1R - 83

REPORT

DATE: MAY 2007

1R-83 Report May 2007

August 13, 2007

Mr. Wayne Price State of New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re:

Plains Pipeline, L.P.

Document Submittal - Nine Soil Closure Reports

Clay Osborn - Rocky Top Ranch Jal, Lea County, New Mexico

Dear Mr. Price:

Plains Pipeline, L.P. (Plains) is pleased to submit the attached Soil Closure Reports for the nine soil remediation project sites located on the Osborn's Rocky Top Ranch in Jal, Lea County, New Mexico. The soil remediation activities were conducted in accordance with the General Remediation Work Plan (dated April 2006) and the Site-Specific Remediation Work Plan (dated July 2006) prepared for each site and approved by the New Mexico Oil Conservation Division (NMOCD).

Based on the analytical laboratory results of confirmation soil samples and completion of the site-specific soil remediation and restoration activities as described in each Work Plan, remediation activities are complete and Plains requests that the NMOCD issue Plains a "no further action letter" and close these nine sites listed below.

Clay Osborn Jalmat #1	1R-0412
Clay Osborn Jalmat #2	1R-0466
Clay Osborn Jalmat #3	1R-0467
Clay Osborn Jalmat #22A	1R-0411
Clay Osborn Jalmat #22B	1R-0468
Clay Osborn East Shell North	1R-0083
Clay Osborn SH-0193-2	1R-0471
Clay Osborn SH-0184-1	1R-0472
Clay Osborn DT-27	1R-0470

Please note that site "Clay Osborn TM-245-2 (1R-0469)" was combined into site "Jalmat #22B" since the sites were immediately adjacent to each other. A separate report was not prepared for TM-245-2.

Should you have any questions or comments, please contact me at (713) 646-4657.

Sincerely,

Jeffrey P. Dann, P.G.

Sr. Environmental Specialist

Plains All American

Attachment:

Nine Soil Closure Reports

File: n/jeff-files/Osborn-RockyTopRanch/DocumentClosureReptCovrLtr.doc

Site Closure Report

Clay Osborn Rocky Top Ranch East Shell North Release Site

NW¼ SE¼, Section 12 T25S, R36E Lea County, New Mexico

> SRS No.2000-10615 NMOCD No. 1R-0083

> > **Prepared For**

333 Clay Street, Suite 1600 Houston, Texas 77002

Prepared By

May 2007

Table of Contents

1.0	Introduction	1
	Regulatory Framework	
	Regional and Site Characteristics	
3.1	Geological Description	3
3.2	Land Use	
3.3	Ground Water	3
4.0	NMOCD Site Ranking	4
5.0	Site Assessment	4
5.1	Distribution of Hydrocarbons in the Unsaturated Zone	5
5.2	Distribution of Hydrocarbons in the Saturated Zone	5
6.0	Site Remediation	5
7.0	Confirmation Sampling and Comparison to	
	Remediation Guideline Standards	6
8.0	Conclusion	7

Table 1 – NMOCD Site Ranking Matrix
Table 2 – Soil Sample Analytical Results Summary

Appendix A Figures

Figure 1 – Site Location Map

Figure 2 – Excavation Detail

Appendix B Site Photographs

Appendix C Analytical Reports

1.0 Introduction

SDG Environmental Services was retained by Plains Pipeline, L.P. (Plains) to provide oversight of remediation activities and prepare a closure report for the Clay Osborn East Shell North release site located on the Clay Osborn Rocky Top Ranch. Plains Pipeline is the owner/operator of several pipelines preset on the Clay Osborn Rocky Top Ranch in Lea County, New Mexico. Plains retained Basin Environmental Services to conduct the soil excavation/remediation activities.

The site is located in the NW ¼ of the SE ¼ of Section 12, Township 25 South, Range 36 East, approximately 1 mile northwest of Jal at Latitude 32°08′34″ North, and Longitude 103°12′58″ West. A site location map is provided as Figure 1.

The hydrocarbon impacted area was the result of a historical release. The date of the release as well as the volume of crude released and recovered is not known. The East Shell North Site was initially included in the previous Shell North investigation reports which actually included two separate release sites; the west site which was apparently associated with past exploration and production activities, and the east site associated with the EOTT pipeline historical release. The east site was agreed by Plains and the landowner to comprise the area east of a dirt road and is the subject of this Site Closure Report.

Plains prepared and submitted a General Remediation Work Plan dated April 2006 to address the release sites located at the Rocky Top Ranch. The objective of the General Remediation Work Plan was to provide a framework for remediation of crude oil impacted sites consistent with the remediation/abatement goals and objectives provided in the New Mexico Oil Conservation Division (NMOCD) "NMOCD Guidelines for Remediation of Leaks, Spills, and Releases." The general Remediation Work Plan was conditionally approved by the NMOCD in a letter to Plains dated May 30, 2006.

Soil analytical data and information obtained from the EPI December 2001 Shell North Site Investigation Report was used to develop a Site Investigation Report and Site-Specific Remediation Work Plan. The Site Investigation Report and Site-Specific Remediation Work Plan dated July 2006 provided for closure of the site under three closure scenarios. The closure scenario selected to be dependent on the conditions observed in the field. These closure scenarios are as follows.

