		/		<u> </u>		<u> </u>	-	$\overline{)}$			
		908	SUSPE	VSE K		LOGGED IN		$\frac{9}{9}$	PAKNOVR	073428	64
	(12	657		/		ABOVE THIS LINE FOR DIVIS	ION USE ONIX				
	·	,		NEW M		CONSERVAT		ION	10. 1015 .		,
				1220	-	eering Bureau cis Drive, Santa		ZEVS	H Ø		
						······································			ME STAIL		
				ADMIN	IISTRATI	VE APPLI	CATION	CHEC	KLIST		
	TH	HIS CHECH	KLIST IS N			RATIVE APPLICATIC				ND REGULAT	IONS
	Applic	[DI	Non-Sta HC-Dow [PC-Po	ndard Loc nhole Con ool Commi [WFX-Wat [SW]	nmingling] [0 ingling] [OLS terflood Expans D-Salt Water Di	on-Standard Pro CTB-Lease Com - Off-Lease Sto sion] [PMX-Pr isposal] [IPI-Ir overy Certification	mingling] [F prage] [OLM ressure Mainte njection Press	PLC-Pool/ -Off-Leas enance E sure Incre	Lease Comm e Measurem xpansion] ease]	tingling] ent]	
	[1]	TYPE	OF A	PPLICAT	ION - Check T	hose Which App	oly for [A]			200	
			[A]	Location		t - Simultaneous	Dedication	2-0	57-20	892	5.0
(,)				•	y for [B] or [C]						C,
0 K			[B]	Commit DH		- Measurement	· · · · ·	LS	OLM	41	t por
11			[C]		n - Disposal - P FX 🔲 PMX	ressure Increase		I Recover	PPR	Ó	t of a
Z			[D]	Other: S	pecify					Ŕ	er.
d'al	[2]	NOTI	FICAT [A]			Check Those W or Overriding Re				. J ent	
and the second	20	ות	[B]	🛛 Off	set Operators, I	Leaseholders or	Surface Owner	a.	Gar	(A)	OP- (Pa)
	R	D & A	[C]	Ap	plication is One	e Which Require	s Published Le	gal Notic	elig V	V ij	,07/
	D		[D]	Not U.S. F	tification and/or Bureau of Land Manage	Concurrent Ap	proval by BLN Public Lands, State Li		N	1. Su	()
	E.)U,	[E]	🛛 For	all of the abov	e, Proof of Notif	fication or Pub	lication	Attached, ar	nd/or,	
			[F]	🛛 Wa	ivers are Attacl	ned		K X I			y'
	[3]				AND COMPI	LETE INFORM BOVE.	IATION REC	UIRED	TO PROCE	SS THE T	YPE

[4] **CERTIFICATION:** I hereby certify that the information submitted with this application for administrative approval is **accurate** and **complete** to the best of my knowledge. I also understand that **no action** will be taken on this application until the required information and notifications are submitted to the Division.

Note: Statement must be completed by an individual with managerial and/or supervisory capacity.

David Veltri	Junet	Production Manager	11,467
Print or Type Name	Signature	Title	Date

david.veltri@elpaso.com e-mail Address

EL PASO E & P COMPANY, L.P. P.O. Box 190 - RATON, N.M. 87740

November 14, 2007

New Mexico Oil Conservation Division 1220 South St. Frances Santa Fe, NM 87505

Attention: William Jones

Re: VPR A 500 Salt Water Disposal Application for Authority to Inject

Dear NMOCD:

Find attached Application for Authority to Inject VPR A 500 with the following enclosures:

- **1.** Application Checklist
- 2. Application for Authority to Inject
- 3. Approved APD
- 3. Procedure
- 4. Vicinity Map
- 5. Geo Prog
- 6. Source Water Analyses
- 7. Letter to Surface Owner
- 8. Receipt of Letter to Surface Owner
- 9. Legal Notice Publication

Respectfully,

David Veltri Production Manager El Paso Energy Raton STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

APPLICATION FOR AUTHORIZATION TO INJECT

1.	PURPOSE: Secondary Recovery Pressure Maintenance X Disposal Storage Application qualifies for administrative approval? Yes No									
ĮI.	OPERATOR: <u>EL PASO E & P COMPANY, L.P.</u>									
	ADDRESS: PO BOX 190 RATON, NEW MEXICO 87740									
	CONTACT PARTY: DAVID VELTRI PHONE: (505) 445-6721									
111.	WELL DATA: Complete the data required on the reverse side of this form for each well proposed for injection. Additional sheets may be attached if necessary.									
IV.	Is this an expansion of an existing project? Yes X No If yes, give the Division order number authorizing the project:									
V.	Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review.									
VI.	Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail.									
VII.	Attach data on the proposed operation, including:									
	 Proposed average and maximum daily rate and volume of fluids to be injected; Whether the system is open or closed; Proposed average and maximum injection pressure; Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and, If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.). 									
*VIII.	Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.									
IX.	Describe the proposed stimulation program, if any.									
*X.	Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted).									
*XI.	Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.									
XII.	Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water.									
XIII.	Applicants must complete the "Proof of Notice" section on the reverse side of this form.									
XIV.	Certification: I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.									
	NAME: DAVID VELTRI TITLE: PRODUCTION MANAGER									
	NAME: <u>DAVID VELTRI</u> TITLE: <u>PRODUCTION MANAGER</u> SIGNATURE: <u>David Vettri / shiley Fritchell</u> DATE: <u>01/08/08</u>									
*	E-MAIL ADDRESS: <u>david.veltri@elpaso.com</u> If the information required under Sections VI, VIII, X, and XI above has been previously submitted, it need not be resubmitted. Please show the date and circumstances of the earlier submittal:									

Side 2

III. WELL DATA

- A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include:
 - (1) Lease name; Well No.; Location by Section, Township and Range; and footage location within the section.
 - (2) Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined.
 - (3) A description of the tubing to be used including its size, lining material, and setting depth.

(4) The name, model, and setting depth of the packer used or a description of any other seal system or assembly used.

Division District Offices have supplies of Well Data Sheets which may be used or which may be used as models for this purpose. Applicants for several identical wells may submit a "typical data sheet" rather than submitting the data for each well.

- B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.
 - (1) The name of the injection formation and, if applicable, the field or pool name.
 - (2) The injection interval and whether it is perforated or open-hole.
 - (3) State if the well was drilled for injection or, if not, the original purpose of the well.
 - (4) Give the depths of any other perforated intervals and detail on the sacks of cement or bridge plugs used to seal off such perforations.
 - (5) Give the depth to and the name of the next higher and next lower oil or gas zone in the area of the well, if any.

XIV. PROOF OF NOTICE

All applicants must furnish proof that a copy of the application has been furnished, by certified or registered mail, to the owner of the surface of the land on which the well is to be located and to each leasehold operator within one-half mile of the well location.

Where an application is subject to administrative approval, a proof of publication must be submitted. Such proof shall consist of a copy of the legal advertisement which was published in the county in which the well is located. The contents of such advertisement must include:

- (1) The name, address, phone number, and contact party for the applicant;
- (2) The intended purpose of the injection well; with the exact location of single wells or the Section, Township, and Range location of multiple wells;
- (3) The formation name and depth with expected maximum injection rates and pressures; and,

(4) A notation that interested parties must file objections or requests for hearing with the Oil Conservation Division, 1220 South St. Francis Dr., Santa Fe, New Mexico 87505, within 15 days.

NO ACTION WILL BE TAKEN ON THE APPLICATION UNTIL PROPER PROOF OF NOTICE HAS BEEN SUBMITTED.

NOTICE: Surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date this application was mailed to them.

side 1 INJECTION WELL DATA SHEET OPERATOR: EL PASO E & P COMPANY, L.P. WELL NAME & NUMBER: VPR (Å 500 WELL LOCATION: 332 FSI, & 2549 FEL FOUTAGE LOCATION UNIT LETTER WELL LOCATION: 332 FSI, & 2549 FEL (NIT LETTER WELL LOCATION: 332 FSI, & 2549 FEL (NIT LETTER WELL LOCATION: 332 FSI, & 2549 FEL (NIT LETTER FOOLAGE LOCATION UNIT LETTER WELL LOCATION: TO WELL LO	EET 30 31N SECTION TOWNSHIP SECTION TOWNSHIP SECTION TOWNSHIP SECTION TOWNSHIP Surface Casing Size 17 ½ Casing Size: 230 sx. 0 Size 17 ½ Casing Size: 17 ½ Casing Size: 17 ½ Casing Size: 17 ½ Casing Size: 12 1'4" Casing Size: 12 1'4" Casing Size: 12 1'4" Casing Size: 13/4" or S80 sx. Surface Method Determined: 12 1'2" or 12 1'14 Surface 12 1'14 Surface S80 sx. S80 sx. Surface Method Determined: 12 1'14 Surface Surface Method Determined: 12 1'14 or S112 1 <	474 21E ATA 21E BANGE And 13 3/8" ft ³ red: ft ³ red: ft ³ red: ft ³
. (Perfor	(Perforated or Open Hole; indicate which) $/3$	6'315 38 30

[y]			
	Type of Packer:	PDC drillable float shoe. PDC Install bow spring centralizers on th	<u>PDC drillable float shoe. PDC drillable float collar. Thread Lock all float equipment.</u> Il bow spring centralizers on the bottom 3 joints of casing and every third joint thereafter.
ac	Packer Setting Depth:	spth:	
Otł	ier Type of Tu	Other Type of Tubing/Casing Seal (if applicable):	le):
		Adc	Additional Data
_:	Is this a new If no, for wh	Is this a new well drilled for injection?	YesNo nally drilled?
2.	Name of the	Name of the Injection Formation: GI	Glorieta Sandstone
Э.	Name of Fie.	Name of Field or Pool (if applicable):	Vermejo Park Ranch
4	Has the well intervals and	Has the well ever been perforated in any other zone(s)? List all such peintervals and give plugging detail, i.e. sacks of cement or plug(s) used.	Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) used. <u>No</u>
5.	Give the name and d	ne and depths of any oil or gas in this area:	Give the name and depths of any oil or gas zones underlying or overlying the proposed injection zone in this area.

Side 2

El Paso E & P Company, L.P. Vermejo Park Ranch "A", Well # 500 Water Disposal 332 FSL & 2549 FEL Section 30, T 31N, R 21E Colfax County, New Mexico

Additional Data

V. Map attached - "Attachment B", two mile & ½ mile radius area of review.

VI. Area of Review:

There are no Water Disposal Well within one half mile of the proposed disposal well that is currently injecting produced water into the Glorieta.

- VII. Operation Data:
 - 1. Proposed average daily injection volume: 20,000 BWPD Proposed maximum daily injection volume: 20,000 BWPD
 - 2. This well will be a closed system.
 - Proposed average daily injection pressure: 1,500 psi Proposed maximum daily injection pressure: 1,500 psi
 - 4. Sources of injection/disposal water will be from the Vermejo and Raton Formation CBM wells that have been drilled or are scheduled to be drilled on the Vermejo Park Ranch.
 - 5. Chemical analysis of water zones will be obtained by Baker Petrolite Laboratories and Ed Martin, District 4, Oil Conservation Division, Santa Fe, NM.
- VIII. Geological Data (Geologic Well Prognosis Report) "Attachment C"

Information pertaining to the lithological details and thickness have been estimated based on the VPR A 352 well, located in Section 31, T31N, R21E.

