
llyzed By: SM Date Analyzed			CCVs	CCVs	DUnits	Flag	C Batch: 28406 uram
Date	Percent Recovery	Percent	CCVs Found	CCVs True		Flag	
Date Analyzed	Percent Recovery Limits	Percent Recovery	CCVs Found Conc.	CCVs True Conc.	Units	Flag	ram
Date Analyzed	Percent Recovery Limits	Percent Recovery	CCVs Found Conc.	CCVs True Conc.	Units	Flag	ram
Date Analyzed	Percent Recovery Limits 90 - 110	Percent Recovery	CCVs Found Conc. 1075	CCVs True Conc.	Units mg/L	Flag	aram otal Dissolved Solids
Date Analyzed 2006-07-27	Percent Recovery Limits 90 - 110	Percent Recovery	CCVs Found Conc. 1075	CCVs True Conc. 1000 Analyzed:	Units mg/L	Flag	aram otal Dissolved Solids andard (ICV-1)
Date Analyzed 2006-07-27 lyzed By: WB Date	Percent Recovery Limits 90 - 110 Anal Percent Recovery	Percent Recovery 108	CCVs Found Conc. 1075 2006-08-02 Vs ind	CCVs True Conc. 1000 Analyzed: IC For	Units mg/L D		aram otal Dissolved Solids andard (ICV-1)
Date Analyzed 2006-07-27 lyzed By: WB Date Analyzed	Percent Recovery Limits 90 - 110 Anal Percent Recovery Limits	Percent Recovery 108 ICVs Percent Recovery	CCVs Found Conc. 1075 2006-08-02 Vs ind nc.	CCVs True Conc. 1000 Analyzed: IC For Co	Units mg/L D IC ^V Tru Con	Units	ram tal Dissolved Solids andard (ICV-1) C Batch: 28782 ram Flag
Date Analyzed 2006-07-27 lyzed By: WB Date Analyzed 2006-08-02	Percent Recovery Limits 90 - 110 Anal Percent Recovery Limits 90 - 110	Percent Recovery 108 ICVs Percent Recovery 99	CCVs Found Conc. 1075 2006-08-02 Vs ind nc. 4	CCVs True Conc. 1000 Analyzed: IC For Co 12	Units mg/L D IC' Trn Con 12	Units mg/L	ram otal Dissolved Solids andard (ICV-1) C Batch: 28782 ram Flag hloride
Date Analyzed 2006-07-27 lyzed By: WB Date Analyzed	Percent Recovery Limits 90 - 110 Anal Percent Recovery Limits	Percent Recovery 108 ICVs Percent Recovery	CCVs Found Conc. 1075 2006-08-02 Vs ind nc.	CCVs True Conc. 1000 Analyzed: IC For Co 12	Units mg/L D IC ^V Tru Con	Units	ram tal Dissolved Solids andard (ICV-1) C Batch: 28782 ram Flag
Date Analyzed 2006-07-27 lyzed By: WB Date Analyzed 2006-08-02	Percent Recovery Limits 90 - 110 Anal Percent Recovery Limits 90 - 110	Percent Recovery 108 ICVs Percent Recovery 99	CCVs Found Conc. 1075 2006-08-02 Vs ind nc. 4	CCVs True Conc. 1000 Analyzed: IC For Co 12	Units mg/L D IC' Trn Con 12	Units mg/L	ram otal Dissolved Solids andard (ICV-1) C Batch: 28782 ram Flag hloride
Date Analyzed 2006-07-27 lyzed By: WB Date Analyzed 2006-08-02	Percent Recovery Limits 90 - 110 Anal Percent Recovery Limits 90 - 110 90 - 110	Percent Recovery 108 ICVs Percent Recovery 99	CCVs Found Conc. 1075 2006-08-02 Vs ind nc. 4 7	CCVs True Conc. 1000 Analyzed: IC For Co 12	Units mg/L D IC ^v Tri Con 12 12	Units mg/L	ram andard (ICV-1) C Batch: 28782 ram Flag hloride
Date Analyzed 2006-07-27 lyzed By: WB Date Analyzed 2006-08-02 2006-08-02	Percent Recovery Limits 90 - 110 Anal Percent Recovery Limits 90 - 110 90 - 110 90 - 110 Anal Percent	Percent Recovery 108 ICVs Percent Recovery 99	CCVs Found Conc. 1075 2006-08-02 Vs ind nc. 4 7 2006-08-02 2006-08-02	CCVs True Conc. 1000 Analyzed: IC For Co 12 12 Analyzed: CC	Units mg/L D IC Tru Con 12 12 12 D CC	Units mg/L	andard (ICV-1) C Batch: 28782 ram Flag hloride llfate andard (CCV-1)
Date Analyzed 2006-07-27 lyzed By: WB Date Analyzed 2006-08-02 2006-08-02	Percent Recovery Limits 90 - 110 Anal Percent Recovery Limits 90 - 110 90 - 110 90 - 110	Percent Recovery 108 ICVs Percent Recovery 99 102	CCVs Found Conc. 1075 2006-08-02 Vs ind nc. 2006-08-02 2006-08-02	CCVs True Conc. 1000 Analyzed: IC For Co 12 12 Analyzed: CC	Units mg/L D IC ^v Tru Con 12 12 12	Units mg/L	andard (ICV-1) C Batch: 28782 ram Flag hloride lifate andard (CCV-1) C Batch: 28782
Date Analyzed 2006-07-27 lyzed By: WB Date Analyzed 2006-08-02 2006-08-02 2006-08-02 lyzed By: WB Date Analyzed	Percent Recovery Limits 90 - 110 Anal Percent Recovery Limits 90 - 110 90 - 110 90 - 110 Percent Recovery Limits	Percent Recovery 108 ICVs Percent Recovery 99 102 CCVs Percent Recovery	CCVs Found Conc. 1075 2006-08-02 Vs ind nc. .7 2006-08-02 Vs ind nc. .7	CCVs True Conc. 1000 Analyzed: IC For Co 12 12 Analyzed: CC For Co	Units mg/L D IC' Trn Con 12 12 12 D CC Trn Con	Units mg/L mg/L Units	ram tal Dissolved Solids andard (ICV-1) C Batch: 28782 ram Flag floride lfate andard (CCV-1) C Batch: 28782 ram Flag
Date Analyzed 2006-07-27 lyzed By: WB Date Analyzed 2006-08-02 2006-08-02 2006-08-02	Percent Recovery Limits 90 - 110 Anal Percent Recovery Limits 90 - 110 90 - 110 90 - 110 Anal Percent Recovery	Percent Recovery 108 ICVs Percent Recovery 99 102 CCVs Percent	CCVs Found Conc. 1075 2006-08-02 Vs ind nc. 4 7 2006-08-02 Vs ind	CCVs True Conc. 1000 Analyzed: IC For Co 12 12 Analyzed: CC For Co	Units mg/L D IC' Trn Con 12 12 12 12 D CC Tn	Units mg/L mg/L	andard (ICV-1) C Batch: 28782 ram Flag hloride lifate andard (CCV-1) C Batch: 28782

