1R - 428 - 67

WORK PLAN

DATE: 01/03/07

LEUTAN 3, 2007

IR-428-67

Work Plan

1-3-07

Corrective Action Plan for E-33-1 Junction Box Site Hobs salt Water Disposed System

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

December 31, 2006

RECEIVED

Wayne Price Environmental Bureau Chief New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

JAN 08 2007

Oil Conservation Division Environmental Bureau

RE: E-33-1 Junction Box Site (NMOCD CASE #: 1R0428-67)

Dear Wayne

On behalf of Rice Operating Company (ROC), R.T. Hicks Consultants, Ltd. is submitting this Corrective Action Plan (CAP) for the above-referenced site. Rice Operating Company has reviewed this submission and authorized our delivery of this document to NMOCD.

This CAP complies with NMOCD Rule 116 which states:

D. Corrective Action. The responsible person must complete Division approved corrective action for releases which endanger public health or the environment. Releases will be addressed in accordance with a remediation plan submitted to and approved by the Division or with an abatement plan submitted in accordance with Section 19 of 19.15.1 NMAC.

As stated in the CAP, the proposed remedy is installation of a simple evapotranspiration (ET) infiltration barrier and two additional quarters of ground water monitoring to confirm that ground water will not exceed WQCC Standards as a result of past operations of the site. If you have any questions regarding this submission, please contact Kristin Pope at Rice Operating Company.

Sincerely, R.T Hicks Consultants, Ltd.

Randall T. Hicks Principal

Copy: K. Pope, Rice Operating Company NMOCD, Hobbs District Office

January 3, 2007

RECEIVED

JAN 08 2007

Oil Conservation Division Environmental Bureau

Corrective Action Plan for E-33-1

Junction Box Site Hobbs Salt Water Disposal System NMOCD CASE #: 1R0428-67

901 Rio Grande Blvd. NW, Suite F-142, Albuquerque, NM 87104

1.0 Executive Summary 1
Data Summary
Conclusions
Recommendations
2.0 Background 3
2.1 Logation 2
2.2 Characterization Activities
3.0 Characteristics of the Vadose Zone
4.0 Characteristics of the Saturated Zone
5.0 Evaluation of Vertical Chloride Flux
6.0 Proposed Remedy
7.0 Criteria for Closure 12
Plate 1
Appendix A—Table and Plates15
Appendix B—Background of the Hobbs SWD System
Appendix C — Background Boring
Appendix D — Monitoring Well
Appendix E — Analytical Reports
Appendix F — Hydrus - ID 70

1

I

▼ 1.0 EXECUTIVE SUMMARY

This Corrective Action Plan presents the results of the characterization activities performed by R.T. Hicks Consultants (Hicks Consultants) and Rice Operating Company (ROC) at the E-33-1 junction box site located in the Hobbs Salt Water Disposal System (SWD), and proposes closure of the site after implementation of the selected remedy and two additional quarterly ground water monitoring events.

The selected remedy is the creation of an infiltration barrier through surface restoration and re-vegetation of the site. This remedy is protective of ground water quality and human health and the environment.

Data Summary

- 1. R.T. Hicks Consultants supervised field activities at the E-33-1 Junction Box site in May 2006. This involved general reconnaissance as well as supervision of borehole sampling of the vadose zone from ground surface to ground water.
- 2. Chloride concentration data show that the center of mass of the release from the site resides from 20- to 35-feet below ground surface. The maximum chloride concentration of the borehole is 1381 mg/kg (laboratory) at a depth of 35 feet.
- Chloride concentrations below the center of mass ranged from 863 mg/kg (field result for 40 feet bgs) to 1054 mg/kg (above the capillary fringe at 45 feet bgs). Above the center of mass, chloride concentrations are less than 1000 mg/kg.
- 4. Because chloride concentrations in the vadose zone exceeded the delineation limit established by the Investigation Characterization Plan (ICP), a monitoring well was installed within the boring.
- 5. Neither field PID analyses nor observed characteristics of samples suggest that hydrocarbons are present in the vadose zone. All field PID analyses were 0 ppm.
- 6. Two quarterly ground water sampling events showed that TDS and chloride were below WQCC Standards.

Corrective Action Plan E-33-1 Junction Box Site

page

Conclusions

- 1. Two sampling events show results demonstrating ground water beneath the site does not exceed WQCC Standards.
- 2. After re-vegetation of the site and placement of a simple infiltration barrier, the mass of chloride from 20-feet to 40-feet below ground surface is not sufficient to cause ground water to exceed the WQCC standards at the site due to migration of chloride from the vadose zone to ground water. The concentrations of chloride in the remainder of the vadose zone are less than 1000 mg/kg and pose no threat to ground water.
- 3. An imported silt/loam clean backfill placed over a coarse-grained capillary break plus re- vegetation will effectively eliminate any recharge rate to ground water.
- 4. Site-specific HYDRUS-1D simulations show that the recharge rate at this site (without re-vegetation) is effectively zero.
- 5. HYDRUS-1D simulations predict that installation of a simple infiltration barrier will provide ample protection of ground water quality.

Recommendations

- 1. R.T. Hicks Consultants recommends that ROC restore and re-vegetate the ground surface at the E-33-1 Junction Box Site. Upon documentation of these actions and verification that ground water quality is not impaired relative to WQCC Standards (2 additional quarters of monitoring) ROC will request closure of the regulatory file for the E-33-1 Junction Box site.
- 2. After site closure, the monitoring well may remain operational, contributing data on an as-needed basis for the closure of remaining sites within the Hobbs SWD system.

nana

V 2.0 BACKGROUND

The Hobbs Salt Water Disposal System (SWD), which managed produced water from the late 1950s to the present, is now closed. Future releases from the system infrastructure are not possible. Closure of facilities like the E-33-1 Junction Box within Hobbs SWD, followed the August 6, 2004 NMOCD-approved junction box investigation plan. This plan calls for delineation of any impact from these sites during the closure process and states:

If 12 feet vertical delineation at the source reveals Target Concentrations for TPH or BTEX will not meet NMOCD guidelines or TPH and BTEX will meet guidelines but there is not a significant decline vs. depth in chloride concentration, the site-impact is judged to be outside the scope of this work plan and will become a risk-based corrective action (RBCA) project-site.

The E-33-1 Junction Box site met these criteria. With the abandonment of the system in 2002, Rice Operating Company (ROC) excavated and removed the SWD E-33-1 Junction Box and the upper four feet of the vadose zone. At the time of investigation, the excavation was filled with a mixture of silty loam and some caliche.

2.1 Location

Appendix A includes a regional location map showing the location of the site relative to selected other components of the Hobbs SWD system and public roads. Plate 2 is an aerial photograph of the site when it was active, taken between 1996 and 1998. Plotted on Plate 2 is the location of the boring and nearby roads.

The site is within unit letter E, Section 33, Township 18S Range 38E. To access the site from the intersection of Sanger and Grimes proceed west on Sanger 0.7 miles. Turn left at locked gate and continue south 0.45 mile to the site. The on site monitoring well is situated approximately 60 feet south from the fence around an adjacent gas well.

nane

2.2 Characterization Activities

In May 2006, R. T. Hicks Consultants, ROC, and Atkins Drilling mobilized to conduct a series of exploratory drillings at five sites within the Hobbs SWD System. The investigation and characterization used the same protocols as described in the NMOCD-approved work plan for the site (see Appendix B). In order to permit comparison of the results from this boring with the ambient chloride concentrations in the vadose zone, collection of samples from a background soil boring was a critical element of the ICP. Appendix A shows the location of this background soil boring and Appendix C shows the results of field chloride measurements from the background soil boring.

At the E-33-1 junction box site, one soil boring was advanced immediately over the former junction box on May 2, 2006. In the field, ROC evaluated samples from each depth for chloride and used the heated headspace method to measure total organic vapors by PID. One sample was submitted to the laboratory from the depth showing one of the highest field chloride measurement (24-26 feet bgs). The boring was completed as a monitoring well due to chloride field tests indicating levels above the threshold specified in the ICP (250 mg/kg). The total depth of the boring is 79 feet bgs and the depth to water is about 62 feet bgs.

7 3.0 CHARACTERISTICS OF THE VADOSE ZONE

The upper 10 feet of the vadose zone at the site is composed of a silty loam and caliche that is underlain by 14 feet of fine sandy caliche. Below these two layers, a 16-ft thick calcareous fine-grained sand was encountered. A fine-grained sand continued to the bottom of the boring and into the saturated zone to a depth of 79 feet bgs. The calcium carbonate content steadily decreases with depth. The lithologic log of the boring/monitoring well is included in Appendix D.

A maximum chloride concentration of 1,381 ppm was measured in the field at the 34-36 ft interval. After field analysis and description there was not sufficient sample material leftover (only 2-inch penetration by split-spoon) for a laboratory submitted duplicate. Laboratory analyses confirm the results of the field tests (1640 mg/kg at 24 feet bgs). Below this center of mass, chloride concentrations declined to 729 mg/kg at 60 feet bgs, which is immediately above or within the capillary fringe. Appendix D shows field chloride concentrations and PID measurements and Appendix E provides additional chemical data for the soil samples. Background chloride concentrations in the area, as determined from the background boring located about 1/2 mile northwest of the former E-33-1 junction box (Appendix C), are approximately 80 mg/kg.

A summary of chloride concentrations, photoionization detector (PID) readings, and general soil type are listed in the Table 1 below.

Tuble in cummury of r	ield medsulements for 20	mg/ monitoring wen
Depth (Feet bes)	Chloride (mg/kg)	PID (ppm)
(1000 - 80)	(***8/ **8/	(19)
4-5	433	0
5-6	990	0
9-11	719	0
14-16	996	0
19-21	1035	0
24-26	1309*	0
27-29	1262	0
34-36	1381	0
39-41	863	0
44-46	1054	0
49-51	1002	0
54-56	946	0
59-61	729	0

Table 1: Summary of Field Measurements for Boring/Monitoring well

* Lab duplicate for the 24-ft sample indicated a chloride concentration of 1,640 mg/kg.

naue

The chloride concentration vs. depth profile is displayed in Figure 1 below.

Neither hydrocarbon odors nor PID measurements above 0 ppm were detected in the boring (Appendix D). Consequently, no laboratory analyses for petroleum hydrocarbons were necessary.

▼ 4.0 CHARACTERISTICS OF THE SATURATED ZONE

At the E-33-1 Junction Box site, moist soil was at 55 feet bgs and depth to water is at 62 feet bgs. Potentiometric surface maps for this area are included in Appendix A.

Ground water sampling showed that chloride, TDS, and BTEX concentrations were below WQCC standards for both sampling events conducted to date. Field and lab data are summarized in the table below.

Date	Depth to	Concentrations (mg/L)					
Sampled	Groundwater (Feet btoc)	Chloride TDS Ber		Benzene	Toluene	Ethylbenzene	Total Xylenes
WQCC Standard		250	1000	0.0	0.75	0.75	0.62
5/17/06	64.44	142	678	< 0.001	<0.001	< 0.001	< 0.001
8/14/06	64.62	138	622	< 0.001	<0.001	<0.001	< 0.001

Table 2: Groundwater Monitoring Results

8896

▼ 5.0 EVALUATION OF VERTICAL CHLORIDE FLUX

Soil boring data shows chloride concentrations above 250 mg/kg throughout the vadose zone. However, the center of chloride mass is between 25 and 35 feet bgs, which is 30 feet above the water table. Chloride concentrations generally decline with depth. These data support a conclusion that a minimal amount of produced water has migrated through the vadose zone to ground water via unsaturated flow.