IX. Stimulation Program

No stimulation program.

X. Logs and Test Data

The Oil Conservation Division, Att: Ed Martin, Santa Fe, NM, is on the distribution list for all logs.

XI. Fresh Water

Ed Martin, OGCD, will take fresh water samples during drilling.

XII. Statement

To the best of our current knowledge of the area, there is no evidence of open faults or other hydrologic connection between and disposal zone and underground sources of drinking water.

Page 2 El Paso E & P Company, L.P. Vermejo Park Ranch "A", Well # 500 Salt Water Disposal 332 FNL & 2549 FEL Section 30, T 31N, R 21E Colfax County, New Mexico

XIII. Proof of Notice attached as "Attachment D"

Surface Owner:

,

Vermejo Park, L.L.C. PO Drawer E Raton, NM 87740

Working/Offset & Royalty Owners:

El Paso E & P Corporation has 100% working interest. There are no partners.

XIV. Certification: Form C-108 "Application for Authorization to Inject".

Copies of the Oil Conservation Division, Form C-108 have been sent to the above stated parties by Certified Mail on this <u>9th</u> day of <u>Jonnuary</u>, 2008.

avid Vettre 1 shirly mitchell David Veltri, Production Manager

El Paso E & P Company, L.P. PO Box 190 Raton, NM 87740 ۰.

epaso Production

Drilling Schematic

Company Name:	El Paso Exploration & Production	Date:	October 26, 2007
Well Name:	VPR A 500 WDW	TD:	7,122
Field, County, State:	VPR, Colfax, NM	AFE #:	
Surface Location:	' FNL ' FWL Sec 30 T31N R21E	BHL:	Straight Hole
Objective Zone(s):	Glorieta	Elevation:	8046
Rig:		Spud (est.):	January 2, 2008
BOPE Info:	13-3/8" 5k double, annular, 500psi rotating head		· · · · ·

							MECHANICAL	•
			•			HOLE	CASING	MUD
LOGS	TOPS	DEPTH		 		SIZE	SIZE	WEIGHT
	Raton	77				17-1/2"	13 3/8" 48ppf H-40 STC	8.3-8.7
		350 ' MD/TVI				17-112	13 3/6 40ppi n-40 51C	0.3-0.7 WBM
		330 107101			FRANK,	4	4	4
	Vermejo	1,877						
				and the second s		12-1/4"	9-5/8" 40ppf J-55 LTC	8.3-8.8 pp
Triple Combo, Di								WBM
Tri	nidad SS	2,042						
	Pierre	2,150		1. A 1. M 1.				
					TOC	@ 3770'		
					, ioc	. @ 3/70		
			100)(404-52)					
1	liobrara	3,920						
¥		3,970 ' MD/TVE	, 🖌			ł	ŧ	
†				and south		4	4	4
			1. Shriver	1751-056				
				4 (1) (1)				
			er t-Jackbin	in the same				
· .			96,00-28	trainad to				
			-	AL LOND				
				unaj contrado				
				1.h.shinu				
				Single Contract				
- Nia	brara B	4,900	1.1.6					
			adir-ad Cat	di balancia.				
l Delt Cambrid Cu	Nation Pre-M		ALL STREET			1 - c - 5 - 2	an an an Anna a	
Enple Combol Dij	iobrara C	5,260		1. T.		0-044 1	1	El Altor MBD
,	1001010	3,200	-					1 .
1	Fort Hays	5,490	ilian-bell	Jakor.				
				1				
	Carlisle	5,510		-h Wilcows				
			- Carlon Ma	nide office				
Brid	ge Creek	5,690		i. Marca				
	Diliti	5 000	al and a second	- Tonig		1		
	Dakota	5,890	, shi ta					
	Morrison	6,140	sing of the	Sec. Sec.				
	morneon	0,110		ST.				
ļ	Entrada	6,444						
		-		Carlo Cita				
	Glorieta	6,815	na jun tradici	0-10-101				
			LOTHAGE S	and the second second		1		
		7,122 ' MD/TVD						

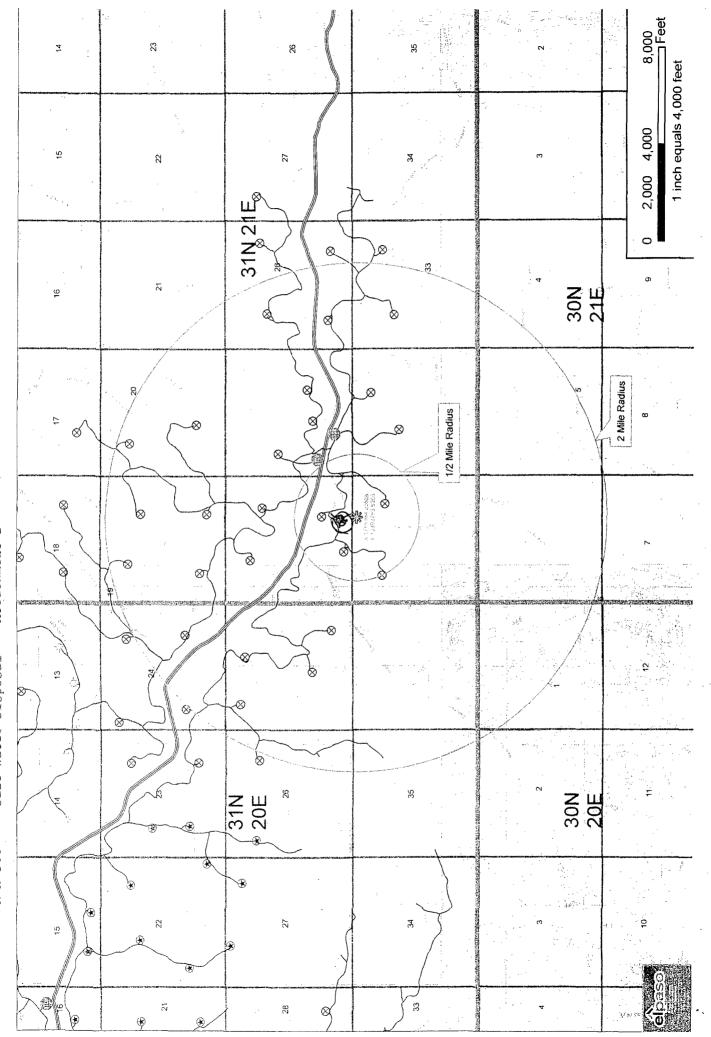
Page 1/2

DRILLING PROGRAM

CASING PROGRAM

							新日子:[c]]][之][c][b];	Land and Statement
	SIZE	INTERVAL	到江西部	्रिक विति के बि	SEP. CAN		SHEELCOLLES AN	MUELEUM
						1,730	740	322
SURFACE	13 3/8"	0 - 350	48	H-40	STC	21.45	· 4.52	7.51
						3,950	2,570	453
INTERMEDIATE	9-5/8"	0 - 3970	40	J-55	LTC	1.95	1.38	1.75
						1451	b_{1} β^{2}	
PRODUCTION	7*	0 - 7122	26	in the	i, î C	U.S.	5.1.5	

CEMENTPROG	U LNI)論		(Jesenierio)	ENER	S. S. Carlot		經行目的處對
						ppg	cuft/sk
SURFACE		350	Trinidad Surface Cement	230	50%	14	1.65
INTERMEDIATE	Lead	3,470	Tuned Life Blend	580	15%	10.0	2.18
•	Tail	500	Trinidad production blend	160	15%	15.8	1.14
PRODUCTION	Lead	2,352	Trinidad production biend	580	15%	10.80	1.47
	Tail	600	Trinidad production blend	140	15%	14.0	1.65


FLOAT EQUIPMENT & CENTRALIZERS

 SURFACE
 PDC drillable float shoe, 1 joint, PDC drillable float collar. Thread lock all float equipment. Install bow spring centralizers on the bottom 3 joints of casing.

 INTERMEDIATE
 PDC drillable float shoe, 2 joints casing, PDC drillable float collar. Thread lock all float equipment. Install bow spring centralizers on the bottom 3 joints of casing & every 3rd joint thereafter.

 PRODUCTION
 PDC drillable float shoe. 1 joint. PDC drillable float collar. Thread lock all float equipment. Install bow spring centralizers on the bottom 3 joints and 1 every 3rd joint up to TOC thereafter.

PROJECT ENGINEER(S):	Alex Erhardt
	· · · · · · · · · · · · · · · · · · ·
MANAGER:	David Veltri

"Attachment B" Salt Water Disposal

VPR A 500

۰.

DRILLING WELL PROGNOSIS / DATA SHEET Date: 15-Oct-2007

Operator Name: El Paso							Project:	
Area Geologist: Fred Ma							Geologic	Prognosis: Fred Mark / Gus Gustason
Well Name & Number:	VPR A 500		Disposal		• •	- <u></u>	Phone:	Office: 303-291-6450
Location (footage):	FNL	FWL						
Sec-Twnshp-Range:	NW Sec 31							·
County:	Colfax	State:	<u>co</u>					
Field Name:	VPR	Primary O		ta Sands	tone			Field Log Requirements
NMOCD Prop. TD		Prop. TD	7,122			-		Log Prints (left on location): 1
Elevation (Approx):	8,046	GL				-		Log Prints (Raton Office):
Drilling Engineer:						-		Log Prints (Oper. Geologist): 2
Drilling Contractor:								Log Prints (EPPC,Houston): 4
Preliminary	То	· · · · · · · · · · · · · · · · · · ·			Characte	1	1	LOGNET' (Details Below): 2
Formation Tops:	Depth	Datum	Gas	Water	Fracture	Intruded	Bentonite	
Surface - Poison Canyon	0	8,046				[···		* Send LOGNET to EPPC, Houston
Raton	77	7969	Х	Х	Х	X		(Details here)
Vermejo Formation	1,877	6169	X	X	Х	X		E-mail .LAS format file to
Trinidad Sandstone	2,042	6004		X	Х			fred.mark@elpaso.com
Pierre	2,150	5896	Х		Х			Open-Hole Logging Program
Niobrara	3,920	4126	Х		Х			1) Short and Long Spaced Resistivity
Niobrara B	4,900	3146	Х		X			2) Comp RHOB - Standard and High R
Niobrara C	5,260	2786	Х		Х			3) Neutron and Density Porosity
Fort Hays	5,490	2556	Х		Х			4) SP, API GR, Photo Electron
Carlile	5,510	2536	Х		X			5) Caliper, Tension
Bridge Creek	5,690	2356	Х	· · · ·	Х		X	6) Formation Image Log / Dipole Sonic
Dakota	5,890	2156	Х	X	X			7) Directional Survey
Morrison	6,140	1906	X	Х	X			
Entrada	6444	1602	Х	X	X			No Logs Run Over the Raton - Trinidad
Glorieta	6815	1231	Х	X	X			· · · · · · · · · · · · · · · · · · ·
TD						<u> </u>	L	·
	<u> </u>					L	L	,
Total Depth:	7,122							<u> </u>
Est. of Fluid in Hole;	950'			1	;	2.5	<u>.</u>	· >~ prickoso ·
Surface String Size:						= N		\sim \sim \sim \sim \sim \sim \sim
Surface Casing Depth:						1		VPR A
Production String Size:				V	PR 437	. I	Sec.	30 PR A 350
Production Casing Depth	າ:	······			O	PR A 495		VER A 350
Wireline Logging Co.:			<u></u>			\sim	V.	RA 349 CC-75-17
		Т	D - B/SC			0	NY Ø	
To Be Determined					···		1	VPRA3
						VPR	A#500	
Vertical Well Top of Cem	ent = 860'				معربي	,,,		5 VPR A 368
This prognosis is for a v	ertical well.						La la	VPR 4 369
					(Contraction of the second	M D
			••••••••••••••••				<u>``</u>	
					36		i. N	31 32
	••••••		•••••••				, ^{, , , , ,} ,	
			••••••••					
			••••••					
						1.1		
			•••••••••••••••				han ya	
			·····		÷		1*	
	······							server and server and server
······			••••••••					e de la construcción de la constru La construcción de la construcción d
· · · · · · · · · · · · · · · · · · ·								6 5
				Ľ	<u></u>			Lo zein
Survey Plat:	API #				Directions	s:		
Latitude NAD 27		36.88181			·			· · · · · · · · · · · · · · · · · · ·
Longitude NAD 27	7	-104.751	<u>.</u>		<u></u>			

Conditions of Approval:

VPR A 500 SALT WATER DISPOSAL DRILLING PROCEDURE

Move in rig

Drill 17-1/2" hole to 350' with water and gel based spud mud.

