1R - 472

WORK PLAN

DATE: AUGUST 2006

IR-472 Work Plan August 2006

August 11, 2006

Mr. Ben Stone State of New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Plains Pipeline, L.P. Document Submittal Clay Osborn Ranch – Jalmat #1 Clay Osborn Ranch – Jalmat #2 Clay Osborn Ranch – Jalmat #3 Clay Osborn Ranch – Rocky Top #2 Clay Osborn Ranch – Jalmat #22A Clay Osborn Ranch – East Shell North Jal, Lea County, New Mexico

Dear Mr. Stone:

Plains Pipeline, L.P. (Plains) is pleased to submit the attached Site Investigation Reports and Site-Specific Remediation Work Plans for six of the soil remediation project sites located on the Osborn's Rocky Top Ranch in Jal, Lea County, New Mexico. These documents include the results of an additional soil investigation conducted at the site and the remediation plan are based on the General Remediation Work Plan recently submitted to the New Mexico Oil Conservation Commission (NMOCD) by Plains.

Should you have any questions or comments, please contact me at (713) 646-4657.

Sincerely,

Jéffféy P. Dann, P.G. Sr. Environmental Specialist Plains All American

Attachments: Jalmat #1. #2, #3, #22A, East Shell North and Rocky Top #2. 22B Site Investigation Report and Site-Specific Remediation Work Plans

File: n/jetf-tiles/Osborn-RockyTopRanch/Jalmat-1 CovrLtr.doc

Plains Marketing GP Inc., General Partner

333 Clay Street, Suite 1600 (77002) 📓 P.O. Box 4648 📓 Houston, Texas 77210-4648 🌉 713/646-4100

SITE INVESTIGATION REPORT and SITE-SPECIFIC REMEDIATION WORK PLAN

a the state

80 - S.G.

distant and

13. Jack

And the second

with the

1.26

The string

and the second

ALL STREET

and the second

Contraction of the

Succession.

a de veze

1.2.2

the ca

L. S. D.

Sec.

Clay Osborn Rocky Top Ranch Rocky Top 2 (SH-0184-1) Release Site

SW1/4 SW1/4 UL-J, Section 18, Township 25 North, Range 37 East Latitude 32° 7' 53" North, Longitude 103° 11' 54" West Lea County, New Mexico

PLAINS PIPELINE, L.P. SRS ID: ROCKY TOP 2

Prepared For:

Plains Pipeline, L.P. 333 Clay Street Suite 1600 Houston, Texas 77002

Prepared By: SDG Environmental Services 6611 Vialinda, Suite 204 Houston, Texas 77083

August 2006

Kenneth Cody SDG Environmental Services

Table of Contents

1.0	Introduction	1
2.0	Summary of Field Activities	2
3.0	New Mexico Oil Conservation Division (NMOCD) Soil Classification	3
4.0	Distribution of Hydrocarbons in the Unsaturated Zone	3
5.0	Distribution of Hydrocarbons in the Saturated Zone	5
6.0	Recommendations for Remediation	5
7.0	QA/QC Procedures	6
8.0	Limitations	6
Distri	bution	7

Tables

Table 1:	Soil Sample, Analytical Results Summary May 23, 2006
	Figures
Figure 1:	Site Location Map
Figure 2:	Soil Boring Locations
Figure 3:	Estimated Excavation Area and Depths

Appendices

Appendix A:	Site Photographs
Appendix B:	Environmental Laboratory of Texas Analytical Results
Appendix C:	Soil Boring Logs

Star Star

ないない

TAL NEW

The second

فيتكالك لمو

the state of

1 - Berthand

14. AL & AL & AL

- 43 to.

Are have a

a far an

1.0 INTRODUCTION

1912 Sec.

140 66

NOCO.

1.25

34 8-36

SDG Environmental Services (SDG) was retained by Plains Pipeline, L.P. (Plains) to evaluate historical information, conduct additional investigation, and develop a site-specific remediation work plan for the SH-0184-1 release site located on the Clay Osborn Rocky Top Ranch in Lea County, New Mexico. Plains is the owner/operator of several pipelines present on the Clay Osborn Rocky Top Ranch located near Jal, New Mexico.

This site is located in Unit Letter-J, in the SW¼ SW ¼ of Section 18, Township 25 North, Range 37 East, approximately 1-mile northwest of Jal, Lea County, New Mexico. A topographic Site Location Map is provided as Figure 1. The latitude is 32° 7′ 54″ North, and Longitude 103° 11′ 54″ West. The site is characterized by several right-of-ways for pipelines in a pasture.

The SH-0184-1 release area is approximately 100 ft² and consists of what appears to be tank bottoms and sediment lying on the surface. The source of the apparent tank bottoms is likely from a former crude oil storage tank operations which appeared to be located nearby. The former tank operations were not associated with the Plains pipeline. Approximately 90 feet to the east of the SH-0184-1 release area is a circular mound of built-up caliche based material characteristic of the footprint of a former tank battery. A small area (2'x5') of tank bottoms and sediment lies approximately 60 feet to the east. An above ground valve stand probably associated with the former tank is located approximately 30 feet to the north-east. These site features are shown in Figure 2. A summary of site activities is provided in Section 2.0

Plains prepared and submitted a General Remediation Work Plan dated April 2006 to address the release sites located on the Rocky Top Ranch. The objective of the General Remediation Work Plan was to remediate crude oil impacted sites at the Rocky Top Ranch, consistent with the remediation/abatement goals and objectives set forth in the New Mexico Oil Conservation Division (NMOCD) "NMOCD Guidelines for Remediation of Leaks, Spills, and Releases, August 13, 1993." The General Remediation Work Plan proposed appropriate risk-based thresholds for contaminates of concern (CoCs) based on relative risk posed by the CoC residuals to local groundwater, area water wells, surface water bodies and impacts on surface reclamation.

The General Remediation Work Plan proposed remediation strategies for sites would be developed under the following three scenarios.

1. Surface Restoration Sites (Scenario 1)

This scenario was developed for sites where investigation data indicates that the surface area has restored itself naturally, the surface expression of the release is difficult to identify, the impacts are limited to the surface and/or shallow soils, and there is no threat to groundwater.

- Total Excavation (Scenario 2) For sites where data indicates that soil impacts are limited in vertical extent (i.e. 10 to 15 feet in depth) and total excavation of the impacted soil is practical.
- Limited Excavation and Risk-based Closure (scenario 3)
 For sites where data indicates that soil impacts in the source area extend to between 10 feet and 45 feet below ground surface (bgs) and excavation of all the impacted soil to below NMOCD guidelines is not practical.

The General Remediation Work Plan was conditionally approved by the NMOCD in a letter to Plains dated May 30, 2006.

The visual observations, field photoionization detector (PID) measurement, and soil analytical data from a site investigation conducted in May 2006 was used in development of this Site Specific Remediation Work Plan.

2.0 SUMMARY OF SITE ACTIVITIES

On 29 June 2005, one surface soil sample was collected from the observable surface staining by others at the site identified as SH-0184-1. The sample was identified as OTS 15 and was analyzed for BTEX and TPH-GRO/DRO. Laboratory results indicated that constituent concentrations of BTEX were either below NMOCD regulatory standards or not detected above laboratory method detection limits. Laboratory results indicated that TPH-GRO/DRO concentrations exceed 100 mg/kg TPH in the soil samples.

On 22 May 2006, SDG conducted an additional soil investigation in an effort to determine the vertical and horizontal extent of impacts at the SH-0184-1 site. The SH-0184-1 site was identified as an area of tank bottoms and sediment lying on the ground surface. The tank bottoms covered an area approximately 10 feet in diameter.

Five soil borings were installed in the SH-0184-2 area and are identified in Figure 2 as SH1-SB1, SH1-SB2, SH1-SB3, SH1-SB4 and SH1-SB5. Soil Boring SH1-SB2 was installed to 25 feet bgs and no groundwater was encountered.

Soil borings were installed by Straub Corporation, Stanton, Texas utilizing an air rotary drill rig. Soil samples were typically collected at 2 ft, 5 ft, 10 ft, 15 ft, and 20 ft depths using a core sampler. Soil samples were split for headspace analysis to screen for total volatile organic vapor concentrations in soils. A one quart zip-lock bag was filled one-half full of soil and sealed leaving the remainder of the bag filled with air. The sample was allowed to volatilize for five to ten minutes. One end of the bag was opened and the PID probe inserted carefully into the bag and the bag resealed around the probe as much as possible to prevent vapors from escaping. The

peak measurement associated with the sample was recorded. The peak PID measurements are provided on the soil boring logs included in Appendix C.

3.0 NEW MEXICO OIL CONSERVATION DIVISION (NMOCD) SOIL CLASSIFICATION

The depth to water at the site is estimated to be approximately 50 feet bgs based on a monitor wells located at a nearby site. Based on the analytical results of soil samples, the hydrocarbon impacted soil extends from the surface to 5 feet bgs, therefore, less than 50 feet of non-impacted soil remains between the last known impacted soil depth and groundwater. The resulting Depth to Groundwater Ranking Score is 20.

The site is greater than 1000 ft from any public water supply source and greater than 200 feet from any private domestic water supply well. The resulting Wellhead Protection Ranking Score is 0.

No surface water bodies are located within 1000 ft of the site. The resulting Distance to Surface Water Body Ranking Score is 0.

Based on the individual ranking scores identified above, the site has an NMOCD Total Ranking Score of >19, which establish the following remediation levels:

Benzene: 10 mg/kg

a and

BTEX: 50 mg/kg

TPH: 100 mg/kg

4.0 DISTRIBUTION OF HYDROCARBONS IN THE UNSATURATED ZONE

The estimated area of soils impacted above NMOCD Standards is shown in Figure 3. The area is estimated to be approximately 100 square feet. The vertical extent of soils impacted above NMOCD standards based on the data obtained in the 22 May 2006 subsurface sampling is surface to 5 feet bgs.

On 22 May 2006, an air rotary drill rig, operated by Straub Corporation, Stanton, Texas, was utilized to delineate the vertical extent of crude oil impacted soil at the site. Soil samples were collected in the subsurface from the soil boring at 5 feet intervals; field screened with a PID and selected soil samples were analyzed for constituent concentrations of BTEX and TPH-GRO/DRO. Laboratory data sheets and chain-of-custody forms are attached (Appendix B). No visual observations of free phase hydrocarbons were encountered during the installation of the soil borings. Soil boring logs are provided in Appendix C.

Soil Boring SH1-SB1 was installed at the southern extent of the visible tank bottoms and sediment. This location was provided as the location of a historical release. The soil boring was installed to 15 feet bgs and samples were collected at 2, 5, and 15, feet bgs, field screened with a PID and submitted for laboratory analysis of TPH GRO/DRO and BTEX. Analytical results indicated that constituent concentrations of BTEX were not detected above the laboratory method detection limits in any of the samples. Analytical results indicated that TPH concentration at 2 feet bgs had an estimated concentration of 8.73 mg/Kg which is estimated because it is above the method detection limit but below the laboratory reporting limit. TPH was not detected above the laboratory detection limits in soil samples collected at 5 and 15 feet bgs.