The fact that the center of chloride mass resides from 25 to 35 feet bgs also demonstrates that the deep percolation rate beneath the finer-grained and more calcareous uppermost vadose zone (0-24 feet bgs) was not sufficient to evenly distribute the chloride load throughout the vadose zone. Where the deep percolation rate is relatively high due to historic releases of produced water, chloride concentrations are generally evenly distributed with concentrations higher than 1000 mg/kg; a distinct center of mass is not observed. This is not the case at the E-33-1 junction box site.

R.T Hicks Consultants believes the following release/transport scenario is consistent with the empirical data. At the E-33-1 junction box site, periodic releases created sufficient soil moisture to allow chloride transport to a depth of 25 to 35 feet bgs, perhaps under saturated or near-saturated flow. After the release, evaporation of soil moisture and drying of the upper vadose zone reduced soil moisture and hydraulic conductivity temporarily "stranding" the chloride mass in the fine-grained, calcareous sand that exists from 25 to 35-feet bgs. Unsaturated flow allowed slow downward chloride transport through the vadose zone.

The fact that ground water does not exceed WQCC Standards also supports a conclusion that chloride transport through the vadose zone cannot and will not naturally migrate to ground water at a flux rate that will cause an exceedance of the WQCC Standards.

0205

V 6.0 PROPOSED REMEDY

Experience at similar sites and HYDRUS-1D simulations of the conditions observed at this site support re-vegetation and placement of a simple infiltration barrier as an effective corrective action. Technical support for this design is discussed below.

The geometry of the chloride vs. depth profile in Figure 1 permits the conclusion that produced water released from the junction box intercepted ground water in the past. For modeling purposes, this report assumes that background water quality for chloride in the area is about 100 mg/l. However, data show that other wells in the general area can exceed the concentrations observed in the E-33-1 Junction Box site monitoring well (see Appendix A). For the purpose of designing a corrective action using a HYDRUS-1D model, the input data assumes the worst case: that the flux of chloride from the vadose zone at this site *is* sufficient to cause a net increase in ground water chloride concentration of about 40 mg/l. This would result in the 140 mg/l concentration sobserved in the monitoring well (assuming a background chloride concentration of 100 mg/l). The model also assumes that leakage from the junction box site created a "wet" vadose zone profile. Appendix F describes the HYDRUS-1D simulation input data and methods.

The results of the HYDRUS-1D model are presented below in Figure 2. An evapotranspiration (ET) barrier was installed in the model composed of 3 feet of imported silt/loam above one foot of coarse-grained sand (to reduce upward wicking of chloride, see figure 3). The effect of vegetation (increased evapotranspiration) and the placement of imported silt/loam upper vadose zone material (increased storage of infiltrated precipitation) are immediate in the upper vadose zone. Infiltration below the root zone decreases to near zero. However, the wet vadose zone profile continues to drain from year 0 to year 19. After year 19, the vadose zone profile has dried sufficiently through drainage that vadose zone water flux to ground water is reduced by more than an order of magnitude (Figure 4). The resultant chloride flux from the vadose zone to ground water has decreased to the point that ground water quality is statistically indistinguishable from assumed 100 mg/l background at the monitoring well.

0206

Corrective Action Plan E-33-1 Junction Box Site

This corrective action plan calls for two years of semi-annual ground water monitoring after establishing vegetation at the site. If chloride concentrations in ground water do not increase over time, ROC will request closure of the regulatory file for this site.

V 7.0 CRITERIA FOR CLOSURE

Vadose zone samples demonstrate no toxic pollutant(s) as defined in 20.6.2.7 NMAC.

The empirical evidence shows no reasonable probability of exceedance of NMED/WQCC ground water standards in the future due to residual constituents in the vadose zone. After documentation of ground surface restoration and revegetation and two additional ground water sampling events confirm no impact to ground water, Rice will submit a final closure report.

nanc

page

, November 2006
5
4
Plate
U U
Ē
Š
Ę
<u>_</u>
we
he
ft
ç
ta
da
5
ate
Š
р
ŗ
26
0
ž
stc
Ï
-
Ł
e
lde
Ë

1. Star

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
	A_U1M63	7_UIM83 L0		System	Location	STATUS	GWelev C	nda
100-306-20-101-VENT	670607	362/24/9 M-	20 Vent	Hobbs	Sec 20, T18S, R38E	Monitoring Well		
105.305.23.5.VEN1 185.385.30 5 107 14	671479	3021043 E-2	r 20 4.5	Hobbs	Sec 29, 118S, R38E	Monitoring Well		
103.30L.23.L.42.L.1A 182.38F 20 F ICT 14.DFFD	671/70	2621766 1ct		HODDS	Sec 29, 1185, K38E	Monitoring Well	1010	000
185 38F 29 F JCT 14-SHALLOW	671470	3621766 1ct	E 20 1a Challow	Lobbe	Sec 29, 1103, K38E	Monitoring Well	2005	332
18S.38E.29.F.JCT.1B	671440	3621854 Jct	F-29-18-3114110W	Hobbs	Sec 29, 1103, K38E	Nontroring vveil	3282	979
18S.38E.29.H.JCT	671949	3621622 Jct	H-29	Hobbs	Sec 29. T18S. R38F	Monitoring Well		
18S.38E.29.1.EOL BOOT	672076	3621394 1-29	9 EOL Boot	Hobbs	Sec 29, T18S, R38E	Soil Boring		
18S.38E.29.I.VENT	671917	3621330 1-2	9 Vent	Hobbs	Sec 29, T18S, R38E	Monitoring Well	3583	104
18S.38E.29.K.EOL BOOT	671314	3621139 K-2	29 EOL Boot	Hobbs	Sec 29, T18S, R38E	Monitoring Well		
18S.38E.29.0.EOL	671861	3621031 0-3	29 EOL	Hobbs	Sec 29, T18S, R38E	Monitoring Well		
18S.38E.29.0.VENT	671818	3620861 0-3	29 Vent	Hobbs	Sec 29, T18S, R38E	Soil Boring		
18S.38E.29.P.VENT	671883	3621009 P-2	29 Vent	Hobbs	Sec 29, T18S, R38E	Monitoring Well		
18S.38E.32.B.BOOT	671686	3620535 B-0	32 Boot	Hobbs	Sec 32, T18S, R38E	Monitoring Well		
18S.38E.32.E.JCT.1	671077	3619959 Jct	. E-32-1	Hobbs	Sec 32, T18S, R38E	Monitoring Well		
18S.38E.32.E.JCT.2	671075	3619976 Jct	. E-32-2	Hobbs	Sec 32, T18S, R38E	Monitoring Well		
18S.38E.33.E.JCT.1	672671	3620026 Jct	. E-33-1	Hobbs	Sec 33, T18S, R38E	Monitoring Well		
18S.38E.33.F.VENT	673087	3619923 F-3	3 Vent	Hobbs	Sec 33, T18S, R38E	Monitoring Well		
IN I ERA. WO-001	6/1096	3621258 WC	0.001	Windmill Oil		OSE Well with Chemistry Data		
IN EKA.WO-003	671878	3622011 WC	0-003	Windmill Oil		OSE Well with Chemistry Data	-	478
INTERA.WO-004	672167	3622050 WC	0.04	Windmitt Oil		OSE Well with Chemistry Data		105
IN LERA.WO-U05	6/1/39	3621120 WC	0-005	Windmill Oil		OSE Well with Chemistry Data		112
INTERAWO-006	6/2183	3621695 WC	0-006	Windmill Oil		OSE Well with Chemistry Data		119
	671870	3021323 W	100			OSE Well with Chemistry Data		E
INTERA WO-D10	671017	3621045 MIC	-010			OSE Well with Chemistry Data		0
INTERA WO-011	672206	3622132 WC	-010	Windmill Oil		OSE Well with Chemistry Data		40 794
INTERA.WO-012	671224	3621157 WC	-012	Windmill Oil		OSE Well with Chemistry Data		302
INTERA WO-013	671881	3621737 WC	0-013	Windmill Oil		OSE Well with Chemistry Data		378
INTERA.WO-014	671023	3620640 WC	0-014	Windmill Oil		OSE Well with Chemistry Data		6
INTERA.WO-022	671911	3621889 WC	0-022	Windmill Oil		OSE Well with Chemistry Data		
INTERA.WO-024	672171	3622003 WC	0-024	Windmill Oil		OSE Well with Chemistry Data		
INTERA.WO-044	669954	3622169 WC	D-044	Windmill Oil		OSE Well with Chemistry Data		402
OCD. AA OII Fleid Services	671456	3622866 AA	Oil Field Services			OSE Well with Chemistry Data		60
	6/0826	3620/15 Ca	t House Water Well	OSE Well with Chemistry Data		OSE Well with Chemistry Data		92
	010888	3019208 80	Marama	OSE Well with Chemistry Data		OSE Well with Chemistry Data		176
	671407 671407	3620040 Bu	Idog Tool Co.	OSE Well with Chemistry Data		OSE Well with Chemistry Data		168
ROC F-29-MW-2	671163	3621303 F-2	9-DAD-01	Hobbs		Soli Boring Mentering Melt		000
ROC.F-29-MW-3	671164	3621813 F-2	2-WW-3	Hobbs				272
ROC.F-29-MW-4	671197	3621748 F-2	9-MW-4	Hobbs		Monitoring Well		336
ROC. Hobbs Diesel Co.	672343	3622328 Ho	bbs Diesel Co.	OSE Well with Chemistry Data		OSE Well with Chemistry Data		88
ROC.Mac Truck Co.	672169	3623794 Ma	c Truck Co.	OSE Well with Chemistry Data		OSE Well with Chemistry Data		360
ROC.Oil Field Rental Services	672031	3623935 OII	Field Rental Services	OSE Well with Chemistry Data		OSE Well with Chemistry Data		76
30C.Pan American Petro	672478	3619756 Pa	n American Petro	OSE Well with Chemistry Data		OSE Well with Chemistry Data		124
ROC.Smith's International	6/0994	36206891Sm	ith's International	OSE Well with Chemistry Data		OSE Well with Chemistry Data		92
POC Textend Betto	671701	3623586 Sto	ebr Wire Co	OSE Well with Chemistry Data		OSE Well with Chemistry Data		640
200 Two State Tank Bontal Co	671/34	30211321 E)	Cland Petro	OSE Well with Chemistry Data		OSE Well with Chemistry Data		140
	0/10/0	30210071	O STATE LANK KENTAL CO.	USE Well with Chemistry Data	1000 0071 07 - 0	OSE Well with Chemistry Data		292
NC. CAPITAN DRILLING COMPANY L 06337	670313	3622837			Sec 19, 1 185, K38E Sec 19, T185, R38E			
DIL FIELD RENTAL SERVICE CO. L 08716	671608	3623764			Sec 20. T18S, R38E	OSE Well		
A.A. OILFIELD L 08851	671514	3623260			Sec 20, T18S, R38E	OSE Well		
31G HORN TANK RENTAL L 08867	672040	3622160			Sec 29, T18S, R38E	OSE Well		
SOUTHWESTERN DRILLING MUD L 07570	670753	3620830			Sec 29, T18S, R38E	OSE Well		
TEVI AND DETROLETING TO L 0/005	670753	3621030			Sec 29, T18S, R38E	OSE Well		
I EXLAND PE I RULEUM-HOBBS, LLC L 111/6 MERADA PETROI FI IM CORPORATION 1 02366	6/1752	3621246			Sec 29, T18S, R38E	OSE Well		
AMERADA PETROLEUM CORPORATION 1 05849	770600	3621615			Sec 30, 1185, K38E Sec 30, 1185, P38E	OSE Well		
BAKER OIL TOOLS INC. L 02964	670982	3619217			Sec 32, 1185, R38E	OSE Well		
SKELLY OIL COMPANY L 02555	670782	3619217			Sec 32, 718S,R38E	OSE Well		
CONTINENTAL TANKE INC. L 02232	6726971	3619546			Sec 33 T18S R38F	OSE Well		

Background of the Hobbs Swe System

7

page

1909 Brunson Ave 🔺 Midland TX 79701 🛦 432.638.8740 🛦 Fax: 413.403.9968

CERTIFIED MAIL - RETURN RECIEPT NO. 7099 3400 0017 1737 2367

January 20, 2006

Mr. Wayne Price New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Investigation Characterization Plan: T18S R38E: E-33-1 Junction Box, B-32 Boot, E-32-1 Junction Box, E-32-2 Junction Box, F-33 Vent

Hobbs Salt Water Disposal System

Dear Mr. Price:

On behalf of Rice Operating Company, please accept this submission as our Initial Characterization Plan (ICP) for the five (5) sites referenced above within the Hobbs Salt Water Disposal System (Plate 1).