Circulate and condition hole and run 13-3/8" 48 ppf H-40 STC casing.

Cement casing with 230 sx (50% excess) Trinidad Surface cement, top out with 1" if there is fall back.

Swap mud to Aphron system, (polymer-water based mud system designed to prevent formation damage and lost returns) and rig up mud loggers.

Drill 12-1/4" hole to 3970, circulate and condition hole.

Log hole with guad combo and FMI.

Run 9-5/8" 40 ppf J-55 LTC. Cement in place with tuned light lead 15% excess to surface and 500' of 15.8ppg tail with 15% excess.

Drill 8-3/4" hole to 7122' TD with same Aphron mud system to mitigate lost returns.

Condition hole and log with quad combo and FMI.

Run and cement 7" 26 ppf P-110 casing to 7,122' with 15% excess. Planned top of cement is 200' into intermediate casing (3770').

The aphron system is a water based polymer system that encapsulates tiny bubbles of air inside polymer which will help it have some of the same non damaging properties of oil based mud, but without an of the environmental concerns. It also has an extremely high low shear rate viscosity which makes it ideal for stopping losses in fracture systems. It is also a very inhibitive system because it will let off very little filtrate into the formation.

ATTACHMENT D

EL PASO E & P COMPANY, L.P. P.O. BOX 190 - RATON, N.M. 87740

November 7, 2007

Vermejo Park Ranch PO Drawer E Raton, NM 87740

Attention: Mr. Mark Kossler

Subject: Notice of Drilling Water Injection Well VPR A 500 WDW

Dear Mark:

This correspondence is to serve notice that El Paso E & P Company, L.P., plans to drill and complete a produced water injection well in the <u>NW</u> ¹/₄ of Section 31, T31N, R21E in Colfax County. The well will be called the "VPR A 500 WDW".

Produced water from coalbed methane wells will be injected into the Glorieta formations at approximate depth 7,122' MD.

Respectfully,

David Veltri Production Manager

DV:sam

AFFIDAVIT OF PUBLICATION

STATE OF NEW MEXICO

COUNTY OF COLFAX

)) ss.)

The undersigned, being first duly sworn according to law, on his/her oath deposes and says that he/she is the business manager of the newspaper named "The Raton Range" and that he/she has personal knowledge of the facts stated herein; that the said "The Raton Range" is a twice-weekly newspaper of general paid circulation printed and published in the County of Colfax and State of New Mexico and entered under the Second class postal privilege in said County, and having been uninterruptedly and continuously printed and published in said County during the period of more than six months to the date of publishing of the first issue of the publication next prior or notice concerning which this affidavit is made and a copy of which is hereto attached; that said newspaper is duly qualified for that purpose under the laws of the state of New Mexico; that the publication, a printed copy of which is hereto attached and made a part of this affidavit, was published in said newspaper _____ each week for _____ successive weeks, said paid publication having been made on the following dates, to-wit:

First Publication:	The 1/2	day of NOWEMBES	_, 2007
Second Publication:	The <u>QC</u>	day of NEW miles	_, 2007
Third Publication:	The <u>23</u>	day of MAUMBU	_, 2007
Fourth Publication:	The <u>2</u> 7	day of November	_, 2007
Fifth Publication:	The	day of	_, 2007
Sixth Publication:	The	day of	_, 2007

Business Manager

Subscribed and sworn to before me this _27 day of NUW mizer 2007 Notary Public

OFFICIAL SEAL Crystal Rivera PUBLIC MEXICO Commission Expires

PUBL	ISHER'S	BILL
------	---------	------

Insert(s)	Time(s)	Cost
<u>58</u> Lines	Time(s)	<u>\$125_64</u> Cost
Col. Inches	Time(s)	Cost

				· · · ·	
· · · · ·					
151 Legals				and a second	
NOTICE OF	Conservation	Glorieta formation	Interected parties	Production Manager	
APPLICATION for	Division to complete	from an estimated	must file objections	El Paso E&P,	
Fluid Injection Well	their Vermejo Park	depth of 7,122' MD.	or request for hear-	Company, L.P.	
Permit	Ranch, A 500 WDW,	The El Paso E&P	ing with the Oil	PO Box 190	
	located in Section	Company, L.P.	Conservation	Raton, NM 87740	
El Paso E&P	39 T31N, R21E	intends to inject a	Division, 1220 South	(575) 445-6721	
Company, L.P., 1001	Colfax County,	maximum of 20,000	St. Francis Drive,	(575) 445-6788 Fax	
Louisiana Street,	Vermejo Park	bbls of produced for-	Santa Fe, NM	Legal No. 616507	
Houston, Texas is	Ranch, New Mexico	mation water per day	87505, within 15	Published in The	
seeking administra-	as water disposal	per well at a maxi-	days of this notice.	Raton Range:	•
tive approval from	well The proposed	mum injection pres-		November 16, 20,	
the New Mexico Oil	interval is the	sure of 1500 psi.	/s/David Veltri,	23 and 27, 2007.	

.

Water Analysis Report by Baker Petrolite

EL PASO PRODUCTION	Sales RD1:	44625
ROCKY MOUNTAINS	Account Manager:	TY CLINESMITH (505) 447-0621
RATON, NM	Sample #:	382514
VERMEJO PARK RANCH 'A'	Analysis ID #:	77332
349	Analysis Cost:	\$80.00
UNKNOWN		
WELLHEAD		
	ROCKY MOUNTAINS RATON, NM VERMEJO PARK RANCH 'A' 349 UNKNOWN	ROCKY MOUNTAINSAccount Manager:RATON, NMSample #:VERMEJO PARK RANCH 'A'Analysis ID #:349Analysis Cost:UNKNOWN

		Summary					Analysis	s of Sa	mple 3	82514 @ 75	°F		
Sampl	ing Date:		11/13/07	Anions		mg	/i	meq/l	Catio	ins	n	g/i	meq/l
Analysis Date:11/19/07Analyst:KIMBERLY POOLETDS (mg/l or g/m3):3006.1Density (g/cm3, tonne/m3):1.002Anion/Cation Ratio:1.0000004Carbon Dioxide:0xygen:Comments:			Bicarbon Carbon Sulfate Phosph Borate: Silicate: Hydroge pH at tir pH at tir	Chloride:124.0Bicarbonate:1971.0Carbonate:43.0Sulfate:4.0Phosphate:Borate:Borate:Silicate:Silicate:Hydrogen Sulfide:pH at time of sampling:pH at time of analysis:pH used in Calculation:Here State			3.5 32.3 1.43 0.08 8.41 8.41	Sodium: Magnesium: Calcium: Strontium: Barium: Iron: Polassium: Aluminum: Chromium: Copper: Lead: Manganese: Nickel:		833.1 2.0 5.0 1.0 1.0 6.0 16.0		36.24 0.16 0.25 0.02 0.01 0.22 0.41	
Cond	itions		Values C	alculated	at the Given	n Conditio	ons - Am	ounts	of Sc	ale in lb/10	00 bbl		
Temp <mark>Gauge Calcite</mark> Press. CaCO ₃				Gypsum CaSO ₄ *2H ₂ 0		Anhydrite CaSO 4		Celestite SrSO ₄		Barite BaSO ₄		CO ₂ Press	
°F	psi	Index	Amount	Index	Amount	Index	Amount	Ir	idex	Amount	Index	Amount	psi
80	. 0	0.63	3.15	-4.44	0.00	-4.51	0.00	:	3.37	0.00	-0.26	0.00	0.11

-4.46

-4.39

-4.29

0.00

0.00

0.00

-3.34

-3.31

-3.26

0.00

0.00

0.00

-0.39

-0.50

-0.59

0.00

0.00

0.00

0.18

0.27

0.42

0.00 Note 1: When assessing the severity of the scale problem, both the saturation index (SI) and amount of scale must be considered.

100

120

140

0

0

0

0.66

0.69

0.72

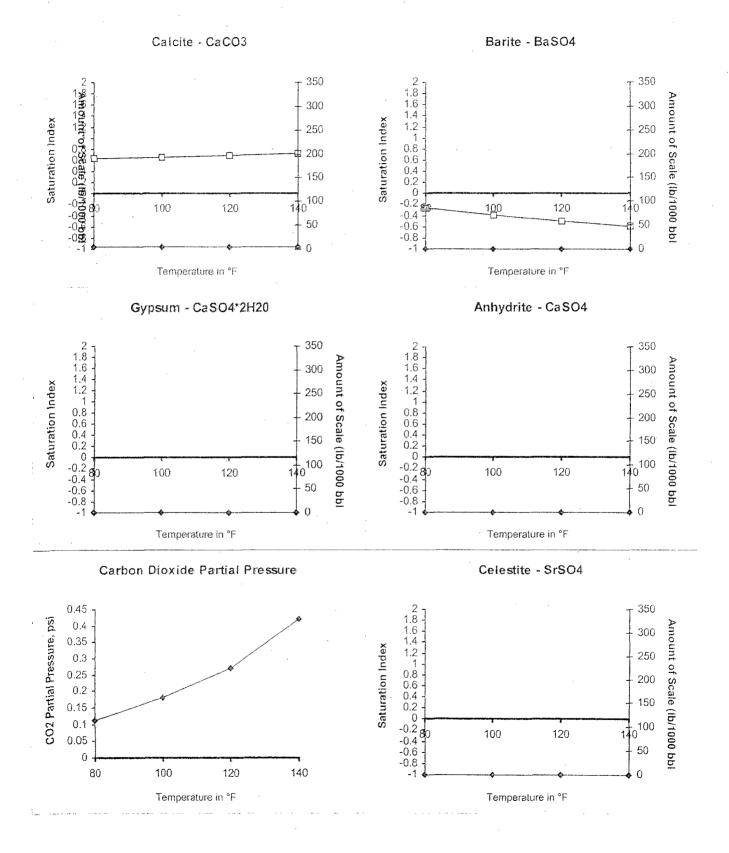
3.49

3.49

3.49

-4.46

-4.46


-4.46

Note 2: Precipitation of each scale is considered separately. Total scale will be less than the sum of the amounts of the five scales.