1

Contra a

all the

No.

Soil Boring SH1-SB2 was installed at the northern extent of the visible tank bottoms and sediment. The soil boring was installed to 20 feet bgs and samples were collected at 2, 5, and 15 feet bgs, field screened with a PID and submitted for laboratory analysis of TPH GRO/DRO and BTEX. Analytical results indicated that constituent concentrations of BTEX were not detected above the laboratory method detection limits in the samples. Analytical results indicated that TPH concentrations were detected at the 2 feet bgs sample with a concentration of 28.0 mg/kg, however this concentration is below the NMOCD standard of 100 mg/kg. TPH concentrations were not detected above the laboratory method detection limits in any of the other two samples.

Soil Boring SH1-SB3 was installed at the eastern extent of the visible tank bottoms and sediment. The soil boring was installed to 15 feet bgs and samples were collected at 2, 5, and 15, feet bgs, field screened with a PID and submitted for laboratory analysis of TPH GRO/DRO and BTEX. Analytical results indicated that constituent concentrations of BTEX were not detected above the laboratory method detection limits in any of the samples. Analytical results also indicated that TPH concentrations of GRO/DRO were not detected above the laboratory method detection limits in any of the samples.

Soil Boring SH1-SB4 was installed at the western extent of the visible tank bottoms and sediment, and to the immediate west of the pipeline. The soil boring was installed to 15 feet bgs and samples were collected at 2, 5, and 15 feet bgs, field screened with a PID and submitted for laboratory analysis of TPH GRO/DRO and BTEX. Analytical results indicated that constituent concentrations of BTEX were not detected above the laboratory method detection limits in any of the samples. Analytical results also indicated that TPH concentrations of GRO/DRO were not detected above the laboratory method detection limits in any of the samples.

Soil Boring SH1-SB5 was installed at the center of the visible tank bottoms and sediment. This location was selected because the results of August 2005 sampling indicated impacted soils above the NMOCD standard of 100 mg/kg at the surface. The purpose of soil boring SH1-SB5 was to verify the previous results and to obtain a vertical delineation of impacted soils at this location. SH1-SB5 was installed to 15 feet bgs and samples were collected at 2, 5, and 15 feet bgs, field screened with a

PID and submitted for laboratory analysis of TPH GRO/DRO and BTEX. Analytical results indicated that constituent concentrations of BTEX were not detected above the laboratory method detection limits in any of the samples. Analytical results indicated that TPH concentrations were above the NMOCD standard of 100 mg/kg at the 2 feet bgs with total TPH concentrations of 125 mg/kg. Analytical results indicated that TPH concentrations were not detected above the laboratory method detection limits at 5 and 15 feet bgs.

The extent of hydrocarbon impacted soils is limited to soils immediately beneath the tank bottoms. The horizontal and vertical extent of the impacted soils has been delineated. Hydrocarbon impacted soils above the NMOCD standards extend to depths of less than 5 feet bgs.

5.0 DISTRIBUTION OF HYDROCARBONS IN THE SATURATED ZONE

No saturated conditions were observed in any of the borings. Soil boring SH1-SB2 was installed to 25 feet bgs and no groundwater was encountered. The depth of hydrocarbon impacted soils above 100 mg/kg TPH is limited to less than 5 feet bgs. Therefore, there is no indication that hydrocarbons from the historical release have impacted the saturated zone.

6.0 **RECOMMENDATIONS FOR REMEDIATION**

1000

Based on the results of the horizontal and vertical soil boring investigation conducted at the site, it appears that hydrocarbon impacted soils are present to depths of less than 5 feet bgs. Given the NMOCD guideline cleanup standard of 100 mg/kg TPH, an estimated 19 cubic yards of tank bottoms and impacted soil will require excavation.

Because the impacts greater than 100 mg/kg TPH are limited in vertical extent (i.e. less than 5 feet in depth) these soils will be remediated under the General Work Plan Scenario 2 (total excavation) involving the following procedures as were outlined in the approved General Remediation Work Plan and includes NMOCD conditions presented in the May 2006 NMOCD approval letter.

- Removal of tank bottoms and excavation of impacted soils to 5 feet bgs or until site remediation standards are met.
- Collect and analyze soil samples from the walls and floor of the excavation to confirm that the remediation has met the site remediation standards.
- Relocation of the excavated soil to the centralized soil treatment area for blending and aeration.
- Collect and analyze treated soil to confirm that the soil treatment activities have met the site guidelines.
- Backfill the excavation with native soils and restore the area to as close as possible to pre-spill conditions.

Once the excavation has been confirmed to meet NMOCD standards backfilling of the excavation will be initiated. The backfilled excavation will be contoured to the original grade surrounding the site and reseeded with approved grass seed.

A request for closure will be submitted to the NMOCD, upon completion of backfilling activities. Plains is requesting approval from NMOCD to implement these proposed final remediation and site closure activities.

7.0 QA/QC PROCEDURES

Soil Sampling

(Trailing

8.48 B

and the second

CINE OF

に見

Soil samples will be delivered to Environmental Lab of Texas, Inc. in Odessa, Texas for BTEX, TPH analyses using the methods described below. Soil samples will be analyzed for BTEX, TPH-GRO/DRO within fourteen days following the collection date.

The soil samples will be analyzed as follows:

- BTEX concentrations in accordance with EPA Method 8021B, 5030
- TPH concentrations in accordance with modified EPA Method 8015M GRO/DRO

Decontamination of Equipment

Cleaning of the sampling equipment will be the responsibility of the environmental technician. Prior to use, and between each sample, the sampling equipment will be cleaned with Liqui-Nox[®] detergent and rinsed with distilled water.

Laboratory Protocol

The laboratory will be responsible for proper QA/QC procedures after signing the chain-of-custody form. These procedures will be either transmitted with the laboratory reports or are on file at the laboratory.

8.0 LIMITATIONS

SDG Environmental Services has prepared this Site Investigation Report and Site-Specific Remediation Work Plan to the best of its ability. No other warranty, expressed or implied, is made or intended.

SDG Environmental Services has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. SDG Environmental Services has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. SDG Environmental Services has prepared this report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. SDG Environmental Services also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

14. 2.2. 2.

Bertha

a delaga

Series and

Sec.

A STATE

Con March

Same S

御書記

100

12.00

1.300

College 1

Ser and

28 68 B

the state of

This report has been prepared for the benefit of Plains Pipeline, L.P. The information contained in this report including all exhibits and attachments, may not be used by any other party without the express consent of SDG Environmental Services and Plains Pipeline, L.P.

DISTRIBUTION

C. Sector

and the second

Service Services

「「「ない」」

ないの語

and and

Second -

The set

AND THE

an sharper

12.3

Ser and a second

のないの

あるの

調整

Presidente

State State

Jeff Dann Copy 1: Plains All American 333 Clay Street Suite 1600 Houston, Texas 77002 jpdann@paalp.com Copy 2: Camille Reynolds Plains All American 3112 W. Highway 82 Lovington, New Mexico 88260 cireynolds@paalp.com Mr. Ben Stone Copy 3: New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 South St. Francis Drive Santa Fe, New Mexico 88240 ben.stone@state.nm.us Kenneth Cody Copy 6: **SDG Environmental Services** 6611 Vialinda, Suite 204

Houston, Texas 77083

kcody@sdgenv.com

TABLE 1

SOIL SAMPLE ANALYTICAL RESULTS SUMMARY

PLAINS PIPELINE, L. P. SH-0184-1 LEA COUNTY, NEW MEXICO PLAINS SRS ID: ROCKY TOP 2

SAMPLE	DEPTH	SAMPLE	LABORATORY		METHOD: E	PA SW 846-8	021B, 5030		X	ETHOD: 8015M		TOTAL TPH
LOCATION	ft bgs	DATE	D.	BENZENE	TOLUENE	ЕТНҮС-	м,Р-	O-XYLENE				
						BENZENE	XYLENES		C6-C12	C12-C28	C28-C35	C6-C35
				(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SH1-SB1-2	2'	05/22/06	6E23004-01	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10	8.73 J	<10	<10
SH1-SB1-5	5	05/22/06	6E23004-02	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10	<10	<10	<10
SH1-SB1-15	15'	05/22/06	6E23004-04	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10	<10	<10	<10
SH1-SB2-2	2'	05/22/06	6E23004-05	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10	28	<10	28
SH1-SB2-5	5'	05/22/06	6E23004-06	<0.0250	<0.0250	<0.0250	0.0223 J	<0.0250	<10	<10	<10	<10
SH1-SB2-15	15'	05/22/06	6E23004-08	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10	<10	<10	<10
SH1-SB3-2	2'	05/22/06	6E23004-10	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10	<10	<10	<10
SH1-SB3-5	5'	05/22/06	6E23004-11	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10	<10	<10	<10
SH1-SB3-15	15'	05/22/06	6E23004-13	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10	<10	<10	<10
SH1-SB4-2	2'	05/22/06	6E23004-14	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10	<10	<10	<10
SH1-SB4-5	5'	05/22/06	6E23004-15	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10	<10	<10	<10
SH1-SB4-15	15'	05/22/06	6E23004-17	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10	<10	<10	<10
SH1-SB5-2	2'	05/22/06	6E23004-18	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10	111	13.7	125
SH1-SB5-5	5'	05/22/06	6E23004-19	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10	<10	<10	<10
SH1-SB5-15	15'	05/22/06	6E23004-21	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10	<10	<10	<10

indicates the constituent was not detected
 J indicates estimated value (detected below method reporting limit)

2.2

and a second

and the second s

S. Salar

Same and

るな認識

ALL REAL

「「「「「「「「」」」

N. AN

Statistics.

語の言語で

「「「「

a production

Subjects

No.

APPENDIX A SITE PHOTOGRAPHS

R. Rower

18 C 18

- ARA

100

Stat 12

Sec. 3

ALC: NO.

「ないない」

読みたか

APPENDIX B ENVIRONMENTAL LABORATORY OF TEXAS ANALYTICAL RESULTS

W. 6. 2

をない

Sec. Sec.

State 2

NAL S

State State

Starte B

No.