Rice Operating Company (ROC) is the service provider (operator) for the Hobbs Saltwater Disposal System and has no ownership of any portion of pipeline, well, or facility. A consortium of oil producers who own the Hobbs System (System Partners); provide all operating capital on a percentage ownership/usage basis. Major projects require System Partner authorization for expenditures (AFE) approval and work begins as funds are received. We will implement the work outlined herein after NMOCD approval and subsequent authorization from the System Partners.

For all environmental projects, ROC will choose a path forward that:

- 1. protects public health,
- 2. provides the greatest net environmental benefit,
- 3. complies with NMOCD Rules, and
- 4. is supported by good science.

The last criteria employed when evaluating any proposed remedy or investigative work is confirming that there is a reasonable relationship between the benefits created by the proposed remedy or assessment and the economic and social costs.

Each site shall have three submissions or a combination of:

- 1. This <u>Investigation and Characterization Plan</u> (ICP) is a proposal for data gathering and site characterization and assessment.
- 2. Upon evaluation of the data and results from the ICP, a recommended remedy will be submitted in a Corrective Action Plan (CAP).
- 3. Finally, after implementing the remedy, a <u>closure report</u> with final documentation will be submitted.

January 20, 2006 Page 2

Task 1 Evaluate Chloride and BTEXN Concentrations in Soil at Five Sites, Evaluate Ground Water Quality if Necessary

We will follow the same protocol for characterization of the unsaturated zone at the five new ROC sites listed below.

- E-33-1 Junction Box
- o B-32 Boot
- o E-32-1 Junction Box
- o E-32-2 Junction Box
- o F-33 Vent

At each of the above-referenced sites, we will locate the sampling borehole as close as practical to the suspected release source. Earlier, we inspected each of the five sites nominated in this ICP and identified the boring location before the sites were backfilled and re-graded. Due to our recent experience with difficulties encountered in the installation of well clusters in this area, we plan to employ hollow-stem auger drilling techniques for sampling.

We will screen each sample in the field for chlorides and volatile organic compounds using the methods described in QP-03 and QP-07 (attached), respectively. Soil lithology and the presence of any observed staining or odor will be recorded. For any site, if we detect evidence of leakage within 15 feet of the water table (e.g. field chloride greater than 250 ppm in soil samples) we will complete the boring as a monitoring well in accordance with NMOCD Guidance. If three soil samples taken at 5-foot intervals test below 250 ppm chloride and below 100 ppm total volatile organic compounds, we will terminate the boring. However, all borings will penetrate at least 30 feet of the vadose zone.

Task 2 Evaluate Chloride and Hydrocarbon Flux from the Vadose Zone to Ground Water

We anticipate that one or all of the five sites selected for borehole investigation will show evidence of seepage from the source to a depth of more than 15-feet. For these sites, excavation and disposal of released material can cause more environmental damage than it cures. For such sites, we propose to employ HYDRUS-1D and a simple ground water mixing model to evaluate the potential of any residual chloride and hydrocarbon mass in the vadose zone to impair ground water quality above WQCC Standards. We have selected these two constituents for simulation modeling because each of these constituents is typically found in produced water and each is specifically regulated by New Mexico ground water regulations (WQCC). We will also employ vadose zone hydrocarbon migration predictive tools commonly employed by NMED in their PST program.

Task 3 Provide Investigative Results and/or Corrective Action Plan

Because the Hobbs SWD System no longer carries produced water, additional releases of produced water to ground water are highly unlikely. If modeling shows that the residual chloride and hydrocarbon mass in the vadose zone poses a no threat to ground water quality, we will prepare a report that makes this demonstration and request site closure.

January 20, 2006 Page 3

If simulation experiments suggest that residual constituents pose a threat to ground water quality or if the field program demonstrates impairment, we will expand upon the HYDRUS-1D model predictions described above to develop a remedy for the vadose zone. If necessary, we will simulate:

- 1. Excavation, disposal and replacement of clean soil to remove the chloride and hydrocarbon mass,
- 2. Installation of a low permeability barrier to minimize natural infiltration,
- 3. Surface grading and seeding to eliminate any ponding of precipitation and promote evapotranspiration, thereby minimizing natural infiltration, and
- 4. A combination of the above potential remedies.

We will select the vadose zone remedy that offers the greatest environmental benefit while causing the least environmental damage. If data suggest that the site has contributed chloride or hydrocarbons to ground water and caused ground water impairment, we will notify NMOCD and work collaboratively to determine the appropriate path forward.

Proposed Schedule

With NMOCD's approval of this work plan, we can perform the field activities at these sites in February or March. In late April or May, we plan to deliver any individual Correction Action Plans to address residual constituents in the vadose zone and any reports requesting site closure. If data suggest ground water impairment we plan to conduct two quarters of ground water monitoring to confirm any initial result then meet with NMOCD to develop an appropriate path forward. Your approval to move forward with this work plan will facilitate approval of expenditures by the System Partners.

Sincerely, R.T. Hicks Consultants, Ltd.

Gilbert Van Deventer Project Manager

cc:

Chris Williams, NMOCD Hobbs District Office Carolyn Haynes, Rice Operating Company - Hobbs Kristin Pope, Rice Operating Company – Hobbs Randy Hicks, R. T. Hicks Consultants, Ltd. - Albuquerque

Rice Operating Company

QUALITY PROCEDURE

Sampling and Testing Protocol Chloride Titration Using .282 Normal Silver Nitrate Solution

1.0 Purpose

This procedure is to be used to determine the concentration of chloride in soil.

2.0 Scope

This procedure is to be used as the standard field measurement for soil chloride concentrations.

3.0 Sample Collection and Preparation

- 3.1 Collect at least 80 grams of soil from the sample collection point. Take care to insure that the sample is representative of the general background to include visible concentrations of hydrocarbons and soil types. If necessary, prepare a composite sample for soils obtained at several points in the sample area. Take care to insure that no loose vegetation, rocks or liquids are included in the sample(s).
- 3.2 The soil sample(s) shall be immediately inserted into a one-quart or larger polyethylene freezer bag. Care should be taken to insure that no crosscontamination occurs between the soil sample and the collection tools or sample processing equipment.
- 3.3 The sealed sample bag should be massaged to break up any clods.

4.0 Sample Preparation

- 4.1 Tare a clean glass vial having a minimum 40 ml capacity. Add at least 10 grams of the soil sample and record the weight.
- 4.2 Add at least 10 grams of reverse osmosis water to the soil sample and shake for 20 seconds.
- 4.3 Allow the sample to set for a period of 5 minutes or until the separation of soil and water.
- 4.4 Carefully pour the free liquid extract from the sample through a paper filter into a clean plastic cup if necessary.

5.0 Titration Procedure

- 5.1 Using a graduated pipette, remove 10 ml extract and dispense into a clean plastic cup.
- 5.2 Add 2-3 drops potassium chromate (K2CrO4) to mixture.
- 5.3 If the sample contains any sulfides (hydrogen or iron sulfides are common to oilfield soil samples) add 2-3 drops of hydrogen peroxide (H₂O₂) to mixture.
- 5.4 Using a 1 ml pipette, carefully add .282 normal silver nitrate (one drop at a time) to the sample while constantly agitating it. Stop adding silver nitrate when the solution begins to change from yellow to red. Be consistent with endpoint recognition.
- 5.5 Record the ml of silver nitrate used.
- 6.0 Calculation

To obtain the chloride concentration, insert measured data into the following formula:

<u>.282 X 35.450 X ml AgNO₃</u>	X	grams of water in mixture
ml water extract		grams of soil in mixture

Using Step 5.0, determine the chloride concentration of the RO water used to mix with the soil sample. Record this concentration and subtract it from the formula results to find the net chloride in the soil sample.

Record all results on the delineation form.

QUALITY PROCEDURE Sampling and Testing Protocol for VOC in Soil

1.0 Purpose

This procedure is to be used to determine the concentrations of Volatile Organic Compounds in soils.

2.0 Scope

This procedure is to be used as the standard field measurement for soil VOC concentrations. It is not to be used as a substitute for full spectrographic speciation of organic compounds.

3.0 Procedure

- 3.1 Sample Collection and Preparation
 - 3.1.1 Collect at least 500 g. of soil from the sample collection point. Take care to insure that the sample is representative of the general background to include visible concentrations of hydrocarbons and soil types. If necessary, prepare a composite sample of soils obtained at several points in the sample area. Take care to insure that no loose vegetation, rocks or liquids are included in the sample(s).
 - 3.1.2 The soil sample(s) shall be immediately inserted into a one-quart or larger polyethylene freezer bag and sealed. When sealed, the bag should contain a nearly equal space between the soil sample and trapped air. Record the sample name and the time that the sample was collected on the Field Analytical Report Form.
 - 3.1.3 The sealed samples shall be allowed to set for a minimum of five minutes at a temperature of between 10-15 Ceisius, (59-77°F). The sample temperatures may be adjusted by cooling the sample in ice, or by heating the sample within a generally controlled environment such as the inside of a vehicle. The samples should not be placed directly on heated surfaces or placed in direct heat sources such as lamps or heater vents.
 - 3.1.4 The sealed sample bag should be massaged to break up any clods, and to provide the soil sample with as much exposed surface area as practically possible.

- 3.2 Sampling Procedure
 - 3.2.1 The instrument to be used in conducting VOC concentration testing shall be an Environmental Instruments 13471 OVM / Datalogger or a similar PID-type instrument. (Device will be identified on VOC Field Test Report Form.) Prior to use, the instrument shall be zeroed-out in accordance with the appropriate maintenance and calibration procedure outlined in the instrument operation manual. The PID device will be calibrated each day it's used.
 - 3.2.2 Carefully open one end of the collection bag and insert the probe tip into the bag taking care that the probe tip not touch the soil sample or the sidewalls of the bag.
 - 3.2.3 Set the instrument to retain the highest result reading value. Record the reading onto the Field Test Report Form.
 - 3.2.4 If the instrument provides a reading exceeding 100 ppm, proceed to conduct BTEX Speciation in accordance with QP-02 and QP-06. If the reading is 100 ppm or less, NMOCD BTEX guideline has been met and no further testing for BTEX is necessary. File the Field Test Report Form in the project file.

4.0 Clean-up

After testing; the soil samples shall be returned to the sampling location, and the bags collected for off-site disposal. IN NO CASE SHALL THE SAME BAG BE USED TWICE. EACH SAMPLE CONTAINER MUST BE DISCARDED AFTER EACH USE.

