1R - 0457

REPORTS

DATE:

08/23/2006

¥.

August 23, 2006

Mr. Ben Stone New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re:

Plains Marketing, L. P. Preliminary Site Investigation Report and

Remediation Plan (Revised)

Frisco-Skelly # 1

Unit Letter P of Section 36, Township 16 South, Range 36 East

Lea County, New Mexico

Dear Mr. Stone:

Please find attached the finalized version of the Preliminary Site Investigation Report and Remediation Plan (Revised), dated May 16, 2006, for the Frisco-Skelly #1 release site located in Section 36 of Township 16 South, and Range 36 East of Lea County, New Mexico. A draft copy of this plan was electronically submitted to your office and verbally approved by Mr. Ed Martin who forwarded the draft plan to Mr. Patrick McMahon. Mr. McMahon approved the plan on August 17, 2006 (see attached email).

Should you have any questions or comments, please contact me at (505) 441-0965.

Sincerely,

Camille Reynolds

Remediation Coordinator

Plains All American Pipeline

CC: Mr. Patrick McMahon, 311 N. First, Lovington, NM

City of Lovington, 214 S. Love, Lovington, NM

Mr. Larry Johnson, NMOCD Hobbs Office

Enclosure

Basin Environmental Service Technologies, LLC

P. O. Box 301 Lovington, New Mexico 88260 kdutton@basinenv.com

Office: (505) 396-2378 Fax: (505) 396-1429

PRELIMINARY SITE INVESTIGATION REPORT and REMEDIATION PLAN (REVISED)

PLAINS MARKETING, L.P. (231735)

Frisco-Skelly # 1 Site

Lea County, New Mexico

Plains EMS # 2004-00196

UNIT P (SE/SE), Section 36, Township 16 South, Range 36 East

Latitude 32°, 52', 20.0" North, Longitude 103°, 18', 12.2" West

Prepared For:

Plains Marketing, L.P. 333 Clay Street Suite 1600 Houston, Texas 77002

Prepared By:
Basin Environmental Service Technologies, LLC
P. O. Box 301
Lovington, New Mexico 88260

16 May 2006

Ken Dutton

Basin Environmental Service Technologies, LLC

Table of Contents

Introduction		1
Summary of Field A	ctivities	1
New Mexico Oil Cor	nservation Division (NMOCD) Soil Classification	4
Distribution of Hydro	ocarbons in the Unsaturated Zone	4
Distribution of Hydro	ocarbons in the Saturated Zone	7
Recommendations	for Remediation	8
QA/QC Procedures Soil Sampling Groundwater Decontamina Laboratory P	Sampling ation of Equipment	9 9 10 10
Limitations		10
Distribution		11
	Tables	
Table 1: Table 2: Table 3:	Soil Chemistry, Delineation Soil Borings & Monitor Wells Soil Chemistry, Excavation Confirmation Samples Groundwater Chemistry	
	Figures	
Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7:	Site Location Map Excavation Site Map Soil Boring/Monitor Well Locations Proposed Excavation of Benched Area Digital Photo of Site (Pipeline locations) City of Lovington Water Well Locations Installation of 40-ml Poly Liner	
	Appendices	
Appendix A: Appendix B: Appendix C: Appendix D:	New Mexico Office of the State Engineer Water Well Databas Report Environmental Laboratory of Texas Analytical Results Soil Boring Logs NMOCD C-141	se

INTRODUCTION

Basin Environmental Service Technologies, LLC (Basin), responded to a pipeline release for Plains Marketing, L.P. (Plains), located on the Frisco Skelly 4-inch Gathering Pipeline on 20 September 2004. The Frisco Skelly 4-inch Gathering Pipeline was clamped and the impacted soils were excavated and stockpiled on a 6-mil poly liner.

This site is located in Unit P (SE/SE), Section 36, Township 16 South, Range 36 East, in Lea County, New Mexico (topographic Site Location Map is attached as Figure 1). The latitude is 32°, 52', 20.0 North, and longitude is 103°, 18', 12.2" West. The site is characterized by a right-of-way for the pipeline in a pasture. The visually stained area includes the release point covering an area approximately 42 feet long by 44 feet wide. Approximately 25 barrels of crude oil were released from the Plains pipeline and 0 barrels were recovered.

An Emergency One-Call was initiated 20 September 2004 and all responding companies either cleared or marked their respective lines. Subsequent renewals of the one-call were accomplished as required.

Mr. Larry Johnson, New Mexico Oil Conservation Division (NMOCD), Hobbs, New Mexico District 1 was verbally notified of the release on 20 September 2004. The City of Lovington, New Mexico, is the landowner and was notified on 20 September 2004. In accordance with the City of Lovington Ordinance # 449, a permit application was submitted 23 September 2004.

SUMMARY OF FIELD ACTIVITIES

On 20 September 2004, Basin arrived at the Frisco Skelly 4" Gathering pipeline release to repair and contain the crude oil pipeline release under the direction of Plains operations personnel. After the release had been contained utilizing a pipeline repair clamp, excavation of the impacted soil was initiated. The impacted soil was placed on a 6-mil poly liner adjacent to the release. The initial visually stained area was approximately 42 feet long by 44 feet wide.

On 21 September 2004, Basin began extended excavation at the release point area to a depth of 14 feet below ground surface (bgs) attempting to delineate the vertical and horizontal extent of crude oil impacted soil at the release point (see Site Map, Figure 2). Photoionization Detector (PID) readings indicate elevated concentrations of Volatile Organic Compounds (VOC) remain in place. Further excavation of the site continued based on elevated PID readings to a depth of approximately 15 feet bgs. The Frisco Skelly 4" Gathering pipeline was de-oiled by Plains and rendered inactive in October 2004. Due to pipeline integrity and safety concerns, a Pure Resource high-pressure saltwater injection pipeline (1600-psi) was relocated to the south of the excavation and is adjacent to the south bench wall. A Pure Resources 2-inch flow-

line was also re-routed to the south of the excavation to allow benching requirements be met. A 10-inch Navajo high-pressure (300-psi) gas line remains in place adjacent to the east bench wall of the excavation (see Digital Photo of Site, Pipeline Locations, Figure 5). Excavation of the site continued through January 2005 and approximately 14,566 cubic yards have been stockpiled on-site. The final dimensions of the excavation site are approximately 190 feet wide by 280 feet long and ranges in depth from approximately 18 to 20 feet bgs.

On 01 November 2004, Basin installed a soil boring, utilizing Straub Corporation, Stanton, Texas, at the release point in order to determine the vertical extent of crude oil impacted soil (see Soil Boring/Monitor Well Locations, Figure 3). The soil boring was installed to a depth of 55 feet bgs (soil boring logs are attached as Appendix C) and soil samples were collected at 5-foot intervals. Each sample was screened in the field with a PID, which was calibrated on 01 November 2004. The selected soil samples were analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX), and total petroleum hydrocarbons – gasoline range organics/diesel range organics (TPH-GRO/DRO).

Basin researched and obtained the City of Lovington water well location data from the New Mexico Environmental Department, New Mexico Drinking Water Bureau annual drinking water report, conducted in October 2004. The physical locations and recorded depth to groundwater of the water wells were plotted on a topographical map utilizing global positioning system (gps) obtained from the New Mexico Drinking Water Bureau report depicting the Frisco Skelly release site and the City of Lovington water well locations (see City of Lovington Water Well Locations, Figure 6).

On 20 January 2005, Plains personnel met with Mr. Pat McMahon, legal counsel for the City of Lovington and Mr. Eddie Seay, Environmental Consultant for the City of Lovington, at Mr. McMahon's office. Plains proposed several remediation scenarios to the City of Lovington representatives. Mr. McMahon and Mr. Seay stated that they would consider the proposals; however, the City of Lovington board would be the final approval authority.

On 24 January 2006, Plains personnel met with Mr. Pat McMahon, legal counsel for the City of Lovington, Mr. Eddie Seay, Environmental Consultant for the City of Lovington and Mr. Ed Martin, NMOCD Santa Fe, at Mr. McMahon's office. Mr. McMahon and Mr. Seay expressed concerns that the Frisco Skelly site had not been thoroughly vertically nor horizontally delineated and asked that Plains initiate a subsurface investigation to delineate the site. Plains personnel agreed to the horizontal and vertical delineation request and stated that a delineation work plan would be composed and delivered to Mr. McMahon within two (2) weeks for approval by the City of Lovington. The Plains Preliminary Site Investigation Report and Delineation Plan, dated 02 February 2006, was delivered to Mr. McMahon's office by Plains and Basin personnel on 06 February 2006. Plains received verbal approval from Mr. McMahon on 27 March 2006 to initiate the horizontal and vertical subsurface delineation as proposed in the Plains 02 February 2006 plan.

On 30 and 31 March 2006, additional subsurface horizontal and vertical delineation was initiated with the installation of four (4) soil borings installed at the northwest, northeast, southwest and southeast corners of the excavation floor (18 to 20 feet bgs, respectively) ranging in depth from 43 to 45 feet bgs. Soil samples were collected at 5 feet intervals; field screened with a PID and the selected soil samples were analyzed for BTEX and TPH-GRO/DRO. As requested by Mr. Eddie Seay, split soil samples were collected from the soil boring and monitor well installations and supplied to Mr. Seay. Four (4) soil samples from each soil boring (SB-2, SB-3, SB-4, SB-5) were selected for analysis resulting in a total of sixteen (16) soil samples analyzed. Laboratory results indicated that constituent concentrations of BTEX were either below NMOCD regulatory standards or not detected above laboratory method detection limits on the sixteen (16) soil samples. Laboratory results indicated that TPH-GRO/DRO concentrations exceed NMOCD regulatory standards for six (6) soil samples and the remaining ten (10) soil samples were either below NMOCD regulatory standards or were not detected above laboratory method detection limits.

On 03 and 04 April 2006, subsurface horizontal and vertical delineation continued. based on the visual observations and PID field screenings on the soil samples collected from the previously installed four (4) soil borings. Six (6) soil borings were installed on the benched area adjacent to the excavation floor at the northwest. northeast, southwest, southeast and south bench locations at depths ranging from 40 to 46 feet bgs. Soil samples were collected at 5 feet intervals and field screened with a PID. Selected soil samples were analyzed for concentrations of BTEX and TPH-Five (5) soil samples from SB-6 through SB-10 and seven (7) soil samples from SB-11 were selected for analysis resulting in a total of 32 total soil samples analyzed. Laboratory results indicated that constituent concentrations of BTEX were either below NMOCD regulatory standards or not detected above laboratory method detection limits on the 32 soil samples. Laboratory results indicated that TPH-GRO/DRO concentrations exceeded NMOCD regulatory standards on two (2) soil samples and were either below NMOCD regulatory standards or not detected above laboratory method detection limits on the remaining 30 soil samples.

On 04 and 06 April 2006, three (3) groundwater monitoring wells were installed consisting of one (1) up gradient and two (2) down gradient of the Frisco Skelly release site to evaluate the groundwater. Soil samples were collected at 5 feet intervals and field screened with a PID. Selected soil samples were analyzed for concentrations of BTEX and TPH-GRO/DRO. Eleven (11) soil samples were selected for analysis from the three (3) groundwater monitoring well installations ranging in depth from 5 to 90 feet bgs, resulting in a total of 33 soil samples analyzed. Laboratory results of the 33 soil samples indicated that constituent concentrations of BTEX and TPH-GRO/DRO were not detected above laboratory method detection limits.

On 19 and 20 April 2006, the three (3) groundwater monitoring wells were developed, purged and sampled. The groundwater samples were analyzed for constituent

concentrations of BTEX. Laboratory results of the three (3) groundwater monitoring wells indicated that constituent concentrations of BTEX were not detected above laboratory method detection limits.

NEW MEXICO OIL CONSERVATION DIVISION (NMOCD) SOIL CLASSIFICATION

A search of the New Mexico State Engineers (NMSEO) database in December 2004, revealed water depth information for Section 36, Township 18 South and Range 36 East, averaged 116 feet bgs; however, research of the City of Lovington water wells (January 2005) indicates that Water Well # 13, located approximately 3500 feet northwest, has a depth to groundwater of 90 feet bgs.

During the January 2006 meeting, Mr. McMahon, City of Lovington Attorney, produced a NMSEO database document indicating the average depth to water was 60 feet bgs for Section 36, Township 18 South and Range 36 East. Based on the extensive drilling activities and visual observations conducted at the Frisco Skelly release site, the NMSEO average depth to water of 60 feet bgs is not accurate. Groundwater was encountered at approximately 96 to 97 feet bgs with a static groundwater level of approximately 85 to 86 feet bgs, as measured during the groundwater sampling event, 20 April 2006.

Based on the soil boring (SB-1) analytical results, the maximum depth of impacted soil was approximately 40 feet bgs. Therefore, approximately 40 to 45 feet of non-impacted soil remains between the last known impacted soil depth and groundwater. There are no surface water bodies or water wells within 1000 feet of the release site. Based on this data, the site has an NMOCD Ranking Score of >19, which sets the remediation levels at:

Benzene: 10 ppm

BTEX: 50 ppm

TPH: 100 ppm

DISTRIBUTION OF HYDROCARBONS IN THE UNSATURATED ZONE

The final dimensions of the Frisco Skelly excavation site are approximately 190 feet wide by 280 feet long and ranges in depth from approximately 18 to 20 feet bgs. Analytical results, PID readings and visual observations indicated elevated concentrations of VOC's remain in place. Analytical results from the horizontal and vertical delineation soil borings installed on the excavation floor and benched areas (SB-1through SB-11) indicated that limited impacted soil exists at subsurface depths ranging from approximately 21 to 40 feet bgs in an area approximately 105 long by 75 feet wide. Approximately 14,566 cubic yards of soil has been excavated and segregated clean overburden and impacted soils are stockpiled on-site.

On 11 November 2004, four (4) confirmation soil samples were collected from the walls of the excavation and submitted for analysis. Laboratory results indicated the south wall soil sample was below NMOCD regulatory standards for constituent concentrations of BTEX and the remaining three (3) soil samples were not detected above laboratory method detection limits. Laboratory results of the four (4) soil samples indicated that TPH-GRO/DRO concentrations were not detected above the laboratory method detection limits, with the exception of the east and west wall soil samples, which indicated detectable TPH-GRO/DRO concentrations, but were below NMOCD regulatory standards.

On 01 November 2004, 30 and 31 March 2006, 03, 04 and 06 April 2006, an air rotary drill rig, operated by Straub Corporation, Stanton, Texas, was utilized to delineate the vertical extent of crude oil impacted soil at the release point (see Figure 3). Soil samples were collected in the subsurface from the soil boring at 5 feet intervals and field screened with a PID. Selected soil samples were analyzed for constituent concentrations of BTEX and TPH-GRO/DRO. Laboratory data sheets and chain-of-custody forms are attached (Appendix B). No visual observations of free phase hydrocarbons were encountered during the installation of the soil boring (as depicted on Appendix C) or excavation of the site.

Soil Boring 1, as depicted on the Soil Boring/Monitor Well Locations Site Map (Figure 3), was installed at the excavation floor release point, which was 15 feet bgs. The soil boring was installed to a total subsurface depth of 55 feet bgs. Analytical results indicated that constituent concentrations of BTEX were below NMOCD regulatory standards at 5, 10, 15, 20, and 25 feet bgs and were not detected above the laboratory method detection limits at 30, 35 and 40 feet bgs soil samples. Analytical results indicated that TPH concentrations exceeded NMOCD regulatory standards at 5, 10, 15, 20, and 25 feet bgs with TPH concentrations of 5100 mg/kg, 5540 mg/kg, 6700 mg/kg, 3068 mg/kg, and 2610 mg/kg, respectively. Analytical results indicated that TPH concentrations were below NMOCD regulatory standards at 30, 35 and 40 feet bgs with TPH concentrations of 78.1 mg/kg, 10.1 mg/kg and 16.9 mg/kg, respectively.

On 31 March 2006, Soil Boring 2 was installed at the southeast corner of the excavation floor at approximately 20 feet bgs. Laboratory results indicated that constituent concentrations of BTEX were below NMOCD regulatory standards for the 5 and 10 feet bgs soil samples and not detected above laboratory method detection limits for the 15 and 25 feet bgs soil samples. Laboratory results indicated that TPH-GRO/DRO concentrations exceeded NMOCD regulatory standards for the 5 and 10 feet bgs soil samples at 155 mg/kg and 1650 mg/kg, respectively. Laboratory results indicated that TPH-GRO/DRO concentrations were below NMOCD regulatory standards for the 15 feet bgs soil sample and not detected above laboratory method detection limits for the 25 feet bgs soil sample.

Soil Boring 3 was installed at the southwest corner of the excavation floor at approximately 20 feet bgs. Laboratory results indicated that constituent concentrations of BTEX were below NMOCD regulatory standards for the 5 feet bgs soil sample and not detected above laboratory method detection limits for the 10, 15, and 25 feet soil samples. Laboratory results indicated that TPH-GRO/DRO concentrations exceeded NMOCD regulatory standards for the 5 feet bgs soil sample at 3530 mg/kg, were below NMOCD regulatory standards for the 10 and 15 feet bgs soil samples and was not detected above laboratory method detection limits for TPH-GRO/DRO concentrations for the 25 feet bgs soil sample.

Soil Boring 4 was installed at the northwest corner of the excavation floor at approximately 18 feet bgs. Laboratory results indicated that constituent concentrations of BTEX were below NMOCD regulatory standards for the 5 and 10 feet bgs soil samples and were not detected above laboratory method detection limits for the 15 and 25 feet bgs soil samples. Laboratory results indicated that TPH-GRO/DRO concentrations exceeded NMOCD regulatory standards for the 5 and 10 feet bgs soil samples at 345 mg/kg and 3710 mg/kg, respectively. Laboratory results indicated the 15 feet bgs soil sample was below NMOCD regulatory standards and the 25 feet bgs soil sample was not detected above laboratory method detection limits.

Soil Boring 5 was installed at the northeast corner of the excavation floor at approximately 20 feet bgs. Laboratory results indicated that constituent concentrations of BTEX were not detected above laboratory method detection limits for the 5, 15 and 25 feet bgs soil samples and below NMOCD regulatory standards for the 10 feet bgs soil sample. Laboratory results indicated that TPH-GRO/DRO concentrations for the 10 feet bgs soil sample exceeded NMOCD regulatory standards at 304 mg/kg. Laboratory results indicated that TPH-GRO/DRO concentrations were below NMOCD regulatory standards for the 5 feet bgs soil sample and not detected above laboratory method detection limits for the 15 and 25 feet bgs soil samples.

Soil Boring 6 was installed at the northwest benched position (up gradient), approximately 25 feet northwest from SB-4, at approximately 10 feet bgs. Laboratory results indicated that constituent concentrations of BTEX and TPH-GRO/DRO were not detected above laboratory method detection limits, with the exception of the 30 feet bgs soil sample, which indicated BTEX concentrations, but were below NMOCD regulatory standards.

Soil Boring 7 was installed at the northeast benched position (up gradient), approximately 20 feet northeast from SB-5, at approximately 10 feet bgs. Laboratory results of the five (5) soil samples indicated that constituent concentrations of BTEX and TPH-GRO/DRO were not detected above laboratory method detection limits.

Soil Boring 8 was installed at the east benched position (cross gradient), approximately 20 feet from SB-2, at approximately 10 feet bgs. Laboratory results of

the five (5) soil samples indicated that constituent concentrations of BTEX and TPH-GRO/DRO were not detected above laboratory method detection limits.

Soil Boring 9 was installed at the southwest benched position (cross gradient), approximately 25 feet from SB-3, at approximately 10 feet bgs. Laboratory results of the five (5) sol samples indicated that constituent concentrations of BTEX and TPH-GRO/DRO were not detected above laboratory method detection limits.

Soil Boring 10 was installed at the south benched position (down gradient), approximately 30 feet from SB-3, at approximately 6 feet bgs. Laboratory results of the five (5) selected soil samples indicated that constituent concentrations of BTEX and TPH-GRO/DRO were not detected above laboratory method detection limits.

Soil Boring 11 was installed at the south benched position (down gradient), approximately 20 feet from SB-2, at approximately 6 feet bgs. Laboratory results of the seven (7) selected soil samples indicated that constituent concentrations of BTEX were not detected above laboratory methods detection limits. Laboratory results indicated that TPH-GRO/DRO concentrations exceeded NMOCD regulatory standards for the 15 and 20 feet bgs soil samples at 1780 mg/kg and 1350 mg/kg, respectively. Laboratory results indicated that TPH-GRO/DRO concentrations were below NMOCD regulatory standards for the 30 feet bgs soil sample and not detected above laboratory method detection limits for the 5, 10, 25, and 40 feet bgs soil samples.

Groundwater Monitoring Well 1 (MW-1) was installed at an up gradient position to the release point. Laboratory results of the eleven (11) selected soil samples indicated that constituent concentrations of BTEX and TPH-GRO/DRO were not detected above laboratory method detection limits.

Groundwater Monitoring Well 2 (MW-2) was installed at a down gradient position to the release point. Laboratory results of the eleven (11) selected soil samples indicated that constituent concentrations of BTEX and TPH-GRO/DRO were not detected above laboratory method detection limits.

Groundwater Monitoring Well 3 (MW-3) was installed at a down gradient position to the release point. Laboratory results of the eleven (11) selected soil samples indicated that constituent concentrations of BTEX and TPH-GRO/DRO were not detected above laboratory method detection limits.

DISTRIBUTION OF HYDROCARBONS IN THE SATURATED ZONE

Groundwater was encountered at depths varying from 96 to 97 feet bgs in the groundwater monitoring wells during drilling activities. No evidence of phase-separated hydrocarbons (PSH) was detected during drilling or groundwater sampling activities. Top-of-casing elevations for the on-site groundwater monitoring wells were

not available at the time of this preliminary report; therefore, site-specific groundwater gradient information is not included.

On 19 and 20 April 2006, the three (3) groundwater monitoring wells were developed, purged and sampled. The groundwater samples were analyzed for constituent concentrations of BTEX. Laboratory results of the three (3) groundwater monitoring wells groundwater samples indicated constituent concentrations of BTEX were not detected above laboratory method detection limits. (see Groundwater Chemistry, Table 3).

RECOMMENDATIONS FOR REMEDIATION

Based on the results of the extensive horizontal and vertical soil boring investigation and installation of the three (3) groundwater monitoring wells, it appears that soil impacts are present down to approximately 40 feet bgs and static groundwater is present at approximately 85 to 86 feet bgs. Approximately 14,566 cubic yards of impacted soil and segregated clean overburden has been removed and the remaining portion of the soil impacts appears to be limited in extent. Since the majority of the source material has been removed and there is approximately 40 to 45 feet of non-impacted soil between the top of the groundwater and the lower most soil impacts, this site is a prime candidate for installation of an impermeable barrier to inhibit vertical migration of the limited extent of contaminants and allow natural attenuation of the contaminants left in place. Plains has worked with the NMOCD and conducted several closures similar to this site in Lea County.

Based on the limited vertical extent of crude oil impact as documented with analytical results from the excavation and drilling activities, Plains recommends that an impermeable barrier consisting of a 40-mil poly liner be permanently installed at the base of the excavation to inhibit vertical migration of contaminants in soil left in place below the cap (see Figure 7, Installation Diagram of 40-mil Poly Liner). The remaining benched area will be excavated to the excavation floor at a depth of approximately 18-20 feet bgs to allow a sufficient buffer zone around the limited impacted area (see Figure 4, Proposed Excavation of Benched Area). The barrier will extend to a minimum of five (5) feet beyond the edges of soil impacted above NMOCD remedial thresholds. A 1-foot layer of fine sand will be installed beneath and above the 40-mil poly liner to prevent damage to the integrity of the poly liner during installation and backfilling. Installation of the 40-mil poly liner at a depth of 18 to 20 feet bgs will protect the barrier from erosion and human intrusion for a term sufficient to allow natural biodegrading of contaminates in the soil.

The Frisco Skelly release site is located in an area containing numerous oil field production facilities including crude oil pipelines, natural gas pipelines, crude oil flow-lines, production wells, injection wells and a high volume refinery. Based on the location of the Frisco Skelly release site and surrounding oil production facilities, Plains also recommends that the segregated clean overburden and impacted soils on-site be blended and utilized as backfill with a TPH-GRO/DRO concentration of 1000 mg/kg. Treatment/blending confirmation soil samples will be collected at a rate

of one sample per 500 cubic yards to verify constituent concentrations of BTEX and TPH-GRO/DRO are below 1000 mg/kg. Once the installation of the 40-mil poly liner is completed, backfilling of the excavation will be initiated with the blended soil on-site. The backfilled excavation will be contoured to the original grade surrounding the site and reseeded with approved grass seed.

Laboratory results from the initial groundwater sampling event indicated that constituent concentrations of BTEX were below laboratory method detection limits for the three (3) groundwater monitoring wells. Based on the laboratory results, Plains will continue to evaluate the groundwater on a quarterly basis as prescribed by NMOCD guidelines for four consecutive quarters. At the conclusion of four consecutive quarters of groundwater sampling documenting the groundwater monitoring wells exhibit no contaminants above NMOCD guidelines, Plains will request permission to plug and abandon the monitoring wells.

A request for closure will be submitted to the NMOCD upon completion of backfilling activities. Based on the results of the soil excavation and site investigation activities conducted to date, Plains requests approval from NMOCD and the City of Lovington to implement these proposed final remediation and site closure activities.

QA/QC PROCEDURES

Soil Sampling

Soil samples will be delivered to Environmental Lab of Texas, Inc. in Odessa, Texas for BTEX, TPH analyses using the methods described below. Soil samples will be analyzed for BTEX, TPH-GRO/DRO within fourteen days following the collection date.

The soil samples will be analyzed as follows:

- BTEX concentrations in accordance with EPA Method 8021B, 5030
- TPH concentrations in accordance with modified EPA Method 8015M GRO/DRO

Groundwater Sampling

The groundwater monitoring wells were developed utilizing the Environmental Protection Agency (EPA) protocol of approximately nine well volumes of groundwater or until the monitoring wells are dry using an electrical Grundfos Pump. Within forty-eight hours of development, the monitoring wells will be measured and purged of approximately three well volumes utilizing an electrical Grundfos Pump. Groundwater samples will be collected using a disposable Telfon sampler and the groundwater samples will be stored in clean, glass containers provided by the laboratory and placed on ice in the field. Purge water will be collected in a polystyrene tank and disposed of at a licensed New Mexico disposal facility.

Groundwater samples will be delivered to Environmental Lab of Texas, Odessa, Texas for analysis of BTEX concentrations using the method described below. All samples will be analyzed within approved holding times following the collection date.

BTEX concentrations in accordance with EPA Method 8021B/5030

Decontamination Of Equipment

Cleaning of the sampling equipment will be the responsibility of the environmental technician. Prior to use, and between each sample, the sampling equipment will be cleaned with Liqui-Nox® detergent and rinsed with distilled water.

Laboratory Protocol

The laboratory will be responsible for proper QA/QC procedures after signing the chain-of-custody form. These procedures will be either transmitted with the laboratory reports or are on file at the laboratory.

LIMITATIONS

Basin Environmental Service Technologies, LLC, has prepared this Preliminary Investigation Report and Work Plan to the best of its ability. No other warranty, expressed or implied, is made or intended.

Basin Environmental Service Technologies, LLC, has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. Basin Environmental Service Technologies, LLC, has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. Basin Environmental Service Technologies, LLC, has prepared this report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Basin Environmental Service Technologies, LLC, also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Plains Marketing, L.P. The information contained in this report including all exhibits and attachments, may not be used by any other party without the express consent of Basin Environmental Service Technologies, LLC, and Plains Marketing, L.P.

DISTRIBUTION

Copy 1: Jeff Dann
Plains All American
333 Clay Street

Suite 1600

Houston, Texas 77002 jpdann@paalp.com

Copy 2: Camille Reynolds

Plains All American 3112 W. Highway 82

Lovington, New Mexico 88260

cjreynolds@paalp.com

Copy 3: Mr. Ben Stone

New Mexico Energy, Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

ben_stone@state.nm.us

Copy 4: City of Lovington

Mr. Pat Wise City Manager 214 South Love

Lovington, NM 88260

Copy 5: Mr. Patrick B. M^cMahon

Heidel, Samberson, Newell, Cox & McMahon Law Firm

P. O. Drawer 1599 311 North First

Lovington, New Mexico 88260

hsncpbm@leaco.net

Copy 6: Basin Environmental Service Technologies LLC

P. O. Box 301

Lovington, New Mexico 88260

kdutton@basinenv.com

Copy <u>3</u>

TABLES

0

(1) (1)

•

()

0

TABLE 1

SOIL CHEMISTRY, DELINEATION SOIL BORINGS & MONITOR WELLS

TABLE 1

SOIL CHEMISTRY, DELINEATION SOIL BORINGS & MONITOR WELLS

SAMPLE	SAMPLE	SAMPLE		METHOD: E	METHOD: EPA SW 846-8021B, 5030	1021B, 5030		METHOL	METHOD: 8015M	TOTAL
LOCATION	DEPTH	DATE	BENZENE TOLUENE	TOLUENE	ETHYL-	M,P.	O-XYLENE	GRO	DRO	TPH
					BENZENE XYLENES	XYLENES				
- 1			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SB-1 5'	20' bgs	11/01/04	0.386	4.82	06.7	9.79	4.84	1270	3830	5100
- 1	25' bgs	11/01/04	0.192	2.04	3.70	4.70	2.38	1080	4460	5540
SB-1 15'	30' bgs	11/01/04	0.423	4.85	6.17	8.19	3.88	1360	5340	6700
	35' bgs	11/01/04	<0.025	0.540	1.33	1.820	0.860	478	2590	3068
SB-1 25'	40' bgs	11/01/04	<0.025	0.141	0.409	0.594	0.379	360	2250	2610
- 1	45' bgs	11/01/04	<0.025	<0.025	<0.025	<0.025	<0.025	×10	78.1	78.1
SB-1 35'	50' bgs	11/01/04	<0.025	<0.025	<0.025	<0.025	<0.025	<10	10.1	10.1
SB-1 40'	55′ bgs	11/01/04	<0.025	<0.025	<0.025	<0.025	<0.025	<10	16.9	16.9
			ST. C. S. S. S.	神道学者 かいて		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	W. Williams	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
SB-2 5'	25' bgs	03/31/06	<0.025	<0.025	<0.025	0.025	<0.025	16.8	138	155
SB-2 10'	30' bgs	03/31/06	0.037	1.40	1.88	3.54	1.51	283	1365	1650
SB-2 15'	35' bgs	03/31/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	16.6	16.6
SB-2 25'	45' bgs	03/31/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
	25' bgs	03/31/06	0.441	5.72	4.8	10.9	5.93	1110	2433	3530
SB-3 10'	30' bgs	03/31/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	28.1	28.1
SB-3 15'	35' bgs	03/31/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	16.7	16.7
SB-3 25'	45' bgs	03/31/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
			Marie Care	· · · · · · · · · · · · · · · · · · ·						がない ないでき ないかい 大いない
SB-4 5'	23' bgs	03/30/06	<0.025	<0.025	0.023	0.049	0.023	25.9	319.3	345
SB-4 10'	28' bgs	03/30/06	0.034	2.38	5.44	7.42	3.7	859	2850	3710
	33' bgs	03/30/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	41.0	41.0
SB-4 25'	43' bgs	90/08/60	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
一年 日本		10 July 20 10 10 10 10 10 10 10 10 10 10 10 10 10	STATE OF THE	· ·	TANKS OF THE STATE OF	4. The 2.	A STATE OF THE STA		والمرابع والمراجعة	

SOIL CHEMISTRY, DELINEATION SOIL BORINGS & MONITOR WELLS

SAMPLE	SAMPLE	SAMPLE SAMPLE		METHOD: E	METHOD: EPA SW 846-8021B, 5030	3021B, 5030		METHOD: 8015M	: 8015M	TOTAL
LOCATION	DEPTH	DATE	BENZENE TOLUENE	TOLUENE	ETHYL-	M,P-	O-XYLENE	GRO	DRO	ТРН
		•			BENZENE XYLENES	XYLENES				
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SB-5 5'	25' bgs	03/31/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	56.5	56.5
SB-5 10'	30' bgs	03/31/06	<0.025	0.012	0.028	0.075	0.018	41.6	268.9	304
SB-5 15'	35' bgs	03/31/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-5 25'	45' bgs	03/31/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
		Mary Same	一日 一日 一日 一日 日 日 日 日 日 日 日 日 日 日 日 日 日	The second second	A. C. M. S. C.	Profession was	The way of the second		100 May 100 Ma	東京 大学 大学
SB-6 5'	15' bgs	04/03/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-6 10'	20' bgs	04/03/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-6 15'	25' bgs	04/03/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-6 25'	35' bgs	04/03/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-6 30'	40' bgs	04/03/06	<0.025	<0.025	<0.025	0.029	<0.025	<10.0	<10.0	<10.0
	*									
SB-7 5'	15' bgs	04/03/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-7 10'	20' bgs	04/03/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-7 15'	25' bgs	04/03/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-7 25'	35' bgs	04/03/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-7 30'	40' bgs	04/03/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
The state of the s		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A. C.	3 4 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		A. 18. 18. 18.		The state of the s
SB-8 5'	15' bgs	04/03/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-8 10'	20' bgs	04/03/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-8 15'	25' bgs	04/03/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-8 25'	35' bgs	04/03/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-8 30'	40' bgs	04/03/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
		The said of the said				BANK THE BUT	The state of the s		TELES TO	

TABLE 1 (cont)

SOIL CHEMISTRY, DELINEATION SOIL BORINGS & MONITOR WELLS

SAMPLE	SAMPLE	SAMPLE SAMPLE		METHOD: E	METHOD: EPA SW 846-8021B, 5030	3021B, 5030		METHOD:): 8015M	TOTAL
LOCATION	DEPTH	DATE	BENZENE TOLUENE	TOLUENE	ETHYL-	M,P-	O-XYLENE	GRO	DRO	TPH
					BENZENE	XYLENES				
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SB-9 5'	15' bgs	04/03/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
	20' bgs	04/03/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-9 15'	25' bgs	04/03/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
	35' bgs	04/03/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-9 30	40'bgs	04/03/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
other st			,			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 m		· · · · · · · · · · · · · · · · · · ·
SB-10 5'	11' bgs	04/04/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-10 10'	16' bgs	04/04/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-10 20'	26' bgs	04/04/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-10 30'	36' bgs	04/04/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-10 40'	46' bgs	04/04/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
		***			A STATE OF THE STA					
- 1	11'bgs	04/04/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-11 10'	16' bgs	04/04/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-11 15'	21' bgs	04/04/06	<0.025	<0.025	<0.025	<0.025	<0.025	104	1673	1780
SB-11 20'	26' bgs	04/04/06	<0.025	<0.025	<0.025	<0.025	<0.025	63.0	1288	1350
SB-11 25'	31'bgs	04/04/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
SB-11 30'	36' bgs	04/04/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	15.4	15.4
SB-11 40'		04/04/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
9 1	The state of	The state of the s				STATE OF THE		ALL SANTES	Salar Salar Salar Salar	大学 一日本
MW-1 5'	5' bgs	04/04/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
MW-1 10'	10' bgs	04/04/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
MW-1 20'	20' bgs	04/04/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
MW-1 25'	25' bgs	04/04/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0

SOIL CHEMISTRY, DELINEATION SOIL BORINGS & MONITOR WELLS

SAMPLE	SAMPLE	SAMPLE		METHOD: E	METHOD: EPA SW 846-8021B, 5030	3021B, 5030		METHOD: 8015M	: 8015M	TOTAL
LOCATION	DEPTH	DATE	BENZENE TOLUENE	TOLUENE	ETHYL-	M,P.	O-XYLENE	GRO	DRO	ТРН
					BENZENE	XYLENES				
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
MW-1 30'	30, pas	04/04/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
MW-1 35'	35' bgs	04/04/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
MW-1 45'	45' bgs	04/04/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
MW-1 55'	25' bgs	04/04/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
MW-1 75'	s6q ,5/	04/04/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
MW-1 85'	s6q , <u>5</u> 8	04/04/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
MW-1 90'	s6q,06	04/04/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
		A Car Section		S. W. William	The Man State of the	· 教育 引 · · · · · · · · · · · · · · · · · ·		4 1. 2 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	A Company of the Comp	
MW-2 5'	sbq '3	04/06/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
MW-2 10'	10' bgs	04/06/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
MW-2 20'	20, pas	04/06/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
MW-2 25'	25' bgs	04/06/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
MW-2 30'	s6q,08	04/06/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
MW-2 35'	s6q ,gg	04/06/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
MW-2 45'	45' bgs	04/06/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
MW-2 55'	s6q , <u>c</u> ç	04/06/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
MW-2 75'	s6q , <u></u> 22	04/06/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
MW-2 85'	s6q , <u>5</u> 8	04/06/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
MW-2 90'	s6q ,06	04/06/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
The state of the s	· · · · · · · · · · · · · · · · · · ·		高の変する できなる		· · · · · · · · · · · · · · · · · · ·	2 1 1 1 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2		San San San San	The Sand Street	The state of the state of the state of the state of
MW-3 5'	sbq '3	04/06/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
MW-3 10'	10' bgs	04/06/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
MW-3 20'	20' bgs	04/06/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
MW-3 25'	25' bgs	04/06/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0

TABLE 1 (cont)

SOIL CHEMISTRY, DELINEATION SOIL BORINGS & MONITOR WELLS

SAMPLE	SAMPLE	SAMPLE SAMPLE		METHOD: E	METHOD: EPA SW 846-8021B, 5030	3021B, 5030		METHOD	METHOD: 8015M	TOTAL
LOCATION	DEPTH	DATE	BENZENE	BENZENE TOLUENE	ETHYL-	M,P.	O-XYLENE	GRO	DRO	TPH
					BENZENE XYLENES	XYLENES				
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
MW-3 30'	30' bgs	04/06/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
MW-3 35'	35' bgs	04/06/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
MW-3 45'	45' bgs	04/06/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
MW-3 55'	55' bgs	04/06/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
MW-3 75'	75' bgs	04/06/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
MW-3 85'	85' bgs	04/06/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
MW-3 90'	90, pds	04/06/06	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
NMOCD CRITERIA			10		TOTAL	TOTAL BTEX 50				100