A BURL

Sale of

18.3.3.38

L MAN

Analytical Report

Prepared for:

Camille Reynolds Plains All American EH & S 1301 S. County Road 1150 Midland, TX 79706-4476

Project: SH-0184-1 Project Number: SRS # Rocky Top 2 Location: Rocky Top

Lab Order Number: 6E23004

Report Date: 05/25/06

10.00

Plains All American EH & S 1301 S. County Road 1150 Midland TX, 79706-4476	Project: SH-0184-1 Project Number: SRS # Rock Project Manager: Camille Rey	y Top 2 molds		Fax: (432) 687-4914 Reported: 05/25/06 16:09
	ANALYTICAL REPORT FOR SAM	IPLES		
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SH1-SB1-2	6E23004-01	Soil	05/22/06 14:35	05/22/06 18:50
SHI-SB1-5	6E23004-02	Soil	05/22/06 14:45	05/22/06 18:50
SH1-SB1-15	6E23004-04	Soil	05/22/06 14:55	05/22/06 18:50
SH1-SB2-2	6E23004-05	Soil	05/22/06 15:05	05/22/06 18:50
SH1-SB2-5	6E23004-06	Soil	05/22/06 15:07	05/22/06 18:50
SH1-SB2-15	6E23004-08	Soil	05/22/06 15:15	05/22/06 18:50
SH1-SB3-2	6E23004-10	Soil	05/22/06 15:40	05/22/06 18:50
SH1-SB3-5	6E23004-11	Soil	05/22/06 15:45	05/22/06 18:50
SH1-SB3-15	6E23004-13	Soil	05/22/06 15:55	05/22/06 18:50
SH1-SB4-2	6E23004-14	Soil	05/22/06 16:16	05/22/06 18:50
SH1-SB4-5	6E23004-15	Soil	05/22/06 16:20	05/22/06 18:50
SH1-SB4-15	6E23004-17	Soil	05/22/06 16:25	05/22/06 18:50
SH1-SB5-2	6E23004-18	Soil	05/22/06 16:40	05/22/06 18:50
SH1-SB5-5	6E23004-19	Soil	05/22/06 16:45	05/22/06 18:50
SH1-SB5-15	6F23004-21	Soil	05/22/06 16:55	05/22/06 18:50

Sec. Sec.

物が設

1000

23.25

ないの

1.1

Carlor Res

a Marine

and the

ないであった

ないの言葉

Sec. 1

•

.

Plains All American EH & SProject:SH-0184-11301 S. County Road 1150Project Number:SRS # Rocky Top 2Midland TX, 79706-4476Project Manager:Camille Reynolds

Reported: 05/25/06 16:09

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SH1-SB1-2 (6E23004-01) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE62422	05/24/06	05/25/06	EPA 8021B	
Toluene	ND	0.0250		ч			"	11	
Ethylbenzene	ND	0.0250	н	"				"	
Xylene (p/m)	ND	0.0250	0						
Xylene (o)	ND	0.0250					"		
Surrogate: a,a,a-Trifluorotoluene		91.2 %	80-12	0	"	"	"	μ	
Surrogate: 4-Bromofluorobenzene		82.8 %	80-12	0	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	I	EE62318	05/23/06	05/23/06	EPA 8015M	
Carbon Ranges C12-C28	J [8.73]	10.0				"	н		
Carbon Ranges C28-C35	ND	10.0			**		u	ч	
Total Hydrocarbon nC6-nC35	ND	10.0		"	**		"		·
Surrogate: 1-Chlorooctane		95.8 %	70-13	0	"	"	"	"	
Surrogate: 1-Chlorooctadecane		94.6 %	70-13	0	"	"	"	"	
SH1-SB1-5 (6E23004-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE62422	05/24/06	05/24/06	EPA 8021B	
Toluene	ND	0.0250	"	"	п	u	"		
Ethylbenzene	ND	0.0250	"		"	"			
Xylene (p/m)	ND	0.0250	"	п	"	"			
Xylene (0)	ND	0.0250	**	н	"	"			
Surrogate: a.a.a-Trifluorotoluene		117 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		100 %	80-12	0	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	l	EE62318	05/23/06	05/23/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"		"			
Carbon Ranges C28-C35	ND	10.0				п			
Total Hydrocarbon nC6-nC35	ND	10.0	*			"	11		
Surrogate: 1-Chlorooctane		92.8 %	70-13	0	"	<i>n</i>		n.	
Surrogate: 1-Chlorooctadecane		93.8 %	70-13	0	"	11	"	"	
SH1-SB1-15 (6E23004-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE62422	05/24/06	05/24/06	EPA 8021B	
Toluene	ND	0.0250	**	ν	11	"	п		
Ethylbenzene	ND	0.0250	u	n		"	"		
Xylene (p/m)	ND	0.0250		"	"	"		n	
Xylene (0)	ND	0.0250		"		11		"	
Surrogate: a.a.a-Trifluorotoluene		112 %	80-12	0	"	0	11	"	
Surrogate: 4-Bromofluorobenzene		104 %	80-12	0	"	"	<i>P</i>		
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EE62318	05/23/06	05/23/06	EPA 8015M	

ALC: NO.

A CONTRACTOR

S. Santa

100.000

ALC: N

2018-12

Provide State

N. N. S.

all states

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 2 of 15

Plains All American EH & S 1301 S. County Road 1150 Midland TX, 79706-4476		Project N Project M	Project: SH- lumber: SRS anager: Can	0184-1 5 # Rocky ´ nille Reync	Fop 2 olds			Fax: (432) Repor 05/25/06	687-4914 ted: 5 16:09
		0	rganics b	y GC					
		Environ	mental L	ab of Te	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SH1-SB1-15 (6E23004-04) Soil						<u>.</u>			
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	E	EE62318	05/23/06	05/23/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	ч	"	п	**	"		
Total Hydrocarbon nC6-nC35	ND	10.0	11		"	"	н	п	
Surrogate: 1-Chlorooctane		89.4 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		89.2 %	70-1	30	"	"	"	"	
SH1-SB2-2 (6E23004-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE62422	05/24/06	05/24/06	EPA 8021B	
Toluene	ND	0.0250		"	u	"	"		
Ethylbenzene	ND	0.0250	11	"			"	u	
Xylene (p/m)	ND	0.0250	u	n			н		
Xylene (o)	ND	0.0250					ш		
Surrogate: a.a.a-Trifluorotoluene		110 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		105 %	80-1	20	"	"	<i>n</i>	11	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EE62318	05/23/06	05/23/06	EPA 8015M	
Carbon Ranges C12-C28	28.0	10.0	**	"	"	"	ч	"	
Carbon Ranges C28-C35	ND	10.0	"			u			
Total Hydrocarbon nC6-nC35	28.0	10.0		**	u	11	ч	п	
Surrogate: 1-Chlorooctane		92.6 %	70-1	30	n	"	"	"	
Surrogate: 1-Chlorooctadecane		92.4 %	70-1	30	"	"	"	"	
SH1-SB2-5 (6E23004-06) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE62422	05/24/06	05/24/06	EPA 8021B	
Toluene	ND	0.0250	"			"	п	и	
Ethylbenzene	ND	0.0250	"			"	"	н	
Xylene (p/m)	ND	0.0250			54	"		11	
Xylene (0)	ND	0.0250	"	и			**	n	
Surrogate: a.a.a-Trifluorotoluene		107 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		100 %	80-1	20	"	"	"	11	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	ł	EE62318	05/23/06	05/23/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	**		"		п	n	
Carbon Ranges C28-C35	ND	10.0	"	"	a			н	
Total Hydrocarbon nC6-nC35	ND	10.0		11	u	"		ŋ	
Surrogate: 1-Chlorooctane		91.0 %	70-1	30	"	"	п	п	
Surrogate: 1-Chlorooctadecane		90.4 %	70-1	30	,,	"	"	"	

S.S.A.S.

No.

Stray and

後に

の変に

Service Service

NAMES OF

海路に

影前國語

2622

(CONCO)

Carlor and

and the second

States and

Plains All American EH & S	Project:	SH-0184-1	Fax: (432) 687-4914
1301 S. County Road 1150	Project Number:	SRS # Rocky Top 2	Reported:
Midland TX, 79706-4476	Project Manager:	Camille Reynolds	05/25/06 16:09

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SH1-SB2-15 (6E23004-08) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE62422	05/24/06	05/24/06	EPA 8021B	
Toluene	ND	0.0250	"	п	0	"	ч		
Ethylbenzene	ND	0.0250	17	11	"	н	"	11	
Xylene (p/m)	ND	0.0250	**		"	"	"	"	
Xylene (o)	ND	0.0250	**		"	P	11		
Surrogate: a.a.a-Trifluorotoluene		113 %	80-1	20	"	v	"	n	
Surrogate: 4-Bromofluorobenzene		96.8 %	80-1	20	"	"	"		
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EE62318	05/23/06	05/23/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"			"	"		
Carbon Ranges C28-C35	ND	10.0	"	0	"	"	"	ч	
Total Hydrocarbon nC6-nC35	ND	10.0		"		"	".		
Surrogate: 1-Chlorooctane		91.6 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		93.4%	70-1	30	"	"	"	"	
SH1-SB3-2 (6E23004-10) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE62422	05/24/06	05/24/06	EPA 8021B	
Toluene	ND	0.0250					и		
Ethylbenzene	ND	0.0250					н	"	
Xylene (p/m)	ND	0.0250	"				н		
Xylene (o)	ND	0.0250	"		0		u		
Surrogate: a.a.a-Trifluorotoluene		108 %	80-1	20	"	"	<i>n</i>	0	
Surrogate: 4-Bromofluorobenzene		93.8 %	80-1	20	п	11	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	i	EE62318	05/23/06	05/23/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0					**	и	
Carbon Ranges C28-C35	ND	10.0				н	11	н	
Total Hydrocarbon nC6-nC35	ND	10.0					"		
Surrogate: 1-Chlorooctane		90.2 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		90.0 %	70-1.	30		"		11	
SH1-SB3-5 (6E23004-11) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE62422	05/24/06	05/24/06	EPA 8021B	
Toluene	ND	0.0250		**	11	**			
Ethylbenzene	ND	0.0250		**	"	"		u	
Xylene (p/m)	ND	0.0250		"		н	"	u.	
Xylene (o)	ND	0.0250		**	п	н	"		
Surrogate: a.a.a-Trifluorotoluene		106 %	80-1.	20	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		92.5 %	80-1.	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	I	EE62318	05/23/06	05/23/06	EPA 8015M	

1. N. 12

ACC.

Sale and

S. Street

N.52

STREES.

12.25

State of

ALC: NO.

PACKAR PACKAR

1.000

the second

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety.

with written approval of Environmental Lab of Texas.

