427-62

GENERAL CORRESPONDENCE

YEAR(S): 2007

COMPLETE THIS SECTION SENDER: COMPLETE THIS SECTION Complete items 1, 2, and 3. Also complete Á. Siar item 4 if Restricted Delivery is desired. Agent Х Print your name and address on the reverse Addressee so that we can return the card to you. te of Deliverv B Attach this card to the back of the mailpi or on the front if space permits. D. Is delivery address different fro i item 1. Article Addressed to: If YES, enter delivery address below: 🗆 No Kristen Farris Pope Rice Operating Company 122 West Taylor 3. Service Type Certified Mail Express Mail □ Return Receipt for Merchandise Hobbs, NM 88240 Insured Mail C.O.D. 4. Restricted Delivery? (Extra Fee) 🗆 Yes 2. Article Number 7001 1940 0004 3929 4432 (Transfer from service label) PS Form 3811, August 2001 Domestic Return Receipt 102595-01-M-2509

NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

BILL RICHARDSON Governor Joanna Prukop Cabinet Secretary Mark E. Fesmire, P.E. Director Oil Conservation Division

CERTIFIED MAIL RETURN RECEIPT NO: 3929 4432

March 26, 2007

Kristin Farris Pope Rice Operating Company 122 West Taylor Hobbs, New Mexico 88240

RE: REQUIREMENT TO SUBMIT ABATEMENT PLAN

Dear Ms. Pope:

The New Mexico Oil Conservation Division (OCD) has determined after reviewing your Notification of Groundwater Impact for each of the following six sites:

- Rice EME Sarah Phillips EOL Unit K, Section 33, T19S, R37E Lea County, New Mexico OCD Case #1R0427-17
- 2) Rice EME A-2 Unit A, Section 2, T20S, R36E Lea County, New Mexico OCD Case #1R0427-62
- 3) Rice EME Jct. A-2-1 Unit A, Section 2, T20S, R36E. Lea County, New Mexico OCD Case #1R0427-177
- 4) Rice BD K-4 Unit K, Section 4, T18S, R38E Lea County, New Mexico OCD Case #1R0459

Kristin Farris Pope March 26, 2007 Page 2

- 5) Rice EME C-16 (1) Unit C, Section 16, T20S, R37E Lea County, New Mexico OCD Case #1R0476
- 6) Rice EME C-16 (2)
 Unit C, Section 16, T20S, R37E
 Lea County, New Mexico
 OCD Case #1R0477

that the Rice Operating Company (ROC) must submit for each of the six sites a separate Stage 1 Abatement Plan in accordance with OCD Rule 19 (19.15.1.19 NMAC) to investigate the ground water contamination at each of these sites. The Stage 1 Abatement Plans must be submitted to the OCD Santa Fe Office with a copy provided to the OCD Hobbs District Office and must meet of all the requirements specified in OCD Rule 19 (19.15.1.19 NMAC), including, but not limited to, the public notice and participation requirements specified in Rule 19G. The Stage 1 Abatement Plan is due sixty (60) days from the receipt by ROC of this written notice.

ROC's Stage 1 Abatement Plans must specifically meet all of the requirements specified in OCD Rule 19E.3, including, but not limited to, a site investigation work plan and monitoring program that will enable it to characterize the release using an appropriate number of isoconcentration maps and cross sections that depict the contamination that has been released from the sites and to provide the data necessary to select and design an effective abatement option. ROC may, if it chooses, concurrently submit a Stage 2 Abatement Plan that addresses appropriate proactive abatement options.

ROC should submit one paper copy and an electronic copy on CD for each of the Plans and for all future workplans and/or reports for each of the Plans. Please be sure to include the current corresponding OCD Case # on each of the respective Abatement Plans. An Abatement Plan # will be assigned as each of the Plans are submitted to the OCD. If you have any questions, please contact Edward J. Hansen of my staff at (505) 476-3489 or <u>mailto:edwardj.hansen@state.nm.us</u>.

