
AP - 41

REPORT

DATE:

MAY 2007

SOIL CLOSURE REPORT WEST SIDE NMSR18 **HUGH GATHERING** PLAINS SRS NO.: 2002-10235

AP-41 Report Max 2007

UL-P, SECTION 11, T21S, R37E

Lea County, New Mexico NMOCD No. AP-0041 PREPARED FOR

333 CLAY STREET, SUITE 1600 Houston, Texas 77002

PREPARED BY

STAFFORD, TEXAS 77477 281.240.5200

Project No. 207032.00

May 2007

Chan Patel Senior Project Manager

Dist	ribution		v
1.0	INTRODU	JCTION	1
		tives and Site Background ous Environmental Investigations	
2.0	REGULA	TORY FRAMEWORK	2
	2.1 NMO	CD Site Ranking	3
	2.2 Soil F	emediation Goals	3
3.0	2006 SIT	E INVESTIGATIONS AND RESULTS	4
	3.1 EPI In	vestigations – West side of NMSR 18	4
4.0	2006 SO	L REMEDIATION ACTIVITIES	5
	4.1 Excav	vation and Confirmation Sampling; West Side NMSR 18	6
	4.1.1	Confirmation Sampling – Excavation Base and Sidewalls	
	4.1.2	Confirmation Stockpile Sampling	
	4.1.3	Passive Soil Vapor Ventilation System	
	4.1.4	MicroBlaze Treatment	
	4.1.5 4.1.6	Clay Barrier Placement Backfill and Grade Excavation	
		vation and Confirmation Sampling; East Side – NMSR 18	
5.0	2006 GR	OUNDWATER ACTIVITIES	8
5.1	2006 Act	ivities	8
	5.2 PSH F	Recovery	8
6.0		SIONS and RECOMMENDATIONS	

Table of Contents

APPENDICES

Appendix A	Figures
Figure 1	Site Location Map
Figure 2	Site Layout Map
Figure 3	Soil Confirmation Sample Location Map

Appendix B	Tables
Table 1	Soil Boring Delineation Data Westside of NMSR 18
Table 2	Summary 2003 and 2004 Monitoring Well Soil Data
Table 3	Soil Confirmation Analytical Results – Western Excavation
Appendix C	NMOCD Approval Letter of Abatement Plan

Appendix D Site Photographs

Appendix E Analytical Laboratory Reports – Available Electronically on CD only

Appendix F C-141 Release Notification Form

DISCLAIMER

Premier has examined and relied upon the file information provided by Plains. Premier has not conducted an independent examination of the information contained in the Plains files; furthermore, we assume the genuineness of the documents reviewed and that the information provided in these documents to be true and accurate. Premier has prepared this report using the level of care and professionalism in the industry for similar projects under similar conditions. Premier will not be responsible for conditions or consequences arising from relevant facts that were concealed, withheld, or not fully disclosed at the time this report was prepared. Premier believes the conclusions stated herein are factual, but no guarantee is made or implied.

Distribution

Mr. Ben Stone New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe, NM 87505 <u>bstone@state.nm.us</u>

Mr. Larry Johnson, Environmental Engineer New Mexico Oil Conservation Division Environmental Bureau 1625 North French Drive Hobbs, New Mexico 88240 505-393-6161 ext 111 Iwjohnson@state.nm.us

Mr. Jeffrey Dann, PG Senior Environmental Specialist Plains Marketing, L.P. 333 Clay Street, Suite 1600 Houston, Texas 77002 713-646-4100 jpdann@paalp.com

Ms. Camille Reynolds Plains Marketing, L.P. 3112 West US highway 82 Lovington, NM 88260 cjreynolds@paalp.com

Mr. Shane Diller Field Supervisor Premier Environmental Services, Inc. 30 West Industrial Loop, Suite I Midland Texas 79701 sdiller@premiercorp-usa.com

Chan Patel Senior Project Manager Premier Environmental Services, Inc. 4800 Sugar Grove Blvd, Suite 420 Stafford, Texas 77477 281-240-5200 cpatel@premiercorp-usa.com

v

1.1 Objectives and Site Background

This report includes a summary of soil activities completed on the west side of New Mexico State Road (NMSR18) at the Hugh Gathering Site, located in Unit Letter P (the SE¼ of the SE¼) of Section 11, T21S, R37E, of Lea County, New Mexico, approximately 3 miles northeast of Eunice, New Mexico (Figure 1, Appendix A, latitude 32°29'11.007"N and longitude 103°07'33.864"W). Premier was retained by Plains Pipeline L.P. (Plains) to complete remediation and reporting activities for delineation and remediation previously undertaken at the Hugh Gathering Site, SRS No. 2002-10235. The release was initially reported internally to be less than 1 barrel (bbl) of crude oil because of the small diameter surface impact; however, during replacement of the line EOTT Energy Pipeline (EOTT) amended the release to 50 bbls. The initial response notification form (Form No. C-141, Appendix F), prepared by Plains, provides documentation of reporting the release to Larry Johnson with the New Mexico Oil Conservation Division (NMOCD). The leak was apparently caused by corrosion from a 6" steel pipeline which was replaced, tested and put back into service. None of the 50 bbl crude oil release was recovered.

1.2 Previous Environmental Investigations

At the time of the initial release, the pipeline was owned by EOTT Energy Pipeline (the EOTT name changed to Link Energy in October 2003) and as of April 1, 2004, Plains Pipeline, L.P. (Plains) purchased the assets from Link Energy. According to Environmental Plus, Inc. (EPI) documents, the May 2002 release resulted in crude oil impacting two areas on either side of State Highway 18 (the East and West release areas). A surface area measuring approximately 98' x 12' was initially impacted by the release on the west side of New Mexico State Road 18 (NMSR 18). This impacted area was associated with a raised vent pipe connected to an underground conduit that passes under the highway. Near surface Impacted soils were excavated and disposed of in an NMOCD approved landfarm. Soil and groundwater delineation activities were initiated in September 2002 when phase separated hydrocarbons (PSH) were found in groundwater from monitor well (MW-1) at approximately 60 feet below ground surface (bgs).

The portion of the release that impacted the east side of NMSR 18 covered approximately 55' x 10' of surface area. The east side of the release was delineated with the installation of borings BH1 to BH8 while the west side was delineated by borings BH9 to BH16 (in September 2002). Soil samples collected from boring BH10 identified hydrocarbon impacted soils to 45 feet bgs. Due to the analytical findings for samples collected in BH10, the boring was converted to monitoring well MW-1. Additional details associated with the subsurface investigations undertaken at the site are discussed in Section 3.0 of this report.

In June and July 2003, with NMOCD approval, groundwater monitoring wells MW-2, MW-3, MW-4 and MW-5 were installed. Recovery of PSH from groundwater monitoring wells MW-1, MW-2 and MW-4 was initiated on a weekly basis and in August 2003, daily recovery began using a gasoline powered eductor type PSH recovery system.

In 2004, with NMOCD approval, groundwater monitoring wells MW-6, MW-7, MW-8, MW-9, MW-10, MW-11 and MW-12 were installed to further delineate the horizontal extent of PSH and dissolved phase hydrocarbons. PSH was observed in groundwater monitoring wells MW-8, MW-9 and MW-10. Dissolved phase hydrocarbons benzene, toluene, ethylbenzene, and total xylenes (BTEX) and polynuclear aromatic hydrocarbons (PAH) were detected in the 2004 analytical results for groundwater monitoring well MW-5. BTEX and PAH were not detected at or above the respective method detection limits in 2004 groundwater samples from monitoring wells MW-6, MW-7, MW-11 and MW-12, all located along the periphery of the site. PSH was present in monitoring wells MW-1, MW-2, MW-3, MW-4, MW-8, MW-9 and MW-10 with thicknesses ranging from 0.25 feet to 11.13 feet. By December 2004, 600 gallons of PSH had been recovered.

In May 2005, Plains submitted a Stage 1 and Stage 2 Abatement Plan (Abatement Plan) to the NMOCD for approval (prepared by EPI). After a public comment period, the NMOCD subsequently approved implementation of the Abatement Plan in a November 5, 2005 letter to Plains (Appendix C).

Site surveillance continued in 2005 with bi-weekly inspections, monthly monitoring of groundwater and PSH levels and quarterly sampling of groundwater monitoring wells not impacted with PSH. In August 2005, because of declining PSH thicknesses and production rates, PSH recovery was changed from daily deployment of the PSH recovery system to weekly hand bailing of PSH impacted wells and installation of absorbent socks. In 2005, approximately 550 gallons of crude oil were recovered and reintroduced into the Plains pipeline system. The total recovery volume as of December 31, 2005, including the 600 gallons recovered from 2002 through 2004, was approximately 1,150 gallons.

This report details the activities associated with the investigations, excavations and remedial response actions completed on the west side of NMSR18 to address affected soil from the 2002 release. Remediation of the impacted soil on the east side of NMSR 18 will be conducted at such time when Plains can obtain access from the landowner on the east side of the highway.

2.0 REGULATORY FRAMEWORK

In New Mexico, the NMOCD oversees and regulates oil, gas and geothermal activities, including enforcement and compliance with environmental regulations. Guidance for cleanup of crude oil releases is provided in the NMOCD *Guidelines for Remediation of Leaks, Spills and Releases* (August 13, 1993) document. Primary contaminants, or chemicals of concern (COCs), associated with crude oil releases include TPH and BTEX. Guidelines for these COCs in soil are evaluated based on a Site ranking system. The

ranking system estimates the likelihood of exposures to the COCs and is based on the following three parameters to protect groundwater and surface water resources:

- Depth to groundwater.
- Wellhead protection area.
- Distance to surface water body.

2.1 NMOCD Site Ranking

Based on the proximity of the Site to area water wells, surface water bodies, and depth to groundwater, the Site has a NMOCD ranking score of **20 points**, with the soil remedial goals specified below in the Site Ranking Matrix.

1. Groundwater	2. Wellhead Protection Area	3. Distance to Surface Water Body
If Depth to GW <50 feet: 20 points	If <1000' from water source, or, <200' from private domestic water source: 20 points	<200 horizontal feet: 20 points
If Depth to GW 50 to 99 feet: 10 points		200-100 horizontal feet: 10 points
If Depth to GW >100 feet: 0 points	If >1000' from water source, or, >200' from private domestic water source: <i>0 points</i>	>1000 horizontal feet: 0 points
Groundwater Score:20	Wellhead Protection Area Score: 0	Surface Water Score: 0
Site Rank (1+2+3) =20+0+0=	20	

Site Ranking Matrix

Total Site Ranking Score and Initial Guidance Cleanup Concentrations

Paramete	r 20 or >	10	0
Benzene	10 ppm	10 ppm	10 ppm
BTEX	50 ppm	50 ppm	50 ppm
ТРН	100 ppm	1000 ppm	5000 ppm

2.2 Soil Remediation Goals

Based on data gathered from previous investigations, guidelines outlined in EPI's *Abatement Plan,* and the November 5, 2005 NMOCD Remediation Plan approval letter, the following site-specific remediation standards were established:

- TPH target concentration of 1,000 mg/kg, benzene target concentration of 10 mg/kg and total BTEX target concentration of 50 mg/kg in excavation wall confirmation soil samples from surface to 8 feet bgs.
- TPH target concentration of 100 mg/kg, benzene target concentration of 10 mg/kg and total BTEX target concentration of 50 mg/kg in excavation wall confirmation soil samples from 8 feet bgs to groundwater at 58 feet bgs.