Work Plan Scenario 1 (Surface Restoration)

This scenario was developed for sites where investigation data indicates that the surface area has restored itself naturally, the surface expression of the release is difficult to identify, the impacts are limited to the surface and/or shallow soils, and there is no threat to groundwater.

- Scrape the surface asphaltines where apparent and remove;
- Blend the underlying 1 to 2 feet of soil with native soil and contour;
- Do not disturb areas that have already re-vegetated.

The central area of the site was remediated under this scenario.

Work Plan Scenario 2 (Total Excavation)

Areas where impacts greater than 100 mg/kg TPH were limited in vertical extent (i.e. 5 to 10 feet in depth) were recommended to be remediated under the Work Plan Scenario 2 involving the following procedures as outlined in the approved Work Plan including NMOCD conditions presented in the May 2006 NMOCD approval letter.

- Excavation of impacted soil to between 5 to 10 feet bgs or until site remediation standards are met;
- Collect and analyze soil sample from the walls and floor of the excavation to confirm that the remediation has met site guidelines;
- Relocation of excavated soil to the centralized soil treatment area for blending and aeration:
- Collect and analyze treated soil to confirm that the soil treatment activities have met site guidelines;
- Backfill the excavation with treated soil to 100 mg/kg and restore the area to as close as possible to pre-spill conditions.

One area near the eastern boundary of the site was excavated to 5 ft bgs and soil samples collected from the bottom of the excavation. Soils were excavated with a bulldozer and therefore there were no distinct vertical sidewalls. Soil samples were collected from the bottom of the excavation at side of impacted area defined by the highest PID reading and observed staining.

Work Plan Scenario 3 (Limited Excavation and Risk-based Closure)

At areas of the site where data indicates that soil impacts extend to below 10 feet bgs and excavation of all the impacted soil to below NMOCD guidelines is not practical, Work Plan Scenario 3 was implemented.

Scenario 3 includes the permanent installation of an oversized 20-mil polyethylene liner at a minimum depth of 10 feet to inhibit vertical migration of contaminants in soil left in place below the cap. A 3-foot wide clean area buffer was established around the impacted soil in the floor of the excavation. The buffer extent was determined using a calibrated PID and confirmed by laboratory analysis of grab samples collected around the perimeter of the excavation. The liner was cushioned above and below with a 3 to 4-inch layer of sand to protect it from puncture and tearing during the backfilling process. Installation of the 20-mil polyethylene liner at a minimum depth of 10 feet bgs will protect the barrier from erosion and human intrusion for a term sufficient to allow natural biodegrading of contaminates in the soil.

Clean overburden and impacted soils were blended and utilized as backfill. Soil samples were collected to verify constituent concentrations were below NMOCD site-specific guidelines. Once the excavation was confirmed to meet NMOCD standards or the installation of the 20-mil poly liner was completed, backfilling of the excavation was initiated with the blended soil. The backfilled excavation was contoured to the original grade surrounding the site and restored by seeding with approved grass seed.

2.0 Regulatory Framework

In New Mexico, the MNOCD oversees and regulates oil, gas and geothermal activities, including compliance with environmental regulations. The East Shell North Site was evaluated and remediated consistent with the characterization and remediation/abatement goals and objectives of the NMOCD approved General Remediation Work Plan and the NMOCD guidelines defined in the NMOCD *Guidelines for Remediation of Leaks, Spills and Releases* (August 13, 1993). Primary contaminants, or constituents of concern (COCs), associated with crude oil releases include total petroleum hydrocarbons (TPH), benzene, toluene, ethyl benzene, and total xylenes (BTEX). Acceptable levels for these COCs are determined based on a site ranking system. The ranking system estimates the likelihood of exposures to the COCs. The more likely that human exposure will occur, the more stringent the cleanup levels. The site ranking system is set up on the three following parameters:

- Depth to groundwater
- Wellhead protection area
- Distance to surface water body

3.0 Regional and Site Characteristics

3.1 Geological Description

The site is located east of the caprock escarpment which defines the western margin of the high plains or Llano Estacado of southeastern New Mexico. The surface is comprised of rolling hills with sand dunes of Quaternary age deposits, eroded Ogallala Formation and windblown deposits.

3.2 Land Use

Land usage in the area is primarily livestock range land and oil field activities. Several gas driven electric power stations are located in the vicinity of the site and several major oil and gas transmission lines bisect the region. The area in the immediate vicinity of the site is sparsely populated.

3.3 Ground Water

The depth to groundwater at the site is approximately 45 feet below ground surface (bgs) based on measured depth to groundwater at monitor wells located at the adjacent release site. The depth to groundwater is consistent with the information provided in the USGS Groundwater Report 6 and the New Mexico Office of the State Engineer database does not list any water wells in Range 36 East of Township 25.

4.0 NMOCD Site Ranking

The depth to water at the site is estimated to be approximately 50 feet bgs based on monitor wells located at the adjacent release site. Based on the analytical results of soil samples, the hydrocarbon impacted soil extends from the surface to 5 feet bgs, therefore, less than 50 feet of non-impacted soil remains between the last known impacted soil depth and groundwater. The resulting Depth to Groundwater Ranking Score is 20.

The site is greater than 1000 ft from any public water supply source and greater than 200 feet from any private domestic water supply well. The resulting Wellhead Protection Ranking Score is 0.