QP-07

	THE						LITHOLOGIC LOG
	IM						
	BIA .			BO	RING NO.:	A-32	TOTAL DEPTH: 30 Feet
					SITE ID:	Hobbs	SWD System CLIENT: RICE Operating Company
				CON	FRACTOR:	Atkins	Engineering COUNTY: Lea
1	LIMAN	Contraction of the	Real Control	DRILLING	METHOD:	Hollow	v Stem Auger STATE: New Mexico
	all all		1	STA	RT DATE:	05/03	/06 LOCATION: <u>T18S-R38E-Sec 32-Unit A</u>
				COMPLETI	ON DATE:	05/03,	/06 FIELD REP.: G. Van Deventer / M. Franks / J. Hendrickx
and Saught		and and the set	- Star Bar	CC	MMENTS:	Locate	ed in area with no expected impact from oil and gas activities (background conditions).
			All - Alla			_	
USCS		S ampl	e	Blowcounts	Chloride	PID	LITHOLOGIC DESCRIPTION:
	Depth	Time	Туре	(blows - in)	(ppm)	(ppm)	LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOLIDATION, DISTINGUISHING FEATURE
SM	1	1421	S plit S poon	50 - 12"	58		Silty loam, pale yellowish brown (10YR 6/2) and caliche (very pale orange (10 YR 8/2), dry.
	2	1426	S plit S poon	100 - 6"	27		Fine-grained sandy caliche pale yellowish brown (10YR 6/2), dry.
	3	1440	S plit S poon	50 - 12"	58		Fine-grained sandy caliche pale yellowish brown (10YR 6/2), dry.
SM/CAL	4	1443	S plit S poon	50 - 12"	58		Fine-grained sandy caliche pale yellowish brown (10YR 6/2), dry, very hard, some consolidated sand nodules
	5	1450	Split Spoon	30 - 12"	28		(cemented)
	7	1500	Split Spoon	23 - 12	170		Calcic fine-grained sand (very pale orange (10 YR 8/2), hard, consolidated with calcium carbonate in matrix.
	8	1510	Split Spoon	38 - 12"	151		s and grains are subangular, moderately well sorted, dry.
	q	1520	S plit S poon	50 - 9"	340		As above
	10	1520	Split Spoon	50 - 4"	365		As above
	11		5 pm 5 poor	50 1	505		
	12						
	13	1526	Calls Carson	50 0	205		Calcic fine-grained sand (very pale orange (10 YR 8/2), hard, consolidated with calcium carbonate in matrix.
	14	1530	s plit s poon	50 - 9	295		S and grains are subangular, moderately well sorted, dry.
	15	1545	S plit S poop	50 - 4"	228		Calcic fine-grained sand (very pale orange (10 YR 8/2), hard, consolidated with calcium carbonate in matrix.
	16	1545	5 pirc 5 poor	50 - 4	220		Sand grains are subangular, moderately well sorted, dry.
	17	1555	Split Spoon	50 - 1"	85		Calcic fine-grained sand (very pale orange (10 YR 8/2), hard, consolidated with calcium carbonate in matrix.
CAL/SM	18						S and grains are subangular, moderately well sorted, dry.
	19						Calcic fine-grained sand (very pale orange (10 YR 8/2), hard, consolidated with calcium carbonate in matrix. Sand grains are subangular, moderately well sorted, dry.
	20						
	21						
	22	1605	S plit S poon	50 - 2"	57		Calcic fine-grained sand (very pale orange (10 YR 8/2), hard, consolidated with calcium carbonate in matrix.
	23	1620	S plit S poon	5 <mark>0</mark> - 2"	89		is and grains are subangular, moderately well sorted, dry.
	24			_			
	25						
	26						Calcic fine-grained sand (very pale orange (10 YR 8/2), hard, consolidated with calcium carbonate in matrix
	27	1630	S plit S poon	50 - 1"	58		S and grains are subangular, moderately well sorted, dry.
	28						
	29						
	30						Bottom of boring at 30 feet below ground surface.
	31						
	32			-			
	34	0	-				
	34						
	36	8					
	37						
	38						
	39						
				_			

Background Boring

page

		STATE OF	N. Market		LIT	HOLO	GIC LOC	G AND	IOM	NITORING WELL CONSTR	UCTION DIA	GRAM
-				PI	Develop -	SE	MONIT	OR WEL	L NO.:	MW-1	TOTAL DEPTH	H: 79 Feet
12				1	The second	X		SI	TE ID:	Hobbs E-33-1 Junction Box	CLIENT:	RICE Operating Company
		17	A DESCRIPTION OF		Carlos and	\int	(CONTRA	CTOR:	Atkins Engineering	COUNTY:	Lea
		1			ser/		DRILL	ING MET	THOD:	Hollow Stem Auger	STATE:	New Mexico
8	6	/	105		1			START	DATE:	05/02/06	LOCATION:	T18S-R38E-Sec 33-Unit E
1	B	1	and and a second	KN			COMP	LETION	DATE:	05/02/06	FIELD REP .:	G. Van Deventer / M. Franks
	/	-		K	4	1	COMM	MENTS:	Locate	d immediately adjacent to former ju	unction box location	on.
			USCS	Depth	Sampl	e Type	Blowcounts (blows - in)	Chloride	PID (ppm)	LITHOLOGY, COLOR, GRAIN SIZ	EIUTORIANCE RES	RBIRE, CONSOLIDATION, DISTINGUISHIN
						Surface						
Cement -		Cement -	SM	5	- 0851	Split Spoon	3 - 6" 50 - 10"	433 990	0	Silty loam and caliche, pale yellowish b	rown (10YR 6/2), Ic	oose backfill, dry.
				10	0906	Split Spoon	50 - 10"	719	0	Fine sandy caliche. Caliche is very pale	orange (10YR 8/2)) and sand component is pale yellowish bro
										YR 6/2), moderately hard, dry.		
				15	0917	Split Spoon	50 - 4"	996	0	Fine sandy caliche. Caliche is very pale YR 6/2), moderately hard, dry.	orange (10YR 8/2)) and sand component is pale yellowish bro
	slank Casing		CAL/ SM	20	- 0924	Split Spoon	50 - 2"	1035	0	Fine sandy caliche. Caliche is very pale YR 6/2), moderately hard, dry.	orange (10YR 8/2)) and sand component is pale yellowish brow
ole Plug	d 40 PVC E	ole Plug		25	0939	Split Spoon	50 - 4"	1309	0	Calcareous fine sand, grayish orange (' with hard sandstone streaks, grayish or	10 YR 7/4), modera ange pink (5 YR 7/	tely hard, dry 2)
ite Ho	Schei	ite Ho			Charles of the			the second		Hard sandstone streaks, gravish orange	a nink (5 VR 7/2)	
entor	2"	entor			0953	Cutting	NA	1262	0	Calcareous fine sand, gravish orange (10 YR 7/4), modera	tely hard, dry
8 Be		8 Be		20			AN CASE	Strengt		Hard sandstone streak, gravish orange	pink (5 YR 7/2)	
31		3/	SM/	30								
			CAL			1 1005	50 01			Calcareous fine sand, gravish orange //	10 YB 7/4) modera	tely hard, dry
				35	1018	Split Spoon	50 - 2"	1381	0	with hard sandstone streaks, grayish or	ange pink (5 YR 7/	2)
				40	1031	Split	50 - 4"	863	0	Calcareous fine sand, very pale orange	(10YR 8/2 and gra	yish orange (10 YR 7/4), moderately hard, o
			SM/ CAL			Spoort				Content decreasing.	and sand content li	norozony with deput.
				45	- 1048	Split Spoon	50 - 4"	1054	0	Fine sand, grayish orange (10 YR 7/4),	unconsolidated, m	oderately well sorted & subangular grains.
			SW									

			<u> </u>		1				
						MONIT C DRILL COMPI COMM	OR WEL SI CONTRA ING ME START LETION 4ENTS:	L NO.: TE ID: CTOR: THOD: DATE: DATE: Locate	MW-1 TOTAL DEPTH: 79 Feet Hobbs E-33-1 Junction Box CLIENT: RICE Operating Company Atkins Engineering COUNTY: Lea Hollow Stem Auger STATE: New Mexico 05/02/06 LOCATION: T18S-R38E-Sec 33-Unit E 05/02/06 FIELD REP.: G. Van Deventer / M. Franks
-		uscs	Depth	Sample	e Type	Blowcounts (blows - in)	Chloride	PID (ppm)	LITHOLOGY, COLOR, GRAIN SIZE, TORMAC, RESORDING, CONSOLIDATION, DISTINGUISHING
bn			Dopti	1100	Spoon		(ppm)	(PP)	Fine sand, grayish orange (10 YR 7/4), unconsolidated, moderately well sorted & subangular grains.
3/8 Bent Hole PI		sw	55	1115	Split Spoon	50 - 6"	946	0	Fine sand, grayish orange (10 YR 7/4), unconsolidated, slightly moist, moderately well sorted & subangu grains.
								Contraction of the	
			60	1132	Split Spoon	36 - 12" 50 - 5"	729	0	Fine sand, light brown (5 YR 6/4), unconsolidated, moist, moderately well sorted & subangular grains.
									Groundwater encountered at approximately 63 ft below ground surface.
Pack			05			.			Fine sand, light brown (5 YR 6/4), unconsolidated, moist, moderately well sorted & subangular grains.
Sand I			65						
Bradv						-			
8/16		SW	70	-				~	Fine sand, light brown (5 YR 6/4), unconsolidated, moist, moderately well sorted & subangular grains.
			10	1132		_			
			75						Fine sand, light brown (5 YR 6/4), unconsolidated, moist, moderately well sorted & subangular grains.
						_			
ļ					<u> </u>				
->			80						Bottom of well at 79 ft below ground surface.
						-			
					-		-		
			85		-	_	- 1		
					-		-		
			90						
					•				
			95		_				
			_						
			100						
	♦ 8/16 Brack Sand Pack 3/18 Bent Hole Plue	♦ 8/16 Brady Sand Pack 3/8 Bent Hole Plug	WSCS 308 Bent Hole Link SW SW SW SW Alt B Erady Sand Pack	USCS Depth 01 0 0 01 55 60 01 60 0 01 60 0 01 60 0 01 70 65 01 70 65 01 70 65 01 80 80 01 90 90 90 95 95	USCS Depth Time Depth 1100 SW 55 1115 60 1132 65 1132 70 132 75 132 75 90 90 90 95 90 95 100	USCS Depth Time Type product Sw 55 1115 Split 1100 Sw 55 1115 Split 60 1132 Split Spoon 60 1132 Split Spoon 65 1115 Split Spoon 70 1132 Split Spoon 70 1132 Split Spoon 70 1132 Split Spoon 85 90 1132 Split 90 95 95 100	USCS Depth Time Type (blows - in) 90 55 1110 Spoin 50 - 6" 55 1115 Split 50 - 6" 60 1132 Split 50 - 5" 60 1132 Split 50 - 5" 65 1113 Split 36 - 12" 65 1132 Split 36 - 5" 70 1132 Split 14 70 1132 Split 14 75 1132 Split 14 75 1132 Split 15 75 1132 Split Split Split 85 75 Split Split Split 90 95 Split Split Split 95 100 Split Split Split	USCS Depth Time Type (blows - in) (ppm) 99 5 1110 Spon 50 - 6" 946 99 60 1132 Spit 36 - 12" 729 60 1132 Spit 36 - 12" 729 90 65 1115 Spit 36 - 12" 729 910 1132 Spit 36 - 12" 729 92 65 1132 Spit 36 - 12" 729 93 65 1132 Spit 36 - 12" 729 93 70 1132 Spit 100	VSCS Depth Time Type (blows - in) (ppm) (ppm) 90 55 1110 Spoon 50 - 6" 946 0 90 55 1115 Split 36 - 12" 729 0 60 1132 Split 36 - 5" 729 0 65 1132 Split 50 - 5" 729 0 55 1115 Split 36 - 12" 729 0 65 1132 Split 36 - 12" 729 0 55 1115 Split 36 - 12" 729 0 55 1132 Split 14 14 14 14 65 1132 Split 14 14 14 14 75 75 1132 14 14 14 14 75 75 1132 14 14 14 14 90 90 14 14 14 14