Plains All American EH & S 1301 S. County Road 1150 Midland TX, 79706-4476		Project N Project M	Project: SH- lumber: SRS anager: Can	0184-1 5 # Rocky ⁻ nille Reync	Fop 2 blds			Fax: (432) Repor 05/25/06	687-4914 ted: 16:09
		O	rganics b	y GC					
		Environ	mental L	ab of Te	exas				
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SH1-SB3-5 (6E23004-11) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	I	EE62318	05/23/06	05/23/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	"		"	"	"	"	
Total Hydrocarbon nC6-nC35	ND	10.0	11				**	"	
Surrogate: 1-Chlorooctane		92.8 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		91.0 %	70-1	30	"	"	"	"	
SH1-SB3-15 (6E23004-13) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE62422	05/24/06	05/25/06	EPA 8021B	
Toluene	ND	0.0250	*		"	"	"		
Ethylbenzene	ND	0.0250	"		11		n		
Xylene (p/m)	ND	0.0250	ч				**		
Xylene (0)	ND	0.0250			**	н	**	и	
Surrogate: a.a.a-Trifluorotoluene		102 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		89.8 %	80-1	20	"	"	и	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EE62318	05/23/06	05/23/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0		"					
Carbon Ranges C28-C35	ND	10.0	ü			н	"		
Total Hydrocarbon nC6-nC35	ND	10.0	"	n		u	"		
Surrogate: 1-Chlorooctane		92.0 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		93.2 %	70-1	30	"	"	"	"	
SH1-SB4-2 (6E23004-14) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE62422	05/24/06	05/25/06	EPA 8021B	
Toluene	ND	0.0250	**	**	"		и		
Ethylbenzene	ND	0.0250		п	**	"	"	**	
Xylene (p/m)	ND	0.0250	*1	10	*	"	"	"	
Xylene (o)	ND	0.0250			"		"	"	
Surrogate: a.a.a-Trifluorotoluene		112 %	80-1	20	"	"	"	п	
Surrogate: 4-Bromofluorobenzene		97.5 %	80-1	20	"	"	"	п	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EE62318	05/23/06	05/24/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	**	"		a		"	
Carbon Ranges C28-C35	ND	10.0	"		"		**		
Total Hydrocarbon nC6-nC35	ND	10.0	"	п		11	"	n	
Surrogate: 1-Chlorooctane		83.8 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		85.6 %	70-1	30	"	"	"	"	

連続

the second

No.

Participation of the second

STREET,

本語は語言

the state

	Flojett Manager. Canine Reynolds	03/23/00 10:07
Midland TX 79706-4476	Project Manager Camille Reynolds	05/25/06 16:09
1301 S. County Road 1150	Project Number: SRS # Rocky Top 2	Reported:
Plains All American EH & S	Project: SH-0184-1	Fax: (432) 687-4914

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SH1-SB4-5 (6E23004-15) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE62422	05/24/06	05/25/06	EPA 8021B	
Toluene	ND	0.0250	п	"	"	"	U.	**	
Ethylbenzene	ND	0.0250	н	"		**	0		
Xylene (p/m)	ND	0.0250		**	u	**	и		
Xylene (0)	ND	0.0250		"		"	u .	"	
Surrogate: a.a.a-Trifluorotoluene		100 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EE62318	05/23/06	05/24/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"		"	н			
Carbon Ranges C28-C35	ND	10.0	**		"		0	"	
Total Hydrocarbon nC6-nC35	ND	10.0		,,		"	"		
Surrogate: 1-Chlorooctane		87.4 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		86.0 %	70-1	30	n	"	"	"	
SH1-SB4-15 (6E23004-17) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE62422	05/24/06	05/25/06	EPA 8021B	
Toluene	ND	0.0250			"		11	**	
Ethylbenzene	ND	0.0250			**	"			
Xylene (p/m)	ND	0.0250	"				n		
Xylene (0)	ND	0.0250			"	"	"		
Surrogate: a.a.a-Trifluorotoluene		113 %	80-1	20	a	"	"	"	
Surrogate: 4-Bromofluorobenzene		108 %	80-1	20	11	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EE62419	05/24/06	05/24/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"					
Carbon Ranges C28-C35	ND	10.0	**	н			"		
Total Hydrocarbon nC6-nC35	ND	10.0	**		"				
Surrogate: 1-Chlorooctane		87.0 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		87.4 %	70-1	30	"	"	"	"	
SH1-SB5-2 (6E23004-18) Soil									
Benzene	ND	0.0250	mg/kg dry	25	ÉÉ62422	05/24/06	05/25/06	EPA 8021B	
Toluene	ND	0.0250			н	*			
Ethylbenzene	ND	0.0250				"	"		
Xylene (p/m)	ND	0.0250	"	"			н	**	
Xylene (0)	ND	0.0250	"			н	D	54	
Surrogate: a.a.a-Trifluorotoluene		100 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		89.5 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EE62419	05/24/06	05/24/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety.

with written approval of Environmental Lab of Texas.

Marking the

B. Salara

ALC: NO

豪愛

and the second

Series 2

Midland TX, 79706-4476		Project N Project M	umber: SRS anager: Can	5 # Rocky nille Reync	Fop 2 olds			Repor 05/25/06	rted: 5 16:09
		01	ganics b	y GC					
		Environ	mental L	ab of Te	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SH1-SB5-2 (6E23004-18) Soil				13 Hallon		. repared			
Carbon Ranges C12-C28		10.0	ma/ka diy	1	EE42410	05/24/06	05/24/06	EPA 8015M	
Carbon Ranges C12-C28	111	10.0	nig/kg diy		EE02419	05/24/06	05/24/06		
Carbon Ranges C20-C55	13.7	10.0						"	
Sumogata: 1 Chlanostana		87.6%	70.1	30	IJ		"	"	
surrogate. 1-Chlorooctane		87.0%	70-1	30	"		"	"	
sur ogure. 1-Cmoroocradecane		07.0 20	/ ()-1						
SH1-SB5-5 (6E23004-19) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE62422	05/24/06	05/25/06	EPA 8021B	
Toluene	ND	0.0250	"		п	ц		0	
Ethylbenzene	ND	0.0250	"	"	"	н	"		
Xylene (p/m)	ND	0.0250	**	11				"	
Xylene (o)	ND	0.0250	"		"				
Surrogate: a.a.a-Trifluorotoluene		99.8 %	80-1	20	"	'n	"	"	
Surrogate: 4-Bromofluorobenzene		95.0 %	80-1	20	"		п	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EE62419	05/24/06	05/24/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	. "		**				
Carbon Ranges C28-C35	ND	10.0			"			"	
Total Hydrocarbon nC6-nC35	ND	10.0	"	"		"	п	"	
Surrogate: 1-Chlorooctane		96.8 %	70-1	30	"	<i>"</i> ,	"	н	
Surrogate: 1-Chlorooctadecane		95.2 %	70-1	30	"	"	"	"	
SH1-SR5-15 (6F23004-21) Soil									
Benzene	ND	0.0250	mu/ku dry	25	FF62422	05/24/06	05/25/06	FPA 8021B	
Toluene	ND	0.0250	"		"	"	"	"	
Ethylbenzene	ND	0.0250	"			41			
Xylene (p/m)	ND	0:0250				"			
Xylene (o)	ND	0.0250	"		54	н		"	
Surrogate: a a a-Trifluorotoluene		94.2 %	80-1	20	, , , , , , , , , , , , , , , , , , , ,		"	"	
Surrogate: 4Brounofluorohenzene		02.5%		20	"	"	• 11	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg drv		EE62419	05/24/06	05/24/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"				"		
Carbon Ranges C28-C35	ND	10.0					11	U.	
Total Hydrocarbon nC6-nC35	ND	10.0	н			u	**		
Surrogate: 1-Chlorocetane		90.0%	70-1	30	"			<i>n</i>	
Survey a Child Mennie		01.30	70-1	10					

金衣

the second

のない。

構成に

報目の

and the second

Sarah.

Sec. No.

distant.

and the second

Service and

States a

Sec. and the

記書の行き

Plains All American EH & S	Project: SH-0184-1	Fax: (432) 687-4914
1301 S. County Road 1150	Project Number: SRS # Rocky Top 2	Reported:
Midland TX, 79706-4476	Project Manager: Camille Reynolds	05/25/06 16:09

General Chemistry Parameters by EPA / Standard Methods

		Environn	nental l	lab of Te	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SH1-SB1-2 (6E23004-01) Soil									
% Moisture	4.6	0.1	%	1	EE62405	05/23/06	05/24/06	% calculation	
SH1-SB1-5 (6E23004-02) Soil									
% Moisture	7.4	0.1	%	I	EE62405	05/23/06	05/24/06	% calculation	
SH1-SB1-15 (6E23004-04) Soil									
% Moisture	7.4	0.1	%	1	EE62405	05/23/06	05/24/06	% calculation	
SH1-SB2-2 (6E23004-05) Soil									
% Moisture	7.2	0.1	0/ /9	1	EE62405	05/23/06	05/24/06	% calculation	
SH1-SB2-5 (6E23004-06) Soil									
% Moisture	5.4	0.1	0/ /0	l	EE62405	05/23/06	05/24/06	% calculation	
SH1-SB2-15 (6E23004-08) Soil									
% Moisture	5.5	0.1	%	l	EE62405	05/23/06	05/24/06	% calculation	
SH1-SB3-2 (6E23004-10) Soil									
% Moisture	5.6	0.1	%	1	EE62405	05/23/06	05/24/06	% calculation	
SH1-SB3-5 (6E23004-11) Soil									
% Moisture	7.3	0.1	0/ /0	t	EE62405	05/23/06	05/24/06	% calculation	
SH1-SB3-15 (6E23004-13) Soil									
% Moisture	3.7	0.1	%	l	EE62405	05/23/06	05/24/06	% calculation	
SH1-SB4-2 (6E23004-14) Soit									
% Moisture	2.4	0.1	%	1	EE62405	05/23/06	05/24/06	% calculation	
SH1-SB4-5 (6E23004-15) Soil									
% Moisture	21.3	0.1	%	1	EE62405	05/23/06	05/24/06	% calculation	

Environmental Lab of Texas

2500 100

1990 J.W.

Struggler .

the set of

10.00

で、「ない」を

No. of Concession, Name

1

Contraction of

- State Pre-

No.

あまれ

14 A. A.

Ser.

Sec. 1

356.0

Sec.

Same S

1994 (A.S.

Sec. 15

Sec. 10

Service .

\$19.95 B

赤山北陸

State State

Sec.