There are no water bodies located within 1000 ft of the site. The resulting Distance to Surface Water Body Ranking Score is 0.

Based on the individual ranking scores identified above, the site has an NMOCD Total Ranking Score of >19, which establish the following remediation levels:

The following table demonstrates the site ranking matrix:

Depth to Groundwater Wellhead Protection Area **Distance to Surface Water** <50 feet = 20<1000 feet from a water <200 feet = 20source, or <200 feet from a domestic water source 50 to 99 feet = 10Yes = 20200 to 1000 feet = 10>100 feet = 0 $N_0 = 0$ >1000 feet = 0Groundwater Score = 20 Well Protection Score = 0Surface Water Score = 0**Total Site Ranking Score = 20** Score of >19 Maximum Concentrations **Parameter**

Table 1 – Site Ranking Matrix

Based on this ranking system the site has a total score of 20 resulting in remediation goals of 10 ppm benzene, 50 ppm BTEX and 100 ppm TPH were observed.

10 ppm 50 ppm

100 ppm

5.0 Site Assessment

Benzene

BTX TPH

On 8 August 2000 and 9 September 2000, initial subsurface horizontal and vertical delineation was conducted by EPI with the installation of 12 soil borings installed at the site. Ten (10) soil borings were installed to a depth of 5 feet bgs and soil samples were collected at depths of 2, and 5 feet bgs, field screened with a PID, and analyzed for

BTEX and TPH-GRO/DRO. Laboratory results indicated that constituent concentrations of BTEX were either below NMOCD regulatory standards or not detected above laboratory method detection limits on the 20 soil samples. Laboratory results indicated that TPH-GRO/DRO concentrations exceeded 100 mg/kg TPH in 5 of the soil samples and the remaining 15 soil samples were either below NMCOD regulatory standards or were not detected above the laboratory method detection limits.

5.1 Distribution of Hydrocarbons in the Unsaturated Zone

The area of soils remediated was approximately 24,000 square feet. The vertical extent of soils impacted above the site specific NMOCD cleanup guidelines was determined to be limited to the surface to less than 5 feet bgs except in the western edge of the site. The western edge of the site was found to be impacted at depths of greater than 12 feet bgs from crude oil which had migrated beneath the dirt road from the adjacent site on the west side of the road. No free phase hydrocarbons were observed during the excavation.

5.2 Distribution of Hydrocarbons in the Saturated Zone

No saturated conditions were reported in any of the borings or observed during later site remediation activities. Monitor wells installed at the adjacent release site west of the road have recorded water levels of approximately 50 feet bgs. Therefore, there is no indication that hydrocarbons from the East Shell North historical release have impacted the saturated zone.

6.0 Site Remediation

The final surface area remediated was approximately 24,000 square feet. An additional 25,000 square feet of surface area was used for blending and stockpiling of soils at the site. The volume of excavated and blended soils totaled 3,200 cubic yards. The remediated area is shown in Figure 2.

The areas with observed staining and where laboratory analytical results indicated that surface impacts did not extend below 2 feet bgs were addressed under the Work Plan Scenario 1. Surface asphaltines and underlying soils were scraped to a depth of 2 ft bgs and the underlying soils blended in place. In areas where the asphaltines had become covered with windblown sand, the cleaner sand was blended with excavated soils, stockpiled and sampled. The area managed under Scenario 1 is shown in Figure 2.

An area on the east end of the site at the location of the previous soil boring BH-47 which indicated possible impacts to five feet bgs was remediated under Work Plan Scenario 2. This area was excavated to a depth of 5 ft bgs with a bulldozer. The soils were screened using a PID and two confirmation soil samples collected from the locations of the highest PID readings.

During scraping of the surface asphaltines at the western end of the site additional staining was observed on the vertical surface of the excavation wall along the dirt road which identifies the western boundary of the East Shell North site and separates the East Shell North site from the adjacent release site located on the west side of the dirt road.

As excavation continued additional staining was uncovered at depth up to the road indicating the staining was encroaching the site from the beneath the road. Soil samples were collected from the floor and walls of the deeper excavation which indicated hydrocarbon impacts were present above the NMOCD standards. Initial and intermediate soil samples were collected from 6 feet bgs and 10 feet bgs respectively. Analytical results indicated them to be above the site-specific cleanup guidelines. Excavation continued to 12 feet bgs at which point the excavation was terminated. Final soil samples of the excavation floor in the west end indicated the soils to be above the site-specific guidelines and therefore that area of the site was managed under closure Scenario 3 of the approved Site-Specific Work Plan. A 20 mil liner was installed at 12 ft bgs. The one-piece liner was installed to cover the vertical surface of the wall adjacent to the dirt road and extended horizontally 33 ft east of the western wall along the excavation floor.

Prior to liner installation, a 3-foot wide clean area buffer was established around the impacted soil in the floor of the excavation. The buffer extent was determined using a calibrated PID and confirmed by laboratory analysis of grab samples collected around the perimeter of the excavation at locations of heaviest staining or highest PID reading. The liner was cushioned above and below with a 3 to 4-inch layer of blended sandy soils to protect it from puncture and tearing during the backfilling process. The soils used in liner placement were determined by laboratory analysis to be below the 1000 mg/kg concentration acceptable of soils left in place above the liner installation. Installation of the 20-mil polyethylene liner at a depth of 12 feet bgs will protect the barrier from erosion and human intrusion for a term sufficient to allow natural biodegrading of contaminates in the soil.

