1R – 412

WORK PLAN

DATE: AUGUST 2006

/R-412 Work Plan August, 2006

August 11, 2006

Mr. Ben Stone State of New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Plains Pipeline, L.P. Document Submittal Clay Osborn Ranch – Jalmat #1 Clay Osborn Ranch – Jalmat #2 Clay Osborn Ranch – Jalmat #3 Clay Osborn Ranch – Rocky Top #2 Clay Osborn Ranch – Jalmat #22A Clay Osborn Ranch – East Shell North Jal, Lea County, New Mexico

Dear Mr. Stone:

Plains Pipeline, L.P. (Plains) is pleased to submit the attached Site Investigation Reports and Site-Specific Remediation Work Plans for six of the soil remediation project sites located on the Osborn's Rocky Top Ranch in Jal, Lea County, New Mexico. These documents include the results of an additional soil investigation conducted at the site and the remediation plan are based on the General Remediation Work Plan recently submitted to the New Mexico Oil Conservation Commission (NMOCD) by Plains.

Should you have any questions or comments, please contact me at (713) 646-4657.

Sincerely,

Jeffrey P. Dann, P.G.

Sr. Environmental Specialist Plains All American

Attachments: Jalmat #1, #2, #3, #22A, East Shell North and Rocky Top #2. 22B Site Investigation Report and Site-Specific Remediation Work Plans

File: n/jetf-tiles/Osborn-RockyTopRanch/Jalmat-1 CovrLtr.doc

Plains Marketing GP Inc., General Partner 333 Clay Street, Suite 1600 (77002) P.O. Box 4648 Houston, Texas 77210-4648 713/646-4100

SITE INVESTIGATION REPORT and SITE-SPECIFIC REMEDIATION WORK PLAN

A. Sugar

Clay Osborn Rocky Top Ranch Jalmat #1 Release Site

SW1/4 SW1/4 UL-M, Section 7, Township 25 North, Range 37 East Latitude 32° 8' 25" North, Longitude 103° 12' 38" West Lea County, New Mexico

PLAINS PIPELINE, L.P. SRS ID: 2000-10606

Prepared For:

Plains Pipeline, L.P. 333 Clay Street Suite 1600 Houston, Texas 77002

Prepared By: SDG Environmental Services 6611 Vialinda, Suite 204 Houston, Texas 77083

August 2006

Kenneth Cody SDG Environmental Services

Table of Contents

1.0	Introduction	1
2.0	Summary of Field Activities	2
3.0	New Mexico Oil Conservation Division (NMOCD) Soil Classification	3
4.0	Distribution of Hydrocarbons in the Unsaturated Zone	4
5.0	Distribution of Hydrocarbons in the Saturated Zone	5
6.0	Recommendations for Remediation	5
7.0	QA/QC Procedures	7
8.0	Limitations	7
Distril	oution	9

Tables

Table 1:	Soil Sample, Analytical Results Summary May 24, 2006
	Figures
Figure 1: Figure 2: Figure 3:	Site Location Map Soil Boring Locations Estimated Excavation Area and Depths
	Appendices
Appendix A:	Environmental Laboratory of Texas Analytical Results

- Appendix B:Soil Boring LogAppendix C:EPI June 2000 Soil Sample Results

14 4 A
~23 th 3
- San L'URA
1.288
\$1. A.S.
and wanted .
1. P. C.L.
1 0. 4 July
State Such
Bras a
4.M. F.
2.15
189 A.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
C. Law T.
The second
8.00 M
1. S. C.

1.0 INTRODUCTION

200

÷.4.3.

SDG Environmental Services (SDG) was retained by Plains Pipeline, L.P. (Plains) to evaluate historical information, conduct additional investigation, and develop a site-specific remediation work plan for the Clay Osborn Jalmat 1 release site located on the Clay Osborn Rocky Top Ranch in Lea County, New Mexico. Plains is the owner/operator of several pipelines present on the Clay Osborne Rocky Top Ranch located near Jal, New Mexico.

This site is located in Unit Letter-M, in the SW¼ SW ¼ of Section 7, Township 25 North, Range 37 East, approximately 1-mile northwest of Jal, Lea County, New Mexico. A topographic Site Location Map is provided as Figure 1. The latitude is 32° 7' 58″ North, and Longitude 103° 12' 38″ West. The site is characterized by a pipeline right-of-way in a pasture and an area of surface staining.

The hydrocarbon impacted area is the result of a historical release and the date of the release as well as the volume of crude oil released and recovered is not known. The visually stained area is approximately 2,300 ft^2 and a small stockpile of approximately 10 CY of stained soils is located near the south end of the visible surface staining. A summary of site activities is provided in Section 2.0.

Plains prepared and submitted a General Remediation Work Plan dated April 2006 to address the release sites located on the Rocky Top Ranch. The objective of the General Remediation Work Plan was to remediate crude oil impacted sites at the Rocky Top Ranch, consistent with the remediation/abatement goals and objectives set forth in the New Mexico Oil Conservation Division (NMOCD) "NMOCD Guidelines for Remediation of Leaks, Spills, and Releases, August 13, 1993." The General Remediation Work Plan proposed appropriate risk-based thresholds for contaminates of concern (CoCs) based on relative risk posed by the CoC residuals to local groundwater, area water wells, surface water bodies and impacts on surface reclamation.

The General Remediation Work Plan proposed remediation strategies for sites would be developed under the following three scenarios.

1. Surface Restoration Sites (Scenario 1)

This scenario was developed for sites where investigation data indicates that the surface area has restored itself naturally, the surface expression of the release is difficult to identify, the impacts are limited to the surface and/or shallow soils, and there is no threat to groundwater.

2. Total Excavation (Scenario 2)

For sites where data indicates that soil impacts are limited in vertical extent (i.e. 10 to 15 feet in depth) and total excavation of the impacted soil is practical.

3. Limited Excavation and Risk-based Closure (scenario 3) For sites where data indicates that soil impacts in the source area extend to between 10 feet and 45 feet below ground surface (bgs) and excavation of all the impacted soil to below NMOCD guidelines is not practical.

The General Remediation Work Plan was conditionally approved by the NMOCD in a letter to Plains dated May 30, 2006.

The soil analytical data in the EPI December 2001 Jalmat #1 Site Investigation Report as well as the visual observations, field photoionization detector (PID) measurement, and soil analytical data from a site investigation conducted in May 2006 by SDG was used in development of this Site Specific Remediation Work Plan.

2.0 SUMMARY OF SITE ACTIVITIES

19. C. B.

5 . Berts

1.48

1. C.

S. Berry

1.00

20. 44

On 27 July 2000 through 3 August 2000, initial subsurface horizontal and vertical delineation was conducted by EPI with the installation of nine (9) soil borings installed at the site. Soil borings were installed to depths of 15 to 45 feet bgs and are identified in Figure 2 as BH-1 through BH-9. Soil samples were collected at depths of 2, 5, and at 5 foot intervals to the depth of the boring, field screened with a PID and analyzed for BTEX and TPH-GRO/DRO. Laboratory results indicated that constituent concentrations of BTEX were greater than NMOCD regulatory standards in five (5) soil samples collected from two of the boring locations. These values in excess of NMOCD standards occurred at depths of greater than 25 ft at boring location BH-5 and at a depth of 5 ft at boring location BH-8. Laboratory results indicated that TPH-GRO/DRO concentrations exceed 100 mg/kg TPH in fifteen (15) of the soil samples and the remaining thirty-one (31) soil samples were either below NMCOD regulatory standards or were not detected above the laboratory method detection limits. The highest concentrations were exhibited in samples collected from BH-5 and BH-8. A table summarizing the analytical results from the EPI Investigation Report dated December 2001 is provided in Appendix C.

According to the December 2001 report, soil data from BH5 indicated an increasing CoC gradient justifying a groundwater investigation. A temporary monitor well was installed, developed, and sampled near the location of BH-5 to determine if groundwater was impacted. Benzene, toluene, and m,p,o-xylenes were below New Mexico Water Quality Control Commission (NMWCC) standards. A permanent groundwater monitor well was installed and groundwater samples collected in February, September and October 2003. Analytical results were below laboratory detection limits for BTEX and TPH and a request for a "No Further Action" determination was made in a Annual Monitoring Report dated April 2004. NMOCD responded in a letter dated July 8, 2004 and requested addition information regarding previous soil sampling conducted at the site. This additional information ws submitted by Plains.

On 24 May 2006, SDG conducted an additional soil investigation in an effort to verify the vertical extent of impacts previously reported at the Clay Osborn Jalmat #1 site. Clay Osborn Jalmat #1 site was identified as an area of stained soils along the Plains pipeline right-of-way.

2.32

2.00

15.229

Same.

100

and and

Upon arrival at the site, it appeared that the permanent monitor well was not located at the BH5 location east of the pipeline as shown on historical drawings, but was located on the west side of the pipeline in the central area of the site. One soil boring was installed in the Clay Osborne Jalmat #1 area and is identified in Figure 2 as JM1-SB1. This boring was located between the monitor well and BH5 in an area exhibiting the most visible surface staining. Soil Boring JM1-SB1 was installed to 40 feet bgs and no groundwater was encountered.

The soil boring was installed by Straub Corporation, Stanton, Texas utilizing an air rotary drill rig. Soil samples were collected at 2 ft, 5 ft, 10 ft, 15 ft, 20 ft, 25, 30, 35 and 40 ft depths using a core sampler. Soil samples were split for headspace analysis to screen for total volatile organic vapor concentrations in soils. A one quart zip-lock bag was filled one-half full of soil and sealed leaving the remainder of the bag filled with air. The sample was allowed to volatilize for five to ten minutes. One end of the bag was opened and the PID probe inserted carefully into the bag and the bag re-sealed around the probe as much as possible to prevent vapors from escaping. The peak measurement associated with the sample was recorded. The peak PID measurements are provided on the soil boring log included in Appendix B.

3.0 NEW MEXICO OIL CONSERVATION DIVISION (NMOCD) SOIL CLASSIFICATION

The December 8, 2001 Site Investigation Report provided a depth to water at the site of 52.4 ft bgs as indicated in the temporary monitor well installed at the site. Based on the analytical results of soil samples collected in May 2006, the hydrocarbon impacted soil extends from the surface to between 10 to 15 feet bgs (historical sampling indicates potential depths of up to 40 feet bgs). Therefore, less than 50 feet of non-impacted soil remains between the last known impacted soil depth and groundwater. The resulting Depth to Groundwater Ranking Score is 20.

The site is greater than 1000 ft from any public water supply source and greater than 200 feet from any private domestic water supply well. The resulting Wellhead Protection Ranking Score is 0.

During remediation activities associated with the Texas-New Mexico Pipeline conducted in the 1990's, a retention basin was constructed to contain runoff from the land farm located east of the site. The retention basin is located greater than 1000 ft southwest of the site. At the time of the May 2006 investigation, there was no water in the basin. The resulting Distance to Surface Water Body Ranking Score is 0.

3

Based on the individual ranking scores identified above, the site has an NMOCD Total Ranking Score of >19, which establish the following remediation levels:

Benzene: 10 mg/kg

BTEX: 50 mg/kg

TPH: 100 mg/kg

4.0 DISTRIBUTION OF HYDROCARBONS IN THE UNSATURATED ZONE

The estimated area of soils impacted above NMOCD Standards is shown in Figure 3. The area is estimated to be approximately 7,200 square feet. The vertical extent of soils impacted above NMOCD standards based on the data obtained in the May 2006 subsurface sampling is between 10 to 15 feet bgs.

On 24 May 2006, an air rotary drill rig, operated by Straub Corporation, Stanton, Texas, was utilized to delineate the vertical extent of crude oil impacted soil at the site. Soil samples were collected in the subsurface from the soil boring at 5 feet intervals; field screened with a PID and selected soil samples were analyzed for constituent concentrations of BTEX and TPH-GRO/DRO. Laboratory data sheets and chain-of-custody forms are attached (Appendix A). No visual observations of free phase hydrocarbons were encountered during the installation of the soil boring. The soil boring log is provided in Appendix B.