!

Report Date: August 17, 200 EME D-1 Leak	6		Work Order: 6072142 EME D-1 Leak			Page N	Number: 14 of 1 Lea County,NN
Standard (ICV-1)							
QC Batch: 28927		Date	Analyzed:	2006-08-15		Anal	yzed By: WB
		ICVs	I	CVs	ICVs	Percent	
		True	F	ound	Percent	Recovery	Date
Param Flag	Units	Conc.	C	Conc.	Recovery	Limits	Analyzed
Chloride	mg/L	12.5	1	12.3	98	90 - 110	2006-08-1:
Sulfate	mg/L	12.5	1	12.1	97	90 - 110	2006-08-1
Standard (CCV-1)							
QC Batch: 28927		Date Analyzed: 2006-08-15					lyzed By: WE
		CCVs	Ċ	CVs	CCVs	Percent	
		True	F	ound	Percent	Recovery	Date
Param Flag	Units	Conc.	Conc.		Recovery	Limits	Analyzed
Chloride	mg/L	12.5	12.5		100	90 - 110	2006-08-1
Sulfate	mg/L	12.5	1	12.2	98	90 - 110	2006-08-1
Standard (ICV-1)							
QC Batch: 29098		Date	Analyzed:	2006-08-16		Anal	lyzed By: WB
			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Total Dissolved Solids		mg/L	1000	1022	102	90 - 110	2006-08-1
Standard (CCV-1)							
QC Batch: 29098		Date	Analyzed:	2006-08-16		Anal	lyzed By: WE
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
		mg/L	1000	1007	101	90 - 110	2006-08-1

Work Order: 6072142 EME D-1 Leak

1

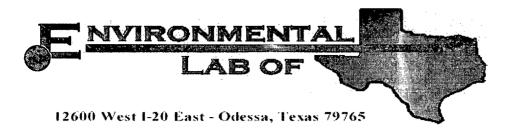
Carrier #

Submittal of samples constitutes agreement to Terms and Conditions listed on reverse side of COC

Report Date: August 17, 2006 EME D-1 Leak

Cation-Anion Balance Sheet

				oution-/		lance on	001					
DATE:	8/16/2006											
Sample #	Calcium	Magnesium	Sodium	Potassium	Alkalinity	Sulfate	Chloride	Nitrate	Fluoride	TDS	EC	
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	µMHOs/cm	
96137	572	299	7270	249	494	5480	13000			24400		
96138	379	203	6300	155	484	5240	9690			20000		
96139	581	379	7990	268	584	4770	15400			25900		
										Total	Total	
Sample #	Calcium	Magnesium	Sodium	Potassium	Alkalinity	Sulfate	Chloride	Nitrate	Fluoride	Cations	Anions	Percentage
	in meq/L	in meq/L	in meq/L	in meq/L	in meq/L	in meq/L	in meq/L	in meq/L	in meq/L	in meq/L	in meq/L	Error
96137	28.54	24.60	316.25	6.37	9.88	114.09	366.73			375.76	490.70	26.5
96138	18.91	16.70	274.05	3.96	9.68	109.10	273.35			313.63	392.13	22.2
96139	28.99	31.19	347.57	6.86	11.68	99.31	434.43	1		414.60	545.43	27.3
	EC/Cation	EC/Anion						TDS/EC	TDS/Cat	TDS/Anion	1	
96137			range	0	to	0			0.65	0.50	needs to be 0.55	-0.77
96138			range	0	to	0			0.64	0.51	needs to be 0.55	0.77
96139			range	. 0	to	0			0.62	0.47	needs to be 0.55	G0 77


Cation-Anion Balance Sheet

							Percentage	Error	22.8
	С	μMHOs/cm				Total	Anions	in meq/L	472.27
	TDS	bpm	24400	20000	25900	Total	Cations	in meq/L	375.76
	Fluoride	bpm					Fluoride	in meq/L	
	Nitrate	bpm					Nitrate	in meq/L	
	Chloride	bpm	12900	9390	15400		Chloride	in meq/L	363.91
	Sulfate	bpm	4730	5240	4770		Sulfate	in meq/L	98.48
	Alkalinity	ppm	494	484	584		Alkalinity	in meq/L	9.88
	Potassium	bpm	249	155	268		Potassium	in meq/L	6.37
	Sodium	bpm	7270	6300	7990		Sodium	in meq/L	316.25
	Magnesium	bpm	299	203	379		Magnesium	in meq/L	24.60
8/16/2006	Calcium	bpm	572	379	581		Calcium	in meq/L	28.54
DATE:	Sample #		96137	96138	96139		Sample #		96137