Sincerely,

Wayne Price Environmental Bureau Chief

WP:EJH:ejh

cc: Chris Williams, OCD Hobbs District Supervisor Larry Johnson, OCD Hobbs

RICE Operating Company

122 West Taylor • Hobbs, New Mexico 88240 Phone: (505)393-9174 • Fax: (505) 397-1471

2007 JAN 22 AM 10 43

CERTIFIED MAIL RETURN RECEIPT NO. 7005 3110 0000 2019 6371

January 15, 2007

Mr. Wayne Price New Mexico Energy, Minerals, & Natural Resources Oil Conservation Division, Environmental Bureau 1220 S. St. Francis Drive Santa Fe, New Mexico 87505

RE: NOTIFICATION OF GROUNDWATER IMPACT A-2 Release Site Eunice-Monument-Eumont (EME) SWD System Unit 'A', Sec. 2, T20S, R36E

Mr. Price:

Rice Operating Company (ROC) notifies the Director of the New Mexico Oil Conservation Division (OCD), Environmental Bureau of groundwater impact at the above-referenced site in accordance with NM Rule 116. The remediation of this site may be subject to NM Rule 19 procedures.

This site experienced an accidental discharge on August 26, 2003 due to a crack in a 6inch asbestos-cement pipeline, releasing 15 barrels of produced. A C-141 form (initial) was submitted to the Hobbs District 1 office on August 28, 2003. Initial assessments of soil impacts were conducted by ROC. ROC concluded that groundwater investigation was warranted. On January 16, 2004, ROC disclosed this site to OCD as having a potential for groundwater impact and the site was placed on a prioritized list of similar sites.

ROC retained Highlander Environmental (Highlander) of Midland, Texas to address this site. On August 9, 2006 Highlander submitted an Investigation & Characterization Plan to OCD for additional delineation which was approved by OCD the same day. During October 2006, delineation soil borings and three 2-inch monitoring wells were installed at the site. Groundwater was encountered at approximately 40 feet below ground surface. After appropriate development, the wells were sampled pursuant to OCD guidelines by a

third party and Environmental Lab of Texas performed the analysis. Chloride and Total Dissolved Solids (TDS) concentrations exceed New Mexico Water Quality Control Commission standards; however, concentrations are highest in the background well (MW-3), up-gradient from the release site. Hydrocarbon constituents (BTEX) were not detected. Highlander will present a remedy for this site in the submission of a Corrective Action Plan.

ROC is the service provider (agent) for the EME Salt Water Disposal System and has no ownership of any portion of the pipelines, wells, or facilities. The EME System is owned by a consortium of oil producers, System Partners, who provide all operating capital on a percentage ownership/usage basis. Environmental remediation projects of this magnitude require System Partner AFE approval and work begins as funds are received.

Please accept this notification for the above-referenced site. Should you have any questions or concerns regarding this site, please do not hesitate to contact me.

RICE OPERATING COMPANY

Knistin Fairis Tope

Kristin Farris Pope Project Scientist

enclosures: water analyses, well logs, survey map

cc: SC, CDH, Highlander, file,

Mr. Chris Williams NMOCD, District 1 Office 1625 N. French Drive Hobbs, NM 88240

NEW MEXICO STATE PLANE COORDINATES (NAD83) TOP CASING

ELEVATIONS ARE ON BLACK MARK ON NORTH SIDE OF PVC CASING.

WELL	NORTHING	EASTING	LATITUDE	LONGITUDE	ELEV.(PVC)	GROUND	ELEV(CONC)
MW-1	585836.8	852769.7	N 32*36'23.2"	W 10319'19.2"	3596.45'	359 3 .65'	3593.92'
MW-2	585725.9	852782.2	N 32*36'22.1"	W 103*19'19.1"	3595.49'	3593.05'	3593.31'
MW-3	585935.7	852720.8	N 32°36'24.2"	W 10319'19.8"	3595.28'	3592.65'	3593.00'

I HEREBY CERTIFY THAT THIS PLAT WAS PREPARED FROM FIELD NOTES OF AN ACTUAL SURVEY AND ONES MEETS OR EXCEEDS ALL REQUIREMENTS FOR LAND	1000 0 1000 2000 FEET
SURVEYS AS SPECIFIED BY THIS STATE. LEW MEXICO	RICE OPERATING COMPANY
	REF: A-2 MONITOR WELLS
GARY L. JONES N.M. P.S. TEXAS P.L.S.	MONITOR WELLS LOCATED IN SECTION 2. TOWNSHIP 20 SOUTH. RANGE 36 EAST.
BASIN SURVEYS P.O. BOX 1786-HOBBS, NEW MEXICO	N.M.P.M., LEA COUNTY, NEW MEXICO.
W.O. Number: 17531 Drawn By: K. GOAD	
Date: 12—22—2006	Survey Date: 12-21-2006 Sheet 1 of 1 Sheets