Soil Boring JM1-SB1 was installed at a location of the most visible surface staining between the monitor well location and the location of the historical boring BH5. This location was selected based on the data provided in the December 2001 Investigation Report and conditions observed at the site, which indicated that the impacted soils at this location were not vertically delineated. The soil boring was installed to 40 feet bgs and samples were collected at 2, 5, 10, 15, 20, 25, 30, 35 and 40 feet bgs, field screened with a PID and submitted for laboratory analysis of TPH GRO/DRO and BTEX. Analytical results indicated that constituent concentrations of BTEX were not detected above the laboratory method detection limits in any of the samples. Analytical results indicated that TPH concentration exceeded the NMOCD standard of 100 mg/kg at 2 feet bgs (376 mg/kg), at 5 feet bgs (35.5 mg/kg) and at 10 feet bgs (47.5 mg/kg) but did not exceed NMOCD standard of 100 mg/kg. TPH was not detected above the laboratory detection limits in soil samples collected at 25, 30, 35, and 40 feet bgs.

Based on the May 2006 investigation, the extent of hydrocarbon impacted soils has been delineated vertically. The horizontal extent of hydrocarbon impacted soils

shallower than 10 feet bgs have not been fully delineated and historical data from the initial June 2000 investigation indicates deeper impacts may be present in the vicinity of the historical borings BH2 and BH5. However, based on the results of the soil samples collected and analyzed from surrounding soil borings, it is likely that the horizontal impacts are limited in extent and further delineation sampling can take place during remediation activities.

5.0 DISTRIBUTION OF HYDROCARBONS IN THE SATURATED ZONE

No saturated conditions were observed in the boring. Soil boring JM1-SB1 was installed to 40 feet bgs and no groundwater was encountered. The depth of hydrocarbon impacted soils above 100 mg/kg TPH throughout most of the site is limited to less than 15 feet bgs. A permanent groundwater monitor well was installed and monitored for three quarters with no indication that hydrocarbons from the historical release have impacted the saturated zone above NMWQCC standards.

6.0 **RECOMMENDATIONS FOR REMEDIATION**

Based on the results of the vertical soil boring investigation conducted at the site, it appears that hydrocarbon impacted soils are present to depths of 10 to 15 feet bgs. Historical data indicates that there may be deeper impacts in the vicinity of BH2 and BH5. Given the NMOCD guideline cleanup standard of 100 mg/kg TPH, an estimated 3,700 cubic yards of impacted soil and segregated clean overburden will require excavation. Because the horizontal impacts have not been fully defined, delineation samples will be collected commensurate with excavation and/or cleanup confirmation sampling activities.

The area with observed staining and where laboratory analytical results indicate that surface impacts do not extend to below 2 feet bgs as defined by soil boring BH1, BH3, BH4, BH6, and BH9 will be addressed under the General Work Plan Scenario 1 involving the following procedures as were outlined under the General Remediation Work Plan and approved by NMOCD in the May 2006 NMOCD approval letter:

General Work Plan Scenario 1

100 00

Sale -

27.16.2

- Scrape the surface asphaltines where apparent and remove;
- Blend the underlying 1 to 2 feet of soil with native soil and contour;
- Do not disturb areas that have already re-vegetated.

Because the impacts greater than 100 mg/kg TPH are limited in vertical extent (i.e. 10 to 15 feet in depth) as defined by soil borings BH7, BH8, and JM1-SB1; these soils will be remediated under the General Work Plan Scenario 2 (Total Excavation) involving the following procedures as were outlined in the approved General Remediation Work Plan and includes NMOCD conditions presented in the May 2006 NMOCD approval letter.

General Work Plan Scenario 2

- Excavation of impacted soil to below site guidelines;
- Collect and analyze soil sample from the walls and floor of the excavation to confirm that the remediation has met site guidelines;
- Relocation of excavated soil to the centralized soil treatment area for blending and aeration;
- Collect and analyze treated soil to confirm that the soil treatment activities have met site guidelines;
- Prepare a risk based closure proposal for submittal and approval by the NMOCD;
- Backfill the excavation with treated soil and restore the area to as close as possible to pre-spill conditions.

Should impacted soils be determined to be limited in extent based on additional delineation samples collected commensurate with excavation activities, the soils may be blended on site and stockpiled adjacent to the excavation pending approval of the NMOCD Project Manager.

Impacted soils above the NMOCD standard have been found in the most recent investigation to be shallower than 15 feet bgs. However, historical data indicates soils in the vicinity of BH2 and BH5 may have vertical hydrocarbon impacts extending below 15 feet bgs. If these areas of deeper impacts are verified based on analytical results of soil samples collected commensurate with excavation activities, Plains recommends that the approved General Work Plan Closure Scenario 3 be applied. Under this scenario, an impermeable barrier consisting of an oversized 20-mil polyethylene liner will be permanently installed at a minimum depth of 10 feet to inhibit vertical migration of contaminants in soil left in place below the cap. A 3-foot wide clean area buffer will be established around the impacted soil in the floor of the The buffer extent will be determined using a calibrated PID and excavation. confirmed by laboratory analysis of grab samples collected around the perimeter of the excavation. The liner shall be cushioned above and below with a 3 to 4-inch layer of sand or geotextile to protect it from puncture and tearing during the backfilling process. Installation of the 20-mil polyethylene liner at a minimum depth of 10 feet bgs will protect the barrier from erosion and human intrusion for a term sufficient to allow natural biodegrading of contaminates in the soil.

The clean overburden and impacted soils will be blended and utilized as backfill. Soil samples will be collected at a rate of one sample per 500 cubic yards to verify constituent concentrations of BTEX are below NMOCD guidelines and TPH-GRO/DRO are below 1000 mg/kg as approved for backfill over liners. Once the excavation has been confirmed to meet NMOCD standards or the installation of the 20-mil poly liner is completed, backfilling of the excavation will be initiated with the blended soil. The backfilled excavation will be contoured to the original grade surrounding the site and reseeded with approved grass seed.

A request for closure will be submitted to the NMOCD, upon completion of backfilling activities. Plains is requesting approval from NMOCD to implement these proposed final remediation and site closure activities.

7.0 QA/QC PROCEDURES

Soil Sampling

44.3

1. A.

1.22

Soil samples will be delivered to Environmental Lab of Texas, Inc. in Odessa, Texas for BTEX, TPH analyses using the methods described below. Soil samples will be analyzed for BTEX, TPH-GRO/DRO within fourteen days following the collection date.

The soil samples will be analyzed as follows:

- BTEX concentrations in accordance with EPA Method 8021B, 5030
- TPH concentrations in accordance with modified EPA Method 8015M GRO/DRO

Decontamination of Equipment

Cleaning of the sampling equipment will be the responsibility of the environmental technician. Prior to use, and between each sample, the sampling equipment will be cleaned with Liqui-Nox[®] detergent and rinsed with distilled water.

Laboratory Protocol

The laboratory will be responsible for proper QA/QC procedures after signing the chain-of-custody form. These procedures will be either transmitted with the laboratory reports or are on file at the laboratory.

8.0 LIMITATIONS

SDG Environmental Services has prepared this Site Investigation Report and Site-Specific Remediation Work Plan to the best of its ability. No other warranty, expressed or implied, is made or intended.

SDG Environmental Services has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. SDG Environmental Services has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. SDG Environmental Services has prepared this report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. SDG Environmental Services also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

وردوره و

6 3 N. W.

Services

\$ 6 10 34. 3

1. Carlos

Sec. 2

Server of the server

S. 6.19.2

5 1. Car .

a and a la

A 140 0

يونية. موجد المريخ

\$ \$ \$ \$ \$ P

1.2.1.2

6....

1. N. 1.

This report has been prepared for the benefit of Plains Pipeline, L.P. The information contained in this report including all exhibits and attachments, may not be used by any other party without the express consent of SDG Environmental Services and Plains Pipeline, L.P.

DISTRIBUTION

100. 5 3

. 00 - C

Contraction of

States .

か?き

「「

201 102

Barran 2

S. S. Salar

Sale P

1.05.1

ىلىڭ - ئاسىلا

Ser. 30

فأستطاده

10- 8 B

- Jeff Dann Copy 1: Plains All American 333 Clay Street Suite 1600 Houston, Texas 77002 jpdann@paalp.com Copy 2: Camille Reynolds Plains All American 3112 W. Highway 82 Lovington, New Mexico 88260 cireynolds@paalp.com Copy 3: Mr. Ben Stone New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 South St. Francis Drive Santa Fe, New Mexico 88240 ben.stone@state.nm.us Copy 4: Kenneth Cody SDG Environmental Services
 - Copy 4: Kenneth Cody SDG Environmental Services 6611 Vialinda, Suite 204 Houston, Texas 77083 <u>kcody@sdgenv.com</u>

TABLE 1

SOIL SAMPLE ANALYTICAL RESULTS SUMMARY

PLAINS PIPELINE, L. P. Jalmat #1 LEA COUNTY, NEW MEXICO PLAINS EMS NO: 2000-10606

SAMPLE	DEPTH	SAMPLE	DEPTH SAMPLE LABORATORY		METHOD: E	METHOD: EPA SW 846-8021B, 5030	021B, 5030		ž	METHOD: 8015N		TOTAL TPH
LOCATION	ft bgs	DATE		BENZENE	TOLUENE	ЕТНҮL-	M,P-	O-XYLENE				
						BENZENE	XYLENES		C6-C12	C12-C28	C28-C35	C6-C35
				(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
JM1-SB1-2	2'	05/24/06	05/24/06 6E26002-01	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10	340	36.4	376
JM1-SB1-5	5'	05/24/06	6E26002-02	<0.0250	0.0130 J	0.267	0.794	0.345	279	1750	156	2180
JM1-SB1-10	10'	05/24/06	05/24/06 6E26002-03	<0.0250	<0.0250	0.0396	0.0353	0.0353	56.9	494	27.8	579
JM1-SB1-15	15'	05/24/06	6E26002-04	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10	35.5	<10	35.5
JM1-SB1-20	20'	05/24/06	05/24/06 6E26002-05	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10	47.4	<10	47.4
JM1-SB1-25	25'	05/24/06	6E26002-01	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10	8.49 J	<10	<10
JM1-SB1-30	30'	05/24/06	05/24/06 6E26002-02	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10	6.71 J	<10	<10
JM1-SB1-35	35'	05/24/06	05/24/06 6E26002-03	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10	<10	<10	<10
JM1-SB1-40	40'	05/24/06	05/24/06 6E26002-04	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10	<10	<10	<10

indicates the constituent was not detected
 J indicates estimated value (detected below method reporting limit)

3. Hone.

Na 27. 9 8

10. N 20.

1444

WAR.