1.2

計算

1925

Project: SH-0184-1 Project Number: SRS # Rocky Top 2 Project Manager: Camille Reynolds

Reported: 05/25/06 16:09

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SH1-SB4-15 (6E23004-17) Soit									
% Moisture	6.2	0.1	%	t	EE62405	05/23/06	05/24/06	% calculation	
SH1-SB5-2 (6E23004-18) Soil									
% Moisture	3.6	0.1	%	1	EE62405	05/23/06	05/24/06	% calculation	
SH1-SB5-5 (6E23004-19) Soil									
% Moisture	5.5	0.1	%	1	EE62405	05/23/06	05/24/06	% calculation	
SH1-SB5-15 (6E23004-21) Soil									
% Moisture	6.6	0.1	%	1	EE62405	05/23/06	05/24/06	% calculation	

Environmental Lab of Texas

Plains All American EH & S	Project: SH-0	184-1	Fax: (432) 687-4914
1301 S. County Road 1150	Project Number: SRS	# Rocky Top 2	Reported:
Midland TX, 79706-4476	Project Manager: Cami	ille Reynolds	05/25/06 16:09

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE62318 - Solvent Extraction (GC)										
Blank (EE62318-BLK1)				Prepared &	k Analyzed	: 05/23/06				
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	**							
Carbon Ranges C28-C35	ND	10.0	"							
Total Hydrocarbon nC6-nC35	ND	10.0	13							
Surrogate: 1-Chlorooctane	51.9		mg kg	50.0		104	70-130			
Surrogate: 1-Chlorooctadecane	53.8		"	50.0		108	70-130			
LCS (EE62318-BS1)				Prepared &	2 Analyzed	: 05/23/06				
Carbon Ranges C6-C12	455	10.0	mg/kg wet	500		91.0	75-125			
Carbon Ranges C12-C28	513	10.0	v	500		103	75-125			
Total Hydrocarbon nC6-nC35	968	10.0	"	1000		96.8	75-125			
Surrogate: 1-Chlorooctane	52.2		mg kg	50.0		104	70-130			
Surrogate: 1-Chlorooctadecane	48.2		"	50,0		96.4	70-130			
Calibration Check (EE62318-CCV1)				Prepared: ()5/23/06 A	malyzed: 05	5/24/06			
Carbon Ranges C6-C12	270		mg/kg	250		108	80-120			
Carbon Ranges C12-C28	259			250		104	80-120			
Total Hydrocarbon nC6-nC35	529			500		106	80-120			
Surrogate: 1-Chlorooctane	52.6		"	50,0		105	70-130			
Surrogate: 1-Chlorooctadecane	52.3		u.	50.0		105	70-130			
Matrix Spike (EE62318-MS1)	Soi	irce: 6E23004	-01	Prepared &	2 Analyzed	: 05/23/06				
Carbon Ranges C6-C12	599	10.0	mg/kg dry	524	ND	114	75-125			
Carbon Ranges C12-C28	605	10.0	,,	524	8.73	114	75-125			
Total Hydrocarbon nC6-nC35	1200	10.0		1050	ND	114	75-125			
Surrogate: 1-Chlorooctane	52.9		mg kg	50.0		106	70-130			
Surrogate: 1-Chlorooctadecane	47.7		"	50.0		95.4	70-130			

Environmental Lab of Texas

and the second

Part of the second

5.28 A

Sec. Base

-

and the

N SALA

2. A. S. C.

Contraction of

Can Branch

Subset of

ALL PARTY

and the

Ser and a series

Service Service

and the

Plains All American EH & S		I	Project: SH	-0184-1					Fax: (432)	687-4914
1301 S. County Road 1150 Midland TX, 79706-4476		Project N Project Ma	umber: SR: anager: Cai	8 # Rocky To nille Reynol	op 2 ds				Repo 05/25/06	r ted: 5-16:09
	O	ganics by	/ GC - Q	uality Co	ontrol		·			
		Environ	nental L	ab of Tey	(as					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE62318 - Solvent Extraction (GC))									
Matrix Spike Dup (EE62318-MSD1)	Sou	rce: 6E23004	-01	Prepared &	: Analyzed:	05/23/06				
Carbon Ranges C6-C12	622	10.0	mg/kg dry	524	ND	119	75-125	3.77	20	
Carbon Ranges C12-C28	619	10.0		524	8.73	116	75-125	2.29	20	
Fotal Hydrocarbon nC6-nC35	1240	10.0	н	1050	ND	118	75-125	3.28	20	
Surrogate: 1-Chlorooctane	54.9		mg kg	50,0		110	70-130			
Surrogate: 1-Chlorooctadecane	47.9		<i>n</i>	50,0		95.8	70-130			
Blank (EE62419-BLK1)				Prepared &	: Analyzed:	05/24/06				
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	17							
Carbon Ranges C28-C35	ND	10.0	"							
T . I I I O(025										
Total Hydrocarbon nC6-nC35	ND	10.0								
Total Hydrocarbon nC6-nC55 Surrogate: 1-Chlorooctane	41.9	10.0	" mg kg	50.0		83.8	70-130			
Total Hydrocarbon nc 6-nc 55 Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctadecane	+1.9 +3.1	10.0	" mg kg "	50.0 50.0		83.8 86.2	70-130 70-130			
Total Hydrocarbon nC 6-nC 55 Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctadecane LCS (EE62419-BS1)	41.9 43.1	10.0	" mg kg "	50.0 50.0 Prepared &	: Analyzed:	83.8 86.2 05/24/06	70-130 70-130			
Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctane LCS (EE62419-BS1) Carbon Ranges C6-C12	ND 41.9 43.1 596	10.0	" mg kg " mg/kg wet	50.0 50.0 Prepared & 500	: Analyzed:	83.8 86.2 05/24/06 119	70-130 70-130 75-125			
Total Hydrocarbon nC 6-nC 55 Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctadecane LCS (EE62419-BS1) Carbon Ranges C6-C12 Carbon Ranges C12-C28	ND 41.9 43.1 596 527	10.0	mg kg " mg/kg wet	50.0 50.0 Prepared & 500 500	: Analyzed:	83.8 86.2 05/24/06 119 105	70-130 70-130 75-125 75-125			
Total Hydrocarbon nC6-nC35 Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctadecane LCS (EE62419-BS1) Carbon Ranges C6-C12 Carbon Ranges C12-C28 Total Hydrocarbon nC6-nC35	ND 41.9 43.1 596 527 1120	10.0 10.0 10.0 10.0	" mg kg " mg/kg wet "	50.0 50.0 Prepared & 500 500 1000	: Analyzed:	83.8 86.2 05/24/06 119 105 112	70-130 70-130 75-125 75-125 75-125			
Total Hydrocarbon nC 6-nC 35 Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctadecane LCS (EE62419-BS1) Carbon Ranges C6-C12 Carbon Ranges C12-C28 Total Hydrocarbon nC6-nC35 Surrogate: 1-Chlorooctane	ND 41.9 43.1 596 527 1120 53.9	10.0 10.0 10.0 10.0	" mg kg " mg/kg wet " " " "	50.0 50.0 Prepared & 500 500 1000 50.0	: Analyzed:	83.8 86.2 05/24/06 119 105 112 <i>10</i> 8	70-130 70-130 75-125 75-125 75-125 75-125 70-130			
Total Hydrocarbon nC 6-nC 35 Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctadecane LCS (EE62419-BS1) Carbon Ranges C6-C12 Carbon Ranges C12-C28 Total Hydrocarbon nC6-nC35 Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctane	ND 41.9 43.1 596 527 1120 53.9 47.1	10.0 10.0 10.0 10.0	" mg kg " mg/kg wet " " " mg kg	50.0 50.0 Prepared & 500 500 1000 50.0 50.0	: Analyzed:	83.8 86.2 05/24/06 119 105 112 108 94.2	70-130 70-130 75-125 75-125 75-125 75-125 70-130			
Total Hydrocarbon nC 6-nC 35 Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctadecane LCS (EE62419-BS1) Carbon Ranges C6-C12 Carbon Ranges C12-C28 Total Hydrocarbon nC6-nC35 Surrogate: 1-Chlorooctane	ND 41.9 43.1 596 527 1120 53.9 47.1	10.0 10.0 10.0 10.0	" mg kg " mg/kg wet " " mg kg "	50.0 50.0 Prepared & 500 500 1000 50.0 50.0 Prepared: 0	: Analyzed: 05/24/06 A	83.8 86.2 05/24/06 119 105 112 108 94.2 nalyzed: 05	70-130 70-130 75-125 75-125 75-125 70-130 70-130 5/25/06			
Total Hydrocarbon nC 6-nC 35 Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctadecane LCS (EE62419-BS1) Carbon Ranges C6-C12 Carbon Ranges C12-C28 Total Hydrocarbon nC6-nC35 Surrogate: 1-Chlorooctane Calibration Check (EE62419-CCV1) Carbon Ranges C6-C12	ND 41.9 43.1 596 527 1120 53.9 47.1 266	10.0 10.0 10.0 10.0	" mg/kg wet " " " mg/kg "	50.0 50.0 Prepared & 500 500 1000 50.0 50.0 Prepared: 0 250	: Analyzed: 95/24/06 A	83.8 86.2 05/24/06 119 105 112 108 94.2 nalyzed: 05 106	70-130 70-130 75-125 75-125 75-125 70-130 70-130 5/25/06 80-120			
Total Hydrocarbon nC 6-nC 55 Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctadecane LCS (EE62419-BS1) Carbon Ranges C6-C12 Carbon Ranges C12-C28 Total Hydrocarbon nC6-nC35 Surrogate: 1-Chlorooctane Calibration Check (EE62419-CCV1) Carbon Ranges C6-C12 Carbon Ranges C12-C28	ND 41.9 43.1 596 527 1120 53.9 47.1 266 300	10.0 10.0 10.0 10.0	" mg/kg wet " mg/kg wet " mg kg " mg kg " mg/kg	50.0 50.0 Prepared & 500 500 1000 50.0 Prepared: 0 250 250	: Analyzed: 05/24/06 A	83.8 86.2 05/24/06 119 105 112 108 94.2 nalyzed: 05 106 120	70-130 70-130 75-125 75-125 75-125 70-130 70-130 5/25/06 80-120 80-120			
Total Hydrocarbon nC6-nC35 Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctadecane LCS (EE62419-BS1) Carbon Ranges C6-C12 Carbon Ranges C12-C28 Total Hydrocarbon nC6-nC35 Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctane Calibration Check (EE62419-CCV1) Carbon Ranges C6-C12 Carbon Ranges C12-C28 Fotal Hydrocarbon nC6-nC35	ND 41.9 43.1 596 527 1120 53.9 47.1 266 300 566	10.0 10.0 10.0 10.0	" mg kg " mg/kg wet " " mg kg " " mg/kg	50.0 50.0 Prepared & 500 500 1000 50.0 Prepared: 0 250 250 500	: Analyzed: 05/24/06 A	83.8 86.2 05/24/06 119 105 112 708 94.2 nalyzed: 05 106 120 113	70-130 70-130 75-125 75-125 75-125 70-130 70-130 5/25/06 80-120 80-120 80-120			
Total Hydrocarbon nC 6-nC 35 Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctalecane LCS (EE62419-BS1) Carbon Ranges C6-C12 Carbon Ranges C12-C28 Total Hydrocarbon nC6-nC35 Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctane Calibration Check (EE62419-CCV1) Carbon Ranges C6-C12 Carbon Ranges C12-C28 Total Hydrocarbon nC6-nC35 Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctane	ND 41.9 43.1 596 527 1120 53.9 47.1 266 300 566 53.7	10.0 10.0 10.0 10.0	" mg kg " mg/kg wet " mg kg " mg kg " mg kg " mg/kg " " "	50.0 50.0 Prepared & 500 500 1000 50.0 Prepared: 0 250 250 500 50.0	: Analyzed: 05/24/06 A	83.8 86.2 05/24/06 119 105 112 108 94.2 nalyzed: 05 106 120 113 107	70-130 70-130 75-125 75-125 75-125 70-130 70-130 5/25/06 80-120 80-120 80-120 80-120			

Environmental Lab of Texas

Provide and

13.0.2

1. N. 1.

ۿڡؚۿٷۿۄ

State State

eise Mittenfint Weise Mitten

South States

1

80 X 60

No. No.