TDS/EC TDS/Cat TDS/Anion range 0 to 0 0.65 0.52 range 0 to 0 0 0.64 0.52 range 0 to 0 0 0.64 0.52 range 0 to 0 0 0.64 0.52	//Anion	2		
TDS/EC 0 to 0 0 to 0 0 to 0	TDS	0.52	0.52	0.47
2 2 2 2 2 2	TDS/Cat	0.65	0.64	0.62
range D to O range D to O range D to O	TDS/EC			
range () to () range () to () range () to ()				
range () to () range () to () range () to () range () to ()				
range () to range () to range () to		0	0	0
range () range () range ()		to	Q	to
ເຂັ້າເຊື່ອ ເຊິ່ນເຊືອ ເຊັ່ນເຊືອ		0	0	0
rang rang		e te	10	e
		rang	rang	วินยา
		_	_	_
n EC/Anion	EC/Catio			
EC/Cation EC	Ч		96138	96139

needs to be 0.55-0.77 needs to be 0.55-0.77 needs to be 0.55-0.77

6

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: EME Jct. D-1 Leak Project Number: None Given Location: T20S-R36E-Sec.1D, Lea County, NM

Lab Order Number: 6J12013

Report Date: 10/24/06

Rice Operating Co.	
122 W. Taylor	
lobbs NM, 88240	

Project:EME Jct. D-1 LeakProject Number:None GivenProject Manager:Kristin Farris-Pope

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1	6J12013-01	Water	10/10/06 11:00	10-12-2006 16:00
Monitor Well #2	6J12013-02	Water	10/10/06 09:25	10-12-2006 16:00
Monitor Well #3	6J12013-03	Water	10/10/06 08:05	10-12-2006 16:00

22 W. Taylor lobbs NM, 88240

Project: EME Jct. D-1 Leak Project Number: None Given Project Manager: Kristin Farris-Pope

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6J12013-01) Water		<u></u>							
Benzene	ND	0.00100	mg/L	1	EJ61407	10/14/06	10/16/06	EPA 8021B	
Toluene	ND	0.00100	"		"	11	"	"	
Ethylbenzene	ND	0.00100	n	"	"	"	"	"	
Xylene (p/m)	ND	0.00100	"		"	**			
Xylene (0)	ND	0.00100	"	"	"	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		81.5 %	80-12	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.5 %	80-12	20	"	"	"	"	
Monitor Well #2 (6J12013-02) Water									
Benzene	ND	0.00100	mg/L	1	EJ61407	10/14/06	10/16/06	EPA 8021B	
Toluene	ND	0.00100		"	"	"	"	n	
Ethylbenzene	ND	0.00100			"	11	"	"	
Xylene (p/m)	ND	0.00100	"	**	H	11	n	"	
Xylene (o)	ND	0.00100	n	"	"	"	"	**	
Surrogate: a,a,a-Trifluorotoluene		88.5 %	80-12	20	"	11	"	"	
rogate: 4-Bromofluorobenzene		119 %	80-12	20	"	"	"	"	
Monitor Well #3 (6J12013-03) Water									
Benzene	ND	0.00100	mg/L	1	EJ61407	10/14/06	10/16/06	EPA 8021B	
Toluene	ND	0.00100	n	"	"	11	"	"	
Ethylbenzene	ND	0.00100	11	11	"	"	"	"	
Xylene (p/m)	ND	0.00100	n	"	"	11	11		
Xylene (o)	ND	0.00100	11	"	"	11	"	**	
Surrogate: a,a,a-Trifluorotoluene		84.8 %	80-12	20	"	"	"	**	
Surrogate: 4-Bromofluorobenzene		87.5 %	80-12	20	"	"	"	"	

Project: EME Jct. D-1 Leak Project Number: None Given Project Manager: Kristin Farris-Pope

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Monitor Well #1 (6J12013-01) Water									
Total Alkalinity	488	2.00	mg/L	1	EJ61311	10/13/06	10/13/06	EPA 310.1M	
Chloride	10200	250	"	500	EJ61403	10/19/06	10/19/06	EPA 300.0	
Total Dissolved Solids	20200	10.0	"	1	EJ61404	10/14/06	10/15/06	EPA 160.1	
Sulfate	4570	250	"	500	EJ61403	10/19/06	10/19/06	EPA 300.0	
Monitor Well #2 (6J12013-02) Water									
Total Alkalinity	472	2.00	mg/L	1	EJ61311	10/13/06	10/13/06	EPA 310.1M	
Chloride	7910	250	"	500	EJ61403	10/19/06	10/19/06	EPA 300.0	
Total Dissolved Solids	18000	10.0	u	1	EJ61404	10/14/06	10/15/06	EPA 160.1	
Sulfate	4790	250	n	500	EJ61403	10/19/06	10/19/06	EPA 300.0	
Monitor Well #3 (6J12013-03) Water									
Total Alkalinity	556	2.00	mg/L	1	EJ61311	10/13/06	10/13/06	EPA 310.1M	
Chloride	13100	250	"	500	EJ61403	10/19/06	10/19/06	EPA 300.0	
Total Dissolved Solids	24000	10.0	"	1	EJ61404	10/14/06	10/15/06	EPA 160.1	
lfate	4570	250	"	500	EJ61403	10/19/06	10/19/06	EPA 300.0	

dium

Project: EME Jct. D-1 Leak Project Number: None Given Project Manager: Kristin Farris-Pope

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6J12013-01) Water									
Calcium	495	4.05	mg/L	50	EJ61604	10/13/06	10/16/06	EPA 6010B	-
Magnesium	233	1.80	n		"	11	"	"	
Potassium	275	3.00	"	н	"	11	"		
Sodium	7390	43.0	"	1000	"	11	н	"	
Monitor Well #2 (6J12013-02) Water									
Calcium	370	4.05	mg/L	50	EJ61604	10/13/06	10/16/06	EPA 6010B	
Magnesium	184	1.80	н	"	"	"	"	"	
Potassium	179	3.00	"	"	"	"	"	"	
Sodium	6410	43.0	"	1000	"	11	"	"	
Monitor Well #3 (6J12013-03) Water									
Calcium	595	4.05	mg/L	50	EJ61604	10/13/06	10/16/06	EPA 6010B	
Magnesium	328	1.80	"	"	"	11		"	
Potassium	360	3.00	"	"	**	"	"	"	

43.0

...