TABLE 2 SOIL CHEMISTRY, EXCAVATION CONFIRMATION SAMPLES

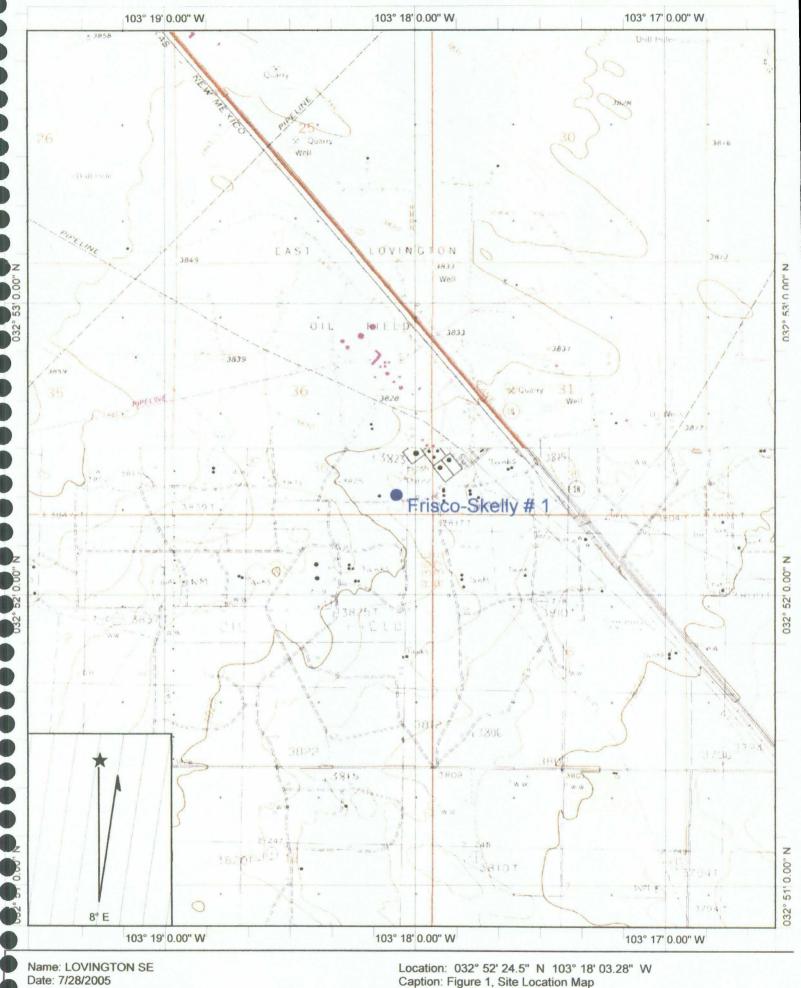
TABLE 2

000

SOIL CHEMISTRY, EXCAVATION CONFIRMATION SAMPLES

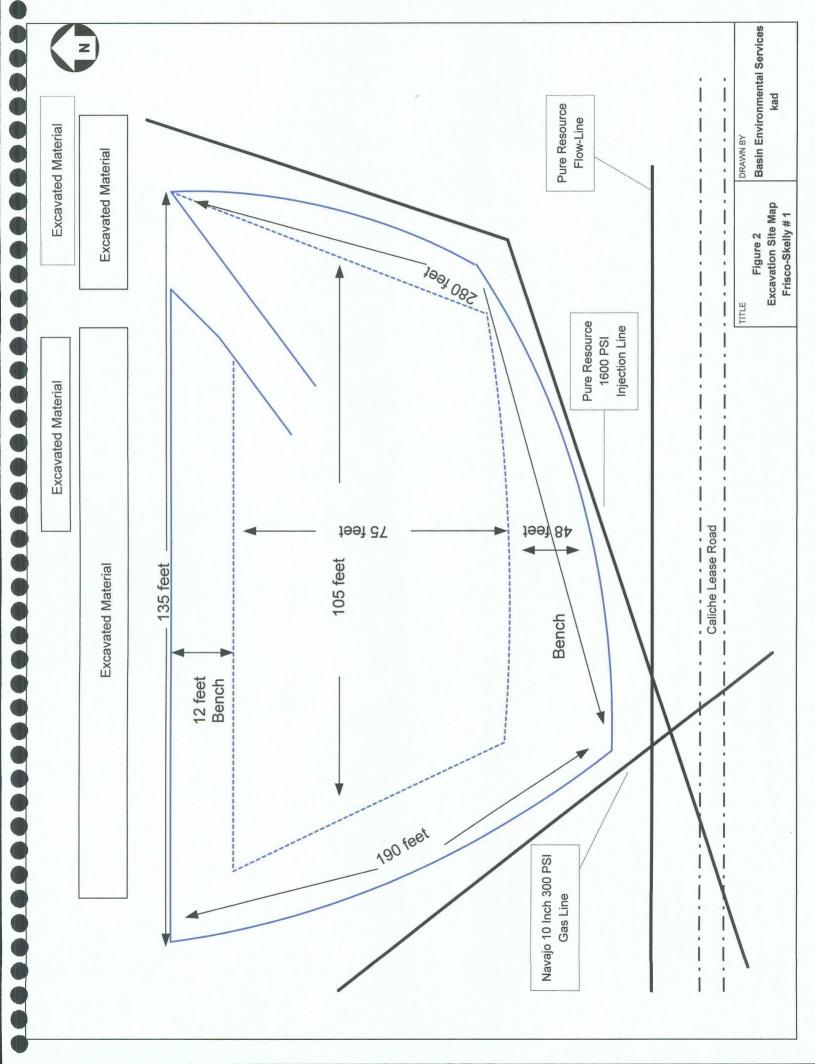
SAMPLE	SAMPLE	SAMPLE SAMPLE		METHOD: E	METHOD: EPA SW 846-8021B, 5030	3021B, 5030		METHOD: 8015M	: 8015M	TOTAL
LOCATION	DEPTH DATE	DATE	BENZENE	BENZENE TOLUENE ETHYL-		M,P-	O-XYLENE	GRO	DRO	HPT
		-			BENZENE XYLENES	XYLENES				
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	12' bgs	11/11/04	<0.025	<0.025	0.033	0.044	<0.025	<10.0	<10.0	<10.0
	15.5' bgs 11/11/04	11/11/04	1 1	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0
East Wall	12' bgs	11/11/04		<0.025	<0.025	<0.025	<0.025	16.5	72.7	89.2
West Wall	12' bgs	11/11/04	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	55.1	55.1

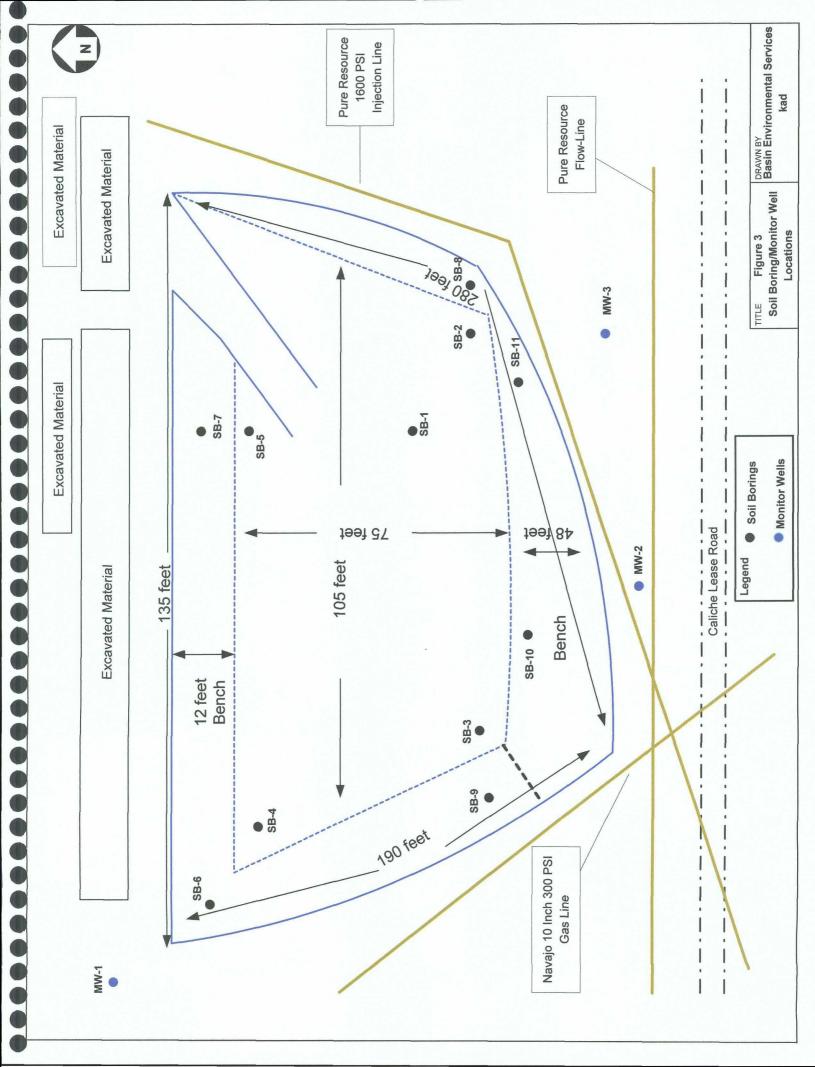
TABLE 3 GROUNDWATER CHEMISTRY


TABLE 3

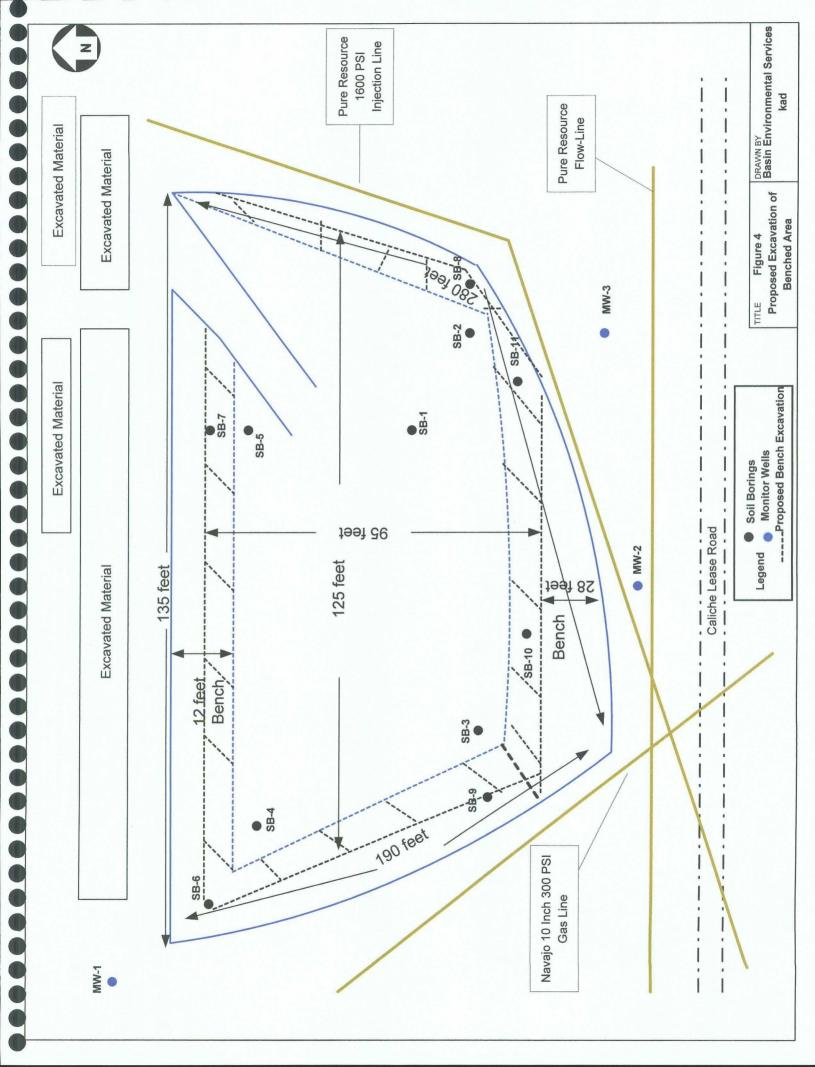
GROUND WATER CHEMISTRY

SAMPLE LOCATION	SAMPLE		METHODS	EPA SW 8	METHODS: EPA SW 846-8021B, 5030	30	Method:
	DATE	BENZENE	TOLUENE	BENZENE TOLUENE ETHYL-	M,P-	O-XYLENES	160.1
				BENZENE	XYLENES		LDS
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
MW-1	04/20/06	<0.001	<0.001	<0.001	<0.001	<0.001	
MW-2	04/20/06	<0.001	<0.001	<0.001	<0.001	<0.001	
at the way to be a factor of	The second of th	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		The second secon	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	يران والمرابعة والمواهدة والموادية	The state of the state of
MW-3	04/20/06	<0.001	<0.001	<0.001	<0.001	<0.001	


SITE LOCATION MAP

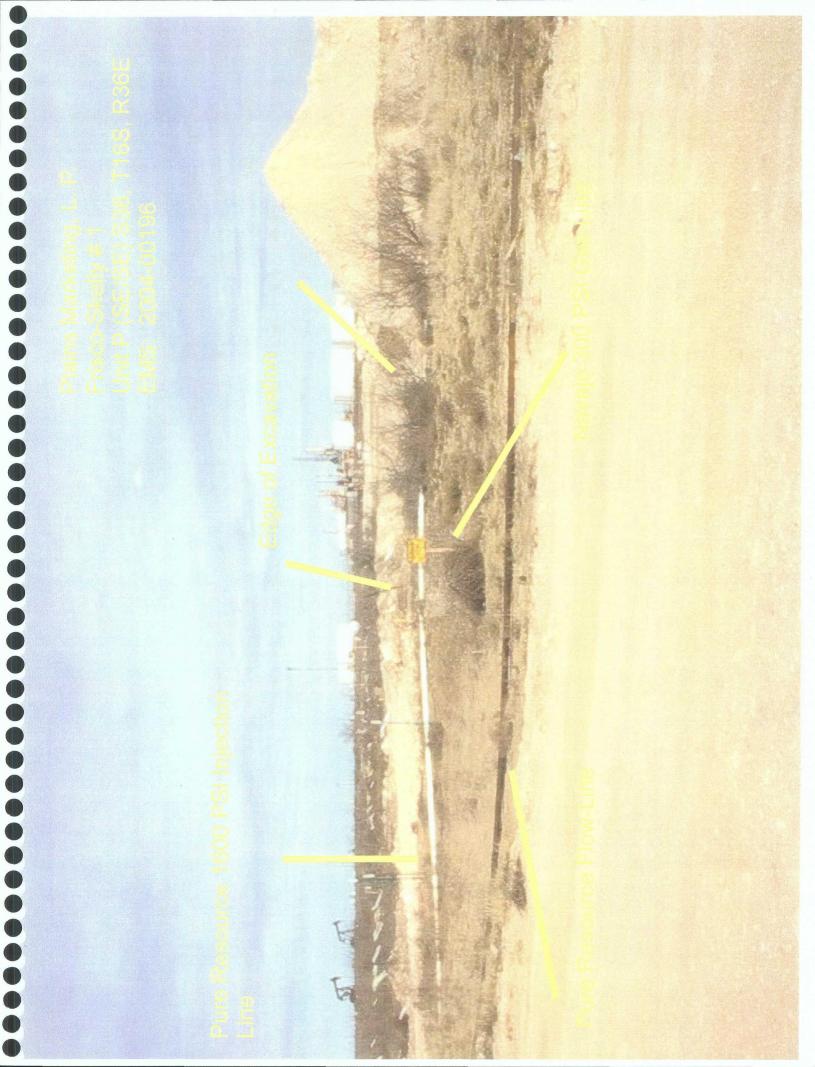

Scale: 1 inch equals 2000 feet

Location: 032° 52' 24.5" N 103° 18' 03.28" W Caption: Figure 1, Site Location Map Plains Marketing, L. P. Frisco-Skelly # 1


EXCAVATION SITE MAP

SOIL BORING/MONITOR WELL LOCATIONS

PROPOSED EXCAVATION OF BENCHED AREA


•


0


•

•

DIGITAL PHOTOS OF SITE (PIPELINE LOCATIONS)

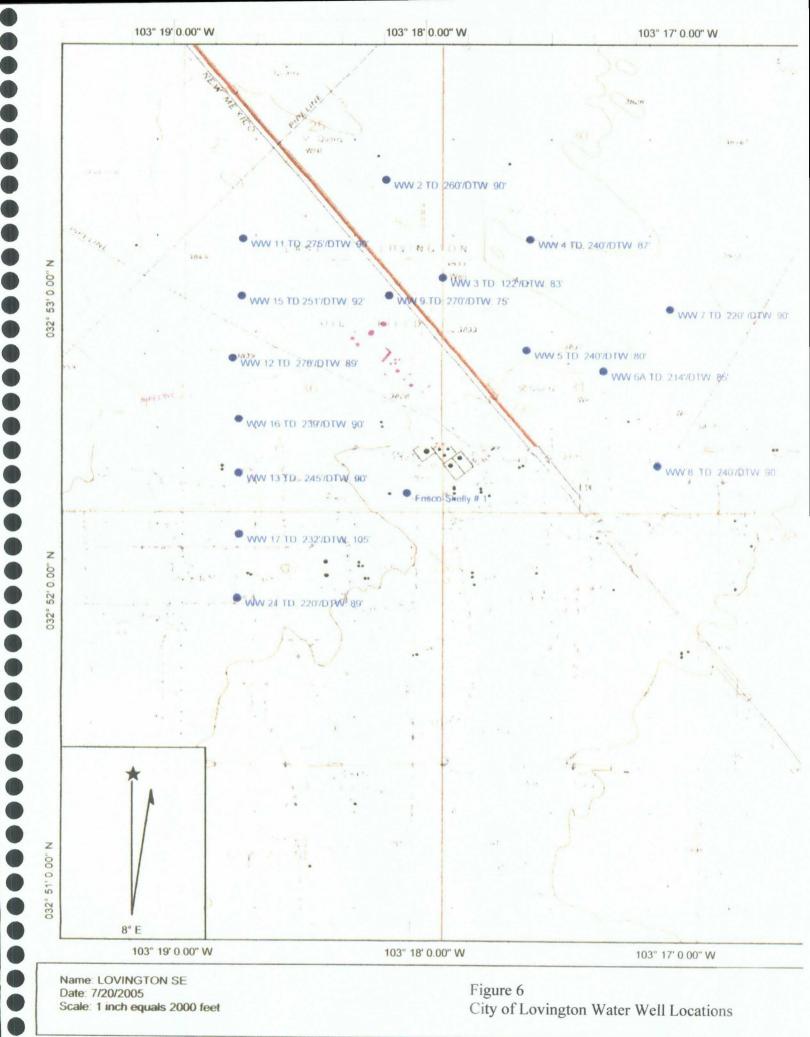
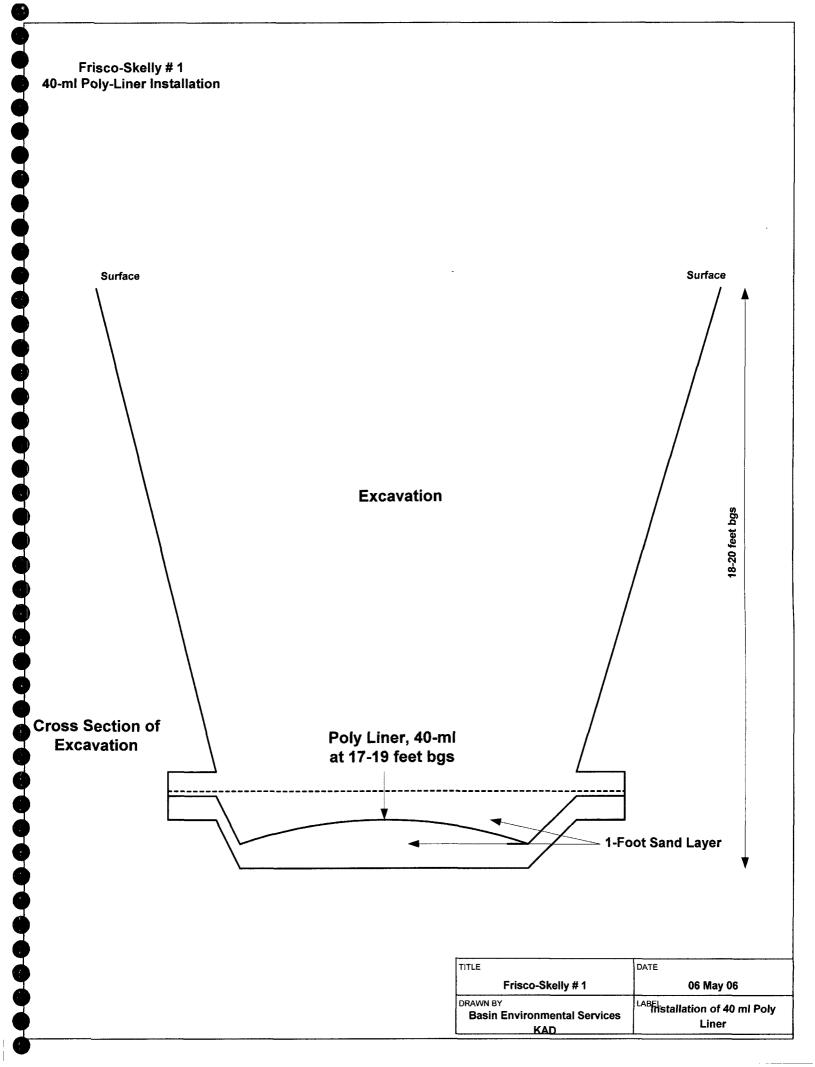


FIGURE 6


CITY OF LOVINGTON WATER WELL LOCATIONS

Copyright (C) 1999, Maptech, Inc.

FIGURE 7

INSTALLATION OF 40-ml POLY LINER

APPENDICES

6

•

(3)

0000

•

•

•

APPENDIX A

0

0

(1)

NEW MEXICO OFFICE OF THE STATE ENGINEER WATER WELL DATABASE REPORT

New Mexico Office of the State Engineer POD Reports and Downloads

	Township: 16S	Range: 36E	Sections: 36	-
N	AD27 X:	Y:	Zone:	Search Radius:
County:	a e	asin:		Number: Suffix:
Owner Name	: (First)	(Last))	○ Non-Domestic ○ Domestic ◎ All
	POD / Surf	ace Data Repor	t A	ort
		Clear Form	iWATERS I	Menu Help

AVERAGE DEPTH OF WATER REPORT 02/16/2006

(Depth Water in Feet)

 Bsn
 Tws
 Rng
 Sec
 Zone
 X
 Y
 Wells
 Min
 Max
 Avg

 L
 16S
 36E
 36
 6
 40
 88
 60

Record Count: 6

New Mexico Office of the State Engineer Well Reports and Downloads

	Township: 16S	Range: 36E	Sections: 36
	NAD27 X:	Y: .	Zone: Search Radius:
County:		Basin:	Number: Suffix:
Owner Na	nme: (First)	(Last)	○ Non-Domestic ○ Domestic ◎ All
	Well / Sur	face Data Report Wat Clear Form	Avg Depth to Water Report er Column Report WATERS Menu Help

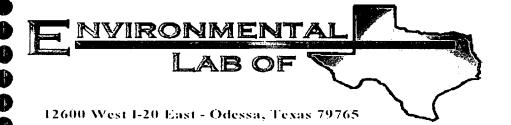
AVERAGE DEPTH OF WATER REPORT 12/16/2004

								(Debcu	Macer III	reeci
Bsn	Tws	Rng	Sec	Zone	X	Y	Wells	Min	Max	Avg
L	16S	36E	36				6	40	257	116

Record Count: 6

APPENDIX B

0


•

0

•

0

ENVIRONMENTAL LABORATORY OF TEXAS ANALYTICAL RESULTS

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: Frisco Skelly
Project Number: 2004-00196
Location: Lea Co., NM

Lab Order Number: 6D21005

Report Date: 04/28/06

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/28/06 12:34

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	6D21005-01	Water	04/20/06 09:35	04/21/06 13:10
MW-2	6D21005-02	Water	04/20/06 10:50	04/21/06 13:10
MW-3	6D21005-03	Water	04/20/06 12:50	04/21/06 13:10

Project: Frisco Skelly Project Number: 2004-00196 Project Manager: Camille Reynolds Fax: (432) 687-4914 Reported:

04/28/06 12:34

Organics by GC **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (6D21005-01) Water									
Benzene	ND	0.00500	mg/L	5	ED62607	04/26/06	04/27/06	EPA 8021B	
Toluene	ND	0.00500	и	,,	11	n	"	ш	
Ethylbenzene	ND	0.00500	"	*1	**	11	n	n .	
Xylene (p/m)	ND	0.00500	n	"	н	#	H	n	
Xylene (o)	ND	0.00500	n	**	n	11	"		
Surrogate: a,a,a-Trifluorotoluene		92.5 %	80-1	20	n	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.0 %	80-1	20	"	"	"	n	
MW-2 (6D21005-02) Water									
Benzene	ND	0.00100	mg/L	1	ED62607	04/26/06	04/26/06	EPA 8021B	
Toluene	ND	0.00100	11	H	ŧŧ	*	"	n	
Ethylbenzene	ND	0.00100	"	**	m	Ħ	**	n	
Xylene (p/m)	ND	0.00100	"	11	tt	"	u	**	
Xylene (o)	ND	0.00100	"	**	11	"	n	H	
Surrogate: a,a,a-Trifluorotoluene		102 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	80-1	20	"	"	n	n	
MW-3 (6D21005-03) Water									
Benzene	ND	0.00100	mg/L	1	ED62607	04/26/06	04/27/06	EPA 8021B	
Toluene	ND	0.00100	11	"	u	"	11	**	
Ethylbenzene	ND	0.00100	**	"	u	**	II	**	
Xylene (p/m)	ND	0.00100	**	n	н	H	"	**	
Xylene (o)	ND	0.00100	"	n	н	11	u	"	
Surrogate: a,a,a-Trifluorotoluene		95.8 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.8 %	80-1	20	"	"	"	"	

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/28/06 12:34

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED62607 - EPA 5030C (GC)										
Blank (ED62607-BLK1)				Prepared &	: Analyzed:	: 04/26/06				
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00100	"							
Xylene (o)	ND	0.00100	11							
Surrogate: a,a,a-Trifluorotoluene	39.1		ug/l	40.0		97.8	80-120			
Surrogate: 4-Bromofluorobenzene	41.4		"	40.0		104	80-120			
LCS (ED62607-BS1)		Prepared & Analyzed: 04/26/06								
Benzene	0.0503	0.00100	mg/L	0.0502		100	80-120			
Toluene	0.0550	0.00100	n	0.0502		110	80-120			
Ethylbenzene	0.0584	0.00100	n	0.0502		116	80-120			
Xylene (p/m)	0.120	0.00100	n	0.100		120	80-120			
Xylene (o)	0.0582	0.00100	n	0.0502		116	80-120			
Surrogate: a,a,a-Trifluorotoluene	42.9		ug/l	40.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	47.2		"	40.0		118	80-120			
Calibration Check (ED62607-CCV1)				Prepared: 0	04/26/06 A	nalyzed: 04	/27/06			
Benzene	57.8		ug/l	50.0		116	80-120			
Toluene	56.3		Ħ	50.0		113	80-120			
Ethylbenzene	58.2		н	50.0		116	80-120			
Xylene (p/m)	118		н	100		118	80-120			
Xylene (o)	58.8		**	50.0		118	80-120			
Surrogate: a,a,a-Trifluorotoluene	35.5		"	40.0		88.8	80-120			
Surrogate: 4-Bromofluorobenzene	36.6		"	40.0		91.5	80-120			
Matrix Spike (ED62607-MS1)	Sou	rce: 6D20008-	01	Prepared: 0	04/26/06 A	nalyzed: 04	/27/06			
Benzene	0.0595	0.00100	mg/L	0.0502	ND	119	80-120			
Toluene	0.0573	0.00100	"	0.0502	ND	114	80-120			
Ethylbenzene	0.0559	0.00100	**	0.0502	ND	111	80-120			
Xylene (p/m)	0.120	0.00100	11	0.100	ND	120	80-120			
Xylene (o)	0.0582	0.00100	**	0.0502	ND	116	80-120			
Surrogate: a,a,a-Trifluorotoluene	37.1		ug/l	40.0		92.8	80-120			
Surrogate: 4-Bromofluorobenzene	40.0		"	40.0		100	80-120			

Project: Frisco Skelly
Project Number: 2004-00196

Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/28/06 12:34

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	İ
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch ED62607 - EPA 5030C (GC)

Matrix Spike Dup (ED62607-MSD1)	Source: 6D20008-01		Prepared: 04/26/06 Analyzed: 04/27/06			4/27/06			
Benzene	0.0600	0.00100	mg/L	0.0502	ND	120	80-120	0.837	20
Toluene	0.0579	0.00100	"	0.0502	ND	115	80-120	0.873	20
Ethylbenzene	0.0590	0.00100	**	0.0502	ND	118	80-120	6.11	20
Xylene (p/m)	0.120	0.00100	"	0.100	ND	120	80-120	0.00	20
Xylene (o)	0.0584	0.00100	"	0.0502	ND	116	80-120	0.00	20
Surrogate: a,a,a-Trifluorotoluene	41.9		ug/l	40.0		105	80-120		
Surrogate: 4-Bromofluorobenzene	42.5		"	40.0		106	80-120		

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:

Reported: 04/28/06 12:34

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Laboratory Control Spike

Matrix Spike

Dup Duplicate

LCS

MS

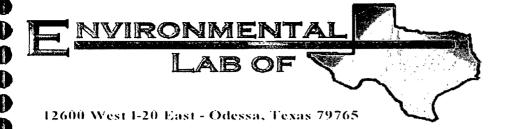
Report Approved By: Raland K Juliah

4/28/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:


This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

TAT brebnet2 XX PUSH TAT (Pre-Schedule Project # EMS# 2004-00196 Whitelstscals scallon coole 2,0,5 0000 CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Project Name: Fr. 500 .5 Kall Finms State M.A.O. Temperature Upon Receipt: RCI Sample Containers Intact? Laboratory Comments: BLEX 8051 8/2030 × × Analyze selitalovime@ #etals: As Ag Ba Cd Ct Pb Hg Se TOTAL Project Loc: Aniona (Cl., \$O4, CO3, HCO3) Cations (Ca, Mg, Na, K) 0/8/ Time Time 8001 8001 M8108 1.81% Hell 0000 Ofpet (sbecity): 1200 C4-71-00 Sludge XX Water 乀 622-366-1450 Ofher (Specify) Mone *OS*H HOPN × HC X FONH po) No. of Containers 4000 to our d N Fax No: ري ام 050 1250 Dalqms2 emiT ð Sasin Envisonmenta 88.760 Environmental Lab of Texas I, Ltd. 1/20/14 Date Sampled Lovington, New J-24-06 13:10 12+102 Phone: 915-563-1800 Fax: 915-563-1713 Telephone No: 505-44/- 2124 10. Bax 30 FIELD CODE I'M 78 W. 2 70 - 3 City/State/Zip: Project Manager: Company Name Company Address: Sampler Signature: 12800 West L20 East Odessa, Texas 79763 ة 100 Co Special Instructions: AB # (lab use only) Relinquished by 0

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Plains P/L				
Time: 04-21-06 @ 1310	•			
D#: 60 21005				
Ds: Jmm				
0	Receipt Check	list		
perature of container/cooler?	(Yes)	No	2.0 C	<u>.</u>
ng container/cooler in good condition?	(Yes)	No		i
tody Seals intact on shipping container/cooler?	(Yes)) No	Not present	j
tody Seals intact on sample bottles?	(Yes)	No	Not present	Ĭ
of custody present?	(Yes	No (1
pole Instructions complete on Chain of Custody?	CLES	No		<u>-</u> 1
of Custody signed when relinquished and receive		No		-
of custody agrees with sample label(s)	Ves	No		1
gainer lacels legible and intact?	(ras			~ <u>`</u>
le Matrix and properties same as on chain of cust				j
les in proper container/bottle?	YES		,	<u>-</u>
rigles properly preserved?	¥ê\$∕			i
ble bottles intact?	(Yes)			- i
pervations documented on Chain of Custody?	ं (रेंटेंबे	l No		_ '
ervations documented on Chain of Custody? Mainers documented on Chain of Custody?	(YES)			- ;
cient sample amount for indicated test?	mes)			<u></u>
samples received within sufficient hold time?	(Yas)			
samples have zero headspace?	Yes		Not Applicable	
per observations:				
<u> </u>				
)	**************************************	·		
ntact Person: Date/Tim	e Documentat	ion:	Contacted by:	
254.4713			•	
		····		
rrective Action Taken:	·····			
P			•	
<u> </u>				

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: Frisco Skelly
Project Number: 2004-00196
Location: Lea County, NM

Lab Order Number: 6D10006

Report Date: 04/19/06

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/19/06 13:13

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-4 5'	6D10006-01	Soil	03/30/06 13:26	04/10/06 13:03
SB-4 10'	6D10006-02	Soil	03/30/06 13:31	04/10/06 13:03
SB-4 15'	6D10006-03	Soil	03/30/06 13:36	04/10/06 13:03
SB-4 25'	6D10006-04	Soil	03/30/06 14:20	04/10/06 13:03
SB-5 5'	6D10006-05	Soil	03/31/06 08:24	04/10/06 13:03
SB-5 10'	6D10006-06	Soil	03/31/06 08:29	04/10/06 13:03
SB-5 15'	6D10006-07	Soil	03/31/06 08:33	04/10/06 13:03
SB-5 25'	6D10006-08	Soil	03/31/06 09:12	04/10/06 13:03
SB-3 5'	6D10006-09	Soil	03/31/06 10:04	04/10/06 13:03
SB-3 10'	6D10006-10	Soil	03/31/06 10:07	04/10/06 13:03
SB-3 15'	6D10006-11	Soil	03/31/06 10:12	04/10/06 13:03
SB-3 25'	6D10006-12	Soil	03/31/06 10:43	04/10/06 13:03
SB-2 5'	6D10006-13	Soil	03/31/06 11:19	04/10/06 13:03
SB-2 10'	6D10006-14	Soil	03/31/06 11:23	04/10/06 13:03
SB-2 15'	6D10006-15	Soil	03/31/06 11:27	04/10/06 13:03
SB-2 25'	6D10006-16	Soil	03/31/06 12:10	04/10/06 13:03
SB-6 5'	6D10006-17	Soil	04/03/06 13:48	04/10/06 13:03
SB-6 10'	6D10006-18	Soil	04/03/06 13:53	04/10/06 13:03
SB-6 15'	6D10006-19	Soil	04/03/06 13:57	04/10/06 13:03
SB-6 25'	6D10006-20	Soil	04/03/06 14:04	04/10/06 13:03
SB-6 30'	6D10006-21	Soil	04/03/06 14:06	04/10/06 13:03
SB-7 5'	6D10006-22	Soil	04/03/06 14:36	04/10/06 13:03
SB-7 10'	6D10006-23	Soil	04/03/06 14:42	04/10/06 13:03
SB-7 15'	6D10006-24	Soil	04/03/06 14:50	04/10/06 13:03
SB-7 25'	6D10006-25	Soil	04/03/06 15:01	04/10/06 13:03
SB-7 30'	6D10006-26	Soil	04/03/06 15:07	04/10/06 13:03
SB-8 5'	6D10006-27	Soil	04/03/06 10:50	04/10/06 13:03
SB-8 10'	6D10006-28	Soil	04/03/06 10:54	04/10/06 13:03
SB-8 15'	6D10006-29	Soil	04/03/06 11:00	04/10/06 13:03
SB-8 25'	6D10006-30	Soil	04/03/06 11:06	04/10/06 13:03
SB-8 30'	6D10006-31	Soil	04/03/06 11:09	04/10/06 13:03
SB-9 5'	6D10006-32	Soil	04/03/06 12:11	04/10/06 13:03
SB-9 10'	6D10006-33	Soil	04/03/06 12:18	04/10/06 13:03
SB-9 15'	6D10006-34	Soil	04/03/06 12:22	04/10/06 13:03

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/19/06 13:13

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-9 25'	6D10006-35	Soil	04/03/06 12:30	04/10/06 13:03
SB-9 30'	6D10006-36	Soil	04/03/06 12:32	04/10/06 13:03
SB-10 5'	6D10006-3 7	Soil	04/04/06 09:07	04/10/06 13:03
SB-10 10'	6D10006-38	Soil	04/04/06 09:10	04/10/06 13:03
SB-10 20'	6D10006-39	Soil	04/04/06 09:23	04/10/06 13:03
SB-10 30'	6D10006-40	Soil	04/04/06 09:29	04/10/06 13:03
SB-10 40'	6D10006-41	Soil	04/04/06 09:37	04/10/06 13:03
SB-11 5'	6D10006-42	Soil	04/04/06 10:22	04/10/06 13:03
SB-11 10'	6D10006-43	Soil	04/04/06 10:25	04/10/06 13:03
SB-11 15'	6D10006-44	Soil	04/04/06 10:29	04/10/06 13:03
SB-11 20'	6D10006-45	Soil	04/04/06 10:34	04/10/06 13:03
SB-11 25'	6D10006-46	Soil	04/04/06 10:37	04/10/06 13:03
SB-11 30'	6D10006-47	Soil	04/04/06 10:40	04/10/06 13:03
SB-11 40'	6D10006-48	Soil	04/04/06 11:04	04/10/06 13:03
MW-1 5'	6D10006-49	Soil	04/04/06 12:53	04/10/06 13:03
MW-1 10'	6D10006-50	Soil	04/04/06 12:56	04/10/06 13:03
MW-1 20'	6D10006-51	Soil	04/04/06 13:06	04/10/06 13:03
MW-1 25'	6D10006-52	Soil	04/04/06 13:12	04/10/06 13:03
MW-1 30'	6D10006-53	Soil	04/04/06 13:16	04/10/06 13:03
MW-1 35'	6D10006-54	Soil	04/04/06 13:22	04/10/06 13:03
MW-1 45'	6D10006-55	Soil	04/04/06 13:33	04/10/06 13:03
MW-1 55'	6D10006-56	Soil	04/04/06 13:39	04/10/06 13:03
MW-1 75'	6D10006-57	Soil	04/04/06 13:49	04/10/06 13:03
MW-1 85'	6D10006-58	Soil	04/04/06 14:02	04/10/06 13:03
MW-1 90'	6D10006-59	Soil	04/04/06 14:13	04/10/06 13:03
MW-2 5'	6D10006-60	Soil	04/06/06 08:55	04/10/06 13:03
MW-2 10'	6D10006-61	Soil	04/06/06 09:01	04/10/06 13:03
MW-2 20'	6D10006-62	Soil	04/06/06 09:02	04/10/06 13:03
MW-2 25'	6D10006-63	Soil	04/06/06 09:03	04/10/06 13:03
MW-2 30'	6D10006-64	Soil	04/06/06 09:06	04/10/06 13:03
MW-2 35'	6D10006-65	Soil	04/06/06 09:13	04/10/06 13:03
MW-2 45'	6D10006-66	Soil	04/06/06 09:19	04/10/06 13:03
MW-2 55'	6D10006-67	Soil	04/06/06 09:27	04/10/06 13:03
MW-2 75'	6D10006-68	Soil	04/06/06 09:39	04/10/06 13:03