The clean overburden and impacted soils were blended and utilized as backfill. Soil samples of blended soils were collected to verify constituent concentrations of BTEX are below NMOCD guidelines and TPHGRO/DRO are below 100 mg/kg for direct backfill and below 1000 mg/kg as approved for backfill over liners. Once the excavation was confirmed to meet NMOCD standards or the installation of the 20-mil poly liner was completed, backfilling of the excavation was initiated with the blended soil.

After determining that the confirmation samples did not exceed the site-specific remediation standards, the excavated area was backfilled with blended soils meeting the cleanup guidelines for the closure scenario, topped with clean soils obtained from the landowner, contoured to the original grade surrounding the site, and reseeded with approved grass seed.

7.0 Confirmation Sampling and Comparison to Remediation Guideline Standards

Confirmation samples were collected from the four walls and the bottom of the excavation and submitted to Environmental Lab of Texas for laboratory analyses of total petroleum hydrocarbons (TPH) by EPA Method 8015M (DRO, GRO), and for benzene, toluene, ethyl benzene, and total xylenes (BTEX) by EPA Method 8021B, a copy of the

laboratory report is presented in Appendix C. A site detail map identifying soil sample locations is presented as Figure 2. Table 2 provides a summary of the analytical results.

Soils visually impacted with asphaltines were excavated and stockpiled adjacent to the site. The asphaltine impacted soils were predominantly located approximately 1.5 ft below windblown sand that had covered the release area. The asphaltine impacted soils and overburden sand was excavated and transported to the central land farm. The underlying soils were blended and checked with a PID. PID readings ranged from 0.0 to 1.2 parts per million (ppm), indicating the cleanup of the asphaltine impacted area under Scenario 1 was complete.

Laboratory results from these soil samples indicated TPH concentrations of soils remaining in the area excavated under Scenario 2 ranged from <10 mg/kg in the sample from the floor at six feet bgs to 53.2 mg/kg in the sample from wall at approximately four feet bgs. Laboratory analyses of BTEX constituents from all samples were below the detection limit of 0.025 mg/kg, a summary of the analytical results is presented in Table 2.

Soils to be left in place below the liner were sampled and the final confirmation samples indicated concentrations of TPH in soils remaining in place below the liner in the area closed under Scenario 3 ranged from 1000 mg/kg to <10 mg/kg. The soil samples from the perimeter of the liner installation did not exhibit TPH or BTEX concentrations above their detection limits of 10 mg/kg and 0.025 mg/kg, respectively.

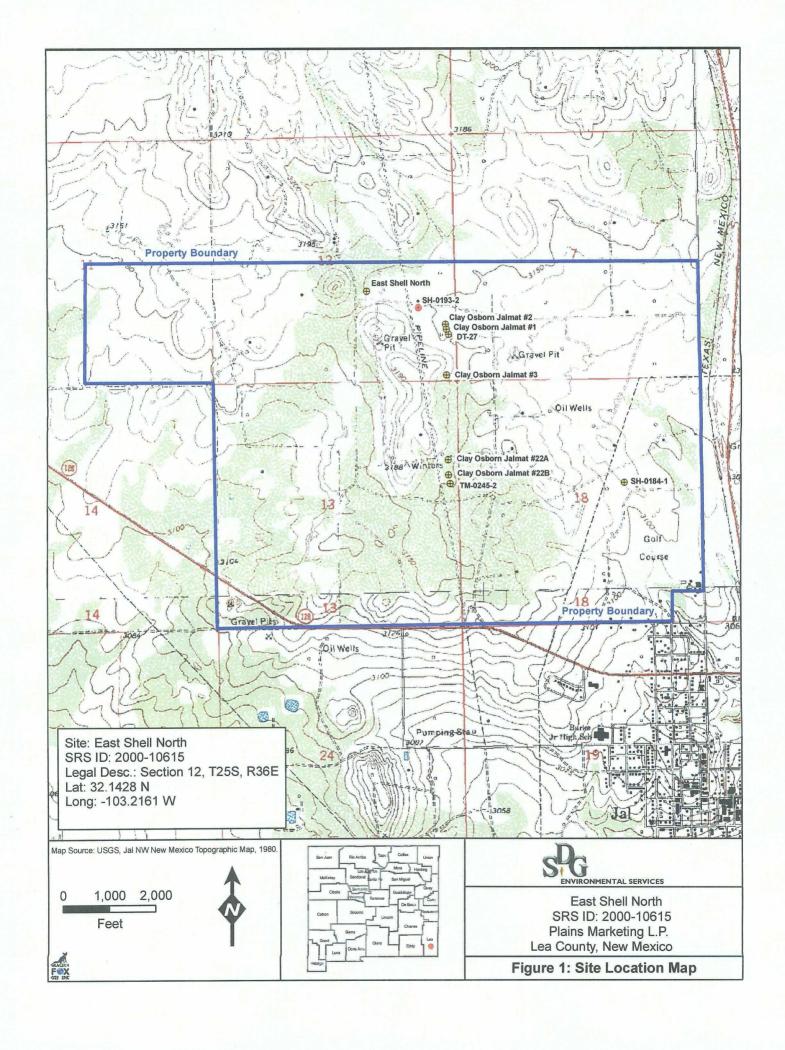
Sample results were compared to the site-specific soil remediation guidelines. As indicated in Table 2 and the laboratory report, all constituents for soils remaining in place are below the site-specific cleanup guidelines for the closure scenarios implemented at the site. Therefore, remediation at this site is considered complete.