Plains All American EH & S		ſ	Project: SH-	-0184-1					Fax: (432)	687-4914
1301 S. County Road 1150		Project N	umber: SRS	5 # Rocky T	op 2				. Керо	rted:
Midland TX, 79706-4476		Project Ma	anager: Car	nille Reynol	ds				05/25/0	5 16:09
	0	rganics by	GC - Q	uality Co	ontrol					
		Environ	nental L	ab of Tey	xas					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE62419 - Solvent Extraction (GC	C)		<u> </u>							
Matrix Spike (EE62419-MS1)	Sou	irce: 6E23005	5-01	Prepared &	Analyzed:	05/24/06				
Carbon Ranges C6-C12	566	10.0	mg/kg dry	526	ND	108	75-125			
Carbon Ranges C12-C28	552	10.0	11	526	ND	105	75-125			
Total Hydrocarbon nC6-nC35	1120	10.0	n	1050	ND	107	75-125			
Surrogate: 1-Chlorooctane	46.9		mg kg	50.0		93.8	70-130			
Surrogate: 1-Chlorooctadecane	41.3		"	50.0		82.6	70-130			
Matrix Spike Dup (EE62419-MSD1)	Sou	rce: 6E23005	5-01	Prepared &	Analyzed:	05/24/06				
Carbon Ranges C6-C12	565	10.0	mg/kg dry	526	ND	107	75-125	0.177	20	
Carbon Ranges C12-C28	557	10.0	"	526	ND	106	75-125	0.902	20	
Total Hydrocarbon nC6-nC35	1120	10.0	"	1050	ND	107	75-125	0.00	20	
Surrogate: 1-Chlorooctane	47.4		mg kg	50,0		94.8	70-130			
Surrogate: 1-Chlorooctadecane	40.8		"	50.0		81.6	70-130			
Batch EE62422 - EPA 5030C (GC)										
Blank (EE62422-BLK1)				Prepared &	Analyzed:	05/24/06				
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250								
Ethylbenzene	ND	0.0250								
Xylene (p/m)	ND	0.0250								
Xylene (0)	ND	0.0250	"							
Surrogate: a,a,a-Trifluorotoluene	44.0		ug kg	40.0		110	80-120			
Surrogate: 4-Bromofluorobenzene	41.4		"	40.0		104	80-120			
LCS (EE62422-BS1)				Prepared &	z Analyzed:	05/24/06				
Benzene	1.09	0.0250	mg/kg wet	1.25		87.2	80-120			
Foluene	1.13	0.0250	"	1.25		90.4	80-120			
Ethylbenzene	1,27	0.0250	**	1.25		102	80-120			
Xylene (p/m)	2.69	0.0250		2.50		108	80-120			
Nylene (0)	1.37	0.0250		1.25		110	80-120			
Surrogate: a.a.a-Trifluorotoluene	44.2		ug kg	40.0		110	80-720			

Environmental Lab of Texas

、聖法、

語言語は

のための

a market and

法编辑

ALL ALL ALL

STREES.

Sec. 1

記録で

for the part

きょう

100

Plains All American EH & S 1301 S. County Road 1150 Midland TX, 79706-4476		I Project N Project Ma	Project: SH umber: SR anager: Cai	-0184-1 S # Rocky T nille Reynol	op 2 ds				Fax: (432) Repo 05/25/00	687-4914 rted: 5 16:09
	0	rganics by	y GC - Q	uality Co	ontrol		·····			
•		Environ	mental L	ab of Te	xas					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE62422 - EPA 5030C (GC)										
Calibration Check (EE62422-CCV1)				Prepared: ()5/24/06 A	nalyzed: 05	5/25/06			
Benzene	45.6		ug/kg	50.0		91.2	80-120			
Foluene	43.3		u	50.0		86.6	80-120			
Ethylbenzene	56.9		u	50.0		114	80-120			
Sylene (p/m)	101			100		101	80-120			
ýlene (0)	51.3			50.0		103	80-120			
Surrogate: a,a,a-Trifluorotoluene	40.2		"	40.0		100	80-120			
surrogate: 4-Bromofluorobenzene	42.0		"	40.0		105	80-120			
Matrix Spike (EE62422-MS1)	Sou	rce: 6E23009	0-02	Prepared: (05/24/06 A	nalyzed: 05	5/25/06			
Benzene	1.15	0.0250	mg/kg dry	1.41	ND	81.6	80-120			
Foluene	1.26	0.0250	н	1.41	ND	89.4	80-120			
Ethylbenzene	1.39	0.0250	,,	1.41	ND	98.6	80-120			
Yylene (p/m)	3.04	0.0250	"	2.81	ND	108	80-120			
Xylene (0)	1.53	0.0250	"	1.41	ND	109	80-120			
Surrogate: a.a.a-Trifluorotoluene	38.3		ug kg	40.0		95.8	80-120			
surrogate: 4-Bromofluorobenzene	43.0		"	40.0		108	80-120			
Matrix Spike Dup (EE62422-MSD1)	Sou	rce: 6E23009	9-02	Prepared: ()5/24/06 A	nalyzed: 05	5/25/06			
Benzene	1.13	0.0250	mg/kg dry	1.41	ND	80.1	80-120	1.86	20	
Foluene	1.22	0.0250	u –	1.41	ND	86.5	80-120	3.30	20	
Ethylbenzene	1.39	0.0250	н	1.41	ND	98.6	80-120	0.00	20	
Yylene (p/m)	2.96	0.0250	н	2.81	ND	105	80-120	2.82	20	
(o)	1.49	0.0250	u.	1.41	ND	106	80-120	2.79	20	
śurrogate: a,a,a-Trifluorotoluene	38.2		ug kg	40,0		95.5	80-120			
surrogate: 4-Bromofluorobenzene	44 4		"	10.0		111	80-120			

NAME OF

A STATE

different a

S. Bart

C. State of the second s

NUT OF

國際部

"alfued

South State

Sec. 30

Same a

factor of

No. of the second s

Plains All American EH & S	Project: SH-0184-1	Fax: (432) 687-4914
1301 S. County Road 1150	Project Number: SRS # Rocky Top 2	Reported:
Midland TX, 79706-4476	Project Manager: Camille Reynolds	05/25/06 16:09

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

								· · · · · · · · · · · ·		
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE62405 - General Preparation (Prep)										
Blank (EE62405-BLK1)				Prepared: ()5/23/06 A	nalyzed: 05	/24/06			
% Solids	100		%							
Duplicate (EE62405-DUP1)	Sour	ce: 6E23004-01	l	Prepared: ()5/23/06 A	nalyzed: 05	/24/06			
% Solids	95.3		%		95.4			0.105	20	
Duplicate (EE62405-DUP2)	Sour	ce: 6E23006-03	3	Prepared: ()5/23/06 A	nalyzed: 05	/24/06			
% Solids	97.8		%		97.9			0.102	20	
Duplicate (EE62405-DUP3)	Sour	ce: 6E23011-03	3	Prepared: ()5/23/06 A	nalyzed: 05	/24/06			
% Solids	91.9		%		93.7			1.94	20	

Environmental Lab of Texas

きいない

を見たい

Mer all

CLEERIN

の読録す

である

ないいな

Sec.

3. B.

State and

2 Martin

AL DE

2 - Salat

Carlow Carlow

ALC: NO

語と語り

Sec.

Plains Al	II American EH & S	Project: SH-0184-1	Fax: (432) 687-491
1301 S. G	County Road 1150	Project Number: SRS # Rocky Top 2	Reported:
Midland	TX, 79706-4476	Project Manager: Camille Reynolds	05/25/06 16:09
		Notes and Definitions	
l	Detected but below the Reporting Lim	t; therefore, result is an estimated concentration (CLP J	Flag).
DÉT	Analyte DETECTED		
ND	Analyte NOT DETECTED at or above the r	eporting limit	
NR	Not Reported		
dry	Sample results reported on a dry weight bas	is	
RPD	Relative Percent Difference		
LCS	Laboratory Control Spike		
MS	Matrix Spike		
Dup	Duplicate		

Report Approved By:

13.4.7

and the

and the second

10.00

C TRANS

Sec. Barry

and the second

1. A.

1000

Sector 2

ない

N.S. SA

S. William

Ser.

M. M.C.

である

Raland K Juns

5/25/2006

Raland K. Tuttle. Lab Manager Celey D. Keene. Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