Environmental Lab of Texas

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/19/06 13:13

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-2 85'	6D10006-69	Soil	04/06/06 09:45	04/10/06 13:03
MW-2 90'	6D10006-70	Soil	04/06/06 10:05	04/10/06 13:03
MW-3 5'	6D10006-71	Soil	04/06/06 14:44	04/10/06 13:03
MW-3 10'	6D10006-72	Soil	04/06/06 14:50	04/10/06 13:03
MW-3 20'	6D10006-73	Soil	04/06/06 15:01	04/10/06 13:03
MW-3 25'	6D10006-74	Soil	04/06/06 15:05	04/10/06 13:03
MW-3 30'	6D10006-75	Soil	04/06/06 15:08	04/10/06 13:03
MW-3 35'	6D10006-76	Soil	04/06/06 15:13	04/10/06 13:03
MW-3 45'	6D10006-77	Soil	04/06/06 15:18	04/10/06 13:03
MW-3 55'	6D10006-78	Soil	04/06/06 15:24	04/10/06 13:03
MW-3 75'	6D10006-79	Soil	04/06/06 15:34	04/10/06 13:03
MW-3 85'	6D10006-80	Soil	04/06/06 15:40	04/10/06 13:03
MW-3 90'	6D10006-81	Soil	04/06/06 15:42	04/10/06 13:03

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
04/19/06 13:13

Organics by GC Environmental Lab of Texas

			inchtai D	40 01 10					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-4 5' (6D10006-01) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61005	04/10/06	04/10/06	EPA 8021B	
Toluene	ND	0.0250	H	**	**	u	Ħ	n	
Ethylbenzene	J [0.0232]	0.0250	"	"	**	**	n	n	
Kylene (p/m)	0.0491	0.0250	"	"	11	"	"	n	
(ylene (o)	J [0.0237]	0.0250	"	н	"	"	n		
Surrogate: a,a,a-Trifluorotoluene		99.5 %	80-1	20	"	"	n	n	
urrogate: 4-Bromofluorobenzene		92.0 %	80-1	20	n	"	"	"	
Carbon Ranges C6-C12	25.9	10.0	mg/kg dry	1	ED61011	04/10/06	04/10/06	EPA 8015M	
Carbon Ranges C12-C28	305	10.0	11	H		н	и	u	
Carbon Ranges C28-C35	14.3	10.0	"	n	"	11	n		
otal Hydrocarbon C6-C35	345	10.0	"	11	11	**	"	n .	
urrogate: 1-Chlorooctane		127 %	70-1	30	n	"	"	"	
urrogate: 1-Chlorooctadecane		130 %	70-1	30	n	"	n	n	
B-4 10' (6D10006-02) Soil						1 5.00			
enzene	0.0345	0.0250	mg/kg dry	25	ED61005	04/10/06	04/10/06	EPA 8021B	
oluene	2.38	0.0250	11	**	**	n	"	11	
thylbenzene	5.44	0.0250	**	tt	n	11	"	"	
(ylene (p/m)	7.42	0.0250	н	"	11	Ħ	"	11	
(ylene (o)	3.70	0.0250	**	**		11	11	п	
urrogate: a,a,a-Trifluorotoluene		170 %	80-1	20	"	"	"	"	S-0
Gurrogate: 4-Bromofluorobenzene		147 %	80-1	20	"	"	" .	"	S-0
Carbon Ranges C6-C12	859	10.0	mg/kg dry	1	ED61011	04/10/06	04/10/06	EPA 8015M	
Carbon Ranges C12-C28	2650	10.0	11		, II	**	11	ti .	
Carbon Ranges C28-C35	200	10.0	"	"	11	п	**	п	
otal Hydrocarbon C6-C35	3710	10.0	11	"	н	Ħ	11	11	
urrogate: 1-Chlorooctane		142 %	70-1	30	"	n	"	"	S-0
urrogate: 1-Chlorooctadecane		163 %	70-1	30	"	n	n	n	S-0
B-4 15' (6D10006-03) Soil									
Senzene	ND	0.0250	mg/kg dry	25	ED61005	04/10/06	04/10/06	EPA 8021B	
oluene	ND	0.0250	n	11	"	n	"	11	
thylbenzene	ND	0.0250	"	11	"	"	"	"	
ylene (p/m)	ND	0.0250	#	**	"	"	"	H.	
(ylene (o)	ND	0.0250	11	H		"	"	11	
urrogate: a,a,a-Trifluorotoluene		95.8 %	80-1.	20	"	"	"	"	
urrogate: 4-Bromofluorobenzene		95.2 %	80-1.	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61011	04/10/06	04/10/06	EPA 8015M	

Environmental Lab of Texas

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:

Reported: 04/19/06 13:13

Organics by GC Environmental Lab of Texas

		LHVII OH				 			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	No
SB-4 15' (6D10006-03) Soil						_			
Carbon Ranges C12-C28	41.0	10.0	mg/kg dry	1	ED61011	04/10/06	04/10/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	11	**	Ħ	**	Ħ	11	
Total Hydrocarbon C6-C35	41.0	10.0	11	n	"	н	If	**	
Surrogate: 1-Chlorooctane		99.8 %	70-1	30	"	"	"	n	
Surrogate: 1-Chlorooctadecane		98.0 %	70-1	30	n	n	"	n	
SB-4 25' (6D10006-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61005	04/10/06	04/10/06	EPA 8021B	
Toluene	ND	0.0250	n	н	п	n .	11	n	
Ethylbenzene	ND	0.0250		**	"	н	U	11	
Xylene (p/m)	ND	0.0250	n	**	11	n	11	n	
Xylene (o)	ND	0.0250	H	"	11	"	11	"	
Surrogate: a,a,a-Trifluorotoluene		97.2 %	80-1.	20	n	"	"	n	
Surrogate: 4-Bromofluorobenzene		88.5 %	80-1.	20	"	"	"	n .	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61011	04/10/06	04/10/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	н	n	n		n	"	
Carbon Ranges C28-C35	ND	10.0	11	"	н	n	"	"	
Total Hydrocarbon C6-C35	ND	10.0	"	n	н	n	tt	и	
Surrogate: 1-Chlorooctane		102 %	70-1.	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		100 %	70-1.	30	"	"	"	n	
SB-5 5' (6D10006-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61005	04/10/06	04/10/06	EPA 8021B	
Toluene	ND	0.0250	91	n	**	11	и	"	
Ethylbenzene	ND	0.0250	11	"	Ħ	**	п	n	
Xylene (p/m)	ND	0.0250	91	**	H	H	11	H .	
Xylene (o)	ND	0.0250	"	**	11	n	n	"	
Surrogate: a,a,a-Trifluorotoluene		100 %	80-1.	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		82.2 %	80-1	20	"	<i>n</i> '	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61011	04/10/06	04/10/06	EPA 8015M	
Carbon Ranges C12-C28	56.5	10.0	н	n	"	п	11	*1	
Carbon Ranges C28-C35	ND	10.0	u	**	If	ır	"	"	
Total Hydrocarbon C6-C35	56.5	10.0	"	u	11	**	n	н	
Surrogate: 1-Chlorooctane		102 %	70-1.	30	"	11	"	"	
Surrogate: 1-Chlorooctadecane		103 %	70-1.	30	"	"	"	n	

Environmental Lab of Texas

Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
04/19/06 13:13

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dibution	Datah	Dranged	Analysead	Mathad	No.
SB-5 10' (6D10006-06) Soil	Kesuit	Limit	Onits	Dilution	Batch	Prepared	Analyzed	Method	Note
<u> </u>	~ ***	0.0050	ma/le= 4=	25	EDC1006	04/10/07	04/20/06	EDA 9021D	
Benzene	ND	0.0250	mg/kg dry "	25	ED61005	04/10/06	04/10/06	EPA 8021B	
Toluene	J [0.0121]	0.0250	"	"	н	"	"	11	
Ethylbenzene	0.0286	0.0250		"	11	и	"	11	
Xylene (p/m)	0.0752	0.0250	"	**	11	11	,,	"	
Xylene (o)	J [0.0185]	0.0250				"	<u>"</u>	"	
Surrogate: a,a,a-Trifluorotoluene		104 %	80-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene	41.6	90.0 %	80-1						
Carbon Ranges C6-C12	41.6	10.0	mg/kg dry	1	ED61011	04/10/06	04/10/06	EPA 8015M	
Carbon Ranges C12-C28	262	10.0	,,	,,				,,	
Carbon Ranges C28-C35	J [6.98] 304	10.0		" "	"	"	n n	n	
Fotal Hydrocarbon C6-C35	304	10.0							
Surrogate: 1-Chlorooctane		107 %	70-1		"	"	"	n n	
Surrogate: 1-Chlorooctadecane		105 %	70-1	30	"	,,	"	"	
SB-5 15' (6D10006-07) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61005	04/10/06	04/10/06	EPA 8021B	
Toluene	ND	0.0250	n	"	п	"	**	**	
Ethylbenzene	ND	0.0250	**	"	н	u	tt	n	
Kylene (p/m)	ND	0.0250	Ħ	"	н	H	"	**	
Xylene (o)	ND	0.0250	11	n	11	n	н	tt.	
Surrogate: a,a,a-Trifluorotoluene		87.8 %	80-1	20	"	,,	"	"	
Surrogate: 4-Bromofluorobenzene		86.5 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61011	04/10/06	04/10/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	Ħ	"	"	11	u	11	
Carbon Ranges C28-C35	ND	10.0	'n	"	**	**	н	n	
Total Hydrocarbon C6-C35	ND	10.0		и	"		н	0	
Surrogate: 1-Chlorooctane		93.6 %	70-1	30	"	"	"	n	
Surrogate: 1-Chlorooctadecane		92.4 %	70-1	30	"	"	"	n	
SB-5 25' (6D10006-08) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61005	04/10/06	04/10/06	EPA 8021B	
Toluene	ND	0.0250	H	**	n	п	11	**	
Ethylbenzene	ND	0.0250	#	**	"	•	"	u	
(ylene (p/m)	ND	0.0250	11	11	tt	"	Ħ	"	
Xylene (o)	ND	0.0250	"	11	***	11	н	**	
Surrogate: a,a,a-Trifluorotoluene		101 %	80-1	20	11	"	"	n,	
Surrogate: 4-Bromofluorobenzene		85.5 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61011	04/10/06	04/10/06	EPA 8015M	

Environmental Lab of Texas

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/19/06 13:13

Organics by GC Environmental Lab of Texas

	5 0 - 6	Reporting	TT 1:						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-5 25' (6D10006-08) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	ED61011	04/10/06	04/10/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	"	U	11	#1	**	#	
Total Hydrocarbon C6-C35	ND	10.0	"	n	11	31	11	11	
Surrogate: 1-Chlorooctane		105 %	70-	130	"	"	u	"	
Surrogate: 1-Chlorooctadecane		102 %	70-1	130	"	"	"	"	
SB-3 5' (6D10006-09) Soil									
Benzene	0.441	0.0250	mg/kg dry	25	ED61005	04/10/06	04/10/06	EPA 8021B	
Toluene	5.72	0.0250	Ħ	**	**	n	n	н	
Ethylbenzene	4.80	0.0250	Ħ	"	**	9	Ħ		
Xylene (p/m)	10.9	0.0250	"	**	Ħ	"	11	11	
Xylene (o)	5.93	0.0250	11	"	tt	**	11	11	
Surrogate: a,a,a-Trifluorotoluene		1040 %	80-1	120	"	"	н	"	S-0
Surrogate: 4-Bromofluorobenzene		160 %	80-1	120	"	"	"	"	S-0
Carbon Ranges C6-C12	1110	10.0	mg/kg dry	1	ED61011	04/10/06	04/10/06	EPA 8015M	
Carbon Ranges C12-C28	2280	10.0	"	11	II	"	"	n	
Carbon Ranges C28-C35	153	10.0	**	н	,,	п	11	16	
Total Hydrocarbon C6-C35	3540	10.0	er e	"	н	11	"	**	
Surrogate: 1-Chlorooctane		147 %	70-1	130	"	"	"	n	S-0-
Surrogate: 1-Chlorooctadecane		156 %	70-1	130	n	"	"	"	S-0-
SB-3 10' (6D10006-10) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61005	04/10/06	04/10/06	EPA 8021B	
Toluene	ND	0.0250	n	"	"	"	**	н	
Ethylbenzene	ND	0.0250	n	"	rr	n	**	п	
Xylene (p/m)	ND	0.0250	11	**	Ħ	n	•	tt.	
Xylene (o)	ND	0.0250	"	"	fi	H	*	11	
Surrogate: a,a,a-Trifluorotoluene		104 %	80-1	20	11	"	"	н	
Surrogate: 4-Bromofluorobenzene		93.5 %	80-1	120	"	"	"	н	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61011	04/10/06	04/11/06	EPA 8015M	
Carbon Ranges C12-C28	28.1	10.0	n	n	**	11	*1	n	
Carbon Ranges C28-C35	ND	10.0	11	n	11	n	11	n .	
Total Hydrocarbon C6-C35	28.1	10.0	11	"	"	11	"	н	
Surrogate: 1-Chlorooctane		101 %	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		100 %	70-1	130	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 7 of 61

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
04/19/06 13:13

Organics by GC Environmental Lab of Texas

		ZM VII OII	mvntti Li	WO OI I	VALUE 5				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-3 15' (6D10006-11) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61102	04/11/06	04/11/06	EPA 8021B	
Toluene	ND	0.0250	"	**	"	11	**	н	
Ethylbenzene	ND	0.0250	"		"	"	**	н	
Xylene (p/m)	ND	0.0250	"	**	**	**	**	н	
Xylene (o)	ND	0.0250	H	*	11	"	**	n	
Surrogate: a,a,a-Trifluorotoluene		104 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.5 %	80-1.	20	"	"	n	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61011	04/10/06	04/11/06	EPA 8015M	
Carbon Ranges C12-C28	16.7	10.0	"	"	"	n	**	"	
Carbon Ranges C28-C35	ND	10.0	9	11	н	tr	tt	н	
Total Hydrocarbon C6-C35	16.7	10.0		"	n	11	n	"	
Surrogate: 1-Chlorooctane		96.8 %	70-1.	30	rr .	"	n	п	*
Surrogate: 1-Chlorooctadecane		95.4 %	70-1	30	n	"	"	n	
SB-3 25' (6D10006-12) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61102	04/11/06	04/11/06	EPA 8021B	
Toluene	ND	0.0250	**	"	"	н	**	"	
Ethylbenzene	ND	0.0250	11	n	II	n	n	"	
Xylene (p/m)	ND	0.0250	n	n	n	H	n	"	
Xylene (o)	ND	0.0250	**	Ħ	n	u	n	**	
Surrogate: a,a,a-Trifluorotoluene		102 %	80-1.	20	,,	,,	"	"	
Surrogate: 4-Bromofluorobenzene		88.2 %	80-1.	20	"	n	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61011	04/10/06	04/11/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	n	"	"	"	"	**	
Carbon Ranges C28-C35	ND	10.0	**	n	u	**	**	19	
Total Hydrocarbon C6-C35	ND	10.0	Ħ	н	**	**	n	В	
Surrogate: 1-Chlorooctane		97.4 %	70-1.	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		94.8 %	70-1.	30	"	"	"	n	
SB-2 5' (6D10006-13) Soil					<u> </u>				
Benzene	ND	0.0250	mg/kg dry	25	ED61102	04/11/06	04/11/06	EPA 8021B	
Toluene	ND	0.0250	11	"	H	n	**	u	
Ethylbenzene	ND	0.0250	u	II.	H	n	**	n	
Xylene (p/m)	0.0258	0.0250	u	11	"	11	"	n	
Xylene (o)	ND	0.0250	11	n	11	п	II	11	
Surrogate: a,a,a-Trifluorotoluene		103 %	80-12	20	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		98.0 %	80-12	20	"	"	"	"	
Carbon Ranges C6-C12	16.8	10.0	mg/kg dry	1	ED61011	04/10/06	04/11/06	EPA 8015M	

Environmental Lab of Texas

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
04/19/06 13:13

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-2 5' (6D10006-13) Soil			 	2 nonon					1.310
Carbon Ranges C12-C28	138	10.0	mg/kg dry	1	ED61011	04/10/06	04/11/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	11	"	11	**	"	TT .	
Total Hydrocarbon C6-C35	155	10.0	II	'n	*	"	"	n	
Surrogate: 1-Chlorooctane		99.4 %	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		96.8 %	70-1	130	"	"	"	H	
SB-2 10' (6D10006-14) Soil									
Benzene	0.0374	0.0250	mg/kg dry	25	ED61102	04/11/06	04/11/06	EPA 8021B	
Toluene	1.40	0.0250	n	11	n.	"	"	0	
Ethylbenzene	1.88	0.0250	"	11	11	11	H	*	
Xylene (p/m)	3.54	0.0250	"	"	n	"	rr	"	
Xylene (o)	1.51	0.0250	"	a	R	"	n	Tr.	
Surrogate: a,a,a-Trifluorotoluene		144 %	80-1	120	"	"	n	"	S-0
Surrogate: 4-Bromofluorobenzene		104 %	80-1	120	"	"	n	n	
Carbon Ranges C6-C12	283	10.0	mg/kg dry	1	ED61011	04/10/06	04/11/06	EPA 8015M	
Carbon Ranges C12-C28	1270	10.0	u	n	**	n	11	11	
Carbon Ranges C28-C35	95.9	10.0	n	n	11	ø	11	51	
Total Hydrocarbon C6-C35	1650	10.0	11	n	"	11	11	11	
Surrogate: 1-Chlorooctane		110 %	70-1	30	"	"	"	n	
Surrogate: 1-Chlorooctadecane		114 %	70-1	30	"	"	"	"	
SB-2 15' (6D10006-15) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61102	04/11/06	04/11/06	EPA 8021B	
Toluene	ND	0.0250	n	11	**	"	п	"	
Ethylbenzene	ND	0.0250	"	"	"	"	O.	**	
Xylene (p/m)	ND	0.0250	н	u	"	**	"	n	
Xylene (o)	ND	0.0250	tt.	"	"	**	"		
Surrogate: a,a,a-Trifluorotoluene		105 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.0 %	80-1	20	"	"	. "	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61011	04/10/06	04/11/06	EPA 8015M	
Carbon Ranges C12-C28	16.6	10.0	n	"	II.	11	11	H	
Carbon Ranges C28-C35	ND	10.0	n	**	"	11	11	**	
Total Hydrocarbon C6-C35	16.6	10.0	н	11	"	n	31	**	
Surrogate: 1-Chlorooctane		98.8 %	70-1	30	"	"	n	"	
Surrogate: 1-Chlorooctadecane		98.6 %	70-1	30	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 9 of 61

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:

04/19/06 13:13

Organics by GC Environmental Lab of Texas

		EH VII OII.		ab 01 10					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-2 25' (6D10006-16) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61102	04/11/06	04/11/06	EPA 8021B	
Toluene	ND	0.0250	n	"	**	н	*1	n	
Ethylbenzene	ND	0.0250	"	"	11	11	**	и	
Xylene (p/m)	ND	0.0250	"	11	**	41	н	**	
Xylene (o)	ND	0.0250	п	**	"	н	"	n	
Surrogate: a,a,a-Trifluorotoluene		92.8 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		86.2 %	80-1	20	"	"	n	n	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61011	04/10/06	04/11/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	**	Ħ	**	**	ч	
Carbon Ranges C28-C35	ND	10.0	"	"	n	n	"	н	
Total Hydrocarbon C6-C35	ND	10.0	"	н	n	n	Ħ	и	
Surrogate: 1-Chlorooctane		82.8 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		81.8 %	70-1	30	"	"	"	n	
SB-6 5' (6D10006-17) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61102	04/11/06	04/11/06	EPA 8021B	
Toluene	ND	0.0250	"	11	"	"	.11	II.	
Ethylbenzene	ND	0.0250	n	"	н	r,	#	"	
Xylene (p/m)	ND	0.0250	ft.	"	п	u	11	"	
Xylene (o)	ND	0.0250	n	"	n	u		••	
Surrogate: a,a,a-Trifluorotoluene		103 %	80-1	20	"	"	n	,,	
Surrogate: 4-Bromofluorobenzene		86.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61011	04/10/06	04/11/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	n	11	11	n	11	tt	
Carbon Ranges C28-C35	ND	10.0	11	11	tt	ıı	n	11	
Total Hydrocarbon C6-C35	ND	10.0	11	"	11	"	11	u .	
Surrogate: 1-Chlorooctane		129 %	70-1	30	n	"	"	"	
Surrogate: 1-Chlorooctadecane		130 %	70-1	30	"	"	"	n	
SB-6 10' (6D10006-18) Soil						•			
Benzene	ND	0.0250	mg/kg dry	25	ED61102	04/11/06	04/11/06	EPA 8021B	
Toluene	ND	0.0250	"	#	u	u	"	ti .	
Ethylbenzene	ND	0.0250	"	**	**	11	**	и	
Xylene (p/m)	ND	0.0250	11	11	"	**	H	n	
Xylene (o)	ND	0.0250	"	11	H	п	**		
Surrogate: a,a,a-Trifluorotoluene		98.0 %	80-1	20	"	"	tr .	"	
Surrogate: 4-Bromofluorobenzene		83.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry		ED61011	04/10/06			

Environmental Lab of Texas

Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
04/19/06 13:13

Organics by GC Environmental Lab of Texas

		Reporting	** *						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-6 10' (6D10006-18) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	ED61011	04/10/06	04/11/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	H	Ħ	n	"	n	tt	
Total Hydrocarbon C6-C35	ND	10.0	11	n	n	n	н	n	
Surrogate: 1-Chlorooctane		103 %	70-	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		102 %	70-	130	"	"	n	"	
SB-6 15' (6D10006-19) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61102	04/11/06	04/11/06	EPA 8021B	
Toluene	ND	0.0250	"	"	"	11	н	11	
Ethylbenzene	ND	0.0250	n	"	"	"	"	"	
Xylene (p/m)	ND	0.0250	n	"	"	"	n	"	
Xylene (o)	ND	0.0250	Ħ	n	"	tt	и	"	
Surrogate: a,a,a-Trifluorotoluene		95.0 %	80-	120	,,	"	"	"	
Surrogate: 4-Bromofluorobenzene		84.0 %	80-	120	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61011	04/10/06	04/11/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	11	11	н	11	н	H	
Carbon Ranges C28-C35	ND	10.0	"	**	**	11	ıı	n	
Total Hydrocarbon C6-C35	ND	10.0	n	"	"	11	И	11	
Surrogate: 1-Chlorooctane		121 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		122 %	70-1	30	"	"	"	"	
SB-6 25' (6D10006-20) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61102	04/11/06	04/11/06	EPA 8021B	
Toluene	ND	0.0250	"	D	11	ii	11	11	
Ethylbenzene	ND	0.0250	ıı	"	**	11	н	41	
Xylene (p/m)	ND	0.0250	n	"	"	n	11	11	
Xylene (o)	ND	0.0250	и	"	и	11	11	11	
Surrogate: a,a,a-Trifluorotoluene		98.5 %	80-1	20	n	n	n .	"	
Surrogate: 4-Bromofluorobenzene		82.0 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61113	04/11/06	04/11/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	11	11	n	n	n	
Carbon Ranges C28-C35	ND	10.0	"	11	"	n	11	"	
Total Hydrocarbon C6-C35	ND	10.0	"	11	**	11	"	n .	
Surrogate: 1-Chlorooctane		106 %	70-1	30	tt .	n	"	"	
Surrogate: 1-Chlorooctadecane		105 %	70-1	30	"	"	,,	"	

Environmental Lab of Texas

Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/19/06 13:13

Organics by GC Environmental Lab of Texas

			inchtai L	ab or i v	Ads				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-6 30' (6D10006-21) Soil	· · · · · · · · · · · · · · · · · · ·							······································	
Benzene	ND	0.0250	mg/kg dry	25	ED61102	04/11/06	04/11/06	EPA 8021B	·
Toluene	ND	0.0250	"	11	**	"	n	**	
Ethylbenzene	J [0.0155]	0.0250	n	"	n n	"	11	D	J
Xylene (p/m)	0.0294	0.0250	**	**	11	11	**	п	
Xylene (o)	ND	0.0250	11	**	"	"	u	**	
Surrogate: a,a,a-Trifluorotoluene		96.8 %	80-1	20	n	"	"	"	
Surrogate: 4-Bromofluorobenzene		89.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61113	04/11/06	04/11/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	и	15	lf.	**	11	
Carbon Ranges C28-C35	ND	10.0	II.	n	11	n	11	11	
Total Hydrocarbon C6-C35	ND	10.0	"	"	"	"	"	11	
Surrogate: 1-Chlorooctane		102 %	70-1	30	"	"	n	"	
Surrogate: 1-Chlorooctadecane		103 %	70-1	30	"	"	"	"	
SB-7 5' (6D10006-22) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61102	04/11/06	04/11/06	EPA 8021B	
Toluene	ND	0.0250	11	**	#	**	IJ	ii .	
Ethylbenzene	ND	0.0250	"	"	"	u	"	n	
Xylene (p/m)	ND	0.0250	"	"	н	u	11	n	
Xylene (o)	ND	0.0250	n	"	и	H	"	Ħ	
Surrogate: a,a,a-Trifluorotoluene		94.5 %	80-1	20	n	"	"	n	
Surrogate: 4-Bromofluorobenzene		95.2 %	80-1	20	"	"	n	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61113	04/11/06	04/11/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	n	11	n	"	11	11	
Carbon Ranges C28-C35	ND	10.0	"	"	41	" .	u	11	
Total Hydrocarbon C6-C35	ND	10.0	"	"	"	u	"	u	
Surrogate: 1-Chlorooctane		102 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		100 %	70-1	30	"	"	"	n	
SB-7 10' (6D10006-23) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61102	04/11/06	04/11/06	EPA 8021B	
Toluene	ND	0.0250	11	"	ır	n	"	и	
Ethylbenzene	ND	0.0250	11	"	н	n	n	н	
Xylene (p/m)	ND	0.0250	n	H	11	"	Ħ	n	
Xylene (o)	ND	0.0250	"	*	n	п	II .	n	
Surrogate: a,a,a-Trifluorotoluene		95.2 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		89.2 %	80-1	20	n	"	"	n .	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61113	04/11/06	04/11/06	EPA 8015M	

Environmental Lab of Texas

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
04/19/06 13:13

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-7 10' (6D10006-23) Soil						•			
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	ED61113	04/11/06	04/11/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	11	tt.	и	π	"	tt	
Total Hydrocarbon C6-C35	ND	10.0	n	n	n	n	**	n	
Surrogate: 1-Chlorooctane		101 %	70-1	130	"	"	n	п	
Surrogate: 1-Chlorooctadecane		101 %	70-1	130	#	"	"	n	
SB-7 15' (6D10006-24) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61102	04/11/06	04/11/06	EPA 8021B	
Toluene	ND	0.0250	n	**	"	11	91	11	
Ethylbenzene	ND	0.0250	n	"	п	"	n	"	
Xylene (p/m)	ND	0.0250	Ħ	"	и	"	"	"	
Xylene (o)	ND	0.0250	n		n .	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		98.0 %	80-1	120	"	"	u	11	
Surrogate: 4-Bromofluorobenzene		95.2 %	80-1	120	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61113	04/11/06	04/11/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	11	n	н	II	H	ft	
Carbon Ranges C28-C35	ND	10.0	ji	II.	II	II	"	II	
Total Hydrocarbon C6-C35	ND	10.0	11	11	11	**	n	11	
Surrogate: 1-Chlorooctane		99.2 %	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		101 %	70-1	130	"	"	"	"	
SB-7 25' (6D10006-25) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61102	04/11/06	04/11/06	EPA 8021B	
Toluene	ND	0.0250	н	n.	11	11	"	n .	
Ethylbenzene	ND	0.0250	**	n	"	11	u	n	
Xylene (p/m)	ND	0.0250	"	**	11	10	u	11	
Xylene (o)	ND	0.0250	"	"	"	n	и	"	
Surrogate: a,a,a-Trifluorotoluene		94.0 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		86.0 %	80-1	20	"	n	n	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61113	04/11/06	04/11/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	11	**	n	"	11	n	
Carbon Ranges C28-C35	ND	10.0	11	11	11	n	**	11	
Total Hydrocarbon C6-C35	ND	10.0	"	**	"	n	h	ŋ	
Surrogate: 1-Chlorooctane		107 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		107 %	70-1	30	n	"	"	n	

Environmental Lab of Texas

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
04/19/06 13:13

Organics by GC Environmental Lab of Texas

		1311111111		ab 01 10				.,	
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
SB-7 30' (6D10006-26) Soil					<u> </u>				
Benzene	ND	0.0250	mg/kg dry	25	ED61214	04/12/06	04/12/06	EPA 8021B	
Toluene	ND	0.0250	11	"	11	11	11 .	"	
Ethylbenzene	ND	0.0250	n	"	"	"	11	**	
Xylene (p/m)	ND	0.0250	11	n	n	"	11	"	
Xylene (o)	ND	0.0250	11	n	**	**	и	"	
Surrogate: a,a,a-Trifluorotoluene		96.8 %	80-1	20	n	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.2 %	80-1	20	"	u	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	ı	ED61113	04/11/06	04/11/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0		"	11	#1	11	11	
Carbon Ranges C28-C35	ND	10.0	11	"	"	11	**	n	
Total Hydrocarbon C6-C35	ND	10.0	11	**	11	u	"	n	
Surrogate: 1-Chlorooctane		107 %	70-1	30	"	"	"	11	
Surrogate: 1-Chlorooctadecane		106 %	70-1	30	n	"	"	u	
SB-8 5' (6D10006-27) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61214	04/12/06	04/12/06	EPA 8021B	
Toluene	ND	0.0250	**	17	"	**	H	1)	
Ethylbenzene	ND	0.0250	**	**	**	"	11	"	
Xylene (p/m)	ND	0.0250	**	"	н .	11	н	"	
Xylene (o)	ND	0.0250	. 11	п	"	"	n		
Surrogate: a,a,a-Trifluorotoluene		99.0 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		85.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61113	04/11/06	04/11/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	,	**	"	"	11	31	
Carbon Ranges C28-C35	ND	10.0	"	**	"	"	Ħ	n	
Total Hydrocarbon C6-C35	ND	10.0	n	"	"	н	11	н	
Surrogate: 1-Chlorooctane		98.6 %	70-1	30	n	"	"	"	
Surrogate: 1-Chlorooctadecane		99.4 %	70-1	30	"	"	"	"	
SB-8 10' (6D10006-28) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61214	04/12/06	04/12/06	EPA 8021B	
Toluene	ND	0.0250	**	**	n	н	"	ŧ	
Ethylbenzene	ND	0.0250	11	n	II.	tt	н	n	
Xylene (p/m)	ND	0.0250	"	**	и	n	н	н	
Xylene (o)	ND	0.0250	"	11	11	#	"	"	
Surrogate: a,a,a-Trifluorotoluene		96.8 %	80-1	20	u u	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.0 %	80-1	20	"	"	"	n .	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61113	04/11/06	04/11/06	EPA 8015M	

Environmental Lab of Texas

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
04/19/06 13:13

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-8 10' (6D10006-28) Soil		21111		Dilution	Daten		Allaryzed	Metilod	Notes
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	<u> </u>	ED61113	04/11/06	04/11/06	EPA 8015M	
Carbon Ranges C28-C35	ND	0.01	"	m -	"	"	"	"	
Total Hydrocarbon C6-C35	ND	10.0	n	**	"	11	"	"	
Surrogate: 1-Chlorooctane		95.2 %	70-4	130	"		п	п	
Surrogate: 1-Chlorooctadecane		96.0 %	70-1		"	"	n	"	
SB-8 15' (6D10006-29) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61214	04/12/06	04/12/06	EPA 8021B	
Toluene	ND	0.0250	n	n	"	"	n	n	
Ethylbenzene	ND	0.0250	**	n	"	"	n	n	
Xylene (p/m)	ND	0.0250	11	"	"	"	n	Ħ	
Xylene (o)	ND	0.0250	11	n	n	11	n	n	
Surrogate: a,a,a-Trifluorotoluene		98.5 %	80-1	120	"	"	и	"	
Surrogate: 4-Bromofluorobenzene		87.0 %	80-1	120	"	#	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61113	04/11/06	04/11/06	EPA 8015M	
Carbon Ranges C12-C28	J [7.81]	10.0	"	"	11	U		11	
Carbon Ranges C28-C35	ND	10.0	**	**	"	"	"	91	
Total Hydrocarbon C6-C35	ND	10.0	n	"	"	H	Ħ	"	
Surrogate: 1-Chlorooctane		103 %	70-1	30	"	п	n	n	
Surrogate: 1-Chlorooctadecane		102 %	70-1	30	"	"	"	"	
SB-8 25' (6D10006-30) Soil						_			
Benzene	ND	0.0250	mg/kg dry	25	ED61214	04/12/06	04/12/06	EPA 8021B	- · · · · · · · · · · · · · · · · · · ·
Toluene	ND	0.0250	"	"	"	" .	"	"	
Ethylbenzene	ND	0.0250	"	"	"		#	н	
Xylene (p/m)	ND	0.0250	**	"	"	"	n	H	
Xylene (o)	ND	0.0250	п	"	n	'n	11	"	
Surrogate: a,a,a-Trifluorotoluene		98.8 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.2 %	80-1	20	n	n	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61113	04/11/06	04/11/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	11	**	11	"	"	"	
Carbon Ranges C28-C35	ND	10.0	"	11	11	н	"	n	
Total Hydrocarbon C6-C35	ND	10.0	11		11	"	n		
Surrogate: 1-Chlorooctane		94.6 %	70-1	30	н	"	"	"	
Surrogate: 1-Chlorooctadecane		93.6 %	70-1	30	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 15 of 61

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:

Reported: 04/19/06 13:13

Organics by GC Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
SB-8 30' (6D10006-31) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61214	04/12/06	04/12/06	EPA 8021B	
Toluene	ND	0.0250	11	"	"	"	"	"	
Ethylbenzene	ND	0.0250	H	. "	n	"	**	11	
Xylene (p/m)	ND	0.0250	11		н	"	"	п	
Xylene (o)	ND	0.0250	11	"	"		**	11	
Surrogate: a,a,a-Trifluorotoluene		95.0 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		86.5 %	80-1	20	n	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61113	04/11/06	04/11/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	Ħ	"	v	H		"	
Carbon Ranges C28-C35	ND	10.0	11	n	н	**	n	n	
Total Hydrocarbon C6-C35	ND	10.0	11	11	**	**	"	**	
Surrogate: 1-Chlorooctane		97.0 %	70-1	30	"	"	"	n	
Surrogate: 1-Chlorooctadecane		98.0 %	70-1	30	"	"	"	"	
SB-9 5' (6D10006-32) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61214	04/12/06	04/12/06	EPA 8021B	
Toluene	ND	0.0250	11		rr	tt.	tr	11	
Ethylbenzene	ND	0.0250	ц	**	ti.	и	**	H	
Xylene (p/m)	ND	0.0250	"	"	n	11	n	п	
Xylene (o)	ND	0.0250	11	"	н	II.	**	**	
Surrogate: a,a,a-Trifluorotoluene		98.2 %	80-1	20	"	n	"	"	
Surrogate: 4-Bromofluorobenzene		96.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61113	04/11/06	04/12/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	**	"	"	ti .	11	n	
Carbon Ranges C28-C35	ND	10.0	"	11	31	11	**	11	
Total Hydrocarbon C6-C35	ND	10.0	"	"	11	"	n	11	
Surrogate: 1-Chlorooctane		101 %	70-1	30	"	n	"	"	
Surrogate: 1-Chlorooctadecane		102 %	70-1	30	"	"	"	n	
SB-9 10' (6D10006-33) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61214	04/12/06	04/12/06	EPA 8021B	· · · · · · · · · · · · · · · · · · ·
Гоluene	ND	0.0250	11	"	**	"	"	n	
Ethylbenzene	ND	0.0250	11	"	u	"	"	"	
Xylene (p/m)	ND	0.0250	n	**	Ħ	**	u	11	
Xylene (o)	ND	0.0250	"	n	ıı .	tt .	n	11	
Surrogate: a,a,a-Trifluorotoluene		99.0 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.2 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61113	04/11/06	04/12/06	EPA 8015M	