1000

9300

hvironmental Lab of Texas

Project: EME Jct. D-1 Leak Project Number: None Given Project Manager: Kristin Farris-Pope

Organics by GC - Quality Control

Environmental Lab of Texas

Reporting Spike Source %REC RPD	Reporting Spike Source %REC RPD	1
Analyte Result Limit Units Level Result %REC Limits RPD Limit	Result Limit Units Level Result %REC Limits RPD Limit	Notes

Batch EJ61407 - EPA 5030C (GC)

Blank (EJ61407-BLK1)				Prepared: 1	0/14/06 A	nalyzed: 10	0/15/06	
Benzene	ND	0.00100	mg/L					
Toluene	ND	0.00100	"					
Ethylbenzene	ND	0.00100	н					
Xylene (p/m)	ND	0.00100						
Xylene (o)	ND	0.00100	"					
Surrogate: a,a,a-Trifluorotoluene	33.5		ug/l	40.0		83.8	80-120	
Surrogate: 4-Bromofluorobenzene	35.0		"	40.0		87.5	80-120	
LCS (EJ61407-BS1)				Prepared: 10	0/14/06 A	nalyzed: 10	0/15/06	
Benzene	0.0451	0.00100	mg/L	0.0500		90.2	80-120	
Toluene	0.0430	0.00100	"	0.0500		86.0	80-120	
Ethylbenzene	0.0513	0.00100		0.0500		103	80-120	
Xylene (p/m)	0.0929	0.00100	"	0.100		92.9	80-120	
Xylene (0)	0.0423	0.00100	"	0.0500		84.6	80-120	
Surrogate: a,a,a-Trifluorotoluene	34.4		ug/l	40.0		86.0	80-120	
Surrogate: 4-Bromofluorobenzene	43.8		"	40.0		110	80-120	
bibration Check (EJ61407-CCV1)				Prepared: 1	0/14/06 A	nalyzed: 10)/17/06	
enzene	49.9		ug/l	50.0		99.8	80-120	
Foluene	43.1		"	50.0		86.2	80-120	
Ethylbenzene	42.0		"	50.0		84.0	80-120	
Xylene (p/m)	83.7		н	100		83.7	80-120	
Xylene (0)	41.2		11	50.0		82.4	80-120	
Surrogate: a,a,a-Trifluorotoluene	36.1		"	40.0		90.2	80-120	
Surrogate: 4-Bromofluorobenzene	34.3		"	40.0		85.8	80-120	
Matrix Spike (EJ61407-MS1)	Sou	rce: 6J12015-(01	Prepared: 1	0/14/06 A	nalyzed: 10)/17/06	
Benzene	0.0501	0.00100	mg/L	0.0500	ND	100	80-120	
Toluene	0.0440	0.00100	"	0.0500	ND	88.0	80-120	
thylbenzene	0.0416	0.00100	"	0.0500	ND	83.2	80-120	
Kylene (p/m)	0.0914	0.00100	"	0.100	ND	91.4	80-120	
Xylene (o)	0.0427	0.00100	n	0.0500	ND	85.4	80-120	
Surrogate: a,a,a-Trifluorotoluene	35.5		ug/l	40.0		88.8	80-120	
Surrogate: 4-Bromofluorohenzene	40.2		"	40.0		100	80-120	

Project: EME Jct. D-1 Leak Project Number: None Given Project Manager: Kristin Farris-Pope

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EJ61407 - EPA 5030C (GC)

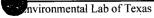
Matrix Spike Dup (EJ61407-MSD1)	Sou	rce: 6J12015-0	01	Prepared: 10/14/06 Analyzed: 10/17/06						
Benzene	0.0502	0.00100	mg/L	0.0500	ND	100	80-120	0.00	20	
Toluene	0.0442	0.00100	n	0.0500	ND	88.4	80-120	0.454	20	
Ethylbenzene	0.0412	0.00100	11	0.0500	ND	82.4	80-120	0.966	20	
Xylene (p/m)	0.0913	0.00100	"	0.100	ND	91.3	80-120	0.109	20	
Xylene (0)	0.0437	0.00100	"	0.0500	ND	87.4	80-120	2.31	20	
Surrogate: a,a,a-Trifluorotoluene	35.4		ug/l	40.0		88.5	80-120			
Surrogate: 4-Bromofluorobenzene	41.0		"	40.0		102	80-120			

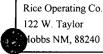
Rice Operating Co.		
122 W. Taylor		
Hobbs NM, 88240		

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Motor
	Result	Luna	Units	Level	Kesuit	%KEU		KPD	Limit	Notes
Batch EJ61311 - General Preparation (VetChem)									
Blank (EJ61311-BLK1)				Prepared &	z Analyzed:	10/13/06				
Total Alkalinity	ND	2.00	mg/L							
Carbonate Alkalinity	ND	0.100	"							
Bicarbonate Alkalinity	ND	2.00	"							
Hydroxide Alkalinity	ND	0.100	"							
LCS (EJ61311-BS1)				Prepared: 1	10/13/06 Ai	nalyzed: 10	/20/06			
Bicarbonate Alkalinity	196	2.00	mg/L	200		98.0	85-115			
Duplicate (EJ61311-DUP1)	Sour	ce: 6J12011-(01	Prepared &	z Analyzed:	10/13/06				
Fotal Alkalinity	238	2.00	mg/L		242			1.67	20	
Reference (EJ61311-SRM1)				Prepared &	z Analyzed:	10/13/06				
Fotal Alkalinity	250		mg/L	250		100	90-110			
Batch EJ61403 - General Preparation (V	WetChem)									
Blank (EJ61403-BLK1)				Prepared &	Analyzed:	10/19/06				
Sulfate	ND	0.500	mg/L							
Chloride	ND	0.500	"							
S (EJ61403-BS1)				Prepared &	z Analyzed:	10/19/06				
Sulfate	9.55	0.500	mg/L	10.0		95.5	80-120			
Chloride	9.62	0.500	"	10.0		96.2	80-120			
Calliburgham Charle (F.K.1402, CCW1)				Prepared &	Analyzed:	10/19/06				
Calibration Check (EJ61403-CCV1)										
Chloride	10.5		mg/L	10.0		105	80-120			