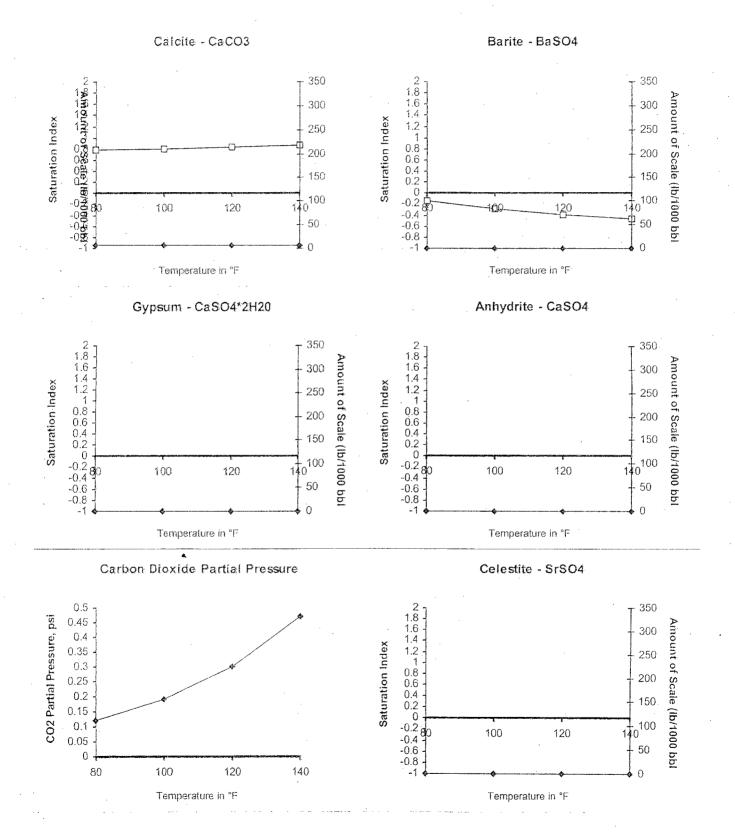
0.00

0.00

Analysis of Sample 382514 @ 75 °F for EL PASO PRODUCTION, 11/19/07

Water Analysis Report by Baker Petrolite

Company:	EL PASO PRODUCTION	Sales RDT:	44625
Region:	ROCKY MOUNTAINS	Account Manager:	TY CLINESMITH (505) 447-0621
Area:	RATON, NM	Sample #:	362515
Lease/Platform:	VERMEJO PARK RANCH 'A'	Analysis ID #:	77334
Entity (or well #):	350	Analysis Cost:	\$80.00
Formation:	UNKNOWN	· · · ·	
Sample Point:	WELLHEAD		


· Summ	ary		Analy	sis of Sa	mple 382515 @ 75 '	ŶF	
Sampling Date:	11/13/07	Anions	mg/l	meq/l	Cations	nīg/l	meq/l
Analysis Date:	11/19/07	Chloride:	614.0	17.32	Sodium:	1103.4	48.
Analyst: KI	MBERLY POOLE	Bicarbonate:	1884.0	30.88	Magnesium:	2.5	0.21
TD0 (2000 5	Carbonate:	31.0	1.03	Calcium:	9.0	0.45
TDS (mg/l or g/m3):	3669.5 (m3): 1.003	Sulfate:	3.0	0.06	Strontium:	2.0	0.05
Density (g/cm3, tonne		Phosphate:			Barium:	2.0	0.03
Anion/Cation Ratio:	0.9999997	Borate:			tron:	8.5	0.31
		Silicate:			Potassium:	10.0	0.26
					Aluminum:		
Carbon Dioxide:		Hydrogen Sulfide:			Chromium:		
Oxygen:		attetime of compliant			Copper:		
Comments:		pH at time of sampling:			Lead:		
e entition te.		pH at time of analysis:		8.34	Manganese:	0.050	0.
		pH used in Calculation:		8.34	Nickel:		
		·					
Conditions	Values Ca	alculated at the Given C	onditions - A	mounts	of Scale in Ib/100	0 bbl	
Gauge Femp Press.	Calcite CaCO ₃	Gypsum CaSO ₄ 2H ₂ 0	Anhydrite CaSO ₄		Celestite SrSO⊿	Barite BaSO ₄	CO ₂ Press

Ter	mn	Press.	C	aCO3	CaSC	4 ^{2H} 20	c	aSO 4	Si	so ₄	Ba	so ₄	Press
•	F	psi	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount	psi
1	80	0	0.77	6.29	-4.36	0.00	-4.43	0.00	-3.24	0.00	-0.14	0.00	0.12
1	00	0	0.80	6.29	-4.38	0.00	-4.38	0.00	-3.22	0.00	-0.28	0.00	0.19
1	20	0	0.83	6.64	-4.38	0.00	-4.31	0.00	-3.19	0.00	-0.39	0.00	0.3
1	40	0	0.86	6.64	-4.38	0.00	-4.21	0.00	-3.14	0.00	-0.47	0.00	0.47

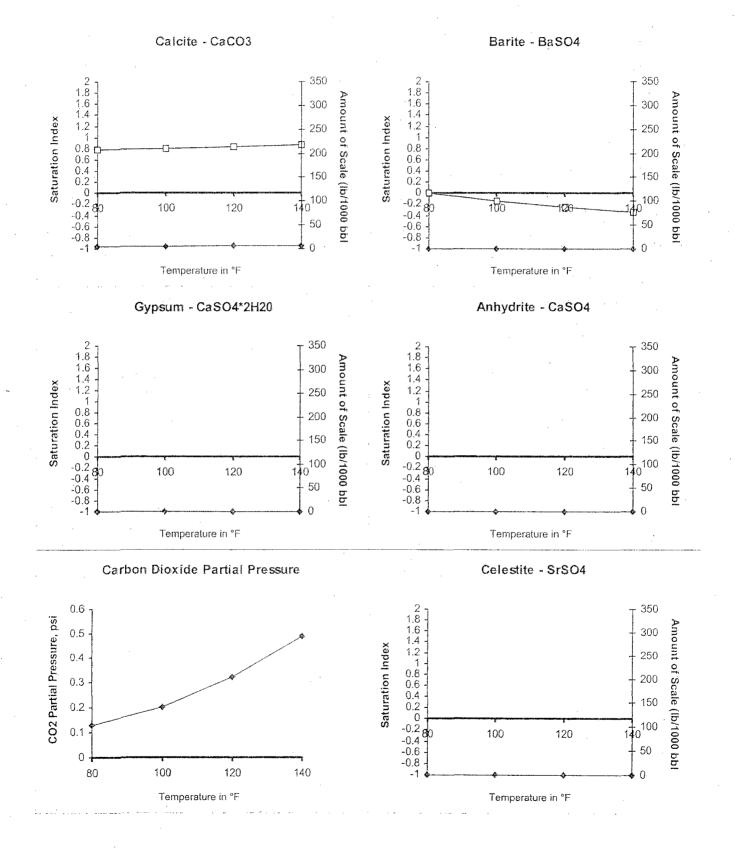
Note 1: When assessing the severity of the scale problem, both the saturation index (SI) and amount of scale must be considered.

Note 2: Precipitation of each scale is considered separately. Total scale will be less than the sum of the amounts of the five scales.

Analysis of Sample 382515 @ 75 °F for EL PASO PRODUCTION, 11/19/07

Water Analysis Report by Baker Petrolite

Company:	EL PASO PRODUCTION	Sales RDT:	44625
Region:	ROCKY MOUNTAINS	Account Manager:	TY CLINESMITH (505) 447-0621
Area:	RATON, NM	Sample #:	382513
Lease/Platform:	VERMEJO PARK RANCH 'A'	Analysis ID #:	77336
Entity (or well #):	352	Analysis Cost:	\$80.00
Formation:	UNKNOWN	·	
Sample Point:	WELLHEAD		


Summary	/		Analysis of Sample 382513 @ 75 °F								
Sampling Date:	11/13/07	Anions	mg/l	/ meq/l	Cations	mg/l	meq/l				
Analysis Date:	11/19/07	Chloride:	109.0	3.07	Sodium:	891.4	38.77				
Analyst: KIMB	ERLY POOLE	Bicarbonate:	2163.0	35.45	Magnesium:	1.5	0.12				
	0040.0	Carbonate:	40.0	1.33	Calcium:	7.0	0.35				
TDS (mg/l or g/m3):	3242.9	Sulfate:	5.0	0.1	Strontium:	1.0	0.02				
Density (g/cm3, tonne/m	•	Phosphate:			Barium:	1.5	0.02				
Anion/Cation Ratio:	0.99999999	Borate:			lron:	6.5	0.23				
		Silicate:			Potassium:	17.0	0.43				
					Aluminum:						
Carbon Dioxide:		Hydrogen Sulfide:		х.	Chromium:						
Oxygen:					Copper:						
Comments:		pH at time of sampling:			Lead:	é					
·		pH at time of analysis:		8.38	Manganese:	0.030	- 0.				
		pH used in Calculation:		8.38	Nickel:						
		pH used in Calculation:		8.38	Nickel:						

Condi	tions	Values Calculated at the Given Conditions - Amounts of Scale in Ib/1000 bbl										
Temp	Gauge		Calcite Gypsum CaCO ₃ CaSO ₄ 2H ₂ 0			Anhydrite CaSO ₄		Celestite SrSO ₄		Barite BaSO ₄		
°F	psi	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount	psi
80	0	0.77	4.89	-4.22	0.00	-4.29	0.00	-3.29	0.00	0.00	0.00	0.13
100	0	0.80	4.89	-4.24	0.00	-4.24	0.00	-3.27	0.00	-0.14	0.00	0.2
120	0	0.83	5.24	-4.24	0.00	-4.17	0.00	-3.23	0.00	-0.25	0.00	0.32
140	0	0.86	5.24	-4.24	0.00	-4.08	0.00	-3.18	0.00	-0.33	0.00	0.49

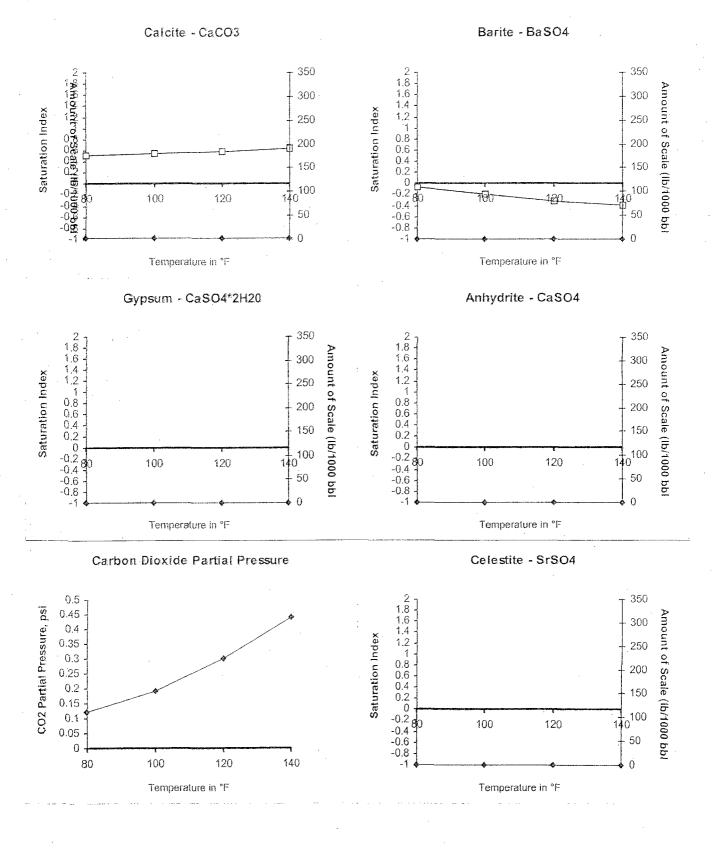
Note 1: When assessing the severity of the scale problem, both the saturation index (SI) and amount of scale must be considered.