Environmental Lab of Texas

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
04/19/06 13:13

Organics by GC Environmental Lab of Texas

Analyta	Danile	Reporting	Linita	B.11	ъ .				
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
SB-9 10' (6D10006-33) Soil	·								
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	ED61113	04/11/06	04/12/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	**	"	11	n	11	"	
Total Hydrocarbon C6-C35	ND	10.0	H	11	"	11	11	и	
Surrogate: 1-Chlorooctane		98.0 %	70-1	130	"	"	"	n	
Surrogate: 1-Chlorooctadecane		98.0 %	70-1	130	"	"	"	n	
SB-9 15' (6D10006-34) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61214	04/12/06	04/12/06	EPA 8021B	
Toluene	ND	0.0250	"	и	tř	**	**	"	
Ethylbenzene	ND	0.0250	11	n	H	H	rt .	n	
Xylene (p/m)	ND	0.0250	"	11	11	11	"	n	
Xylene (o)	ND	0.0250	"	n	55	ji	tt	n	
Surrogate: a,a,a-Trifluorotoluene		102 %	80-1	120	n	"	"	"	
Surrogate: 4-Bromofluorobenzene		86.5 %	80-1	120	"	"	"	n	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61113	04/11/06	04/12/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	n	**	"	"	"	11	
Carbon Ranges C28-C35	ND	10.0	n	**	"	n	"	Ħ	
Total Hydrocarbon C6-C35	ND	10.0	n	"	n	"	**	ŧŧ	
Surrogate: 1-Chlorooctane		97.8 %	70-1	130	"	"	"	n	
Surrogate: 1-Chlorooctadecane		98.2 %	70-1	30	"	"	"	"	
SB-9 25' (6D10006-35) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61214	04/12/06	04/12/06	EPA 8021B	
Toluene	ND	0.0250	"	"		"	"	н	
Ethylbenzene	ND	0.0250	ıı	"		"	,,	u-	
Xylene (p/m)	ND	0.0250	**	"	n	"		n	
Xylene (o)	ND	0.0250	11	п	n	n	n	m .	
Surrogate: a,a,a-Trifluorotoluene		98.8 %	80-1	20	"	n	"	"	
Surrogate: 4-Bromofluorobenzene		81.5 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND		mg/kg dry	1	ED61113	04/11/06	04/12/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	**	**	"	11	n	
Carbon Ranges C28-C35	ND	10.0	#	**	Ħ	**	**	"	
Total Hydrocarbon C6-C35	ND	10.0	"	11	н	IF.	11	n	
Surrogate: 1-Chlorooctane		104 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		105 %	70-1	30	"	"	,,	"	

Environmental Lab of Texas

Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
04/19/06 13:13

Organics by GC Environmental Lab of Texas

		Reporting					· · · · · · · · · · · · · · · · · · ·		<u></u>
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
SB-9 30' (6D10006-36) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61214	04/12/06	04/12/06	EPA 8021B	
Toluene	ND	0.0250	"	"	11	tt	".	11	
Ethylbenzene	ND	0.0250	"	11	51	#	**	n	
Xylene (p/m)	ND	0.0250	"	**	**	11	н	u	
Xylene (o)	ND	0.0250	n	"	11	tt	***		•
Surrogate: a,a,a-Trifluorotoluene		95.5 %	80-1	20	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		84.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61113	04/11/06	04/12/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	**	"	"	n	"	"	
Carbon Ranges C28-C35	ND	10.0	u	"	"	"	"	**	
Total Hydrocarbon C6-C35	ND	10.0	11	"	"	n	"	11	
Surrogate: 1-Chlorooctane		100 %	70-1	30	"	"	"	u .	
Surrogate: 1-Chlorooctadecane		101 %	70-1	30	"	"	u	n .	
SB-10 5' (6D10006-37) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61307	04/12/06	04/12/06	EPA 8021B	
Toluene	ND	0.0250	"	II.	ŧŧ	п	**	"	
Ethylbenzene	ND	0.0250	11	Ħ	11	H	"	и	
Xylene (p/m)	ND	0.0250	"	н	н	11	n	н	
Xylene (o)	ND	0.0250	11	11	"	11	H	11	
Surrogate: a,a,a-Trifluorotoluene		99.8 %	80-1	20	"	"	"	,,	
Surrogate: 4-Bromofluorobenzene		88.2 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61113	04/11/06	04/12/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	11	n	11	"	n	**	
Carbon Ranges C28-C35	ND	10.0	11	"	11	n	n	u	
Total Hydrocarbon C6-C35	ND	10.0	и	n	n	n	п		
Surrogate: 1-Chlorooctane		97.4 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		96.8 %	70-1	30	"	"	"	"	
SB-10 10' (6D10006-38) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61307	04/12/06	04/12/06	EPA 8021B	
Toluene	ND	0.0250	n	**	n	"	**		
Ethylbenzene	ND	0.0250	н	**	tr	"	n	n	
Xylene (p/m)	ND	0.0250	"	u	Ħ	"	n	H	
Xylene (o)	ND	0.0250	n	"	11	H	п	11	
Surrogate: a,a,a-Trifluorotoluene		91.8 %	80-1	20	n .	"	"	n	
Surrogate: 4-Bromofluorobenzene		82.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry		ED61113	04/11/06		EPA 8015M	

Environmental Lab of Texas

Project Number: 2004-00196
Project Manager: Camille Reynolds

Environmental Lab of Texas

Fax: (432) 687-4914

Reported:
04/19/06 13:13

Organics by GC

Reporting Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Notes SB-10 10' (6D10006-38) Soil 10.0 mg/kg dry EPA 8015M ED61113 04/11/06 04/12/06 Carbon Ranges C12-C28 ND Carbon Ranges C28-C35 10.0 ND Total Hydrocarbon C6-C35 ND 10.0 Surrogate: 1-Chlorooctane 103 % 70-130 103 % 70-130 Surrogate: 1-Chlorooctadecane SB-10 20' (6D10006-39) Soil EPA 8021B Benzene ND 0.0250 mg/kg dry 25 ED61214 04/12/06 04/12/06 Toluene 0.0250 ND Ethylbenzene ND 0.0250 Xylene (p/m) 0.0250 ND Xylene (o) 0.0250 ND Surrogate: a,a,a-Trifluorotoluene 95.0 % 80-120 Surrogate: 4-Bromofluorobenzene 85.2 % 80-120 Carbon Ranges C6-C12 10.0 mg/kg dry ED61113 04/11/06 04/12/06 EPA 8015M ND Carbon Ranges C12-C28 ND 10.0 Carbon Ranges C28-C35 10.0 ND Total Hydrocarbon C6-C35 ND 10.0 Surrogate: 1-Chlorooctane 97.0 % 70-130 70-130 Surrogate: 1-Chlorooctadecane 98.4 % SB-10 30' (6D10006-40) Soil mg/kg dry EPA 8021B Benzene 0.0250 25 ED61307 04/12/06 04/13/06 ND Toluene 0.0250 ND Ethylbenzene 0.0250 ND Xylene (p/m) 0.0250 ND Xylene (o) ND 0.0250 Surrogate: a,a,a-Trifluorotoluene 101 % 80-120 80-120 Surrogate: 4-Bromofluorobenzene 85.5 % Carbon Ranges C6-C12 mg/kg dry EPA 8015M ND 10.0 ED61114 04/11/06 04/12/06 Carbon Ranges C12-C28 10.0 ND Carbon Ranges C28-C35 10.0 ND Total Hydrocarbon C6-C35 ND 10.0 98.8 % 70-130 Surrogate: 1-Chlorooctane 98.4 % 70-130 Surrogate: 1-Chlorooctadecane

Environmental Lab of Texas

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
04/19/06 13:13

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
SB-10 40' (6D10006-41) Soil	Losur	- Dimit		Dittutoli	Datell	Trepared	Analyzed	Mediod	140
Benzene	ND	0.0250	mg/kg dry	25	ED61307	04/12/06	04/13/06	EPA 8021B	
Toluene	ND	0.0250	"	"	n	"	"	11	
Ethylbenzene	ND	0.0250	11	"	n	n	tt	и	
Xylene (p/m)	ND	0.0250	n	"	n	n	#	"	
Xylene (o)	ND	0.0250	n	**	H	11	**	11	
Surrogate: a,a,a-Trifluorotoluene	· · · · · · · · · · · · · · · · · · ·	100 %	80-1	20	"	,,		n	
Surrogate: 4-Bromofluorobenzene		89.5 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61114	04/11/06	04/12/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	n	н	n	n	n	rr.	
Carbon Ranges C28-C35	ND	10.0	11	n	n	u	n	**	
Total Hydrocarbon C6-C35	ND	10.0	"	11	н		п	n	
Surrogate: 1-Chlorooctane		92.8 %	70-1	30	"	п	"	и	
Surrogate: 1-Chlorooctadecane		92.4 %	70-1	30	"	"	"	"	
SB-11 5' (6D10006-42) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61307	04/12/06	04/13/06	EPA 8021B	
Toluene	ND	0.0250	11	n	11	11	rr rr	II.	
Ethylbenzene	ND	0.0250	"	11	н	*1	u	11	
Xylene (p/m)	ND	0.0250	"	"	**	11	ŧi	11	
Xylene (o)	ND	0.0250	"	"	**	11	n	n	
Surrogate: a,a,a-Trifluorotoluene		98.2 %	80-1	20	п	,,	"	n	
Surrogate: 4-Bromofluorobenzene		83.0 %	80-1	20	n	"	"	n	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61114	04/11/06	04/12/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	n	"	"	"	11	11	
Carbon Ranges C28-C35	ND	10.0	п	"	u	"	**	11	
Total Hydrocarbon C6-C35	ND	10.0	n	н	11	n	11	11	
Surrogate: 1-Chlorooctane		101 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		101 %	70-1	30	"	"	"	"	
SB-11 10' (6D10006-43) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61307	04/12/06	04/13/06	EPA 8021B	
Toluene	ND	0.0250	"	11	11	n	H	11	
Ethylbenzene	ND	0.0250	"	11	**	II	n	**	
Xylene (p/m)	ND	0.0250	"	**	**	11	н	•	
Xylene (o)	ND	0.0250	"	. "	,,	"	n	"	
Surrogate: a,a,a-Trifluorotoluene		92.8 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		81.0 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND		mg/kg dry	1	ED61114	04/11/06	04/12/06	EPA 8015M	

Environmental Lab of Texas

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/19/06 13:13

Organics by GC Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-11 10' (6D10006-43) Soil					·· · · · · · · · · · · · · · · · · · ·				
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	ED61114	04/11/06	04/12/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	11	. 41	"	**	"	n	
Total Hydrocarbon C6-C35	ND	10.0	"	19	11	**	"	11	
Surrogate: 1-Chlorooctane		95.6 %	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		97.8 %	70-1	130	n	n	"	n	
SB-11 15' (6D10006-44) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61307	04/12/06	04/13/06	EPA 8021B	
Toluene	ND	0.0250	11	11	"	11	11	11	
Ethylbenzene	ND	0.0250	ri .	"	"	11	**	"	
Xylene (p/m)	ND	0.0250	11	"	"	"	**	"	
Xylene (o)	ND	0.0250	**	"	"	11	11	"	
Surrogate: a,a,a-Trifluorotoluene		86.8 %	80-1	20	n	"	"	n	
Surrogate: 4-Bromofluorobenzene		85.2 %	80-1	120	"	"	"	n .	
Carbon Ranges C6-C12	104	10.0	mg/kg dry	1	ED61114	04/11/06	04/12/06	EPA 8015M	
Carbon Ranges C12-C28	1530	10.0	n	n	**	n	**	51	
Carbon Ranges C28-C35	143	10.0	Ħ	n	"	n	u	**	
Total Hydrocarbon C6-C35	1780	10.0	n	н	"	11	п		
Surrogate: 1-Chlorooctane		120 %	70-1	30	"	"	n	"	
Surrogate: I-Chlorooctadecane		129 %	70-1	30	n	"	n	n	
SB-11 20' (6D10006-45) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61307	04/12/06	04/13/06	EPA 8021B	
Toluene	ND	0.0250	11	11	ıı	11	n	11	
Ethylbenzene	ND	0.0250	11	11	11	11	n	11	
Xylene (p/m)	ND	0.0250	"	"	"	n	tt.	11	
Xylene (o)	ND	0.0250	"	"		n	11	**	
Surrogate: a,a,a-Trifluorotoluene		88.5 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		81.5 %	` <i>80-1</i>	20	n	#	"	u	
Carbon Ranges C6-C12	63.0	10.0	mg/kg dry	1	ED61114	04/11/06	04/12/06	EPA 8015M	
Carbon Ranges C12-C28	1180	10.0	"	"		п	"	11	
Carbon Ranges C28-C35	108	10.0	"	**	n	11	н	н	
Total Hydrocarbon C6-C35	1350	10.0	"	11	n	и	п	"	
Surrogate: 1-Chlorooctane		117 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		125 %	70-1	30	"	"	"	#	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 21 of 61

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
04/19/06 13:13

Organics by GC Environmental Lab of Texas

Analysta	Result	Reporting	Units	D3:	D-c f	Duna 1	A 1	Made 1	37
Analyte	Kesuit	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
SB-11 25' (6D10006-46) Soil							· · · · · ·		
Benzene	ND	0.0250	mg/kg dry	25	ED61307	04/13/06	04/13/06	EPA 8021B	
Toluene	ND	0.0250	**	"	"	"	II.	**	
Ethylbenzene	ND	0.0250	"	**	"	"	"	11	
Xylene (p/m)	ND	0.0250	н	#	H	"	"	11	
Xylene (o)	ND	0.0250		**			"	n	· · · · · · · · · · · · · · · · · · ·
Surrogate: a,a,a-Trifluorotoluene		99.5 %	80-1		"	"	"	n	
Surrogate: 4-Bromofluorobenzene		82.0 %	80-1	20	"	"	"	n	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61114	04/11/06	04/12/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	**	"	11	ti	n	"	
Carbon Ranges C28-C35	ND	10.0	"	tt	n	H	Ħ	и	
Total Hydrocarbon C6-C35	ND	10.0	"	н	If	H	Ħ	n	
Surrogate: 1-Chlorooctane		99.4 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		98.6 %	70-1	30	"	"	"	"	
SB-11 30' (6D10006-47) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61307	04/13/06	04/13/06	EPA 8021B	
Toluene	ND	0.0250	"	91	11	11	11	Ħ	
Ethylbenzene	ND	0.0250	n.	55	"	"	II	n	
Xylene (p/m)	ND	0.0250	**	,,	"	u .	15	Ħ	
Xylene (o)	ND	0.0250	"	"	"	H	11	W	
Surrogate: a,a,a-Trifluorotoluene		94.2 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		83.2 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61114	04/11/06	04/12/06	EPA 8015M	
Carbon Ranges C12-C28	15.4	10.0	H	н	"	**	u	п	
Carbon Ranges C28-C35	ND	10.0	11	н	n	11	n	Ħ	
Total Hydrocarbon C6-C35	15.4	10.0	H	"	n	"	u	п	
Surrogate: 1-Chlorooctane		100 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		102 %	70-1	30	"	"	"	"	
SB-11 40' (6D10006-48) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61307	04/13/06	04/13/06	EPA 8021B	········
Toluene	ND	0.0250	**	"	tt	*	u	n	
Ethylbenzene	ND	0.0250	11	"	11	**	tt	tt	
Xylene (p/m)	ND	0.0250		"	*	**	n	н	
Xylene (o)	ND	0.0250	n	"	**	"	"	11	
Surrogate: a,a,a-Trifluorotoluene		98.5 %	80-1	20	n	"	"	n	
Surrogate: 4-Bromofluorobenzene		88.2 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61114	04/11/06	04/12/06	EPA 8015M	

Environmental Lab of Texas

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
04/19/06 13:13

Organics by GC Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-11 40' (6D10006-48) Soil	····								
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	ED61114	04/11/06	04/12/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	"	n	11	te	"	**	
Total Hydrocarbon C6-C35	ND	10.0	"	11	11	11	11	**	
Surrogate: 1-Chlorooctane		116 %	70-1	130	n	"	11	"	
Surrogate: 1-Chlorooctadecane		115 %	70-1	30	n	"	"	It	
MW-1 5' (6D10006-49) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61307	04/13/06	04/13/06	EPA 8021B	i. * *
Toluene	ND	0.0250	n	"	"	n	"	11	
Ethylbenzene	ND	0.0250	и	n	H	"		**	
Xylene (p/m)	ND	0.0250	n	n n	tt	"	u	n	
Xylene (o)	ND	0.0250	n	n	Ħ	"	n	п	
Surrogate: a,a,a-Trifluorotoluene		94.5 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		82.2 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61114	04/11/06	04/12/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	11	н	11	"	**	**	
Carbon Ranges C28-C35	ND	10.0	"	#	н	Ħ	n	n	
Total Hydrocarbon C6-C35	ND	10.0	"	**	**	"	n.	11	
Surrogate: 1-Chlorooctane		102 %	70-1	30	"	"	"	ır	
Surrogate: 1-Chlorooctadecane		102 %	70-1	30	"	"	"	"	
MW-1 10' (6D10006-50) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61307	04/13/06	04/13/06	EPA 8021B	
Toluene	ND	0.0250	**	n	n	"	tı .	"	
Ethylbenzene	ND	0.0250	н	н	**	11	"	H	
Xylene (p/m)	ND	0.0250	п	n	н	11	11	**	
Xylene (o)	ND	0.0250	n	11	н	n	"	**	
Surrogate: a,a,a-Trifluorotoluene		101 %	80-1	20	n n	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.8 %	80-1	20	n	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61114	04/11/06	04/12/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	**	"	u	п	н	n	
Carbon Ranges C28-C35	ND	10.0	n	n	n	u	11	**	
Total Hydrocarbon C6-C35	ND	10.0	"	n	u u	н	n	n	
Surrogate: 1-Chlorooctane		127 %	70-1	30	"	n n	"	"	···
Surrogate: 1-Chlorooctadecane		127 %	70-1	30	"	"	"	"	

Environmental Lab of Texas

Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
04/19/06 13:13

Organics by GC Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-1 20' (6D10006-51) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61307	04/13/06	04/13/06	EPA 8021B	
Toluene	ND	0.0250	**	"	"	11	Ħ	"	
Ethylbenzene	ND	0.0250	п	"	"	н	"	II .	
Xylene (p/m)	ND	0.0250	H	**	ď	11	n	"	
Xylene (o)	ND	0.0250	11	"			H	n	
Surrogate: a,a,a-Trifluorotoluene		95.2 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.2 %	80-1	20	"	n	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61114	04/11/06	04/12/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	n	tt	u	#	#	
Carbon Ranges C28-C35	ND	10.0	**	"	n .	**	11	"	
Total Hydrocarbon C6-C35	ND	10.0	**	"	H.	Ħ	п	**	
Surrogate: 1-Chlorooctane		125 %	70-1	30	"	"	n	"	
Surrogate: 1-Chlorooctadecane		130 %	70-1	30	"	"	"	n	
MW-1 25' (6D10006-52) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61307	04/13/06	04/13/06	EPA 8021B	
Toluene	ND	0.0250	"	**	**	и	n	н	
Ethylbenzene	ND	0.0250	"	"	11	"	11	n	
Xylene (p/m)	ND	0.0250	"	**	11	"	н	11	
Xylene (o)	ND	0.0250	"	**	"	"	H	11	
Surrogate: a,a,a-Trifluorotoluene		94.5 %	80-1	20	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		93.2 %	80-1	20	"	"	n	n	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61114	04/11/06	04/12/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	п	n.	n	"	**	11	
Carbon Ranges C28-C35	ND	10.0	u	**	n	11	*	11	
Total Hydrocarbon C6-C35	ND	10.0	"	Ħ	n	n	n	и	
Surrogate: 1-Chlorooctane		102 %	70-1	30	"	"	n	"	
Surrogate: 1-Chlorooctadecane		104 %	70-1	30	"	"	u	"	
MW-1 30' (6D10006-53) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61406	04/14/06	04/14/06	EPA 8021B	
Toluene	ND	0.0250	R		**	11	n	"	
Ethylbenzene	ND	0.0250	n	"		"	u	"	
Xylene (p/m)	ND	0.0250	11	11	"	"	n	"	
Xylene (o)	ND	0.0250	n	"	11	n	"	n .	
Surrogate: a,a,a-Trifluorotoluene		92.2 %	80-1	20	"	n	"	n	
Surrogate: 4-Bromofluorobenzene		81.5 %	80-1.		"	,	"	"	
Carbon Ranges C6-C12	ND		mg/kg dry	1	ED61114	04/11/06	04/12/06	EPA 8015M	

Environmental Lab of Texas

Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/19/06 13:13

Organics by GC Environmental Lab of Texas

	5 . I.	Reporting	** **						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-1 30' (6D10006-53) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	ED61114	04/11/06	04/12/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	"	n	u	tt	"	**	
Total Hydrocarbon C6-C35	ND	10.0	11	**	11	11	11	11	
Surrogate: 1-Chlorooctane		103 %	70-1	130	"	"	"	н	
Surrogate: 1-Chlorooctadecane		103 %	70-2	130	n	"	n	n	
MW-1 35' (6D10006-54) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61406	04/14/06	04/14/06	EPA 8021B	
Toluene	ND	0.0250	n	**	n	п	n	11	
Ethylbenzene	ND	0.0250	11	**	п	n	n	**	
Xylene (p/m)	ND	0.0250	"	**	**	u	n n	н	
Xylene (o)	ND	0.0250	"	11	11	n	n	11	
Surrogate: a,a,a-Trifluorotoluene		91.8 %	80-1	120	n	"	,,	н	
Surrogate: 4-Bromofluorobenzene		82.0 %	80-1	120	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61114	04/11/06	04/12/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"	"	"	n	11	
Carbon Ranges C28-C35	ND	10.0	11	"	**	ıı	**	"	
Total Hydrocarbon C6-C35	ND	10.0	11	"	**	"	"	ŧŧ	
Surrogate: 1-Chlorooctane		122 %	70-1	130	"	"	"	n	
Surrogate: 1-Chlorooctadecane		120 %	70-1	30	"	"	"	"	
MW-1 45' (6D10006-55) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61406	04/14/06	04/14/06	EPA 8021B	
Toluene	ND	0.0250	"	"	**	"	**	11	
Ethylbenzene	ND	0.0250	"	"	#	"	**	u	
Xylene (p/m)	ND	0.0250	"	"		n	**	и	
Xylene (o)	ND	0.0250	n	n	**	"	n	n	
Surrogate: a,a,a-Trifluorotoluene		90.8 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		84.5 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND		mg/kg dry	1	ED61114	04/11/06	04/12/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	n	"	"	**	**	11	
Carbon Ranges C28-C35	ND	10.0	11	"	n		n .	"	
Total Hydrocarbon C6-C35	ND	10.0	**	"	u	n	rr rr	U	
Surrogate: 1-Chlorooctane		110 %	70-1	30	"	"	"	n,	
Surrogate: 1-Chlorooctadecane		113 %	70-1	30	11	"	"	"	

Environmental Lab of Texas

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/19/06 13:13

Organics by GC Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
MW-1 55' (6D10006-56) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61406	04/14/06	04/14/06	EPA 8021B	
Toluene	ND	0.0250	11	**	**	**	11	11	
Ethylbenzene	ND	0.0250	11	**	"	"	"	и .	
Xylene (p/m)	ND	0.0250	41	**	17	**	"	11	
Xylene (o)	ND	0.0250	11	"	11	Ħ	n ,	н	
Surrogate: a,a,a-Trifluorotoluene		91.8 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		83.0 %	80-1	20	"	"	"	n	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61114	04/11/06	04/12/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	n	#	н	п	**	n	
Carbon Ranges C28-C35	ND	10.0	"	**	"	"	"	n	
Total Hydrocarbon C6-C35	ND	10.0	п	ħ	n	н	"	н	
Surrogate: 1-Chlorooctane		104 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		103 %	70-1	30	"	"	п	n	
MW-1 75' (6D10006-57) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61406	04/14/06	04/14/06	EPA 8021B	
Toluene	ND	0.0250	n	**	π	п	H	11	
Ethylbenzene	ND	0.0250	u	"	11	10	tt	11	
Xylene (p/m)	ND	0.0250	"	"	n	11	**	11	
Xylene (o)	ND	0.0250	"	н	n	11	tt.	11	
Surrogate: a,a,a-Trifluorotoluene		84.5 %	80-1.	20	"	"	,,	"	
Surrogate: 4-Bromofluorobenzene		81.8 %	80-1.	20	"	"	"	11	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61114	04/11/06	04/12/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	Ħ	#	"	N	11	Ħ	
Carbon Ranges C28-C35	ND	10.0	tt	11	n	H	11	"	
Total Hydrocarbon C6-C35	ND	10.0	11	п	n	11	я	Ħ	
Surrogate: 1-Chlorooctane		100 %	70-1.	30	"	n	ıı .	"	
Surrogate: 1-Chlorooctadecane		100 %	70-1	30	"	"	"	"	
MW-1 85' (6D10006-58) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61406	04/13/06	04/14/06	EPA 8021B	
Toluene	ND	0.0250	**	11	**	**	11	"	
Ethylbenzene	ND	0.0250	Tr.	n	"	n	"	"	
Xylene (p/m)	ND	0.0250	H	**	**	Ħ	**	н	
Xylene (o)	ND	0.0250	If	"	н	п	**	ï	
Surrogate: a,a,a-Trifluorotoluene		94.8 %	80-1.	20	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		86.8 %	80-1	20	"	"	п	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61114	04/11/06	04/12/06	EPA 8015M	

Environmental Lab of Texas

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:

Reported: 04/19/06 13:13

Organics by GC Environmental Lab of Texas

	ъ .	Reporting	TT 1:						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-1 85' (6D10006-58) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	ED61114	04/11/06	04/12/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	11	"	"	11	11:	**	
Total Hydrocarbon C6-C35	ND	10.0	11	**	n	n	I†	"	
Surrogate: 1-Chlorooctane	•	118 %	70-1	130	"	"	"	n	
Surrogate: 1-Chlorooctadecane		119 %	70-1	130	11	"	n	#	
MW-1 90' (6D10006-59) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61406	04/13/06	04/14/06	EPA 8021B	
Toluene	ND	0.0250	11	11	11	n	Ħ	п	
Ethylbenzene	ND	0.0250	"	**	11	n	11	11	
Xylene (p/m)	ND	0.0250	**	"	"	и	**	11	
Xylene (o)	ND	0.0250	**	**	и	"	11	**	
Surrogate: a,a,a-Trifluorotoluene		90.5 %	80-1	120	n	"	"	"	,
Surrogate: 4-Bromofluorobenzene		80.5 %	80-1	120	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61114	04/11/06	04/12/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	n	n	11	u .	"	Ħ	
Carbon Ranges C28-C35	ND	10.0	It	"	H	"		H.	
Total Hydrocarbon C6-C35	ND	10.0	n	н	n	n	u	п	
Surrogate: 1-Chlorooctane		101 %	70-1	130	"	"	"	n	
Surrogate: 1-Chlorooctadecane		103 %	70-1	30	"	"	"	"	
MW-2 5' (6D10006-60) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61406	04/13/06	04/14/06	EPA 8021B	
Toluene	ND	0.0250	n	"	tt	11	11	n	
Ethylbenzene	ND	0.0250	ıı	"	"	"	"	n	
Xylene (p/m)	ND	0.0250	п	n		n	11	n	
Xylene (o)	ND	0.0250	"	n	rt	"	"	n	
Surrogate: a,a,a-Trifluorotoluene		90.0 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		86.5 %	80-1	20	"	"	"	n	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61215	04/12/06	04/12/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"	"	11	11	n	
Carbon Ranges C28-C35	ND	10.0	"	"	n	"	11	"	
Total Hydrocarbon C6-C35	ND	10.0	"	"	n	"	"	n	
Surrogate: 1-Chlorooctane		89.6 %	70-1	30	"	"	n	n	
Surrogate: 1-Chlorooctadecane		87.4 %	70-1	30	"	"	n	n	

Environmental Lab of Texas

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
04/19/06 13:13

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	D:1	Dot-L	Duom 4	A 1	Mash - 3	37 :
MW-2 10' (6D10006-61) Soil	Result	Cunt	Ones	Dilution	Batch	Prepared	Analyzed	Method	Note
									
Benzene	ND	0.0250	mg/kg dry "	25	ED61406	04/13/06	04/14/06	EPA 8021B	
Toluene	ND	0.0250			,,	"		"	
Ethylbenzene	ND	0.0250		"			n		
Xylene (p/m)	ND	0.0250	"	**	"	"	"	11	
Xylene (o)	ND ND	0.0250						11 ,	
Surrogate: a,a,a-Trifluorotoluene		92.0 %	80-1	20	n	"	n n	"	
Surrogate: 4-Bromofluorobenzene		91.5 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61215	04/12/06	04/12/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	tt	"	"	11	**	11	
Carbon Ranges C28-C35	ND	10.0	TI .	"	H	u	u	55	
Total Hydrocarbon C6-C35	ND	10.0	"	**	11		н	11	
Surrogate: 1-Chlorooctane		82.8 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		83.4 %	70-1	30	"	"	"	"	
MW-2 20' (6D10006-62) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61406	04/13/06	04/14/06	EPA 8021B	
Toluene	ND	0.0250	11	"	п	**	n	н	
Ethylbenzene	ND	0.0250	11	"	11	u	11	n	
Xylene (p/m)	ND	0.0250	11	"	11	"	11		
Xylene (o)	ND	0.0250	"	"	н	и	n	**	
Surrogate: a,a,a-Trifluorotoluene		92.8 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		84.2 %	80-1	20	"	"	"	n	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61215	04/12/06	04/12/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	H	11	"	11	11	и	
Carbon Ranges C28-C35	ND	10.0		"	11	n	u	re	
Total Hydrocarbon C6-C35	ND	10.0	"	"	n	n	**	It	
Surrogate: 1-Chlorooctane		88.2 %	70-1	30	"	,,	"	н	
Surrogate: 1-Chlorooctadecane		88.0 %	70-1		"	"	"	"	
MW-2 25' (6D10006-63) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61406	04/13/06	04/14/06	EPA 8021B	
Toluene	ND	0.0250	11	n	"	"	n	**	
Ethylbenzene	ND	0.0250	11	"	n	"	и	**	
Xylene (p/m)	ND	0.0250	11	n	11	"	и	P	
Xylene (o)	ND	0.0250	**	n	"	"		11	
Surrogate: a,a,a-Trifluorotoluene		98.0 %	80-1	20	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		94.0 %	80-1	20	"	"	"	"	

Environmental Lab of Texas

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:

Reported: 04/19/06 13:13

Organics by GC Environmental Lab of Texas

Angleto	D14	Reporting	T Turks		_	_			
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-2 25' (6D10006-63) Soil				·····					
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	ED61215	04/12/06	04/12/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	"	11	и	п	**	11	
Total Hydrocarbon C6-C35	ND	10.0	"	11	**	11	"	H	
Surrogate: 1-Chlorooctane	-	84.0 %	70-1	130	n	n	"	"	
Surrogate: 1-Chlorooctadecane		82.2 %	70-1	130	"	ıı	"	n	
MW-2 30' (6D10006-64) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61406	04/13/06	04/14/06	EPA 8021B	
Toluene	ND	0.0250	"	"	"	"	,,	11	
Ethylbenzene	ND	0.0250	n	"	п	n	n	11	
Xylene (p/m)	ND	0.0250	11	n	п	n	"	**	
Xylene (o)	ND	0.0250	11	n	n	n	n	N	
Surrogate: a,a,a-Trifluorotoluene		94.5 %	80-1	20	n	#	"	u	
Surrogate: 4-Bromofluorobenzene		86.2 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61215	04/12/06	04/12/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	11	11	11	· ·	u	n	
Carbon Ranges C28-C35	ND	10.0	"	11	**	"	11	n	
Total Hydrocarbon C6-C35	ND	10.0	,,	"	**	•	H	n	
Surrogate: 1-Chlorooctane		89.2 %	70-1	30	"	"	n	"	
Surrogate: 1-Chlorooctadecane		88.4 %	70-1	30	"	"	11	"	
MW-2 35' (6D10006-65) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61406	04/13/06	04/14/06	EPA 8021B	
Toluene	ND	0.0250	11	**	11	**	n	D.	
Ethylbenzene	ND	0.0250	11	er er	n	"	n	11	
Xylene (p/m)	ND	0.0250	"	"	"	n	n	"	
Xylene (o)	ND	0.0250	**	"	н	11	tt	**	
Surrogate: a,a,a-Trifluorotoluene		93.2 %	80-1	20	"	n	"	"	
Surrogate: 4-Bromofluorobenzene		89.2 %	80-1	20	"	n .	n	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61215	04/12/06	04/12/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	11	**	п	"	"	п	
Carbon Ranges C28-C35	ND	10.0	11	tt	11	u	**	п	
Total Hydrocarbon C6-C35	ND	10.0	11	n	11	It	#	11	
Surrogate: 1-Chlorooctane		92.4 %	70-1	30	n	"	"	"	
Surrogate: 1-Chlorooctadecane		92.8 %	70-1	30	"	"	"	"	

Environmental Lab of Texas

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:

04/19/06 13:13

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Linita	m. 1	.				
MW-2 45' (6D10006-66) Soil	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	No.
								<u> </u>	
Benzene	ND	0.0250	mg/kg dry	25	ED61406	04/13/06	04/14/06	EPA 8021B	
Foluene	ND	0.0250		11	11	11	"	**	
Ethylbenzene	ND	0.0250	11	"	"	**	"	11	
Xylene (p/m)	ND	0.0250	11	"	11	n	"	11	
Xylene (o)	ND	0.0250		**		11	tt	11	
Surrogate: a,a,a-Trifluorotoluene		93.5 %	80-12	0	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		83.8 %	80-12	0	"	"	"	n	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61215	04/12/06	04/12/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	. "	**	Ц	п	11	er e	
Carbon Ranges C28-C35	ND	10.0	91	n	11)1	11	"	
Total Hydrocarbon C6-C35	ND	10.0	31	"	"	"	**	"	
Surrogate: 1-Chlorooctane		86.8 %	70-13	0	"	"	"	n	
Surrogate: 1-Chlorooctadecane		86.4 %	70-13	0	. #	"	"	n	
MW-2 55' (6D10006-67) Soil									·
Benzene	ND	0.0250	mg/kg dry	25	ED61406	04/13/06	04/14/06	EPA 8021B	
Coluene	ND	0.0250	*	"	#	"	n	11	
Ethylbenzene	ND	0.0250	Ħ	"	**	**	#	**	
Xylene (p/m)	ND	0.0250	tt	"	**	u	"	**	
Kylene (o)	ND	0.0250	rt .	**	t†	n	11	и	
Surrogate: a,a,a-Trifluorotoluene		92.8 %	80-12	0	н	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.5 %	80-12	0	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61215	04/12/06	04/12/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	n	"	н	h	n	tt	
Carbon Ranges C28-C35	ND	10.0	п	**	n	n	"	n	
Cotal Hydrocarbon C6-C35	ND	10.0	u	11	n	**	11	и	
Surrogate: 1-Chlorooctane		93.0 %	70-13	0	ı,	n	"	"	
Gurrogate: 1-Chlorooctadecane		91.2 %	70-13	0	n	"	"	n.	
AW-2 75' (6D10006-68) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61406	04/13/06	04/14/06	EPA 8021B	
'oluene	ND	0.0250	"	"	**	n	"	···	
Ethylbenzene	ND	0.0250	"	"	n	n	"	n .	
Kylene (p/m)	ND	0.0250	н	n	и	u	n	11	
Cylene (o)	ND	0.0250	,,	н	н	н	n	11	
urrogate: a,a,a-Trifluorotoluene		93.0 %	80-120	0	n .	"	,,	"	
Surrogate: 4-Bromofluorobenzene		89.0 %	80-120		"	"	"	"	
Carbon Ranges C6-C12	ND		mg/kg dry	1	ED61215	04/12/06	04/12/06	EPA 8015M	

Environmental Lab of Texas

Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:

Reported: 04/19/06 13:13

Organics by GC Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
MW-2 75' (6D10006-68) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	ED61215	04/12/06	04/12/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	11	**	n	n	11	*	
Total Hydrocarbon C6-C35	ND	10.0	"	"	II	n	n	"	
Surrogate: 1-Chlorooctane		86.0 %	70-1	130	"	"	"	n	
Surrogate: 1-Chlorooctadecane		87.4 %	70-1	130	n	n	"	n	
MW-2 85' (6D10006-69) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61406	04/13/06	04/14/06	EPA 8021B	
Toluene	ND	0.0250	"	"	11	**	н	*	
Ethylbenzene	ND	0.0250	n	n	11	"	n	11	
Xylene (p/m)	ND	0.0250	**	н	11	н	11	Ħ	
Xylene (o)	ND	0.0250	"	"	11	11	, н	11	
Surrogate: a,a,a-Trifluorotoluene		94.5 %	80-1	20	n	n	n	"	
Surrogate: 4-Bromofluorobenzene		92.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61215	04/12/06	04/12/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	n	"	**	tt	**	n	
Carbon Ranges C28-C35	ND	10.0	II		11	n	**	и	
Total Hydrocarbon C6-C35	ND	10.0	11	n	tt.	n	"	n	
Surrogate: 1-Chlorooctane		86.8 %	70-1	30	n	"	"	"	
Surrogate: 1-Chlorooctadecane		86.4 %	70-1	30	"	"	"	"	
MW-2 90' (6D10006-70) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61406	04/13/06	04/14/06	EPA 8021B	
Toluene	ND	0.0250	11	"	n	n	"	n	
Ethylbenzene	ND	0.0250	11	"	н	**	"	11	
Xylene (p/m)	ND	0.0250	**	0	11	**	n	и	
Xylene (o)	ND	0.0250	**	"	n	II .	"	11	
Surrogate: a,a,a-Trifluorotoluene		93.8 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		81.0 %	80-1	20	,,	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61215	04/12/06	04/13/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	**	n	#	"	"	Ħ	
Carbon Ranges C28-C35	ND	10.0	"	19	11	n	11	51	
Total Hydrocarbon C6-C35	ND	10.0	11	"	**	"	"	и	
Surrogate: 1-Chlorooctane		95.2 %	70-1	30	"	. "	n	"	
Surrogate: 1-Chlorooctadecane		93.0 %	70-1	30	"	"	"	"	