WELL	CONSTRUCTION LOG	
EXISTING GRAD Installation Date(s) 10/10 Drilling Method AiR ROTA Drilling Contractor HARRISON / COO Development Technique(s) and Date(s, Water Removed During Development Static Depth to Water 40 Ground Level MONITOR WE Well Purpose MONITOR WE	LOCKING PROTECTIVE STEEL SLEEVE CEMENT CEMENT Z'S" DIA. DRILL WELL CASING 2" DIA. RT PPER DRULING PORTLAND GROUT Gals. I. below SLL GRAVEL PACK SAND PACK SAND PACK SAND PACK SAND PACK SAND PACK SAND PACK	PAD ED HOLE
DAIE: 11/9/06 Highlander Environmental	CLIENT: RICE OPERATING PROJECT: EME A-2 LOCATION: LEA COUNTY, NEW MEXICO	WELL NO.

SAMPLE LOG

Boring/Well MW-1	
Project Number:	2643
Client:	Rice Engineering
Site Location:	EME A-2
Location:	Lea County, New Mexico
Total Depth	55
Date installed:	10/10/06

DEPTH (in feet)	OVM	CHLORIDES (in mg/Kg)	SAMPLE DESCRIPTION
3-5	0	260	Tan/buff calcareous fine grain sand
8-10	0	355	Tan/red calcareous fine grain sand
13-15	0	436	Tan/buff calcareous fine grain sand
18-20	0	347	Tan/buff calcareous fine grain sand
23-25	0	176	Tan/red calcareous fine grain sand
28-30	0	227	Tan/red calcareous fine grain sand
33-35	0	435	Tan/red calcareous fine grain sand
38-40	1	308	Tan/brown clayey fine grain sand
43-45	0	348	Tan/brown sandy clay
48-50	0	712	Tan/brown clayey fine grain sand
53-55	0	843	Red fine grain sandy clay

Boring completed at 55 feet bgs

Groundwater encountered at 40 feet

WELL	CONSTRUCTION LOG	
EXISTING GRAD Installation Date(s) 10/20 Drilling Method AlR R0TA Drilling Contractor HARRISON / COO Development Technique(s) and Date(s) Water Removed During Development_ Static Depth to Water Yell Purpose MONITOR Weil Remorks	LOCKING PROTECTIVE STEEL SLEEVE CEMENT CEMENT CEMENT Z [*] DIA. DRILL WELL CASING Z [*] DIA. WELL SCREEN Q. SLOT DIA. Z [*] CRAVEL PACK SAND PACK FORMATION COLLAR 52 ft. 52 ft.	ED HOLE
DATE: 11/9/06 Highlander Environmental	CLIENT: RICE OPERATING PROJECT: EME A-2 LOCATION: LEA COUNTY, NEW MEXICO	WELL NO.

SAMPLE LOG

Boring/Well:	MW-2
Project Number:	2643
Client:	Rice Engineering
Site Location:	EME A-2
Location:	Lea County, New Mexico
Total Depth	52
Date Installed:	10/20/06

DEPTH (in feet)	OVM	CHLORIDES (in mg/Kg)	SAMPLE DESCRIPTION
3-5	0	117	Buff fine grain calcareous sand
8-10	0	89	Buff fine grain calcareous sand with limestone intermixed
23-25	0	283	Tan fine grain calcareous sand
28-30	0	251	Tan fine grain calcareous sand
33-35	0	167	Tan fine grain calcareous sand with limestone intermixed
38-40	0	224	Tan fine grain calcareous sand
43-45	0		Tan/brown sandy clay
48-50	0		Tan fine grain sandy clay (wet)
53-55	0	843	Red fine grain sandy clay becoming red clay

Boring completed at 52 feet bgs Groundwater encountered at 41 feet

SAMPLE LOG

Boring/Well:	MW-3
Project Number:	2643
Client:	Rice Engineering
Site Location:	EME A-2
Location:	Lea County, New Mexico
Total Depth	52
Date Installed:	10/20/06

DEPTH (in feet)	MVO	CHLORIDES	SAMPLE DESCRIPTION			
3-5	1	553	Buff tan fine grain sandy limestone			
8-10	2	449	Tan fine grain calcareous sand			
13-15	0	965	Buff fine grain sandy limestone			
18-20	1	545	Tan fine grain calcareous sand			
23-25	1	253	Tan fine grain calcareous sand			
28-30	3	240	fan fine grain calcareous sand			
33-35	2	282	Tan fine grain calcareous sand with clay intermixed			
38-40	4	335	Tan clay with small amounts of sand			
43-45	0		Tan fine grain sandy clay (wet)			
48-50	0		Tan fine grain sandy clay (wet)			