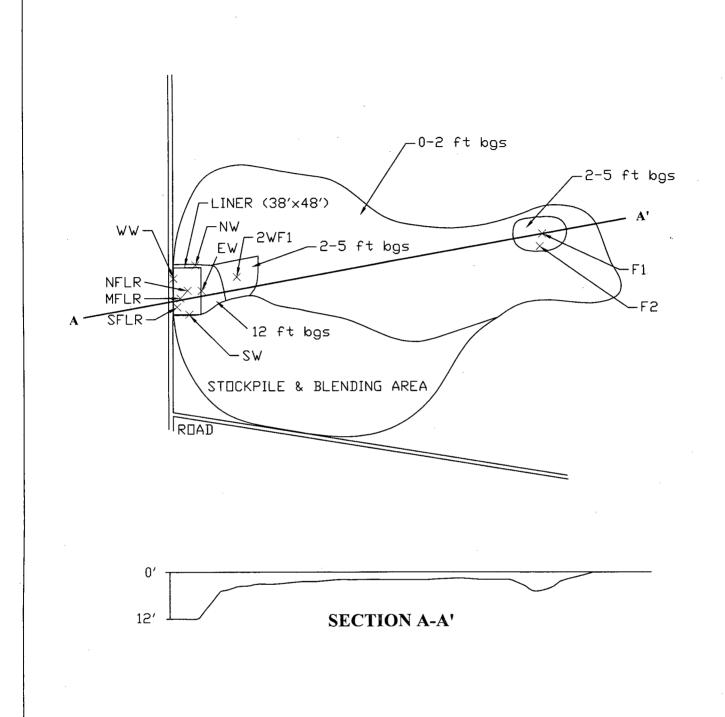
8.0 Conclusion

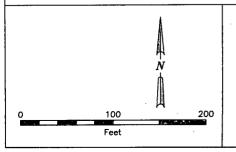
SDG Environmental Services was retained by Plains Pipeline, L.P. (Plains) to provide oversight of remediation activities and prepare a closure report for the Clay Osborn East Shell North release site located on the Clay Osborn Rocky Top Ranch. The site is located in the NW ¼ of the SE ¼ of Section 12, Township 25 South, Range 36 East, approximately 1 mile northwest of Jal at Latitude 32°08′34″ North, and Longitude 103°12′58″ West.

The hydrocarbon impacted area was the result of a historical release. The date of the release as well as the volume of crude released and recovered is not known. A Site-Specific Remediation Work Plan dated April 2006 provided for closure of the site under three closure scenarios which were implemented at the East Shell North release site in December 2006 through March 2007.

Impacted soils were excavated and confirmation samples were collected and compared to the site-specific cleanup guidelines. Soil samples from the excavated areas confirm that the East Shell North release site was remediated per the NMOCD approved Site-Specific Work Plan. Therefore, remediation at this site has been completed and no further investigation is warranted. SDG recommends that Plains submit a copy of this report to the NMOCD and request that the NMOCD close this case and issue a "no further action letter" to Plains.


TABLE 2
SOIL SAMPLE ANALYTICAL RESULTS SUMMARY
EAST SHELL NORTH
SRS NO: 2000-10615


PLAINS PIPELINE, L.P. LEA COUNTY, NEW MEXICO


SAMPLE	DEPTH	SAMPLE	LABORATORY		MET	METHOD: EPA 8021B	021B		MET	METHOD: EPA 8015M	15M	TOTAL TPH
LOCATION	ft bgs	DATE	.0.	BENZENE	TOLUENE	ETHYL-	M,P-	O-XYLENE				
	,					BENZENE	XYLENES		C6-C12	C12-C28	C28-C35	C6-C35
				(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
ESN-F1	2	12/5/2006	6L06001-01	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10.0	<10.0	<10.0	<10.0
ESN-F2	4	12/5/2006	6L06001-02	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10.0	39	14.2	53.2
ESN-SP1	stockpile	12/5/2006	6L06001-03	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10.0	78.7	24.6	103
ESN-SP2	stockpile	12/6/2006	6L07002-01	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10.0	91.3	9.07 J	100
ESN-WF 1	9	12/18/2006	6L18011-01	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10.0	310	145	455
ESN-WF 2	*9	12/18/2006	6L18011-02	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10.0	337	145	482
ESN-WF 3	, 9	12/18/2006	6L18011-03	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10.0	81.8	60.4	142
ESN-WF 4	*9	12/18/2006	6L18011-04	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10.0	146	103	249
ESN-2F2	10*	12/21/2006	6L22003-01	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10.0	133	87.9	221
ESN-2F3	10*	12/21/2006	61.22003-02	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10.0	123	79	202
ESN-2F4	10*	12/21/2006	6L22003-03	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10.0	129	80.1	209
N FLR	12	1/4/2007	7A05010-01	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10.0	<10.0	<10.0	<10.0
MID FLR	12	1/4/2007	7A05010-02	na	na	na	na	na	<10.0	121	68.4	189
SFLR	12	1/4/2007	7A05010-03	na	na	na	na	eu	<10.0	835	165	1000
ESN-NW	12	1/11/2007	7A12026-01	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10.0	<10.0	<10.0	<10.0
ESN-EW	12	1/11/2007	7A12026-02	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10.0	<10.0	<10.0	<10.0
ESN-WW	12	1/11/2007	7A12026-03	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10.0	<10.0	<10.0	<10.0
ESN-SW	12	1/11/2007	7A12026-04	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10.0	<10.0	<10.0	<10.0
ESN-2WF1	4	1/11/2007	7A12026-05	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10.0	<10.0	<10.0	<10.0
ESN-LFSP	stockpile	1/18/2007	7A18004-01	na	na	na	na	na	<10.0	87.5	13.4	101