ļ

page

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: Jct. E-33-1 (UNO 146) Project Number: Hobbs Abandonment Location: T18S, R38E, Sec. 33, Unit Letter E

Lab Order Number: 6E11004

Report Date: 05/16/06

Project: Jct. E-33-1 (UNO 146) Project Number: Hobbs Abandonment Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 05/16/06 16:10

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-1 (24')	6E11004-01	Soil	05/02/06 09:39	05/10/06 17:50

Page 1 of 4

Fax: (505) 397-1471	Project: Jct. E-33-1 (UNO 146)	Rice Operating Co.
Reported:	Project Number Hobbs Abandonment	122 W. Taylor
05/16/06 16:10	Project Manager: Kristin Farris-Pope	Hobbs NM, 88240
	Project Manager: Kristin Farris-Pope	Hobbs NM, 88240

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-1 (24') (6E11004-01) Soil	,								
Chloride	1640	25.0	mg/kg	50	EE61225	05/12/06	05/12/06	EPA 300.0	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 2 of 4

Rice C)perati	ng Co.
122 W	. Tay	lor
Hobbs	NM,	88240

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		D		C		C		N/DEC		PDI)	
Analyte	Result	Keporting Limit	Units	Spike Level		Result	%REC	Limits	RPD	Limit	Notes
Analyte				Berei			, and be	Linito			
Batch EE61225 - Water Extraction		<u> </u>									<u>_</u>
Blank (EE61225-BLK1)				Prepared	&	Analyzed:	05/12/06				
Chloride	ND	0.500	mg/kg								
LCS (EE61225-BS1)				Prepared	&	Analyzed:	05/12/06				
Chloride	9.96	0.500	mg/kg	10.0			99.6	80-120			
Calibration Check (EE61225-CCV1)				Prepared	&	Analyzed:	05/12/06				
Chloride	10.9		mg/kg	10.0			109	80-120			
Duplicate (EE61225-DUP1)	Source:	6E05006	-03	Prepared	&	Anałyzed:	05/12/06				
Chloride	2920	50.0	mg/kg			2870			1.73	20	
Duplicate (EE61225-DUP2)	Source:	6E11006	-02	Prepared	&	Analyzed:	05/12/06				
Chloride	284	12.5	mg/kg			284			0.00	20	
Matrix Spike (EE61225-MS1)	Source:	6E05006	-04	Prepared	&	Analyzed:	05/12/06				
Chloride	3160	50.0	mg/kg	1000		2100	106	75-125			
Matrix Spike (EE61225-MS2)	Source	6E11019	-01	Prepared	&	Analyzed:	05/12/06				
Chloride	984	10.0	mg/kg	200		699	142	75-125			S-07

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Reported: 05/16/06 16:10

Notes and Definitions

- S-07 Recovery outside Laboratory historical or method prescribed limits.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike

Dup Duplicate

Kaland K Julies Report Approved By:

Date: 5/16/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas,

Page 4 of 4

OF CUSTODY RECORD AND ANALYSIS REQUEST	Project Name: Jot. E-33-1 (UN0146)	Project # Hobbs Abandonment	oject Location: 718S, R38E, Sec 33, Unit Letter E	C Billing Code			TCUP: Analyze For.	101Ai.	098	ие - Зейесий овез Са Са Са Ро Ну Са Са Са Ро Ну Са Са Са Ро Ну Са Са Са Ро Ну Са Са Са Ро Са Ро Са Ро Са Ро Са Ро Са Ро Са Са Са Ро Са Са Са Ро Са Са Са Ро Са Са Са Са Ро Са Са Са Са Ро Са Са Са Ро Са Са Са Са Са Ро Са	Ойлег (аресіну): 7724; 418, 1 801 Сайолс (Са, Ма, Аліолс (Са, Ма, Аліолс (С, 504, Аліолс (С, 504, Аліолс (С, 504, Сайонска БТЕХ 60218/460 БТЕХ 60218/460 САГер (САГер (Саконска Сако							Sample Containers Intact? C N Temperature Upon Receipt (utratia ty Starls	Time Leboratory Comments: $\lambda e c 0.0^{\circ}$		Time /7 <i>SC</i> /
CHAIN			L.	RC		onsult.con		E Martic	Matrix		Straige Straige Straige		>						Dale		Date 5-10-06
3: 432-563-1800 432-563-1713		, vi		40	Fax No: 505-397-1471	ifranks@riceswd.com, kpope@riceswd.com, & andrew@rthicksco			Freservative	ກອເຂ ເຊ ດງ Deptiv	Sample (soils e 1) ate Sample Nacu Contai Nacu Contai Nacu Nacu Nacu Sample Sample Nacu Sample	C Begin End (ft) (ft)	24 24 5-2-06 0939 1 1						Time Received by:	17.56	Time Received by ELDT: Kalandk fuel
ntal Lab of Texa Fex	ager. Kristin Pope	lame Rice Operating Compar	ness: 122 West Taylor	izip: Hobbs, New Mexico 882	No: 505-393-9174	a to: gil@thjcksconsult.com, m	we Ella la			- 3000	רבנס (110 3-1 (241)						/ // / Date	a. Lit Sticlet	Cate
Environme 12600 west 1-20 East Odessa, Texas 79765	Project Mane	Сотрялу N	Company Addi	City/State.	Тејернолв	Email result	Sampler Signa			ODE nre ouji)	9819 11]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]		PO INVI	-				Special Instruction:	Relinquisided by:	× 100 0.	Relinquished by.

P

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client	Rice Op.
Date/Time:	5/10/06 17:50
Order #:	6 E11004
Initials:	Cal

Sample Receipt Checklist

Temperature of container/cooler?	Yes	No	
Shipping container/cooler in good condition?	YEST	No	
Custody Seals intact on shipping container/cooler?	YES	No	Not present
Custody Seals intact on sample bottles?	125	No	Not present
Chain of custody present?	YES	No	
Sample Instructions complete on Chain of Custody?		No	
Chain of Custody signed when relinquished and received?	10	No	}
Chain of custody agrees with sample label(s)	Xesi	No	
Container labels legible and intact?	Yes	No	
Sample Matrix and properties same as on chain of custody?	Vest	No	
Samples in proper container/bottle?	1231	No	
Samples properly preserved?	VER 1	No	
Sample bottles intact?	Yes 1	No	1
Preservations documented on Chain of Custody?	61	No	1
Containers documented on Chain of Custody?	Yes I	No	
Sufficient sample amount for indicated test?	(es	No	
All samples received within sufficient hold time?	YES	No	
VOC samples have zero headspace?	Yes	No	K Not Applicable

Other observations:

Variance Documentation:

.

Contact Person: Regarding:	Date/Time:	 Contacted by:	
······································			

Corrective Action Taken:

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: Hobbs Jct. E-33-1 Project Number: None Given Location: Lea County

Lab Order Number: 6H18009

Report Date: 08/28/06

Project: Hobbs Jct. E-33-1 Project Number: None Given Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1	6H18009-01	Water	08/14/06 10:40	08-18-2006 10:20

Project: Hobbs Jct. E-33-1 Project Number: None Given Project Manager: Kristin Farris-Pope

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Anałyzed	Method	Notes
Monitor Well #1 (6H18009-01) Water									
Benzene	ND	0.00100	mg/L	1	EH62121	08/21/06	08/21/06	EPA 8021B	
Toluene	ND	0.00100	"	"	"	"	н		
Ethylbenzene	ND	0.00100		"		в	м	*	
Xylene (p/m)	ND	0.00100	"	"			8	"	
Xylene (o)	ND	0.00100	n					н	
Surrogate: a,a,a-Trifluorotoluene		88.5 %	80-120)	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		82.2 %	80-120)	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Hobbs Jct. E-33-1 Project Number: None Given Project Manager: Kristin Farris-Pope

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6H18009-01) Water									
Total Alkalinity	216	2.00	mg/L	1	EH62128	08/21/06	08/21/06	EPA 310.1M	
Chloride	138	5.00		10	EH62101	08/21/06	08/21/06	EPA 300.0	
Total Dissolved Solids	622	10.0		1	EH62303	08/18/06	08/22/06	EPA 160.1	
Sulfate	90.9	5.00		10	EH62101	08/21/06	08/21/06	EPA 300.0	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Hobbs Jct. E-33-1 Project Number: None Given Project Manager: Kristin Farris-Pope

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6H18009-01) Water									J
Calcium	86.8	0.810	mg/L	10	EH62313	08/23/06	08/23/06	EPA 6010B	
Magnesium	18.6	0.360	*	"	"	"	"		
Potassium	5.14	0.600		u	*		"	"	
Sodium	81.5	0.430		**		"		11	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EH62121 - EPA 5030C (GC)

Blank (EH62121-BLK1)				Prepared:	08/21/06	Analyzed:	08/22/06
Benzene	ND	0.00100	mg/L				
Toluene	ND	0.00100	"				
Ethylbenzene	ND	0.00100					
Xylene (p/m)	ND	0.00100					
Xylene (o)	ND	0.00100	"				
Surrogate: a,a.a-Trifluorotoluene	40.3		ug/l	40.0		101	80-120
Surrogate: 4-Bromofluorohenzene	36.7		n	40.0		91.8	80-120
LCS (EII62121-BS1)				Prepared	& Analyz	ed: 08/21/0	6
Benzene	0.0460	0.00100	mg/L	0.0500		92.0	80-120
Toluene	0.0503	0.00100	"	0.0500		101	80-120
Ethylbenzene	0.0463	0.00100	"	0.0500		92.6	80-120
Xylene (p/m)	0.113	0.00100	"	0.100		113	80-120
Xylene (o)	0.0565	0.00100	"	0.0500		113	80-120
Surrogate: a.a.a-Trifluorotoluene	39.7		ug/l	40.0		99.2	80-120
Surrogate: 4-Bromofluorobenzene	45.0		"	40.0		112	80-120
Calibration Check (EH62121-CCV1)				Prepared:	08/21/06	Analyzed:	08/22/06
Benzene	48.7		ug/l	50.0		97.4	80-120
Toluene	52.3		"	50.0		105	80-120
Ethylbenzene	57.3		"	50.0		115	80-120
Xylene (p/m)	114		"	100		114	80-120
Xylene (o)	57.6			50.0		115	80-120
Surrogate: a,a,a-Trifluorotoluene	44.7		"	40.0		112	80-120
Surrogate: 4-Bromofluorobenzene	38.3		"	40.0		95.8	80-120
Matrix Spike (EH62121-MS1)	Sour	ce: 6H18007	-01	Prepared:	08/21/06	Analyzed:	08/22/06
Benzene	0.0464	0.00100	mg/L	0.0500	ND	92.8	80-120
Toluene	0.0550	0.00100	"	0.0500	ND	110	80-120
Ethylbenzene	0.0554	0.00100	"	0.0500	ND	111	80-120
Xylene (p/m)	0.117	0.00100	"	0.100	ND	117	80-120
Xylene (0)	0.0575	0.00100		0.0500	ND	115	80-120
Surrogate: a,a,a-Trifluorotoluene	41.8		ug/l	40.0		104	80-120
Surrogate: 4-Bromofluorobenzene	46.5		"	40.0		116	80-120