 For the base of the excavation, NMOCD approved a risk-based closure as an alternative to total removal of soils impacted above the site specific NMOCD remedial goals. The installation of an engineered barrier to prevent surface water infiltration and migration to groundwater, eliminating the groundwater exposure pathway (vertical transport mechanism) with a compacted clay or 20-mil high density polyethylene liner was required by NMOCD for a risk-based closure.

3.0 2006 SITE INVESTIGATIONS AND RESULTS

3.1 EPI Investigations – West side of NMSR 18

EPI initially investigated the affected soils on the west side of NMSR18 in September 2002 with a subsurface investigation at the site that included the installation of eight borings (BH9 through BH16) on the west side of Highway 18. This investigation was intended to define the extent of hydrocarbon impacts at the site, and borings were placed around the surface flow path of the crude oil release. The borings ranged in total depth from 15 to 55 feet bgs. Borings BH11, BH13 and BH14 were drilled to 15 feet bgs, BH12 and BH15 were drilled to 20 feet bgs, BH9 was drilled to 25 feet bgs, BH 16 was drilled to 35 feet bgs and BH10 was drilled to 55 feet bgs.

Soil samples were collected for BTEX and TPH analysis from depths based on 5 foot intervals from each of the borings. Samples collected from BH9, BH10, BH12, BH15 and BH16 indicated benzene, total BTEX and TPH concentrations above NMOCD remediation goals for the site, however; deeper samples from the lower portion of each of those borings indicated non-detect or low concentrations that were all below the NMOCD remediation goals for each COC. Based on this data, the vertical extent of hydrocarbon affected soil was defined at each boring location.

The 10 foot sample collected at boring BH10 indicated the most elevated benzene, total BTEX and TPH concentrations identified in the September 2002 investigation. The 10 foot sample from BH10 indicated 101 mg/kg benzene, 1,030 mg/kg total BTEX and 47,100 mg/kg total TPH. BTEX and TPH concentrations were above the NMOCD remedial goals down to 45 feet bgs in BH10. BH10 was located approximately 75 feet west-northwest of the leak origin. Boring locations are shown on Figures 2 and 3 in Appendix A, and analytical results are summarized on Table 1 in Appendix B.

During the September 2002 investigation, boring BH10 was completed as monitoring well MW-1. It is important to note that the location of BH10/MW-1 was incorrectly plotted in EPI's Abatement Plan and was inadvertently transferred to the base map in Premier's 2006 Annual Report. The correct location of BH10/MW-1 is presented on Figure 2 (Appendix A).

Between June 2003 and December 2004, as part of a comprehensive subsurface investigation at the site to delineate the extent of affected groundwater beneath the site,

4

eleven additional monitoring wells (MW-2 through MW-12) were installed. Monitoring wells MW-2, MW-3, MW-4 and MW-5 were installed in June 2003, monitoring wells MW-6 through MW-11 were installed in June 2004 and monitoring well MW-12 was installed in December 2004. Monitor well locations are shown on Figure 2, Appendix A.

Soil samples were collected from the all the borings installed for monitoring wells MW-2 through MW-12. Samples from all the borings, with the exception of the borings associated with MW-5, MW-6 and MW-7 were submitted to the laboratory for BTEX and TPH analysis. Of the twenty-four soil sample submitted from the monitor well borings, only one sample indicated a COC concentration above NMOCD standards. The 35 foot sample from MW-10 indicated a total TPH concentration of 139 mg/kg, which is above the 100 mg/kg NMOCD remediation standard. The 55 foot sample from MW-10 indicated that TPH concentrations had gone down to a level below the 100 mg/kg TPH standard (78.2 mg/kg). Table 2 in Appendix B presents a summary of analytical results for the soil sample collected from the monitoring well borings. A hard copy of the analytical results is included in Appendix E.

Following the installation of the soil borings/monitoring wells at the site, PSH was observed in wells MW-1, MW-2, MW-3, MW-4, MW-8, MW-9 and MW-10.

4.0 2006 SOIL REMEDIATION ACTIVITIES

Impacted surface soils containing the highest COC concentrations were primarily excavated during 2002 emergency response activities. EPI excavated the soil from around the release area to facilitate removal and replacement of the pipe and to place the pipeline back into service. Approximately 168 cubic yards of impacted soil excavated during replacement of the pipeline, were disposed of at the Environmental Plus, Inc. (EPI) Land Farm.

The objectives presented in the approved Abatement Plan were to excavate, where possible, contaminated soil in the sidewalls of the excavation adjacent to NMSR 18 and to remove the bulk of the affected soil to the extent practicable and to isolate and minimize migration of residual COCs in the base of the excavation to prevent further impact to groundwater by installing a 2 foot thick compacted clay barrier.

In 2006, EPI completed excavation, confirmation soil sampling, treatment of residual soils using MicroBlaze Spill Control[®] (MicroBlaze), installation of a passive vapor recovery system, clay liner placement, and backfilling of the site on the west side of NMSR 18 (the Bryant Property). Remediation on the east side remains to be completed since property access to conduct the NMOCD-approved remediation activities has been denied by the landowner (McNeill Property).

4.1 Excavation and Confirmation Sampling; West Side NMSR 18

Excavation of the top 15 feet of soil began on the west side of NMSR 18 in November with excavation and disposal of impacted soils to a depth of 15-feet bgs. Excavated soils were transported to Plains' Lea Station land farm. A passive vapor recovery system was installed and a 2-foot thick clay barrier was placed at the base of the excavation to permanently isolate the residual COCs, in soils remaining in place below 15 feet bgs that may be above the NMOCD guidelines. A clay barrier, oversized by 5 feet and 2 feet in thickness, was created by placement of clean clay fill material at the base of the excavation in 1-foot thick lifts. To accelerate attenuation of COCs in impacted soil below the clay barrier, the floor of the excavation was saturated with MicroBlaze Spill Control[®] (MicroBlaze) prior to installation of the clay barrier. The side wall adjacent to NMSR 18 was also treated with MicroBlaze. Photographs taken during the 2006 excavation thru backfilling activities are included in Appendix D.

4.1.1 Confirmation Sampling – Excavation Base and Sidewalls

On November 30, 2006, six soil samples were collected from the bottom and sides of the excavation. Of the six samples collected from the excavation, two indicated TPH concentrations above the NMOCD target concentration of 100 mg/kg. Samples North SW 2-13' and North BH 4-15' indicated TPH concentrations of 242 mg/kg and 506 mg/kg respectively. Samples North SW 2-13' and North BH 4-15' were located along the northern wall and northern base of the excavation. When over-excavation was completed in these areas, confirmation samples North SW 2a-12' and North BH 4a-15 were collected to verify that TPH values were less than 100 mg/kg. Both confirmation samples indicated TPH concentrations less than the NMOCD regulatory standard of 100 mg/kg. Based on these data, additional excavation was not required. The four remaining sidewall and bottom hole samples collected from the southern and western parts of the excavation showed concentrations below the 100 mg/kg TPH regulatory standard, demonstrating that further excavation was not necessary.

Analytical results for bottom, sidewall and stockpile confirmation samples collected in 2006 are found on Table 3, Appendix B. The laboratory reports for samples collected during the 2006 excavation and backfilling activities are included in Appendix E.

4.1.2 Confirmation Stockpile Sampling

The total volume of soil removed from the more recent 2006 excavation was estimated at 2,636 cubic yards. According to EPI documents and correspondence, approximately 2,236 cubic yards of soil was transported for off-site treatment. The remaining (approximately) 400 cubic yards of clean overburden that was removed and stockpiled on-site during excavation was used to backfill the excavation.

On December 14, 2006 EPI collected two stockpile soil samples (S Stockpile North side comp1 and S Stockpile Southside comp1) from the excavated soils. Analytical results from the stockpile samples demonstrated that these two samples did not contain

constituents above the method detection limit; all concentrations were below all NMOCD standards (Table 3 Appendix B).

Backfill activities also included placement of 25 cubic yards of gravel into the two trenches and 310 cubic yards of clay to create the clay barrier. To bring the site to original grade, an additional volume of approximately 916 cubic yards of clean caliche and 772 cubic yards of clean top soil were transported to the site.

4.1.3 Passive Soil Vapor Ventilation System

To promote attenuation and remediate impacted soil isolated below the compacted clay barrier, a passive organic vapor ventilation system was installed in the floor of the excavation. The system was constructed of solid and slotted 4" PVC pipe with cemented slip joints. Two equally spaced trenches, 2' wide x 2' deep x 25' long, were excavated east to west in the impacted portion of the floor of the excavation and partially filled with coarse sand. The slotted 4" PVC pipe was wrapped with an inert permeable fabric to prevent sand from filling the laterals, was laid on top of the sand pack and the trenches were brought to grade with additional coarse sand. A plastic liner was placed over the trench to prevent the compacted clay from entering the gravel in the trench. A riser was installed at the east end of each slotted lateral to approximately 3-feet above the site grade. A 14-inch diameter wind turbine was permanently affixed to the 4" PVC riser. The turbines, when rotated by the wind, create a negative pressure inside the slotted laterals, pulling vadose zone vapors into the system and exhausting the vapor to the atmosphere.

4.1.4 MicroBlaze Treatment

Prior to installation of the compacted clay barrier, the floor of the excavation was saturated with 6% MicroBlaze solution at a minimum rate of 1-gallon per cubic yard (i.e., approximately 936 gallons). MicroBlaze is a phosphate based detergent solution inoculated with petrophilic facultative bacteria that can utilize petroleum hydrocarbon as a substrate. Because of the four-lane highway adjacent to the sites, (i.e., New Mexico State Road 18 (NMSR18)), the maximum encroachment of the excavation onto the right-of-way did not exceed 5-feet. After excavating the sidewalls adjacent to NMSR 18, hydrocarbon levels exceeding the NMOCD remedial goals remained in place, therefore; MicroBlaze was injected into the impacted sidewalls to a horizontal depth of at least 4-feet on 10-foot horizontal and 3-foot vertical centers.

4.1.5 Clay Barrier Placement

A clay barrier was installed at the base of the excavation in areas where soil bottom hole verification samples indicated that affected soils were above NMOCD standards. These verification soil samples (from the sidewall and base of the eastern portion of the western excavation) were identified with TPH concentrations above the NMOCD remediation standard of 100 mg/kg. In areas where these soils could not physically be excavated they were allowed to remain in place with the understanding that they would be covered by the

7

clay liner. After the base of the easternmost portion of the excavation was cleared of debris and gently sloped with a central high point to allow for drainage and to prevent accumulation and pooling of infiltrated water, the clay barrier was placed at the base of the excavation in the area beneath the leak source (Figures 2 and 3, Appendix A). The 2-foot thick clay barrier was installed in 1-foot lifts, compacted to 95% of the proctor density and the compaction was tested by a qualified engineering firm. The clay barrier extended at least 5-feet beyond the impacted soil in the floor of the excavation and was contoured to shed water. The clay barrier at the base of the excavation was approximately 60 feet long by 50 feet wide.

4.1.6 Backfill and Grade Excavation

After the clay barrier was placed and secured with 6 inches of non-impacted soil, the excavation was backfilled with a combination of clean soil that was transported to the site and with clean overburden soil that was stockpiled on-site, west of the excavation. During backfilling activities, a mixture made up of a combination of clean caliche and clean top soil was imported to bring the site to proper grade. The surface vegetation will be restored by reseeding or as negotiated with the landowner.