Rice Operating Co.	Project:	EME Jct. D-1 Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number:	None Given	
 Hobbs NM, 88240	Project Manager:	Kristin Farris-Pope	[

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EJ61403 - General Preparation (We	tChem)									
Duplicate (EJ61403-DUP1)	Sou	rce: 6J12011-0	01	Prepared &	Analyzed:	10/19/06				
Chloride	1430	25.0	mg/L		1430			0.00	20	
Sulfate	291	25.0	"		308			5.68	20	
Duplicate (EJ61403-DUP2)	Sou	rce: 6J12016-6	02	Prepared &	Analyzed:	10/19/06				
Chloride	690	12.5	mg/L		692			0.289	20	
Sulfate	236	12.5	"		237			0.423	20	
Matrix Spike (EJ61403-MS1)	Sou	rce: 6J12011-0	01	Prepared &	z Analyzed:	10/19/06				
Sulfate	781	25.0	mg/L	500	308	94.6	80-120		· ·	
Chloride	2040	25.0	11	500	1430	122	80-120			S-07
Matrix Spike (EJ61403-MS2)	Sou	rce: 6J12016-0	02	Prepared &	Analyzed:	10/19/06				
Chloride	979	12.5	mg/L	250	692	115	80-120			
Sulfate	476	12.5	"	250	237	95.6	80-120			
Batch EJ61404 - Filtration Preparation										
Blank (EJ61404-BLK1)				Prepared:	0/14/06 A	nalyzed: 1()/15/06			
Total Dissolved Solids	ND	10.0	mg/L							
Juplicate (EJ61404-DUP1)	Sou	rce: 6J12011-0	01	Prepared: 1	0/14/06 A	nalyzed: 10	0/15/06			
Total Dissolved Solids	3380	10.0	mg/L		3260			3.61	5	
Duplicate (EJ61404-DUP2)	Sou	rce: 6J12016-0	02	Prepared: 1	0/14/06 A	nalyzed: 1(0/15/06			
Total Dissolved Solids	1850	10,0	mg/L		1900			2.67	5	

Project: EME Jct. D-1 Leak Project Number: None Given Project Manager: Kristin Farris-Pope

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EJ61604 - 6010B/No Digestion

Blank (EJ61604-BLK1)				Prepared: 10/13/0	6 Analyzed: 10	0/16/06			
Calcium	ND	0.0810	mg/L						
Magnesium	ND	0.0360	0						
Potassium	ND	0.0600	"						
Sodium	ND	0.0430	n						
Calibration Check (EJ61604-CCV1)				Prepared: 10/13/0	6 Analyzed: 10)/16/06			
Calcium	1.99		mg/L	2.00	99.5	85-115			
Magnesium	2.20		n	2.00	110	85-115			
Potassium	1.94		n	2.00	97.0	85-115			
Sodium	1.79		n	2.00	89.5	85-115			
Duplicate (EJ61604-DUP1)	Sour	ce: 6J12001-(04	Prepared: 10/13/0	6 Analyzed: 10	0/16/06			
Calcium	0.426	0.0810	mg/L	0.42	27		0.234	20	
Magnesium	0.432	0.0360	n	0.42	22		2.34	20	
Potassium	0.596	0.0600	n	0.58	32		2.38	20	
Sodium	0,890	0.0430	"	0.86	56		2.73	20	

Notes and Definitions

- S-07 Recovery outside Laboratory historical or method prescribed limits.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Report Approved By:

Raland K that Date:

10/24/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

vironmental Lab of Texas

ND ANAL YSIS REQUEST	EME Junction D-1 Leak		T20S-R36E-Sec1D, Lea County NM				Analyza For:	TOTAL		2 CS- L4P H(2) 31 H(CO3)	62 68 gA 2 298 298 298 298 298 298 298 298 298 29	Marars (C Semi-total Metaza Me	X X X X X X X X X X X X X X X X X X X	x x x x x x	X X X X X				Sample. Containers. Intact? A N. Labets on container? A N. Cuaticdy Seals. Centainer? Confer Temperature Upon Recept:	Laboratory Comments: 2.0		
CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST	Project Name:	Project Number:	Project Lac:	PO Number:	7-1471				Preservative Metrix			Carrent (ct Sourt Sourt Sourtige Monte (u) Monte (u) Monte (u) Monte (u)	2 1 X	2 1 1 X	2 1 X				anks@riceswd.com	Date		Dete Tame.
60	/d.com				Fax No: (505) 397-147	000		N/A			bəlqmə bərəno2	Time S	2006 11:00 3 X	2006 9:25 3 X	2006 8:05 3 X	· · · · · · · · · · · · · · · · · · ·			kpope@riceswd.com;	<u></u>		NEW NOR
D Of TEXAS Phone: 432-563-1800 Fax: 432-563-1713	rris Pope kpope@riceswd	erating Company	aylor Street	ew Mexico 88240	-9174	Johnson (505) 631-9310	2valornet.com	P			sanpled	HieLD COD5	10/10/2006	10/10/2006	10/10/2006				PLEASE Email RESULTS TO: k cozanne@valcinet.com		N0' 7 V	Date Time Received by ELOT
Epuironmental Lab of Texas 1260043511-20 East Phone: 412-563-1800 odeese, Texas 78766 Fax: 432-563-1713	Project Manager: Kristin Farris Pope	Company Name RICE Operating Company	Company Address: 122 W. Taylor Street	city/state/zip: <u>Hobbs, New Mexico 88240</u>	Telephone No: (505) 393-9174	sampler signature: Rozanne Johnson (505) 631-9310	Email: 10220000000				- Active			Monitor Well #2	AC Monitor Well #3				Special Instructions:	Banhanantad by:	Rozanne Johnson	Reinquished by:

 $\mathcal{L} = \left\{ \begin{array}{ccc} \tilde{\mathbf{n}} & -\tilde{\mathbf{n}} & \tilde{\mathbf{n}} & \tilde{\mathbf{n}$