^{*} Soils subsequently excavated after sample collection.
< indicates the constituent was not detected
J indicates estimated value (detected below method reporting limit na indicates not analyzed

Appendix A Figures

LEGEND:

Soil Sample LocationsFinal Excavation Boundary

ENVIRONMENTAL SERVICES

Rocky Top Ranch Clay Osborn East Shell North SRS ID: Rocky Top 1 Lea County, New Mexico

Figure 2: Excavation Detail

Appendix B Site Photographs

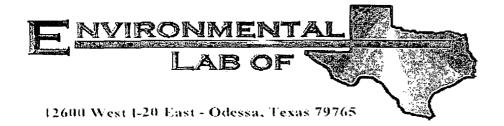
EAST SHELL NORTH - View of west end of site next to road prior to liner placement.

EAST SHELL NORTH - View of central area of site facing east.

EAST SHELL NORTH - View of stockpile and blending area prior to final cover placement.

EAST SHELL NORTH - View of east end of site facing west final cover being placed.

EAST SHELL NORTH - Liner placement



EAST SHELL NORTH - Backfill over liner

EAST SHELL NORTH - Final cover being placed over site

Appendix C Analytical Reports

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: East Shell North Project Number: 2000-10615 Location: Clay Osborn Ranch

Lab Order Number: 6L06001

Report Date: 12/07/06

Project: East Shell North

Project Number: 2000-10615 Project Manager: Camille Reynolds Fax: (432) 687-4914

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
ESN- F1	6L06001-01	Soil	12/05/06 12:30	12-05-2006 17:00
ESN- F2	6L06001-02	Soil	12/05/06 12:35	12-05-2006 17:00
ESN- SP1	6L06001-03	Soil	12/05/06 13:10	12-05-2006 17:00

Project: East Shell North Project Number: 2000-10615

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
ESN- F1 (6L06001-01) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60512	12/06/06	12/06/06	EPA 8021B	
Toluene	ND	0.0250	v	"	n	n	**	н .	
Ethylbenzene	ND	0.0250	11	"	11	· ·	"	51	
Xylene (p/m)	ND.	0.0250	**	ш	"	**	**		
Xylene (o)	ND	0.0250	"	"	11	н	11	н	
Surrogate: a,a,a-Trifluorotoluene		81.2 %	80-1.	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	80-1.	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60514	12/06/06	12/06/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	11	н	**	"	IF	II .	
Carbon Ranges C28-C35	ND	10.0	н	"	11	11	"	**	
Total Hydrocarbons	ND	10.0	"	**	"	"	п	D.	
Surrogate: 1-Chlorooctane		116%	70-1.	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		117 %	70-1.	30	"	"	"	<i>n</i> .	
ESN- F2 (6L06001-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60512	12/06/06	12/06/06	EPA 8021B	
Toluene	ND	0.0250	"	"	19	"	"	н	
Ethylbenzene	ND	0.0250	11	н	**	n	II.	**	
Xylene (p/m)	ND	0.0250	".	"	u	II.	**	"	
Xylene (o)	ND	0.0250	ti .	"	11	"	**	11	
Surrogate: a,a,a-Trifluorotoluene		81.2 %	80-1.	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.5 %	80-12	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60514	12/06/06	12/06/06	EPA 8015M	
Carbon Ranges C12-C28	39.0	10.0	н		"	"	ti.	"	
Carbon Ranges C28-C35	14.2	10.0	"	"	**	u	**	u .	
Total Hydrocarbons	53.2	10.0	и		"	"	**	,,	
Surrogate: 1-Chlorooctane		124 %	70-1.	30	,,	"	,,	"	
Surrogate: 1-Chlorooctadecane		125 %	70-1.	30	"	"	"	n	
ESN- SP1 (6L06001-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60512	12/06/06	12/06/06	EPA 8021B	
Toluene	ND.	0.0250	n	11	н	**	"	III	
Ethylbenzene	ND	0.0250	"	•	**	17	п	**	
Xylene (p/m)	ND	0.0250	н	. "	п	ıı	"	**	
Xylene (o)	ND	0.0250	11	"	**	,,	н	#	
Surrogate: a,a,a-Trifluorotoluene		83.0 %	80-12	20	"	"	n n	"	
Surrogate: 4-Bromofluorobenzene		101 %	80-12	20	n	#	u	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60514	12/06/06	12/06/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project Number: 2000-10615