4.2 Excavation and Confirmation Sampling; East Side – NMSR 18

The visually impacted surface soils were initially removed during the replacement of the pipeline on the east side of Highway 18. Excavation and treatment of impacted subsurface soil remains to be completed on the east side of Highway 18. Once the landowner has granted access to the property, the excavation will be completed, the soil will be treated and the site will be backfilled with clean soil in a manner similar to the excavation that was completed on the west side of Highway 18.

5.0 2006 GROUNDWATER ACTIVITIES

5.1 2006 Activities

In August 2005, because of declining PSH thicknesses and production rates, the PSH recovery method was changed from weekly deployment of the trailer mounted eductor type PSH recovery system to weekly hand bailing of PSH impacted wells and installation of absorbent socks. Site surveillance continued in 2006 with weekly inspections and PSH removal, monthly monitoring of groundwater elevations and quarterly sampling of groundwater monitoring wells not impacted with PSH.

5.2 PSH Recovery

In 2006, approximately 72 gallons of PSH were recovered from a total fluid volume of about 400 gallons. According to the EPI 2005 Annual Report, the total PSH recovery volume as of December 31, 2006, including the 1,150 gallons recovered from 2002

through 2005, is approximately 1,222 gallons. In 2007, PSH recovery continues via manual bailing of MW-1 and the use of absorbent socks in other monitoring wells exhibiting sheens or PSH measuring greater than 0.25 feet in thickness.

6.0 CONCLUSIONS and RECOMMENDATIONS

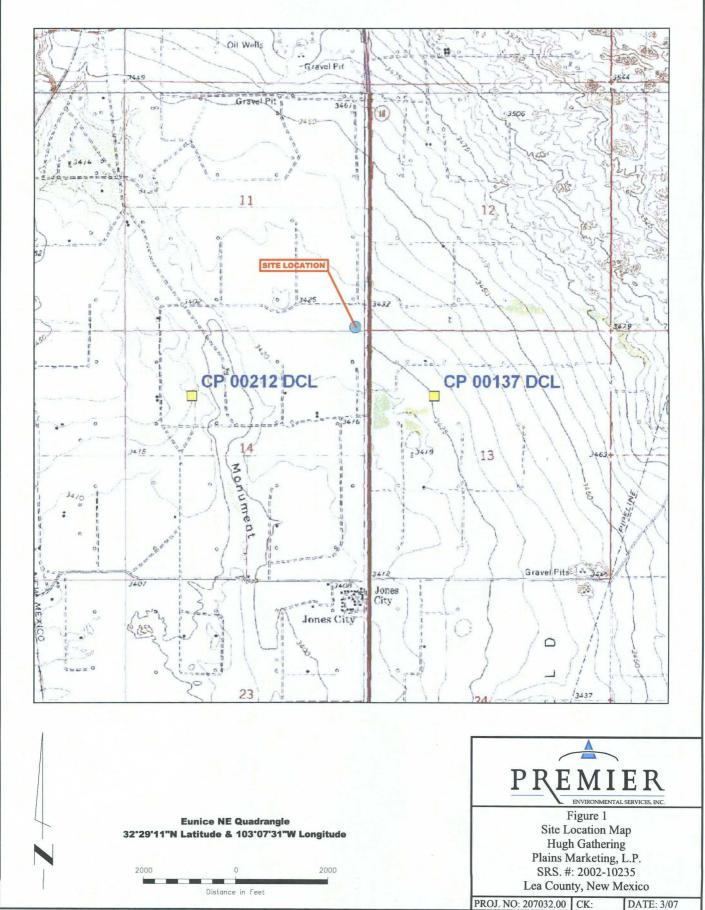
Soil excavation activities at the Site were conducted in accordance with the Abatement Plan approved by NMOCD in November 2005. In 2006, EPI completed excavation, confirmation sampling, clay barrier installment, and backfilling activities on the west side of Highway 18. EPI also completed treatment activities of residual soils in the base of the excavation using MicroBlaze Spill Control[®] (MicroBlaze). Excavation on the east side of Highway 18 remains to be completed as property access has been denied by the landowner. The activities completed during November and December 2006 are as follows:

- The excavation of the top 15 feet of hydrocarbon impacted soil was completed on the west side of the site. Confirmation soil samples were initially collected from the base and sidewalls of the excavation on November 30, 2006. The initial data indicated that additional excavation was required. The additional excavation was subsequently completed and additional soil samples were collected on December 13, 2006 to demonstrate that further excavation was not required.
- A passive organic vapor ventilation system was installed in the floor of the excavation. The system was constructed of solid and slotted 4" PVC pipe placed into two trenches, 2' wide x 2' deep x 25' long, traversing east to west in the impacted portion of the floor of the excavation and partially filled with coarse sand. A riser was installed at the east end of each slotted lateral to approximately 3-feet above the site grade. A 14-inch diameter wind turbine was permanently affixed to the 4" PVC riser. The wind turbines, when rotated by the wind, create a negative pressure inside the slotted laterals, pulling vadose zone vapors into the system and exhausting them to the atmosphere.
- Prior to installation of the compacted clay barrier, the floor of the excavation was saturated with 6% MicroBlaze to aid in degradation of residual hydrocarbons. After excavating the sidewalls adjacent to NMSR18, MicroBlaze was injected into the impacted sidewalls to a horizontal depth of at least 4-feet on 10-foot horizontal and 3-foot vertical centers.
- A clay barrier measuring approximately 60 feet by 50 feet was placed along the base of the excavation in the vicinity of monitor well MW-1. The clay barrier was covered with clean soil. The area around monitor well MW-1 was sealed by placing bentonite chips both below and above the liner and hydrating the bentonite. Excavated soil was taken off-site for treatment at a land farm. The Site was graded to original grade to allow for drainage from east to west.

9

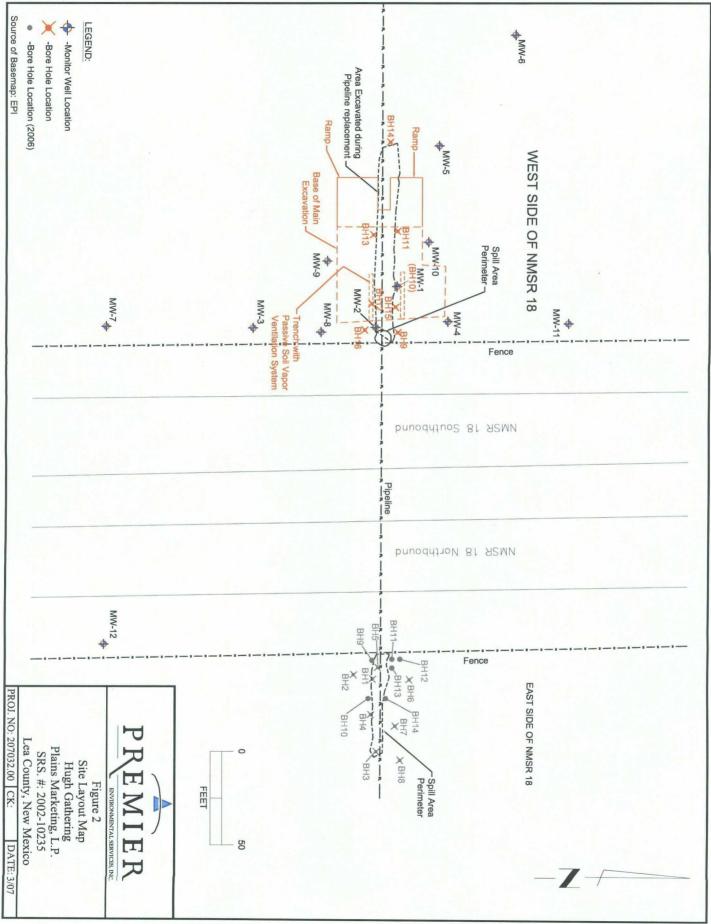
The surface vegetation will be restored by reseeding in late spring or early summer of 2007.

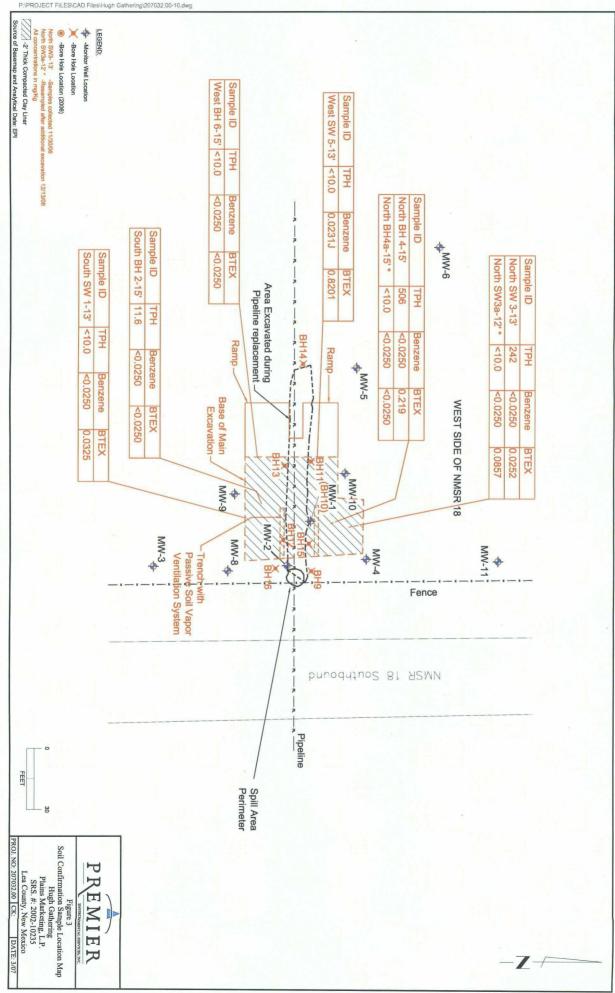
The remedial activities completed to date including the excavation, placement of clay barrier and backfill activities described in this report fulfill the requirements of the Abatement Plan for the portion of the site located on the west side of Highway 18. Premier recommends that Plains submit this report to the NMOCD for final regulatory approval of closure of soil issues on the west side of Highway 18 at this Site, and request a "No Further Action required for soil remediation" letter from the NMOCD for the west side of Highway 18 at this Site.


Implementation of the remainder of the Abatement Plan as approved by the NMOCD for the area of the site located on the east side of Highway 18, can be completed in a similar manner after the property land owner grants access to the site.

Based on the field monitoring and analytical results of groundwater samples collected and analyzed during the past year (presented in the 2006 Annual Groundwater Report), PSH was present in monitor wells MW-1, MW-2, MW-3, MW-4, MW-8, MW-9, and MW-10 with thickness ranging from 0.01 to 0.65 feet; benzene was the only constituent detected above NMOCD target levels. It was detected only in monitor well MW-5. Based on site activities completed as of December 2006 the following recommendations are made to address groundwater issues at this Site:

- Continue quarterly groundwater sampling.
- Analyze PAHs in one quarterly sampling event during 2007 to confirm 1st quarter 2006 results, and reevaluate the need for PAH analysis in groundwater from all monitor wells except MW-5.
- Measure groundwater levels monthly.
- Continue manual PSH recovery weekly.