Note 2: Precipitation of each scale is considered separately. Total scale will be less than the sum of the amounts of the five scales.

Analysis of Sample 382513 @ 75 °F for EL PASO PRODUCTION, 11/19/07

Water Analysis Report by Baker Petrolite

Company:	EL PASO PRODUCTION	Sales RDT:	44625
Region:	ROCKY MOUNTAINS	Account Manager:	TY CLINESMITH (505) 447-0621
Area:	RATON, NM	Sample #:	382506
Lease/Platform:	VERMEJO PARK RANCH 'A'	Analysis ID #:	77337
Entity (or well #):	368	Analysis Cost:	\$80.00
Formation:	UNKNOWN		· · · · · · · · · · · · · · · · · · ·
Sample Point:	WELLHEAD		


Summary			Ana	alysis of Sa	mple 382506 @ 75 °l	F .	
Sampling Date:	11/13/07	Anions	mg/l	meq/l	Cations	mg/l	meq/l
Analysis Date:	11/19/07	Chloride:	139.0	3.92	Sodium:	792.5	34.47
Analyst: KIMBERLY	POOLE	Bicarbonate:	1866.0	30.58	Magnesium:	1.5	0.12
	2863.5	Carbonate:	27.0	0.9	Calcium:	4.5	0.22
TDS (mg/l or g/m3):	1.002	Sulfate:	6.0	0.12	Strontium:	1.0	0.02
Density (g/cm3, tonne/m3): Anion/Cation Ratio: 0.9	9999998	Phosphate:			Barium:	1.0	0.01
Amon/Callon Rado. 0.8	3333350	Borate:			Iron:	3.0	0.11
		Silicate:			Potassium:	22.0	0.56
					Aluminum:		
Carbon Dioxide:		Hydrogen Sulfide:			Chromium:		
Oxygen:		pH at time of sampling:			Copper:		
Comments:					Ļead:		
		pH at time of analysis:		8.33	Manganese:	0.025	0.
		pH used in Calculation:		8.33	Nickel:		

Cond	itions	Values Calculated at the Given Conditions - Amounts of Scale in Ib/1000 bbl										
Temp	Press.			Gypsum CaSO ₄ *2H ₂ 0			nydrite SaSO ₄	Celestite SrSO ₄		Barite BaSO ₄		CO ₂ Press
°F	psi	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount	psi
80	0	0.51	2.80	4.28	0.00	-4.35	0.00	-3.17	0.00	-0.06	0.00	0.12
100	0	0.54	2.80	-4.30	0.00	-4.30	0.00	-3.14	0.00	-0.20	0.00	0.19
120	0	0.58	2.80	-4.31	0.00	-4.23	0.00	-3.11	0.00	-0.31	0.00	0.3
140	0	0.63	2.80	-4.30	0.00	-4.14	0.00	-3.06	0.00	-0.39	0.00	0.44

Note 1: When assessing the severity of the scale problem, both the saturation index (SI) and amount of scale must be considered.

Note 2: Precipitation of each scale is considered separately. Total scale will be less than the sum of the amounts of the five scales.

Analysis of Sample 382506 @ 75 °F for EL PASO PRODUCTION, 11/19/07

Water Analysis Report by Baker Petrolite

Company:	EL PASO PRODUCTION	Sales RDT:	44625
Region:	ROCKY MOUNTAINS	Account Manager:	TY CLINESMITH (505) 447-0621
Area:	RATON, NM	Sample #:	382509
Lease/Platform:	VERMEJO PARK RANCH 'A'	Analysis ID #:	77322
Entity (or well #):	313	Analysis Cost:	\$80.00
Formation:	UNKNOWN		
Sample Point:	WELLHEAD	· .	

	Summary						Analysis o	of Sa	mple 3	82509 @ 75	°F		
Sampli	ing Date	:	11/13/07	Anions		mg	/l n	eq/I	Catio	ins .	ហ	g/l	meq/l
Analys	is Date:		11/19/07	Chlorid	e:	4316.	0 12	1.74	Sodiu	um:	2867	7.3	124.72
Analys	t:	KIMBE	ERLY POOLE	Bicarbo	nate:	836.	o -	13.7	Magr	nesium:	22	2.0	1.81
	ll.az.er	···· 21.	8302.3	Carbon	ate:	0.	0	0.	Calci	um:	137	7.0	6.84
	ng/l or g/	•		Sulfate:		29.	0	0.6	Stron	itium:	19	9.0	0.43
	Cation R	, tonne/m3	0.99999999	I Phospha	ate:				Bariu	im:	14	4.0	0.2
Anion/	Callon N	auo.	0.55555555	Borate:					fron:		42	2.0	1.52
				Silicate:					Potas	sium:	19	9.0	0.49
									Alumi	inum:			
Carbon	Dioxide			Hydroge	n Sulfide:				Chror	nium:			
Oxyger	1:·			1					Сорр	er:			
Comme	ants.			pH at tin	ne of sampling	J:			Lead:				
Comme				pH at tin	ne of analysis		7	7.73	Mang	anese:	1.0	00	0.04
				pH used	i in Calculati	on:	. 7	7.73	Nicke	l:			
			• 				<u></u>						
Condi	tions		Values C	alculated	at the Give	n Conditio	ons - Amou	ints	of Sca	ale in lb/100	00 bbl	-	
Tomp	Gauge Press.		alcite aCO ₃	Gyp CaSO	sum 4 ^{2H} 2 ⁰		ydrite aSO ₄		Cele Sr:	stite SO ₄		rite ISO ₄	CO ₂ Press
°F	psi	Index	Amount	Index	Amount	Index	Amount	lŗ	ndex	Amount	Index	Amount	psi
80	0	0.88	42.06	-2.46	0.00	-2.53	0.00	-	1.55	0.00	1.42	7.65	0.19
100	0	0.95	49.01	-2.47	0.00	-2.47	0.00	-	1.53	0.00	1.27	7.65	0.27
120	0	1.03	56.66	-2.48	0.00	-2.40	0.00	-	1.51	0.00	1.14	7.30	0.38

Note 1: When assessing the severity of the scale problem, both the saturation index (SI) and amount of scale must be considered. Note 2: Precipitation of each scale is considered separately. Total scale will be less than the sum of the amounts of the five scales.

0.00

-2.30

0.00

-1.48

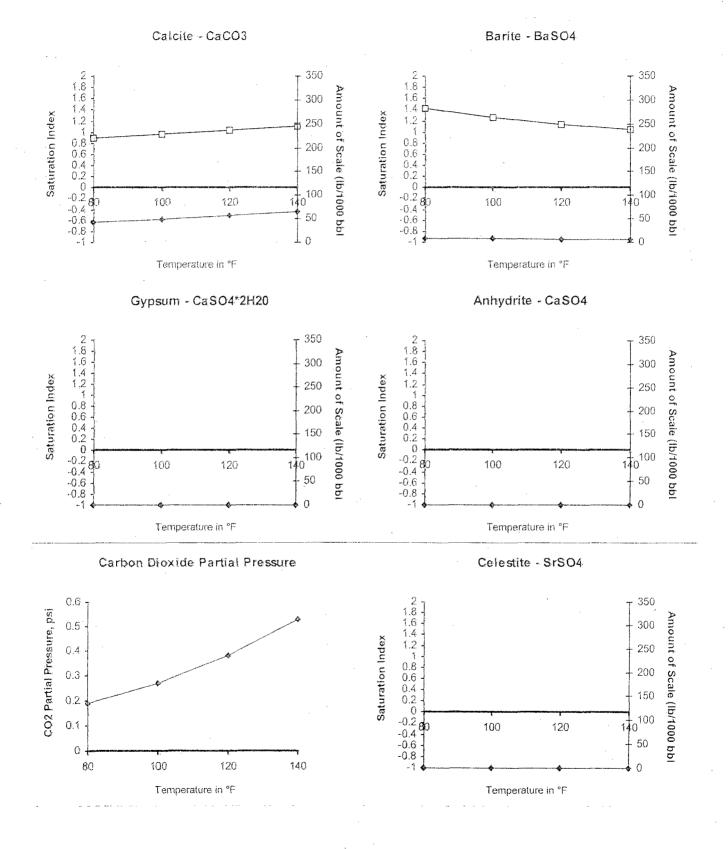
0.00

1.04

7.30

0.53

0


140

1.11

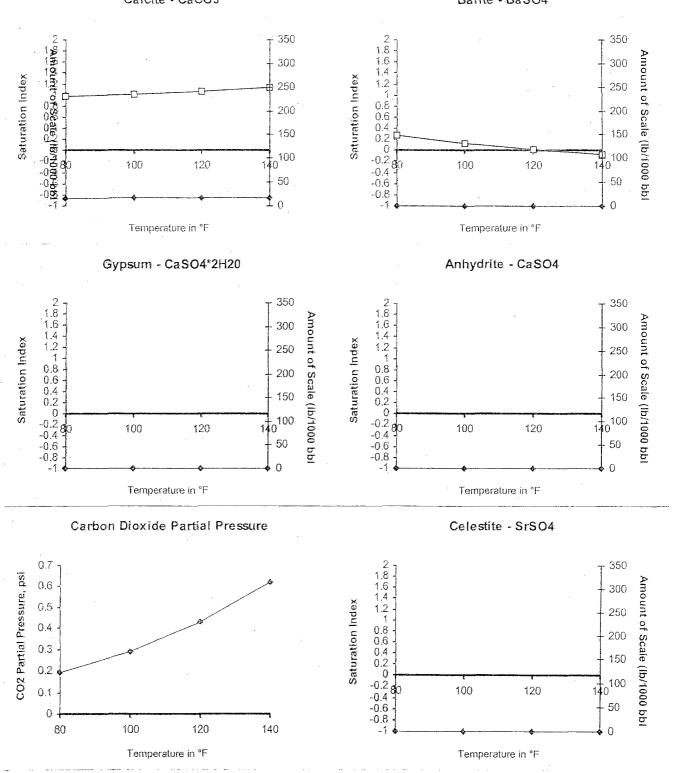
65.00

-2.47

Analysis of Sample 382509 @ 75 °F for EL PASO PRODUCTION, 11/19/07

Water Analysis Report by Baker Petrolite

Company:	EL PASO PRODUCTION	Sales RDT:	44625
Region:	ROCKY MOUNTAINS	Account Manager:	TY CLINESMITH (505) 447-0621
Area:	RATON, NM	Sample #:	382507
Lease/Platform:	VERMEJO PARK RANCH 'A'	Analysis ID #:	77323
Entity (or well #):	314	Analysis Cost:	\$80.00
Formation:	UNKNOWN		
Sample Point:	WELLHEAD		