362.25

20.00

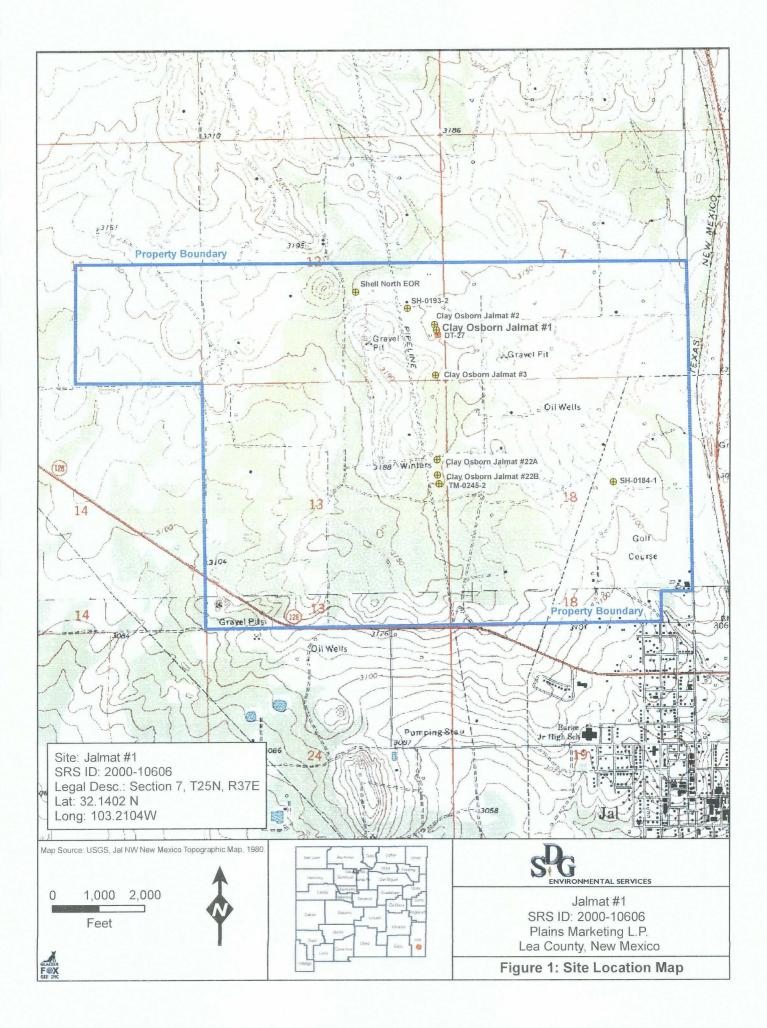
12 644

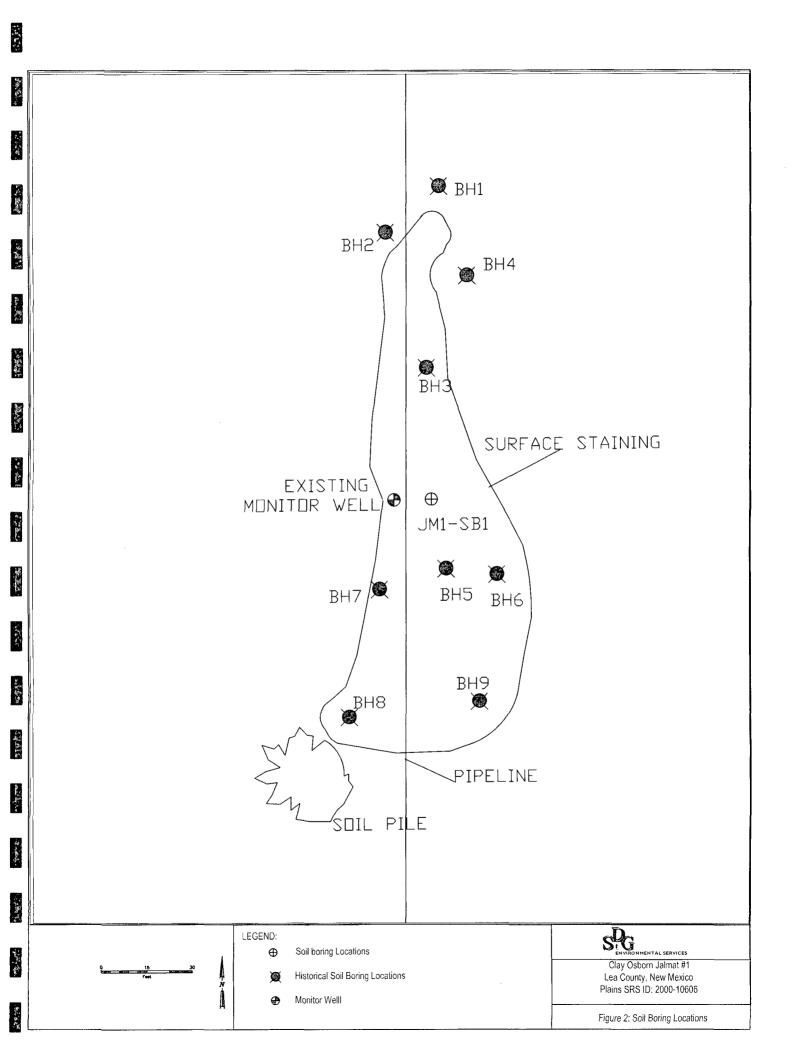
S.S. R.

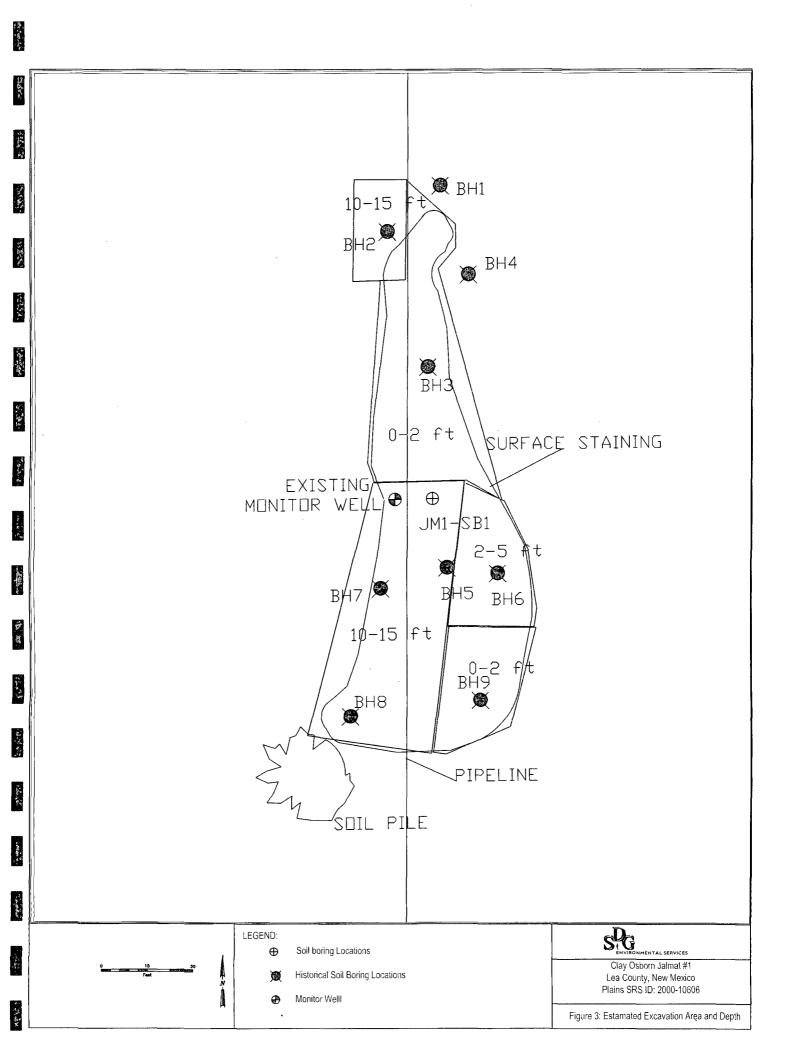
1. 1. 2. Car

6. 4. S. 6. 6.

10-18-5-5 °.


10 Mar 1


S. S. S. S.


82.0 4 an

The Areas -

No been to a

APPENDIX A ENVIRONMENTAL LABORATORY OF TEXAS ANALYTICAL RESULTS

1. 40 . . 2 3

Stored .

الارتقادية

m' = M

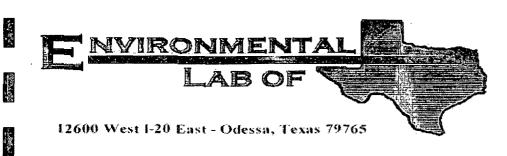
ないる

States is

Cat alle .

at a star a

weed to week


208 9.2.

Sec. 2 .

dis the

the second

1. 2. 2. 4. A.

18 M. 18

مويورا وطيفي أيجا

Sec. 24

24. 1 May

1. 2. 4 M. -

1.24

1. 2. ...

1 2. 5 ..

1. 44° X

- 12 St.

B. saw

2.00

والم المحمل ال

and man in

Analytical Report

Prepared for:

Camille Reynolds Plains All American EH & S 1301 S. County Road 1150 Midland, TX 79706-4476

Project: Jalmat Clay Osborne #1 Project Number: 2000-10606 Location: JM 1

Lab Order Number: 6E26002

Report Date: 06/05/06

Plains All American EH & S 1301 S. County Road 1150 Midland TX, 79706-4476

a brack

Barthan R. W.

" a go and h

A. Barre

54.84 A

Petron

01.3 346

a provine

. N. 63. V

Stork.

24 Longer

A. Jak .

\$ \$ JU 3. 8

1 E .

22.00

Project: Jalmat Clay Osborne #1 Project Number: 2000-10606 Project Manager: Camille Reynolds Fax: (432) 687-4914

Reported: 06/05/06 16:50

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
JM1-SB1-2	6E26002-01	Soil	05/24/06 08:55	05/26/06 09:34
JM1-SB1-5	6E26002-02	Soil	05/24/06 09:00	05/26/06 09:34
JM1-SB1-10	6E26002-03	Soil	05/24/06 09:05	05/26/06 09:34
JM1-SB1-15	6E26002-04	Soil	05/24/06 09:10	05/26/06 09:34
JM1-SB1-20	6E26002-05	Soil	05/24/06 09:15	05/26/06 09:34
JM1-SB1-25	6E26002-06	Soil	05/24/06 09:20	05/26/06 09:34
JM1-SB1-30	6E26002-07	Soil	05/24/06 09:25	05/26/06 09:34
JM1-SB1-35	6E26002-08	Soil	05/24/06 09:30	05/26/06 09:34
JM1-SB1-40	6E26002-09	Soil	05/24/06 09:35	05/26/06 09:34

Plains All American EH & S	Project: Jalmat Clay Osborne #1	Fax: (432) 687-4914
1301 S. County Road 1150	Project Number: 2000-10606	Reported:
Midland TX, 79706-4476	Project Manager: Camille Reynolds	06/05/06 16:50

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
JM1-SB1-2 (6E26002-01) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EF60108	06/01/06	06/02/06	EPA 8021B	
Toluene	ND	0.0250	u		u.	"		u –	
Ethylbenzene	ND	0.0250	"		"				
Xytene (p/m)	ND	0.0250		u	n		"		
Xylene (0)	ND	0.0250	v			"	"		
Surrogate: a.a.a-Trifluorotoluene		110 %	80-	120	"	"	n	0	
Surrogate: 4-Bromofluorobenzene		84.2 %	80-	120	"		"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg đry	I	EE63112	05/31/06	05/31/06	EPA 8015M	
Carbon Ranges C12-C28	340	10.0	"	"		11			
Carbon Ranges C28-C35	36.4	10.0	"			*1		"	
Total Hydrocarbon aC6-nC35	376	10.0		,,		н			
Surrogate: 1-Chlorooctane		108 %	70	130	"	"	"	0	
Surrogate: 1-Chlorooctadecane		105 %	70	130	"	"	"	11	
JM1-SB1-5 (6E26002-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EF60108	06/01/06	06/02/06	EPA 8021B	
Toluene	J [0.0130]	0.0250	u			м		U.	
Ethylbenzene	0.267	0.0250		"			**		
Xylene (p/m)	0.794	0.0250		"	'n	**			
Xylene (o)	0.345	0.0250	"	"	"				
Surrogate: a.a.a-Trifluorotoluene		105 %	80-,	20	"	P.	"		
Surrogate: 4-Bromofluorobenzene		123 %	80-1	20	"	"	п.	"	S-0-
Carbon Ranges C6-C12	279	10.0	mg/kg dry	1	EE63112	05/31/06	05/31/06	EPA 8015M	
Carbon Ranges C12-C28	1750	10.0	ч			17	11		
Carbon Ranges C28-C35	156	10.0			**			"	
Total Hydrocarbon nC6-aC35	2180	10.0	н		**	**	*	п	
Surrogate: 1-Chlorooctane		99.4 %	70-1	30	"	<i>n</i>	"	"	-17-14-14
Surrogate: 1-Chlorooctadecane		114 %	70-1	30	"	"	"	"	
JM1-SB1-10 (6E26002-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EF60108	06/01/06	06/02/06	EPA 8021B	
Toluene	ND	0.0250	11	**					
Ethylbenzene	0.0396	0.0250				н	"		
Xylene (p/m)	0.0353	0.0250			"	н	"		
Xylene (0)	0.0353	0.0250	"		"		"		
Surrogate: a.a.a-Trifluorotoluene		89.0 %	80-1	20	'n	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.5 %	80-1	20	"	"		п	
Carbon Ranges C6-C12	56.9	10.0	mg/kg dry	1	EE63112	05/31/06	05/31/06	EPA 8015M	
Environmental Lab of Texas	. <u> </u>					, ,		ince with the samples	

Environmental Lab of Texas

1.1.6

The results in this report apply to the samples analyzed in accordance with the samples

received in the laboratory. This analytical report must be reproduced in its entirety.

with written approval of Environmental Lab of Texas.