Appendix A


- Appendix AFiguresFigure 1SiteFigure 2SiteFigure 3Soil Site Location Map Site Layout Map Soil Confirmation Sample Location Map

P:\PROJECT FILES\CAD Files\Hugh Gathering\207032.00-9.dwg

P:\PROJECT FILES\CAD Files\Hugh Gathering\207032.00.dwg

Appendix B Tables

)

- Table 1
 Soil Boring Delineation Data Westside of NMSR 18
- Table 2Summary of 2003 and 2004 Monitoring Well Soil Data
- Table 3
 Soil Confirmation Analytical Results Western Excavation

Description (FT, BGS) (FT, BGS) Probe 10' SEL/601102BH9 9/11/02 L Brown O. Probe 20' SEL/601102BH9 9/11/02 Li, Brown O. Probe 20' SEL/601102BH19 9/11/02 Li, Brown O. Probe 20' SEL/601102BH10 9/11/02 Li, Brown O. Probe 20' SEL/601202BH10 9/11/02 Brown O. Probe 10' SEL/601202BH10 9/12/02 Brown O. Probe 20' SEL/601202BH10 9/12/02 Brown O. Probe 30' SEL/601202BH10 9/12/02 Brown O. Probe 30' SEL/01202BH10 9/12/02 Brown O. Probe 30' SEL/01202BH10 9/12/02 Brown O. Probe 30' SEL/01202BH10 9/12/02 Brown O. Probe 5' SEL/01202BH11 9/16/02 Li, Brown O. Probe 5' SEL/01202BH11 9/16/02 Li, Brown O. Probe <th>Sample</th> <th>Sample</th> <th>Sampling Interval</th> <th>SAMPLE ID#</th> <th>Date</th> <th>Lithology</th> <th>VOC Hcadspace</th> <th>GRO³</th> <th>DRO⁴</th> <th>трн⁵</th> <th>$BTEX^9$</th> <th>Benzene</th> <th>Toluene</th> <th>Ethylbenzene</th> <th>p/m Xylene</th> <th>o-Xylene</th>	Sample	Sample	Sampling Interval	SAMPLE ID#	Date	Lithology	VOC Hcadspace	GRO ³	DRO ⁴	трн ⁵	$BTEX^9$	Benzene	Toluene	Ethylbenzene	p/m Xylene	o-Xylene
(1) 514.0102866 710.01 Lemonolysis 710 T10 710 </td <td></td> <td>mondument</td> <td>(FT. BGS¹)</td> <td></td> <td></td> <td>-</td> <td>mdd</td> <td>mg/Kg</td> <td>mg/Kg</td> <td>mg/Kg</td> <td>mg/Kg</td> <td>mg/Kg</td> <td>mg/Kg</td> <td>mg/Kg</td> <td>mg/Kg</td> <td>mg/Kg</td>		mondument	(FT. BGS ¹)			-	mdd	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
1 Statingtere 1/100 Lemenolysise 0/100 Lemenolysise 0/10 Lemenolysise D/10 Lemenolysise D/10 Lemenolysise D/10 Lemenolysise D/10 Lemenolysise D/10 Lemenolysise D/10 D/10 <thd 10<="" th=""> <thd 10<="" th=""> D/10</thd></thd>		Probe	10'	SEL691102BH9	9/11/02	Brown Oily Sand	793	10600	12400	23000	425.6	23.9	111	73.8	146	70.9
Image Image <th< td=""><td>BH9</td><td>Probe</td><td>15'</td><td>SEL691102BH9</td><td>9/11/02</td><td>Lt. Brown Oily Sand</td><td>863</td><td>1220</td><td>1500</td><td>2720</td><td>80.76</td><td>2.36</td><td>17.7</td><td>17.7</td><td>30.2</td><td>12.8</td></th<>	BH9	Probe	15'	SEL691102BH9	9/11/02	Lt. Brown Oily Sand	863	1220	1500	2720	80.76	2.36	17.7	17.7	30.2	12.8
2 5 5 5 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7		Probe	20'	SEL691102BH9	9/11/02	Lt. Brown Oily Sand	50.4	<10.0	<10.0	<10.0	127	<0.025	<0.025	0.031	0.096	<0.025
T T		Probe	25'	SEL691102BH9	9/11/02	Lt. Brown Oily Sand	6.9	<10.0	<10.0	<10.0	<0.025	<0.025	<0.025	<0.025	< 0.025	< 0.025
1 Exclored 1 2<	1	Probe	5'	SEL691202BH10	9/12/02	Brown Oily Sand	828	7560	7030	14590	507.7	43.9	160	66	141	63.8
1 5 4 1 0 1 0		Probe	10,	SEL691202BH10	9/12/02	Brown Oily Sand	857	22000	25100	47100	1030	101	325	197	280	127
27 55(10)20110 91/10 Demolysikation 150 1500 </td <td></td> <td>Probe</td> <td>15'</td> <td>SEL691202BH10</td> <td>9/12/02</td> <td>Brown Oily Sand</td> <td>597</td> <td>16700</td> <td>18100</td> <td>34800</td> <td>959</td> <td>101</td> <td>308</td> <td>173</td> <td>260</td> <td>117</td>		Probe	15'	SEL691202BH10	9/12/02	Brown Oily Sand	597	16700	18100	34800	959	101	308	173	260	117
37 51 51/30 Montoly (12) Montoly (13) 1100 200 76.5 66.3 23.4 13.5 13.6 13.7		Probe	20'	SEL691202BH10	9/12/02	Brown Oily Sand/Prod.	656	15300	15800	31100	801.1	76.1	252	146	225	102
90 55:10:10:10 1/10:00 Remaining (1) 1/10:00 Rest 1/10:00	1	Probe	25'	SEL691202BH10	9/12/02	Brown Oily Sand	573	12000	11400	23400	716.5	66.2	234	132	197	87.3
37 38 38 36 130 230 364 365 364 365 364 365 364 365 364 365	BH10	Probe	30'	SEL691202BH10	9/12/02	Brown Sandy Clay	647	13800	14400	28200	855.5	80.5	271	164	235	105
40 SEG0030BHII 9/120 Rad Gay 560 1600 2360 5100 5100 644 5100 50 SEG0730BHII 9/140 Rad Gay 73 100 500 <th< td=""><td></td><td>Probe</td><td>35'</td><td>SEL691202BH10</td><td>9/12/02</td><td>Red Clay</td><td>400</td><td>10600</td><td>12300</td><td>22900</td><td>484.8</td><td>35.6</td><td>143</td><td>98.1</td><td>141</td><td>67.1</td></th<>		Probe	35'	SEL691202BH10	9/12/02	Red Clay	400	10600	12300	22900	484.8	35.6	143	98.1	141	67.1
47 5 511 713		Probe	40'	SEL691202BH10	9/12/02	Red Clay	386	16400	16400	32800	900.9	90.9	285	168	245	112
90 SEL09/2004H10 9/10/0 Med Carc 7/2 C10/2		Probe	45'	SEL691202BH10	9/13/02	Rcd Clay	800	3480	3970	7450	345.8	25.7	109	66.4	100	44.7
5 S1100000000000000000000000000000000000		Probe	50'	SEL691202BH10	9/13/02	Red Clay	72.4	15.3	21.9	37.2	< 0.025	, <0.025	<0.025	<0.025	<0.025	<0.025
5 5 51000030H11 71002 L. Bown Sand 23 5100 51003 61023 61023 61023 61023 61023 61023 61023 61023 61023 61023 61023 61023 61023 61023 61023 61023 61023 61023 61023 61033 <t< td=""><td></td><td>Probe</td><td>55'</td><td>SEL691202BH10</td><td>9/13/02</td><td>Red Clay</td><td>7.8</td><td><10.0</td><td><10.0</td><td><10.0</td><td>< 0.025</td><td><0.02</td><td><0.025</td><td><0.025</td><td><0.025</td><td><0.025</td></t<>		Probe	55'	SEL691202BH10	9/13/02	Red Clay	7.8	<10.0	<10.0	<10.0	< 0.025	<0.02	<0.025	<0.025	<0.025	<0.025
(1) 51100003H11 (1)(00 L. Brown Smadt (2) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100) < (100)		Probe	5.	SEL691602BH11	9/16/02	Lt. Brown Sand	2.8	<10.0	<10.0	<10.0	< 0.025	<0.02	<0.025	<0.025	<0.025	<0.025
1 5 5100<	BHII	Probe	10'	SEL691602BH11	9/16/02	· Lt. Brown Sand	2.5	<10.0	<10.0	<10.0	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
5 SIG00000H12 71/102 Encorrigitation (New Colly-stand (New Colly-stand (New Colly-stand (New Coll)-stand (New Coll)-st		Probe	15'	SEL691602BH11	9/16/02	Lt. Brown Sand	1.3	<10.0	<10.0	< 10.0	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
10 SELONOCON11 9/10/10 Lemon Obj.Scn 9/20 5/30 0/30 6/37 7/30 6/37 7/30 27 SELONOCON112 9/10/00 L. Brevon Sand 74 7(00 7(10) 0.121 <0.035		Probe	5.	SEL691602BH12	9/16/02	Brown Oily Sand & Rk	1157	2740	2840	5580	245.4	17.1	73.5	46.5	74.6	33.7
15 SEL(0)1020H12 0/10/2 1.1 Example 0.03	- C1110	Probe	10'	SEL691602BH12	9/16/02	Brown Oily San	982	4500	5930	10430	222.8	11.8	60.3	45.7	72.0	33.0
20 SEL6910028112 9/16/02 L. Brown Sand 21 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100	71110	Probe	15'	SEL691602BH12	9/16/02	Lt. Brown Sand	74.8	<10.0	<10.0	<10.0	0.121	<0.025	0.028	0.03	0.063	<0.025
5 SEL6910029H113 9/16/02 L. Berow Sand 0/7 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <td></td> <td>Probe</td> <td>20'</td> <td>SEL691602BH12</td> <td>9/16/02</td> <td>Lt. Brown Sand</td> <td>2.1</td> <td><10.0</td> <td><10.0</td> <td><10.0</td> <td>0.182</td> <td><0.025</td> <td>0.045</td> <td>0.038</td> <td>0.099</td> <td><0.025</td>		Probe	20'	SEL691602BH12	9/16/02	Lt. Brown Sand	2.1	<10.0	<10.0	<10.0	0.182	<0.025	0.045	0.038	0.099	<0.025
10 SEL691002BH13 9/16/02 L. Brown Sandi 16 <100 <100 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <100.5 <10		Probe	5'	SEL691602BH13	9/16/02	Lt. Brown Sand	0.7	<10.0	<10.0	<10.0	1.020	0.026	0.164	0.188	0.500	0.142
15 SEL601002BH14 9/16/02 1.4. Brown Sandi 1.4 < (100 < (100 < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) < (0025) <t< td=""><td>BH13</td><td>Probe</td><td>10,</td><td>SEL691602BH13</td><td>9/16/02</td><td>Lt. Brown Sand</td><td>1.6</td><td><10.0</td><td><10.0</td><td><10.0</td><td><0.025</td><td><0.025</td><td><0.025</td><td><0.025</td><td><0.025</td><td><0.025</td></t<>	BH13	Probe	10,	SEL691602BH13	9/16/02	Lt. Brown Sand	1.6	<10.0	<10.0	<10.0	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
\$' SEL691002BH14 9/16/02 1.4. Brown Sand & R.k 8.4 <10.0 <10.0 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <10.02 <th< td=""><td></td><td>Probe</td><td>15'</td><td>SEL691602BH13</td><td>9/16/02</td><td>Lt. Brown Sand</td><td>1.4</td><td><10.0</td><td><10.0</td><td><10.0</td><td><0.025</td><td><0.025</td><td><0.025</td><td><0.025</td><td><0.025</td><td><0.025</td></th<>		Probe	15'	SEL691602BH13	9/16/02	Lt. Brown Sand	1.4	<10.0	<10.0	<10.0	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
10° SEL.09102BH14 9/16/02 Lik Brown Sand 6/1 <td></td> <td>Probe</td> <td>5.</td> <td>SEL691602BH14</td> <td>9/16/02</td> <td>Lt. Brown Sand & Rk</td> <td>8.4</td> <td><10.0</td> <td><10.0</td> <td><10.0</td> <td><0.025</td> <td><0.025</td> <td><0.025</td> <td><0.025</td> <td><0.025</td> <td><0.025</td>		Probe	5.	SEL691602BH14	9/16/02	Lt. Brown Sand & Rk	8.4	<10.0	<10.0	<10.0	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
15 SEL601602BH14 9/16/02 14. Brown Sand & Rk 5.5 < 10.0 < 6/0.05 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02 < 6/0.02	BH14	Probe	10'	SEL691602BH14	9/16/02	Lt. Brown Sand	6.1	<10.0	<10.0	<10.0	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
5' SEL601702BH15 9/17/02 Brown Sand & Rk 905.0 163.0 1363.8 39.8 29.6 248 517 17.1 10' SEL601702BH15 9/17/02 Brown Sand & Rk 864.0 19600 18300 37900 255.11 97.1 57.2 474 926 20' SEL601702BH16 9/17/02 L. Brown Sand 5.3 <10.0		Probe	15'	SEL691602BH14	9/16/02	Lt. Brown Sand	5.5	<10.0	<10.0	<10.0	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
		Probe	5.	SEL691702BH15	9/17/02	Brown Sand & Rk	905.0	8060	7970	16030	1363.8	39.8	296	248	517	263
15 SEL691702BH15 9/17/02 L. Brown Sand 25.4 < 10.0 21.0 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 <t< td=""><td>BHIS</td><td>Probe</td><td>10'</td><td>SEL691702BH15</td><td>9/17/02</td><td>Brown Sand & Rk</td><td>864.0</td><td>19600</td><td>18300</td><td>37900</td><td>2550.1</td><td>97.1</td><td>572</td><td>474</td><td>926</td><td>481</td></t<>	BHIS	Probe	10'	SEL691702BH15	9/17/02	Brown Sand & Rk	864.0	19600	18300	37900	2550.1	97.1	572	474	926	481
20 SEL691702BH15 9/17/02 L. Brown Sand 6.2 <10.0 <10.0 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <10.025 <th< td=""><td></td><td>Probe</td><td>15'</td><td>SEL691702BH15</td><td>9/17/02</td><td>Lt. Brown Sand</td><td>25.4</td><td><10.0</td><td>21.0</td><td>21.0</td><td>< 0.025</td><td><0.025</td><td><0.025</td><td><0.025</td><td><0.025</td><td><0.025</td></th<>		Probe	15'	SEL691702BH15	9/17/02	Lt. Brown Sand	25.4	<10.0	21.0	21.0	< 0.025	<0.025	<0.025	<0.025	<0.025	<0.025
5' SEL691702BH16 9/17/02 Brown Sand 78.0 79.50 188.57 5.37 43.2 35.9 73.1 10' SEL691702BH16 9/17/02 Li. Brown Sand 818.0 11400 12100 23600 58.4 27.9 187 120 154 120 15' SEL691702BH16 9/17/02 Li. Brown Sand 818.0 11400 12100 23600 565.1 161 107 178 178 20' SEL601702BH16 9/17/02 Brown Sand 818.0 752.0 895.0 16470 19.11 6.0.22 0.00 272 5.37 7.71 178 20' SEL601702BH16 9/17/02 Brown Sand 818.0 752.0 895.0 16470 19.11 6.0.22 0.020 0.272 5.37 7.71 178 216.01702BH16 9/17/02 Red Clay 87 710 6.000 0.010 0.002 0.000 0.020 0.025 0.025 0.025 0.025 0.026 0.026 0.026 0.026 0.026 0.026 0.026 <t< td=""><td></td><td>Probe</td><td>20'</td><td>SEL691702BH15</td><td>9/17/02</td><td>Lt. Brown Sand</td><td>6.2</td><td><10.0</td><td><10.0</td><td><10.0</td><td><0.025</td><td>< 0.025</td><td><0.025</td><td><0.025</td><td><0.025</td><td><0.025</td></t<>		Probe	20'	SEL691702BH15	9/17/02	Lt. Brown Sand	6.2	<10.0	<10.0	<10.0	<0.025	< 0.025	<0.025	<0.025	<0.025	<0.025
		Probe	5,	SEL691702BH16	9/17/02	Brown Sand	786.0	3950	4000	7950	188.57	5.37	43.2	35.9	73.1	31.0
15' SEL601702BH16 9/17/02 Lt. Brown Sand 818.0 12100 23500 598.4 27.9 187 120 185	_1	Probe	10'	SEL691702BH16	9/17/02	Lt. Brown Sand	642.0	7630	7860	15490	488	28.2	140	98.0	154	67.8
		Probe	15'	SEL691702BH16	9/17/02	Lt. Brown Sand	818.0	11400	12100	23500	598.4	27.9	187	120	185	78.5
$ \frac{25'}{30} = \frac{51601702BH16}{51691702BH16} = \frac{9/17/02}{9/17/02} = \frac{174.0}{164.04} = \frac{73.0}{161} = \frac{17.1}{16} = \frac{17.1}{17.02} = \frac{17.1}{16} = 17.1$	BHI6	Probe	20'	SEL691702BH16	9/17/02	Brown Sand	814.0	8880	9780	18660	565.1	36.1	161	107	178	83.0
30' SEL691702BH16 9/17/02 Red Clay 8.7 <10.0 <10.0 0.413 <0.055 0.063 0.09 0.216 35' SEL691702BH16 9/17/02 Red Clay 7.8 <10.0		Probe	25	SEL691702BH16	9/17/02	Brown Sand	774.0	7520	8950	16470	19.11	<0.200	2.72	5.37	7.71	3.31
35' SEL691702BH16 9/17/02 Red Clay 7.8 <10.0 <10.0 0.025 0.100 0.100 0.025		Probe	30'	SEL691702BH16	9/17/02	Red Clay	8.7	<10.0	<10.0 ·	<10.0	0.413	<0.025	0.063	0.09	0.216	0.044
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Probe	35'	SEL691702BH16	9/17/02	Red Clay	7.8	<10.0	<10.0	<10.0	0.5520	<0.025	0.100	0.100	0.288	0.064
Remedial Goals for soil from the surface to ~8bgs 100.0 Remedial Goals for soil from ~8bgs to the groundwater at ~58bgs 100.0 Of ppm						Method Detection Limit		10	10			0.025	0.025	0.025	0.025	0.025
Remedial Goals for soil from ~8bgs to the groundwater at ~58bgs 100.0 01 ppm Constituents				Remedial	Goals for soil	from the surface to ~8'bgs	100.0			1000	50.0000	10.0000				
01 ppm Constituents				emedial Goals for soil fr	om ~8'bgs to t	the groundwater at ~58'bgs	100.0			100	50.0000					ļ
Constituents	100 ppm Isobutylen	e calibration gas =	= 101 ppm						TPH-Total Petro	oleum Hydrocarb	on = GRO+DR(
	bgs – below ground 2vOC_Volatile Octo	l surface inic Contaminants	Constituents					6	7950 = Concentr.	ations in bold abc	ove remediation g	zoals				
	GRO-Gasoline Ran	ige Organics C ₆ -C	12					/	D I EA - IVIdSS 2 VD - not derected	durit of Derizerit data the meth	s, totuene, etny od detection limi	lbenzene, and x t.	(yienes			
	⁴ DRO-Diesel Range	Organics C ₁₂ -C ₃₅						V	dl date prior to 2007 was	v collected by EPI						