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Hobbs Jct. E-33-1 Project Number: None Given Project Manager: Kristin Farris-Pope

Organics by GC - Quality Control

Environmental Lab of Texas

1		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EH62121 - EPA 5030C (GC)

Matrix Spike Dup (EH62121-MSD1)	Source	6H18007	7-01	Prepared:	08/21/06	Analyzed:	08/22/06		
Benzene 0	0473	0.00100	mg/L	0.0500	ND	94.6	80-120	1.92	20
Toluene 0	0535	0.00100		0.0500	ND	107	80-120	2.76	20
Ethylbenzene 0	0549	0.00100		0.0500	ND	110	80-120	0.905	20
Xylene (p/m)	.120	0.00100	"	0.100	ND	120	80-120	2.53	20
Xylene (o) 0	0583	0.00100		0.0500	ND	117	80-120	1.72	20
Surrogate: a,a,a-Trifluorotoluene	42.9		ug/l	40.0		107	80-120		
Surrogate: 4-Bromofluorobenzene	46.4		"	40.0		116	80-120		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Unite	Spike Level		Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
/maye		Lunit		Level		Result	JUILL.	Lunits			INACS
Batch EH62101 - General Preparation	(WetChem)										
Blank (EH62101-BLK1)				Prepared	&	Analyzed:	08/21/06				
Sulfate	ND	0,500	mg/L								
Chloride	ND	0.500	. "								
LCS (EH62101-BS1)				Prepared	&	Analyzed:	08/21/06				
Sulfate	8.51	0.500	mg/L	10.0			85.1	80-120			
Chloride	10.0	0.500	"	10,0			100	80-120			
Calibration Check (EH62101-CCV1)				Prepared	&	Analyzed:	08/21/06	.*		*	
Sulfate	8.34		mg/L	10.0			83.4	80-120			
Chloride	10.2		N	10.0			102	80-120			
Duplicate (EH62101-DUP1)	Source:	6H18007	7-01	Prepared	<i>&</i> :	Analyzed:	08/21/06				
Sulfate	76.3	5.00	mg/L			65.9			14.6	20	
Chloride	105	5.00	"			98.9			5.98	20	
Duplicate (EH62101-DUP2)	Source:	6H18013	3-04	Prepared	&	Analyzed:	08/21/06				
Sulfate	331	5.00	mg/L			336			1,50	20	
Chloride	138	5.00				136			1.46	20	
Matrix Spike (EH62101-MS1)	Source:	6H18007	7-01	Prepared	&	Analyzed:	08/21/06				
Sulfate	172	5.00	mg/L	100		65.9	106	80-120			
Chloride	210	5.00	n	100		98.9	111	80-120			
Matrix Spike (EH62101-MS2)	Source:	6H18013	3-04	Prepared	&	Analyzed:	08/21/06				
Sulfate	422	5.00	mg/L	100		336	86,0	80-120			
Chloride	224	5.00		100		136	88.0	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

			*							
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH62128 - General Prepara	ntion (WetChem)									
Blank (EH62128-BLK1)				Prepared &	& Analyze	d: 08/21/06	5			
Total Alkalinity	ND	2.00	mg/L							
LCS (EH62128-BS1)				Prepared &	& Analyze	d: 08/21/06	,			
Total Alkalinity	178		mg/L	200		89.0	85-115			
Duplicate (EH62128-DUP1)	Sour	ce: 6H18007	7-01	Prepared &	& Analyze	d: 08/21/06	,			
Total Alkalinity	186	2.00	mg/L		186			0.00	20	
Reference (EH62128-SRM1)				Prepared 2	& Analyze	d: 08/21/06	,			
Total Alkalinity	248		mg/L	250		99.2	90-110			
Batch EH62303 - Filtration Prepa	ration									
Blank (EH62303-BLK1)				Prepared:	08/18/06	Analyzed:	08/22/06			
Total Dissolved Solids	ND	10.0	mg/L							
Duplicate (EII62303-DUP1)	Sour	ce: 6H18007	7-01	Prepared:	08/18/06	Analyzed:	08/22/06			
Total Dissolved Solids	556	10.0	mg/L		526			5.55	5	R
Duplicate (EH62303-DUP2)	Sour	-ce: 6H18013	3-04	Prepared &	& Analyze	d: 08/18/06	,			
Total Dissolved Solids	808	10.0	mg/L		930			14.0	5	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice (Operati	ng Co.
122 W	/. Tay	lor
Hobbs	NM,	88240

".--: €P

Project: Hobbs Jct. E-33-1 Project Number: None Given Project Manager: Kristin Farris-Pope

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

										_
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EH62313 - 6010B/No Digestion

Blank (EH62313-BLK1)				Prepared	& Analyzed	08/23/06				
Calcium	ND	0.0810	mg/L							
Magnesium	ND	0.0360								
Potassium	ND	0,0600								
Sodium	ND	0.0430	"							
Calibration Check (EH62313-CCV1)				Prepared	& Analyzed:	08/23/06				
Calcium	1.96		mg/L	2.00		98.0	85-115			
Magnesium	2.01		n	2.00		100	85-115			
Potassium	1.76			2.00		88.0	85-115			
Sodium	1.96		۳	2.00		98.0	85-115			
Duplicate (EH62313-DUP1)	Source	: 6H15005	-04	Prepared	& Analyzed:	08/23/06				
Calcium	44.4	0.810	mg/L		45.9			3.32	20	
Magnesium	48.1	0.360	*		49.3			2.46	20	
Potassium	42.9	0.600	"		42.6			0.702	20	
Sodium	44.4	0.430			43.5			2.05	20	

Environmental Lab of Texas

. e 4

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Notes and Definitions

R5	RPD is outside of historic values
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Raland K Julies Report Approved By: Date: 8/28/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

) ANALYSIS REQUEST ame: Hobbs Junction E-33-1	ect #:	Loc: Lea County	:# Oc			Analyze For: TCLP: Analyze For: TOTAL: X	24	Anions (CJ, SOA, CO3, HCO3) SAR7 (ESP / CEC Metals: As Ag B& Cd Cr Pb Hg 5 Vobildes BTEX 8021845030 RCI N.O.R.M A.O.R.M A.O.R.M FOILD FOILD FOILD Standard TAT FOILT Standard TAT Standard TAT	X X X					Sample Containers Intact?	Laboratory Comments: $\mathcal{A}_{\mathcal{O}}$	
CHAIN OF CUSTODY RECORD AND	Proj	Project		: (505) 397-1471			Preservative Matrix _{to}	No. of Containers lee HUO ₃ HUO ₃ HCI (2) 40 ml glass visis Nater Sludge Soli Sludge Other (Specify) Other (Specify) Other (Specify) Soli Sludge Other (Specify) Soli Sludge Soli Soli Soli Sludge Soli Sludge Soli Sludge Soli Sludge Soli Sludge Sl	3 X 2 1 X 2					l.com; mfranks@riceswd.com	Date Time B-18-06 5:31	e e la
f Texas : 432-553-1800 432-553-1713 ope kpope@riceswd.com	g Company	Street	exico 88240	Fax No	son (505) 631-9310	rnet.com		الله Cate Sampled Time Sampled	8/14/2006 10:40					Email RESULTS TO: kpope@riceswd 2zanne@valornet.com	Date Time Received by:	P/Mr. 1.1, 2.0 James Johnson (M. J. 2.
Environmental Lab O 12600 West 1-20 East Odessa, Texas 79765 Project Manager: Kristin Farris Po	company Name RICE Operating	Company Address: 122 W. Taylor	city/state/zip: Hobbs, New Mi	Telephone No: (505) 393-9174	Sampler Signature: Rozanne Johns	Email: <u>rozanne@valor</u>	·	LAB# (Idb Lise only)	101 Monitor Well #1					Special Instructions: PLEASE E	Relitivuisties for	Relinquished by: LAAA LA NYAAAA MILL

÷.,

2 (All 2)

35" 6-

1. 3. W. 2.

29. L 1 4

- 1 o. 1

a North

1.4.6.6

3. L. L. L.

1.1.1.1

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Client:	Rice DR-	
Date/ Time:	8/18/06 10:20	
Lab ID # :	ïeH18009	<u></u>
Initials:		<u></u>

Sample Receipt Checklist

Client Initials 4.0 Yes No °C Temperature of container/ cooler? Yes No Shipping container in good condition? #2 Xes No Not Present Custody Seals intact on shipping container/ cooler? #3 Not Present Custody Seals intact on sample bottles/ container? Xes No #4 Chain of Custody present? No #5 У́еқ Sample instructions complete of Chain of Custody? Yes No #6 Chain of Custody signed when relinquished/ received? #7 Yes No #8 Chain of Custody agrees with sample label(s)? Yes No ID written on Cont./ Lid Container label(s) legible and intact? Yes No Not Applicable #9 #10 Sample matrix/ properties agree with Chain of Custody? No Xes res No #11 Containers supplied by ELOT? No #12 Samples in proper container/ bottle? Yeş See Below #13 Samples properly preserved? Yes No See Below No #14 Sample bottles intact? Yes #15 Preservations documented on Chain of Custody? Yes No #16 Containers documented on Chain of Custody? les No #17 Sufficient sample amount for indicated test(s)? Хèş No See Below All samples received within sufficient hold time? Tes No #18 See Below #19 VOC samples have zero headspace? No Yes Not Applicable

Variance Documentation

Contact:		Contacted by:	Date/ Time;	
Regarding:				
Corrective Action Taken	:			
Check all that Apply:		See attached e-mail/ fax Client understands and would like to pro	oceed with analysis	

Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: Hobbs Jct. E-33-1 Project Number: None Given Location: Lea County

Lab Order Number: 6E18019

Report Date: 05/25/06

5.00

Project: Hobbs Jct. E-33-1 Project Number: None Given Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 05/25/06 16:11

ANALYTICAL REPORT FOR SAMPLES

Sample 1D	Laboratory 1D	Matrix	Date Sampled	Date Received
Monitor Well #1	6E18019-01	Water	05/17/06 14:05	05/18/06 12:00

Rice Operating Co.	Project: Hobbs Jct. E-33-1	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager: Kristin Farris-Pope	05/25/06 16:11

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6E18019-01) Water									
Benzene	ND	0.00100	mg/L	I	EE62101	05/21/06	05/22/06	EPA 8021B	
Toluene	ND	0.00100	**	"	"	H	**	H	
Ethylbenzene	ND	0.00100	11		•			"	
Xylene (p/m)	ND	0.00100	**	"	"	n	н	n	
Xylene (o)	ND	0.00100	W	"		н	"	H	
Surrogate: a,a,a-Trifluorotoluene		116 %	80-12	n	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		87.2 %	80-12	9	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte Monitor Well #1 (6E18019-01) Water	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Total Alkalinity	200	2.00	mg/L	l	EE62220	05/22/06	05/22/06	EPA 310.1M	
Chloride	142	5.00		10	EE62205	05/22/06	05/22/06	EPA 300.0	
Total Dissolved Solids	678	5.00		1	EE61919	05/18/06	05/18/06	EPA 160.1	
Sulfate	93.4	5.00		10	EE62205	05/22/06	05/22/06	EPA 300.0	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.	Project Hobbs Jct. E-33-1	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager: Kristin Farris-Pope	05/25/06 16:11