1

No de la fer

1.4

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

ent	Rive Op.	
te/ Time:	10/12/de 4:00	
o ID # :	6312013	
tials:		

Sample Receipt Checklist

				Clier	nt Initials
T	emperature of container/ cooler?	Yes	No	2,0 °C	
: S	hipping container in good condition?	(¥eş	_No		
3 C	ustody Seals intact on shipping container/ cooler?	des	No	Not Present	
+ C	ustody Seals intact on sample bottles/ container?	Yes	No	Not Present	
5 C	hain of Custody present?	XES	No		
3 S	ample instructions complete of Chain of Custody?	tes	No		
7 C	hain of Custody signed when relinquished/ received?	YES	No		
3 C	hain of Custody agrees with sample label(s)?	Yes	No	ID written on Cont./ Lid	
÷Ο	ontainer label(s) legible and intact?	(A)	No	Not Applicable	
10 5	Sample matrix/ properties agree with Chain of Custody?	<i>fes</i>	No		
11 (Containers supplied by ELOT?	Yes	No		
12 3	Samples in proper container/ bottle?	Yes	No	See Below	
13 8	Samples properly preserved?	Yes	No	See Below	
:14 3	Sample bottles intact?	Yes	No		
15	Preservations documented on Chain of Custody?	Yes	No		
16	intainers documented on Chain of Custody?	Yes	No		
17	Sufficient sample amount for indicated test(s)?	Ves	No	See Below	
£18 /	All samples received within sufficient hold time?	Yes	No	See Below	
‡19 `	VOC samples have zero headspace?	Yes	No	Not Applicable	

Variance Documentation

Contact:	 Contacted by: Dat	te/ Time:
Regarding:	 	
Corrective Action Taken		
Check all that Apply:	See attached e-mail/ fax Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event	\$ •

٠,

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: EME Jct. D-1 Leak Project Number: None Given Location: T20S-R36E-SecD 1, Lea County NM

Lab Order Number: 6L27020

Report Date: 01/05/07

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240

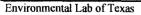
.

.

Project: EME Jct. D-1 Leak Project Number: None Given Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

ANALYTICAL REPORT FOR SAMPLES


Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-# 4	6L27020-01	Water	12/22/06 09:10	12-27-2006 15:45

Page 1 of 10

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-# 4 (6L27020-01) Water	<u></u>								
Benzene	ND	0.00100	mg/L	1	EL63102	12/31/06	01/02/07	EPA 8021B	
Toluene	ND	0.00100		"	"		-	17	
Ethylbenzene	ND	0.00100	-	"	*		"	4	
Xylene (p/m)	ND	0.00100		۳	n	"	n	m	
Xylene (0)	ND	0.00100	n				N	H	
Surrogate: a,a,a-Trifluorotoluene		102 %	80-12	0	"	"	"	#	
Surrogate: 4-Bromofluorobenzene		88.0 %	80-12	0	"	"	"	π	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 2 of 10

Project: EME Jct. D-1 Leak Project Number: None Given Project Manager: Kristin Farris-Pope

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-# 4 (6L27020-01) Water									
Total Alkalinity	480	20.0	mg/L	10	EL62804	12/28/06	12/28/06	EPA 310.1M	В
Chloride	12900	250	n	500	EL62904	12/29/06	12/29/06	EPA 300.0	
Total Dissolved Solids	22700	10,0	-	1	EL62801	12/28/06	12/29/06	EPA 160.1	
Sulfate	4440	250	n	500	EL62904	12/29/06	12/29/06	EPA 300.0	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 3 of 10

Project: EME Jct. D-1 Leak Project Number: None Given Project Manager: Kristin Farris-Pope

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-# 4 (6L27020-01) Water									
Calcium	472	20.2	mg/L	250	EL62806	12/28/06	12/28/06	EPA 6010B	
Magnesium	279	9.00		-	"				
Potassium	210	3.00		50	•	"	"	-	
Sodium	10200	215	m	5000	"			м	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project:EME Jct. D-1 LeakProject Number:None GivenProject Manager:Kristin Farris-Pope

Organics by GC - Quality Control

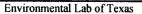
Environmental Lab of Texas

		Reporting		Spike	Source	0/852	%REC	ppp	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL63102 - EPA 5030C (GC)								·····		
Blank (EL63102-BLK1)				Prepared: 1	2/31/06 A	nalyzed: 01	/01/07			
Benzene	ND	0.00100	mg/L							
Toluene	ND	0,00100								
Ethylbenzene	ND	0.00100	*							
Xylene (p/m)	ND	0.00100	-							
Xylene (o)	ND	0.00100								
Surrogate: a,a,a-Trifluorotoluene	32.5		ug/l	40.0		81.2	80-120			
Surrogate: 4-Bromofluorobenzene	35.2		"	40.0		88.0	80-120			
LCS (EL63102-BS1)				Prepared: 1	2/31/06 Ai	nalyzed: 01	/01/07			
Benzene	0.0421	0.00100	mg/L	0.0500		84.2	80-120			
Foluene	0.0413	0.00100		0.0500		82.6	80-120			
Ethylbenzene	0.0424	0.00100	*	0.0500		84.8	80-120			
Xylene (p/m)	0.0832	0.00100	-	0.100		83.2	80-120			
Xylene (o)	0.0410	0.00100	۳	0.0500		82.0	80-120			
Surrogate: a,a,a-Trifluorotoluene	32.0		ug/l	40.0		80.0	80-120			
Surrogate: 4-Bromofluorobenzene	44.0		"	40.0		110	80-120			
Calibration Check (EL63102-CCV1)				Prepared: 1	2/31/06 Ar	nalyzed: 01	/02/07			
Benzene	46.4		ug/l	50.0		92.8	80-120			
Foluene	47.2			50.0		94.4	80-120			
Ethylbenzene	47.9			50.0		95.8	80-120			
(ylene (p/m)	91.8		"	100		91.8	80-120			
(vlene (o)	45.2			50.0		90.4	80-120			
Surrogate: a,a,a-Trifluorotoluene	43.2		"	40.0		108	80-120			
Surrogate: 4-Bromofluorobenzene	33.1		"	40.0		82.8	80-120			
Matrix Spike (EL63102-MS1)	Sou	rce: 6L22002-	44	Prepared: 1	2/31/06 An	nalyzed: 01	/02/07			
Benzene	0.0468	0.00100	mg/L	0.0500	ND	93.6	80-120			
oluene	0.0489	0.00100	**	0.0500	ND	97.8	80-120			
thylbenzene	0.0468	0.00100	*	0.0500	ND	93.6	80-120			
(ylene (p/m)	0.108	0.00100	•	0.100	ND	108	80-120			
(o)	0.0517	0.00100		0.0500	ND	103	80-120			
urrogate: a,a,a-Trifluorotoluene	44.1		ug/l	40.0		110	80-120			
urrogate: 4-Bromofluorobenzene	39.0		"	40.0		97.5	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: EME Jct. D-1 Leak Project Number: None Given Project Manager: Kristin Farris-Pope


Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EL63102 - EPA 5030C (GC)

Matrix Spike Dup (EL63102-MSD1)	Sou	rce: 6L22002-	44	Prepared: 1	2/31/06 A	nalyzed: 0	1/02/07			
Benzene	0.0587	0.00100	mg/L	0.0500	ND	117	80-120	22.2	20	R
Toluene	0.0598	0.00100		0.0500	ND	120	80-120	20.4	20	R
Ethylbenzene	0.0579	0.00100	"	0.0500	ND	116	80-120	21.4	20	R
Xylene (p/m)	0.120	0.00100	"	0.100	ND	120	80-120	10.5	20	
Xylene (o)	0.0596	0.00100	•	0.0500	ND	119	80-120	14.4	20	
Surrogate: a,a,a-Trifluorotoluene	46.9		ug/l	40.0		117	80-120			
Surrogate: 4-Bromofluorobenzene	46.7		"	40.0		117	80-120			

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

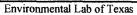
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL62801 - Filtration Preparation	<u> </u>									
Blank (EL62801-BLK1)				Prepared: 1	2/28/06 A	nalyzed: 12	2/29/06			
Total Dissolved Solids	ND	10.0	mg/L							
Duplicate (EL62801-DUP1)	Sou	rce: 6L27020-	01	Prepared: 1	2/28/06 A	nałyzed: 12	/29/06			
Total Dissolved Solids	26600	10.0	mg/L		22700			15.8	20	
Batch EL62804 - General Preparation	(WetChem)									
Blank (EL62804-BLK1)				Prepared &	Analyzed:	12/28/06				
Total Alkalinity	6.00	4.00	mg/L	····	·					
LCS (EL62804-BS1)				Prepared &	: Analyzed:	12/28/06				
Total Alkalinity	180	4.00	mg/L	200		90.0	85-115			
Bicarbonate Alkalinity	180	4.00	"	200		90.0	85-115			
Duplicate (EL62804-DUP1)	Sou	rce: 6L27020-	01	Prepared &	Analyzed:	12/28/06				
Total Alkalinity	510	20.0	mg/L		480			6.06	20	
Reference (EL62804-SRM1)				Prepared &	Analyzed:	12/28/06				
Total Alkalinity	244	4.00	mg/L	250		97.6	90-110			
Batch EL62904 - General Preparation	(WetChem)									
Blank (EL62904-BLK1)				Prepared &	Analyzed:	12/29/06				
Chloride	ND	0.500	mg/L	······						
Sulfate	ND	0.500			•					

Environmental Lab of Texas

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL62904 - General Preparation (V	VetChem)									
LCS (EL62904-BS1)				Prepared &	Analyzed:	12/29/06				
Sulfate	10.1	0.500	mg/L	10.0		101	80-120			
Chloride	10.0	0.500	•	10.0		100	80-120			
Calibration Check (EL62904-CCV1)				Prepared &	Analyzed:	12/29/06				
Sulfate	12.0		mg/L	10.0		120	80-120			
Chloride	9.07		"	10.0		90.7	80-120			
Duplicate (EL62904-DUP1)	Sourc	æ: 6L27006-	01	Prepared &	Analyzed:	12/29/06				
Sulfate	241	25.0	mg/L		234			2.95	20	
Chloride	750	25.0	"		730			2.70	20	
Duplicate (EL62904-DUP2)	Sourc	e: 6L27017-	09	Prepared &	Analyzed:	12/29/06				
Chloride	66.0	5.00	mg/L		68.0			2.99	20	
Sulfate	76.7	5.00	"		77.7			1.30	20	
Matrix Spike (EL.62904-MS1)	Sourc	e: 6L27006-	01	Prepared &	Analyzed:	12/29/06				
Chloride	1320	25.0	mg/L	500	730	118	80-120			
Sulfate	765	25.0		500	234	106	80-120			
Matrix Spike (EL.62904-MS2)	Sourc	e: 6L27017-	09	Prepared &	Analyzed:	12/29/06				
Chloride	175	5.00	mg/L	100	68.0	107	80-120			
Sulfate	178	5.00	۳	100	77.7	100	80-120			


Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC	•	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL62806 - 6010B/No Digestion										
Blank (EL62806-BLK1)				Prepared &	Analyzed:	12/28/06				
Calcium	ND	0.0810	mg/L							
Magnesium	ND	0.0360	۳							
Potassium	ND	0.0600	"							
Sodium	ND	0.0430	۳							
Calibration Check (EL62806-CCV1)				Prepared &	Analyzed:	12/28/06				
Calcium	2.00		mg/L	2.00		100	85-115			
Magnesium	2.11			2.00		106	85-115			
Potassium	1.72		۳	2.00		86.0	85-115			
Sodium	1.89		*	2.00		94.5	85-115			
Duplicate (EL62806-DUP1)	Sou	rce: 6L27020-	01	Prepared &	Analyzed:	12/28/06				
Calcium	515	20.2	mg/L		472			8.71	20	
Magnesium	302	9.00	*		279			7.92	20	
Potassium	238	3.00	"		210			12.5	20	
Sodium	13100	215	н		10200			24.9	20	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Notes and Definitions