Table 1 Soil Boring Delineation Data Westside of NMSR 18 Hugh Gathering Site #2002-10235 Plains Marketing L.P. Premier Project #207032

Table 2Summary 2003 and 2004 Monitoring Well Soil DataHugh Gathering Site # 2002-10235Premier Project No: 207032

Sample ID	Sample	Boring ID	Lab ID	Benzene	Toluene	Ethylbenzene	Ethylbenzene m.p-Xylenes	o-Xylene	Total BTEX	TPH (GRO)	TPH (DRO)	Total TPH
~	Dale			(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
SEHG6503SMW-10'				<0.02	<0.02	<0.02	<0.02	<0.02	<0.1	<5	Ş	<10
SEHG6503SMW-20'				<0.02	<0.02	<0.02	<0.02	<0.02	<0.1	<5	<5	<10
SEHG6503SMW-30'	05 Lun 02			<0.02	<0.02	<0.02	<0.02	<0.02	<0.1	<5	<5	<10
SEHG6503SMW-40'	co-unr-co	7- M M		<0.02	<0.02	<0.02	<0.02	<0.02	<0.1	<5	<5	<10
SEHG6503SMW-50'				<0.02	<0.02	<0.02	<0.02	<0.02	<0.1	<5	<5	<10
SEHG6503SMW-70'				<0.02	0.0242	0.0689	0.122	0.047	0.2621	<5	<2	<10
SEHG6902SMW2-10'				<0.02	<0.02	<0.02	<0.02	<0.02	<0.1	<5	<5	<10
SEHG6902SMW2-20'	00 1 03	MW 2		<0.02	<0.02	<0.02	<0.02	<0.02	<0.1	<5	<5	<10
SEHG6902SMW2-30'	co-1111-60	C- M M		<0.02	<0.02	<0.02	<0.02	<0.02	<0.1	Ş	S .	<10
SEHG6902SMW2-40'				<0.02	<0.02	<0.02	<0.02	<0.02	<0.1	<5	Ş	<10
SEHG6603NMW-10'				<0.02	<0.02	<0.02	<0.02	<0.02	<0.1	€	<5	<10
SEHG6603NMW-20'	06-Jun-03	MW-4		<0.02	<0.02	<0.02	<0.02	<0.02	<0.1	<5	<5	<10
SEHG6603NMW-30'				<0.02	<0.02	<0.02	<0.02	<0.02	<0.1	.<5	<5	<10
LEHG62504MW8-35'	75_lin_07	8 MM		<0.02	<0.02	<0.02	<0.04	<0.02	<0.12	<5	<2.5	<7.5
LEHG62504MW8-55'	+0-11nf-07	0- AA TAT		<0.02	<0.02	<0.02	<0.04	<0.02	<0.12	<5	<2.5	<7.5
LEHG62804MW9-35'	78 Iun 04	MW 0		<0.02	<0.02	<0.02	<0.04	<0.02	<0.12	<5	2.53	2.53
LEHG62804MW9-55'	+0-Imr-07			<0.02	<0.02	<0.02	<0.04	<0.02	<0.12	<5	<2.5	<7.5
LEHG62904MW10-35'	20 Lun 04	N11 10		0.0403	1.25	2.4	3.65	1.58	8.9203	41.5	97.6	139
LEHG62904MW10-55'	+0-1111-67			0.0452	1.27	2.39	3.59	1.58	8.8752	20.5	57.7	78.2
LEHG62404MW11-35'	24 Lun 04			<0.02	<0.02	<0.02	<0.04	<0.02	<0.12	<\$	6.2	6.2
LEHG62404MW11-55'	+0-IIn(-+7	1 1 - AA TAT		<0.02	<0.02	<0.02	<0.04	<0.02	<0.12	<5	<2.5	<7.5
PAAHG12101MW12-30'				<0.025	<0.025	<0.025	<0.025	<0.025	<0.125	<10.0	<10.0	<10.0
PAAHG12101MW12-45'	01-Dec-04	MW-12		<0.025	<0.025	<0.025	<0.025	<0.025	<0.125	<10.0	<10.0	<10.0
PAAHG12101MW12-55'				<0.025	<0.025	<0.025	<0.025	<0.025	<0.125	<10.0	<10.0	<10.0
NMOCD Remedial Thresholds	iresholds			10					50			100

2. No samples were retained for laboratory analysis from the soil borings installed for MW-5, MW-6 and MW-7. Notes: 1. Bolded values are in excess of the NMOCD Remediation Thresholds.