Page 2 of 11

Plains All American EH & S 1301 S. County Road 1150 Midland TX, 79706-4476		Project N	Project: Jal lumber: 200 anager: Ca	00-10606				Rep) 687-4914 orted:)6 16:50
			rganics b						
		Environ	mental L	ab of Te	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
JM1-SB1-10 (6E26002-03) Soil									
Carbon Ranges C12-C28	494	10.0	mg/kg dry	t	EE63112	05/31/06	05/31/06	EPA 8015M	
Carbon Ranges C28-C35	27.8	10.0				и	"		
Total Hydrocarbon nC6-nC35	579	10.0		n	u	u		"	
Surrogate: 1-Chlorooctane		97.6 %	70	130	"	n	"	"	
Surrogate: 1-Chlorooctadecane		101 %	70	130	"	11	"	"	
JM1-SB1-15 (6E26002-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EF60108	06/01/06	06/02/06	EPA 8021B	
Toluene	ND	0.0250		**	"		"	"	
Ethylbenzene	ND	0.0250		"	"	"		0	
Xylene (p/m)	ND	0.0250	u.		"	0			·
Xylene (0)	ND	0.0250	**			U.	n	**	
Surrogate: a.a.a-Trifluorotoluene		108 %	80-	120	"		"	"	
Surrogate: 4-Bromofluorobenzene		102 %	80	120	"	<i>n</i>	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EE63112	05/31/06	05/31/06	EPA 8015M	
Carbon Ranges C12-C28	35.5	10.0					"	11	
Carbon Ranges C28-C35	ND	10.0	**	"	"	п		n	
Total Hydrocarbon nC6-nC35	35.5	10.0	**	"	11	"	н	н	
Surrogate: 1-Chlorooctane	<u></u>	93.4 %	70-,	130	"	"	"	<i>n</i>	
Surrogate: 1-Chlorooctadecane		89.6 %	70-	130	"	"	"	"	
JM1-SB1-20 (6E26002-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EF60108	06/01/06	06/02/06	EPA 8021B	
Toluene	ND	0.0250	"	11	"	n			
Ethylbenzene	ND	0.0250	"	"	"	"			
Xylene (p/m)	ND	0.0250	"	11		11	"	"	
Xylene (o)	ND	0.0250	"	"				"	
Surrogate: a.a.a-Trifluorotoluene		102 %	80-,	120	"	ŋ	"	"	
Surrogate: 4-Bromofluorobenzene		86.8 %	80-1	120	"	"	"		
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EE63112	05/31/06	05/31/06	EPA 8015M	
Carbon Ranges C12-C28	47.4	10.0	"	11	"	19	"		
Carbon Ranges C28-C35	ND	10.0	"			ц		**	
Fotal Hydrocarbon nC6-nC35	47.4	10.0		"		n 	"	11	
Surrogate: 1-Chlorooctane		101 %	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		97.4 %	70-1	130	"	"	п	U U	

Environmental Lab of Texas

9.00 Sec. .

1. S. S. 1. S. 18

3 55 Barry

St. St. St.

a have

S. S. Same

Burning 2

1. A. A.

Sec. 1. de

Mary .

\$

1. S. .

Level .

1945.co

- Earlas

للا مراقبة أودو

and the state

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Plains All American EH & SProject:Jalmat Clay Osborne #1Fax: (432) 687-49141301 S. County Road 1150Project Number:2000-10606Reported:Midland TX, 79706-4476Project Manager:Camille Reynolds06/05/06 16:50

Organics by GC

Environmental Lab of Texas

	1 2 1.	Reporting	t la fe						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
JM1-SB1-25 (6E26002-06) Soil	<u></u>								
Benzene	ND	0.0250	mg/kg dry	25	EF60108	06/01/06	06/02/06	EPA 8021B	
Toluene	ND	0.0250		"	"	н	"	n	
Ethylbenzene	ND	0.0250	"	"		п	"		
Xylene (p/m)	ND	0.0250	"		"	"		"	
Xylene (o)	ND	0.0250	"	n	**	"	"	**	
Surrogate: a.a.a-Trifluorotoluene		90.8 %	80-1	20	"	"	"	11	
Surrogate: 4-Bromofluorobenzene		90.0%	80-1.	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	T	EE63112	05/31/06	05/31/06	EPA 8015M	
Carbon Ranges C12-C28	J [8.49]	10.0			"	11		н	
Carbon Ranges C28-C35	ND	10.0				п	11	"	
Total Hydrocarbon nC6-nC35	ND	10.0		**	"	'n	**	w	
Surrogate: 1-Chlorooctane		128 %	70-1	30	"		"	"	
Surrogate: 1-Chlorooctadecane		120 %	70-1.	30	"	"	"	"	
JM1-SB1-30 (6E26002-07) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EF60108	06/01/06	06/02/06	EPA 8021B	
Toluene	ND	0.0250	**			п	"	ч	
Ethylbenzene	ND	0.0250	"			"		vi	
Xylene (p/m)	ND	0.0250	a	"	н	"		**	
Xylene (0)	ND	0.0250			"	"	**	н	
Surrogate: a.a.a-Trifluorotoluene		98.0 %	80-1.	20	"	"		"	
Surrogate: 4-Bromofluorobenzene		82.2 %	80-1.	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EE63112	05/31/06	05/31/06	EPA 8015M	
Carbon Ranges C12-C28	J [6.71]	10.0		н	"	"	"	"	
Carbon Ranges C28-C35	ND	10.0	"		**	**	17	0	
Total Hydrocarbon nC6-nC35	ND	10.0		0	"	**	"		
Surrogate: 1-Chlorooctane		111 %	70-1.	30	11		"	"	
Surrogate: 1-Chlorooctadecane		105 %	70-1	30	"	"	"	"	
JM1-SB1-35 (6E26002-08) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EF60108	06/01/06	06/02/06	EPA 8021B	
Toluene	ND	0.0250	"	u.		"	"	"	
Ethylbenzene	ND	0.0250	"			"	"	11	
Xylene (p/m)	ND	0.0250	u.	11	"		U.		
Xylene (0)	ND	0.0250	n	n	"	"	"		
Surrogate: a.a.a-Trifluorotoluene		105 %	80-12	20	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		83.2 %	80-12	20	"	"	п	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EE63112	05/31/06	05/31/06	EPA 8015M	
Environmental Lab of Texas			77	du in die u	anat and a			ince with the samples	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety.

with written approval of Environmental Lab of Texas.

.

	0	es by GC Il Lab of Texas	
Midland TX, 79706-4476	Project Manager:	Camille Reynolds	06/05/06 16:50
1301 S. County Road 1150	Project Number:	2000-10606	Reported:
Plains All American EH & S	Project:	Jalmat Clay Osborne #1	Fax: (432) 687-4914

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
JM1-SB1-35 (6E26002-08) Soil								· · · · · · · · · · · · · · · · · · ·	
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EE63112	05/31/06	05/31/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0		r.	"				
Total Hydrocarbon nC6-nC35	ND	10.0	н	и			11	11	
Surrogate: 1-Chlorooctane		95.4 %	70-13	30	"	"	<i>u</i>	"	
Surrogate: 1-Chlorooctadecane		90.2 %	70-13	30	"	"	n	"	
JM1-SB1-40 (6E26002-09) Soit									
Benzene	ND	0.0250	mg/kg dry	25	EF60108	06/01/06	06/02/06	EPA 8021B	
Toluene	ND	0.0250	-11	"		"		"	
Ethylbenzene	ND	0.0250		"	"	"			
Xylene (p/m)	ND	0.0250	"	"	11	"		"	
Xylene (0)	ND	0.0250	"			n	"	"	
Surrogate: a.a.a-Trifluorotoluene		95.8 %	80-12	20	"	11	"	"	•
Surrogate: 4-Bromofluorobenzene		83.2 %	80-12	20	"	<i>n</i>	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EE63112	05/31/06	05/31/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0				**			
Carbon Ranges C28-C35	ND	10.0	n			"		u	
Total Hydrocarbon nC6-nC35	ND	10.0	н	••	14	п			
Surrogate: 1-Chlorooctane		116 %	70-13	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		110 %	70-13	30	"	"	"	"	

Environmental Lab of Texas

1

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

······				· · · · · · · · · · · · · · · · · · ·					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
JM1-SB1-2 (6E26002-01) Soil									
% Moisture	8.2	0.1	%	I	EE62901	05/26/06	05/27/06	% calculation	
JM1-SB1-5 (6E26002-02) Soil									
% Moisture	19.7	0.1	%	1	EE62901	05/26/06	05/27/06	% calculation	
JM1-SB1-10 (6E26002-03) Soil									
% Moisture	16.3	0.1	07 70	1	EE62901	05/26/06	05/27/06	% calculation	
JM1-SB1-15 (6E26002-04) Soil									
% Moisture	4.5	0.1	%	.1	EE62901	05/26/06	05/27/06	% calculation	
JM1-SB1-20 (6E26002-05) Soil									
% Moisture	6.0	0.1	‰	1	EE62901	05/26/06	05/27/06	% calculation	
JM1-SB1-25 (6E26002-06) Soil									
% Moisture	4.2	0.1	9% 70	1	EE62901	05/26/06	05/27/06	% calculation	
JM1-SB1-30 (6E26002-07) Soil									
% Moisture	9.3	0.1	0/ /0	I	EE62901	05/26/06	05/27/06	% calculation	
JM1-SB1-35 (6£26002-08) Soil									
% Moisture	11.6	0.1	%	1	EE62901	05/26/06	05/27/06	% calculation	
JM1-SB1-40 (6E26002-09) Soil									
% Moisture	15.5	0.1	0% 20	1	EE62901	05/26/06	05/27/06	% calculation	

Environmental Lab of Texas

÷.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report nuist be reproduced in its entirety, with written approval of Environmental Lab af Texas.

a south as

Y afree a

allers

A. 34 3.

AND TOTAL

and the second second

A. LANS

「「「「

1 Decession

na Ana

Berry Road .

5, 20,20

- Grande

Sec. 25.

. Safer

Ser and

S. S. S. S. S.

Organics by GC - Quality Control

Environmental Lab of Texas

Anałyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE63112 - Solvent Extraction (GC)										
Blank (EE63112-BLK1)				Prepared &	Analyzed	05/31/06				
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	"							
Carbon Ranges C28-C35	ND	10.0								
Total Hydrocarbon nC6-nC35	ND	10.0	u							
Surrogate: 1-Chlorooctane	45.7		mg kg	50.0		91.4	70~130			
Surrogate: 1-Chlorooctadecane	44.3		"	50.0		88.6	70-130			
LCS (EE63112-BS1)				Prepared &	Analyzed:	05/31/06				
Carbon Ranges C6-C12	557	0.01	mg/kg wet	500		111	75-125			
Carbon Ranges C12-C28	547	10.0	"	500		109	75-125			
Carbon Ranges C28-C35	ND	10.0	**	0,00			75-125			
Fotal Hydrocarbon nC6-nC35	1100	10.0		1000		110	75-125			
Surrogate: 1-Chlorooctane	53.1		mg kg	50.0		106	70-130			
Surrogate: 1-Chlorooctadecane	45.3		μ.	50.0		90.6	70-130			
Calibration Check (EE63112-CCV1)				Prepared: 0)5/31/06 A	nalyzed: 06	/01/06			
Carbon Ranges C6-C12	294		mg/kg	250		118	80-120			
Carbon Ranges C12-C28	297		"	250		119	80-120			
Total Hydrocarbon nC6-nC35	590		"	500		118	80-120			
Surrogate: 1-Chlorooctane	63.5		"	50.0		127	70-130			
Surrogate: 1-Chlorooctadecane	61.9		"	50,0		124	70-130			
Matrix Spike (EE63112-MS1)	Sou	rce: 6E26002	2-04	Prepared &	: Analyzed:	05/31/06				
Carbon Ranges C6-C12	649	10.0	mg/kg dry	524	ND	124	75-125			
Carbon Ranges C12-C28	649	10.0		524	35.5	117	75-125			
Carbon Ranges C28-C35	ND	10.0		0.00	ND		75-125			
Total Hydrocarbon nC6-nC35	1300	10.0	"	1050 35.5		120	75-125			
Surrogate: 1-Chlorooctane	55.7		mg kg	50.0		110	70-130			
Surrogate: 1-Chlorooctadecane	46.1		"	50.0		92.2	70-130			

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Plains All American EH & S	Project:	Jalmat Clay Osborne #1	Fax: (432) 687-4914
1301 S. County Road 1150	Project Number:	2000-10606	Reported:
Midland TX, 79706-4476	Project Manager:	Camille Reynolds	06/05/06 16:50