, S	ummary		Analy	sis of Sa	mple 382507 @ 75 °	F	
Sampling Date:	11/13/07	Anions	mg/l	meq/l	Cations	mg/l	meq/i
Analysis Date: Analyst:	11/19/07 KIMBERLY POOLE	Chloride:	528.0	14.89	Sodium:	1004.6	43.7
TDS (mg/l or g/m		Bicarbonate: Carbonate:	1902.0 0.0	31.17 0.	Magnesium: Calcium:	5.0 21.0	0.41
Density (g/cm3, a Anion/Cation Ra	tonne/m3): 1.003	Sulfate: Phosphate:	5.0	0.1	Strontium: Barium:	3.5 3.0	0.08 0.04
		Borate: Silicate:			Iron: Potassium:	13.0 16.0	0.47 0.41
Carbon Dioxide:		Hydrogen Sulfide:			Aluminum: Chromium:		
Oxygen: Comments:		pH at time of sampling:			Copper: Lead:		
	· ·	pH at time of analysis: pH used in Calculation:		8.13 8.13	Manganese: Nickel:	0.200	0.01
Conditions	Values Ca	Iculated at the Given C	onditions - A	mounts	of Scale in Ib/100	10 bbl	
Gauge	Calcite	Gypsum	Anhydrite		Celestite	Barite	CO ₂

Tomn	Gauge Press.	· · ·	alcite CaCO ₃		sum 4 ^{*2H} 2 ⁰	:		iydrite aSO ₄		stite SO ₄		rite aSO ₄	CO ₂ Press
°F	psi	Index	Amount	Index	Amount		Index	Amount	Index	Amount	Index	Amount	psi
80	0	0.97	15.37	-3.74	0.00	÷	-3.81	0,00.	-2.76	0.00	0.28	0.70	0.19
100	0	1.02	15.72	-3.76	0.00		-3.76	0.00	-2.74	0.00	0.14	0.35	0.29
120	0	1.07	16.07	-3.77	0.00		-3.69	0.00	-2.70	0.00	0.02	0.00	0.43
140	0	.1.13	16.42	-3.77	0.00		-3.60	0.00	-2.66	0.00	-0.06	0.00	0.62

Note 1: When assessing the severity of the scale problem, both the saturation index (SI) and amount of scale must be considered.

Note 2: Precipitation of each scale is considered separately. Total scale will be less than the sum of the amounts of the five scales.

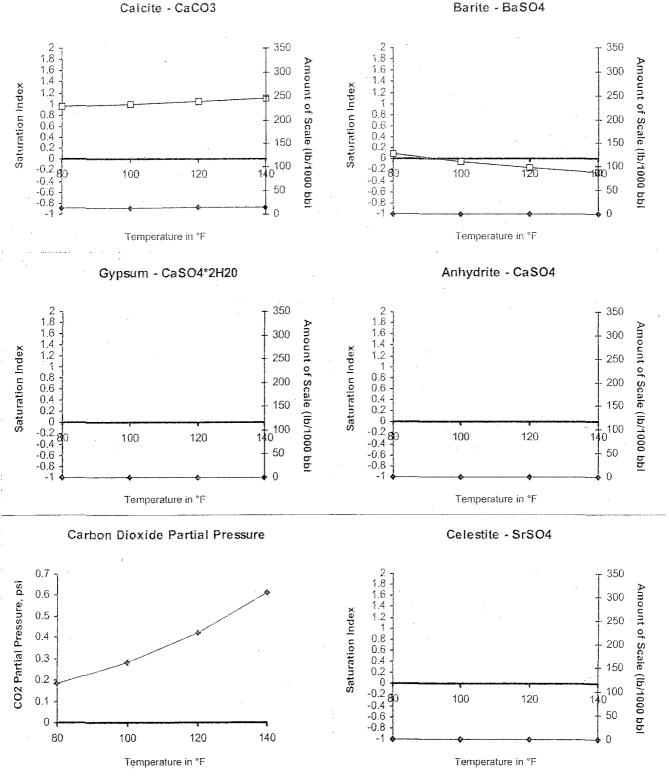
Analysis of Sample 382507 @ 75 °F for EL PASO PRODUCTION, 11/19/07

Calcite - CaCO3

Barite - BaSO4

Water Analysis Report by Baker Petrolite

Company:	EL PASO PRODUCTION	Sales RDT:	44625
Region:	ROCKY MOUNTAINS	Account Manager:	TY CLINESMITH (505) 447-0621
Area:	RATON, NM	Sample #:	382508
Lease/Platform:	VERMEJO PARK RANCH 'A'	Analysis ID #:	77325
Entity (or well #):	315	Analysis Cost:	\$80.00
Formation:	UNKNOWN		
Sample Point:	WELLHEAD		


Summary			An	alysis of Sa	mple 382508 @ 75 '	'F	
Sampling Date:	11/13/07	Anions	mg/l	meq/l	Cations	mg/l	meq/l
Analysis Date:	11/19/07	Chloride:	473.0	13.34	Sodium:	1020.1	44.37
Analyst: KIMBER	LY POOLE	Bicarbonate:	2001.0	32.79	Magnesium:	4.5	0.37
	3542.7	Carbonate:	0.0	0.	Calcium:	18.0	0.9
TDS (mg/l or g/m3):		Sulfate:	4.0	0.08	Strontium:	3.0	0.07
Density (g/cm3, tonne/m3): Anion/Cation Ratio:	0.9999995	Phosphate:			Barium:	2.5	0.04
Anion/Cation Ratio:	0.55555555	Borate:			Iron:	4.5	0.16
		Silicate:			Potassium:	12.0	0.31
					Aluminum:		
Carbon Dioxide:		Hydrogen Sulfide:	,		Chromium:		
Oxygen:		pH at time of sampling:			Copper:		
Comments:					Lead:		
		pH at time of analysis:		8.17	Manganese:	0.100	0.
		pH used in Calculation:		8.17	Nickel:		
	1						

Cond	tions	Values Calculated at the Given Conditions - Amounts of Scale in Ib/1000 bbl										
Temp	Press. 3			Gypsum CaSO ₄ 2H ₂ 0		Anhydrite CaSO ₄		Celestite SrSO ₄		Barite BaSO ₄		CO ₂ Press
°F	psi	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount	psi
80	0	0.95	13.27	-3.91	0.00	-3.98	0.00	-2.92	0.00	0.10	0.35	0.18
100	0	1.00	13.62	-3.93	0.00	-3.93	0.00	-2.90	0.00	-0.04	0.00	0.28
120	0	1.05	13.97	-3.94	0.00	-3.86	0.00	-2.87	0.00	-0.15	0.00	0.42
140	0	1.10	14.32	-3.94	0.00	-3.77	0.00	-2.83	0.00	-0.24	. 0.00	0.61

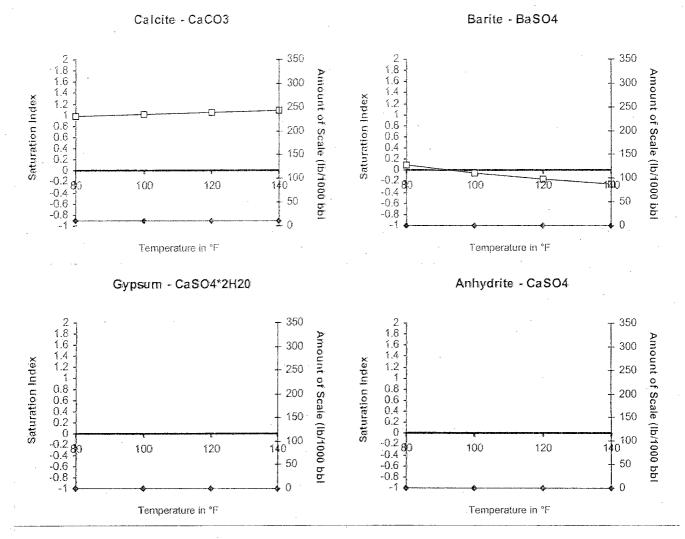
Note 1: When assessing the severity of the scale problem, both the saturation index (SI) and amount of scale must be considered.

Note 2: Precipitation of each scale is considered separately. Total scale will be less than the sum of the amounts of the five scales.

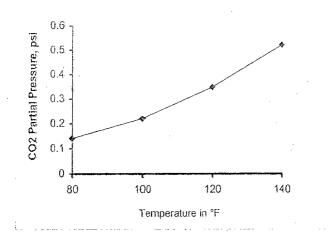
Analysis of Sample 382508 @ 75 °F for EL PASO PRODUCTION, 11/19/07

Water Analysis Report by Baker Petrolite

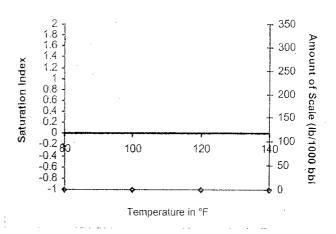
Company:	EL PASO PRODUCTION	Sales RD1:	44625
Region:	ROCKY MOUNTAINS	Account Manager:	TY CLINESMITH (505) 447-0621
Area:	RATON, NM	Sample #:	382510
_ease/Platform:	VERMEJO PARK RANCH 'A'	Analysis ID #:	77327
Entity (or well #):	316	Analysis Cost:	\$80.00
Formation:	UNKNOWN		
Sample Point:	WELLHEAD		


Summary		Ana	alysis of Sa	mple 382510 @ 75 °	۴	
ampling Date: 11/13/07	Anions	mg/l	meq/l	Cations	mg/l	meq/l
nalysis Date: 11/19/07	Chloride:	390.0	11.	Sodium:	1006.4	43.77
nalyst: KIMBERLY POOLE	Bicarbonate:	2064.0	33.83	Magnesium:	4.0	0.33
DS (mg/l or g/m3): 3540.6	Carbonate:	24.0	0.8	Calcium:	14.0	0.7
	Sulfate:	5.0	0.1	Strontium:	2.0	0.05
····· , ···· ,	Phosphate:			Barium:	2.0	0.03
nion/Cation Ratio: 1.0000001	Borate:			Iron:	10.0	0.36
	Silicate:			Potassium:	19.0	0.49
				Aluminum:		
arbon Dioxide:	Hydrogen Sulfide:			Chromium:		
xygen:	all at time of compliant			Copper:		
omments:	pH at time of sampling:			Lead:		
	pH at time of analysis:		8.31	Manganese:	0.200	0.01
	pH used in Calculation	1:	8.31	Nickel:		

Cond	Conditions Values Calculated at the Given Conditions - Amounts of Scale in Ib/1000 bbl											
Temp	Gauge Press.		alcite aCO ₃	Gypsum CaSO ₄ 2H ₂ 0		Anhydrite CaSO ₄		Celestite SrSO ₄		Ba Ba	CO ₂ Press	
°F	psi	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount	psi
80	0	0.98	10.48	-3.94	.0.00	-4.01	0.00	-3.01	0.00	0.09	0.35	0.14
100	0	1.01	10.83	-3.95	0.00	-3.96	0.00	-2.99	0.00	-0.04	0.00	0.22
120	0	1.04	10.83	-3.96	0.00	-3.89	0.00	-2.95	0.00	-0.15	0.00	0.35
140	0	1.08	11.18	-3.96	0.00	-3.79	0.00	-2.91	0.00	-0.24	0.00	0.52


Note 1: When assessing the severity of the scale problem, both the saturation index (SI) and amount of scale must be considered.