Page 1 of 1

Table 3Soil Confirmation Analytical Results - Western ExcavationPlains Marketing, L.P.Plains SRS No. 2002-10235Hugh Gathering

LocationDate SampledLaboratory SampledCe,C1C1,-C1sEPA 8015BenzeneTolueneEthylbenzeneXipeneXipeneXipeneRol RolNMOCD RemediatorSampledSampledGe/C1C12,-C1smMMM <th></th> <th></th> <th></th> <th>Ì</th> <th>НЧТ</th> <th></th> <th>Total TPH</th> <th></th> <th></th> <th></th> <th>Xylenes</th> <th>nes</th> <th>Total</th> <th>BTEX</th>				Ì	НЧТ		Total TPH				Xylenes	nes	Total	BTEX
	Location	Date Sampled		C ₆ -C ₁₂	C ₁₂ -C ₂₈	C28-C35	EPA 8015 m	Benzene	Toluene		Xylene (p/m)	Xylene. (o)	Xylenes	EPA 8021b
			•	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NMOCD Remediation G	Goals			2		100	10		•				50
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	South SW 1-13'	11/30/2006	6K28013-01	<10.0	<10.0	<10.0	<10.0	<0.0250	<0.0250	<0.0250	0.0325	0.0216 J	0.0325	0.0325
	South BH 2-15'	11/30/2006	6K28013-02	<10.0	11.6	<10.0	11.6	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	0	0
87.9 408 10.1 506 < 0.0250 0.0142 0.0479 0.168 0.1569 0.1569 0.1569 0.1569 0.1569 0.1569 0.1569 0.1569 0.1657 0.485 0.157 0.485 0.157 0.485 0.127 0.485 0.127 0.485 0.127 0.485 0.127 0.485 0.127 0.485 0.127 0.485 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0468	North SW 3-13'	11/30/2006	6K28013-03	20.5	221	5.5 J	242	<0.0250	<0.0250	<0.0250	0.0252	<0.0250	0.0252	0.0252
< <10.0	North BH 4-15'	11/30/2006	6K28013-04	87.9	408	10.1	. 506	<0.0250	0.0142	0.0479	0.108	0.0489	0.1569	0.219
<	West SW 5-13'	11/30/2006	6K28013-05	. <10.0	<10.0	<10.0	<10.0	0.0231 J	0.162	0.15	0.358	0.127	0.485	0.8201
<10.0	West BH 6-15'	11/30/2006	6K28013-06	<10.0	<10.0	<10.0	<10.0	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	0	0
<10.0														
<10.0	North SW3a-12'	12/13/2006	6L05005-01	<10.0	<10.0	<10.0	<10:0	<0.0250	<0.0250	0.0389	0.0468	<0.0250	0.0468	0.0857
<10.0	North BH4a-15'	12/13/2006	6L05005-02	<10.0	5.47 J	<10.0	<10.0	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	0	0
<10.0														
<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250	S Stockpile Northside Comp.	12/14/2006	6L13012-01	<10.0	<10.0	<10.0	<10.0	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	0	0
	S Stockpile Southside Comp.	12/14/2006	6L13012-02	<10.0	<10.0	<10.0	<10.0	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	0	0
							,			,				

BH = Bottom Hole SW = Sidewall All data collected by EPI.

Concentrations in bold exceed NMOCD Remediation Goals J = estimated value

GRO - Gasoline Range Organics DRO - Diesel Range Organics

Page 1 of 1

Appendix C

NMOCD Approval Letter of Abatement Plan

NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

BILL RICHARDSON Governor Joanna Prukop Cabinet Secretary Mark E. Fesmire, P.E. Director Oil Conservation Division

November 4, 2005

Ms. Camille Reynolds Plains All American Pipeline, L.P. 3112 West Highway 82 Lovington, NM 88260

RE: Stage 1 and Stage 2 Abatement Plan (Revised)
Hugh Gathering 909402 (ref. # 2002-10235) Dated May 2005
Unit Letters M of Section 12 and P of Section 11, Township 21 South, Range 37 East
Lea County, New Mexico
NMOCD Ref. AP-0041

Dear Ms. Reynolds:

The New Mexico Oil Conservation Division (NMOCD) has received and reviewed the proposal shown above submitted on behalf of Plains All American Pipeline, L.P. (Plains) by Environmental Plus, Inc. (EPI). This abatement plan (AP) is hereby approved, pursuant to 19.15.1.19 NMAC, with the following conditions and understandings:

- <u>AP ref. 4.2 "Remediation Strategy"</u>: installation of a 2-foot thick clay barrier to isolate remaining contaminants is approved. This clay barrier will be compacted to 95% percent of the material's Standard Proctor Density per ASTM D-698 and extend a minimum or 5 feet beyond the contaminated soil in the floor of the excavation. Also, Plains will install a passive soil vapor ventilation system below the clay barrier to evacuate volatile organic vapors.
- 2. <u>AP ref. 4.5 "Abatement and Monitoring Schedule"</u>: the portion of this paragraph that proposes cessation of abatement of the groundwater after 4 consecutive quarters of monitoring well data below regulatory limits is <u>not</u> approved. Eight (8) consecutive quarters shall be required pursuant to 19.15.1.19.B (4) NMAC.
- 3. Installation of a covering cap is required in addition to AP proposals. This cap shall be constructed using PVC (Polyvinyl chloride), or other equivalent material that meets or exceeds the various ASTM standards for PVC, shall be at least 12 mils thick, shall extend at least 3 feet beyond the areas of contamination, and shall be covered with at least 3 feet of clean soil prior to "backfilling, contouring and reseeding" activities described in parts 4.2.1.5 and 4.2.2.5 of the abatement plan.

AP-0041 Plains Pipeline, L.P. November 4, 2005 Page 2 of 2

NMOCD approval of this abatement plan does not relieve Plains of liability should its operations at this site prove to have been harmful to public health or the environment. Nor does it relieve Plains of its responsibility to comply with the rules and regulations of any other local, state or federal governmental agency.

If you have any questions, contact Ed Martin at (505) 476-3492 or ed.martin@state.nm.us

NEW MEXICO OIL CONSERVATION DIVISION

Roger C. Anderson Environmental Bureau Chief

Copy: NMOCD, Hobbs Environmental Plus, Inc.

Appendix D

Site Photographs

Photograph 1: Excavation of affected soil to 15 feet bgs.

Photograph 2: Placement of horizontal slotted PVC pipe in trenches as part of the Passive Soil Vapor Ventilation System.

Photograph 3: 2'x2'x25' long trench with slotted PVC Pipe covered with coarse sand.

Photograph 4: Liner over north side trench.

Photograph 5: Liner over south side trench.

Photograph 6: Clay barrier installed at the base of the excavation.

Photograph 7: Partially backfilled excavation with PVC risers for Passive Soil Vapor Ventilation System.

Photograph 8: Site returned to normal grade.

Appendix E

Analytical Laboratory Reports – Available Electronically on CD Only

BH6 to 9 – g0204502 Sept 2002 BH10 – g0204544 Sept 2002 BH10 – g0204545 Sept 2002 BH11 to 14 – g0204546 September 2002 BH15 to 16 – g0204548 September 2002 2002 – 10235 (6503) MW10 June 2003 2002 – 10235 (6603) MW10 June 2003 2002 – 10235 (6903) MW2 June 2003 2002 – 10235 (6_24_04) MW11 July 2004 4L02002 Dec 2004 – MW12 Soil Data

Appendix F

C-141 Release Notification Form

ENVIRONMENTAL PLUS, INC. Micro-Blaze Micro-Blaze Micro-Blaze Micro-Blaze Micro-Blaze

September 12, 2002

Mr. Paul Sheeley, Environmental Engineer State of New Mexico Energy Minerals and Natural Resources Department Oil Conservation Division, Environmental Bureau 1625 North French Hobbs, New Mexico 88240

Subject: EOTT Energy Pipeline Linman Line 6" - #2002-10235 UL-P SE¼ of the SE¼ of Section 11 T21S R37E UL-M SW¼ of the SW¼ of Section 12 T21S R37E Latitude: 32° 29' 11"N Longitude: 103° 07' 31"W

Dear Mr. Sheeley,

The attached New Mexico Oil Conservation Division Form C-141 and supporting documentation is being submitted by Environmental Plus, Inc. (EPI) on behalf of Mr. Frank Hernandez, District Environmental Supervisor for EOTT Energy Pipeline for the above referenced crude oil leak site. The land owners of record according to the Lea County Assessor's Office are; William McNeill, UL-M SW¼ of the SW¼ of Section 12 T21S R37E and James A. Bryant, UL-P SE¼ of the SE¼ of Section 11 T21S R37E. Volume released was initially considered to be less than 1 barrel (bbl), however during repair activities the volume was increased to a more realistic and reportable volume of 50 bbls with 0 bbls recovered. The New Mexico Office of the State Engineer does not record any wells in Sections 11 or 12, or adjacent sections in T21S R37E. The New Mexico Tech "geo-information" database shows water level measurements for two wells east and within 1 mile of the site at a higher elevation/altitude that average ~66.8 feet below ground surface ('bgs). Actual water level measurement of a deep soil boring at the site shows ground water to occur at 58.0'bgs. Refer to the attached ground water well location map. The attached site information and metrics form summarizes and ranks the site according to the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks and Spills, 1993. Based on the depth to ground water, the following acceptable remedial thresholds for Benzene, BTEX, i.e., the mass sum of Benzene, Toluene, Ethyl Benzene, and Xylenes, and Total Petroleum Hydrocarbon EPA method 8015m (TPH^{8015m}) are as follows;

• Soil from the surface to 8.0'bgs

Benzene 10 mg/Kg BTEX 50 mg/Kg TPH^{8015m} 1000 mg/Kg.

• Soil from 8.0'bgs to 58.0'bgs

Benzene 10 mg/Kg BTEX 50 mg/Kg TPH^{8015m} 100 mg/Kg.

ENVIRONMENTAL PLUS, INC. Micro-Blaze Micro-Blaze Micro-Blaze Micro-Blaze Micro-Blaze Micro-Blaze Cod²⁷ State Approved Land Farm and Environmental Services

EOTT is currently delineating the vertical and horizontal extents of crude oil contamination at the site. Based on the delineation information, a viable remediation plan will be developed consistent with the NMOCD approved "General Work Plan for Remediation of E.O.T.T. Pipeline Spills, Leaks and Releases in New Mexico, July 2000" and submitted to the NMOCD for approval. The near surface soil will be disposed of in an NMOCD approved facility.