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6E18019-01) Water									
Calcium	98.1	0.0100	mg/L	1	EE61926	05/19/06	05/19/06	EPA 6010B	
Magnesium	20.5	0.0100		10	"	"	"	*	
Potassium	6.24	2.50		50		•	"	*	
Sodium	75.9	0.500	"	"	"			17	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.		Pr	oiect: H	lobbs Jct. E	E-33-	1				Fax: (50	5) 397-1471
122 W. Taylor		Project Nu	umber: N	one Given						Rep	orted:
Hobbs NM, 88240		Project Ma	mager: K	ristin Farris	-Pop	e				05/25/	06 16:11 ·
	0	rganics by	GC	- Oualit	tv (Contro	1				
		Environm	ental	Lab of	Te	xas					
· ·		D		6 1		<u> </u>		0/DEC			
Analyte	Result	Limit	Units	Level		Result	%REC	Limits	RPD	Limit	Notes
Batch EE62101 - EPA 5030C (GC)		·									
Blank (EE62101-BLK1)				Prepared	&	Analyzed	: 05/21/06				
Benzene	ND	0.00100	mg/L								
Toluene	ND	0.00100	"								
Ethylbenzene	ND	0.00100	"								
Xylene (p/m)	ND	0.00100	**								
Xylene (0)	ND	0.00100	"								
Surrogate: a.a.a-Trifluorotoluene	42.9		ug/l	40.0			107	80-120			
Surrogate: 4-Bromofluorobenzene	32.2		"	40.0			80.5	80-120			
LCS (EE62101-BS1)				Prepared	&	Analyzed	: 05/21/06				
Benzene	0.0415	0.00100	mg/L	0.0500			83.0	80-120			
Toluene	0.0421	0.00100		0.0500			84.2	80-120			
Ethylbenzene	0.0463	0.00100	•	0.0500			92.6	80-120			
Xylene (p/m)	0.102	0.00100	**	0.100			102	80-120			
Xylene (o)	0.0504	0.00100	"	0.0500			101	80-120			
Surrogate: a,a,a-Trifluorotoluene	42.7		ug/l	40,0			107	80-120			
Surrogate: 4-Bromofluorobenzene	36.2		"	40.0			90.5	80-120			
Calibration Check (EE62101-CCV1)				Prepared	&	Analyzed	: 05/21/06				
Benzene	44.3		ug/l	50.0			88,6	80-120			
Toluene	44.3		*	50.0			88.6	80-120			
Ethylbenzene	55,3		**	50.0			111	80-120			
Xylene (p/m)	99.1		"	100			99.1	80-120			
Xylene (0)	49.1		**	50.0			98.2	80-120			
Surrogate: a,a,a-Trifluorotoluene	44.6		"	40.0			112	80-120			
Surrogate: 4-Bromofluorobenzene	34.8		"	40.0			87.0	80-120			
Matrix Spike (EE62101-MS1)	Sou	irce: 6E17005	-01	Prepared	: 05/	/21/06	Analyzed:	05/22/06			
Benzene	0.0444	0.00100	mg/L	0.0500		ND	88.8	80-120			
Toluene	0.0454	0.00100	"	0.0500		ND	90.8	80-120			
Ethylbenzene	0.0488	0.00100		0.0500		ND	97.6	80-120			
Xylene (p/m)	0.108	0.00100	•	0.100		ND	108	80-120			
Xylene (o)	0.0531	0.00100	"	0.0500		ND	106	80-120			
Surrogate: a,a,a-Trifluoroioluene	45.5		ng/l	40.0			114	80-120			
Surrogate: 4-Bromofluorobenzene	36.9		"	40,0			92.2	80-120			

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.	Project: Hobbs Jct. E-33-1	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager: Kristin Farris-Pope	05/25/06 16:11

Organics by GC - Quality Control

Environmental Lab of Texas

the second s										
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EE62101 - EPA 5030C (GC)

Matrix Spike Dup (EE62101-MSD1)	Sourc	e: 6E17005	-01	Prepared:	05/21/06	Analyzed:	05/22/06		
Benzene	0.0439	0.00100	mg/L	0.0500	ND	87.8	80-120	1.13	20
Toluene	0.0447	0.00100		0.0500	ND	89.4	80-120	1.55	20
Ethylbenzene	0.0481	0.00100	"	0.0500	ND	96.2	80-120	1.44	20
Xylene (p/m)	0.107	0.00100	"	0.100	ND	107	80-120	0.930	20
Xylene (o)	0.0521	0.00100		0.0500	ND	104	80-120	1.90	20
Surrogate: a,a,a-Trifluorotoluene	46.4		ug/l	40.0		116	80-120		
Surrogate: 4-Bromofluorobenzene	33.4		"	40.0		83.5	80-120		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.		Pr	oiect: H	obbs Jct. E	-33	-1				Fax: (505	5) 397-1471
122 W. Taylor		Project N	umber: N	one Given						Repo	rted:
Hobbs NM, 88240		Project Ma	anager: K	ristin Farris	-Po	pe				05/25/0	6 16:11
Genera	l Chemistry Para	ameters	by EF	PA / Sta	nd	ard Me	ethods -	- Qual	lity Cor	itrol	
			CHIAI		10						
Analyte	Result	Reporting Limit	Units	Spike Level		Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE61919 - Filtration Prep	aration										
Blank (EE61919-BLK1)				Prepared	&	Analyzed:	05/18/06				
Total Dissolved Solids	ND	5.00	mg/L								
Duplicate (EE61919-DUP1)	Sourc	e: 6E18012	-01	Prepared	&	Analyzed:	05/18/06				
Total Dissolved Solids	1420	5.00	mg/L			1470			3.46	5	
Batch EE62205 - General Prepa	ration (WetChem)										
Blank (EE62205-BLK1)				Prepared	&	Analyzed:	05/22/06				
Sulfate	ND	0,500	mg/L								
Chloride	ND	0.500	"								
LCS (EE62205-BS1)				Prepared	&	Analyzed:	05/22/06				
Sulfate	8.20		mg/L	10,0			82.0	80-120			
Chloride	10.1		"	10.0			101	80-120			
Calibration Check (EE62205-CCV1)				Prepared	&	Analyzed:	05/22/06				
Chloride	10.1		mg/L	10.0			101	80-120			
Sulfate	9.63		"	10.0			96.3	80-120			
Duplicate (EE62205-DUP1)	Sourc	e: 6E18012	-01	Prepared	&	Analyzed:	05/22/06				
Sulfate	307	10.0	mg/L			304			0.982	20	
Chloride	343	10.0				344			0.291	20	
Duplicate (EE62205-DUP2)	Sourc	e: <u>6E18015</u>	-01	Prepared	&	Analyzed:	05/22/06				
Chloride	415	10.0	mg/L			412			0.726	20	
Sulfate	50,3	10.0				50.6			0.595	20	

Environmental Lab of Texas

ŀ

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 7 of 10

1

									Fax: (505	397-1471
Rice Operating Co.		Pr	oject: H	obbs Jct. E	-33-1				Tax. (505	, 577-1471
122 W. Taylor		Project Ni	umber: N	one Given	D				Repo	rted:
Hobbs NM, 88240		Project Ma	mager: K	ristin Farris	-Pope				05/25/0	5 10/11
General	Chemistry Par	ameters	by El	PA / Sta	ndard	Methods	- Qua	lity Co	ntrol	
		Environm	ental	Lab of	Texas					
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE62205 - General Prepara	tion (WetChem)									
Matrix Spike (EE62205-MS1)	Sour	ce: 6E18012	-01	Prepared	& Analy	zed: 05/22/06				
Chloride	565	. 10.0	mg/L	200	344	110	80-120			
Sulfate	465	10.0	"	200	304	80.5	80-120			
Matrix Spike (EE62205-MS2)	Sour	ce: 6E18015	-01	Prepared	& Analy	zed: 05/22/06				
Chloride	654	10.0	mg/L	200	412	121	80-120			S-07
Sulfate	200	10.0	"	200	50.6	74.7	80-120			S-07
Batch EE62220 - General Prepara	tion (WetChem)									
Błank (EE62220-BLK1)				Prepared	& Anały	zed: 05/22/06				
Total Alkalinity	ND	2.00	mg/L							
LCS (EE62220-BS1)				Prepared	& Analy	zed: 05/22/06				
Bicarbonate Alkalinity	214	2.00	mg/L	200		107	85-115			
Duplicate (EE62220-DUP1)	Sour	ce: 6E18012	-01	Prepared	& Analy	zed: 05/22/06				
Fotal Alkalinity	279	2.00	mg/L		280			0.358	20	
Reference (EE62220-SRM1)				Prepared	& Analy	zed: 05/22/06				
Total Alkalinity	96.0		m a /l	100		96.0	00.110			

ŀ

ľ

l

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

R	ce Operating Co.		Project: Hobbs Jct. E-33-1	Fax: (505)	397-1471
1:	2 W. Taylor	Projec	t Number: None Given	Report	ed:
H	obbs NM, 88240	Project	Manager: Kristin Farris-Pope	05/25/06	16:11

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

·····										
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE61926 - 6010B/No Digestion										
Blank (EE61926-BLK1)				Prepared	& Analyze	d: 05/19/0	6			
Calcium	ND	0.0100	mg/L							
Magnesium	ND	0.00100								
Potassium	ND	0.0500								
Sodium	ND	0.0100	"							
Calibration Check (EE61926-CCV1)				Prepared	& Analyze	d: 05/19/0	6			
Calcium	2.30		mg/L	2.00		115	85-115			
Magnesium	2.21		"	2.00		110	85-115			
Potassium	1.80			2.00		90.0	85-115			
Sodium	1.81			2.00		90.5	85-115			
Duplicate (EE61926-DUP1)	Sou	rce: 6E18012	2-01	Prepared	& Analyze	d: 05/19/0	6			
Calcium	111	0.500	mg/L		111			0.00	20	
Magnesium	58.3	0.0100	"		56.5			3.14	20	
Potassium	12.2	0.500			12.9			5.58	20	
Sodium	266	0.500	н		271			1.86	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.	Project: Hobbs Jct. E-33-1	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM. 88240	Project Manager: Kristin Farris-Pope	05/25/06 16:11

Notes and Definitions

- S-07 Recovery outside Laboratory historical or method prescribed limits.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike

Dup Duplicate

Raland K Julies Report Approved By: Date: 5/25/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

ODY RECORD AND ANALYSIS REQUEST Project Name: Hobbs Jct. E-33-1	Project #:	Project Loc: Lea County	P0#:	1	Analyze For:	TCLP: TCLP: TOTAL: X	2000 1000 1000 1000 1000 1000	e (\$Pecify): (\$Pecify)	Watter Sould Sould Calibra Cali	X X X X X				d.com Labels on containers. Intact? N N Labels on containers. Matter 2000 N Custody Seels. Conference Cooler Temperature Upon Receipt: 7.0° C AoF F0 20	Date I Time Laboratory Comments: 18/14 (c:03	Date Time 8 そうじん 1,200
CHAIN OF CUS				Fax No: (505) 397-1471	310 1 1	Drecentraliva	bE Aists	s Sampled beinginen br Containen t f f f f f f f f f f f f f f f f f f	Date No. c No. c N	5/17/2006 14:05 3 X 2 1				TO: kpope@riceswd.com & mfranks@ricesw	Received by: Received by: S	Received by ELOT
INVITORINGILAL UN LEVAS 100 West I-20 East 122-653-1800 123-563-1713 123-553-1713	company Name RICE Operating Company	company Address: <u>122 W. Taylor Street</u>	city/state/zip: <u>Hobbs, New Mexico 88240</u>	Telephone No: (505) 393-9174	sampter Signature: <u>Rozanne Johnson (505)</u> 631-93	Email: rozanne@valornet.com		10014	B# (lab use only) FIELD CODE	Monitor Well #1				ecial Instructions: PLEASE Email RESULTS T	Inquisible by: Date Time R anne Johnsky L:02	inquished by: Date Time R

۰ ت

.