Environmental Lab of Texas

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
04/19/06 13:13

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	No
MW-3 5' (6D10006-71) Soil				Dilation	Daton	Теригеа	Anaryzed	Wellou	
Benzene	ND	0.0250	mg/kg dry	25	ED61406	04/13/06	04/14/06	EPA 8021B	
l'Oluene	ND	0.0250	11	11	н	**	n	n	
Ethylbenzene	ND	0.0250	**	11	D	H	v	11	
Xylene (p/m)	ND	0.0250	"	**	н	n	n	11	
Xylene (o)	ND	0.0250	"	11	11	п	it.	и	
Surrogate: a,a,a-Trifluorotoluene		89.2 %	80-1.	20	n	"	"	n	
Surrogate: 4-Bromofluorobenzene		84.5 %	80-1.	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61215	04/12/06	04/13/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	11	**	"	u	**	и	
Carbon Ranges C28-C35	ND	10.0	n	**	n	H	"	"	
Total Hydrocarbon C6-C35	ND	10.0	**	**	n	n	**	n	
Surrogate: 1-Chlorooctane		85.4 %	70-1.	30	n	"	"	n	
Surrogate: 1-Chlorooctadecane		85.0 %	70-1.	30	n	"	n	"	
MW-3 10' (6D10006-72) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61406	04/13/06	04/14/06	EPA 8021B	
Toluene	ND	0.0250	n	"	"	11	ii .	**	
Ethylbenzene	ND	0.0250	n	"	**	u	п	"	
Xylene (p/m)	ND	0.0250	n	n	н	łr	**	tt	
Xylene (o)	ND	0.0250	11	"	n	п	"	tt	
Surrogate: a,a,a-Trifluorotoluene		91.5 %	80-12	20	"	n	,,	"	
Surrogate: 4-Bromofluorobenzene		82.2 %	80-12	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61215	04/12/06	04/13/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	**	"	**		11	31	
Carbon Ranges C28-C35	ND	10.0	TP .	"	**		11	11	
Total Hydrocarbon C6-C35	ND	10.0	ti	"	H	"	11	11	
Surrogate: 1-Chlorooctane		88.0 %	70-1.	30	"	n	n	"	
Surrogate: 1-Chlorooctadecane	•	87.8 %	70-13	80	"	"	n	"	
MW-3 20' (6D10006-73) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61701	04/17/06	04/17/06	EPA 8021B	
Coluene	ND	0.0250	11	"	H	n	"	u	
Ethylbenzene	ND	0.0250	11	n	tt	п	п	"	
Kylene (p/m)	ND	0.0250	"	11	it	n	Ħ	u	
Kylene (o)	ND	0.0250	"	n	II.	n	н	11	
Surrogate: a,a,a-Trifluorotoluene		86.8 %	80-12	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	80-12	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0		1	ED61215	04/12/06	04/13/06	EPA 8015M	

Environmental Lab of Texas

Project Prisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:

Reported: 04/19/06 13:13

Organics by GC Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-3 20' (6D10006-73) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	ED61215	04/12/06	04/13/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	31	tı	"	"	n	11	
Total Hydrocarbon C6-C35	ND	10.0	11	"	**	"	u	11	
Surrogate: 1-Chlorooctane		93.0 %	70	130	"	"	"	n	
Surrogate: 1-Chlorooctadecane		91.6 %	70-	130	"	n	n	r	
MW-3 25' (6D10006-74) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61701	04/17/06	04/17/06	EPA 8021B	
Toluene	ND	0.0250	n	11	11	lf	**	11	
Ethylbenzene	ND	0.0250	n	IJ	**	п	**	11	
Xylene (p/m)	ND	0.0250	n	n	11	11	*1	11	
Xylene (o)	ND	0.0250	n	"	"	11	11	11	
Surrogate: a,a,a-Trifluorotoluene		83.8 %	80-	120	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		97.5 %	80-	120	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61215	04/12/06	04/13/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	11	**	"	n	**	re .	
Carbon Ranges C28-C35	ND	10.0	Н	"	п	п	"	re .	
Total Hydrocarbon C6-C35	ND	10.0	11	**	n	H	n	и	
Surrogate: 1-Chlorooctane		95.2 %	70-	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		94.8 %	70-	130	"	"	n	"	
MW-3 30' (6D10006-75) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61701	04/17/06	04/17/06	EPA 8021B	
Toluene	ND	0.0250	"	u	**	"		n	
Ethylbenzene	ND	0.0250	n.	"	**	"	n	**	
Xylene (p/m)	ND	0.0250	**	"		u	u	tt [.]	
Xylene (o)	ND	0.0250	11	n	u	**	n	**	
Surrogate: a,a,a-Trifluorotoluene		83.0 %	80-1	120	n n	"	n	"	
Surrogate: 4-Bromofluorobenzene		101 %	80-1	120	"	n	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61215	04/12/06	04/13/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	Ħ	"	"	"	n	и	
Carbon Ranges C28-C35	ND	10.0	n	"	**	*	"	"	
Total Hydrocarbon C6-C35	ND	10.0	"	"	17	"	"	"	
Surrogate: 1-Chlorooctane		91.0 %	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		90.8 %	70-1		"	"	n	"	

Environmental Lab of Texas

Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:

Reported: 04/19/06 13:13

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Dranand	Anatomad	Method	No
MW-3 35' (6D10006-76) Soil	Result	Ziiiit	Omes	Dilution	Batch	Prepared	Analyzed	Meinod	INC
Benzene	ND	0.0250	mg/kg dry	25	ED61701	04/17/06	04/17/06	EPA 8021B	
Toluene	ND	0.0250	"	11	# #	D-17 17700	N 17700	"	
Ethylbenzene	ND	0.0250	11	**	**	11		n	
Xylene (p/m)	ND ND	0.0250	**	I)	n	**		11	
Xylene (o)	ND	0.0250	н	tt	U .	*	**	n	
Surrogate: a,a,a-Trifluorotoluene	ND	82.0 %	80-1	20	,,	<i>n</i>	"	"	
Surrogate: a,a,a-1 rijiuoroioiuene Surrogate: 4-Bromofluorobenzene		96.2 %	80-1.		"	,,	,,	,,	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61215	04/12/06	04/13/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	11	ED01213	11	04/13/00	11 11 10 13 141	
		10.0	11	,,	,,	11	**	,,	
Carbon Ranges C28-C35	ND		n	"	,,	"	"	11	
Total Hydrocarbon C6-C35	ND	10.0							
Surrogate: 1-Chlorooctane		88.6 %	70-1.		"	"	"	"	
Surrogate: 1-Chlorooctadecane		87.0 %	70-1.	30	n	"	"	"	
MW-3 45' (6D10006-77) Soil						•			
Benzene	ND	0.0250	mg/kg dry	25	ED61701	04/17/06	04/17/06	EPA 8021B	
Toluene	ND	0.0250	n	"	11	N	**	и	
Ethylbenzene	ND	0.0250	11	11	n	tt.	#	11	
Xylene (p/m)	ND	0.0250	**	It	11	п	Ħ	11	
Xylene (o)	ND	0.0250	n	n	n	"	**	11	
Surrogate: a,a,a-Trifluorotoluene		83.5 %	80-1.	20	ıı .	"	"	n	
Surrogate: 4-Bromofluorobenzene		94.8 %	80-1.	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61215	04/12/06	04/13/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	II .	"	"	**	"	и	
Carbon Ranges C28-C35	ND	10.0	n	н	u	n	M	**	
Fotal Hydrocarbon C6-C35	ND	10.0	u	н		**	n	tr	
Surrogate: 1-Chlorooctane		86.2 %	70-1.	30	"	"	"	,,	.,
Surrogate: 1-Chlorooctadecane		85.0 %	70-1.	30	"	"	"	"	
MW-3 55' (6D10006-78) Soil							•		
Benzene	ND	0.0250	mg/kg dry	25	ED61701	04/17/06	04/17/06	EPA 8021B	
Coluene Coluene	ND	0.0250	11	"	**	н	*	n	
Ethylbenzene	ND	0.0250	n	"	**	n	tt	"	
Kylene (p/m)	ND	0.0250	31	**	и	**	"	11	
Kylene (o)	ND	0.0250	"	"	'n	II.	11	n	
'urrogate: a,a,a-Trifluorotoluene		80.8 %	80-12	20	n	"	ıı .	u u	
Surrogate: 4-Bromofluorobenzene		95.5 %	80-12	20	n	"	"	"	
Carbon Ranges C6-C12	ND	10.0		1	ED61215	04/12/06	04/13/06	EPA 8015M	

Environmental Lab of Texas

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:

Reported: 04/19/06 13:13

Organics by GC Environmental Lab of Texas

Ameliate	n te	Reporting	T Turber						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-3 55' (6D10006-78) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	ED61215	04/12/06	04/13/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	11	11	U	ŧŧ	н	n	
Total Hydrocarbon C6-C35	ND	10.0	"	н	"	11	п	n	
Surrogate: 1-Chlorooctane		85.2 %	70-	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		84.8 %	70-	130	"	n	"	n	
MW-3 75' (6D10006-79) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61701	04/17/06	04/17/06	EPA 8021B	
Toluene	ND	0.0250	n	11	"	11	Ħ	11	
Ethylbenzene	ND	0.0250	n	n	"	"	"	**	
Xylene (p/m)	ND	0.0250	**	"	"	**	н	11	
Xylene (o)	ND	0.0250	u	"	11	"	**	11	
Surrogate: a,a,a-Trifluorotoluene		82.8 %	80-1	120	"	"	v	"	
Surrogate: 4-Bromofluorobenzene		96.2 %	80-1	120	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61215	04/12/06	04/13/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	11	n	q	п	*	n	
Carbon Ranges C28-C35	ND	10.0	11	n	n	II	"	и	
Total Hydrocarbon C6-C35	ND	10.0	11	н	п	11	"	n	
Surrogate: 1-Chlorooctane		83.4 %	70-1	130	"	"	"	"	-
Surrogate: 1-Chlorooctadecane		83.2 %	70-1	130	"	"	n	"	
MW-3 85' (6D10006-80) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61701	04/17/06	04/17/06	EPA 8021B	
Toluene	ND	0.0250	"	"	tt.	n	"	n	
Ethylbenzene	ND	0.0250	и	"	n	ii .		n	
Xylene (p/m)	ND	0.0250	11	"	n	и		rr .	
Xylene (o)	ND	0.0250	**	n	и	n	н	11	
Surrogate: a,a,a-Trifluorotoluene		84.5 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.5 %	80-1	20	"	n	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61216	04/12/06	04/13/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	n	"	**	"	н	н	
Carbon Ranges C28-C35	ND	10.0	11	"	tt	P	u	н	
Total Hydrocarbon C6-C35	ND	10.0	"	"	"	tr	u	n	
Surrogate: I-Chlorooctane		82.4 %	70-1	30	"	"	n	n	
Surrogate: 1-Chlorooctadecane		79.6 %	70-1	30	"	"	"	n .	

Environmental Lab of Texas

Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/19/06 13:13

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 90' (6D10006-81) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ED61701	04/17/06	04/17/06	EPA 8021B	
Toluene	ND	0.0250	**	Ħ	n	n	ti	n	
Ethylbenzene	ND	0.0250	"	n	11	n	11	n	
Xylene (p/m)	ND	0.0250	,,	n	н	**	"	11	
Xylene (o)	ND	0.0250	"	11	**	11	n	11	
Surrogate: a,a,a-Trifluorotoluene		87.2 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		88.8 %	80-1.	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED61216	04/12/06	04/13/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"	"	н	ti .	**	
Carbon Ranges C28-C35	ND	10.0	H	п	"	II .	**	35	
Total Hydrocarbon C6-C35	ND	10.0	"	rt .	n	**	"	n	
Surrogate: 1-Chlorooctane		86.6 %	70-1.	30	"	"	ıı .	"	
Surrogate: 1-Chlorooctadecane		85.6 %	70-1.	30	"	"	"	n	

Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/19/06 13:13

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	D."	n	. ·			
SB-4 5' (6D10006-01) Soil	Resun	Limit	Omis	Dilution	Batch	Prepared	Analyzed	Method	Notes
								A. 1 1 .:	
% Moisture	1.1	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-4 10' (6D10006-02) Soil									
% Moisture	3.9	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-4 15' (6D10006-03) Soil									
% Moisture	3.3	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-4 25' (6D10006-04) Soil									
% Moisture	3.7	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-5 5' (6D10006-05) Soil									
% Moisture	2.1	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-5 10' (6D10006-06) Soil									
% Moisture	3.6	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-5 15' (6D10006-07) Soil									
% Moisture	10.5	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-5 25' (6D10006-08) Soil									
% Moisture	12.0	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-3 5' (6D10006-09) Soil									
% Moisture	5.7	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-3 10' (6D10006-10) Soil									
% Moisture	5.2	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-3 15' (6D10006-11) Soil									
% Moisture	5.6	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	

Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
04/19/06 13:13

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-3 25' (6D10006-12) Soil				Distroit	Daton	Topared	7 (1111) 200	mana	1,0103
% Moisture	5.2	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	,
SB-2 5' (6D10006-13) Soil									
% Moisture	13.0	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-2 10' (6D10006-14) Soil									
% Moisture	2.4	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-2 15' (6D10006-15) Soil									
% Moisture	3.9	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-2 25' (6D10006-16) Soil									
% Moisture	5.3	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-6 5' (6D10006-17) Soil									
% Moisture	6.4	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-6 10' (6D10006-18) Soil									
% Moisture	1.8	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-6 15' (6D10006-19) Soil									
% Moisture	2.9	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-6 25' (6D10006-20) Soil									
% Moisture	2.4	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-6 30' (6D10006-21) Soil									
% Moisture	4.3	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-7 5' (6D10006-22) Soil									
% Moisture	9.2	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	

Environmental Lab of Texas

1

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
04/19/06 13:13

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-7 10' (6D10006-23) Soil									
% Moisture	2.5	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-7 15' (6D10006-24) Soil									
% Moisture	5.1	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-7 25' (6D10006-25) Soil									
% Moisture	2.3	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-7 30' (6D10006-26) Soil									
% Moisture	2.9	0.1	%	t	ED61104	04/10/06	04/11/06	% calculation	
SB-8 5' (6D10006-27) Soil			=						
% Moisture	5.5	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-8 10' (6D10006-28) Soil									
% Moisture	2.9	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-8 15' (6D10006-29) Soil									
% Moisture	3.0	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-8 25' (6D10006-30) Soil									
% Moisture	5.3	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-8 30' (6D10006-31) Soil									
% Moisture	4.7	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-9 5' (6D10006-32) Soil									
% Moisture	11.3	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-9 10' (6D10006-33) Soil									
% Moisture	0.8	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	

Environmental Lab of Texas

Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/19/06 13:13

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-9 15' (6D10006-34) Soil									
% Moisture	2.5	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-9 25' (6D10006-35) Soil									
% Moisture	3.3	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-9 30' (6D10006-36) Soil									
% Moisture	3.3	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-10 5' (6D10006-37) Soil									
% Moisture	10.0	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-10 10' (6D10006-38) Soil									
% Moisture	4.2	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-10 20' (6D10006-39) Soil									
% Moisture	1.8	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-10 30' (6D10006-40) Soil									
% Moisture	3.3	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-10 40' (6D10006-41) Soil									
% Moisture	3.7	0.1	%	i	ED61104	04/10/06	04/11/06	% calculation	
SB-11 5' (6D10006-42) Soil									
% Moisture	9.1	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-11 10' (6D10006-43) Soil									
% Moisture	5.6	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-11 15' (6D10006-44) Soil									
% Moisture	2.8	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	

Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
04/19/06 13:13

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-11 20' (6D10006-45) Soil					· · · · · · · · · · · · · · · · · · ·				
% Moisture	3.5	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-11 25' (6D10006-46) Soil									
% Moisture	5.7	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-11 30' (6D10006-47) Soil									
% Moisture	4.9	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
SB-11 40' (6D10006-48) Soil									
% Moisture	4.2	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-1 5' (6D10006-49) Soil									
% Moisture	9.4	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-1 10' (6D10006-50) Soil									
% Moisture	7.5	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-1 20' (6D10006-51) Soil									
% Moisture	1.2	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-1 25' (6D10006-52) Soil									
% Moisture	2.3	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-1 30' (6D10006-53) Soil									
% Moisture	4.8	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-1 35' (6D10006-54) Soil									
% Moisture	4.7	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-1 45' (6D10006-55) Soil									
% Moisture	3.7	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	

Environmental Lab of Texas

0

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:

04/19/06 13:13

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

		Reporting	TT 2:		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		***************************************		·
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 55' (6D10006-56) Soil				 					
% Moisture	3.4	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-1 75' (6D10006-57) Soil									
% Moisture	2.5	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-1 85' (6D10006-58) Soil									
% Moisture	2.9	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-1 90' (6D10006-59) Soil									
% Moisture	4.2	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-2 5' (6D10006-60) Soil									
% Moisture	6.4	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-2 10' (6D10006-61) Soil									
% Moisture	8.3	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-2 20' (6D10006-62) Soil									
% Moisture	3.0	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-2 25' (6D10006-63) Soil									
% Moisture	3.9	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-2 30' (6D10006-64) Soil									
% Moisture	3.0	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-2 35' (6D10006-65) Soil									
% Moisture	3.0	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-2 45' (6D10006-66) Soil									
% Moisture	4.3	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	

Environmental Lab of Texas

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:
04/19/06 13:13

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-2 55' (6D10006-67) Soil									
% Moisture	4.5	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-2 75' (6D10006-68) Soil									
% Moisture	2.9	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-2 85' (6D10006-69) Soil									
% Moisture	2.7	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-2 90' (6D10006-70) Soil									
% Moisture	7.1	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-3 5' (6D10006-71) Soil									
% Moisture	5.3	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-3 10' (6D10006-72) Soil									
% Moisture	7.9	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-3 20' (6D10006-73) Soil									
% Moisture	2.0	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-3 25' (6D10006-74) Soil									
% Moisture	3.1	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-3 30' (6D10006-75) Soil									
% Moisture	4.5	0.1	%	i	ED61104	04/10/06	04/11/06	% calculation	
MW-3 35' (6D10006-76) Soil					<u> </u>				
% Moisture	5.0	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-3 45' (6D10006-77) Soil									
% Moisture	3.1	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	

Environmental Lab of Texas

Project: Frisco Skelly Project Number: 2004-00196 Project Manager: Camille Reynolds Fax: (432) 687-4914 Reported:

04/19/06 13:13

General Chemistry Parameters by EPA / Standard Methods **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 55' (6D10006-78) Soil									
% Moisture	4.0	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-3 75' (6D10006-79) Soil									
% Moisture	2.8	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-3 85' (6D10006-80) Soil									
% Moisture	7.1	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	
MW-3 90' (6D10006-81) Soil									
% Moisture	6.4	0.1	%	1	ED61104	04/10/06	04/11/06	% calculation	

Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/19/06 13:13

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED61005 - EPA 5030C (GC)		Zam								
Blank (ED61005-BLK1)				Prepared &	z Analyzed:	: 04/09/06				
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	"							
Ethylbenzene	ND	0.0250	11							
Xylene (p/m)	ND	0.0250	n							
Xylene (o)	ND	0.0250	"							
Surrogate: a,a,a-Trifluorotoluene	46.4		ug/kg	40.0		116	80-120			
Surrogate: 4-Bromofluorobenzene	37.0		"	40.0		92.5	80-120			
LCS (ED61005-BS1)				Prepared: ()4/09/06 A	nalyzed: 04	1/10/06			
Benzene	1.36	0.0250	mg/kg wet	1.25		109	80-120			
Toluene	1.43	0.0250	**	1.25		114	80-120			
Ethylbenzene	1.35	0.0250	**	1.25		108	80-120			
Xylene (p/m)	2.97	0.0250	**	2.50		119	80-120			
Xylene (o)	1.49	0.0250	11	1.25		119	80-120			
Surrogate: a,a,a-Trifluorotoluene	43.8		ug/kg	40.0		110	80-120			
Surrogate: 4-Bromofluorobenzene	35.2		"	40.0		88.0	80-120			
Calibration Check (ED61005-CCV1)				Prepared: (04/09/06 A	nalyzed: 04	1/10/06			
Benzene	59.5		ug/kg	50.0		119	80-120			
Toluene	60.0		n	50.0		120	80-120			
Ethylbenzene	57.7		11	50.0		115	80-120			
Xylene (p/m)	119		II	100		119	80-120			
Xylene (o)	58.4		11	50.0		117	80-120			
Surrogate: a,a,a-Trifluorotoluene	37.5		"	40.0		93.8	80-120			
Surrogate: 4-Bromofluorobenzene	34.0		"	40.0		85.0	80-120			
Matrix Spike (ED61005-MS1)	Sou	rce: 6D10006	5-10	Prepared: ()4/09/06 A	nalyzed: 04	1/10/06			
Benzene	1.51	0.0250	mg/kg dry	1.32	ND	114	80-120			
Toluene	1.54	0.0250	11	1.32	ND	117	80-120			
Ethylbenzene	1.47	0.0250	#	1.32	ND	111	80-120			
Xylene (p/m)	3.12	0.0250	"	2.64	ND	118	80-120			
Xylene (o)	1.46	0.0250	"	1.32	ND	111	80-120			
Surrogate: a,a,a-Trifluorotoluene	43.2		ug/kg	40.0		108	80-120			
Surrogate: 4-Bromofluorobenzene	40.1		"	40.0		100	80-120			

Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/19/06 13:13

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Kesuit	Limit	Omts	Tevel	Kesuit	MILEC	Lunts	MD	Finit	INUICS
Batch ED61005 - EPA 5030C (GC)										
Matrix Spike Dup (ED61005-MSD1)	Sour	ce: 6D10006	5-10	Prepared: (04/09/06 Aı	nalyzed: 04	/10/06			
Benzene	1.42	0.0250	mg/kg dry	1.32	ND	108	80-120	5.41	20	
Toluene	1.50	0.0250	"	1.32	ND	114	80-120	2.60	20	
Ethylbenzene	1.48	0.0250	"	1.32	ND	112	80-120	0.897	20	
Xylene (p/m)	3.14	0.0250	**	2.64	ND	119	80-120	0.844	20	
Xylene (o)	1.53	0.0250	n	1.32	ND	116	80-120	4.41	20	
Surrogate: a,a,a-Trifluorotoluene	41.6		ug/kg	40.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	40.3		"	40.0		101	80-120			
Batch ED61011 - Solvent Extraction (GC)										
Blank (ED61011-BLK1)				Prepared &	Analyzed:	04/10/06				
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	n							
Carbon Ranges C28-C35	ND	10.0	II.							
Total Hydrocarbon C6-C35	ND	10.0	**							
Surrogate: 1-Chlorooctane	41.3		mg/kg	50.0	· ·	82.6	70-130			
Surrogate: 1-Chlorooctadecane	43.2		"	50.0		86.4	70-130			
LCS (ED61011-BS1)				Prepared &	Analyzed:	04/10/06				
Carbon Ranges C6-C12	551	10.0	mg/kg wet	500		110	75-125			
Carbon Ranges C12-C28	512	10.0	n	500		102	75-125			
Fotal Hydrocarbon C6-C35	1060	10.0	н	1000		106	75-125			
Surrogate: 1-Chlorooctane	52.2		mg/kg	50.0		104	70-130			
Surrogate: 1-Chlorooctadecane	45.1		,,	50.0		90.2	70-130			
Calibration Check (ED61011-CCV1)				Prepared: 0	04/10/06 Ar	nalyzed: 04	/11/06			
Carbon Ranges C6-C12	280		mg/kg	250		112	80-120			- 10
Carbon Ranges C12-C28	295		"	250		118	80-120			
Total Hydrocarbon C6-C35	575		n	500		115	80-120			
Surrogate: 1-Chlorooctane	48.0		"	50.0		96.0	70-130			

Surrogate: 1-Chlorooctadecane

89.2

70-130

50.0

44.6

0

Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/19/06 13:13

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
satch ED61011 - Solvent Extraction (GC))									·
1atrix Spike (ED61011-MS1)		rce: 6D10005	5-01	Prepared &	Analyzed:	04/10/06		·		
Carbon Ranges C6-C12	579	10.0	mg/kg dry	502	ND	115	75-125			
Carbon Ranges C12-C28	564	10.0	II .	502	28.4	107	75-125			
otal Hydrocarbon C6-C35	1140	10.0	II .	1000	28.4	111	75-125			
urrogate: 1-Chlorooctane	52.0		mg/kg	50.0		104	70-130			
urrogate: 1-Chlorooctadecane	47.3		"	50.0		94.6	70-130			
Matrix Spike Dup (ED61011-MSD1)	Sou	rce: 6D10005	5-01	Prepared: (04/10/06 A	nalyzed: 04	/11/06			
Carbon Ranges C6-C12	580	10.0	mg/kg dry	502	ND	116	75-125	0.173	20	
Carbon Ranges C12-C28	572	10.0	n	502	28.4	108	75-125	1.41	20	
otal Hydrocarbon C6-C35	1150	10.0	"	1000	28.4	112	75-125	0.873	20	
urrogate: 1-Chlorooctane	52.5		mg/kg	50.0		105	70-130			
urrogate: 1-Chlorooctadecane	46.5		"	50.0		93.0	70-130			
Blank (ED61102-BLK1)				Prepared &	Analyzed:	04/11/06				
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	11							
		0.0250								
	ND	0.0250	11							
Ethylbenzene Kylene (p/m)	ND	0.0250 0.0250	11							
Kylene (p/m) Kylene (o)		0.0250								
Kylene (p/m) Kylene (o)	ND ND 35.9	0.0250 0.0250	ug/kg	40.0		89.8	80-120			
	ND ND	0.0250 0.0250	11	40.0 40.0		89.8 82.2	80-120 80-120			
Sylene (p/m) Sylene (o) Surrogate: a,a,a-Trifluorotoluene	ND ND 35.9	0.0250 0.0250	ug/kg		. Analyzed:	82.2				
Kylene (p/m) Kylene (o) Surrogate: a,a,a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene	ND ND 35.9	0.0250 0.0250	ug/kg	40.0	z Analyzed:	82.2				
Kylene (p/m) Kylene (o) Surrogate: a,a,a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene LCS (ED61102-BS1)	ND ND 35.9 32.9	0.0250 0.0250 0.0250	ug/kg "	40.0 Prepared &	z Analyzed:	82.2 04/11/06	80-120			
Kylene (p/m) Kylene (o) Surrogate: a,a,a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene LCS (ED61102-BS1) Benzene	ND ND 35.9 32.9	0.0250 0.0250 0.0250	ug/kg " mg/kg wet	40.0 Prepared &	z Analyzed:	82.2 04/11/06 114	80-120 80-120			
Kylene (p/m) Kylene (o) Gurrogate: a,a,a-Trifluorotoluene Gurrogate: 4-Bromofluorobenzene LCS (ED61102-BS1) Benzene Coluene Gthylbenzene	ND ND 35.9 32.9	0.0250 0.0250 0.0250 0.0250 0.0250	ug/kg " mg/kg wet	40.0 Prepared & 1.25 1.25	z Analyzed:	82.2 04/11/06 114 118	80-120 80-120 80-120			
Kylene (p/m) Kylene (o) Surrogate: a,a,a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene LCS (ED61102-BS1) Benzene Foluene	ND ND 35.9 32.9 1.42 1.48 1.36	0.0250 0.0250 0.0250 0.0250 0.0250 0.0250	ug/kg " mg/kg wet "	40.0 Prepared & 1.25 1.25 1.25	z Analyzed:	82.2 04/11/06 114 118 109	80-120 80-120 80-120 80-120			
Kylene (p/m) Kylene (o) Surrogate: a,a,a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene LCS (ED61102-BS1) Benzene Foluene Sthylbenzene Kylene (p/m)	ND ND 35.9 32.9 1.42 1.48 1.36 3.00	0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250	ug/kg " mg/kg wet " "	40.0 Prepared & 1.25 1.25 1.25 2.50	z Analyzed:	82.2 04/11/06 114 118 109 120	80-120 80-120 80-120 80-120 80-120			

Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/19/06 13:13

Organics by GC - Quality Control Environmental Lab of Texas

Апаlyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED61102 - EPA 5030C (GC)										
Calibration Check (ED61102-CCV1)				Prepared &	k Analyzed:	04/11/06				
Benzene	59.5		ug/kg	50.0		119	80-120			
Toluene	60.0		II	50.0		120	80-120			
Ethylbenzene	57.7		O O	50.0		115	80-120			
Xylene (p/m)	119		**	100		119	80-120			
Xylene (o)	58.4		П	50.0		117	80-120			
Surrogate: a,a,a-Trifluorotoluene	37.5		"	40.0		93.8	80-120			
Surrogate: 4-Bromofluorobenzene	34.0		"	40.0		85.0	80-120			
Matrix Spike (ED61102-MS1)	Sou	rce: 6D10006	-11	Prepared &	k Analyzed:	04/11/06				
Benzene	1.51	0.0250	mg/kg dry	1.32	ND	114	80-120			
Toluene	1.54	0.0250	11	1.32	ND	117	80-120			
Ethylbenzene	1.52	0.0250	"	1.32	ND	115	80-120			
Xylene (p/m)	3.15	0.0250	n	2.65	ND	119	80-120			
Xylene (o)	1.58	0.0250	"	1.32	ND	120	80-120			
Surrogate: a,a,a-Trifluorotoluene	41.9	,	ug/kg	40.0		105	80-120			
Surrogate: 4-Bromofluorobenzene	38.0		"	40.0		95.0	80-120			
Matrix Spike Dup (ED61102-MSD1)	Sou	rce: 6D10006	-11	Prepared &	k Analyzed:	04/11/06				
Benzene	1.49	0.0250	mg/kg dry	1.32	ND	113	80-120	0.881	20	
Toluene	1.53	0.0250	n	1.32	ND	116	80-120	0.858	20	
Ethylbenzene	1.47	0.0250	n	1.32	ND	111	80-120	3.54	20	
Xylene (p/m)	3.14	0.0250	"	2.65	ND	118	80-120	0.844	20	
Xylene (o)	1.54	0.0250	"	1.32	ND	117	80-120	2.53	20	
Surrogate: a,a,a-Trifluorotoluene	43.2		ug/kg	40.0		108	80-120			
Surrogate: 4-Bromofluorobenzene	40.2		"	40.0		100	80-120			
Batch ED61113 - Solvent Extraction (GC)										
Blank (ED61113-BLK1)				Prepared &	Analyzed:	04/11/06				
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	**							
Carbon Ranges C28-C35	ND	10.0	tt							
Total Hydrocarbon C6-C35	ND	10.0	н							
Surrogate: 1-Chlorooctane	43.7	 -	mg/kg	50.0		87.4	70-130			
Surrogate: 1-Chlorooctadecane	45.4		"	50.0		90.8	70-130			

Environmental Lab of Texas

0

0

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/19/06 13:13

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	- Ivour	Same	Onto	20,01	TOSAIL	, vi a	2,111112	10.2		
Batch ED61113 - Solvent Extraction (GC)									· .	
LCS (ED61113-BS1)				Prepared &	k Analyzed:	04/11/06				
Carbon Ranges C6-C12	549	10.0	mg/kg wet	500		110	75-125			
Carbon Ranges C12-C28	540	10.0	"	500		108	75-125			
Total Hydrocarbon C6-C35	1090	10.0	**	1000		109	75-125			
Surrogate: 1-Chlorooctane	53.3		mg/kg	50.0		107	70-130			
Surrogate: 1-Chlorooctadecane	45.5		"	50.0		91.0	70-130			
Calibration Check (ED61113-CCV1)				Prepared:	04/11/06 A	nalyzed: 04	/12/06			
Carbon Ranges C6-C12	258		mg/kg	250		103	80-120			
Carbon Ranges C12-C28	297		"	250		119	80-120			
Total Hydrocarbon C6-C35	555		"	500		111	80-120			
Surrogate: 1-Chlorooctane	44.6		"	50.0		89.2	70-130			
Surrogate: 1-Chlorooctadecane	42.1		"	50.0		84.2	70-130			
Matrix Spike (ED61113-MS1)	Sou	rce: 6D10006	5-20	Prepared &	k Analyzed:	04/11/06				
Carbon Ranges C6-C12	600	10.0	mg/kg dry	512	ND	117	75-125			
Carbon Ranges C12-C28	589	10.0	11	512	ND	115	75-125			
Total Hydrocarbon C6-C35	1190	10.0	11	1020	ND	117	75-125			
Surrogate: 1-Chlorooctane	59.3		mg/kg	50.0		119	70-130			
Surrogate: 1-Chlorooctadecane	55.8		"	50.0		112	70-130			
Matrix Spike Dup (ED61113-MSD1)	Sour	ce: 6D10006	5-20	Prepared &	k Analyzed:	04/11/06				
Carbon Ranges C6-C12	523	10.0	mg/kg dry	512	ND	102	75-125	13.7	20	
Carbon Ranges C12-C28	594	10.0	и	512	ND	116	75-125	0.845	20	
Total Hydrocarbon C6-C35	1120	10.0	11	1020	ND	110	75-125	6.06	20	
Surrogate: 1-Chlorooctane	60.0		mg/kg	50.0		120	70-130			
Surrogate: 1-Chlorooctadecane	56.6		tr	50.0		113	70-130			

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/19/06 13:13

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch ED61114 - Solvent Extraction (GC	C)	,								
Blank (ED61114-BLK1)				Prepared: (04/11/06 A	nalyzed: 04	/12/06			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	"							
Carbon Ranges C28-C35	ND	10.0	"							
Total Hydrocarbon C6-C35	ND	10.0	Ħ							
Surrogate: 1-Chlorooctane	53.2		mg/kg	50.0		106	70-130			
Surrogate: 1-Chlorooctadecane	54.0		"	50.0		108	70-130			
LCS (ED61114-BS1)				Prepared: (04/11/06 A	nalyzed: 04	/13/06			
Carbon Ranges C6-C12	600	10.0	mg/kg wet	500		120	75-125			
Carbon Ranges C12-C28	586	10.0	**	500		117	75-125			
Total Hydrocarbon C6-C35	1190	10.0	II	1000		119	75-125			
Surrogate: 1-Chlorooctane	62.0		mg/kg	50.0		124	70-130			
Surrogate: 1-Chlorooctadecane	49.9		"	50.0		99.8	70-130			
Calibration Check (ED61114-CCV1)				Prepared: (04/11/06 A	nalyzed: 04	/12/06			
Carbon Ranges C6-C12	255		mg/kg	250		102	80-120			
Carbon Ranges C12-C28	299		**	250		120	80-120			
Total Hydrocarbon C6-C35	554		"	500		111	80-120			
Surrogate: 1-Chlorooctane	44.8		11	50.0		89.6	70-130			
Surrogate: 1-Chlorooctadecane	42.7		"	50.0		85.4	70-130			
Matrix Spike (ED61114-MS1)	Source	ce: 6D10006	5-40	Prepared: ()4/11/06 A	nalyzed: 04	/12/06			
Carbon Ranges C6-C12	559	10.0	mg/kg dry	517	ND	108	75-125			,
Carbon Ranges C12-C28	557	10.0	"	517	ND	108	75-125			
Total Hydrocarbon C6-C35	1120	10.0	n	1030	ND	109	75-125			
Surrogate: 1-Chlorooctane	60.9		mg/kg	50.0		122	70-130			
Surrogate: 1-Chlorooctadecane	<i>53.4</i>		"	50.0		107	70-130			

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/19/06 13:13

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting	** 1.	Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch ED61114 - Solvent Extraction (GC)									
Matrix Spike Dup (ED61114-MSD1)	Sou	rce: 6D1000	6-40	Prepared: (04/11/06 A	nalyzed: 04	/12/06			
Carbon Ranges C6-C12	547	10.0	mg/kg dry	517	ND	106	75-125	2.17	20	
Carbon Ranges C12-C28	539	10.0	II .	517	ND	104	75-125	3.28	20	
Total Hydrocarbon C6-C35	1090	10.0	и	1030	ND	106	75-125	2.71	20	
Surrogate: 1-Chlorooctane	59.7		mg/kg	50.0		119	70-130			
Surrogate: 1-Chlorooctadecane	52.3		"	50.0		105	70-130			
Batch ED61214 - EPA 5030C (GC)										
Blank (ED61214-BLK1)				Prepared &	Analyzed:	04/12/06				
Benzene	ND	0.0250	mg/kg wet							
Toluene .	ND	0.0250	"							
Ethylbenzene	ND	0.0250	"							
Xylene (p/m)	ND	0.0250	"							
Xylene (o)	ND	0.0250	ti.							
Surrogate: a,a,a-Trifluorotoluene	37.0		ug/kg	40.0		92.5	80-120			
Surrogate: 4-Bromofluorobenzene	33.2		"	40.0		83.0	80-120			
LCS (ED61214-BS1)				Prepared &	: Analyzed:	04/12/06				
Benzene	1.31	0.0250	mg/kg wet	1.25		105	80-120			
Toluene	1.41	0.0250	11	1.25		113	80-120			
Ethylbenzene	1.30	0.0250	n .	1.25		104	80-120			
Xylene (p/m)	3.00	0.0250	H	2.50		120	80-120			
Xylene (o)	1.50	0.0250	11	1.25		120	80-120			
Surrogate: a,a,a-Trifluorotoluene	41.1		ug/kg	40.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	37.8		"	40.0		94.5	80-120			
Calibration Check (ED61214-CCV1)				Prepared &	: Analyzed:	04/12/06				
Benzene	57.8		ug/kg	50.0		116	80-120			
Toluene	57.5		"	50.0		115	80-120			
Ethylbenzene	55.8		11	50.0		112	80-120			
Xylene (p/m)	113		II	100		113	80-120			
Xylene (o)	58.0		п	50.0		116	80-120			
Surrogate: a,a,a-Trifluorotoluene	44.2		"	40.0		110	80-120			

Surrogate: 4-Bromofluorobenzene

107

80-120

40.0

42.8

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/19/06 13:13

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch ED61214 - EPA 5	5030C ((GC)
-----------------------	---------	------

Matrix Spike (ED61214-MS1)	Sour	ce: 6D10006	-39	Prepared: 0	4/12/06 A					
Benzene	1.33	0.0250	mg/kg dry	1.27	ND	105	80-120			
Toluene	1.40	0.0250	"	1.27	ND	110	80-120			
Ethylbenzene	1.28	0.0250	"	1.27	ND	101	80-120			
Xylene (p/m)	2.97	0.0250	"	2.55	ND	116	80-120			
Xylene (o)	1.45	0.0250	"	1.27	ND	114	80-120			
Surrogate: a,a,ą-Trifluorotoluene	42.3		ug/kg	40.0		106	80-120			
Surrogate: 4-Bromofluorobenzene	36.0		"	40.0		90.0	80-120			
Matrix Spike Dup (ED61214-MSD1)	Sour	ce: 6D10006	i -3 9	Prepared: 0	4/12/06 A	nalyzed: 04	1/13/06			
Benzene	1.35	0.0250	mg/kg dry	1.27	ND	106	80-120	0.948	20	
Toluene	1.44	0.0250	"	1.27	ND	113	80-120	2.69	20	
Ethylbenzene	1.31	0.0250	"	1.27	ND	103	80-120	1.96	20	
Xylene (p/m)	3.02	0.0250	"	2.55	ND	118	80-120	1.71	20	
Xylene (o)	1.51	0.0250	H	1.27	ND	119	80-120	4.29	20	
<u> </u>			//	40.0		101	80-120			
Surrogate: a,a,a-Trifluorotoluene	40.4		ug/kg	40.0		101	00-12U			