All official communication should be addressed to;

Mr. Frank Hernandez E.O.T.T. Energy Pipeline P.O. Box 1660 Midland, Texas 79703 e-mail: frank.hernandez@eott.com

If there are any questions please call Mr. Ben Miller or myself at the office or at 505.390.0288 and 505.390.7864, respectively, or Mr. Frank Hernandez at 915.638.3799.

Sincerely,

Pat McCasland EPI Technical Services Manager

cc: Frank Hernandez, ENRON Transportation Services w/enclosure William Kendrick, ENRON Transportation Services w/enclosure Ben Miller, EPI Vice President and General Manager Sherry Miller, EPI President file

District I
1625 N. French Dr., Hobbs, NM 88240
District II
1301 W. Grand Avenue, Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141 Revised March 17, 1999

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Lease No.

Release Notificat	ion and Corrective Action	
OPERATOR "INFORMATION ONLY NON	-REPORTABLE" 🛛 Initial Report	Final Report
Name of Company	Contact	
EOTT Energy Pipeline	Frank Hernandez	

Address	Telephone No.
5805 East Highway 80 / P.O. Box 1660, Midland, TX 79703	915.638.3799
Facility Name	Facility Type
Linman Line #2002-10235	6" Crude Oil Pipeline

Surface Owner Sec 12: W. McNeill Sec 11: J.A. Bryant Mineral Owner

				LUCA	TION OF REL	LEASE			
Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County: Lea	
M	12	-						Lat.: 32°29'11"N	
Р	11	21S	37E					Lon:103°07'31"W	

NATURE OF RELEASE

Type of Release	Volume of Release	Volume Recovered		
Crude Oil	50 bbls	0 bbls		
Source of Release	Date and Hour of Occurrence	Date and Hour of Discovery		
6" Steel Pipeline	Sometime before 9-4-02	9-4-02 1:00 PM		
Was Immediate Notice Given?	If YES, To Whom?	·		
🛛 Yes 🔲 No 🗋 Not Required	Paul Sheeley, Hobbs NMOCD (9-12-02)			
By Whom?	Date and Hour: Initially considered to be <1 bbl. Revised to 50 bbl on			
Pat McCasland (Environmental Plus, Inc.)	9-12-02. NMOCD notified on 9-12-02 4:00 PM			
Was a Watercourse Reached? 🔲 Yes 🔀 No	If YES, Volume Impacting the Watercourse.			

If a Watercourse was Impacted, Describe Fully.*

Describe Cause of Problem and Remedial Action Taken.*

The cause of the release was internal/external corrosion. The line has been replaced. Contaminated soil is stockpiled on a plastic barrier on site awaiting remediation.

Describe Area Affected and Cleanup Action Taken.*

Oily spots less than 3' in diameter were initially observed around the vents of the pipeline conduit that passes under NMSR18. During replacement activities, the soil in the ditch line and around the conduit ends were observed to impacted. The east side Sec 12 Spill Area = \sim 326 ft² 55' X 10'. The west side Sec 11 Spill Area = \sim 936 ft² 98'X 12'. Near surface soil will be characterized in accordance with 40 CFR 261 and with NMOCD approval, disposed of in a NMOCD approved facility. The site will be delineated and remediated. Soil within the NMSR18 may also be contaminated in the subsurface.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

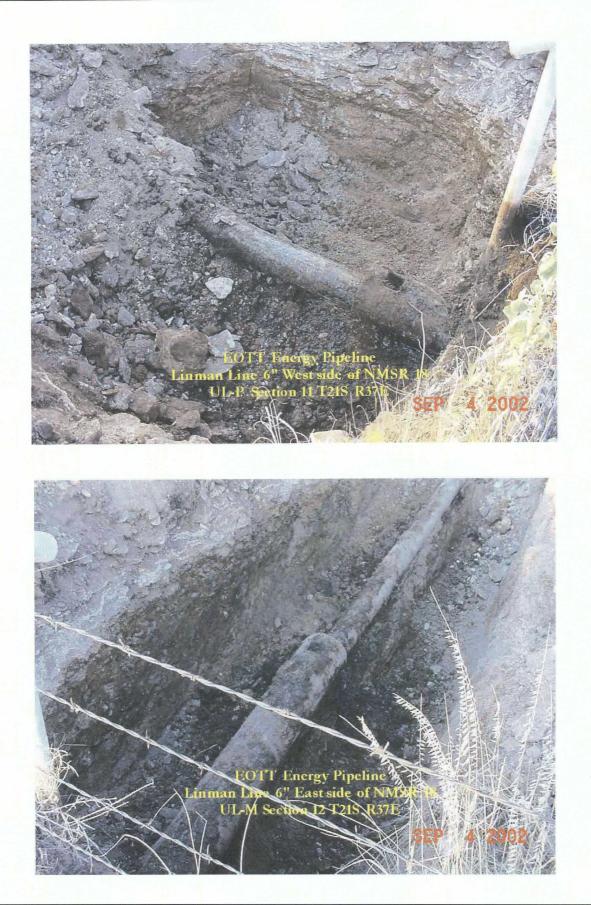
Signature: Shamk Normanste	OIL CONSERVATION DIVISION		
Printed Name: Frank Hernandez	Approved by District Supervisor:		
Title: District Environmental Supervisor	Approval Date:	Expiration Date:	
Date: September 12 2002 Phone: 915 638 3799	Conditions of Approval:	Attached	

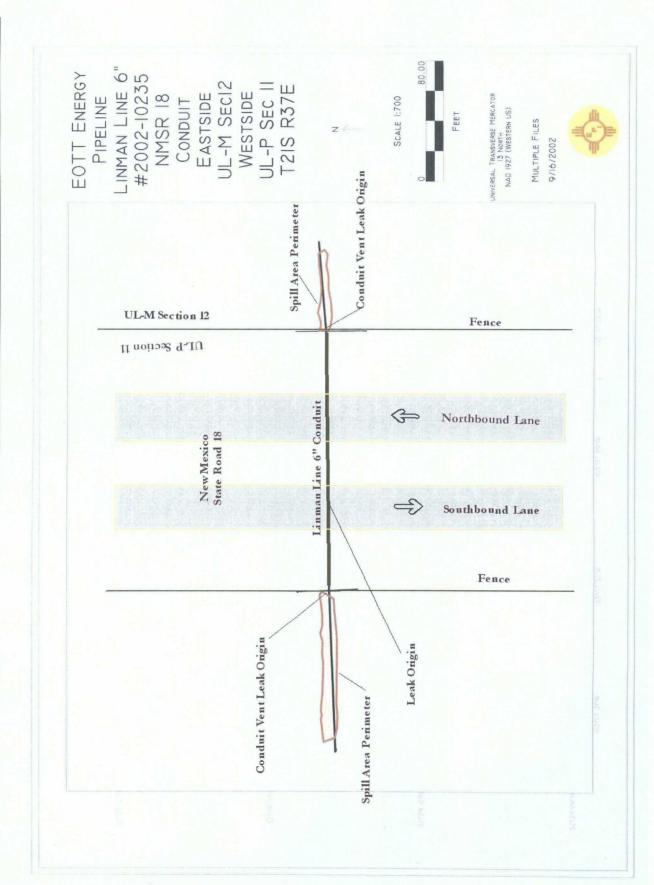
* Attach Additional Sheets If Necessary

EOTT Energ	v Pineline	Incident Da	te and NMOCD Notified?:		
Site Information		Discovered 9-4-02 NMOCD verbally notified on 9-12-02			
	E: Linman Line 6" Assigned Site Reference #: #2002-10235				
	DTT Energy Pipeline		<u> </u>		
	5805 East Highway 80				
	s: P.O. Box 1660				
City, State, Zip		3			
	Frank Hernandez, Di		mental Supervisor		
	Telephone: 915.638.379				
Telephone:	Telephone. 715.050.57			····	
A	eleased (bbls): revised to f	50 bbls on 9_{-}		· · ·	
12-02	fiedsed (0013). Tevised to .	50 0013 011 5	Recovered (bbls): 0		
12 02	>25 bbls : Notify	NMOCD verbally	within 24 hrs and submit form C-141 w	ithin 15 days.	
	(Al:	so applies to unau	thorized releases >500 mcf Natural Gas)		
5-25 bbl	s: Submit form C-141 with	nin 15 days (A	lso applies to unauthorized relea	ses of 50-500 mcf Natural Gas)	
Leak, Spill, or I	Pit (LSP) Name: Linmar	n Line 6" #200	2-10235		
Source of conta	mination: Crude Oil Pipe	line			
			s A Bryant / Sec 12: William Me	cNeill	
LSP Dimension	s West side Section 11:9	8' x 12' E	ast side Section 12: 55'x10'		
LSP Area:	West side Section 11:	936 ft ² E	ast side Section 12: 326 ft ²		
Location of Ref	ference Point (RP)				
Location distan	ce and direction from RP				
Latitude:	32°29'11"N				
Longitude:	103°07'31"W			· · · · · · · · · · · · · · · · · · ·	
	e mean sea level: ~3,428	'amsl			
Feet from South					
Feet from West			· · · · · · · · · · · · · · · · · · ·		
		of the SW 1/4 1	JL-M West side: SE ¹ / ₄ of the	SE ¹ / ₄ UL-P	
	on: East side: Section 12		est side: Section 11		
Location- Towr					
Location- Rang					
0			···· · · · · · · · · · · · · · · · · ·		
Surface water b	ody within 1000 ' radius c	of site: None			
Domestic water wells within 1000' radius of site: None					
Agricultural water wells within 1000' radius of site: None					
Public water supply wells within 1000' radius of site: None					
Depth from land surface to ground water (DG) 58.0'below ground surface					
Depth of contamination (DC) -?					
Depth to ground water $(DG - DC = DtGW)$ - to be determined					
				3. Distance to Surface Water Body	
	<50 feet: 20 points	If <1000' from water source, or;<200' from		<200 horizontal feet: 20 points	
	50 to 99 feet: 10 points	private domestic water source: 20 points		200-100 horizontal feet: 10 points	
	If >1000' from water source or: >200' from				
If Depth to Gw	>100 feet: 0 points		stic water source: 0 points	>1000 horizontal feet: 0 points	
Ground water S				Surface Water Score= 0	
Site Rank $(1+2+3) =$					
Total Site Ranking Score and Acceptable Concentrations					
Parameter >19 (8.0 to 58.0'bgs) 10-19 (Surface to 8.0'bgs) 0-9					
Benzene ¹	10 ppm	10 ppm		10 ppm	
BTEX	50 ppm	•	50 ppm	50 ppm	
TPH 100 ppm 1000 ppm 5000 ppm					
100 ppm field VOC headspace measurement may be substituted for lab analysis					