Boring completed at 52 feet bgs

Groundwater encountered at 40 feet

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: EME A-2 Leak Project Number: None Given Location: T20S, R36E, Sec.2 A- Lea County, NM

Lab Order Number: 6K03013

Report Date: 11/17/06

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240

•

۰

Project: EME A-2 Leak Project Number: None Given Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1	6K03013-01	Water	11/01/06 08:35	11-03-2006 11:45
Monitor Well #2	6K03013-02	Water	11/01/06 10:35	11-03-2006 11:45
Monitor Well #3	6K03013-03	Water	11/01/06 09:40	11-03-2006 11:45

.

Project: EME A-2 Leak Project Number: None Given Project Manager: Kristin Farris-Pope

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6K03013-01) Water									
Benzene	ND	0.00100	mg/L	1	EK60807	11/08/06	11/08/06	EPA 8021B	
Toluene	ND	0.00100	"	n		"		**	
Ethylbenzene	ND	0.00100		"	"	n	"	11	
Xylene (p/m)	ND	0.00100	в	"	"	"	"	n	
Xylene (o)	ND	0.00100	11	"	Ħ	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		84.8 %	80-12	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		83.2 %	80-12	20	"	"	"	"	
Monitor Well #2 (6K03013-02) Water									
Benzene	ND	0.00100	mg/L	1	EK60807	11/08/06	11/09/06	EPA 8021B	
Toluene	ND	0.00100	"	"	"	"	"	**	
Ethylbenzene	ND	0.00100	n	"	"	"		n	
Xylene (p/m)	ND	0.00100		"	"	"		"	
Xylene (o)	ND	0.00100		n	"	**	"	**	
Surrogate: a,a,a-Trifluorotoluene		83.5 %	80-12	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.8 %	80-12	20	"	"	"	n	
Monitor Well #3 (6K03013-03) Water									
Benzene	ND	0.00100	mg/L	1	EK60807	11/08/06	11/09/06	EPA 8021B	
Toluene	ND	0.00100	"	"	"	**	11	"	
Ethylbenzene	ND	0.00100	11	H	"	**	"	"	
Xylene (p/m)	ND	0.00100	"	"	"	н	"	"	
Xylene (0)	ND	0.00100	**	n	"	H	17	u	
Surrogate: a,a,a-Trifluorotoluene		90.0 %	80-12	20	"	"	n	n	
Surrogate: 4-Bromofluorobenzene		102 %	80-12	20	"	"	"	"	