Organics by GC - Quality Control

Environmental Lab of Texas

	Reporting		Spike	Source		%REC		RPD	
Analyte Result	Limit	Units	Level	Result	%REC	Limits	RPD	Linit	Notes

Batch EE63112 - Solvent Extraction (GC)

ł

ļ

Matrix Spike Dup (EE63112-MSD1)	Sourc	e: 6E26002	2-04	Prepared &	Analyzed:	05/31/06			
Carbon Ranges C6-C12	647	10,0	mg/kg dry	524	ND	123	75-125	0.309	20
Carbon Ranges C12-C28	638	10.0		524	35.5	115 -	75-125	1.71	20
Carbon Ranges C28-C35	ND	10.0		0.00	ND		75-125		20
Total Hydrocarbon nC6-nC35	1290	10.0	"	1050	35.5	119	75-125	0.772	20
Surrogate: 1-Chlorooctane	54.6		mg kg	50.0		109	70-130		
Surrogate: 1-Chlorooctadecane	46.4		"	50.0		92.8	70-130		

Batch EF60108 - EPA 5030C (GC)

Blank (EF60108-BLK1)				Prepared & Ana	lyzed: 06/01/06		
Benzene	ND	0.0250	mg/kg wet	,			
Toluene	ND	0.0250	0				
Ethylbenzene	ND	0.0250					
Xylene (p/m)	ND	0.0250					
Xylene (0)	ND	0.0250	"				
Surrogate: a,a,a-Trifluorotoluene	43.3		ug kg	40.0	108	80-120	
Surrogate: 4-Bromofluorobenzene	34.7		"	40.0	86,8	80-120	
LCS (EF60108-BS1)				Prepared & Ana	lyzed: 06/01/06		
Benzene	1.14	0.0250	mg/kg wet	1.25	91.2	80-120	
Toluene	1.14	0.0250	"	1.25	91.2	80-120	
Ethylbenzene	1.29	0.0250	"	1.25	103	80-120	
Xylene (p/m)	2.54	0.0250	"	2.50	102	80-120	
Xylene (0)	1.32	0.0250		1.25	106	80-120	
Surrogate: a,a,a-Trifluorotoluene	47.3		ug kg	40.0	118	80-120	
Surrogate: 4-Bromofluorobenzene	41.8		"	40.0	104	80-120	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

and a star

and the states

12.54 - 44 AV

S. Sugar Strange

2.05.5 ·

ALC: NO

Sec. Se

to the second

E.C. 64

Ange Branks

The second

32. 2 40

4.6. 1.4.8.

Second in

- b some

gan the of

1. 1. A. 4 . 8 .

-10° 2 42

Reported: 06/05/06 16:50

Organics by GC - Quality Control

Environmental Lab of Texas

- Г		 											
Ì					Reporting		Spike	Source		%REC		RPD	
4	Analyte		Resi	ılt	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Surrogate: 4-Bromofluorobenzene

Calibration Check (EF60108-CCV1)			Prepared: (06/01/06 A	nalyzed: 0	6/02/06
Benzene	47,0	ug/kg	50.0		94.0	80-120
Toluene	47.1	17	50.0		94.2	80-120
Ethylbenzene	57.1	n	50.0		114	80-120
Xylene (p/m)	106	11	100		106	80-120
Xylene (0)	54.2	0	50.0		108	80-120
Surrogate: a,a,a-Trifluorotoluene	42.1	μ	40.0		105	80-120
Surrogate: 4-Bromofluorobenzene	40,0	"	40.0		100	80-120
Matrix Spike (EF60108-MS1)	Sour	ce: 6E25032-02	Prepared: ()6/01/06 A	nalyzed: 0	6/02/06
Benzene	1.16	0.0250 mg/kg di	y 1.29	ND	89.9	80-120
Toluene .	1.17	0.0250 "	1.29	ND	. 90.7	80-120
Ethylbenzene	1.29	0.0250 "	1.29	ND	100	80-120
Xylene (p/m)	2.71	0.0250 "	2.59	ND	105	80-120
Nylene (0)	1.35	0.0250 "	1.29	ND	105	80-120
Surrogate: a.a,a-Trifluorotoluene	42.2	ug kg	40.0		106	80-120

Matrix Spike Dup (EF60108-MSD1)	Sour	ce: 6E25032	2-02	Prepared: 0	6/01/06 A	6/02/06			
Benzene	1.13	0.0250	mg/kg dry	1.29	ND	87.6	80-120	2.59	20
Toluene	1.13	0.0250	0	1.29	ND	87.6	80-120	3.48	20
Ethylbenzene	1.23	0.0250		1.29	ND	95.3	80-120	4.81	20
Xyłene (p/m)	2.58	0.0250	п	2,59	ND	99.6	80-120	5.28	20
Xylene (o)	1.28	0.0250	n	1.29	ND	99.2	80-120	5.68	20
Surrogate: a.a.a-Triffuorotoluene	41.9		ug kg	40.0		105	80-120		
Surrogate: 4-Bromofluorobenzene	38.9		"	40.0		97.2	80-720		

...

40.0

105

80-120

41.9

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirely, with written approval of Environmental Lab of Texas.

Plains All American EH & S 1301 S. County Road 1150 Midland TX, 79706-4476		Project Nur	nber: 20	lmat Clay Osl 100-10606 amille Reynol					Fax: (432) Repo 06/05/06	rted:
General	Chemistry Para					ds - Qual	ity Con	trol	-	· · · · · · · · · · · · · · · · · · ·
		Environm	ental l	Lab of Te	xas					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE62901 - General Preparatio	on (Prep)									
Blank (EE62901-BLK1)				Prepared: ()5/26/06 A	nalyzed: 05.	/30/06			
% Moisture	ND	0.1	%							
Blank (EE62901-BLK2)				Prepared: ()5/26/06 A	nalyzed: 05.	/30/06			
% Moisture	ND	0.1	0% 20							
Duplicate (EE62901-DUP1)	Sour	·ce: 6E26001-()1	Prepared: ()5/26/06 A	nalyzed: 05.	/27/06			
% Solids	79.6		%		79.2			0.504	20	
Duplicate (EE62901-DUP2)	Sour	rce: 6E26001-2	21	Prepared: ()5/26/06 A	nalyzed: 05.	/27/06			
% Solids	, 99.5		%		99.4			0.101	20	
Duplicate (EE62901-DUP3)	Sour	rce: 6E26001-4	1	Prepared: ()5/26/06 A	nalyzed: 05.	/27/06			
% Solids	99.1		%	· · · ·	99,1			0.00	20	
Duplicate (EE62901-DUP4)	Sour	·ce: 6E26001-0	1	Prepared: ()5/26/06 A	nalyzed: 05.	/27/06			
% Solids	75.2		%	· · ·	76.2			1.32	20	
Duplicate (EE62901-DUP5)	Sour	rce: 6E26003-0	7	Prepared: ()5/26/06 A	nalyzed. 05	27/06			
% Solids	98.0		%		98.3			0.306	20	
Duplicate (EE62901-DUP6)	Sour	·ce: 6E26004-0	17	Prepared: ()5/26/06 A	nalyzed: 05	/27/06			
% Solids	97.9		%		96.7		··· ••	1.23	20	
Duplicate (EE62901-DUP7)	Sour	·ce: 6E26005-0)6	Prepared: ()5/26/06 A	nałyzed: 05.	/27/06			
% Solids	99,3		%	·	99.5			0.201	20	

Source: 6E26008-04

%

98.6

Environmental Lab of Texas

Duplicate (EE62901-DUP8)

% Solids

28. 163

the same

Salat Ma

1000

Station .

B. 4. M.

and Banker

AND ROM

AND STR

1. S.

S. B. Call

a caise

Sec. 23 Sec.

Mary Sugar

التاريخين والم

1. . . NO

A mo and

1.2.2

Way 23

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Prepared: 05/26/06 Analyzed: 05/27/06

7.25

20

91.7

Plains All American EH & S 1301 S. County Road 1150 Midland TX, 79706-4476

Sec. 25

「新学校

24-28-6

Sec. 2

Mar Contra

a sector

10. 23

di la

Sugar,

Sec. 14

Call: Just

Sec.

6.275 A.2

Fax: (432) 687-4914

Reported: 06/05/06 16:50

Notes and Definitions

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

J Detected but below the Reporting Limit: therefore, result is an estimated concentration (CLP J-Flag)

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By:

Raland K. Junts

6/5/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

	2UEST 7.e ± (2								(olubaria?-	өл 9) ТАТ Н2 ТАТ bтвbп											z			· · · · ·
- 0	CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Jel mad Clay Ochrane H		2000-1060 6	TIMI -			A - Al use Tas	Analyze Foi.			3is: As Ag Ba C lities X 8021 B/5030 X 8021 B/5030		×	X	X	×		×		><	Sample Containers Intact?		Laboratory Comments:	•	
	NIN OF CUSTODY REC	Project Name:	Project #:	Project Loc:	PO#:			TCLP		₹' K) 121002 1006	er (specify): 11 ESP / CEC 12 (Ca, Mg, N (Cl, SO4, CC (Specify): 12 (Cl, SO4, CC (Specify):	H9T X bitsD oinA	X X	X X	X X	X	 ×	X	X X	X	Sample	Custody Custody Temper	Time Labora		Time ۲۰۹۰
	CH		25 P/L						Preservative Matrix		er (Specify) ie 50,	IENT 1410 VON											Date		Date
		~	es/Plais	2		:0		15			°0	HCI HAC	- 		X	×	×.		X	- X -					S
		C. Reynolds) SERVIC		7083	Fax No:					te Sampled belqm£2 en	2.0 -0- -0-		2969 1	1 0913	1015	0260	10925	370 /	1 2225			Received by:		Received by ELOT:
exas	Phone: 432-563-1800 Fax: 432-563-1713	Cody 10	3	1 verden	14	7 000						אי												224	Time
l Lab ot	Phone: 43 Fax: 43	Kenneth	SDG Earli	Vie	2007 5007	113-806 TA	Yell E	l 				FIELD CODE	1	-531-10	-521-15	-22-185-	531-25	02-185-	-281 - 25	581-130			Date	-25-7250	Date
Environmental Lab of Texas	12600 West I-20 East Odessa, Texas 79765	Project Manager:	Company Name	Company Address:	City/State/Zip:	Telephone No: 7	Sampler Signature:	Email:			<u>)</u>	use only)	-02 NM (-	-03 -1/~ /	-64 Jan 1-	-05 5141.	100 2121	COT 17415-	-08. 54-1-	- 17 B	ructions:		C X) [] N []	by:
Ш М	12600 West I-20 East Odessa, Texas 79765			ŭ			ŝ				93 14 14 14	LAB # (lab use only)									Special Instructions		Relinquished by	C/2-5	Felinquished by

1 a 2 a

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

±66.5€

22

	i capor -		
lient: <u>Plains 1/2</u>			
ate/Time: 05-26-06 @0934			
Order #: 6E26002			
nitials: JMM			
Sample Receip	ot Checklist		
emperature of container/cooler?	Ves No	1.S C]
Shipping container/cooler in good condition? Custody Seals intact on shipping container/cooler?	(Yes) No		
Custody Seals intact on sample bottles?	Yes No	Not present	-
Custody Seals infact on sample buttles:	(Tes) No	Not present	[1
Sample Instructions complete on Chain of Custody?	(res) No		_ _
Chain of Custody signed when relinguished and received?	(Tes) No		1
Chain of custody agrees with sample label(s)	(Tes) No		i
Container labels legible and intact?	(Tes) No		Ï
Sample Matrix and properties same as on chain of custody?	(Yes) No	· · · · · · · · · · · · · · · · · · ·	1
Samples in proper container/bottle?	(Yes) No	· · · · ·	Ĩ
Samples properly preserved?	(Yas) No]
Sample bottles intact?	Ares No		-
Preservations documented on Chain of Custody? Containers documented on Chain of Custody?	Nes No		_i
Sufficient sample amount for indicated test?	No Nes No		-
All samples received within sufficient hold time?	(es) No		-
VOC samples have zero headspace?	(res) No	Not Applicable	-
Variance Doci Contact Person: Date/Time: Regarding:		Contacted by:	
Corrective Action Taken:			
	······		

APPENDIX B SOIL BORING LOGS

с. Ф. 1

1. A. 1.

4

р Р.