61
Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client: <u>Rice Operating Co.</u>	
Date/Time: 05-18-06@1200	
Order #: 6E18019	
Initials: JMM	

Sample Receipt Checklist

Temperature of container/cooler?	Yes No	
Shipping container/cooler in good condition?	(YES) NO	
Custody Seals infact on shipping container/cooler?	(TES) NO	Not present
Custody Seals intact on sample bottles?	Yes No	Not present 1
Chain of custody present?	TES NO 1	
Sample Instructions complete on Chain of Custody?	TESTI NO	j
Chain of Custody signed when relinquished and received?	(Yes) No	
Chain of custody agrees with sample label(s)	(Yes) No	
Container labels legible and intact?	Yes No	
Sample Matrix and properties same as on chain of custody?	(Tes) No	
Samples in proper container/bottle?	(Tes) No	·
Samples properly preserved?	(YES) NO	
Sample bottles intact?	(VES NO	
Preservations documented on Chain of Custody?	No I No	
Containers documented on Chain of Custody?	TES) NO	
Sufficient sample amount for indicated test?	(YES) NO	
All samples received within sufficient hold time?	(YES) NO	
VOC samples have zero headspace?	(Yes) No	Not Applicable

Other observations:

 Variance Documentation:

 Contact Person: -______ Date/Time: ______ Contacted by: ______

 Regarding:

.

Corrective Action Taken:

.

page

. .

To model the effect of the vadose zone remedy's impact on ground water at the E-33-1 junction box site, output from HYDRUS-1D is used as input to a ground water mixing model.

HYDRUS-1D numerically solves the Richard's equation for water flow and the Fickianbased advection-dispersion equation for heat and solute transportation. The HYDRUS-1D flow equation includes a sink term (a term used to specify water leaving the system) to account for transpiration by plants. The solute transport equation considers advective, dispersive transport in the liquid phase, diffusion in the gaseous phase, nonlinear and nonequilibrium sorption, linear equilibrium reactions between the liquid and gaseous phases, zero-order production, and first-order degradation.

The ground water mixing model uses the chloride flux from the vadose zone to ground water provided by HYDRUS-1D and instantaneously mixes this chloride and water with the ground water flux of chloride plus water that enters the mixing cell beneath the subject site. We refer the reader to API Publication 4734, Modeling Study of Produced Water Release Scenarios (Hendrickx and others, 2005) for a general description of the techniques employed for this simulation experiment.

A description of the model input parameters are listed below.

HYDRUS 1-D INPUTS:

Soil Profile - Information for the soil profile (or vadose zone thickness and texture) uses information obtained from installation of the monitoring well at the E-33-1 junction box site. Depth to water measurements from the monitoring well demonstrate a vadose zone thickness of 64 feet at the site. To be conservative of ground water quality, a vadose zone thickness of 62 feet was used. The boring log of the monitoring well at the site demonstrates that the vadose zone is composed of sandy caliches and fine-grained sands. For modeling purposes, the vadose zone was modeled using a sand. This choice is conservative of ground water quality in that this material has higher hydraulic conductivities than the finer grained materials (caliche) it replaced in the soil profile.

Dispersion lengths - Conservative dispersion lengths were employed. Standard practice calls for employing a dispersion length that is 10% of the model length. Based upon experience with similar soils in this area, dispersion lengths of 6% of the model length were used. This choice is conservative of ground water quality.

Climate - Weather data used in the predictive modeling was from the Pearl Weather Station (46 years of data), approximately 12 miles southwest of the E-33-1 site.

HYDRUS-1D can also employ a uniform yearly infiltration rate that will obviously smooth the temporal variations. Because the atmospheric data are of high quality and nearby to the site, we have elected to allow HYDRUS-1D to predict the deep percolation rate and the resultant variable flux to ground water. This choice results in higher peak chloride concentrations in ground water due to temporally variable high fluxes from the vadose zone. As such, this choice is conservative and will not under-predict impairment to ground water quality.

Soil Moisture - Because soils are relatively dry in this climate and vadose zone hydraulic conductivity varies with moisture content, it is important that simulation experiments of different remedial strategies begin with an initial "steady state" soil moisture content. The calculation of soil moisture content begins with using professional judgment as an initial input and then running sufficient years of weather data through the model to establish a "steady state" moisture content. Because only minimal changes in the HYDRUS-1D soil moisture content profile occurred after year 30 of the initial condition calculation, 46 years was considered more than sufficient to establish the initial moisture condition. All simulations of chloride movement used soil profiles hydrated in this manner.

Initial Chloride Profile – Field chloride soil concentrations (mg/kg) at depth were obtained from the samples collected from the monitoring well boring (Figure 1).

Figure 1: Chloride Concentration at Depth for E-33-1 Junction Box Site

Integration of the chloride contained within the profile yielded a chloride load of 30.5 kg/m². The averaged soil concentration values (mg/kg) were linearly interpolated to correspond to the HYDRUS 1-D soil profile nodes. Using the volumetric moisture content from the HYDRUS 1-D initial condition and a default dry bulk soil density of 1390 kg/m³, soil water moisture concentrations (mg/L) were calculated for the HYDRUS 1-D soil profile nodes. These chloride concentrations were installed in the HYDRUS-1D model.

As described in API Publication 4734, the ground water mixing model takes the background chloride concentration in ground water multiplied by the ground water flux to calculate the total mass of ground water chloride entering the ground water mixing cell, which lies below the area of interest. The chloride and water flux from HYDRUS-1D is added to the ground water chloride mass and flux to create a final chloride concentration in ground water at an imaginary monitoring well located at the down gradient edge of the mixing cell (the edge of the release site).

MIXING MODEL INPUTS:

Influence Distance - The influence distance is defined as the maximal length of the release area parallel to groundwater flow direction. A maximum diameter of 20 feet for the site was used.

Background Chloride Concentration – From nearby well data from the site, a value of 100 mg/L chloride for ground water was used at this location. Chloride concentration data from the E-33-1 monitoring well was used in calibration of the model.

Hydraulic Conductivity - R.T. Hicks Consultants believes that the hydraulic conductivity of the saturated zone at the release site is similar to that observed for the Ogallala Aquifer throughout the general area. McAda (1984) simulated water level declines using a two-dimensional digital model and employed hydraulic conductivity values of 51-75 feet/day (1.9 E-4 to 2.8 E-4 m/s) in the area. More recently, Musharrafieh and Chudnoff (1999) employed values for hydraulic conductivity within this area of interest between 81 and 100 ft/day, for their simulation. According to Freeze and Cherry (1979), these values correspond to clean sand, which agrees with nearby lithologic descriptions of the saturated zone. For the E-32-1 site, the saturated hydraulic conductivity of the uppermost saturated zone is assumed as 75 feet/day.

Groundwater Gradient - From USGS well data (1996), ground water flows southeast in the area under a hydraulic gradient of approximately 0.0036 ft/ft. The resulting ground water flux is 8.2 cm/day.

Aquifer Thickness - A restricted aquifer thickness of 10 feet was employed in the mixing model as a conservative measure although aquifer thickness penetrated by the monitoring well is approximately 15 feet.

For all variables for which field data did not exist, assumptions conservative of ground water quality were made. A summary of the input parameters and a description of the source information used in the HYDRUS-1D model for this application are provided in Table 1 below.

Table 1: Modeling Inputs for the E-33-1 junction box site			
Input Parameter	Source		
Vadose Zone Thickness - 62 feet	From Monitoring Well on the Site		
Vadose Zone Texture	Boring Log and professional judgment		
Dispersion Length - 6% of model length	Professional judgment		
Climate	Pearl, N.M. Weather Station Data		
Soil Moisture	HYDRUS-1D initial condition simulation		
Initial soil chloride concentration profile	From E-33-1 monitoring well boring samples		
Length of release parallel to ground water flow - 20 feet	Maximum Dimension of Site		
Background Chloride in Ground Water -100 ppm	Regional and Site Data		
Ground Water Flux - 8.2 cm/day	From regional data		
Aquifer Thickness - 10-feet	Conservative value		

Vegetation was allowed at the site within the upper 3.0 feet of silt loam.

Model of the E-33-1 junction box site with Revegetation of the Site

The proposed remedy of the E-33-1 junction box site was modeled with a site specific HYDRUS-1D model. The model was begun with a 62-foot thick soil profile constructed and hydrated as discussed above. The initial chloride profile was also installed as described above.

The remedy modeled featured vegetation acting as an evapotranspiration (ET) barrier in 3.0 feet of silt loam above eight inches of coarse-grained material to reduce upwards wicking of chloride. The assumed installation of the ET barrier is at the present. To calibrate the model, the chloride concentration output from the HYDRUS-1D model was multiplied by a concentration factor to match early peak chloride concentration with observed chloride concentrations in the E-33-1 monitoring well (140 mg/L in May and August, 2006). There is a time delay as the model numerically reaches an "equilibrium" between ground water chloride concentration and vadose zone water chloride concentration (from time 0.0 to about time 0.75 years). This calibration was made in order to be most representative of installation of the remedy at the current time.

With vegetation established, vadose zone flux to ground water declines. The resultant chloride concentration in ground water peaks at 160 mg/L about two years after installation of the ET barrier and declines there after (see Figure 2).

Figure 2: Chloride Concentration in the Aquifer With an Installed ET Barrier, E-33-1 Site

Figure 3 is a graph of vadose zone flux to the aquifer with an installed ET barrier. Predicted vadose zone flux to the aquifer is reduced by over one order of magnitude within a time period of 20 years after installation of the remedy.

Figure 3: Vadose Zone Water Flux into the Aquifer With an Installed ET Barrier, E-33-1Site

Figure 2 is a graph of predicted soil water chloride concentration profiles at times in the future with the remedy installed. Between year 0 and year 92, peak chloride concentration moves about 1.0 foot downwards, a migration rate of 0.011 feet per year. This rate implies that peak chloride concentration will enter ground water about 2700 years from now.

Rather than run the model for the large time necessary for the peak chloride concentration to enter ground water, an upper bound was calculated for chloride concentration in the aquifer through time.

This bound is calculated by identifying maximum chloride concentration in the vadose zone and a maximum vadose zone water flux in time. These values are entered as constants through time in the limit calculation and represent a maximum chloride flux from the vadose zone. This flux is used in the calculation as a steady state condition. Then, the limit calculation of the chloride concentration in ground water as time approaches infinity is a simple algebraic evaluation.

The maximum chloride concentration value is42,300 mg/L in the vadose zone at 10.5 feet bgs (Time = 92 Years, Figure 2). Examination of the HYDRUS 1-d output files reveals no vadose zone water flux to ground water exceeding 0.00166 mm/day after year 42. Neither of these values will be equaled or exceeded in the future. Due to dispersion, peak vadose zone chloride concentration will decrease. As can be seen in Figure 3, with vegetation at the site, predicted vadose zone water flux will be less than or equal to this maximum value after year 50.

The calculation demonstrates that although peak chloride concentration has not yet migrated to the ground water interface, predicted chloride concentration in the aquifer is bounded by 166 mg/L through all time after year 92.