Surrogate: 4-Bromofluorobenzene

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6K03013-01) Water									
Total Alkalinity	188	2.00	mg/L	1	EK60711	11/07/06	11/07/06	EPA 310.1M	
Chloride	3820	50.0		100	EK60602	11/06/06	11/06/06	EPA 300.0	
Total Dissolved Solids	6650	10.0	"	1	EK60913	11/03/06	11/06/06	EPA 160.1	
Sulfate	225	50.0		100	EK60602	11/06/06	11/06/06	EPA 300.0	
Monitor Well #2 (6K03013-02) Water									
Total Alkalinity	222	2.00	mg/L	1	EK60711	11/07/06	11/07/06	EPA 310.1M	
Chloride	2950	50.0	17	100	EK60602	11/06/06	11/06/06	EPA 300.0	
Total Dissolved Solids	4990	10.0	**	1	EK60913	11/03/06	11/06/06	EPA 160.1	
Sulfate	241	50.0	"	100	EK60602	11/06/06	11/06/06	EPA 300.0	
Monitor Well #3 (6K03013-03) Water									
Total Alkalinity	198	2.00	mg/L	1	EK60711	11/07/06	11/07/06	EPA 310.1M	
Chloride	4250	50.0	"	100	EK60602	11/06/06	11/06/06	EPA 300.0	
Total Dissolved Solids	7680	10.0	"	1	EK60913	11/03/06	11/06/06	EPA 160.1	
Sulfate	232	50.0	"	100	EK60602	11/06/06	11/06/06	EPA 300.0	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting	Units	Dilutia	Patah	Droporod	Anchurad	Mathad	Notes
Monitor Well #1 (6K03013-01) Water		Linit		LAILIION	Daten	riepared	Analyzed		indies
Calcium	1190	20.2	mg/L	250	EK60712	11/07/06	11/07/06	EPA 6010B	
Magnesium	394	3.60		100	n	"	"	"	
Potassium	18.7	0.600	"	10	"	м	н	n	
Sodium	1090	4.30	"	100	"	н		n	
Monitor Well #2 (6K03013-02) Water									
Calcium	756	20.2	mg/L	250	EK60712	11/07/06	11/07/06	EPA 6010B	
Magnesium	265	9.00	"	"	11	11	"	n	
Potassium	17.4	0.600	"	10	"	**	n	11	
Sodium	1110	10.8	н	250	**	"	11	n	
Monitor Well #3 (6K03013-03) Water									
Calcium	1170	20.2	mg/L	250	EK60712	11/07/06	11/07/06	EPA 6010B	
Magnesium	414	3.60	"	100	17	**	n	"	
Potassium	22.0	0.600	11	10	**	"	"	"	
Sodium	1060	10.8	"	250			"		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EK60807 - EPA 5030C (GC)										
Blank (EK60807-BLK1)				Prepared &	: Analyzed:	: 11/08/06				
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100								
Xylene (p/m)	ND	0.00100	11							
Xylene (0)	ND	0.00100	*							
Surrogate: a,a,a-Trifluorotoluene	39.7		ug/l	40.0		99.2	80-120			
Surrogate: 4-Bromofluorobenzene	36.0			40.0		90.0	80-120			
LCS (EK60807-BS1)				Prepared &	Analyzed:	11/08/06				
Benzene	0.0505	0.00100	mg/L	0.0500		101	80-120			
Toluene	0.0455	0.00100	"	0.0500		91.0	80-120			
Ethylbenzene	0.0450	0.00100	"	0.0500		90.0	80-120			
Xylene (p/m)	0.0963	0.00100	"	0.100		96.3	80-120			
Xylene (o)	0.0469	0.00100	"	0.0500		93.8	80-120			
Surrogate: a,a,a-Trifluorotoluene	36.7		ug/l	40.0		91.8	80-120			
Surrogate: 4-Bromofluorobenzene	42.3		"	40.0		106	80-120			
Calibration Check (EK60807-CCV1)				Prepared: 1	1/08/06 A	nalyzed: 11	/09/06			
Benzene	53.7		ug/l	50.0		107	80-120			
Toluene	46.9			50.0		93.8	80-120			
Ethylbenzene	48.0		"	50.0		96.0	80-120			
Xylene (p/m)	93,1			100		93.1	80-120			
Xylene (o)	45.8		H	50.0		91.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	41.4			40.0		104	80-120			······
Surrogate: 4-Bromofluorobenzene	35,5		"	40.0		88.8	80-120			
Matrix Spike (EK60807-MS1)	Sou	rce: 6K03002-	01	Prepared: 1	1/08/06 A	nalyzed: 11	/09/06			
Benzene	0.0549	0.00100	mg/L	0.0500	ND	110	80-120			
Toluene	0.0474	0.00100		0.0500	ND	94.8	80-120			
Ethylbenzene	0.0462	0.00100	"	0.0500	ND	92.4	80-120			
Xylene (p/m)	0.0939	0.00100		0.100	ND	93.9	80-120			
Xylene (o)	0.0451	0.00100	"	0.0500	ND	90.2	80-120			
Surrogate: a,a,a-Trifluorotoluene	39.5		ug/l	40.0		98.8	80-120			
Surrogate: 4-Bromofluorobenzene	37.4		"	40.0		93.5	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EK60807 - EPA 5030C (GC)

Matrix Spike Dup (EK60807-MSD1)	Sou	rce: 6K03002-	-01	Prepared: 1	1/08/06 A	nalyzed: 1	1/09/06			
Benzene	0.0554	0.00100	mg/L	0.0500	ND	111	80-120	0.905	20	
Toluene	0.0504	0.00100	**	0.0500	ND	101	80-120	6.33	20	
Ethylbenzene	0.0472	0.00100	"	0.0500	ND	94.4	80-120	2.14	20	
Xylene (p/m)	0.105	0.00100	"	0.100	ND	105	80-120	11.2	20	
Xylene (0)	0.0521	0.00100	n	0.0500	ND	104	80-120	14.2	20	
Surrogate: a,a,a-Trifluorotoluene	39.4		ug/l	40.0		98.5	80-120			
Surrogate: 4-Bromofluorobenzene	42.5		"	40.0		106	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 6 of 10