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
ESN- SP1 (6L06001-03) Soil									
Carbon Ranges C12-C28	78.7	10.0	mg/kg dry	1	EL60514	12/06/06	12/06/06	EPA 8015M	
Carbon Ranges C28-C35	24.6	10.0	"	н	"	**	ш	If	
Total Hydrocarbons	103	10.0	u	"	"	**	и	"	
Surrogate: 1-Chlorooctane		76.0 %	70-1.	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		77.0 %	70-12	30	"	"	"	"	

ESN- SP1 (6L06001-03) Soil

% Moisture

Project: East Shell North

Project Number: 2000-10615 Project Manager: Camille Reynolds Fax: (432) 687-4914

% calculation

12/06/06

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte ESN- F1 (6L06001-01) Soil	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
% Moisture	21.0	0.1	%	1	EL60615	12/06/06	12/06/06	% calculation	
ESN- F2 (6L06001-02) Soil									
% Moisture	7.8	0.1	%	1	EL60615	12/06/06	12/06/06	% calculation	•

EL60615

12/06/06

0.1

8.2

Project: East Shell North
Project Number: 2000-10615
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

		Keporing		Spike	Source		70KEC		KPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL60512 - EPA 5030C (GC)										
Blank (EL60512-BLK1)	•			Prepared &	k Analyzed	: 12/05/06	5	-		
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	"							
Ethylbenzene	ND	0.0250	"							
Xylene (p/m)	ND	0.0250	11							
Xylene (o)	ND	0.0250	n							
Surrogate: a,a,a-Trifluorotoluene	47.2		ug/kg	40.0		118	80-120			
Surrogate: 4-Bromofluorobenzene	44.9		"	40.0		112	80-120			
LCS (EL60512-BS1)				Prepared &	k Analyzed	: 12/05/06	5			
Benzene	1.16	0.0250	mg/kg wet	1.25		92.8	80-120			
Гоluene	1.20	0.0250	"	1.25		96.0	80-120			
Ethylbenzene	1.45	0.0250	H	1.25		116	80-120			
Xylene (p/m)	2.51	0.0250	н	2.50		100	80-120			
Xylene (0)	1.14	0.0250	u	1.25		91.2	80-120			
Surrogate: a,a,a-Trifluorotoluene	39.6		ug/kg	40.0		99.0	80-120			
Surrogate: 4-Bromofluorobenzene	43.4		"	40.0		108	80-120			
Calibration Check (EL60512-CCV1)				Prepared &	k Analyzed	: 12/05/06	5			
Benzene	44.9		ug/kg	50.0		89.8	80-120			
Toluene	43.7		"	50.0		87.4	80-120			
Ethylbenzene	44.2		"	50.0		88.4	80-120			
Xylene (p/m)	85.4		"	100		85.4	80-120			
Xylene (o)	43.4		"	50.0		86.8	80-120			
Surrogate: a,a,a-Trifluorotoluene	41.7		"	40.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	34.0		n	40.0		85.0	80-120			
Matrix Spike (EL60512-MS1)	Sou	rce: 6L01016	5-01	Prepared:	12/05/06 A	nalyzed:	12/06/06			
Benzene	1.15	0.0250	mg/kg dry	1.26	ND	91.3	80-120			
Гојиене	1.10	0.0250	n	1.26	ND	87.3	80-120		,	
Ethylbenzene	1.33	0.0250	*	1.26	ND	106	80-120			
Xylene (p/m)	2.11	0.0250	п	2.53	ND	83.4	80-120			
Xylene (o)	1.02	0.0250	1+	1.26	ND	81.0	80-120			
Surrogate: a,a,a-Trifluorotoluene	33.4		ug/kg	40.0		83.5	80-120	•	,	
Surrogate: 4-Bromofluorobenzene	35.2		"	40.0		88.0	80-120			

Project: East Shell North

Project Number: 2000-10615

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EL60512 - EPA 5030C (GC)										
Matrix Spike Dup (EL60512-MSD1)	Sour	rce: 6L01016	-01	Prepared: 1	12/05/06 Aı	nalyzed: 12	/06/06			
Benzene	1.30	0.0250	mg/kg dry	1.26	ND	103	80-120	12.0	20	
Toluene	1.29	0.0250	"	1.26	ND	102	80-120	15.5	20	
Ethylbenzene	1.36	0.0250	"	1.26	ND	108	80-120	1.87	20	
Xylene (p/m)	2.46	0.0250	**	2.53	ND	97.2	80-120	15.3	20	
Xylene (o)	1.23	0.0250	11	1.26	ND	97.6	80-120	18.6	20	
Surrogate: a,a,a-Trifluorotoluene	37.6		ug/kg	40.0		94.0	80-120			
Surrogate: 4-Bromofluorobenzene	36.9		"	40.0		92.2	80-120			
Batch EL60514 - Solvent Extraction (GC)	i .							,	
Blank (EL60514-BLK1)				Prepared:	12/05/06 Ar	nalyzed: 12	/06/06			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	"							
Carbon Ranges C28-C35	ND	10.0	"							
Total Hydrocarbons	ND	10.0	"							
Surrogate: 1-Chlorooctane	63.8		mg/kg	50.0		128	70-130			
Surrogate: 1-Chlorooctadecane	61.2		"	50.0		122	70-130			
LCS (EL60514-BS1)	•			Prepared:	12/05/06 Aı	nalyzed: 12	/06/06			
Carbon Ranges C6-C12	457	10.0	mg/kg wet	500		91.4	75-125			
Carbon Ranges C12-C28	411	10.0	**	500		82.2	75-125			
Carbon Ranges C28-C35	ND	10.0	**	0.00			75-125			
Total Hydrocarbons	868	10.0	•	1000		86.8	75-125		•	
Surrogate: 1-Chlorooctane	59.0		mg/kg	50.0		118	70-130			
Surrogate: 1-Chlorooctadecane	47.8		"	50.0		95.6	70-130			
Calibration Check (EL60514-CCV1)				Prepared:	12/05/06 Aı	nalyzed: 12	/06/06			
Carbon Ranges C6-C12	240		mg/kg	250		96.0	80-120			
Carbon Ranges C12-C28	295		11	250		118	80-120			
Total Hydrocarbons	535		н	500		107	80-120			
Surrogate: 1-Chlorooctane	62.4		"	50.0		125	70-130			
Surrogate: 1-Chlorooctadecane	64.2		"	50.0		128	70-130			