Batch ED61215 - Solvent Extraction (GC)

Blank (ED61215-BLK1)				Prepared & Ana	lyzed: 04/12/06		
Carbon Ranges C6-C12	ND	10.0	mg/kg wet				
Carbon Ranges C12-C28	ND	10.0	H .				
Carbon Ranges C28-C35	ND	10.0	**				
Total Hydrocarbon C6-C35	ND	10.0	и				
Surrogate: 1-Chlorooctane	38.2		mg/kg	50.0	76.4	70-130	
Surrogate: 1-Chlorooctadecane	40.4		n	50.0	80.8	70-130	

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/19/06 13:13

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch ED61215 - Solvent Extraction (GC)										
LCS (ED61215-BS1)				Prepared &	k Analyzed:	04/12/06				
Carbon Ranges C6-C12	498	10.0	mg/kg wet	500		99.6	75-125			
Carbon Ranges C12-C28	498	10.0	*1	500		99.6	75-125			
Total Hydrocarbon C6-C35	996	10.0	11	1000		99.6	75-125			
Surrogate: 1-Chlorooctane	49.4		mg/kg	50.0		98.8	70-130			
Surrogate: 1-Chlorooctadecane	40.1		"	50.0		80.2	70-130			
Calibration Check (ED61215-CCV1)				Prepared: (04/12/06 A	nalyzed: 04	/13/06			
Carbon Ranges C6-C12	261		mg/kg	250		104	80-120			
Carbon Ranges C12-C28	296		"	250		118	80-120			
Total Hydrocarbon C6-C35	557		"	500		111	80-120			
Surrogate: 1-Chlorooctane	45.5		n	50.0		91.0	70-130			
Surrogate: 1-Chlorooctadecane	42.4		"	50.0		84.8	70-130			
Matrix Spike (ED61215-MS1)	Source	e: 6D10006	5-79	Prepared &	analyzed:	04/12/06				
Carbon Ranges C6-C12	486	10.0	mg/kg dry	514	ND	94.6	75-125			
Carbon Ranges C12-C28	491	10.0	Ħ	514	ND	95.5	75-125			
Total Hydrocarbon C6-C35	977	10.0	H*	1030	ND	94.9	75-125			
Surrogate: 1-Chlorooctane	54.1		mg/kg	50.0		108	70-130			
Surrogate: 1-Chlorooctadecane	45.7		"	50.0		91.4	70-130			
Matrix Spike Dup (ED61215-MSD1)	Source	e: 6D10006	5-79	Prepared &	analyzed:	04/12/06				
Carbon Ranges C6-C12	486	10.0	mg/kg dry	514	ND	94.6	75-125	0.00	20	
Carbon Ranges C12-C28	489	10.0	"	514	ND	95.1	75-125	0.408	20	
Total Hydrocarbon C6-C35	975	10.0	u	1030	ND	94.7	75-125	0.205	20	
Surrogate: 1-Chlorooctane	53.8		mg/kg	50.0		108	70-130			
Surrogate: 1-Chlorooctadecane	44.6		"	50.0		89.2	70-130			

Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/19/06 13:13

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED61216 - Solvent Extraction (GC)										
Blank (ED61216-BLK1)				Prepared: 0	04/12/06 A	nalyzed: 04	/13/06			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	"							
Carbon Ranges C28-C35	ND	10.0	"							
Total Hydrocarbon C6-C35	ND	10.0	n							
Surrogate: 1-Chlorooctane	39.7		mg/kg	50.0		79.4	70-130			
Surrogate: 1-Chlorooctadecane	41.8		"	50.0		83.6	70-130			
LCS (ED61216-BS1)				Prepared: 0	04/12/06 A	nalyzed: 04	/13/06			
Carbon Ranges C6-C12	525	10.0	mg/kg wet	500		105	75-125			
Carbon Ranges C12-C28	517	10.0	n	500		103	75-125			
Total Hydrocarbon C6-C35	1040	10.0	n	1000		104	75-125			
Surrogate: 1-Chlorooctane	52.6		mg/kg	50.0		105	70-130			
Surrogate: 1-Chlorooctadecane	42.9		"	50.0		85.8	70-130			
Calibration Check (ED61216-CCV1)				Prepared: 0	04/12/06 A	nalyzed: 04	/13/06			
Carbon Ranges C6-C12	260		mg/kg	250		104	80-120			
Carbon Ranges C12-C28	299		n	250		120	80-120			
Total Hydrocarbon C6-C35	559		u	500		112	80-120			
Surrogate: 1-Chlorooctane	46.1		"	50.0		92.2	70-130	*		
Surrogate: 1-Chlorooctadecane	43.9		"	50.0		<i>87.8</i>	70-130			
Matrix Spike (ED61216-MS1)	Sou	rce: 6D10006	5-80	Prepared: 0	04/12/06 Ai	nalyzed: 04	/13/06			
Carbon Ranges C6-C12	515	10.0	mg/kg dry	- 538	ND	95.7	75-125			
Carbon Ranges C12-C28	505	10.0	"	538	ND	93.9	75-125			
Total Hydrocarbon C6-C35	1020	10.0	"	1080	ЙD	94.4	75-125			
Surrogate: 1-Chlorooctane	54.8		mg/kg	50.0		110	70-130	••••••		
Surrogate: I-Chlorooctadecane	45.8		"	50.0		91.6	70-130			

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/19/06 13:13

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED61216 - Solvent Extraction (GC)		rce: 6D10006	. 00	Dranaradi (04/12/06 A	nolyzadi 04	/12/06			
Matrix Spike Dup (ED61216-MSD1) Carbon Ranges C6-C12	50 u	10.0	mg/kg dry	538	ND	93.9	75-125	1.96	20	
-	505	10.0	mg/kg dry	538	ND	93.9	75-125 75-125	0.00	20	
Carbon Ranges C12-C28	1010	10.0	"	1080	ND	93.9	75-125 75-125	0.985	20	
Total Hydrocarbon C6-C35		10.0			ND			0.963		
Surrogate: 1-Chlorooctane	53.5		mg/kg "	50.0		107	70-130			
Surrogate: 1-Chlorooctadecane	43.9		"	50.0		87.8	70-130			
Batch ED61307 - EPA 5030C (GC)										
Blank (ED61307-BLK1)				Prepared &	Analyzed:	04/13/06				
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	11							
Ethylbenzene	ND	0.0250	**							
Xylene (p/m)	ND	0.0250	11							
Xylene (o)	ND	0.0250	11							
Surrogate: a,a,a-Trifluorotoluene	38.2		ug/kg	40.0		95.5	80-120			
Surrogate: 4-Bromofluorobenzene	34.3		"	40.0		85.8	80-120			
LCS (ED61307-BS1)				Prepared &	k Analyzed:	04/13/06				
Benzene	1.29	0.0250	mg/kg wet	1.25		103	80-120	-		
Toluene	1.38	0.0250	**	1.25		110	80-120			
Ethylbenzene	1.34	0.0250	11	1.25		107	80-120			
Xylene (p/m)	2.98	0.0250	11	2.50		119	80-120			
Xylene (o)	1.47	0.0250	"	1.25		118	80-120			
Surrogate: a,a,a-Trìfluorotoluene	39.8	• .	ug/kg	40.0		99.5	80-120			
Surrogate: 4-Bromofluorobenzene	38.6		"	40.0		96.5	80-120			
Calibration Check (ED61307-CCV1)				Prepared: (04/13/06 A	nalyzed: 04	/14/06			
Benzene	53.0		ug/kg	50.0		106	80-120			
Гоічепе	53.3		tt	50.0		107	80-120			
Ethylbenzene	52.4		n	50.0		105	80-120			
Xylene (p/m)	107		n	100		107	80-120			
Xylene (o)	55.2		п	50.0		110	80-120			
Surrogate: a,a,a-Trifluorotoluene	38.0		n	40.0		95.0	80-120			

Surrogate: 4-Bromofluorobenzene

101

80-120

40.0

40.3

Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/19/06 13:13

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	ED61307 -	FPA	50300	(CC)	

Matrix Spike (ED61307-MS1)	Sour	ce: 6D10006-	-37	Prepared: 0	4/13/06 A	nalyzed: 04	4/14/06			
Benzene	1.45	0.0250	mg/kg dry	1.39	ND	104	80-120			
Toluene	1.52	0.0250	11	1.39	ND	109	80-120			
Ethylbenzene	1.39	0.0250	44	1.39	ND	100	80-120			
Xylene (p/m)	3.21	0.0250	11	2.78	ND	115	80-120			
Xylene (o)	1.57	0.0250	н	1.39	ND	113	80-120			
Surrogate: a,a,a-Trifluorotoluene	40.5		ug/kg	40.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	35.1		"	40.0		87.8	80-120			
Matrix Spike Dup (ED61307-MSD1)	Sour	ce: 6D10006-	-37	Prepared: 0	4/13/06 A	nalyzed: 04	1 /14/06			
Benzene	1.43	0.0250	mg/kg dry	1.39	ND	103	80-120	0.966	20	
Гoluene	1.52	0.0250	n	1.39	ND	109	80-120	0.00	20	
Ethylbenzene	1.34	0.0250	n	1.39	ND	96.4	80-120	3.67	20	
Xylene (p/m)	3.24	0.0250	u	2.78	ND	117	80-120	1.72	20	
Xylene (o)	1.56	0.0250	"	1.39	ND	112	80-120	0.889	20	
Surrogate: a,a,a-Trifluorotoluene	41.8		ug/kg	40.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	36.5		"	40.0		91.2	80-120			

Batch ED61406 - EPA 5030C (GC)

Blank (ED61406-BLK1)		Prepared: 04/13/06 Analyzed: 04/14/06								
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	"							
Ethylbenzene	ND	0.0250	n							
Xylene (p/m)	ND	0.0250	"							
Xylene (o)	ND	0.0250	"							
Surrogate: a,a,a-Trifluorotoluene	36.9		ug/kg	40.0	92.2	80-120				
Surrogate: 4-Bromofluorobenzene	33.2		"	40.0	83.0	80-120				

Project: Frisco Skelly Project Number: 2004-00196 Project Manager: Camille Reynolds

ND

ND

ND

ND

ND

1.31

1.31

2.63

1.31

40.0

40.0

102

104

99.2

111

110

103

96.0

80-120

80-120

80-120

80-120

80-120

80-120

80-120

5.85

0.966

0.803

0.00

0.905

20

20

20

20

20

Fax: (432) 687-4914 Reported:

04/19/06 13:13

Organics by GC - Quality Control **Environmental Lab of Texas**

1.33

1.36

1.30

2.93

1.44

41.2

38.4

0.0250

0.0250

0.0250

0.0250

0.0250

mg/kg dry

ug/kg

·		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch ED61406 - EPA 5030C (GC)										
LCS (ED61406-BS1)				Prepared: (04/13/06 Ai	nalyzed: 04	/14/06			
Benzene	1.27	0.0250	mg/kg wet	1.25		102	80-120			.,
Toluene	1.38	0.0250	ij	1.25		110	80-120			
Ethylbenzene	1.34	0.0250	н	1.25		107	80-120			
Xylene (p/m)	2.96	0.0250	11	2.50		118	80-120			
Xylene (o)	1.49	0.0250	11	1.25		119	80-120			
Surrogate: a,a,a-Trifluorotoluene	40.3		ug/kg	40.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	38.9		"	40.0		97.2	80-120			
Calibration Check (ED61406-CCV1)				Prepared: (04/13/06 Ai	nalyzed: 04	/17/06			
Benzene	45.4		ug/kg	50.0		90.8	80-120			
Toluene	44.2		"	50.0		88.4	80-120			
Ethylbenzene	48.7		**	50.0		97.4	80-120			
Xylene (p/m)	98.3		**	100		98.3	80-120			
Xylene (o)	50.9		"	50.0		102	80-120			
Surrogate: a,a,a-Trifluorotoluene	32.8		"	40.0		82.0	80-120		,	
Surrogate: 4-Bromofluorobenzene	37.6		"	40.0		94.0	80-120			
Matrix Spike (ED61406-MS1)	Sou	rce: 6D10006	5-53	Prepared: ()4/13/06 Ai	nalyzed: 04	/14/06			
Benzene	1.26	0.0250	mg/kg dry	1.31	ND	96.2	80-120			
Toluene	1.35	0.0250	"	1.31	ND	103	80-120			
Ethylbenzene	1.31	0.0250	"	1.31	ND	100	80-120			
Xylene (p/m)	2.93	0.0250	n	2.63	ND	111	80-120			
Xylene (o)	1.46	0.0250	"	1.31	ND	111	80-120			
Surrogate: a,a,a-Trifluorotoluene	37.7	· · · · · · · · · · · · · · · · · · ·	ug/kg	40.0		94.2	80-120			
Surrogate: 4-Bromofluorobenzene	36.0		"	40.0		90.0	80-120			
Matrix Spike Dup (ED61406-MSD1)	Sou	rce: 6D10006	5-53	Prepared: ()4/13/06 Aı	nalyzed: 04	/14/06			

Environmental Lab of Texas

Toluene

Ethylbenzene

Xylene (p/m)

Surrogate: a,a,a-Trifluorotoluene

Surrogate: 4-Bromofluorobenzene

Xylene (o)

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 57 of 61

Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/19/06 13:13

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Anaye	izeani	CHIII	Omts	Level	Kesuit	/UKLC	Linns	KI D	Limit	110163
Batch ED61701 - EPA 5030C (GC)										
Blank (ED61701-BLK1)				Prepared &	Analyzed:	04/17/06				
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	11							
Ethylbenzene	ND	0.0250	11							
Xylene (p/m)	ND	0.0250	"				,			
Xylene (o)	ND	0.0250	"							
Surrogate: a,a,a-Trifluorotoluene	34.3		ug/kg	40.0		85.8	80-120			
Surrogate: 4-Bromofluorobenzene	39.5		"	40.0		98.8	80-120			
LCS (ED61701-BS1)				Prepared &	Analyzed:	04/17/06				
Benzene	1.17	0.0250	mg/kg wet	1.25		93.6	80-120			
Toluene	1.17	0.0250	"	1.25		93.6	80-120			
Ethylbenzene	1.28	0.0250	"	1.25		102	80-120			
Xylene (p/m)	2.92	0.0250	"	2.50		117	80-120			
Xylene (o)	1.47	0.0250	9	1.25		118	80-120			
Surrogate: a,a,a-Trifluorotoluene	34.2		ug/kg	40.0		85.5	80-120			
Surrogate: 4-Bromofluorobenzene	44.5		"	40.0		111	80-120			
Calibration Check (ED61701-CCV1)				Prepared &	Analyzed:	04/17/06				
Benzene	55.6		ug/kg	50.0		111	80-120			
Toluene	55.3		"	50.0		111	80-120			
Ethylbenzene	59.3		n	50.0		119	80-120			
Xylene (p/m)	120		H	100		120	80-120			
Xylene (o)	57.8		0	50.0		116	80-120			
Surrogate: a,a,a-Trifluorotoluene	37.2		"	40.0		93.0	80-120			
Surrogate: 4-Bromofluorobenzene	40.6		"	40.0		102	80-120			
Matrix Spike (ED61701-MS1)	Sour	rce: 6D10006	5-73	Prepared &	Analyzed:	04/17/06				
Benzene	1.26	0.0250	mg/kg dry	1.28	ND	98.4	80-120			
Toluene	1.32	0.0250	**	1.28	ND	103	80-120			
Ethylbenzene	1.39	0.0250	"	1.28	ND	109	80-120			
Xylene (p/m)	3.04	0.0250	**	2.55	ND	119	80-120			
Xylene (o)	1.47	0.0250	n	1.28	ND	115	80-120			
Surrogate: a,a,a-Trifluorotoluene	37.7		ug/kg	40.0		94.2	80-120			
Surrogate: 4-Bromofluorobenzene	38.8		"	40.0		97.0	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 58 of 61

Project: Frisco Skelly
Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/19/06 13:13

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike Dup (ED61701-MSD1)	Sour	Source: 6D10006-73			Analyzed:	04/17/06			
Benzene	1.30	0.0250	mg/kg dry	1.28	ND	102	80-120	3.59	20
Toluene	1.36	0.0250	11	1.28	ND	106	80-120	2.87	20
Ethylbenzene	1.44	0.0250	11	1.28	ND	112	80-120	2.71	20
Xylene (p/m)	3.04	0.0250	**	2.55	ND	119	80-120	0.00	20
Xylene (o)	1.50	0.0250	"	1.28	ND	117	80-120	1.72	20
Surrogate: a,a,a-Trifluorotoluene	37.8		ug/kg	40.0		94.5	80-120		
Surrogate: 4-Bromofluorobenzene	41.0		"	40.0		102	80-120		

0

Project Number: 2004-00196
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported: 04/19/06 13:13

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED61104 - General Preparation (Prep)							· · · · · · · · · · · · · · · · · · ·			
Blank (ED61104-BLK1)				Prepared: 0	04/10/06 A	nalyzed: 04	/11/06			
% Solids	100	1 - 1 - 2 - 2 - 12	%							
Duplicate (ED61104-DUP1)	Sou	rce: 6D10006-	01	Prepared: 0	04/10/06 A	nalyzed: 04	/11/06			
% Solids	98.0		%		98.9			0.914	20	
Duplicate (ED61104-DUP2)	Sou	rce: 6D10006-	21	Prepared: 0	04/10/06 A	nalyzed: 04	/11/06			
% Solids	95.5		%		95.7			0.209	20	
Duplicate (ED61104-DUP3)	Sou	rce: 6D10006-	41	Prepared: 0	04/10/06 A	nalyzed: 04	/11/06			
% Solids	96.5		%		96.3			0.207	20	
Duplicate (ED61104-DUP4)	Sou	rce: 6D10006-	61	Prepared: 0	04/10/06 A	nalyzed: 04	/11/06			
% Solids	91.5		%		91.7			0.218	20	
Duplicate (ED61104-DUP5)	Sou	rce: 6D10006-	81	Prepared: 0	04/10/06 A	nalyzed: 04	/11/06			
% Solids	93.1		%		93.6			0.536	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 60 of 61

 Plains All American EH & S
 Project: Frisco Skelly
 Fax: (432) 687-4914

 1301 S. County Road 1150
 Project Number: 2004-00196
 Reported:

 Midland TX, 79706-4476
 Project Manager: Camille Reynolds
 04/19/06 13:13

Notes and Definitions

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

MS Matrix Spike

LCS

Laboratory Control Spike

Dup Duplicate

Cily D. Keine

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director La Tasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

0 Temperature Upon Receipt: 3, S.C. w / Jakel street TAT brisbnist2 Stuberta2-erg) TAT H2UF PO#. PAAI C. REYNOLDS CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Project #. FMS: 2004-00196 Project Loc: LER COUNTY NI Project Name: FRIS'CO - S'KELLY otal Gamma M.A.O.M. JQŁ Sample Containers Intact aboratory Comments: BTEX 8021B/5030 va và Ba Ca Cubp Ha 26 TCLP: TOTAL: Anione (Ci, SO4, CO3, HCO3) Mg, Na, K) 930 1303 Time, Time 2001 (M2108 TPH: 418. Office (specify): 4-10-01-Sludge 1916VV Other (Specify) Fax No: (505)396-1429 *OS²H HOGN ЮН HNO3 morn 150年20月 No. of Containers 14200 1336 1326 1331 Ø824 8829 1001 1007 **6833** 0912 Time Sampled Received by ELO 1HAR 30 MAR Received by: Environmental Lab of Texas I, Ltd 2006 Date Sampled City/State/Zip: LOYING TON NIT 1826 B 1363 641/24 6936 Company Name BASIN ENV. SYCS Time Phone: 915-563-1800 Fax: 915-563-1713 Company Address: P. O. Box 301 Telephone No: (505) 441- 2524 Durred Date FIELD CODE 19 Project Manager: KEN S.B- 5 SB: 58-Sampler Signature: 12600 West I-20 East Odessa, Texas 79763 Special Instructions: inquished

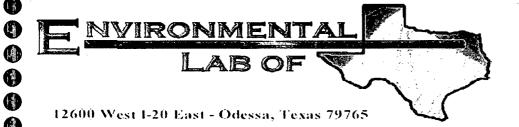
0 Sch. 6 1500 C 0 TAT basbnst2 3,5°C Witchels + sea eluberta&-eng) TAT H2UR Project #: FMS'. 2004-00196 PO# PAMIC, REYNOLDS CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Project Name: FRISCO - SKELLY ബേന്ദല പ്രാ M.A.O.M Project Lac: LEA COUNTY Temperature Upon Receipt: Laboratory Comments: 3CI Sample Containers Intact Analyze For BTEX 8021B/5030 SSIII GIOAILLIS letals: As Ag Ba Cd Cr Pb Hg Se TOTAL: Anions (CI, SO4, CO3, HCO3) Sations (Ca. Mg, Na. K) 930 Time Time 1303 PH: 418,1 (8015M) 1005 Other (specify): 04-10-06 lios gingge 1915V Other (Specify) Fax No: (505/396-1429 BUON OS2H HOBN ЮН monning ONH eol Environmental Lab of Texas I, Ltd. 536 BZOH No. of Containers 1127 1210 1357 4441 1012 1353 1643 1123 1348 Time Sampled Received by ELO 31 MAR K3 APR 3000 Received by: Date Sampled City/State/Zip: LOVINGTON, NM 88264 Ø330 Company Name BASIN ENV. SYCS Time Fax: 915-563-1713 Phone: 915-563-1800 Company Address: P. D. BOX 3 BL Telephone No: (505) 441-2424 DUTTON OAPK 06 Date FIELD CODE KEN A) 5.8-6 SB-2 58-3 58-6 5.6.6 Project Manager: \$8-, Sampler Signature: S2 S2 12600 West I-20 East Odessa, Texas 79763 Special Instructions: AB # (lab use only)

0 Temperature Upon Receipt: 35°C w//aby15+5cel 0 TAT brebnet2 Project #: 6-115, 2004- 00196 eluberto&-enq) TAT H&UA Project Name: FRISPO-SNEZLY CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST otal Gamma COUNTY LO.R.M. BCI Sample Containers Intact? Analyze Fo BTEX 80218/5030 Sambidyimes Project Loc: LEM Metala: As Ag Ba Cd Cr Pb Hg Se TCLP: FOTAL Anions (Ct. SO4, CO3, HCO3) Cations (Ca, Mg, Na, K) S Time me (363) Met08 Other (specify): llos 少つ-07-70 Studge Water Other (Specify) Mone †OS^tH 0 HOBM Ō HCI HNO3 0 M. Chouse Fax No: (505) **90**| (20) 250H No. of Containers 1507 501 1436 1050 1054 1466 1456 180 1100 6442 Time Sampled Received by ELOT Received by: Environmental Lab of Texas I, Ltd. 2000 Ø3APK Date Sampled ENV. SYCS BOX 381 X Ø930 1302 Time Phone: 915-563-1800 Fax: 915-563-1713 V) WITON APRO6 City/State/Zip: LOVINETON Date FIELD CODE Telephone No: 565)441 Company Name BASIN Ð 8 Ù KEN Ø Q 3 Company Address: Project Manager: Sampler Signature: 3 12600 West I-20 East Odessa, Texas 79763 Special Instructions AB # (lab use only) Relinquished

Temperature Upon Receipt: 3,5 C W/ Raw 1s+5 % TAT brebnet8 Yes 0-1000 Project #: LMS. 2004- \$0 196 alubario2-ang) TAT H2UR 0000000000 CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST FRISCO-SKEZL ബേന്ദല് (ജെന്നമ A.O.R.M. 3CI Sample Containers Intact Analyze Fo BTEX 80218/5030 SOMEONIMO Netals: As Ag Ba Cd Cr Pb Hg Se TCLP: AR / ESP / CEC Project Lac: 🗶 TOTAL Project Name: Jujous (Cl. 804, CO3, HCO3) Cations (Ca, Mg, Na, K) 1303 īme 8015M 1005 0 Original (specify): lio2 20-01-10 **0** gingåe Water Office (Specify) • auoN 396-H⁵2O⁴ HOBN 0 HOL EONH **BO**Í 0 Ste 12-50/ No. of Containers 1100 232 9769 1230 4000 6923 LEG1 ゆきから Time Sampled KNV SVES \$3APP 44DP 2006 Received by: Environmental Lab of Texas I, Ltd Date Sampled BOX BOY DUTTON Ø938 Time Phone: 915-563-1800 Fax: 915-563-1713 OVINGTON BAPRAL Date FIELD CODE Z 87 RI (V) 6 83-9 5/3-9 5.6-Telephone No: City/State/Zip: Project Manager: Company Name Company Address: Sampler Signature: 12600 West i-20 East Odessa, Texas 79763 Special Instructions:

0 3,5 C w/ labels + seek TAT brebnet8 SUSH TAT (Pre-Schedule Project #: FMS, 2084, 04196 COUNT YNA 0 Project Name: FRISW-SWIU CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST • മന്നനമെ (ജിം M.A.O.N Temperature Upon Receipt: Sample Containers Intact Analyze For B1EX 8051B/2030 Project Loc: AEP Metala: As Ag Ba Cd Ct Pb Hg Se TCLP TOTAL PO # Anions (Cl. SO4, CO3, HCO3) Cations (Ca, Mg, Na, K) 1363 8015M 1005 1006 1.811-H9T goor ho Studge 18\$8V 0 Other (Specify) 0 anoM [‡]OS²H HOSN HCI FONH money No. of Containers کروری یا ادام \$937 1256 1022 4029 4044 1253 1025 1039 1037 4071 Time Sampled Received by ELOT \$4APP Q Received by: 200 Environmental Lab of Texas I, Ltd Date Sampled 49.3% Tine Phone: 915-563-1800 Fax: 915-563-1713 イング City/State/Zip: LOVINGTON APROL Date 40 FIELD CODE B 22 30 7 Company Address: \$30° Project Manager: Company Name Telephone No: Sampler Signature: 8/8 12600 West I-20 East Odessa, Texas 79763 Special Instructions

Temperature Upon Receipt: 3,5 C w//abeig +5 cars See so cas TAT brabnet2 Project # 115' 2004-00116 elubana2-arq) TAT HSU9 Project Name: FRESCO - SILEZ. CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST emmað lato M.A.O.I Sample Containers Intact? BTEX 8021B/5030 Analyze Project Loc: LEM Netals: As Ag Ba Cd Ct Pb Hg Se TOTAL: SAR / ESP / CEC # Od Julons (CI, SO4, CO3, HCO3) Mg, Na, K) 1303 8015M) 1005 1006 Orizer (specify): lios 92-01-60 aBpniS FAXNO: (505) 396-1429 Water Other (Specify) auoN OSEH HOEN ЮН [‡]QNH No. of Containers 1413 MEAPR 0855 1322 1333 1349 1402 1306 312 1316 1339 Time Sampled 88260 5.00 S 84 APR 2906 Received by: Environmental Lab of Texas I, Ltd. Date Sampled 1111 Ø930 Time ENV Phone: 915-563-1800 Fax: 915-563-1713 CONTNETON Date Date Date FIELD CODE 75, , S 1,0 1,0 0 30 Ø MW-HW-HW-11W-HW-City/State/Zip: Company Name_ Company Address: Telephone No: (Project Manager Sampler Signature: MW 12600 West I-20 East Odessa, Texas 79763 Special Instructions: AB # (lab use only)


•

3,5°C W/Walstscare TAT basbost2 PAHI C. REY NOLUS Seal occabi alubado2-en9) TAT HSU9 Project # EMS, 2804-0196 Project Name: FRISCO- S/1671 Y CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Project Loc. LEA COUNTY emmeð lejo M.A.O. Temperature Upon Receipt: Laboratory Comments: Sample Containers Intact? 81TEX 8021B/5030 Analyze samelo/ Netals: As Ag Ba Cd Ct Pb Hg Se PO#: 72. SAR / ESP / CEC SO4, CO3, HCO3) 130 3 Mg, Na, K) Ime 8015M 1005 Ogrer (specify): lios 4-10-06 Sindge Maler Olher (Specify) auon 'OS'H HOSN нсі Leave moment ^EONH Fax No: DE SY 50h No. of Containers 4277 1524 1505 508 1513 518 1534 210 1501 1444 Time Sampled City/State/ZIP: LOVINGTON NM 88260 Received by ELO GG APR 2006 Received by: Environmental Lab of Texas I, Ltd Date Sampled Company Name 13A SIN LWV SVCS 293B Time Phone: 915-563-1800 Fax: 915-563-1713 Telephone No: (505) 441-2124 Company Address: P. O. BOX 381 1977606 Date FIELD CODE 2001 30 ra ra ない In MW-3 MW-3 MA. 3 MM-MA 741-Project Manager: Sampler Signature: 12600 West I-20 East Odessa, Texas 79763 Special Instructions LAB # (lab use only) Relinquished by Relinquished by

35C W/ lakes + See! TAT brabnat8 elubedə은-하역) TAT H&U? C. REYMOL) Project #: 1775, 2004-04196 CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Project Name: FRIX'0 - SKELY COUNTY Emmao tetoT M.A.O.M. Temperature Upon Receipt: 301 Sample Containers Intact? aboratory Comments: BTEX 8021B/6030 Analyze Project Loc: LEA yetsia: Ye Yê Be Cq Ct bp H<mark>ê Se</mark> TOTAL 2AR / E8P / CEC 8 # Anions (Cl. SO4, CO3, HCO3) Cations (Ca. Mg. Na. K) 1303 8015M 1005 1.814 (HQ1 Other (specify): lios 4-10-01-4 appriis YVater Other (Specify) BUON tOS²H HOEN HCI - saine mining ²ONH Fax No: (505 (CB 524/5/204 No. of Containers 1542 DOLTHOTON NM 88260 Time Sampled Received by ELO G6 HPR 2006 Received by: Environmental Lab of Texas I, Ltd. BASIN FAN. SVOS Date Sampled FCIC-IM P.O. 130X 341 Ø93Ø Time Phone: 915-563-1800 Fax: 915-563-1713 OA DIEGE Date FIELD CODE 9 Telephone No: (5 Ø57) Project Manager: 16EN M Company Address: Company Name City/State/Zip: Sampler Signature: 12600 West I-20 East Odessa, Texas 79763 Special Instructions: AB # (lab use only)

Environmental Lab of Texas Variance / Corrective Action Report — Sample Log-In

- 0	•			
Plains Bosch				
A 1 C - 0 -	•			
Time: 41000				
4 10001000				
#: <u>\QD\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>				
s:				
		_ 4		
Sample Receip				
erature of container/cooler? ing container/cooler in good condition?	Yes	No I	35_	
ng container/cooler in good condition?		No	Not prese	at
dy Seals intact on shipping container/cooler?		No	·	
ly Seals intaction sample cottles?		No	Not prese	1
of custody present?	E 5	No		
e Instructions complete on Chain of Custody?		No		1
of Custody signed when relinquished and received?	Y(ES)	No		<u></u> j
of custody agrees with sample label(s)	(ES)			
ner labels legible and intact?	Yes	No		
e Matrix and properties same as on chain of custody? les in proper container/bottle?	<u> Yes</u>	No		
es in proper container/cottle?	Yes	No.		
es properly preserved? le bottles intact? rvations documented on Chain of Custody?	Yes)	No_		
e pottles intact?		No	<u> </u>	!
vations documented on Chain of Custody?	1/63	l No	<u> </u>	
ners documented on Chain of Custody? ent sample amount for indicated test?		l No		 !
ent sample amount for indicated test?		No_	 	
nples received within sufficient hold time? amples have zero headspace?	YES	No No	Not Applic	
r observations:				
Variance Doc	umentatio	on:		
itact Person: Date/Time:			Contacted	by:
erding:		,		- J ·
	•			
			<u> </u>	
				·
ctive Action Taken:				
				-
	· · · · · · · · · · · · · · · · · · ·			
				

Analytical Report

Prepared for:

Ken Dutton

Basin Environmental Services

P.O. Box 301

Lovington, NM 88260

Project: Friscoe Skelly #1
Project Number: EMS: 2004-00196

Location: Lea County, NM

Lab Order Number: 4K12006

Report Date: 11/22/04

P.O. Box 301

Lovington NM, 88260

0

Project: Friscoe Skelly #1

Fax: (505) 396-1429

Project Number: EMS: 2004-00196

Project Manager: Ken Dutton

Reported: 11/22/04 08:02

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
South Wall @ 12'	4K12006-01	Soil	11/11/04 15:45	11/12/04 12:45
North Wall @ 15.5'	4K12006-02	Soil	11/11/04 15:45	11/12/04 12:45
East Wall @ 12'	4K12006-03	Soil	11/11/04 15:45	11/12/04 12:45
West Wall @ 12'	4K12006-04	Soil	11/11/04 15:45	11/12/04 12:45

P.O. Box 301 Lovington NM, 88260 Project: Friscoe Skelly #1

Project Number: EMS: 2004-00196 Project Manager: Ken Dutton Fax: (505) 396-1429

Reported:
11/22/04 08:02

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Dranarad	Anolyzad	Method	Mata
South Wall @ 12' (4K12006-01) Soil	resuit	Lum	Oidto	Dilution	Daten	Prepared	Analyzed	Memod	Note
Benzene	ND	0.0250	mg/kg dry	25	EK41813	11/12/04	11/15/04	EPA 8021B	
Toluene	ND	0.0250	" .	"	"	"	"	н	
Ethylbenzene	ND	0.0250	n	"	٠ ,,	"	n	11	
Xylene (p/m)	ND	0.0250	11	"	"	"	"	n	
Xylene (o)	ND	0.0250	n	"	n	и	n	11	
Surrogate: a,a,a-Trifluorotoluene		86.9 %	80-1	20	"	"	п	n	
Surrogate: 4-Bromofluorobenzene		106 %	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EK41204	11/12/04	11/12/04	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	п	"	"	**	11	**	
Total Hydrocarbon C6-C35	ND	10.0	н	II.	11	**	"	n	
Surrogate: 1-Chlorooctane	1 1011 1000 100 10 1000	108 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		124 %	70-1	30	"	"	"	"	
North Wall @ 15.5' (4K12006-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EK41813	11/12/04	11/18/04	EPA 8021B	
Toluene	ND	0.0250	11	•	я	**	n	11	
Ethylbenzene	ND	0.0250	11	u	11	u	πt	**	
Xylene (p/m)	ND	0.0250	11	н	11	11	**	11	
Xylene (o)	ND	0.0250	"	**	н	II	n	11	
Surrogate: a,a,a-Trifluorotoluene		91.0 %	80-1	20	n	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.6%	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EK41204	11/12/04	11/12/04	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	"	**	n	11	u	"	
Total Hydrocarbon C6-C35	ND	10.0	11	"	"	"	и	11	
Surrogate: 1-Chlorooctane		111 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		129 %	70-1	30	"	"	"	n	
East Wall @ 12' (4K12006-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EK41813	11/12/04	11/15/04	EPA 8021B	
Toluene	ND	0.0250	"	"	**	n	н	**	
Ethylbenzene	ND	0.0250	. 11	11	u	"	n	**	
Xylene (p/m)	ND	0.0250	**	Ħ	**	u	п	11	
Xylene (o)	ND	0.0250	**	11	11	н	n	11	
Surrogate: a,a,a-Trifluorotoluene		94.8 %	80-1	20	н	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	80-1	20	u	"	"	n	
Gasoline Range Organics C6-C12	16.5	10.0	mg/kg dry	1	EK41204	11/12/04	11/12/04	EPA 8015M	
Diesel Range Organics >C12-C35	72.7	10.0	11	"	31	Ħ	"	**	
Total Hydrocarbon C6-C35	89.2	10.0	**	n	я	II .	n	H	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

P.O. Box 301 Lovington NM, 88260 Project: Friscoe Skelly #1

Project Number: EMS: 2004-00196

Project Manager: Ken Dutton

Fax: (505) 396-1429

Reported: 11/22/04 08:02

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
East Wall @ 12' (4K12006-03) Soil									
Surrogate: 1-Chlorooctane		102 %	70-1	30	EK41204	11/12/04	11/12/04	EPA 8015M	
Surrogate: 1-Chlorooctadecane		117 %	70-1	30	"	"	n	"	
West Wall @ 12' (4K12006-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EK41813	11/12/04	11/15/04	EPA 8021B	
Toluene	ND	0.0250	"	**	п	n	**	19	
Ethylbenzene	ND	0.0250	n	11	n	II.	u u	11	
Xylene (p/m)	ND	0.0250	"	Ħ	н	**	tt	"	
Xylene (o)	ND	0.0250	"	**	н	0	II	11	
Surrogate: a,a,a-Trifluorotoluene		92.6 %	80-1	20	"	"	"	,,	
Surrogate: 4-Bromofluorobenzene		103 %	80-1.	20	n	"	"	н	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EK41507	11/12/04	11/12/04	EPA 8015M	
Diesel Range Organics >C12-C35	55.1	10.0	"	"	n	н	"	п	
Total Hydrocarbon C6-C35	55.1	10.0	tr	**	"	n	11	n	
Surrogate: 1-Chlorooctane		89.6 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		99.2 %	70-1	30	"	n	"	"	

Basin Environmental Services P.O. Box 301 Project: Friscoe Skelly #1
Project Number: EMS: 2004-00196

Reported: 11/22/04 08:02

Fax: (505) 396-1429

Lovington NM, 88260

Project Manager: Ken Dutton

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
South Wall @ 12' (4K12006-01) Soil									
% Moisture	14.0		%	1	EK41504	11/12/04	11/15/04	% calculation	
North Wall @ 15.5' (4K12006-02) Soil									
% Moisture	15.0		%	1	EK41504	11/12/04	11/15/04	% calculation	
East Wall @ 12' (4K12006-03) Soil									
% Moisture	14.0		%	1	EK41504	11/12/04	11/15/04	% calculation	
West Wall @ 12' (4K12006-04) Soil									
% Moisture	15.0		%	1	EK41504	11/12/04	11/15/04	% calculation	