1

20 20 2

5. 40 A

 $\sum_{k=0}^{n-1} \frac{1}{\psi_{k+1}} e_{k}^{\dagger}$

4

n v V V V

و منوا

n son alle san

R 6

		and an a second second second second	- Concernent auflected) <u>.</u>	ĥ	LOCATION MAP	
S	SOIL	BORING	3 NUMI	BER <u>JN</u>	MI-SE	31		UE STAINING
		ECT					LOCATION Jal, N.M.	CE STANOSO
		L BORI				_ E	$\frac{1}{1000} = \frac{1}{1000} = 1$	
		LING CO					DRILLING METHOD HSA	
		LOGIST				4	DATE DRILLED 5/24/06	
1		1				<u> </u>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1
	. 0 -	INTERVAL	SAMPLE RECOVERY %	DOT	PID (ppm)	Sample	LITHOLOGIC DESCRIPTION/COMMENTS	REMARE
-			100		1.9	JM1	Sand, pink, fine grained, well sorted, well rounded, with caliche	Mod. odor No Staining
-	4		100			SB1-2	Sand, tan, fine grained, well sorted, well rounded, with some coarse gravel	Mod. odor No Staining
-	6	$\left(\right)$			55.7	JM1- SB1-5	Sand. tan. fine grained, well sorted, well rounded, dry	Mod. odor No Stainin
	8							
•	10-		100		28.3	JM1- SB1-10		Strong odd
•	12 -	$ \wedge $					Sand, red, fine grained, well sorted, well rounded.	No Stainine
	14 - 16 -	$\langle - \rangle$	100		4.7	JM1- SB1-15	Sand, red to pink, fine grained, well sorted, well rounded.	Strong odd No Stainin
	18		100					
•	20 22				1.7	UM1- SB1-20	Sand. slightly silty, red to pink, fine grained, well sorted, well rounded, increasing grave	Mod. odor No Stainin
•	24		100		1 4	JM1-		
•	26 -	\neg			1.1	SB1-25	Sand. slightly silty, red, fine grained, well sorted, well rounded, fine gravel	Mod. odor No Stainin
•	30 -		100		0.0	JM1-		
	32					SB1-30	Sandy clay, red. dense, strong, dry, interbeded with gravel, some caliche	SIt odor No Stainin
	34		100		0.0	JM1		
•	36	\neg			5.0	SB135	Sandy clay, red. dense, strong, dry, interbeded with gravel	Sit odor No Stainini
•	38 - 40 -				0.0	JM1- SB1-40		SIt odor No Stainin
	10					50140	TD= 40'	

APPENDIX C EPI June 2000 Soil Sample Results

a Yana

" and and "

1. S. C.

64 - 600 C

あいるな

and the second

and a second

- Alertin Stadys-

State Bar

AR BARAN

the states

いたが見

The Party of the

Southernal .

A DESCRIPTION OF

元他国法

E.O.T.T. ENERGY PIPELINE

С. с. с. с.

5 5 See -

³ен ст. с

. . States

. . . J. . .

ALL AND U.S.

د من من ا

Benchole Sampling Sampling Benchole Handling					E.O. J	E.O.T.T. Energy Pipeline Jalmat 1 Jalmat #1 Delineation Data	y Pipel elineati	ine Jal on Da	mat 1 ta						
2 FJMCP1.05 $6/21/2000$ BiewSand 117 10 10 20 23 0.100 0.1	Borehole	Sampling Interval (FT. BGS ¹)	SAMPLE ID#	Date 'Taken	Lithology	HEADSPACE VOC ² (ppm)		DRO ⁴ mg/Kg	ʻITH ⁵ mg/Kg	BTEX mg/Kg	Benzeue mg/Kg	Toluene mg/Kg	Ehtyl Benzene mg/Kg	m,p- Xylene mg/Kg	o-Nylene mg/Kg
5 2 јумся ¹ ,05 6 /21/2000 Blow Sand 1.2 10 20 25 0.100 <		2		6/21/2000	Blow Sand	1.7	10	10	20	0.5	0.100	0.100	0.100	0.100	0.100
10 EJMGPT-10 $\sqrt{12}/2000$ Blow Sand 0.1 0.0 0.00 </td <td>-</td> <td>5</td> <td></td> <td>6/21/2000</td> <td>Blow Sand</td> <td>1.2</td> <td>01</td> <td>10</td> <td>20</td> <td>0.5</td> <td>0.100</td> <td>0.100</td> <td>0.100</td> <td>0.100</td> <td>0.100</td>	-	5		6/21/2000	Blow Sand	1.2	01	10	20	0.5	0.100	0.100	0.100	0.100	0.100
15 Eprocential (121) (010) 010		10	EJMGP1-10	6/21/2000	Blow Sand	0.1	10	10	. 20	0.5	0.100	0.100	0.100	0.100	0.100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		15	EJMGP1-15	6/21/2000	Blow Sand	1.3	10	10	20	0.5	0.100	0.100	0.100	0.100	0.100
5 EJMCGP2.05 6/21/2000 Blow Sand 740 1010 0111 0250 16 FJMCGP2.16 6/21/2000 Blow Sand 1700 240 2922 3171 9407 0100 01131 0230 16 FJMCGP2.16 6/21/2000 Blow Sand 170 9407 0100 01140 0170 0170 0170 0170 0170 0100 01100 0170 0170 0100 01100 0170 <td></td> <td>2</td> <td>EJMGP2-02</td> <td>6/21/2000</td> <td>Blow Sand</td> <td>1.3</td> <td>10</td> <td>10</td> <td>20</td> <td>0.639</td> <td>0.100</td> <td>0.161</td> <td>0.178</td> <td>0.100</td> <td>0.100</td>		2	EJMGP2-02	6/21/2000	Blow Sand	1.3	10	10	20	0.639	0.100	0.161	0.178	0.100	0.100
10 EjMGF2-10 6/21/2000 Blow Sand 1700 2497 0.100 1470 0.777 4000 26 FJMCF2-16 6/21/2000 Blow Sand 1270 93 1395 1488 7799 0.100 0.110 0.777 4000 27 FJMCF2-16 6/21/2000 Blow Sand 20.4 10 110 22 0.100 0.110 0.100 0		ŝ	EJMGP2-05	6/21/2000	Blow Sand	34.0	10	482	492	0.74	0.100	0.100	0.151	0.255	0.134
15 FJMGP2.15 $6/21/2000$ Blow Sand 1270 93 1395 1488 7799 0.100 1160 0.619 3720 20 20 20 20 20 20 20 20 20 20 20 0.10	61	10	EJMGP2-10	6/21/2000	Blow Sand	170.0	249	2922	3171	9.497	0.100	1.470	0.797	4.000	3.130
20 EJMGP2.20 6/21/2000 Blow Sand 21.9 10 11.2 12.2 0.52 0.100 <		15	FJMGP2-15	6/21/2000	Blow Sand	127.0	93	1395	1488	7.799	0.100	1.160	0.619	3.720	2.200
2 EJMCP3-07 6/21/2000 Blow Sand 204 10 10 27 0.549 0.100 0.	-	20		6/21/2000	Blow Sand	21.9	10	112	122	0.52	0.100	0.120	0.100	0.100	0.100
5 EJMCF3.05 6/21/2000 Blow Sand 0.0 10 20 0.5 0.100 0		2		6/21/2000	Blow Sand	20.4	10	. 10	20	0.549	0.100	0.149	0.100	0.100	0.100
10 11 10 10 20 0.560 0.100		ъл.	1.1	6/21/2000	Blow Sand	0.0	10	10	20	0.5	0.100	0.100	0.100	0.100	0.100
15 BJMGF9315 6/21/2000 Blow Sand 0.0 10 20 3 3 3 3 10 100 0.100	n	10		6/21/2000	Blow Sand	0.0	10	10	20	0.569	0.100	0.169	0.100	0.100	0.100
2 FJMGF4.02 6/21/2000 Blow Sand 0.0 10 28 38 0.5 0.100 0.10		15		6/21/2000	Blow Sand	0.0	10	10	20	0.5	0.100	0.100	0.100	0.100	0.100
5 EJMCPR4.05 6/21/2000 Blow Sand 0.0 10 20 0.5 0.100		2		6/21/2000	Blow Sand	0.0	10	28	38	0.5	0.100	0.100	0.100	0.100	0.100
10 EJMGP4-10 6/21/2000 Blow Sand 0.0 10 10 0.00 0.100 0.100 0.100 15 EJMGP4-15 6/21/2000 Blow Sand 0.0 10 10 20 0.5 0.100	4	5	EJMGP4-05	6/21/2000	Blow Sand	0.0	10	10	20	0.5	0.100	0.100	0.100	0.100	0.100
15 EJMGP4-15 6/21/2000 Blow Sand 0.0 10 20 0.5 0.100 0.100 0.100 0.100 e calibration gas = 101 ppm surface surface surface surface surface nic Contaminants/Constituents surface surface surface surface for Contaminants/Constituents surface surface surface for Surface surface surface </td <td>-</td> <td>10</td> <td>EJMGP4-10</td> <td>6/21/2000</td> <td>Blow Sand</td> <td>0.0</td> <td>10</td> <td>10</td> <td>20</td> <td>0.56</td> <td>0.100</td> <td>0.160</td> <td>0.100</td> <td>0.100</td> <td>0.100</td>	-	10	EJMGP4-10	6/21/2000	Blow Sand	0.0	10	10	20	0.56	0.100	0.160	0.100	0.100	0.100
 100 ppm Isoburylene calibration gas = 101 ppm ¹bgs - below ground surface ²VOC-Volatile Organic Contaminants/Constituents ³CRO-Gasoline Range Organics ³CRO-Diesel Range Organics ⁴TPH-Total Petroleum Hydrocarbon = GRO+DRO. ⁵Bolded values are in excess of the New Mexico Oil Conservation Division guideline threshold for the parameter ⁴Italicized values are < the instrument detection limit. ⁶N/A Not Analyzed 		15	EJMGP4-15	6/21/2000	Blow Sand	0.0	10	10	20	0.5	0.100	0.100	0.100	0.100	0.100
 ¹logs - below ground surface ²CC-Volatile Organics ³CRO-Gasoline Range Organics ³CRO-Diesel Range Organics ⁵TPH-Total Petroleum Hydrocarbon = GRO+DRO. ⁵TPH-Total Petroleum Hydrocarbon = GRO+DRO. ⁵Molded values are < the instrument detection limit. ⁶N/A Not Analyzed ⁶Recored detection limits are considered "de minimus" values and are included in the GRO/DRO and BTEX summations. 	100 ppm Isol	outylene calibrati	on gas = 101 ppm												
 ²VOC-Volatile Organic Contaminants/Constituents ³GRO-Gasoline Range Organics ³DRO-Diesel Range Organics ³TPH-Total Petroleum Hydrocarbon = GRO+DRO. ³TPH-Total Petroleum Hydrocarbon = GRO+DRO. ³TPH-Total Petroleum Hydrocarbon = GRO+DRO. ³N/A Not Aulues are in excess of the New Mexico Oil Conservation Division guideline threshold for the parameter ³N/A Not Analyzed ⁴Reported detection limits are considered "de minimus" values and arc included in the GRO/DRO and BTEX summations. 	¹ bgs – below	ground surface													
 ³GRO-Gasoline Range Organics ⁴DRO-Diesel Range Organics ⁵TPH-Total Petroleum Hydrocarbon = GRO+DRO. ⁵Bolded values are in excess of the New Mexico Oil Conservation Division guideline threshold for the parameter ⁵M/A Not Analyzed ⁶N/A Not Analyzed ⁶Reported detection limits are considered "de minimus" values and are included in the GRO/DRO and BTEX summations. 	² VOC–Volati	lle Organic Cont	aminants/Constit	uents											
 ¹DRO-Diesel Range Organics ²TPH-Total Petroleum Hydrocarbon = GRO+DRO. ³Dolded values are in excess of the New Mexico Oil Conservation Division guideline threshold for the parameter ³Italicized values are < the instrument detection limit. ⁶N/A Not Analyzed ⁶Reported detection limits are considered "de minimus" values and are included in the GRO/DRO and BTEX summations. 	³ GRO-Gasol	ine Range Organ	ICS												
 ^ATPH-Total Petroleum Hydrocarbon = GRO+DRO. ^ADolded values are in excess of the New Mexico Oil Conservation Division guideline threshold for the parameter ^AITalicized values are < the instrument detection limit. ⁸N/A Not Analyzed Reported detection limits are considerred "de minimus" values and are included in the GRO/DRO and BTEX summations. 	DRO-Diesei	Range Organics													
⁽²⁾ Bolded values are in excess of the New Mexico Oil Conservation Division guideline threshold for the parameter ¹ Italicized values are < the instrument detection limit. ⁸ N/A Not Analyzed Reported detection limits are considerted "de minimus" values and are included in the GRO/DRO and BTEX summations.	⁵ TPH-Total I	^b etroleum Hydro	carbon = GRO+)	DRO.											
ty Italicized values are < the instrument detection limit. ⁸ N/A Not Analyzed Reported detection limits are considerred "de minimus" values and are included in the GRO/DRO and BTEX summations.	Bolded value	ss are in excess o	f the New Mexico	Oil Conservati	on Division guid	feline threshold fo	r the parar	icter							
⁸ N/A Not Analyzed Reported detection limits are considerred "de minimus" values and are included in the GRO/DRO and BTEX summations.	⁷ Italicized val	ues are < the ins	trument detectior	ı limit.											
Reported detection limits are considered "de minimus" values and are included in the GRO/DRO and BTEX summations.	⁸ N/A Not Ar	nalyzed													
	Reported det	ection limits are	considered "de m	inimus" values :	and are included	in the GRO/DRo	D and BTE	X summat	su os						

15

CLAY OSBORN JALMAT #1

E.O.T.T. ENERGY PIPELINE

4.2

i.