																22				97	1	A 76				
4 4					1							TAT bisbi	ueis	[E				R		ž١			1.1.1.1	
		7		÷						(əjn	ipəyəs-ə.	ia) TAT Ri	รกช												• •	
A		4					Γ	Τ						Ť	·									z_0.		
	L'S	9	2														T							630		
	SCE	ୄ୰	্টা																				d	20 JAK		1997 - E.
	REC		1																							
2	SIS	F	×[19	.							.M.5	1 ^{.0.} И					_						Š		· ` `
<u>s i</u>	ALY	1	- 81	N			į	₅∟					BCI											act? ners ceipt	10	
	AN	1	∞				\$			8260	0 or BTEX	805(81208)	ETE .	2	~	2	2	2	2	<u> </u>	>)	>	>	Rec Rec	ent	
	ΠND	5	H	X	\setminus		in the second					zəlifelov	Semi											hers aine Co Pon	- European	
R(a	102	4		i a				۲µ			· · ·	səli	teloV											ntai cont sais re U	ŭ	
10.00	COF	6	Č	M						82 Q+	C4 C1 EP F	s8 gA aA ;2i	eteM											on o v Se v ratu	Į Ū	
£.,	RE	(4	က	· 1				CLP	Ì			VESP/CEC	ମ ≜2											nple stod npei	Jora	
	λä	me:	# #	50	# 0				Ľ	3}	CO3' HCO	,408.(D) ar	IOINA											Sar Lat Cu: Ter	Lat	
1	STC	t Na	ojec	t.	ñ,						(X PN	ns (Ca, Mg,	oileO													
	CU.	ojec	d.	roje						9001	900 i 📢	100 1.814	Hat	\geq	\geq	7)	7	2	>	$\overline{)}$	7	\geq		1 1 1	N Ime
	101	Ри		ш								st (abecity):	ano													10
5	1AIA								ļ				lios	74	×.	2	<u></u> 2	-9-	<u>.</u> २	-9	Ā	- 9	. 7	+		L.
	5	1					•			ž		oß	bulð												ate	1 u
-											-	sı	deW												ď	ř ř
277 See												st (Specify)	эчао													δŋ
		ľ										e	Non													
		4		ĺ					the second s	ative		' 0	рs ^z н													
		1	2							er		н	0₽N								_	-				
4			3			\square				ie.			нсі		1											
		-	ā				P		ľ			E(ЭМН		1				1							
		10	\sim	.			⊴ /			1			90)							f						
		8	2				.s /[-	1	S	6 9-	W sie	nietroO to	'ON	~	~.					~		·	-			
		3	. ບ ບ			8				"	•	······					-									
		\propto	5			ž/	.\` _							L	10			\mathbf{b}	7	Δ	1.0	Q	5		1	IN
3		<u>_</u>	ã	1		<u>ه</u>	7				A I	e Sample	miT	3	Ŧ	h	5	0	0	2	2	2	4-1			
			N.			ν								-2	2	41	オ	と	Y	5	5	ju	5			D. D
3		Ś																		_						5 5
_		ð	-	-	~	2	_ {}							6											12	No.
		\prec	1	[G	\sim					ţ	e Sampleo	teO	7	~		1						-		fed	ed -
55 5		ſ	ં ઢે	1	0		\neg	$ \square $					ſ	7	. 1	\searrow	-1		1		Ì				sceiv	
			Į		\sim	``	\sim	-		\vdash				<u>v</u>										ł	a a	ă –
ູທ	0 m	- the	ر ت آ	2	\sim	(Q)	\setminus																		0 5	ן לו ש
ញ	180	60	a \	~_1	\mathbf{X}	\mathcal{A}	Dr						[.√[Ē
6	563- 163-	\sim	-]	7	M	8	0	۱ ۱								B			ļ	9		Ð				
	32-6 32-5		_ ~	2	`]	- [4]	1%						ļ			94				्म		10			S.	;
<u>ب</u>	₩.₩.	X	1	\rightarrow	i i	1	N						Ы												late	ate (
- O	none Fax:	E.	ĩ		4]	20	.\[8	2	\mathcal{C}	0	أكم	2	1	0	と	0	الہ			
Q.	<u>т</u>	2	거	<u>_</u>]	ř	Ø	\mathbb{N}						ELD	(. 1	$\left \right\rangle$		5]	1.	1/	\geq	4	۲۱ (\vdash	
		24	2	2	2		$\wedge \parallel$						교		-	2	-	N	.5	2	, il	1	י جم			
		\triangleleft	\mathcal{N}	2	Y.	M	L M							3	2	12	3	∞	101	R	3	[A]	8			
Ŋ_					1	Ń	ΙĬ	-]	V)	γ	·)	1	\sim	~	5	5	5	Ś			
Ē		u l	ar Te	ŝ	ë	ë	ē "	' .:;'						~	1	1	1	~	2	1	2	1			1	
s o		ធិត	Nar	dres	te/Z	P P	atu	Ë						Ϋ́.	E	F	X	A	E	Z	E	E	H.		\sim	1
Z	ast 765	Mai	any	Ad	Stat	iode	Sign						1		, `}		- 1 		<u>v</u>)	<u>v)</u>	<u>* }</u>	$\frac{\gamma}{\gamma}$	<u>~\</u>	10	1	{
	20 E 5 79	ect	idux	алу	Vitv	eler	ler						Suc		\sim						• •			ion]/ */	
1 C	st I.: exae	Pro	ပိ	duc	5	F	Ľ,				D.	Σ	12eC				الذ	\mathbf{x}						ruct	à V.	Ň
I ALLER	Ϋ́́			ŏ			ŝ				1	<u>}</u>	о Г	5	\mathbb{S}	\mathbb{N}		$\widetilde{\Omega}$	9	\mathbf{S}	계	5	3	hst	p M	, pe
É	00 V Issa											~~~)	; ; ; #	$\left[\right]$	9	P	\mathbf{Y}	7	9	M	Гľ	۲	[]	tial	Test (duis
LL	126 Dde												Z₽							-11 			d i	bec	elip 2	
								•		<u>tili</u>			· • · •	947				SV	,	<u> </u>			•	<u>ا</u> م	luc.	<u>105-7</u>

ere tare

											010				OiO				267				
		-					10	e-2cµequie	Principal TAT (Pr TAT brebnets		I				₹				1				
1																				ע צ צ≮		enie Die s	:.
UEST																	+	-+		्रि	J	•	
REQ.																				a 🕑 🛱	0.0		
LYSIS SH		A				•••			רסיצישי נכו	4						+			_	st? ers./C	ipt:		\$ ¹ •
ANA		M			/ze Fo	\square	093	58 XƏTƏ 10 (11E (80519/10030	5	>	>	2	2	$\overline{2}$	\leq	5	5	~	s Intac x? ontaint	1 Rece	nents	
DAND T.V.T.		C F Y			Analy	+	<u> </u>		setilasio setilasiones				_			-+	-	-+	·	Itainer. Intaint IIs: Co	s Upór	Com	
CORI		Ro					٥S	CA Cr Pb Hg	e8 pA sA :sletah	V										e Con s on co dy Sea	erature	atory	÷
γ Υ Υ Υ Υ Υ	#	ë	# #			TOTAL	—	(EOOH 'EO:	MR LESP / CEC	s ≠								-+	i	Sampl Labels Custo	Tempi	Labor	. •
JSTOL Stor	roject	ect Lo	0d					19' K)	1,gM, isO) anoils:			_	_	—				~			<u> </u>] <u>.</u>	a (
<i>DF</i> CL Projec	ā	Proj					900	OF SOOL SW	PH: 418.1 (2015): סואפר (specify):	L >	2	>	<u> </u>		-> 	<u> </u>	-	>	2			Tir	Tim .
HAIN (atrix	· · ·	lio2	×	X	×	. Y -	<u>_</u> Y	Z	. ــــــــــــــــــــــــــــــــــــ	×-	×	7				2
5 	1		i				≥.		Valer Vvaler								-+					Date	Date
				61					Other (Specify)														U
				42			tive		anov to2ss				_				_						
				Et-			Serva		HOBN														
				5	\forall		Pre		+CI +NO ³		<u> </u>					-							
				and i	· {		L		¢6														
				Ň		I	ŀ	ر\$	No. of Containe		<u> </u>												
	~			ax No	T]				naiduine euro	5	5	5	9	5	2	2	10	h	6				X
	ice.			* 6					Folome2 amiT	16	2	15 3	101	16.	16	162	5 9,	79	491				7
	er V			• ۲۰۰۰	β	2	ŀ	****									\rightarrow	\rightarrow	\rightarrow				LELOT
	M			1		y .			belqme2 etsO	22							$ \downarrow$	\neg				ived by	rd bey
	t)			\subset	ン	, ,		,		$\overline{\mathbf{V}}$	<u> </u>											Rece	Rece
9 5	5					2																	e
33-180 33-171 2 die	، ۲ ۲	<u> </u>	X	18	N.S	777					2				Δ				40			$\left \frac{1}{2} \right = \frac{1}{2}$	12
132-56 132-56	1.00	Ĩ	Η	50		2					ゴ				Hot Hot	ļ						4	
ax: 4	Env	Via	50	6 -	χ	ž					3	\	~		0	\mathcal{M}	2	5	õ			Date	Date
Phi Phi Phi	5	1	±کۂ	80		2			c ī		i	1 - 1	, v						,				1
Ker	20	175		13.	- ¥	Y V			L	S.B.	0	BS	18	34	<u>(3</u> +	34	35	135	35				
				7	ľ					1	1				1	1	1 N	- M	$\frac{1}{1}$				1
Jager	Name	tress:	e/Zip:	Je No.	ature:	Email				1.S	H/HS	111	IR	HI	SH1	IHS	(H	ト	h.H		•	1	
t East 79765 ct Mar	hany	λd d	ty/Stat	lephor	r Sign	-	ŀ						<u>)</u>				~	2	5	:sue			
st I-20 exas i Projec	Com	ompar	ö	Tel	ample			À				2	5	10				~	$\mathbf{\hat{\mathbf{O}}}$	ructio		1 M	- A
Wes sa, Ti		ប័			ů.						6		$\left \frac{1}{2}\right $		민	Ę	2		7	al inst		Rined	rished
12600 Odes:									- SZ	* \$										òpecia		Celinge Care	t∉linqu