Basin Environmental Services P.O. Box 301

Project: Friscoe Skelly #1
Project Number: EMS: 2004-00196

Fax: (505) 396-1429

01

Project Manager: Ken Dutton

Reported: 11/22/04 08:02

Lovington NM, 88260

Analyse	Dogule	Reporting	I Inito	Spike	Source	9/DEC	%REC	n no	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EK41204 - Solvent Extraction (GC)										
Blank (EK41204-BLK1)				Prepared &	k Analyzed:	11/12/04				
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	10.0	"							
Total Hydrocarbon C6-C35	ND	10.0	"							
Surrogate: 1-Chlorooctane	43.2		mg/kg	50.0		86.4	70-130			
Surrogate: 1-Chlorooctadecane	49.4		"	50.0		98.8	70-130			
LCS (EK41204-BS1)				Prepared &	k Analyzed:	11/12/04				
Gasoline Range Organics C6-C12	452	10.0	mg/kg wet	500		90.4	75-125			
Diesel Range Organics >C12-C35	518	10.0	11	500		104	75-125			
Total Hydrocarbon C6-C35	970	10.0	11	1000		97.0	75-125			
Surrogate: 1-Chlorooctane	51.2		mg/kg	50.0		102	70-130			
Surrogate: 1-Chlorooctadecane	50.8		n	50.0		102	70-130			
Calibration Check (EK41204-CCV1)				Prepared &	k Analyzed:	11/12/04				
Gasoline Range Organics C6-C12	518		mg/kg	500		104	80-120			
Diesel Range Organics >C12-C35	571		n	500		114	80-120			
Total Hydrocarbon C6-C35	1090		н	1000		109	80-120			
Surrogate: 1-Chlorooctane	58.7		"	50.0		117	70-130			
Surrogate: 1-Chlorooctadecane	64.9		"	50.0		130	70-130			
Matrix Spike (EK41204-MS1)	Sou	ırce: 4K11014	4-06	Prepared &	k Analyzed:	11/12/04				
Gasoline Range Organics C6-C12	647	10.0	mg/kg dry	633	ND	102	75-125			
Diesel Range Organics >C12-C35	725	10.0	**	633	50.8	107	75-125			
Total Hydrocarbon C6-C35	1370	10.0	"	1270	50.8	104	75-125			
Surrogate: 1-Chlorooctane	54.0		mg/kg	50.0		108	70-130			
Surrogate: 1-Chlorooctadecane	55.3		"	50.0		111	70-130			
Matrix Spike Dup (EK41204-MSD1)	Sou	ırce: 4K11014	4-06	Prepared &	Analyzed:	11/12/04				
Gasoline Range Organics C6-C12	666	10.0	mg/kg dry	633	ND	105	75-125	2.89	20	
Diesel Range Organics >C12-C35	734	10.0	**	633	50.8	108	75-125	1.23	20	
Total Hydrocarbon C6-C35	1400	10.0	U	1270	50.8	106	75-125	2.17	20	
Surrogate: 1-Chlorooctane	54.1		mg/kg	50.0	······································	108	70-130			
Surrogate: 1-Chlorooctadecane	56.1		"	50.0		112	70-130			

P.O. Box 301 Lovington NM, 88260 Project: Friscoe Skelly #1

Project Number: EMS: 2004-00196

Project Manager: Ken Dutton

Fax: (505) 396-1429

Reported: 11/22/04 08:02

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EK41507 - Solvent Extraction (GC)										
Blank (EK41507-BLK1)				Prepared &	analyzed:	11/15/04				
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	10.0	n							
Total Hydrocarbon C6-C35	ND	10.0	TT.							
Surrogate: 1-Chlorooctane	35.3		mg/kg	50.0		70.6	70-130			
Surrogate: 1-Chlorooctadecane	40.2		"	50.0		80.4	70-130			
Blank (EK41507-BLK2)				Prepared: 1	11/15/04 A	nalyzed: 11	/16/04			
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	10.0	н							
Total Hydrocarbon C6-C35	ND	10.0	11							
Surrogate: 1-Chlorooctane	35.7		mg/kg	50.0		71.4	70-130			
Surrogate: 1-Chlorooctadecane	40.8		"	50.0		81.6	70-130			
LCS (EK41507-BS1)				Prepared &	Analyzed:	11/15/04				
Gasoline Range Organics C6-C12	427	10.0	mg/kg wet	500		85.4	75-125			
Diesel Range Organics >C12-C35	592	10.0	11	500		118	75-125			
Total Hydrocarbon C6-C35	1020	10.0	"	1000		102	75-125			
Surrogate: 1-Chlorooctane	45.1		mg/kg	50.0		90.2	70-130			
Surrogate: 1-Chlorooctadecane	41.1		"	50.0		82.2	70-130			
LCS (EK41507-BS2)				Prepared: 1	11/15/04 A	nalyzed: 11	/16/04			
Gasoline Range Organics C6-C12	536	10.0	mg/kg wet	500		107	75-125			
Diesel Range Organics >C12-C35	624	10.0	"	500		125	75-125			
Total Hydrocarbon C6-C35	1160	10.0	11	1000		116	75-125			
Surrogate: 1-Chlorooctane	54.8		mg/kg	50.0		110	70-130			
Surrogate: 1-Chlorooctadecane	52.1		#	50.0		104	70-130			
LCS Dup (EK41507-BSD1)				Prepared &	Analyzed:	11/15/04				
Gasoline Range Organics C6-C12	445	10.0	mg/kg wet	500		89.0	75-125	4.13	20	
Diesel Range Organics >C12-C35	553	10.0	n	500		111	75-125	6.81	20	
Fotal Hydrocarbon C6-C35	998	10.0	11	1000		99.8	75-125	2.18	20	
Surrogate: 1-Chlorooctane	44.6		mg/kg	50.0		89.2	70-130			
Surrogate: 1-Chlorooctadecane	40.5		"	50.0		81.0	70-130			

P.O. Box 301 Lovington NM, 88260 Project: Friscoe Skelly #1

Project Number: EMS: 2004-00196

Project Manager: Ken Dutton

Fax: (505) 396-1429

Reported: 11/22/04 08:02

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	Luna	Omts	20101	resuit	/oiceC	rums.	14.17	r/mitt	110168
Batch EK41507 - Solvent Extraction (GC)										
LCS Dup (EK41507-BSD2)					11/15/04 A	-				
Gasoline Range Organics C6-C12	463	10.0	mg/kg wet	500		92.6	75-125	14.6	20	
Diesel Range Organics >C12-C35	621	10.0	11	500		124	75-125	0.482	20	
Total Hydrocarbon C6-C35	1080	10.0	11	1000		108	75-125	7.14	20	
Surrogate: 1-Chlorooctane	49.6		mg/kg	50.0		99.2	70-130			
Surrogate: 1-Chlorooctadecane	47.2		"	50.0		94.4	70-130			
Calibration Check (EK41507-CCV1)				Prepared &	Analyzed:	11/15/04				
Gasoline Range Organics C6-C12	433		mg/kg	500		86.6	80-120			
Diesel Range Organics >C12-C35	574		"	500		115	80-120			
Total Hydrocarbon C6-C35	1010		"	1000		101	80-120			
Surrogate: 1-Chlorooctane	42.0		11	50.0		84.0	70-130			
Surrogate: 1-Chlorooctadecane	46.5		"	50.0		93.0	70-130			
Calibration Check (EK41507-CCV2)	Prepared: 11/15/04 Analyzed: 11/16/04									
Gasoline Range Organics C6-C12	465		mg/kg	500		93.0	80-120			
Diesel Range Organics >C12-C35	601		Ħ	500		120	80-120			
Total Hydrocarbon C6-C35	1070		11	1000		107	80-120			
Surrogate: 1-Chlorooctane	53.8		"	50.0		108	70-130			
Surrogate: 1-Chlorooctadecane	53.9		"	50.0		108	70-130			
Matrix Spike (EK41507-MS1)	Sou	rce: 4K12029)-01	Prepared: 11/15/04 Analyzed: 11/19/04						
Gasoline Range Organics C6-C12	482	10.0	mg/kg dry	543	ND	88.8	75-125	******		
Diesel Range Organics >C12-C35	610	10.0	"	543	21.9	108	75-125			
Total Hydrocarbon C6-C35	1090	10.0	'n	1090	21.9	98.0	75-125			
Surrogate: 1-Chlorooctane	50.9		mg/kg	50.0		102	70-130			
Surrogate: 1-Chlorooctadecane	48.7		"	50.0		97.4	70-130			
Matrix Spike (EK41507-MS2)	Sou	rce: 4K12029	9-08	Prepared: 1	1/15/04 Ai	nalyzed: 11	/19/04			
Gasoline Range Organics C6-C12	498	10.0	mg/kg dry	543	ND	91.7	75-125			
Diesel Range Organics >C12-C35	617	10.0	n	543	ND	114	75-125			
Total Hydrocarbon C6-C35	1120	10.0	"	1090	ND	103	75-125			
Surrogate: I-Chlorooctane	51.9		mg/kg	50.0		104	70-130			
Surrogate: 1-Chlorooctadecane	50.1		"	50.0		100	70-130			

Project: Friscoe Skelly #1

Fax: (505) 396-1429

P.O. Box 301

Project Number: EMS: 2004-00196

Reported: 11/22/04 08:02

Lovington NM, 88260

Project Manager: Ken Dutton

Organics by GC - Quality Control **Environmental Lab of Texas**

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Prepared: 11/15/04 Analyzed: 11/19/04

Source: 4K12029-01

Batch EK41507 - Solvent Extraction

Matrix Spike Dup (EK41507-MSD1)

Gasoline Range Organics C6-C12	468	10.0	mg/kg dry	543	ND	86.2	75-125	2.95	20	
Diesel Range Organics >C12-C35	594	10.0	11	543	21.9	105	75-125	2.66	20	
Total Hydrocarbon C6-C35	1060	10.0	11	1090	21.9	95.2	75-125	2.79	20	
Surrogate: 1-Chlorooctane	50.0		mg/kg	50.0		100	70-130			
Surrogate: 1-Chlorooctadecane	48.0		"	50.0		96.0	70-130			
Matrix Spike Dup (EK41507-MSD2)	fatrix Spike Dup (EK41507-MSD2) Source: 4K12029-08				Prepared: 11/15/04 Analyzed: 11/19/04					
Gasoline Range Organics C6-C12	480	10.0	mg/kg dry	543	ND	88.4	75-125	3.68	20	
Diesel Range Organics >C12-C35	601	10.0	11	543	ND	111	75-125	2.63	20	
Total Hydrocarbon C6-C35	1080	10.0	11	1090	ND	99.1	75-125	3.64	20	
Surrogate: 1-Chlorooctane	49.9		mg/kg	50.0		99.8	70-130			
Surrogate: 1-Chlorooctadecane	47.4		n	50.0		94.8	70-130			

Batch EK41813 - EPA 5035

Blank (EK41813-BLK1)				Prepared: 11/15/	04 Analyzed: 11	1/19/04		
Benzene	ND	0.00100	mg/kg wet					
Toluene	ND	0.00100	u					
Ethylbenzene	ND	0.00100	ш					
Xylene (p/m)	ND	0.00100	н					
Xylene (o)	ND	0.00100	n					
Surrogate: a,a,a-Trifluorotoluene	94.1		ug/kg	100	94.1	80-120		
Surrogate: 4-Bromofluorobenzene	103		"	100	103	80-120		
LCS (EK41813-BS1)	Prepared: 11/15/04 Analyzed: 11/19/04							
Benzene	98.1		ug/kg	100	98.1	80-120		
Toluene	104		**	100	104	80-120		
Ethylbenzene	108		**	100	108	80-120		
Xylene (p/m)	239		n	200	120	80-120		
Xylene (o)	118		11	100	118	80-120		
Surrogate: a,a,a-Trifluorotoluene	106		"	100	106	80-120		
Surrogate: 4-Bromofluorobenzene	118		n	100	118	80-120		

P.O. Box 301 Lovington NM, 88260 Project: Friscoe Skelly #1

Project Number: EMS: 2004-00196

Project Manager: Ken Dutton

Reported: 11/22/04 08:02

Fax: (505) 396-1429

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EK41813 - EPA 5035					······					
Calibration Check (EK41813-CCV1)				Prepared:	11/15/04 A	nalyzed: 11	/16/04			
Benzene	104		ug/kg	100		104	80-120			
Toluene	96.3		"	100		96.3	80-120			
Ethylbenzene	89.6		**	100		89.6	80-120			
Xylene (p/m)	195		n	200		97.5	80-120			
Xylene (o)	91.2		11	100		91.2	80-120			
Surrogate: a,a,a-Trifluorotoluene	106		"	100	***************************************	106	80-120			
Surrogate: 4-Bromofluorobenzene	102		"	100		102	80-120			
Matrix Spike (EK41813-MS1)	Sou	rce: 4K12001-0	08	Prepared & Analyzed: 11/15/04						
Benzene	2540		ug/kg	2500	ND	102	80-120			
Toluene	2580		"	2500	29.2	102	80-120			
Ethylbenzene	2710		**	2500	18.0	108	80-120			
Xylene (p/m)	6040	•		5000	58.9	120	80-120			
Xylene (o)	2940		**	2500	45.2	116	80-120			
Surrogate: a,a,a-Trifluorotoluene	102		n	100		102	80-120			
Surrogate: 4-Bromofluorobenzene	113		"	100		113	80-120	,		
Matrix Spike Dup (EK41813-MSD1)	Sou	rce: 4K12001-0	08	Prepared &	z Analyzed:	11/15/04				
Benzene	2690		ug/kg	2500	ND	108	80-120	5.71	20	
Toluene	2600		Ħ	2500	29.2	103	80-120	0.976	20	
Ethylbenzene	2770		11	2500	18.0	110	80-120	1.83	20	

5000

2500

100

100

58.9

45.2

120

119

110

115

80-120

80-120

80-120

80-120

0.00

2.55

20

20

6060

3020

110

115

Xylene (p/m)

Surrogate: a,a,a-Trifluorotoluene

Surrogate: 4-Bromofluorobenzene

Xylene (o)

Project: Friscoe Skelly #1

Fax: (505) 396-1429

P.O. Box 301

Lovington NM, 88260

Project Number: EMS: 2004-00196

Project Manager: Ken Dutton

Reported: 11/22/04 08:02

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Spike %REC RPD Reporting Source Limit Units Level Result %REC Limits RPD Limit Notes Result Analyte

%

Batch EK41504 - General Preparation (Prep)

Blank (EK41504-BLK1) Prepared: 11/12/04 Analyzed: 11/15/04

% Moisture 0.0

 Duplicate (EK41504-DUP1)
 Source: 4K11014-01
 Prepared: 11/12/04
 Analyzed: 11/15/04

% Moisture 11.0 % 11.0 0.00 20

Project: Friscoe Skelly #1

Fax: (505) 396-1429

P.O. Box 301

Project Number: EMS: 2004-00196

Lovington NM, 88260

Project Manager: Ken Dutton

Reported: 11/22/04 08:02

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	Kaland K Tutus	
Report Approved By:	12 control 11 control	Date:

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director

Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

11/22/2004

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

0

•

Client: Basin Env.						
Date/Time: バーローロル 1315						
Order#: 4K12006						
Initials: JMM						
Sample Receip	ot Checkl	ist				
Temperature of container/cooler?	(Yes)	No	-1.0	C		
Shipping container/cooler in good condition?	(Yes)	No				
Custody Seals intact on shipping container/cooler?	Yes	No	Not prese	ent>		
Custody Seals intact on sample bottles?	Yes	No	Not prese			
Chain of custody present?	(Yes)	No	The state of the s			
Sample Instructions complete on Chain of Custody?	(Yes)	No				
Chain of Custody signed when relinquished and received?	(Yes)	No				
Chain of custody agrees with sample label(s)	(es)	No				
Container labels legible and intact?	(Yes	No				
Sample Matrix and properties same as on chain of custody?	Yes	No				
Samples in proper container/bottle?	(Yes)	No				
Samples properly preserved?	(Yes)	No				
Sample bottles intact?	(Yes)	No				
Preservations documented on Chain of Custody?	(Yes)	No				
Containers documented on Chain of Custody?	(Yes)	No				
Sufficient sample amount for indicated test?	(Yes)	No				
All samples received within sufficient hold time?	(Yes)	No				
VOC samples have zero headspace?	(Yes)	No	Not Applica	able		
Other observations:						
Variance Documentation: Contact Person: Date/Time: Contacted by: Regarding:						
Corrective Action Taken:						
	Philippine and the second seco	Augustalia and anni	and the state of t			
	*					

Analytical Report

Prepared for:

Ken Dutton

Basin Environmental Services

P.O. Box 301

Lovington, NM 88260

Project: Friscoe Skelly #1
Project Number: EMS: 2004-00196
Location: Lea County, NM

Lab Order Number: 4K05014

Report Date: 11/11/04

Project: Friscoe Skelly #1 ect Number: EMS: 2004-0019 Fax: (505) 396-1429

P.O. Box 301 Lovington NM, 88260 Project Number: EMS: 2004-00196 Project Manager: Ken Dutton Reported: 11/11/04 10:21

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-1 5'	4K05014-01	Soil	11/01/04 13:48	11/05/04 15:27
SB-1 10'	4K05014-02	Soil	11/01/04 13:53	11/05/04 15:27
SB-1 15'	4K05014-03	Soil	11/01/04 13:57	11/05/04 15:27
SB-1 20'	4K05014-04	Soil	11/01/04 14:04	11/05/04 15:27
SB-1 25'	4K05014-05	Soil	11/01/04 14:08	11/05/04 15:27
SB-1 30'	4K05014-06	Soil	11/01/04 14:11	11/05/04 15:27
SB-1 35'	4K05014-07	Soil	11/01/04 14:17	11/05/04 15:27
SB-1 40'	4K05014-08	Soil	11/01/04 14:26	11/05/04 15:27

P.O. Box 301 Lovington NM, 88260 Project: Friscoe Skelly #1

Project Number: EMS: 2004-00196

Project Manager: Ken Dutton

Fax: (505) 396-1429

Reported: 11/11/04 10:21

Organics by GC Environmental Lab of Texas

			mentai L						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 5' (4K05014-01) Soil				Dilution	Daten	Trepareu	Allaryzed		Notes
Benzene	0.387	0.0250	mg/kg dry	25	EK41002	11/05/04	11/08/04	EPA 8021B	
Toluene	4.82	0.0250	"	"	LK41002	"	11708/04	н	
Ethylbenzene	7.90	0.0250			11	"	11	#	
Xylene (p/m)	9.79	0.0250	"	"	11	n	,,	н	
Xylene (o)	4.84	0.0250	"	n	tr.	n	11	11	
Surrogate: a,a,a-Trifluorotoluene		361 %	80-1	20	"	"	"	"	S-04
Surrogate: 4-Bromofluorobenzene		129 %	80-1	20	n	"	"	"	S-04
Gasoline Range Organics C6-C12	1270	10.0	mg/kg dry	1	·EK40508	11/05/04	11/06/04	EPA 8015M	
Diesel Range Organics >C12-C35	3830	10.0	**	n	"	**	н	"	
Total Hydrocarbon C6-C35	5100	10.0	n	**	"	п	11	п	
Surrogate: 1-Chlorooctane		120 %	70-1	30	n	"	"	"	
Surrogate: 1-Chlorooctadecane		97.0 %	70-1	30	"	"	"	"	
SB-1 10' (4K05014-02) Soil									
Benzene	0.192	0.0250	mg/kg dry	25	EK41002	11/05/04	11/08/04	EPA 8021B	
Toluene	2.04	0.0250	11	**	11	"	u	11	
Ethylbenzene	3.70	0.0250	11	n	n	"	**	11	
Xylene (p/m)	4.70	0.0250	n	"	"	n	n	n	
Xylene (o)	2.38	0.0250	"		n	14	н		
Surrogate: a,a,a-Trifluorotoluene		236 %	80-1	20	n	"	"	п	S-04
Surrogate: 4-Bromofluorobenzene		116 %	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	1080	10.0	mg/kg dry	1	EK40508	11/05/04	11/06/04	EPA 8015M	
Diesel Range Organics >C12-C35	4460	10.0	"	n	"	11	**	u	
Total Hydrocarbon C6-C35	5540	10.0	n	п	**	n	n	n	
Surrogate: 1-Chlorooctane		116 %	70-1	30	"	n	"	"	
Surrogate: 1-Chlorooctadecane		92.0 %	70-1	30	"	rr .	"	"	
SB-1 15' (4K05014-03) Soil									
Benzene	0.423	0.0250	mg/kg dry	25	EK41003	11/09/04	11/09/04	EPA 8021B	
Toluene	4.85	0.0250	"	"	If	n	"	11	
Ethylbenzene	6.17	0.0250	n	n	**	n	"	**	
Xylene (p/m)	8.19	0.0250	n	"	n	n	ti	"	
Xylene (o)	3.88	0.0250	R	n	**	11	"	H .	
Surrogate: a,a,a-Trifluorotoluene		133 %	80-1	20	"	"	#	n .	S-04
Surrogate: 4-Bromofluorobenzene		113 %	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	1360	10.0	mg/kg dry	1	EK40508	11/05/04	11/06/04	EPA 8015M	
Diesel Range Organics >C12-C35	5340	10.0	**	**	H	н	**	11	
Total Hydrocarbon C6-C35	6700	10.0	n	"	#	n	**	11	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Friscoe Skelly #1

Fax: (505) 396-1429

P.O. Box 301 Lovington NM, 88260 Project Number: EMS: 2004-00196 Project Manager: Ken Dutton Reported: 11/11/04 10:21

Organics by GC Environmental Lab of Texas

Amelia	p +	Reporting	¥ 7 **		_	_			
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-1 15' (4K05014-03) Soil									
Surrogate: 1-Chlorooctane		120 %	70-	130	EK40508	11/05/04	11/06/04	EPA 8015M	
Surrogate: 1-Chlorooctadecane		98.4 %	70-	130	"	"	"	n .	
SB-1 20' (4K05014-04) Soil									
Benzene	J [0.0207]	0.0250	mg/kg dry	25	EK41003	11/09/04	11/09/04	EPA 8021B	
Toluene	0.540	0.0250	n	н	?	n	11	**	
Ethylbenzene	1.33	0.0250	n	11	"	"	**	n	
Xylene (p/m)	1.82	0.0250	**	"	n	"	11	н	
Xylene (o)	0.860	0.0250	"	**	n	"	**	n	
Surrogate: a,a,a-Trifluorotoluene		129 %	80-	120	"	"	"	"	S-0-
Surrogate: 4-Bromofluorobenzene		103 %	80-	120	"	"	"	"	
Gasoline Range Organics C6-C12	478	10.0	mg/kg dry	1	EK40508	11/05/04	11/06/04	EPA 8015M	
Diesel Range Organics >C12-C35	2590	10.0	n	"	n	"	"	н	
Total Hydrocarbon C6-C35	3070	10.0	tř	**	11	11	**	"	
Surrogate: 1-Chlorooctane		112 %	70-	130	"	"	"	11	
Surrogate: 1-Chlorooctadecane		90.2 %	70-	130	"	#	"	"	
SB-1 25' (4K05014-05) Soil									
Benzene	J [0.0156]	0.0250	mg/kg dry	25	EK41003	11/09/04	11/09/04	EPA 8021B	
Toluene	0.141	0.0250	11	"	Ħ	n	n	11	
Ethylbenzene	0.409	0.0250	11	u	н	#	**	11	
Xylene (p/m)	0.594	0.0250	"	n	ii	11	11	"	
Xylene (o)	0.379	0.0250	H	n	11	11	11	u	
Surrogate: a,a,a-Trifluorotoluene		115 %	80-1	120	n	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.0 %	80-1	120	"	"	"	n	
Gasoline Range Organics C6-C12	360	10.0	mg/kg dry	1	EK40508	11/05/04	11/06/04	EPA 8015M	
Diesel Range Organics >C12-C35	2250	10.0	11	"	Ħ	"	11	***	
Total Hydrocarbon C6-C35	2610	10.0	"	u	н	II.	Ħ	n	
Surrogate: 1-Chlorooctane		111 %	70-1	130	"	"	"	"	

Surrogate: 1-Chlorooctadecane

70-130

102 %

P.O. Box 301 Lovington NM, 88260 Project: Friscoe Skelly #1

Project Number: EMS: 2004-00196

Project Manager: Ken Dutton

Fax: (505) 396-1429

Reported: 11/11/04 10:21

Organics by GC Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-1 30' (4K05014-06) Soil			n de la companya de						
Benzene	ND	0.0250	mg/kg dry	25	EK41003	11/09/04	11/09/04	EPA 8021B	
Toluene	ND	0.0250	u	n	u	u	n	tt.	
Ethylbenzene	ND	0.0250	n	"	"	11	"	**	
Xylene (p/m)	ND	0.0250	u	"	u	"	"		
Xylene (o)	ND	0.0250	n	H	u	11	11	n .	
Surrogate: a,a,a-Trifluorotoluene		92.1 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.3 %	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EK40508	11/05/04	11/06/04	EPA 8015M	
Diesel Range Organics >C12-C35	78.1	10.0	**	n	u	1)	*	"	
Total Hydrocarbon C6-C35	78.1	10.0	Ħ	n	**	11	**	•	
Surrogate: 1-Chlorooctane		106 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		118 %	70-1	30	"	"	"	r	
SB-1 35' (4K05014-07) Soil									
Benzene	· ND	0.0250	mg/kg dry	25	EK41003	11/09/04	11/09/04	EPA 8021B	
Toluene	ND	0.0250	11	п	H	**	+1	11	
Ethylbenzene	ND	0.0250	11	п	п	"	11	11	
Xylene (p/m)	ND	0.0250	11	"	**	"	tt	11	
Xylene (o)	ND	0.0250	"	**	**	"	tr.	11	
Surrogate: a,a,a-Trifluorotoluene		95.5 %	80-1	20	n	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	80-1	20	n	"	"	n	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EK40508	11/05/04	11/06/04	EPA 8015M	
Diesel Range Organics >C12-C35	10.1	10.0	"	н	ш	tt	11	n	
Total Hydrocarbon C6-C35	10.1	10.0	"	n.	IT	H	11	11	
Surrogate: 1-Chlorooctane		101 %	70-1	30 .	"	"	"	u	
Surrogate: 1-Chlorooctadecane		113 %	70-1	30	"	"	a,	"	
SB-1 40' (4K05014-08) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EK41003	11/09/04	11/09/04	EPA 8021B	
Toluene	ND	0.0250	"	n	#	11	и	н	
Ethylbenzene	ND	0.0250	n	0	Ħ	11	н	11	
Xylene (p/m)	ND	0.0250	"	rr .	**	n	it	n	
Xylene (o)	ND	0.0250	"	H	11	11	Ħ	11	
Surrogate: a,a,a-Trifluorotoluene		86.0 %	80-1	20	"	n	"	n	
Surrogate: 4-Bromofluorobenzene		96.5 %	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EK40508	11/05/04	11/06/04	EPA 8015M	
Diesel Range Organics >C12-C35	16.9	10.0	**	**	"	11	Ħ	11	
Total Hydrocarbon C6-C35	16.9	10.0	35	11	"	11	11	11	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

P.O. Box 301 Lovington NM, 88260 Project: Friscoe Skelly #1

Fax: (505) 396-1429

Reported: 11/11/04 10:21

Project Number: EMS: 2004-00196 Project Manager: Ken Dutton

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 40' (4K05014-08) Soil									
Surrogate: 1-Chlorooctane		106 %	70-1	30	EK40508	11/05/04	11/06/04	EPA 8015M	
Surrogate: 1-Chlorooctadecane		115 %	70-1	30	"	"	"	"	

P.O. Box 301 Lovington NM, 88260

•

Project: Friscoe Skelly #1

Project Number: EMS: 2004-00196

Reported: 11/11/04 10:21

Fax: (505) 396-1429

Project Manager: Ken Dutton

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 5' (4K05014-01) Soil									
% Moisture	4.0		%	1	EK40804	11/08/04	11/08/04	% calculation	
SB-1 10' (4K05014-02) Soil									
% Moisture	4.0		%	1	EK40804	11/08/04	11/08/04	% calculation	
SB-1 15' (4K05014-03) Soil									
% Moisture	4.0		%	1	EK40804	11/08/04	11/08/04	% calculation	
SB-1 20' (4K05014-04) Soil									
% Moisture	5.0		%	1	EK40804	11/08/04	11/08/04	% calculation	
SB-1 25' (4K05014-05) Soil					,				
% Moisture	6.0		%	I	EK40804	11/08/04	11/08/04	% calculation	
SB-1 30' (4K05014-06) Soil									
% Moisture	4.0		%	1	EK40804	11/08/04	11/08/04	% calculation	
SB-1 35' (4K05014-07) Soil									
% Moisture	5.0		%	1	EK40804	11/08/04	11/08/04	% calculation	
SB-1 40' (4K05014-08) Soil									
% Moisture	6.0		%	1	EK40804	11/08/04	11/08/04	% calculation	

P.O. Box 301 Lovington NM, 88260 Project: Friscoe Skelly #1

Project Number: EMS: 2004-00196

Project Manager: Ken Dutton

Fax: (505) 396-1429 Reported:

11/11/04 10:21

Organics by GC - Quality Control **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EK40508 - Solvent Extraction (GC)										
Blank (EK40508-BLK1)				Prepared &	k Analyzed:	11/05/04				
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	10.0	tt							
Total Hydrocarbon C6-C35	ND	10.0	11							
Surrogate: 1-Chlorooctane	42.8		mg/kg	50.0		85.6	70-130			
Surrogate: 1-Chlorooctadecane	52.7		"	50.0		105	70-130			
Blank (EK40508-BLK2)				Prepared:	11/05/04 Aı	nalyzed: 11	/06/04			
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet		-					·
Diesel Range Organics >C12-C35	ND	10.0	n							
Total Hydrocarbon C6-C35	ND	10.0	tt							
Surrogate: 1-Chlorooctane	44.9		mg/kg	50.0		89.8	70-130			
Surrogate: 1-Chlorooctadecane	52.4		"	50.0		105	70-130			
LCS (EK40508-BS1)				Prepared &	k Analyzed:	11/05/04				
Gasoline Range Organics C6-C12	446	10.0	mg/kg wet	500		89.2	75-125			
Diesel Range Organics >C12-C35	477	10.0	et	500		95.4	75-125			
Total Hydrocarbon C6-C35	923	10.0	n	1000		92.3	75-125			
Surrogate: 1-Chlorooctane	52.2		mg/kg	50.0		104	70-130			
Surrogate: 1-Chlorooctadecane	50.9		"	50.0		102	70-130			
LCS (EK40508-BS2)				Prepared:	11/05/04 Aı	nalyzed: 11	/06/04			
Gasoline Range Organics C6-C12	430	10.0	mg/kg wet	500		86.0	75-125			
Diesel Range Organics >C12-C35	502	10.0	#	500		100	75-125			
Total Hydrocarbon C6-C35	932	10.0	**	1000		93.2	75-125			
Surrogate: 1-Chlorooctane	53.0		mg/kg	50.0		106	70-130			
Surrogate: 1-Chlorooctadecane	45.7		#	50.0		91.4	70-130			
LCS Dup (EK40508-BSD1)				Prepared &	k Analyzed:	11/05/04				
Gasoline Range Organics C6-C12	437	10.0	mg/kg wet	500		87.4	75-125	2.04	20	
Diesel Range Organics >C12-C35	477	10.0	11	500		95.4	75-125	0.00	20	
Total Hydrocarbon C6-C35	914	10.0	**	1000		91.4	75-125	0.980	20	
Surrogate: 1-Chlorooctane	50.1		mg/kg	50.0		100	70-130		***********	
Surrogate: 1-Chlorooctadecane	<i>53.3</i>		"	50.0		107	70-130			

Lovington NM, 88260

Project: Friscoe Skelly #1

Fax: (505) 396-1429

P.O. Box 301

Project Number: EMS: 2004-00196 Project Manager: Ken Dutton

Reported: 11/11/04 10:21

Organics by GC - Quality Control **Environmental Lab of Texas**

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EK40508 - Solvent Extraction (GC)										
Calibration Check (EK40508-CCV1)				Prepared &	Analyzed:	11/05/04				
Gasoline Range Organics C6-C12	503		mg/kg	500		101	80-120			
Diesel Range Organics >C12-C35	551		"	500		110	80-120			
Total Hydrocarbon C6-C35	1050		"	1000		105	80-120			
Surrogate: 1-Chlorooctane	55.5		"	50.0		111	70-130			
Surrogate: 1-Chlorooctadecane	53.2		n	50.0		106	70-130			
Calibration Check (EK40508-CCV2)				Prepared: 1	1/05/04 A	nalyzed: 11	1/06/04			
Gasoline Range Organics C6-C12	493		mg/kg	500		98.6	80-120			
Diesel Range Organics >C12-C35	567		n	500		113	80-120			
Total Hydrocarbon C6-C35	1060		11	1000		106	80-120			
Surrogate: 1-Chlorooctane	55.6		"	50.0		111	70-130			-
Surrogate: 1-Chlorooctadecane	54.5		"	50.0		109	70-130			
Matrix Spike (EK40508-MS2)	Sou	rce: 4K05013	3-14	Prepared:	11/05/04 A	nalyzed: 11	1/06/04			
Gasoline Range Organics C6-C12	567	10.0	mg/kg dry	521	ND	109	75-125			
Diesel Range Organics >C12-C35	593	10.0	H	521	ND	114	75-125			
Total Hydrocarbon C6-C35	1160	10.0	**	1040	ND	112	75-125			
Surrogate: 1-Chlorooctane	58.8		mg/kg	50.0		118	70-130			
Surrogate: 1-Chlorooctadecane	56.0		и	50.0		112	70-130			
Matrix Spike Dup (EK40508-MSD2)	Sour	rce: 4K05013	3-14	Prepared: 1	11/05/04 A	nalyzed: 11	1/06/04			
Gasoline Range Organics C6-C12	594	10.0	mg/kg dry	521	ND	114	75-125	4.65	20	
Diesel Range Organics >C12-C35	604	10.0	Ħ	521	ND	116	75-125	1.84	20	
Total Hydrocarbon C6-C35	1200	10.0	n	1040	ND	115	75-125	3.39	20	
Surrogate: 1-Chlorooctane	59.4		mg/kg	50.0		119	70-130			
Surrogate: 1-Chlorooctadecane	53.1		"	50.0		106	70-130			

Project: Friscoe Skelly #1

Fax: (505) 396-1429

P.O. Box 301

Project Number: EMS: 2004-00196

Reported: 11/11/04 10:21

Lovington NM, 88260

Project Manager: Ken Dutton

Organics by GC - Quality Control Environmental Lab of Texas

		,								
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EK41002 - EPA 5030C (GC)								_	_	
Blank (EK41002-BLK1)				Prepared &	: Analyzed:	11/05/04				
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	"							
Ethylbenzene	ND	0.0250	n							
Xylene (p/m)	ND	0.0250	"							
Xylene (o)	ND	0.0250	n							
Surrogate: a,a,a-Trifluorotoluene	92.0		ug/kg	100		92.0	80-120			
Surrogate: 4-Bromofluorobenzene	90.4		"	100		90.4	80-120			
LCS (EK41002-BS1)				Prepared &	Analyzed:	11/05/04				
Benzene	89.9		ug/kg	100		89.9	80-120			
Toluene	93.9		н	100		93.9	80-120			
Ethylbenzene	96.3		n	100		96.3	80-120			
Xylene (p/m)	213		II .	200		106	80-120			
Xylene (o)	101		11	100		101	80-120			
Surrogate: a,a,a-Trifluorotoluene	102		"	100		102	80-120			
Surrogate: 4-Bromofluorobenzene	117		"	100		117	80-120			
Calibration Check (EK41002-CCV1)				Prepared: 1	1/05/04 A	nalyzed: 11	/09/04			
Benzene	92.5		ug/kg	100		92.5	80-120			
Toluene	102		"	100		102	80-120			
Ethylbenzene	100		"	100		100	80-120			
Xylene (p/m)	220		"	200		110	80-120			
Xylene (o)	103		"	100		103	80-120			
Surrogate: a,a,a-Trifluorotoluene	106		"	100		106	80-120			
Surrogate: 4-Bromofluorobenzene	107		"	100		107	80-120			
Matrix Spike (EK41002-MS1)	Sour	ce: 4K05013	3-12	Prepared: 1	1/05/04 A	nalyzed: 11	/08/04			
Benzene	98.5	·	ug/kg	100	ND	98.5	80-120			
Toluene	108		11	100	ND	108	80-120			
Ethylbenzene	107		#	100	ND	107	80-120			
Xylene (p/m)	235		н	200	ND	118	80-120			
Kylene (o)	111		**	100	ND	111	80-120			
Surrogate: a,a,a-Trifluorotoluene	115		"	100		115	80-120			
Surrogate: 4-Bromofluorobenzene	118		"	100		118	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 9 of 13

P.O. Box 301

Lovington NM, 88260

Project: Friscoe Skelly #1

Project Number: EMS: 2004-00196

Project Manager: Ken Dutton

Fax: (505) 396-1429

Reported: 11/11/04 10:21

Organics by GC - Quality Control **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EK41002 - EPA 5030C (GC)	· · · · · · · · · · · · · · · · · · ·									
Matrix Spike Dup (EK41002-MSD1)	Sour	ce: 4K05013	3-12	Prepared:	11/05/04 A	nalyzed: 11	/08/04			
Benzene	94.9		ug/kg	100	ND	94.9	80-120	3.72	20	
Toluene	103		**	100	ND	103	80-120	4.74	20	
Ethylbenzene	103		**	100	ND	103	80-120	3.81	20	
Xylene (p/m)	225		**	200	ND	112	80-120	5.22	20	
Xylene (o)	104		"	100	ND	104	80-120	6.51	20	
Surrogate: a,a,a-Trifluorotoluene	103		"	100		103	80-120			
Surrogate: 4-Bromofluorobenzene	116		"	100		116	80-120			
Batch EK41003 - EPA 5030C (GC)										
Blank (EK41003-BLK1)				Prepared &	k Analyzed:	11/09/04				
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	н							
Ethylbenzene	ND	0.0250	п							
Xylene (p/m)	ND	0.0250	*							
Xylene (o)	ND	0.0250	"							
Surrogate: a,a,a-Trifluorotoluene	88.3		ug/kg	100		88.3	80-120			
Surrogate: 4-Bromofluorobenzene	102		"	100		102	80-120			
LCS (EK41003-BS1)				Prepared &	Analyzed:	11/09/04				
Benzene	88.8		ug/kg	100		88.8	80-120			
Toluene	98.0		11	100		98.0	80-120			
Ethylbenzene	98.8		"	100		98.8	80-120			
Xylene (p/m)	220		"	200		110	80-120			
Xylene (o)	102		"	100		102	80-120			
Surrogate: a,a,a-Trifluorotoluene	102		"	100		102	80-120		· · · · · · · · · · · · · · · · · · ·	
Surrogate: 4-Bromofluorobenzene	117		"	100		117	80-120			