: :: ::

1. a. .

اند ب ب

, ***** .

10 V 10

4

a A An

and and and

i 1

:

6 1 1

.

$ \begin{array}{llllllllllllllllllllllllllllllllllll$				E.O.	E.O.T.T. Energy Pipeline Jalmat 1	ry Pipeli	ne Jalm	at 1						
BTLX Bernerne mg/Kg Toluene mg/Kg mar/kg mg/Kg <th>Sampling</th> <th></th> <th></th> <th></th> <th>HEADSPACE</th> <th></th> <th>I</th> <th></th> <th></th> <th></th> <th></th> <th>1.441</th> <th>å E</th> <th></th>	Sampling				HEADSPACE		I					1.441	å E	
B mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg 0.5 0.100 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.100 2.5 0.100 0.245 0.4300 5.080 5.080 3.493 0.100 0.200 5.490 14.100 14.100 3.45 0.100 0.100 0.130 5.490 14.100 180 0.100 0.100 0.100 0.110 0.113 0.553 0.100 0.100 0.100 0.100 0.113 0.553 0.100 0.100 0.100 0.100 0.100 0.553 0.100 0.100 0.100 0.100 0.100 <		#CIL TI	Date Taken	Lithology	voc²		DRO [‡]	TPH ⁵	BTEX 	Benzene	T'olucne	Benzene	Xylene	o-Nylene
0.5 0.100 <th< td=""><td>(FT. BGS¹)</td><td></td><td></td><td></td><td>(mqq)</td><td>mg/ Kg</td><td>mg/Kg</td><td>mg/Kg</td><td>mg/ Ng</td><td>mg/ Ng</td><td>መይ/ ሌይ</td><td>mg/Kg</td><td>mg/Kg</td><td> 3\1/8m</td></th<>	(FT. BGS ¹)				(mqq)	mg/ Kg	mg/Kg	mg/Kg	mg/ Ng	mg/ Ng	መይ/ ሌይ	mg/Kg	mg/Kg	 3\1/8m
3.5 0.100 <th< td=""><td>2 (j)</td><td>EJMGP5-02</td><td></td><td>Sand</td><td>0.0</td><td>30</td><td>20</td><td>4</td><td>0.5</td><td>0.100</td><td>0.100</td><td>0.100</td><td>0.100</td><td>0.100</td></th<>	2 (j)	EJMGP5-02		Sand	0.0	3 0	20	4	0.5	0.100	0.100	0.100	0.100	0.100
0.5 0.100 0.1100 0.125 0.100 0.1200 0.100 0.14100 180 0.100	5	EJMGP5-05		Sand	0.0	10	10	20	0.5	0.100	0.100	0.100	0.100	0.100
20.920.100 4.340 3.000 9.080 3.493 0.1000.245 0.452 1.700 5.725 0.100 5.100 5.490 14.100 30.45 0.100 5.100 5.490 14.100 30.45 0.100 35.100 57.900 80.400 180 0.100 35.100 57.900 80.400 1816 0.100 35.100 57.900 80.400 1816 0.100 18.300 5.9500 70.900 272.19 6.090 88.100 56.600 86.600 272.19 6.090 88.100 5.100 0.735 272.19 6.090 88.100 0.100 0.100 0.100 275 0.100 0.100 0.100 0.100 0.100 2533 0.100 0.100 0.100 0.100 0.100 0.534 0.100 0.100 0.100 0.100 0.100 0.5345 0.100 0.100 0.100 0.100 0.100 0.5345 0.100 0.100 0.100 0.100 0.100 0.533 0.100 0.100 0.100 0.100 0.100 0.5335 0.100 0.100 0.100 0.100 0.5345 0.100 0.100 0.100 0.100 0.533 0.100 0.100 0.100 0.100 0.5345 0.100 0.100 0.100 0.100 0.510 0.100 0.100	10	EJMGP5-10		Sand	1.7	10	10	20	0.5	0.100	0.100	0.100	0.100	0.100
3.493 0.100 0.245 0.452 1.700 57.25 0.100 5.300 5.490 14.100 30.45 0.100 5.100 5.490 14.100 180 0.100 35.100 37.900 80.400 141.6 0.100 35.100 37.900 80.400 141.6 0.100 18.300 5.600 86.600 272.19 6.090 88.100 56.600 86.600 272.19 6.090 88.100 56.600 86.600 272.19 6.090 88.100 6.0100 0.100 0.134 1.110 0.100 0.100 0.100 0.100 0.100 253 0.100 0.100 0.100 0.100 0.100 0.553 0.100 0.100 0.100 0.100 0.100 0.573 0.100 0.100 0.100 0.100 0.100 0.573 0.100 0.100 0.100 0.100 0.100 0.533 0.100 0.100 0.100 0.100 0.100 0.533 0.100 0.100 0.100 0.100 0.100 0.533 0.100 0.100 0.100 0.100 0.100 0.533 0.100 0.100 0.100 0.100 0.100 0.533 0.100 0.100 0.100 0.100 0.100 0.545 0.100 0.100 0.100 0.100 0.100 0.545 0.100 0.100 <	B	EJMGP5-15		Sand	600.0	1032	2941	3973	20.92	0.100	4.340	3.000	9.080	4,400
57.25 0.100 12.300 10.200 25.800 30.45 0.100 5.100 5.490 14.100 180 0.100 5.100 5.490 14.100 1816 0.100 5.100 5.490 14.100 272.19 6.090 88.100 56.600 86.600 272.19 6.090 88.100 56.600 86.600 275 0.100 0.100 0.134 1.110 0.553 0.100 0.100 0.100 0.100 2.5 0.100 0.100 0.100 0.100 0.553 0.100 0.100 0.100 0.100 0.536 0.100 0.100 0.100 0.100 0.53 0.100 0.100 0.100 0.100 0.82 0.100 0.100 0.100 0.100 0.533 0.100 0.100 0.100 0.100 0.533 0.100 0.100 0.100 0.100 0.533	8			Sand	418.0	104	2296	2400	3.493	0.100	0.245	0.452	1.700	0.996
30.45 0.100 5.040 5.490 14.100 180 0.100 35.100 37.900 80.400 141.6 0.100 18.300 29.500 70.900 272.19 6.090 88.100 56.600 86.600 2785 0.100 0.100 0.134 1.110 2.573 0.100 0.100 0.100 0.100 0.100 2.57 0.100 0.100 0.100 0.100 0.100 2.57 0.100 0.100 0.100 0.100 0.100 2.57 0.100 0.100 0.100 0.100 0.100 2.57 0.100 0.100 0.100 0.100 0.100 2.57 0.100 0.100 0.100 0.100 0.100 2.53 0.100 0.100 0.100 0.100 0.100 2.53 0.100 0.100 0.100 0.100 0.100 2.53 0.100 0.100 0.100 0.100 0.100 2.53 0.100 0.100 0.100 0.100 0.100 2.54 0.100 0.100 0.100 0.100 0.100 2.645 0.100 0.100 0.100 0.100 0.100 0.51 0.100 0.100 0.100 0.100 0.100 0.57 0.100 0.100 0.100 0.100 0.100 0.57 0.100 0.100 0.100 0.100 0.57 0.100 <th< th=""><th></th><th>1</th><th></th><th>Sand</th><th>500.0</th><th>1123</th><th>3483</th><th>4606</th><th>57.25</th><th>0.100</th><th>12.300</th><th>10.200</th><th>25.800</th><th>8,850</th></th<>		1		Sand	500.0	1123	3483	4606	57.25	0.100	12.300	10.200	25.800	8,850
180 0.100 35.100 37.900 80.400 141.6 0.100 18.300 56.600 86.600 272.19 6.090 88.100 56.600 86.600 2486 0.100 0.134 1.110 2.533 0.100 0.100 0.134 1.110 0.553 0.100 0.100 0.100 0.100 0.57 0.100 0.100 0.100 0.100 0.57 0.100 0.100 0.100 0.100 0.57 0.100 0.100 0.100 0.100 0.57 0.100 0.100 0.100 0.100 0.57 0.100 0.100 0.100 0.100 0.822 0.100 0.100 0.100 0.100 0.823 0.100 0.100 0.100 0.100 0.824 0.100 0.100 0.100 0.100 0.545 0.1	9 98 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			Sand	400.0	1171	4655	5826	30.45	0.100	5,040	5.490	14.100	5.720
141.60.10018.300 29.500 70.900 272.196.090 88.100 56.600 86.600 2.486 0.1000.1900.1341.110 2.553 0.1000.1000.1000.100 0.5 0.1000.1000.1000.100 0.5 0.1000.1000.1000.100 0.5 0.1000.1000.1000.100 0.5 0.1000.1000.1000.100 0.5 0.1000.1000.1000.100 0.5 0.1000.1000.1000.100 0.5 0.1000.1000.1000.100 0.5 0.1000.1000.1000.100 0.5 0.1000.1000.1000.100 0.5 0.1000.1000.1000.100 0.5 0.1000.1000.1000.100 0.5 0.1000.1000.1000.100 0.5 0.1000.1000.1000.100 0.5 0.1000.1000.1000.100 0.822 0.1000.1000.1000.100 0.823 0.1000.1000.1000.100 0.511 0.1000.1000.1000.100 0.528 0.1000.1000.1000.100 0.517 0.1000.1000.1000.100 0.516 0.1000.1000.1000.100 0.510 0.1000.1000.1000.100 0.510 0.1	35			Sand	400.0	1813	4819	6632	180	0,100	35.100	37.900	80.400	26.500
272.19 6.090 88.100 56.600 86.600 2486 0.100 0.100 0.134 1.110 0.553 0.100 0.100 0.100 0.153 0.5 0.100 0.100 0.100 0.153 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.82 0.100 0.100 0.100 0.134 $0.44.6$ 0.100 0.100 0.137 0.528 $0.744.0$ 0.100 0.100 0.130 0.130 0.8716 0.100 0.100 0.100 0.100 <	97			Sand	200.0	2183	6109	8292	141.6	0.100	18.300	29.500	70,900	22.800
2486 0.100 0.979 0.390 0.735 1.895 0.100 0.100 0.100 0.103 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.822 0.100 0.100 0.100 0.100 0.825 0.100 0.100 0.100 0.100 0.825 0.100 0.100 0.100 0.100 0.5645 0.100 0.100 0.100 0.100 0.57	45			Sand	500.0	4489	7321	11810	272.19	6.090	88.100	56.600	86.600	34.800
1.895 0.100 0.134 1.110 0.553 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.536 0.100 0.100 0.100 0.100 0.536 0.100 0.100 0.100 0.100 0.822 0.100 0.100 0.100 0.100 0.822 0.100 0.100 0.100 0.100 0.8716 0.100 0.100 0.137 0.528 0.7440 0.100 0.100 0.100 0.500 0.510 0.100 0.100 0.100 0.100 0.510 0.100	2			Sand	0.0	50	93	143	2.486	0.100	0.979	0.390	0.735	0.282
0.553 0.100 0.100 0.100 0.100 0.7 0.100 0.100 0.100 0.100 0.7 0.100 0.100 0.100 0.100 0.7 0.100 0.100 0.100 0.100 0.7 0.100 0.100 0.100 0.100 0.7 0.100 0.100 0.100 0.100 0.7 0.100 0.100 0.100 0.100 0.7 0.100 0.100 0.100 0.100 0.829 0.100 0.100 0.100 0.100 0.822 0.100 0.100 0.100 0.100 0.822 0.100 0.100 0.100 0.100 0.825 0.100 0.100 0.137 0.528 0.745 0.100 0.100 0.130 0.1300 0.746 0.100 0.100 0.100 0.500 0.746 0.100 0.100 0.100 0.100 0.757	د 5	EJMGP6-05		Sand	0.0	10	10	20	1.895	0.100	0.100	0.134	1.110	0.451
0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.829 0.100 0.100 0.100 0.100 0.822 0.100 0.100 0.100 0.101 0.822 0.100 0.100 0.100 0.100 0.82 0.100 0.100 0.100 0.100 0.8716 0.100 0.100 0.137 0.528 3.073 0.100 0.100 0.137 0.528 3.0745 0.100 0.206 0.200 0.100 3.645 0.100 0.200 0.100 0.100 0.510 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100	10	EJMGP6-10		Sand	0.0	10	10	20	0.553	0.100	0.100	0.100	0.153	0.100