30											ţ	AT brebrield												•••	· · · · ·		-
		1					F	.		ĺ	Pre-Schedule	I) TAT HRUS	-							_				* . * *			
	h-	2																					zzžů			•	
100	NES:	2	·											-	.	+							20	•••		· .	
	REQ	,																					80 ^{9 ĝ} o	۰.			
	SIS	F		A.								.M.A.O.I	4										°,				
	IALY	V		F					- r				<u></u>										act? iners ceipt				
	DAN	X		. 1					-	09	58 X318 10 050	Samonanes	11 > 										er? er? tonta		hen		
	NAV	11		1	Ì				-	*******	· · · · · · · · · · · · · · · · · · ·	volatiles	, 								· · ·		ainei ntain Is: C Upö		Eo	· · .	·
1	CORI	A.		No.	1					θZ	a Cd Cr Pb Hg	8 pA 2A :zistsh	1										Coni on co Sea		Y O		
E.	REC	R	l					CLP:	VTAL:		0	ARIESPICE											nple bels o stody		orat		
	λαο	ame:	ict #	۲٥с: ۲	÷				۲,		1' CO3' HCO3)	AUS (CI, SO4	4		.								Cut San		Lat		
	nst	ict N	Proje	ject	н.				╞	900		on Aller (Ca. Mo	<u>`</u>								_				be	a C	2
*¥	OFC	Proje	-	97			L		+	201	300. (13:	Other (specify)										·			11	Tir (9 c	3 3
200	AIN									Ě		liog	5	-			_		+								5
	СН	,		,			1			M		agbulg												ļ	ale	, ate	
									ļ			Water										-			å		λ
and the second										-		Viher (Specify														·V	<u>`</u>
di la						(\square	>		tive		*0S ² H														· ·	
							\searrow			erva:		HOPN	-							-							
and the second se						-	/	ĺ		Pres		HCI															
							21					*ONH								_					:		
BG.							A		L	-		90)									-						
			ر. د			!/		, I		-	Uets	No. of Contai	<u> </u>													O	ľ
880			2			Ň							15										1			N	
100			r V			ца Ц	2				рə	Iqme2 əmiT	20														_
B			(N				Ĭ						12													<u>ب</u> ک	가
					M	2	\mathbb{N}			ſ			20													P E	5
			4		8	0	A.				. pa	Iqms2 ateD	1				-								ed by	ed by	3
4			Ś		20		<i>.</i>	2					12							ĺ					eceiv	- Seiv	2
	•		Š		N					+-															ă O	ř.	-
S S S S S S S S S S S S S S S S S S S	100	J.	1	0	J	<i>oo</i>																			E V	a L	
××	3-18 3-17	69	Ň		Ĥ	<u>f</u>	JX																		" @	F	
o ⊫	12-56 12-56	Ч	2		`.	2	ŢΫ	N															i I		~0	+	
-	ৰ ব মান	X	W	10		-0	N	1				u C													bate 2 - C	ate	
-0	hone Fax	Ą	I	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5	0	, W					. 00				Ì	ĺ		Í						5-2		
ធិ៍កី	٩	570	A		8	1	/W					u u					Ì										7
		Y		2	I	M	11					_	3												\sim		
				- V		h	ן י	\setminus					N													ſ	
Ĩ	-,	i.	ue ue	28:5	ä	, Zo:	Je:	ili.					41.												X		
	щ ю	anag	y Nai	ddre:	ate/Z	1 800	natu	Ĕ					N)												: /]		
a C) Eas 7976	ict Ma	luedu	ny Ai	ty/St	leph	ır Sig			-	$\overline{\mathbf{x}}$					<u></u>					14		uns:		IV	1	
1 <u>0</u>	t I-2(xas	Proje	Соп	edu	ö	Te	mple				~~ ~	e e				8.6					N.N.		uctic		1 v	1.	
	Ves I, Te	-		ပိ			Sa			4		ત્તું ટ્	2										lastr		The C	hedt	
n.Ś	600 V essa											B	1)										cial		風ノ	Iduisi	
	12(Od											ं 🔁 🖥	3 a. 1 199										ads		Relit	Relir	
										<u>1</u>			de de la composition	u ta d	4	- 52:5 T	<u>: . :-</u>]	الاختف	بلخد	<u> </u>	- 11. -		<u></u>	l	ul.,	<u> "</u>	_1

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

	Varian	ce / C	orrective	A
Client:	SDG	[on]	V	
Date/Time:	5/2	2/010	18:50	-
Order #:	<u>leEd</u>	200	4	-
Initials: _	e e	le		_

Sample Receipt Checklist

Temperature of container/cooler?	Yes	No	0.0	CI
Shipping container/cooler in good condition?	YES	No		
Custody Seals intact on shipping container/cooler?	Yes	No	Mot present	
Custody Seals intact on sample bottles?	Yes	No	-Not present	. 1
Chain of custody present?	(FES)	No		
Sample Instructions complete on Chain of Custody?	(TE)	No		
Chain of Custody signed when relinquished and received?	(Čês	No		
Chain of custody agrees with sample label(s)	Kes	No		1
Container labels legible and intact?	Yes	No		
Sample Matrix and properties same as on chain of custody?	Xes	No		
Samples in proper container/bottle?	Yes	No		•
Samples properly preserved?	Jes	No		
Sample bottles intact?	Yes,	No		
Preservations documented on Chain of Custody?	1 Yes	l No		
Containers documented on Chain of Custody?	Yes	No	1	····· ··· ····
Sufficient sample amount for indicated test?	Xes;	No		
All samples received within sufficient hold time?	Yes	No No	1	
VOC samples have zero headspace?	Tes	No	Not Apolicab	le

Other observations:

S. 18.2.

a but	Contact Person: Regarding:	Variance Documentation: _ Date/Time:	_ Contacted by:
123 m	Corrective Action Taken:		
18-18-18-18-18-18-18-18-18-18-18-18-18-1			

APPENDIX C SOIL BORING LOGS

- Martin

AL CAR

調整な

Sec. 22

State of the state

1000

5. A.M.

a history

al and a set

気が肥

のない

- States

ALCONT.

の記念

and the second

No.

日本の

の意識

									LOCATION MAP	
				S			ENTAL SERVICES		SH1-SB2	
	SOIL	BORIN	G NUN	1BER <u>s</u> ROC	HI-SE KY T	32 OP 2	LOCATION Jal NM	Φ.		
靏	ΤΟΤΑ	L BOR	ING DE	EPTH	20'	B	OREHOLE DIA (in) 8.25"	SH1-SB4 ⊕	$\left(\begin{array}{c} \oplus \\ \text{SH1-SB5} \end{array} \right)$	
	DRILI	LING C	O <u>.</u> Stra	aub Drill	ling		DRILLING METHOD HSA		↓/ ⊕	
æ	GEOL	OGIST	Kenr	neth Cod	у		DATE DRILLED 5/22/06		SH1-SB1	
160.00	ТОР С	DF CAS	ING EI	LEV. (ft)) <u>N/</u> /	A	_ GROUND SURFACE ELV. (ft) <u>N/A</u>			
	- 0 -	INTERVAL	SAMPLE RECOVERY %	901	PID (ppm)	Sample	LITHOLOGIC DESCRIPTION/CO	OMMENTS		REMARKS
			100			ςω1	Sandy calichi, tan, fine grained, well sorted, r	ounded, dry	<u>, , , , , , , , , , , , , , , , , , , </u>	No odor No Staining
	- 2 - - 4 -		100		0.0	SB2-2	Sandy calichi, tan, fine grained, well sorted, r	ounded, dry		No odor No Staining
NUCL OF	6 -		100_		0.0	SH1- SB2-5	Sandy calichi, tan, fine grained, well sorted, r	ounded, dry		No odor No Staining
	- 8 - - 10 -		100		0.0	SH1-				No. odor
200	- 12 - - 14 -					502-15	Sand to sandstone, tan to pink, fine grained,	well sorted, r	rounded, dry	No Staining
	- 16 -				0.0		Caliche light tan			No odor No Staining
STRUE &	- 18 -									
	22						TD= 20'			
	- 24 - - 26 -				:					
at several	- 28 -									
なない	- 30 - - 32 -				-					
14 State	- 34 -									
	- 38 -									
Bar was	- 40 -									

									LOCATION MAP	
				Sł	G		NTAL SERVICES			YALVE T
.8 .8	SOIL	BORIN	<u>G NUM</u>	IBER <u>s</u>	HI-SB	3			⊕ SURFACE STAI	NING
	PROJ	ECT	ROCK	<u>Y TOP 2</u>	2		LOCATION Jal, N.M.	Ð	⊕ ⊕ SH1-SB3	
	τοτα	L BOR	ING DE	EPTH .	15'	. E	OREHOLE D1A (in) 8.25"	SH1-SB4	SH1-SB5	
	DRILI	LING C	O <u>.</u> Stra	ub Dril	ling		DRILLING METHOD HSA		•	
2	GEOL	.OGIST	Kenn	eth Cod	у		DATE DRILLE <u>D 5/22/06</u>		SH1-SB1	
渔	TOP (OF CAS	ING EI	.EV. (ft) <u>N/A</u>	<u> </u>	_ GROUND SURFACE ELV. (ft) <u>N/A</u>			
	0	INTERVAL	SAMPLE RECOVERY %	DOJ	PID (ppm)	Sample	LITHOLOGIC DESCRIPTION/C	OMMENTS		REMARKS
						SH1- SB1-2	Sandy calichi, tan, fine grained, well sorted, i	rounded, dry	n na	No odor No Staining
	- 2 -	\leftarrow	100		3.0	501 2	Sandy calichi, light tan, fine grained, well sor	ted, rounded, dr	у	Ĩ
1.55		$\left \right\rangle$	100		0.0	SH1- SB1-5	Sandy caliabi light tan fina arainad well car	tod rounded dr	····	No odor No Staining
	- 6 -	┥∖∕					Sanay calent, light tunt, line grainea, weir sor	tea, roundea, ar	у	
184	8									
		$ / \rangle$								No odor
1	- 10 -	$\langle \rangle$	100		0.0		Sand to conditione light pink fine grained w	vell sorted roup	ded dry calcified at 12'	No Staining
撼	- 12 -						Sund to sundstone, light plick, line gruined, v	ven sortea, roan	dea, ary, calcinea at 12	
		-								Na adar
webie -	- 14 -		100		0.0	SH1- SB1-15				No Staining
	- 16 -	-					TD= 15'			
		-								
	- 18 -									
	- 20 -	-								
			-							
	- 24 -	4								
50-51	20-	•								
	- 28 -									
1	- 30 -									
3 .		-								
輕急	- 32 -									
	- 34 -									
		-								
125	- 36 -									
	- 38 -									÷
	- 40 -							and which is to second an experimental second s		

1.240

			n yangabi na manang						LOCATION MAP	9,5 0 1 19 0 99, 0 1 1 19 19 19 1 1 1 1 1 1 1 1 1 1 1 1
				S	ENV		MENTAL SERVICES		SH1.SB2	YALVE X
将品	SOIL	BORIN	g num	1BER <u>s</u>	SH1-SB	35			⊕ SURFACE STA	INING
1.615	PROJI Tota	ECT		<u>ОСКҮ ⁻ арты</u>	<u>FOP 2</u> 15'	c	LOCATION_Jal, N.M	Ð	⊕ ⊕ SH1-SB3	
			\cap Str	aub Dril	ling		DRILLING METHOD HSA	SH1-SB4	SHI-SB5	
	GEOI	LOGIST	Kenr	neth Cod	ly		DATE DRILLED 5/22/06		⊕ SHL-SBI ·	
2	ТОР (OF CAS	ING EI	LEV. (ft) <u>N</u> /A	۱	GROUND SURFACE ELV. (îi <u>N/A</u>		514-517	
		INTERVAL	SAMPLE RECOVERY	10G	PID (ppm)	Sample	LITHOLOGIC DESCRIPTION/CC	DMMENTS		REMARKS
A STATE OF A	2		100		0.0	SH1- SB5-2	Calichi, light tan. Calichi, light tan.			No odor No Staining
	- 4 - - 6 -		100		0.0	SH1- SB5-5	Sand, pink, fine grained, well sorted, rounded,	dry		No odor No Staining
ADDRESS ADDRESS ADDRESS	8 - - 10 -		100		0.0					No odor No Staining
100 M 10 M 100	- 12 - - 14 -					SH1-	Sand, tan to light pink, fine grained, dry, calc	afted, hard		No odor
	- 16 -		100		0.0	SB4-15	TD= 15'			No staining
8.0.12 Mar 10	- 18 - 20 -									
of the second	- 22 - - 24 -									
66 C	- 26 - - 28 -									
	- 30 -									
	- 32 - - 34 -									
	- 36 - - 38 -									
	- 40 -	-	Set Science of the design of the							