Identify Results

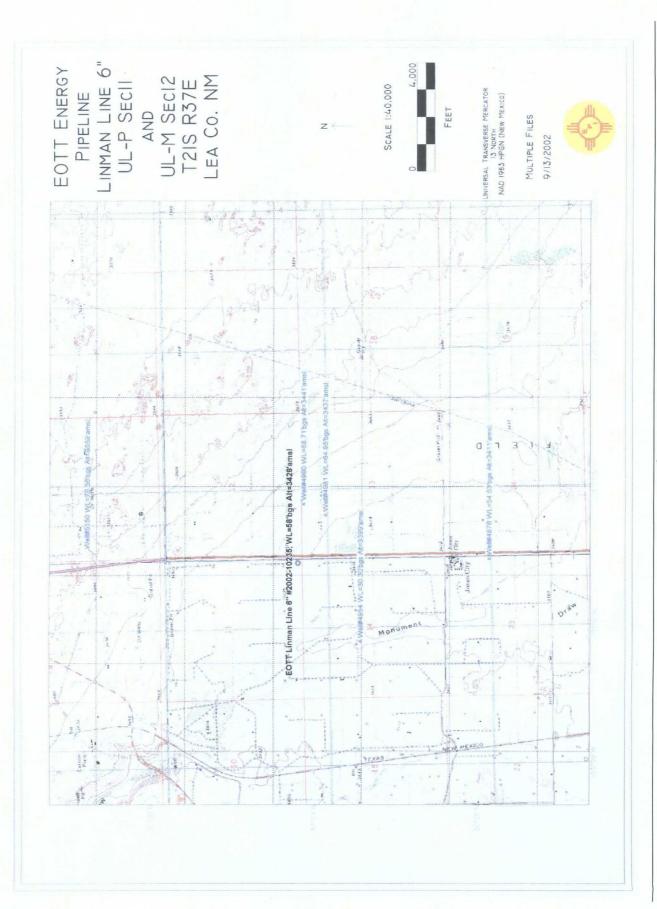
Page 1 of 1


Shape	Point	Point	Point	Point	Point
	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000
Water_wells#	4876	4981	4990	4954	5150
Water_wells-id	4876	4981	4990	4954	5150
Index_no	4876	4981	4990	4954	5,150
Siteid	322801103073101	322901103071101	322909103070601	322849103080601	323025103062501
Latitude	322801	322901	322909	322849	323025
Longitud	1030731	1030711	1030706	1030806	1030625
Lociname	11516	11490	05053	11492	12779
Altitude	3411	3437	3441	3399	3559
Use	Н	U	S	Š	U
Depth	85.00	100.00	0.00.	48:00	90.00
Geo-unit	Nó Data	No Data	No Data	No Data	No Data
Waterlev	54.53	64.95	68,71	30.30	76.56
WI-date	19651130	19680312	19910123	19910424	19910117
Wlingwsi	1	3 · · ·	2	7	6
Sitestat	No Data	No Dáta	No Data	No Data	No Dáta
Discharg	0.00	0.00	0.00	0.00	0:00
Śpc	0	0	0	0:	0
Spc-date	No Data				
Qwyear.	1965	1966	No Data	1965	1970
Temp	0.0	0.0	0.0	0.0	0.0
Tempdate	No Data				
Obs-well	No Data				


Area water well levels T21 R37E

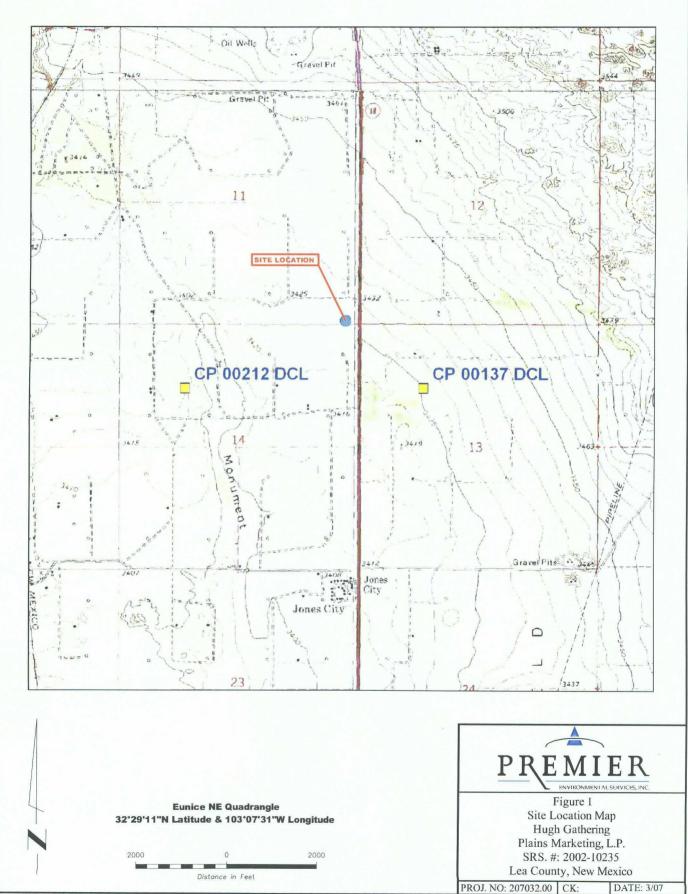
http://geoinfo.nmt.edu/.esrimap?nameX=nm-poolmaps232e465c&Cmd=Id&VName=NM... 9/13/2002

2



EOTT Energy Pipeline

S


Linman Line 6" #2002-10235

Linman Line 6" #2002-10235

9

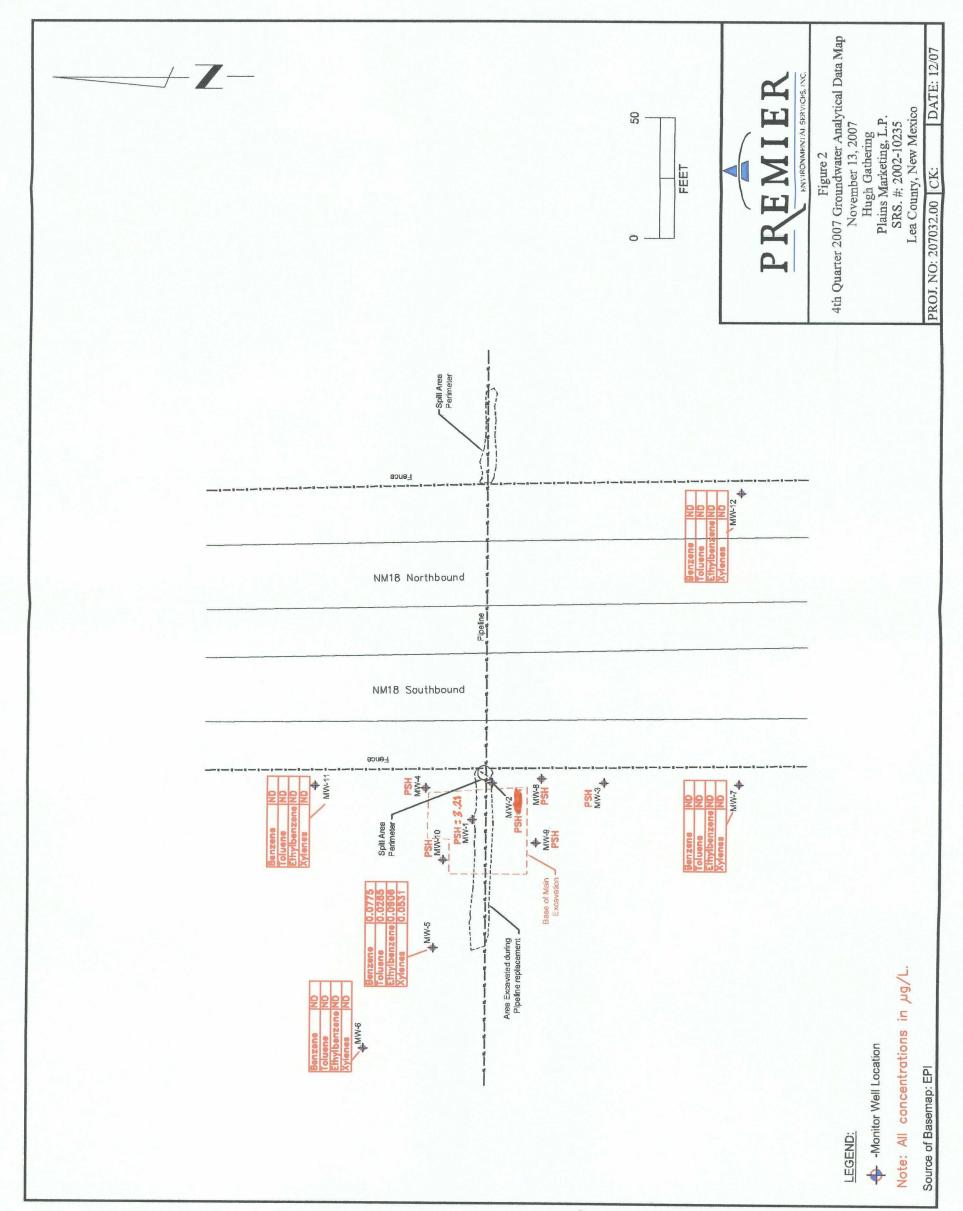


TABLE 1 Groundwater Sample Analytical Results Plains Marketing, L.P. SRS #2002-10235 Hugh Gathering

			BTEX 8260b			
SAMPLE LOCATION	SAMPLE ID	SAMPLE DATE	BENZENE mg/L	TOLUENE mg/L NMOCD Remo	ETHYL- BENZENE mg/L ediation Criter	BTEX mg/L a
			0.010	0.750	0.750	0.620
MW 5	T16511-1	3/1/2007	0.172 ^ª	0.0062	0.1380	0.0900
MW 5	T17665-2	6/1/2007	0.1210	0.0101	0.1030	0.0608
MW 5	T18805-1	9/6/2007	0.0477	0.0113	0.0523	0.0335
MW 5	T19776-1	11/13/2007	0.0775	0.0285	0.0906	0.0531
			•			
MW 6	T16511-2	3/1/2007	< 0.00035	<0.00020	<0.00033	<0.00036
MW 6	T17665-1	6/1/2007	< 0.00021	<0.00023	<0.00035	<0.00055
MW 6	T18805-2	9/6/2007	<0.00021	<0.00023	<0.00035	<0.00055
MW 6	T19776-2	11/13/2007	<0.0005	<0.0005	<0.0005	<0.001
MW 7	T16511-3	3/1/2007	<0.00035	<0.00020	<0.00033	<0.00036
MW 7	T17665-3	6/1/2007	<0.00021	<0.00023	<0.00035	<0.00055
MW 7	T18805-3	9/6/2007	<0.00021	<0.00023	<0.00035	<0.00055
MW 7	T19776-3	11/13/2007	<0.0005	<0.0005	<0.0005	<0.001
MW 11	T16511-4	3/1/2007	<0.00035	<0.00020	< 0.00033	<0.00036
MW 11	T17665-4	6/1/2007	<0.00021	<0.00023	<0.00035	<0.00055
MW 11	T18805-4	9/6/2007	<0.00021	<0.00023	<0.00035	<0.00055
MW 11	T19776-4	11/13/2007	<0.0005	<0.0005	<0.0005	<0.001
MW 12	T16511-5	3/1/2007	<0.00035	<0.00020	<0.00033	<0.00036
MW 12	T17665-5	6/1/2007	<0.00021	<0.00023	<0.00035	<0.00055
MW 12	T18805-5	9/6/2007	<0.00021	<0.00023	<0.00035	<0.00055
MW 12	T19776-5	11/13/2007	<0.0005	<0.0005	<0.0005	<0.001

^a Result is from Run #2.

Concentration in **Boid =** above NMOCD

P:/PROJECT FILES/CAD Files/Hugh Gathering/207032.00-16.dwg