P.O. Box 301

Lovington NM, 88260

Project: Friscoe Skelly #1

Project Number: EMS: 2004-00196 Project Manager: Ken Dutton

Fax: (505) 396-1429

Reported: 11/11/04 10:21

Organics by GC - Quality Control **Environmental Lab of Texas**

Analyte	Result	Reporting Limit U	Jnits	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EK41003 - EPA 5030C (GC)										
Calibration Check (EK41003-CCV1)				Prepared: 1	1/09/04 A	nalyzed: 11	/10/04			
Benzene	88.4	u	g/kg	100		88.4	80-120			
Toluene	98.0		"	100		98.0	80-120			
Ethylbenzene	92.2		"	100		92.2	80-120			
Xylene (p/m)	199		11	200		99.5	80-120			
Xylene (o)	95.5		*I	100		95.5	80-120			
Surrogate: a,a,a-Trifluorotoluene	105		"	100		105	80-120			
Surrogate: 4-Bromofluorobenzene	102		"	100		102	80-120			
Matrix Spike (EK41003-MS1)	Sou	rce: 4K08003-01		Prepared: 1	1/09/04 Ai	nalyzed: 11	/10/04			
Benzene	87.9	u	g/kg	100	ND	87.9	80-120			
Toluene	98.0		"	100	ND	98.0	80-120			
Ethylbenzene	103		n	100	ND	103	80-120			
Xylene (p/m)	225		и	200	ND	112	80-120			
Xylene (o)	106		n	100	ND	106	80-120			
Surrogate: a,a,a-Trifluorotoluene	106		"	100		106	80-120			
Surrogate: 4-Bromofluorobenzene	115		n	100		115	80-120			
Matrix Spike Dup (EK41003-MSD1)	Sou	rce: 4K08003-01		Prepared: 1	1/09/04 Aı	nalyzed: 11	/10/04			
Benzene	90.9	u	g/kg	100	ND	90.9	80-120	3.36	20	
Toluene	103		u	100	ND	103	80-120	4.98	20	
Ethylbenzene	106		**	100	ND	106	80-120	2.87	20	
Xylene (p/m)	235		"	200	ND	118	80-120	5.22	20	
Xylene (o)	110		**	100	ND	110	80-120	3.70	20	
Surrogate: a,a,a-Trifluorotoluene	110		11	100		110	80-120			
Surrogate: 4-Bromofluorobenzene	116		"	100		116	80-120			

Project: Friscoe Skelly #1

P.O. Box 301

Project Number: EMS: 2004-00196

Fax: (505) 396-1429 Reported: 11/11/04 10:21

Lovington NM, 88260

Project Manager: Ken Dutton

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Spike RPD Source %REC Reporting Result Limit Units Level Result %REC Limits RPD Limit Notes Analyte

Batch EK40804 - General Preparation (Prep)

Prepared & Analyzed: 11/08/04 Blank (EK40804-BLK1) % Moisture 0.0

Duplicate (EK40804-DUP1) Source: 4K05006-01 Prepared & Analyzed: 11/08/04

20.0 % Moisture 20.0 0.00 20

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 12 of 13

Basin Environmental ServicesProject:Friscoe Skelly #1Fax: (505) 396-1429P.O. Box 301Project Number:EMS: 2004-00196Reported:Lovington NM, 88260Project Manager:Ken Dutton11/11/04 10:21

Notes and Definitions

The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect. S-04 J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag). DET Analyte DETECTED ND Analyte NOT DETECTED at or above the reporting limit Not Reported NR Sample results reported on a dry weight basis dry RPD Relative Percent Difference LCS Laboratory Control Spike Matrix Spike MS

	Kaland KJulis		
Report Approved By:	Racancino	Date:	11/11/2004

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director

Peggy Allen, QA Officer

Duplicate

Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

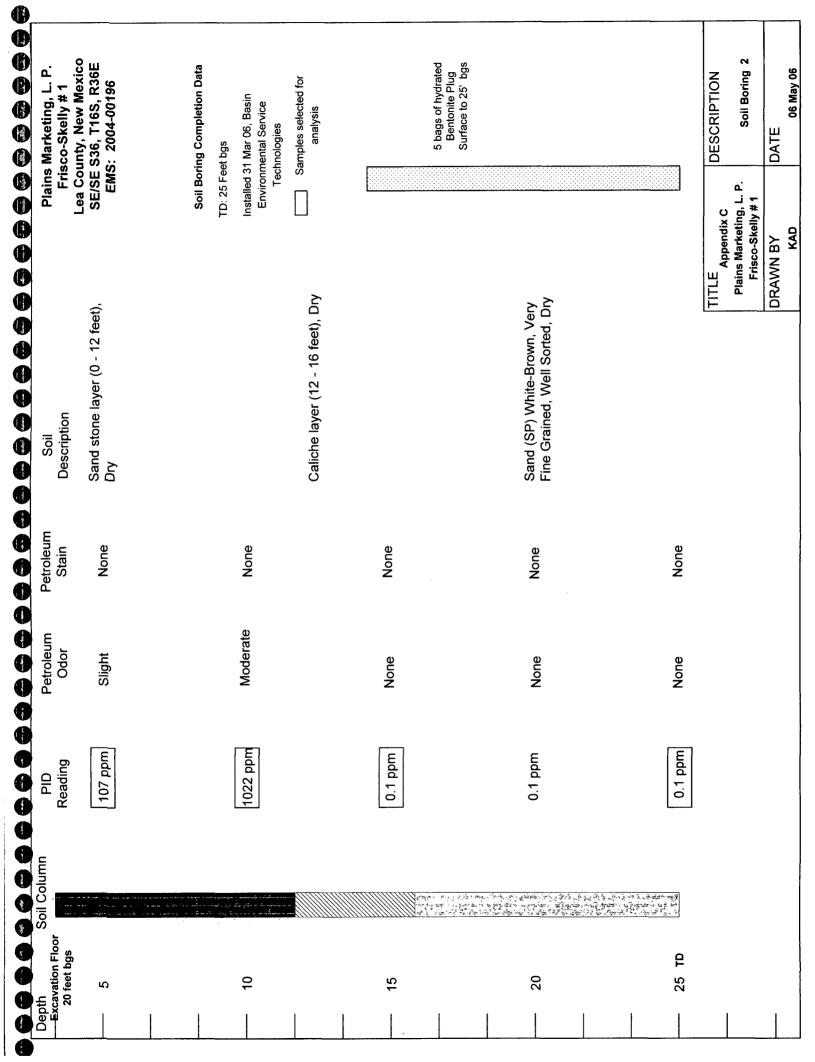
0 TAT brabnal2 elubedo&en9) TAT H2UR Project Name: FRISCOE - CKELLY #1 Project 8: EMS: 2864- 40196 z CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST 7,01 Project Loc: LEA COUNTY NM M.A.O. Temperature Upon Receipt: 15 Sample Containers Intact? Analyze For Laboratory Comments: X BTEX 8260 BTEX 80218/5030 Notals: As Ag Ba Cd Ct Pb Hg Se TCLP: TOTAL: PO #: Aniona (Ct, 5O4, CO3, HCO3) MG. Ma. K) 1527 M2108 1008 1002 Matrix nos 40.5-11 appnis Other (Specify) FAX NO: (505) 396-Preservative *05*H HOEN нсі *ONH menne No. of Containers 1357 1353 1464 1348 1408 1411 414 1426 Delqms2 emiT LOVINGTON, NM 8826B GINOV 2004 Received by Delqma2 etaQ P. O. BOX 3 &1 1202 Telephone No: (505) 441-2124 Time Phone: 432-563-1600 Fax: 432-563-1713 I)KTTON torect so FIELD CODE 38 25 20 Project Manager: KEN Company Name BES 5 58-1 1-02 53-1 58-1 Company Address: City/State/Zip: .04 SB -SB-Sampler Signature: -05 | 58-SB. 12600 Woot L20 East Odosso, Texas 79765 20-ह Special Instructions: 101 LAB # (lab use only) 0

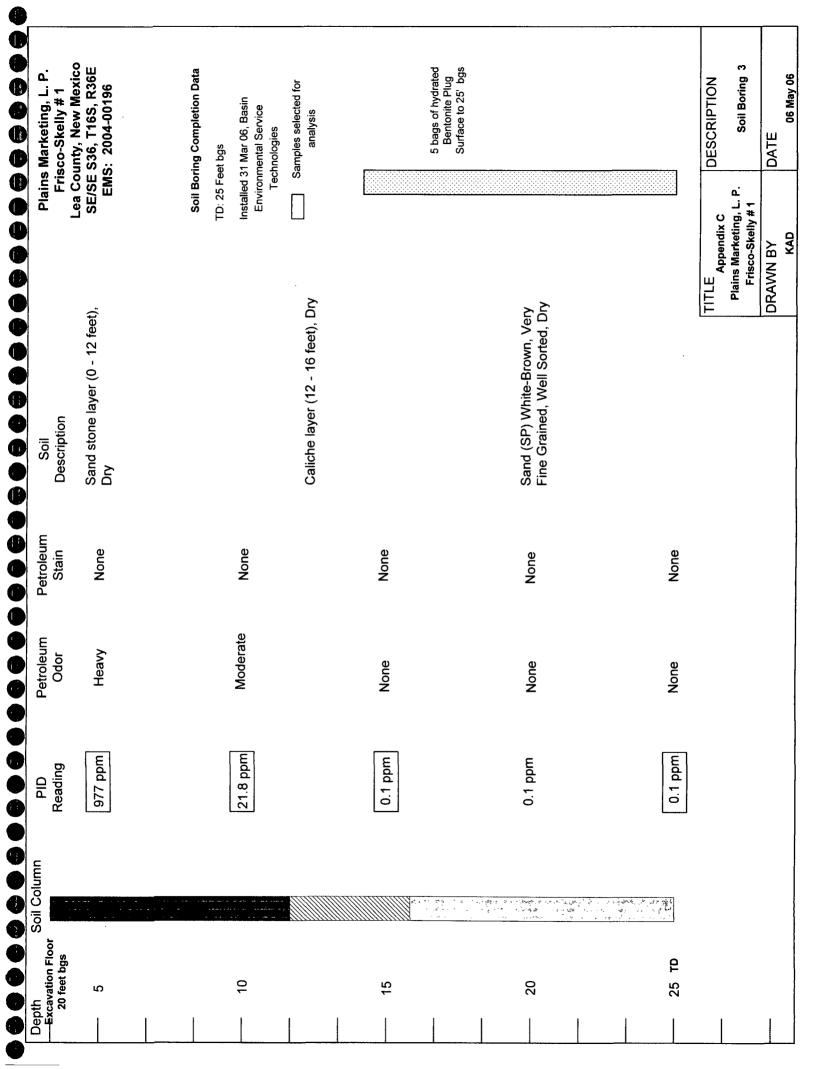
Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

•

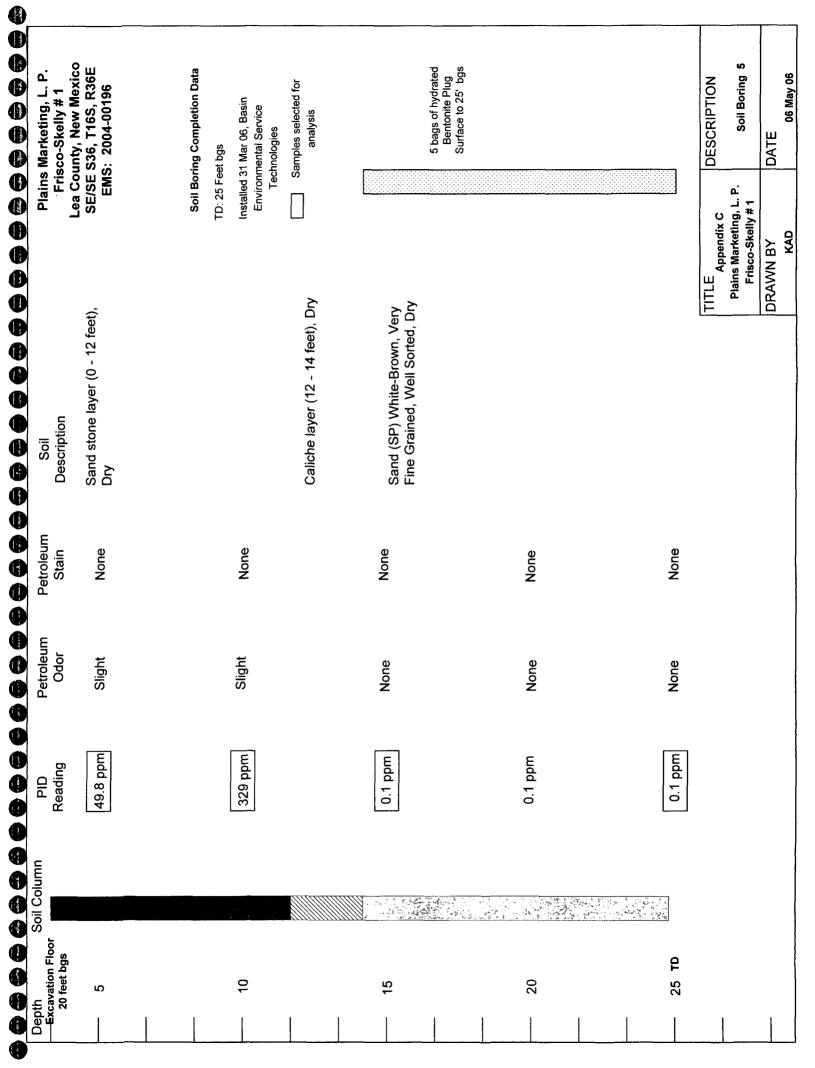
• • 0 **(1)** • • • • • **(b)** • 0 • • 1 • • **(b)** • **(b)** • • **(b) (b)** •

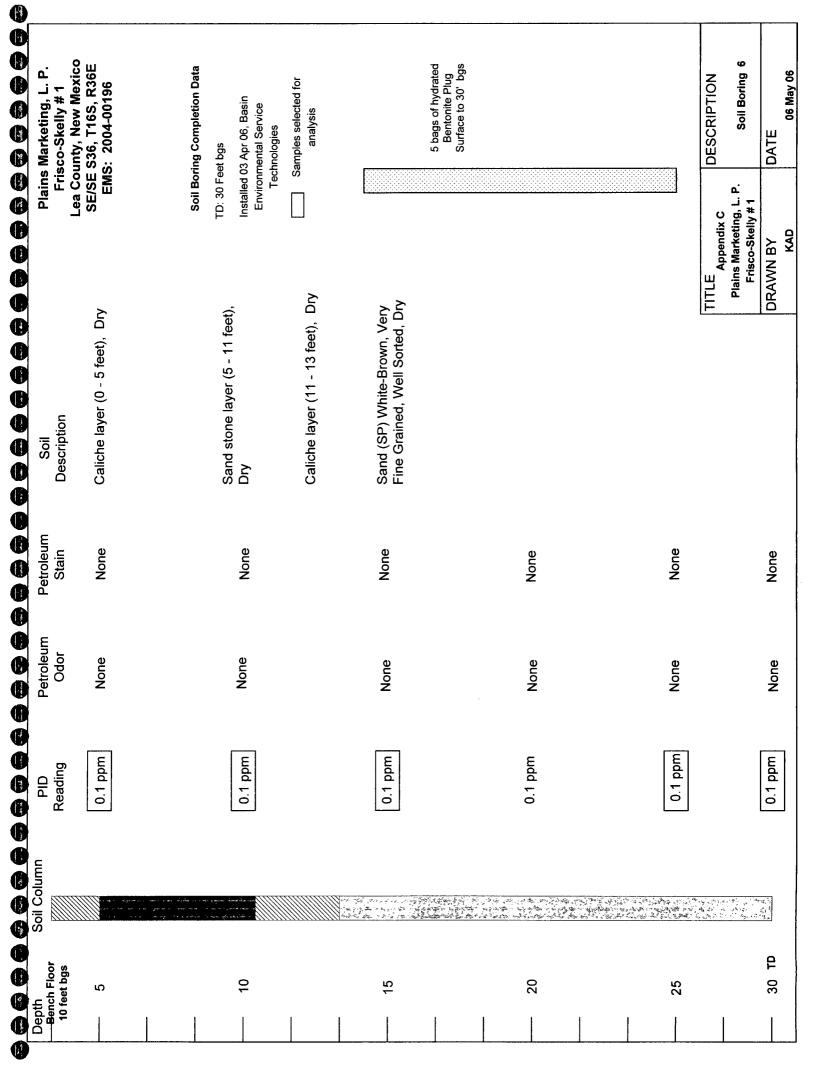
Client: Basin Environmental					
Date/Time: 11-05-04@1600					
Order #:					
Initials: JMM					
Sample Receipt	Checkl	ist			
Temperature of container/cooler?	Yes	No	1.0	C	
Shipping container/cooler in good condition?	(Yes)	No			
Custody Seals intact on shipping container/cooler?	Yes	No	(Not pres	ent	
Custody Seals intact on sample bottles?	Yes	No	Not prés		
Chain of custody present?	(Yes) No			
Sample Instructions complete on Chain of Custody?	Yes	No			
Chain of Custody signed when relinquished and received?	Yes	No			
Chain of custody agrees with sample label(s)	Yes	No			
Container labels legible and intact?	Stes	No			
Sample Matrix and properties same as on chain of custody?	(SeY)	No	·		
Samples in proper container/bottle?	(Yes)	No			
Samples properly preserved?	Yes	No			
Sample bottles intact?	Yes	No			
Preservations documented on Chain of Custody?	Tes	No			
Containers documented on Chain of Custody?	Yes	No			
Sufficient sample amount for indicated test?	Yes	No			
All samples received within sufficient hold time?	Yes	No			
VOC samples have zero headspace?	Yes	No	Not Applic	able	
Other observations:					
Variance Docum Contact Person: Date/Time: Regarding:			Contacted	by:	
Corrective Action Taken:					

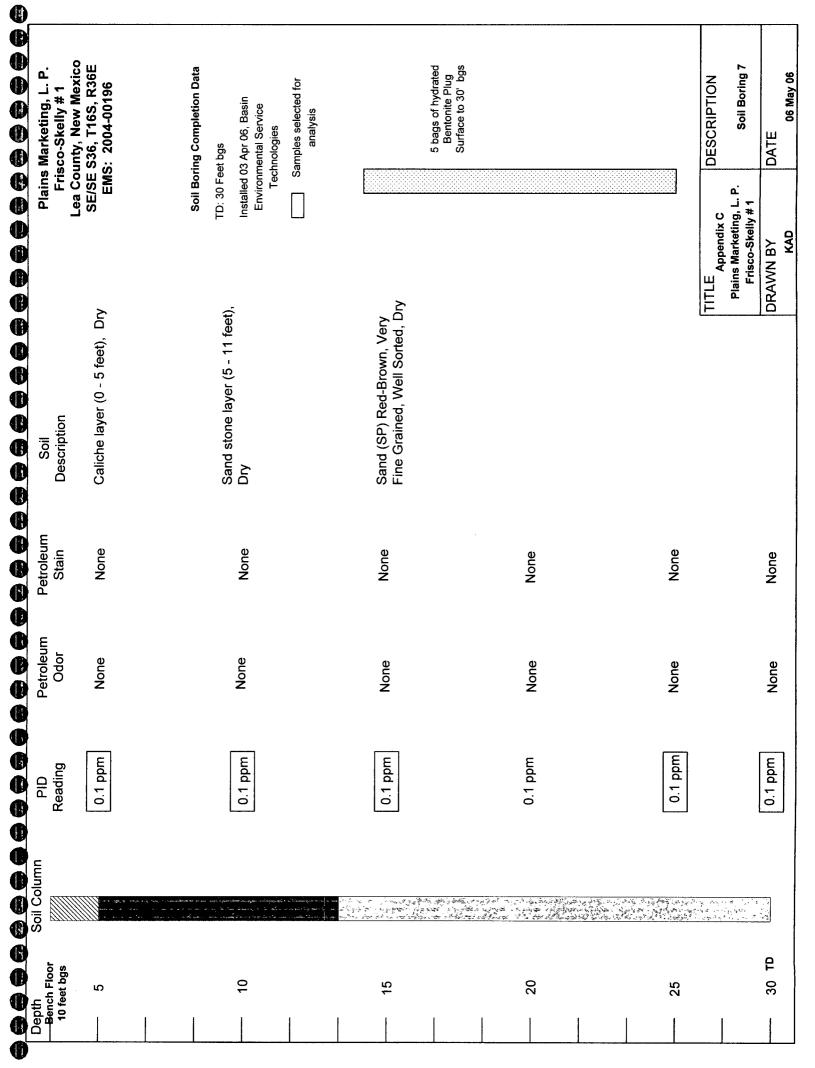

APPENDIX C


SOIL BORING LOGS

0


0


	Soil Plains Marketing, L. P. Description Frisco-Skelly # 1	Sand (SP) Tan, Very Fine Grained, Well Sorted, Dry, Imbedded w/caliche nodules Soil Boring 1 Unit P (SE/SE) S36, T16S, R36E Lea County, NM EMS: 2004-00196	Sand (SP) Red-Brown, Very Fine Grained, Well Sorted, Dry, Imbedded w/sandstone nodules	Sand (SP) Red-Brown, Very Fine Grained, Well Sorted, Dry, Imbedded w/sandstone nodules	Sand (SP) Tan-Brown, Very Fine Grained, Well Sorted, Dry (Sugar Sand)		Installed: 01 Nov 04, Basin Environmental Services, LLC TD: 40 feet bgs	Soil Boring plugged with 7 bags of Bentonite	Samples selected for analysis	TITLE DESCRIPTION	Frisco-Skelly # 1 Soil Boring 1 Appendix C	DRAWN BY DATE KAD 15 Nov 04
	Petroleum Stain De	Sone Gr Imb	Sar None Fine Imbe	Sar None Fine Imbe	Sa None Fine	None		None		None		None
•	Petroleum Odor	Moderate	Moderate	Moderate	Moderate	Slight		Slight		None		None
	PID Reading	1218 ppm	923 ppm	616 ppm	626 ppm	519 ppm		28.2 ppm		10.3 ppm		7.1 ppm
Soil Column	loor (*)											TD .
Death	Excavation Floor	15 Teet bgs5	10	5			İ	30		32		



000000000				9000000000000000000000000000000000000	
Depth Soil Column Excavation Floor 18 feet bgs	PID Reading	Petroleum Odor	Petroleum Stain	Soil Description	Plains Marketing, L. P. Frisco-Skelly # 1
22	529 ppm	None	None	Sand stone layer (0 - 8 feet), Dry	Lea County, New Mexico SE/SE S36, T16S, R36E EMS: 2004-00196
					Soil Boring Completion Date
10	1141 ppm	None	None	Sand (SP) White-Brown, Very Fine Grained, Well Sorted, Imbedded w/Sand stone Nodules, Dry	TD: 25 Feet bgs Installed 30 Mar 06, Basin Environmental Service Technologies
				Sand stone layer (12 - 14.5 feet), Dry	Samples selected for analysis
15	0.2 ppm	None	None	Sand (SP) White-Brown, Very Fine Grained, Well Sorted, Imbedded w/Sand stone Nodules, Dry	5 bags of hydrated
					Bertonite Plug Surface to 25' bgs
50	0.1 ppm	None	None	Sand (SP) Brown, Very Fine Grained, Well Sorted, Dry	
	0.1 ppm	None	None		
				TITLE Appendix C Plains Marketing, L. P. Frisco-Skelly # 1	lix C DESCRIPTION ting, L. P. Soil Boring 4
				DRAWN BY	DATE
				NAD.	Oc May US

DESCRIPTION Soil Boring 8 DATE 06 May 06	TITLE Appendix C Plains Marketing, L. P. Frisco-Skelly #1 DRAWN BY KAD	None	None	1
			None	None
5 bags of hydrated Bentonite Plug Surface to 30' bgs		0	None	None
	Sand (SP) White-Brown, Very Fine Grained, Well Sorted, Dry		None	None
Samples selected for analysis	Ö			
TD: 30 Feet bgs Installed 03 Apr 06, Basin Environmental Service Technologies	TD: 30 Feet bgs Installed 03 Apr Environmental Technolog		None	None
Soil Boring Completion Data	Soil Bori			
SE/SE S36, T16S, R36E EMS: 2004-00196	Sand stone layer (0 - 14 feet), SE/SE (Dry		None	None
Plains Marketing, L. P. Frisco-Skelly # 1	Petroleum Soil Plains Marketing, L. P. Stain Description	E	Petroleum Stain	Petroleum Petroleu Odor Stain

				_	-	-
x C DESCRIPTION ng, L. P. Soil Boring 9	Plains Marketing, L. P. Frisco-Skelly #1				en en egy en en en	
		None	None	0.1 ppm	e Beginner og en er er er skigt fler der er er eg elle Medie er en eg er er	25
					ୁର୍ମିୟ ଅଟେ ଜୁନିୟ (ଅଟେ) ଲୋକ ମଧ୍ୟ ଅଟେ (ଅଟେ) ଲୋକ ମଧ୍ୟ (ଅଟେ)	l
	Sand (SP) Red-Brown, Very Fine Grained, Well Sorted, Dry	None	None	0.1 ppm	သို့ ၁၁ - မွာ သိန်း မွှာ လေသည်သော မက္ကသည်းက ရသင်္ကေသာနိုင် အသည်း သည်သည် သည်သည်	50
5 bags of hydrated Bentonite Plug Surface to 30' bgs					or or or or or or or or or or or or or o	
	Sand (SP) White-Brown, Very Fine Grained, Well Sorted, Dry	None	None	0.1 ppm		- 15
Samples selected for analysis						
Soil Boring Completion Data TD: 30 Feet bgs Installed 03 Apr 06, Basin Environmental Service Technologies	Sand stone layer (5 - 9 feet), Dry	None	None	0.1 ppm		10 1
						1
Lea County, New Mexico SE/SE S36, T16S, R36E EMS: 2004-00196	Caliche layer (0 - 5 feet), Dry	None	None	0.1 ppm		- 22
Frisco-Skelly # 1	Description	Stain	Odor	Reading		10 feet bgs

Plains Marketing, L. P. Frisco-Skelly # 1 Lea County. New Mexico	SE/SE S36, T16S, R36E EMS: 2004-00196	Soil Boring Completion Data TD: 40 Feet bgs	Environmental Service Technologies Samples selected for analysis		7 bags of hydrated Bentonite Plug Surface to 40' bgs			x C DESCRIPTION ng, L. P. Soil Boring 10	DATE
Soil Description	Sand (SP) Red-Brown, Very Fine Grained, Well Sorted, Dry	Sand stone layer (8 - 16 feet), Dry		Caliche layer (16 - 22 feet), Dry	Sand (SP) Red-Brown, Very Fine Grained, Well Sorted, Dry			TITLE Appendix C Plains Marketing, L. P. Frisco-Skelly # 1	DRAWN BY
Petroleum Stain	None	None	None	None	None	None	None		None
Petroleum Odor	None	None	None	None	None	None	None		None
PID Reading	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm		0.1 ppm
			n de anno a maria de angula de		Strong the Strong of Stron	and the second s	arting on the later of the second of the sec	and the second of the second o	
Bench Floor 6 feet bgs	S	10	15	20	25	30	35		40 TD
Bench 6 fee									

Plains Marketing, L. P. Frisco-Skelly # 1	SE/SE S36, T16S, R36E EMS: 2004-00196		Soil Boring Completion Data D: 40 Feet bgs	Installed 04 Apr 06, Basin Environmental Service Technologies amples selected for analysis	POSOSSOSSOS	7 bags of hydrated Bentonite Plug Surface to 40' bgs		ज्यासम्बद्धाः स्थापन	DESCRIPTION Soil Boring 11	DATE 06 May 06
Plains Fri		Dry	F	Installed Environ Te	ر کرم				TITLE Appendix C Plains Marketing, L. P. Frisco-Skelly # 1	DRAWN BY KAD
Petroleum Soil Plains Marketing, L. P. Stain Description Frisco-Skelly # 1	Sand (SP) Red-Brown, Very Fine Grained, Well Sorted, Dry	Caliche layer (7 - 9 feet), Dry	Sand stone layer (9 - 16 feet), Dry		Sand (SP) Red-Brown, Very Fine Grained, Well Sorted, Dry					
Petroleum Stain	None		None	None	None	None	None	None		None
Petroleum Odor	None		None	Moderate	Slight	None	None	None		None
PID Reading	0.1 ppm		0.1 ppm	1160 ppm	1066 ppm	0.1 ppm	0.1 ppm	0.1 ppm		0.1 ppm
Soil Column	or the second of				o via i av o via i av	না অস্কুলিক তে আগে বুলু তি আগ্ৰ তাজ মুক্ত গুলু হিলাগে আগে বুলুগে কোন বিজ্ঞানিক তেওঁ সংগ্ৰহণ কোন	Sin de la gasta de la compania de la compaña	ടെ പൂയുള്ളിച്ചു താരം 1 ചെയ്യായ കുള്ളുള്ള പ്ര പ്രത്യാകി പ്രവര്	r. A. Torresta	·
Depth Bench Floor 6 feet bgs	ω 		10	15	50	25	30	35		40 TD

Petroleum Soil Prisco-Skelly#1	Jark-Brown, Very SE/ d, Well Sorted, Solved	Sand stone layer (4 - 12 feet), Dry	Caliche layer (7 - 9 feet), Dry Sand stone layer (14 - 24 feet), analysis Dry		Sand (SP) Red-Brown, Very Fine Grained, Well Sorted, Dry									DESC	Prisco-Skelly # 1 (Page 1of 2) DRAWN BY DATE
Petroleum Stain Dev	Sar None Finc Loo	San None Dry	Cali None San Dry	None	None Sa Fir	None	None	None	None	None	None	None	None	None	None
Petroleum Odor	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None
Soil Column PID Petroleum Reading Odor	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm
Soil Column	- 1			a la la la Caracta e na mandere de le como tago a caracta	755 0 		কঃ কঃ কঃ ৩ ফল ইছন ৩ ফুল ৩ কেছল .	egil zwo je o o o gogo en a o o o o o golo o o o o o o o o o	e er ektige ektig kanglege ektig kanglege	ර වෙන් . කිරියුර - උපසැකුමුල ද උපස්කුර	Section of the sectio	geneght was wertiggen vo geneght of the co	nn ^h y pr Lipsquin Seenig (7
Depth	ري م	10	15	20	25	30	35	40	45	- 50	55	09	65		75

	Plains Marketing, L. P. Frisco-Skelly # 1	Caliche layer (0 - 15 feet), Dry SE/SE S36, T16S, R36E EMS: 2004-00196		Sand (SP) White-Brown, Very Fine Grained, Well Sorted, Dry				Sand stone layer (32 - 38 feet), Dry	Sand (SM) Red-Brown, Very Fine Grained, Well Sorted, Dry						TITLE Appendix C DESC Che layer (71 - 73 feet), Plains Marketing, L. P. N	Dry Frisco-Skeily # 1 (Fage 101.2)
10000		None	None	None	None	None	None	None	None	None	None	None	None	None	None	
0000		None	None	None	None	None	None	None	None	None	None	None	None	None	None	
	PID Reading	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	
	Soil Column				on Tright of a management of the control of the con	ాష్ట్ర వెల్లు ఎక్కారు కూడా కా కా కెస్ట్ ఇం	w d		Sangaran Magazin Sangaran	g 2 . G manggar sa pranaga manggar sa pranaga	ু ক্রান্ত্রিক ত বু ক্রান্ত্রিক ত ু সু কর্মন	i province superior	and the second s	કે દેવા (જીવા) પુષ્કુ જ્યારે આવે પુષ્કુ જ્યારે આ પ્રદેશ (જીવા) જ્યારે પ્રદુષ્ટ જેવા કે પ્રદેશ (જીવા)	·	
		22	10	15	50	25	30	35	40	45	20	- 55	09	65	02 —	

Plains Marketing, L. P. Frisco-Skelly # 1	SE/SE S36, T16S, R36E EMS: 2004-00196		Monitoring Well 2 Completion Data	Istalicu do Apri do, basili Environmental Service Technologies	Samples selected for analysis Groundwater depth	TD: 110 Feet bgs	30 feet, 2" 010 PVC Screen 80 feet, 2" PVC Riser	68 Feet, Depth to Sand Pack 68 Feet to Surface, Hydrated Bentonite Seal	2 by 2 Feet concrete surface pad installed with a 4' by 60" metal locking square riser			DESCRIPTION P. Monitor Well 2	DATE
	Sand (SP) Red-Brown, Very SE. Fine Grained, Well Sorted, Dry		Mon	Env	□ →	TD: 1	30 fe 80 fr	68 F	2 l insta			TITLE Appendix C Plains Marketing, L. P.	DRAWN BY
eum Soil in Description		<u>ə.</u>	<u>ə</u>										
Petroleum Petroleum Odor Stain	None None	None None	None										
PID Petr Reading O	0.1 ppm No	0.1 ppm	0.1 ppm No										
		2	The second of th	ు లెగ్స్ కృష్ణ లెలెగ్ కృష్ణ కృషణాత్రికి		i val gare al-gagare va al-gagare val							
	80	85	06	95	▼97 Feet bgs — 100	105	110 то						

Plains Marketing, L. P. Frisco-Skelly # 1	SE/SE S36, T16S, R36E EMS: 2004-00196		Samples selected for analysis											DESCRIPTION Monitor Well 3	(Fage 101.2) DATE 06 May 06
Petroleum Soil Petroleum Stain Description Frisco-Skelly # 1		- 37 feet),						vn, Very Sorted, Dry						TITLE Appendix C Plains Marketing, L. P.	Frisco-Skelly # 1 DRAWN BY KAD
Soil Description	Caliche layer (0 - 9 feet), Dry	Sand stone layer (9 - 37 feet), Dry						Sand (SM) Red-Brown, Very Fine Grained, Well Sorted, Dry							
_ 1	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None
Petroleum ng Odor	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None
PID Readir	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.1 ppm
Soil Column															
Depth 8	5	10	15	50	25	30	35	40	45	20	55	09	92	02	75

Sand (SP) Red-Brown, Very Fine Grained, Well Sorted, Dry	Sand (SP) Red-Brown, V Fine Grained, Well Sorte	Sand (SP) Red-Brown, V Fine Grained, Well Sorte	Sand (SP) Red-Brown, V	Sand (SP) Red-Brown, V	Sand (SP) Red-Brown, Fine Grained, Well Sor	Sand (SP) Red-Brown, V Fine Grained, Well Sorte	Sand (SP) Red-Brown, V Fine Grained, Well Sorte	Sand (SP) Red-Brown, Fine Grained, Well Sort	Sand (SP) Red-Brown, V Fine Grained, Well Sorte
None Sand (SP) Red-Brow Fine Grained, Well S None None									
None None	None None	None None	None None	None None	None None	None None	None None None None None None None None	None None	None Sone Sone Sone Sone Sone Sone Sone S
None	None	None	None	None	None	None	None	None	None and the state of the state

APPENDIX D

NMOCD C-141

istrict 1
101 W. Grand Avenue, Artesia, NM 88240
District III
100 Rio Brazos Road, Aztec, NM 87410
20 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico **Energy Minerals and Natural Resources**

Form C-141 Revised October 10, 2003

Oil Conservation Division

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back

1220 South St. Francis Dr. side of form 39202123 Santa Fe, NM 87505

Release Notification	on and Corrective Ac	x mitial Report Final Report							
6	OPERATOR	x Anitial Regrot Final Report							
Name of Company Plains Marketing, LP									
Address 5805 East Hwy. 80, Midland, TX 79706 Facility Name Frisco Skelly #1	Telephone No. 505-441-096 Facility Type 4"Steel Pipeling								
Surface Owner City of Lovington Mineral Owner		Lease No.							
	N OF RELEASE	123456							
Unit Letter Section Township Range Feet from the North	h/South Line Feet from the	East/West Line County Lca							
1 30 100 300									
Latitude 32° 52'20.0"	Longitude 103° 18'12.2"								
NATURI	E OF RELEASE								
Type of Release Crude Oil	Volume of Release 25 barrels								
Source of Release 4" Steel Pipeline	Date and Hour of Occurrence 9-20-04 @ 08:45	Date and Hour of Discovery 9-20-04 @ 9:00							
Was Immediate Notice Given? . ☑ Yes ☐ No ☐ Not Require	If YES, To Whom?								
By Whom? Camille Reynolds	Date and Hour 9-20-04 @ 15:10								
Was a Watercourse Reached?	If YES, Volume Impacting the Watercourse.								
☐ Yes ☑ No									
Describe Cause of Problem and Remedial Action Taken.* External corrosion of the 4" steel pipeline. A line clamp was installed to mitigate the release. The line is a 4 inch steel transmission pipeline that produces approximately 20 to 30 barrels of crude oil per day. The pressure on the line is 28 psi and the gravity of the sweet crude oil is 39. The sweet crude has an H ₂ S content of <10 ppm Describe Area Affected and Cleanup Action Taken.* The impacted soil was excavated and stockpiled on plastic. Aerial extent of surface impact was									
1,848 ft ² . 1 hereby certify that the information given above is true and complete to	the best of my knowledge and w	destand that suggest to NMOCD rules and							
I hereby certify that the information given above is true and complete to regulations all operators are required to report and/or file certain release public health or the environment. The acceptance of a C-141 report by should their operations have failed to adequately investigate and remedi or the environment. In addition, NMOCD acceptance of a C-141 report federal, state, or local laws and/or regulations.	notifications and perform correct the NMOCD marked as "Final Re ate contamination that pose a thre	ive actions for releases which may endanger port" does not relieve the operator of liability at to ground water, surface water, human health							
	OIL CONS	SERVATION DIVISION							
Signature: Comille Kuppolds									
Printed Name: Camille Reynolds	Approved by District Superviso	or:							
Title: Remediation Coordinator	Approval Date:	Expiration Date:							
		·							
E-mail Address: cjreynolds@paalp.com	Conditions of Approval:	Attached							