- R The RPD exceeded the method control limit. The individual analyte QA/QC recoveries, however, were within acceptance limits.
- B Analyte is found in the associated blank as well as in the sample (CLP B-flag).
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Report Approved By:

Raland K Jut Date: 1/5/2007

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 10 of 10

Environmental Lab of Texas	tal Lab of Te	Sex						CHA	IN OF	CUST	CHAIN OF CUSTODY RECORD AND AMALYSIS REQUEST	ord A	ND AN	AL YS!	s REQ	JEST (
						φų	600 Wr lessa,	12600 West I-20 East Odessa, Texas 79765	East 79765					ᅕᄟ	Phone: 432-563-1800 Fax: 432-563-1713	132-56 132-56	432-563-1800 432-563-1713			E.	
Project Manager.	Kristin Farris Pope	Å	kpope@rice	swd.com							P	Project Name: EME Junction D-1 Leak	Ш Ш	ME Ju	oction	0-1 L	aak				ł
Company Name	RICE Operating Company	mpany										Project #	ct#: 								1
Company Address:	s: 122 W. Taylor Street	et.										Project Loc: T20S-R36E-SecD 1	ii ii	IOS-R36	E-SecD	1~Le	~ Lea County New Mexico	y New	Mexico		ł
City/State/Zip:	Hobbs, New Mexico 88240	0 8824(C.	Po #								
Telephone No:	(505) 393-9174			Fax No:	Ň	(505	397	(505) 397-1471			Repor	Report Format:		X Standard	lard		🗌 TRRP			NPDES	
Sampler Signature	Sampler Signature: Rozanne Johnson (505)631-9310	-9310		e-II	e-mail:	roza	<u>nne@</u>	rozanne@valornet.com	<u>net.c</u>	티					A dollar					Ľ	
(lab use only)		A	Z											en la			\vdash		-		
оврек#: (е.С.27.02.0	50	9				L	Prese	Preservation & # of Containers	of Container		Matrix	89				<				डाय ट्रा	
μ (γίαο θευ dei) # θλ.	FIELD CODE	niqaD poinnigas	ntrag Depth Date Sampled	bəlqma2 amiT	barelii bie	otal #. of Containers	HCI (S) 40 ml diase visit	*୦ଟ୍ୟ	eOs2ssen Rogn	Ditrer (Specify) None (1) 1 Liter HDPE	v=Cirothie Seven SL=Sludge bioSunderster S=BoilgSolid P=Nantantie SpecifyCher	PH: 418,1 8015M 801 PH: TX 1005 TX 1006	Selions (Ce, Mg, Na, K) Inions (Cl, SO4, Alkelinity)	SAR / ESP / CEC	Aetals: As Ag Ba Cd Cr Pb Hg S follow	56mivolatikes 57EX 80219/6030	N.O.R.M. SCI	Potal Dissolved Solids		84 .45 (9469402-919) TAT HSUS	TAT brebnet
Monitor Well #4			12/22/	2006 9:10	<u>-</u>	-				+	alð		-	;	-		+				
																					T
			_						_	+									-+		T
					_									1	_						
					-			1					-	1				1	+		Τ
Special Instructions: Please email to :	ail to : kpope@riceswd.com		mfrank	mfranks@riceswd.com	_	rozan	ne@va	rozanne@valomet.com	com	-				Laboratory Comments: Sample Containers Intact?	Comme Comme Comme Comme Comme Comme	nts:			30		
Reindanea Dy: Rozanne Jobnson	Date 12-27-04	Time 1545	Received	by:						Date	2	Time		Labels on container(s) Custody seals on container(s)	aliner(s)	(8)		n Dan	Z Z Z	\$\$?
Retinquished by:	Date	Тіте	Received	by:						Date	ej	Time	Samp	Sample Hand Delivered by Sample Client Rep. 7	Client	Rep. ?		-0- 		zz	2
Relinquished by:	Date	Time	Received	by ELOT:						Date Date		Time 1545		by Counter? UPS Temperature Upon Receipt:	Upon F	JPS Receipt	``	redex 2		C rone star	<u>.</u>
			*		1 KA LINNER	222	1			4	+										

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Client	Rice Operating
Date/ Time:	12-27-06/1545
Lab ID # ·	GC 27020 -
Initials	15-

Sample Receipt Checklist

				Client I	nitials
#1	Temperature of container/ cooler?	Yes	No	2.0°C	
#2	Shipping container in good condition?	Nes	No		
#3	Custody Seals intact on shipping container/ cooler?	(Yes)	No	Not Present	
#4	Custody Seals intact on sample bottles/ container?	Ves	No	Not Present	
#5	Chain of Custody present?	(YES)	No		
#6	Sample instructions complete of Chain of Custody?	(Ves)	No		
#7	Chain of Custody signed when relinquished/ received?	(es)	No		
#8	Chain of Custody agrees with sample label(s)?	Yes	No	ID written on Cont./ Lid	
#9	Container label(s) legible and intact?	Yes	No	Not Applicable	
#10	Sample matrix properties agree with Chain of Custody?	Yes	No		
#11	Containers supplied by ELOT?	Yes?	No		
#12	Samples in proper container/ bottle?	Yes	No	See Below	
#13	Samples properly preserved?	Yes.	No	See Below	
#14	Sample bottles intact?	Yes	No		
#15	Preservations documented on Chain of Custody?	Yes	No		
16	Containers documented on Chain of Custody?	Yes	No		
#17	Sufficient sample amount for indicated test(s)?	Yes	No	See Below	
#18	All samples received within sufficient hold time?	Yes	No	See Below	
#19	Subcontract of sample(s)?	(Yes)	No	Not Applicable	
#20	VOC samples have zero headspace?	Yes	No	Not Applicable	

Variance Documentation

Contact.	 Contacted by:	Date/ Time:
Regarding:		
Corrective Action Taken:		
Check all that Apply:	See attached e-mail/ fax Client understands and would like to proceed with an Cooling process had begun shortly after sampling ev	nalysis /ent