0.5 0.100 0.100 0.100 0.100 48.7 0.100 3.280 4.520 28.700 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.829 0.100 0.100 0.100 0.100 0.822 0.100 0.100 0.100 0.100 0.822 0.100 0.100 0.100 0.100 0.825 0.100 0.100 0.100 0.100 0.755 0.100 0.100 0.137 0.528 3.073 0.100 0.206 1.500 0.500 3.645 0.100 0.206 0.100 0.100 3.645 0.100 0.100 0.100 0.100 0.5100 0.100 0.100 0.100 0.100 $0.$	15	EJMGP6-15		Sand	0.0	10	10	20	0.5	0.100	0.100	0.100	0.100	0.100
48.7 0.100 3.280 4.520 28.700 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.829 0.100 0.100 0.100 0.100 0.822 0.100 0.100 0.100 0.101 0.822 0.100 0.100 0.100 0.101 0.822 0.100 0.100 0.103 8.700 144.4 0.100 0.100 0.107 0.137 0.528 3.073 0.100 0.100 0.137 0.528 3.073 0.100 0.206 0.306 1.400 3.645 0.100 0.306 1.500 0.528 3.073 0.100 0.306 1.500 0.500 3.645 0.100 0.100 0.100 0.100 3.645 0.100 0.100 0.100 0.100	2	EJMGP7-02		Sand	51.0	10	%	96	0.5	0,100	0.100	0,100	0.100	0.100
0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.136 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.829 0.100 0.100 0.100 0.100 0.822 0.100 0.100 0.100 0.100 0.822 0.100 0.100 0.100 0.101 0.822 0.100 0.100 0.100 0.101 0.822 0.100 0.100 0.103 0.134 $0.44.4$ 0.100 0.100 0.137 0.528 0.7373 0.100 0.100 0.137 0.528 0.7455 0.100 0.7466 0.3779 1.690 0.510 0.100 0.100 0.100 0.100 0.5100 0.100 0.100 0.100 0.100 0.55 0.100 0.100 0.100 0.100 0.55 0.100 0.100 0.100 0.100	S	EJMGP7-05		Sand	600.0	302	804	1106	48.7	0,100	3.280	4.520	28.700	12.100
0.536 0.100 0.136 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.829 0.100 0.100 0.100 0.101 0.822 0.100 0.100 0.100 0.101 0.682 0.100 0.100 0.100 0.134 144.4 0.100 0.100 0.137 0.528 3.073 0.100 0.100 0.137 0.528 3.073 0.100 0.100 0.137 0.528 3.073 0.100 0.100 0.137 0.528 3.073 0.100 0.100 0.137 0.528 3.073 0.100 0.306 1.800 8.700 3.074 0.100 0.306 1.600 0.500 3.075 0.100 0.100 0.100 0.100 0.51 0.100 0.100 0.100 0.100 0.51 0.100 0.100 0.100 0.100 0.51 0.100 0.100 0.100 0.100	10	EJMG7-10		Sand	10.0	10	10	20	0.5	0.100	0.100	0.100	0.100	0.100
0.5 0.100 0.100 0.100 0.100 0.829 0.100 0.100 0.100 0.134 0.682 0.100 0.100 0.134 0.134 144.4 0.100 0.100 0.137 0.528 3.073 0.100 0.100 0.137 0.528 3.073 0.100 0.100 0.137 0.528 3.073 0.100 0.381 0.306 1.390 3.073 0.100 0.310 0.137 0.528 3.073 0.100 0.310 0.137 0.528 3.073 0.100 0.310 0.137 0.528 3.073 0.100 0.310 0.137 0.528 3.074 0.100 0.306 1.590 0.500 3.045 0.100 0.306 1.690 0.100 0.51 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100	5	EJMGP7-15		Sand	300.0	. 10	71	81	0.536	0.100	0.136	0.100	0.100	0.100
0.829 0.100 0.100 0.100 0.383 0.682 0.100 0.100 0.100 0.134 144.4 0.100 0.100 0.137 0.528 3.073 0.100 0.100 0.137 0.528 3.073 0.100 0.100 0.137 0.528 3.0745 0.100 0.306 1.390 3.0745 0.100 0.456 0.379 1.690 3.0716 0.100 0.440 0.866 3.350 0.51 0.100 0.100 0.100 0.100 3.0716 0.100 0.100 0.100 0.100 3.050 0.100 0.100 0.100 0.100 3.05 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100	2 3	EJMGP7-20		Sand	0.0	10	10	20	0.5	0.100	0.100	0.100	0.100	0.100
0.682 0.100 0.100 0.134 144.4 0.100 13.100 18.800 88.700 1.075 0.100 0.137 0.528 3.073 0.100 0.137 0.528 3.073 0.100 0.381 0.306 1.390 3.645 0.100 0.440 0.866 3.350 0.51 0.100 0.440 0.866 3.350 0.51 0.100 0.100 0.100 0.100 0.51 0.100 0.100 0.100 0.100 0.51 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100	25	EJMGP7-25		Sand	0.0	10	10	20	0.829	0.100	0.100	0.100	0.383	0.146
144.4 0.100 13.100 18.800 88.700 1.075 0.100 0.137 0.528 3.073 0.100 0.137 0.528 3.645 0.100 0.381 0.306 1.390 8.716 0.100 0.446 0.379 1.690 8.716 0.100 0.440 0.866 3.350 0.51 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.100	2	EJMGP8-02		Sand	100.0	741	11546	12287	0.682	0.100	0.100	0.100	0.134	0.248
1.075 0.100 0.137 3.073 0.100 0.381 0.306 3.645 0.100 0.456 0.379 8.716 0.100 0.440 0.866 0.51 0.100 0.410 0.100 0.5 0.100 0.100 0.100 0.5 0.100 0.100 0.100 0.5 0.100 0.100 0.100	5	EJMGP8-05		Sand	800.0	2411	6298	8709	144.4	0.100	13.100	18.800	88.700	23.700
3.073 0.100 0.381 0.306 3.645 0.100 0.456 0.379 8.716 0.100 2.440 0.866 0.51 0.100 0.110 0.100 0.5 0.100 0.100 0.100 0.5 0.100 0.100 0.100	8 10	EJMGP8-10		Sand	40.0	10	158	168	1.075	0.100	0.100	0.137	0.528	0.210
3.645 0.100 0.456 0.379 8.716 0.100 2.440 0.866 0.51 0.100 0.110 0.100 0.5 0.100 0.100 0.100 0.5 0.100 0.100 0.100	15	EJMGP8-15		Sand	7.3	10	10	20	3.073	0.100	0.381	0.306	1.390	0.896
8.716 0.100 2.440 0.866 0.51 0.100 0.110 0.100 0.5 0.100 0.100 0.100 0.5 0.100 0.100 0.100	50	EJMGP8-20		Sand	5.0	10	10	20	3.645	0.100	0.456	0.379	1.690	1.020
0.51 0.100 0.110 0.100 0.5 0.100 0.100 0.100 0.5 0.100 0.100 0.100	2	EJMGP9-02		Sand	0.0	10	10	20	8.716	0.100	2.440	0.866	3.350	1.960
0.5 0.100 0.100 0.100 0.5 0.100 0.100 0.100	.	EJMGP9-05		Sand	0.0	10	10	20	0.51	0.100	0.110	0.100	0.100	0.100
<i>2.5</i> 0.100 0.100 0.100	10	EJMGP9-10		Sand	0.0	10	10	20	0.5	0.100	0.100	0.100	0.100	0.100
 100 ppm Isobutylene calibration gas = 101 ppm bgs - below ground surface 'YOC-Volatile Organics 'YOC-Volatile Organics 'TORO-Desel Range Organics 'TPH-Total Petroleum Hydrocarbon = GRO+DRO 'Bolded values are in excess of the New Mexico Oil Conservation Division guideline threshold for the parameter 'It A Not Analyzed 'N A Not Analyzed 'Recorded creation imits are considered "de minimus" values and are included in the GRO/DRO and BTEX summations. 	15	EJMGP9-15		Sand	0.0	10	10	50	0.5	0,100	0.100	0.100	0.100	0.100
bgs - below ground surface ⁶ VOC-Volatile Organics ⁶ CRO-Gasoline Range Organics ⁷ DRO-Diseel Range Organics ⁷ TPH-Total Petroleum Hydrocarbon = GRO+DRO. ⁸ Bolded values are in excess of the New Mexico Oil Conservation Division guideline threshold for the parameter ¹ Italicized values are < the instrument detection limit. ¹ N/A Not Analyzed ¹ Reforced detection limits are considered "de minimus" values and are included in the GRO/DRO and BTEX summations.	100 ppm Isobutylene calib	ration gas = 101 ppn	u											
 YUCVOIABILE Organics GERO-Gasoline Range Organics DRO-Dissel Range Organics TDRI-Total Petroleum Hydrocarbon = GRO+DRO. Bolded values are in excess of the New Mexico Oil Conservation Division guideline threshold for the parameter Inalicized values are < the instrument detection limit. N/A Not Analyzed Reported detection limits are considered "de minimus" values and are included in the GRO/DRO and BTEX summations. 	bgs - below ground surfa	ce												
 TDRO-Discel Range Organics TPH-Total Petroleum Hydrocarbon = GRO+DRO. TPH-Total Petroleum Hydrocarbon = GRO+DRO. Bolded values are < the instrument detection limit. N/A Not Analyzed Reported detection limits are considered "de minimus" values and are included in the GRO/DRO and BTEX summations. 	VUC-Volatile Urganic U GRO-Gasoline Rance Os	ontaminants/Constit	nents		,									
*TPH-Total Petroleum Hydrocarbon = GRO+DRO. *Bolded values are in excess of the New Mexico Oil Conservation Division guideline threshold for the parameter *Italicized values are < the instrument detection limit. *N/A Not Analyzed Reported detection limits are considered "de minimus" values and are included in the GRO/DRO and BTEX summations.	DRO-Diesel Range Organ	Barrics rics												
bolded values are in excess of the New Mexico Uil Conservation Division guideline threshold for the parameter [1/Italicized values are < the instrument detection limit. [20] Reported detection limits are considered "de minimus" values and are included in the GRO/DRO and BTEX summations.	TPH-Total Petroleum Hy	drocarbon = $GRO+$	DRO.	ļ	-									
Intenciou varies are > the instrument detection mmi. N/N Not Analyzed Reported detection limits are considered "de minimus" values and are included in the GRO/DRO and BTEX summations.	Training and solution and in excent	ss of the New Mexico	o Uil Conservatio	nusion g	udeline infestio	old tor the p	arameter							
Reported detection limits are considered "de minimus" values and are included in the GRO/DRO and BTEX summations.	N/A Not Analyzed	Internation detection												
	Reported detection limits	are considered "de m	inimus" values an	d are include	d in the GRO/	/DRO and E	STEX sumr	nations.						

16

CLAY OSBORN JALMAT #1