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source	A/DEC	%REC	0.00	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EK60602 - General Preparation (WetC	hem)									
Blank (EK60602-BLK1)				Prepared &	Analyzed:	11/06/06				
Chloride	ND	0.500	mg/L							
Sulfate	ND	0.500	"							
LCS (EK60602-BS1)				Prepared &	Analyzed:	11/06/06				
Sulfate	9.30	0.500	mg/L	10.0		93.0	80-120			
Chloride	10.2	0.500	"	10.0		102	80-120			
Calibration Check (EK60602-CCV1)				Prepared &	Analyzed:	11/06/06				
Chloride	10.0		mg/L	10.0		100	80-120			
Sulfate	10.9		"	10.0		109	80-120			
Duplicate (EK60602-DUP1)	Sou	rce: 6K03002-	-01	Prepared &	Analyzed:	11/06/06				
Sulfate	508	5.00	mg/L		511			0.589	20	
Chloride	45.8	5.00	n		45.4			0.877	20	
Duplicate (EK60602-DUP2)	Sou	rce: 6K03008-	04	Prepared &	Analyzed:	11/06/06				
Chloride	44.5	5.00	mg/L		44.2			0.676	20	
Sulfate	116	5.00	"		115			0.866	20	
Matrix Spike (EK60602-MS1)	Sou	rce: 6K03002-	01	Prepared &	Analyzed:	11/06/06				
Chloride	148	5.00	mg/L	100	45.4	103	80-120			
Sulfate	613	5.00	"	100	511	102	80-120			
Matrix Spike (EK60602-MS2)	Sou	rce: 6K03008-	04	Prepared &	Analyzed:	11/06/06				
Chloride	150	5,00	mg/L	100	44.2	106	80-120			
Sulfate	214	5.00	"	100	115	99.0	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 7 of 10

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EK60711 - General Preparation (Wet	Chem)									
Blank (EK60711-BLK1)				Prepared &	Analyzed:	: 11/07/06				
Total Alkalinity	ND	2.00	mg/L						·····	
LCS (EK60711-BS1)				Prepared &	Analyzed:	11/07/06				
Total Alkalinity	202	2.00	mg/L	200		101	85-115			
Duplicate (EK60711-DUP1)	Sou	rce: 6K03008-	-01	Prepared &	z Analyzed:	11/07/06				
Total Alkalinity	236	2.00	mg/L		240			1.68	20	
Reference (EK60711-SRM1)				Prepared &	Analyzed:	11/07/06				
Total Alkalinity	254		mg/L	250		102	90-110	· · · · ·		
Batch EK60913 - Filtration Preparation										
Blank (EK60913-BLK1)				Prepared: 1	1/03/06 A	nalyzed: 11	/06/06			
Total Dissolved Solids	ND	10.0	mg/L							
Duplicate (EK60913-DUP1)	Sou	rce: 6K03002-	-01	Prepared: 1	1/03/06 A	nalyzed: 11	/06/06			
Total Dissolved Solids	954	10.0	mg/L		934			2.12	5	
Duplicate (EK60913-DUP2)	Sou	ırce: 6K03014-	-03	Prepared: 1	1/03/06 A	nalyzed: 11	/06/06			
Total Dissolved Solids	1050	10.0	mg/L		946			10.4	5	R2

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 8 of 10

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EK60712 - 6010B/No Digestion										
Blank (EK60712-BLK1)				Prepared 8	k Analyzed:	11/07/06				
Calcium	ND	0.0810	mg/L							· · · · · · · · · · · · · · · · · · ·
Magnesium	ND	0.0360	**							
Potassium	ND	0.0600	"							
Sodium	ND	0.0430	۳							
Calibration Check (EK60712-CCV1)				Prepared 8	k Analyzed:	11/07/06				
Calcium	2.26		mg/L	2.00		113	85-115			
Magnesium	2.12			2.00		106	85-115			
Potassium	1.73		"	2.00		86.5	85-115			
Sodium	2.13		"	2.00		106	85-115			
Duplicate (EK60712-DUP1)	Sou	ırce: 6K03002	-01	Prepared &	k Analyzed:	11/07/06				
Calcium	84.4	0.810	mg/L	••••••••••••••••••••••••••••••••••••••	83.8			0.713	20	
Magnesium	40.5	0.360	. "		38.9			4.03	20	
Potassium	7.74	0.600	"		8.13			4.91	20	
Sodium	110	2.15	"		117			6.17	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Notes and Definitions