Note 2: Precipitation of each scale is considered separately. Total scale will be less than the sum of the amounts of the five scales.

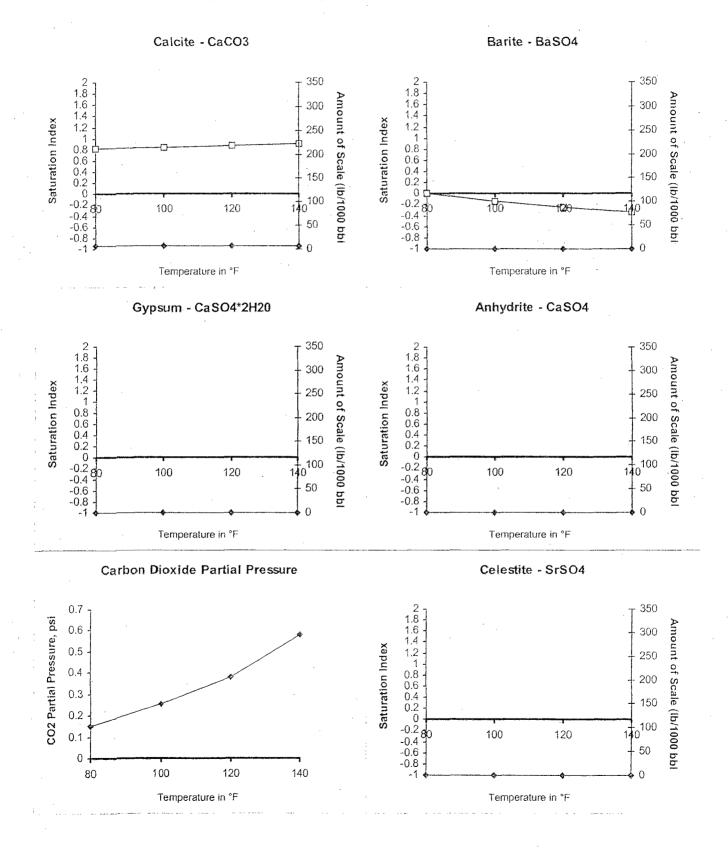

Analysis of Sample 382510 @ 75 °F for EL PASO PRODUCTION, 11/19/07

Carbon Dioxide Partial Pressure

Celestite - SrSO4

Water Analysis Report by Baker Petrolite

Company:	EL PASO PRODUCTION	Sales RDT:	44625
Region:	ROCKY MOUNTAINS	Account Manager:	TY CLINESMITH (505) 447-0621
Area:	RATON, NM	Sample #:	382511
Lease/Platform:	VERMEJO PARK RANCH 'A'	Analysis ID #:	77329
Entity (or well #):	317	Analysis Cost:	\$80.00
Formation:	UNKNOWN	×	
Sample Point:	WELLHEAD		


Analysis Date: 11/19/07 Chloride: 127.0 3.58 Sodium: 969.4 42 Analysis Date: KIMBERLY POOLE Bicarbonate: 2376.0 38.94 Magnesium: 4.5 0 TDS (mg/l or g/m3): 3551 Carbonate: 33.0 1.1 Calcium: 8.0 Density (g/cm3, tonne/m3): 1.003 Sulfate: 4.0 0.08 Strontium: 2.0 0 Phosphate: Borate: Iron: 5.0 0	Summary	,	Analysis of Sample 382511 @ 75 °F									
Analyst:KIMBERLY POOLEBicarbonate:2376.038.94Magnesium:4.50TDS (mg/l or g/m3):3551Garbonate:33.01.1Calcium:8.00Density (g/cm3, tonne/m3):1.003Sulfate:4.00.08Strontium:2.00Anion/Cation Ratio:0.9999999Borate:Borate:10.003Barium:2.00Carbon Dioxide:0.9999999Silicate:Iron:5.00Carbon Dioxide:Hydrogen Sulfide:Chromium:20.00Oxvoen:Copper:Copper:Copper:Copper:	Sampling Date: 11/13)7 Anions	mg/l	meq/l	Cations	mg/i	meq/l					
TDS (mg/l or g/m3): 3551 Density (g/cm3, tonne/m3): 1.003 Anion/Cation Ratio: 0.9999999 Carbon Dioxide: Hydrogen Sulfide: Carbon Dioxide: Hydrogen Sulfide:	Analysis Date: 11/19	⁾⁷ Chloride:	127.0	3.58	Sodium:	969.4	42.17					
TDS (mg/l or g/m3):3551Sulfate:4.00.08Strontium:2.00Density (g/cm3, tonne/m3):1.003Phosphate:Barium:2.00Anion/Cation Ratio:0.9999999Borate:Iron:5.00Borate:Silicate:Potassium:20.00Carbon Dioxide:Hydrogen Sulfide:Chromium:Copper:	Analyst: KIMBERLY POC	.E Bicarbonate:	2376.0	38.94	Magnesium:	4.5	0.37					
Density (g/cm3, tonne/m3):1.003Sulfate:4.00.08Strontium:2.00Anion/Cation Ratio:0.99999990.9999999Borate:Barium:2.00Borate:Silicate:Potassium:20.00Carbon Dioxide:Hydrogen Sulfide:Chromium:20.00Oxvgen:Copper:Copper:Copper:Copper:		Carbonate:	33.0	1.1	Calcium:	8.0	. 0.4					
Anion/Cation Ratio: 0.9999999 Phosphate: Barium: 2.0 0 Borate: Iron: 5.0 0 Silicate: Potassium: 20.0 0 Carbon Dioxide: Hydrogen Sulfide: Chromium: Oxvgen: Cooper:		Sulfate:	4.0	0.08	Strontium:	2.0	0.05					
Borate: Iron: 5.0 0 Silicate: Potassium: 20.0 0 Carbon Dioxide: Hydrogen Sulfide: Chromium: Oxvgen: Copper:		Phosphate:			Barium:	2.0	0.03					
Carbon Dioxide: Hydrogen Sulfide: Chromium: Oxvaen Cooper	Anon/Calion Ratio.	Borate:			Iron:	5.0	0.18					
Carbon Dioxide: Hydrogen Sulfide: Chromium:		Silicate:			Potassium:	20.0	0.51					
Oxygen Contraction Copper:					Aluminum:							
Oxygen: Copper:	Carbon Dioxide:	Hydrogen Sulfide:			Chromium:							
	Oxygen:	nH at time of sampling:			Copper:							
Comments: Lead:	Comments:				Lead:							
pH at time of analysis: 8.33 Manganese: 0.100		pH at time of analysis:		8.33	Manganese:	0.100	0.					
pH used in Calculation: 8.33 Nickel:		pH used in Calculation	1:	8,33	Nickel:							

Cond	itions		Values Calculated at the Given Conditions - Amounts of Scale in Ib/1000 bbl												
Temp	Gauge Press.	Calcite CaCO ₃		Gypsum CaSO ₄ 2H ₂ 0		Anhydrite CaSO ₄		Celestite SrSO ₄		Ba Ba	CO ₂ Press				
°F	psi	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount	psi			
80	0	0.81	5.94	-4.28	0.00	-4.35	0.00	-3.11	0.00	0.00	0.00	0.15			
100	0	0.83	5.94	-4.30	0.00	-4.30	0.00	-3.08	0.00	-0.14	0.00	0:25			
120	0	0.86	5.94	-4.31	0.00	-4.23	0.00	-3.05	0.00	-0.25	0.00	0.38			
140	0	0.90	5.94	-4.31	0.00	4.14	0.00	-3.00	0.00	-0.33	0.00	0.58			

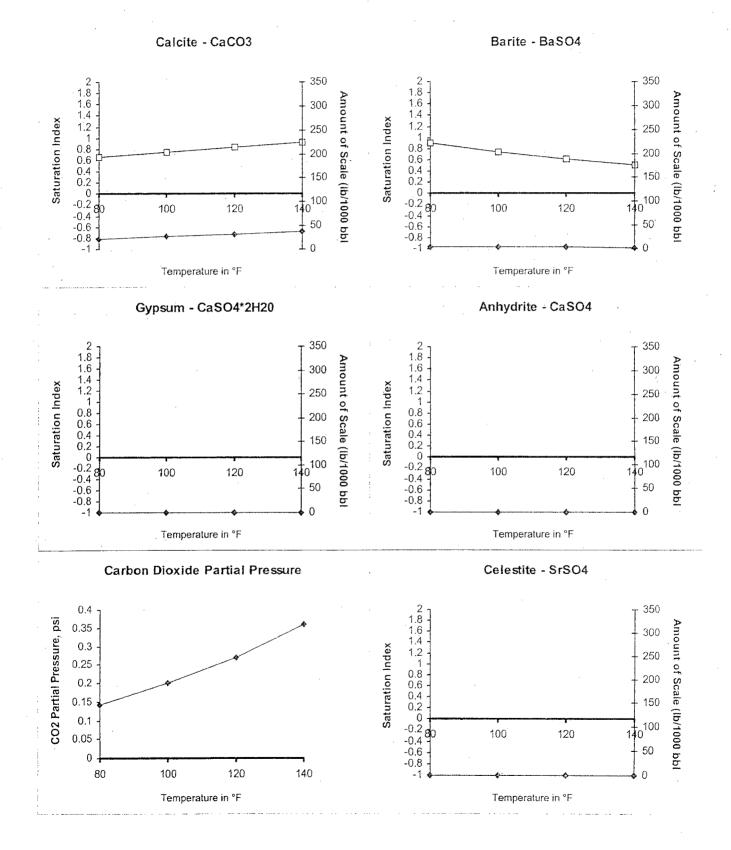
Note 1: When assessing the severity of the scale problem, both the saturation index (SI) and amount of scale must be considered.

Note 2: Precipitation of each scale is considered separately. Total scale will be less than the sum of the amounts of the five scales.

Analysis of Sample 382511 @ 75 °F for EL PASO PRODUCTION, 11/19/07

Water Analysis Report by Baker Petrolite

Company:	EL PASO PRODUCTION	Sales RDT:	44625
Region:	ROCKY MOUNTAINS	Account Manager:	TY CLINESMITH (505) 447-0621
Area:	RATON, NM	Sample #:	42410
ease/Platform:	VERMEJO PARK RANCH 'A'	Analysis ID #:	73986
Entity (or well #):	318	Analysis Cost:	\$80.00
Formation:	UNKNOWN		
Sample Point:	WELLHEAD		


Summary			Analysis of Sample 42410 @ 75 °F									
Sampling Date:	07/18/07	Anions	mg/ł	meq/l	Cations	mg/i	meq/)					
Analysis Date:	08/01/07	Chloride:	10934.0	308.41	Sodium:	6366.4	276.92					
Analyst: LISA H	AMILTON	Bicarbonate:	362.0	5.93	Magnesium:	73.0	6.01					
TDC (19440 4	Carbonate:	0.0	0.	Calcium:	575.0	28.69					
TDS (mg/l or g/m3):	18449.4 1.013	Sulfate:	6.0	0.12	Strontium:	65.0	1.48					
Density (g/cm3, tonne/m3): Anion/Cation Ratio:	1.013	Phosphate:			Barium:	40.0	0.58					
Amon/Callon Ratio:	1	Borate:			iron:	5.0	0.18					
		Silicate:			Potassium:	22.0	0.56					
· .					Aluminum:							
Carbon Dioxide:		Hydrogen Sulfide:			Chromium:							
Oxygen:		pH at time of sampling:			Copper:							
Comments:					Lead:							
		pH at time of analysis:		7.42	Manganese:	1.000	0.04					
·	1. A.	pH used in Calculation	:	7.42	Nickel:							

Condi	itions	Values Calculated at the Given Conditions - Amounts of Scale in Ib/1000 bbl										
Temp Gauge Press.		Calcite CaCO ₃		Gypsum CaSO ₄ 2H ₂ 0		Anhydrite CaSO ₄		Celestite SrSO ₄		Ba	CO ₂ Press	
°F	psi	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount	psi
80	0	0.66	21.68	-2.83	0.00	-2.89	0.00	-1.98	0.00	0.91	4.13	0.14
100	0	0.75	26.50	-2.85	0.00	-2.84	0.00	-1.98	0.00	0.75	4.13	0.2
120	0	0.84	32.00	-2.85	0.00	-2.77	0.00	-1.96	0.00	0.62	3.44	0.27
140	0	0.93	38.20	-2.85	0.00	-2.68	0.00	-1.93	0.00	0.51	3.10	0.36

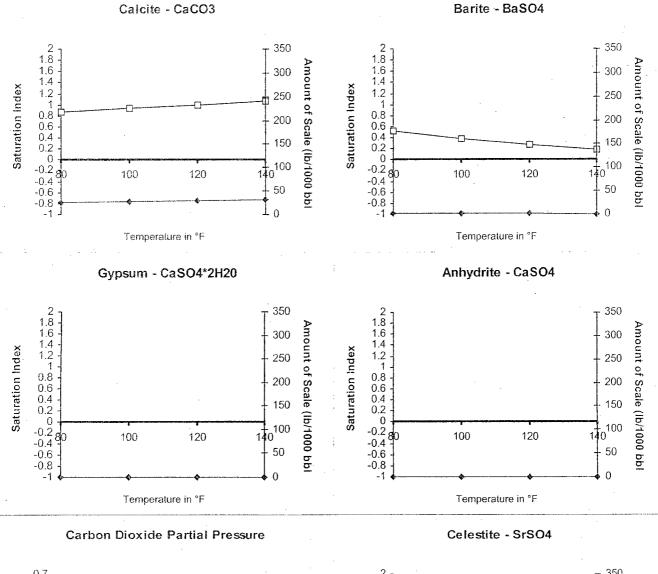
Note 1: When assessing the severity of the scale problem, both the saturation index (SI) and amount of scale must be considered.

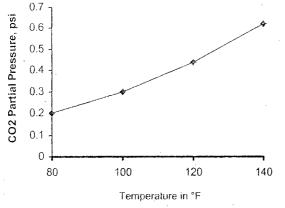
Note 2: Precipitation of each scale is considered separately. Total scale will be less than the sum of the amounts of the five scales.

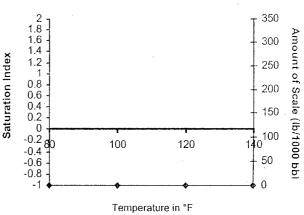
Analysis of Sample 42410 @ 75 °F for EL PASO PRODUCTION, 08/01/07

Water Analysis Report by Baker Petrolite

Company:	EL PASO PRODUCTION	Sales RDT:	44625
Region:	ROCKY MOUNTAINS	Account Manager:	TY CLINESMITH (505) 447-0621
Area:	RATON, NM	Sample #:	382505
Lease/Platform:	VERMEJO PARK RANCH 'A'	Analysis ID #:	77330
Entity (or well #):	319	Analysis Cost:	\$80.00
Formation:	UNKNOWN		
Sample Point:	WELLHEAD		


Sampling Date:11/13/07Anionsmg/lmeq/lCationsAnalysis Date:11/19/07Chloride:2040.057.54Sodium:Analyst:KIMBERLY POOLEBicarbonate:1346.022.06Magnesium:Carbonate:0.00Calcium:	mg/l 1738.4 7.0 43.0	meq/l 75.62 0.58
Analyst: KIMBERLY POOLE Bicarbonate: 1346.0 22.06 Magnesium: Carbonate: 0.0 0. Calcium:	7.0	75.62 0.58
Carbonate: 0.0 0. Calcium:		0.58
Carbonate: 0.0 0, Calcium:	120	
	40.0	2.15
TDS (mg/l or g/m3): 5231.6 Sulfate: 4.0 0.08 Strontium:	9.0	0.21
Density (g/cm3, tonne/m3): 1.005 Phosphate: Barium:	9.0	0.13
Anion/Cation Ratio: 1.0000000 Borate: Iron:	10.0	0.36
Silicate: Potassium:	25.0	0.64
Aluminum:		
Carbon Dioxide: Hydrogen Sulfide: Chromium:		
Oxygen: Copper:		
Comments:		
pH at time of analysis: 7.93 Manganese:	0.200	0.01
pH used in Calculation: 7.93 Nickel:		


Conditions Values Calculated at the Given Conditions - Amounts of Scale in Ib/1000 bbl												
Tomn	Gauge Press.	Calcite CaCO ₃		Gypsum CaSO ₄ 2H ₂ 0		Anhydrite CaSO ₄		Celestite SrSO ₄		Ba Ba	CO ₂ Press	
°F	psi	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount	psi
08	0	0.87	25.45	-3.65	0.00	-3.72	0.00	-2.57	0.00	0.53	1.74	0.2
100	0	0.94	27.55	-3.66	0.00	-3.67	0.00	-2.55	0.00	0.39	1.39	0.3
120	0	1.00	29.64	-3.67	0.00	-3.59	0.00	-2.52	0.00	0.27	1.05	0.44
140	0	1.07	31.03	-3.66	0.00	-3.50	0.00	-2.48	0.00	0.18	0.70	0.62


Note 1: When assessing the severity of the scale problem, both the saturation index (SI) and amount of scale must be considered.

Note 2: Precipitation of each scale is considered separately. Total scale will be less than the sum of the amounts of the five scales.

Analysis of Sample 382505 @ 75 °F for EL PASO PRODUCTION, 11/19/07

District I 3625 N. Fren	ch Dr., Hobbs, N	M 8824	0	E.		e of Ne			115000		Form C-101		
District II 1301 W. Gra District III	nd Avenue, Artes	ia, NM 8	88210	E	nergy Mine					Submit to approp	May 27, 2004 oriate District Office		
1000 Rio Bra	izos Road, Aztec,	NM 874	410			South St. Francis Dr.							
<u>District IV</u> 1220 S. St. F	rancis Dr., Santa	Fe, NM	87505			ta Fe, NM 87505							
APPI	ICATION	FOR	PERMIT '	го р	RILL, RI	E-ENTI	E R, D I	EEPEI	N, PLUGBA	CK, OR AD	D A ZONE		
			Operator Name a							² OGRID Number 180514			
		El P Box 1	aso Energy R 190 Raton, N	aton, I Vew M	lexico 8774				30-0	30-007-20892- °Well No.			
' Prope	erty Code 24648	. ·			^{Prope} Vermejo I	rty Name P ark Rar	rk Ranch VPR A 500						
			roposed Pool 1	,			¹⁰ Proposed Pool 2 Entrada						
L	_	÷	Glorieta		⁷ Surfa	ce Loca	tion						
UL or lot no.	Section Tow	nship	Range	Lot		et from the	T	outh line	Feet from the	East/West line	County _		
0	31 3	IN	21E	(·	338	1	uth	2578	East	Colfax		
					tom Hole Lo		1		Surface Feet from the	E	Country		
UL or lot no.	Section Tow	nship	Range	Lot	Idn Fee	et from the	North/S	outh line	Feet from the	East/West line	County		
			12		dditional V		ormati			15 -			
1	Type Code N	1	¹² Well Type Code S		1	Cable/Rotary r/Rotary			Lease Type Code	" Gro	und Level Elevation 7,966'		
	¹⁶ Multiple ¹⁷ Proposed Depth ¹⁸ Fo No 7,122 Glo							Dee	¹⁹ Contractor		²⁰ Spud Date January 2, 2008		
	No 7,122 Glo Depth to Groundwater Distance from nearest fr						well	ra	Distance from	n nearest surface w			
Į.	Synthetic		ls thick Clay		volume:	bbls	<u> </u>		Brine Die	esel/Oil-based	Gas/Air		
Hole S	Size	Casir	ng Size	Casin	g weight/foot		Setting D	epth	Sacks of Ce	ment	Estimated TOC		
17 %	2 ['] 2''	13	3/8"		48 #		350'		230 sk	s	Surface		
12 1/	437	9 5	5/8"		40#		3,970	,	580 sk	s	Surface		
8 3/4) "		7"		26#		7,122	,	880 sk	s	Surface		
Describe the	blowout prevent	on prog	ram, if any. Use	addition	al sheets if nec	essary.			-	one and proposed	new productive zone.		
 Drill 12 A ceme Drill 8 A ceme Open h Perforate Perforate 	14" hole to appro ent bond log will 14" hole to the Gi ent bond log will 10 le logs to include the Glorieta forme and stimulate th	ximately be run if lorieta, a be run i le induct mation a le Glorie	f unable to circul tion, resistivity, ca and attempt to cate ta interval.	/8", 40 te ceme 7,122 N ate ceme aliper, de	ppf, J-55 LTC ent to surface. AD. Set 7", 2 ent to surface. ensity and gam e formation wa	casing. C 6 ppf, P-1 nma ray. nter sample.	ement w	ith 580 sl asing . C	ks cement.		:		
7. Restorat	mechanical inter ion of surface loc	ation/sit	te.		V		24 F	IOURS	COMMENSSI S OF BEGIN	DIN TO BE NING OPE	NOTIFIED RATIONS		
			given above is tru ther certify that			e		OIL C	ONSERVAT	TION DIVIS	ION		
constructed		IOCD g	uidelines 🛄, a g				oved by:	X	l Mari	fa '			
Printed name	 David Vel	 tri	01/		·····	Title:		DI	STRICT SI	PFRVIS	18		
Title:	Production		· · · · · · · · · · · · · · · · · · ·				oval Date:	 2 /	6/07 E	xpiration Date:	2/6/08		
E-mail Addre	ss: david.veltri				· · · · · · · · · · · · · · · · · · ·						~/0/-0		
			Phone: (575)	45-672	1	Cond	tions of A	pproval A	ttached 🛛 S,	EE ABO	VE		

Inactive Well List

Total Well Count: 768 Inactive Well Count: 0 Since: 10/23/2006 Printed On: Wednesday, January 16 2008

District API Well ULSTR OCD Unit OGRID Operator Lease Type Well Type Last Production Formation/Notes Status TA Exp Date

WHERE Ogrid:180514, County:All, District:All, Township:All, Range:All, Section:All, Production(months):15, Excludes Wells Under ACOI, Excludes Wells in Approved TA Period