R2	The RPD exceeded the acceptance limit.
DET	Analyte DETECTED

- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Raland K Junt

11/17/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

Report Approved By:

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 10 of 10

	Project Manager: Company Name Company Address: City/State/Zip: Telephone No: Sampler Signature: Sampler Signature: Isse only) DER #: Monitor Well #1 Monitor Well #2	Kristin Farris Pope RICE Operating Co 122 W. Taylor Stree Hobbs, New Mexics (505) 393-9174 Rozanne Johnson (505)631	A C C C C C C C C C C C C C C C C C C C	Ge Contraction Con	Bindia Sampled	N N <th></th> <th></th> <th></th> <th></th> <th>eguita-J2 wick gathin0.40 Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>44 2 Alternative Alternative 10 44 2 Alternative Alternative 10 44 1 Alternative Alternative 10 44 1 Alternative Alternative 10 1 1 1 Alternative 10 1 1 1 Alternative 10 1 1 1 Alternative</th> <th></th> <th></th> <th></th> <th>S C S C S C S C S C S C S C S C S</th> <th>TAT bisbrist? × × ×</th> <th></th>					eguita-J2 wick gathin0.40 Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω						44 2 Alternative Alternative 10 44 2 Alternative Alternative 10 44 1 Alternative Alternative 10 44 1 Alternative Alternative 10 1 1 1 Alternative 10 1 1 1 Alternative 10 1 1 1 Alternative				S C S C S C S C S C S C S C S C S	TAT bisbrist? × × ×	
	UNITED IN	Date	emit	Received by:	14						ate	11m		oCs l	ree o	f Hear	(s))00	ZZ		
Bezah	Ine Johnson	11-3-04	(p;0)	Jam / Bann	a felm	F	2			′ ≒ľ	300	6.0		ustod	/ 30al	S ON C	ontaine obler(s	ar(a)		9690	ZZ		
A PLAN	ulshed by: Unshed by	Date Date Date		Received by: Received by ELO	1 C						ato ato			Ë A F	Hand Barrier M		ered It Rep. UPS	Ë	E (90ã ∫		ta ta	
	2			110.1		4		•	<u> </u>	Epi	10 10	11 74	Ξ \Ω	ampe	ature		Keceil	н Н	ຊ ໃ		ູ ເ	 	

Environmental 1 ah of Texas

· · ·

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

•	
Client:	Rive Op-
Date/ Time:	11/3/de 11:45
Lab ID # :	<u>4K030/3</u>
Initials:	PK-

٠.

Sample Receipt Checklist

				Clie	ent Initials
#1	Temperature of container/ cooler?	Yes	No	0.5 °C	
#2	Shipping container in good condition?	Xes)	No		
#3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present	
#4	Custody Seals intact on sample bottles/ container?	Yes	No	Not Present	
#5	Chain of Custody present?	Yes	No		
#6	Sample instructions complete of Chain of Custody?	Yes	No		
#7	Chain of Custody signed when relinquished/ received?	Ves	No		
#8	Chain of Custody agrees with sample label(s)?	Yes	No	ID written on Cont./ Lid	
#9	Container label(s) legible and intact?	Yes	No	Not Applicable	
#10	Sample matrix/ properties agree with Chain of Custody?	Ves	No		
#11	Containers supplied by ELOT?	Yes	No		
#12	Samples in proper container/ bottle?	Xes	No	See Below	
#13	Samples properly preserved?	(Tes	No	See Below	
#14	Sample bottles intact?	Yes	No		
#15	Preservations documented on Chain of Custody?	Xes,	· No		
#16	Containers documented on Chain of Custody?	Yes	No		
#17	Sufficient sample amount for indicated test(s)?	Yes	No	See Below	
#18	All samples received within sufficient hold time?	Yes	No	See Below	
#19	VOC samples have zero headspace?	Yes)	No	Not Applicable	

Variance Documentation

Contact:		Contacted by:	Date/ Time:
Regarding:	·		
Corrective Action Taken	11		······································
Check all that Apply:		See attached e-mail/ fax Client understands and would like to proceed with analy Cooling process had begun shortly after sampling even	ysis t
			7. ⁷ '
		· ·	