Project: East Shell North

Project Number: 2000-10615 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control **Environmental Lab of Texas**

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike (EL60514-MS1)	Sourc	e: 6L04012	2-01	Prepared: 1	12/05/06 A	nalyzed: 12	2/06/06			
Carbon Ranges C6-C12	600	10.0	mg/kg dry	538	78.5	96.9	75-125			
Carbon Ranges C12-C28	1070	10.0	"	538	513	104	75-125			
Carbon Ranges C28-C35	6.99	10.0	и	0.00	5.40		75-125			J
Total Hydrocarbons	1670	10.0	"	1080	592	99.8	75-125			
Surrogate: 1-Chlorooctane	57.3		mg/kg	50.0		115	70-130			
Surrogate: 1-Chlorooctadecane	57.9		"	50.0		116	70-130			
Matrix Spike Dup (EL60514-MSD1)	Sourc	e: 6L04012	2-01	Prepared: 1	12/05/06 A	nalyzed: 12	2/06/06			
Carbon Ranges C6-C12	685	10.0	mg/kg dry	538	78.5	113	75-125	13.2	20	
Carbon Ranges C12-C28	1130	10.0	."	538	513	115	75-125	5.45	20	
Carbon Ranges C28-C35	12.6	10.0	n	0.00	5.40		75-125	57.3	20	R4
Total Hydrocarbons	1830	10.0	"	1080	592	115	75-125	9.14	20	
Surrogate: 1-Chlorooctane	73.2		mg/kg	100		73.2	70-130			
Surrogate: 1-Chlorooctadecane	73.6		n	100		73.6	70-130			

Project: East Shell North

Project Number: 2000-10615 Project Manager: Camille Reynolds Fax: (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EL60615 - General Preparation (Prep)										
Blank (EL60615-BLK1)				Prepared &	Analyzed:	12/06/06				
% Solids	100		%							
Duplicate (EL60615-DUP1)	Sour	ce: 6L06001-	01	Prepared &	Analyzed:	12/06/06				
% Solids	78.3		%		79.0			0.890	20	

Plains All American EH & S
Project: East Shell North
Fax: (432) 687-4914

1301 S. County Road 1150
Project Number: 2000-10615
Midland TX, 79706-4476
Project Manager: Camille Reynolds

Notes and Definitions

R4 Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information. J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag). DET Analyte DETECTED ND Analyte NOT DETECTED at or above the reporting limit NR Not Reported Sample results reported on a dry weight basis dry RPD Relative Percent Difference LCS Laboratory Control Spike MS Matrix Spike Duplicate Dup

	Kaland K Julia		
Report Approved By:	700000110110	_ Date:	12/7/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

EAST SHELL NORTH Phone: 432-563-1800 Fax: 432-563-1713 Project Name: Odessa, Texas 79765 12500 West I-20 East

OSTORN TRANCH 7000-10015 Project Loc: CLAY ₽0 # Project #:

Standard Report Format:

Fax No: e-mail:

Sampler Signature:

ORDER #: (lab use only)

Telephone No:

City/State/Zip:

Company Address:

Project Manager:

Ď.

Company Name

G 124 V. COVU

TCLP:

OTA

Preservation & # of Containers

Ļ		
Ę		
٦		

]			
•			

}			

Ż		
3		

-			
3			

7		
-		

_)		
ì,		
Ĵ.		

7			
_			

Z			
3			

}			

:		
]		

•			
;			
]			

J		
2		
_		
Z		
3		
_		

÷			
•			
_			
J			

]	

<u>.</u>		
١.		
2		
_		
٦		
_		

NPDES	

]			

J		
1		
-		
٦		

7		
Z		
_		
_)		

1		
<u>\</u>		
Z		
_		
L)		

,		
Ļ		
;		
_		
]		

}		

_		
2		
<u>.</u>		
Z		
_		
٦.		
_		

_		
٦		
J		

_		
Z		
_		
_)		

•		
_		
<u>.</u>		
Z		
_		
- 1		
_		

Ž			
٦			
_			

2		
_		
Z		
_		
_)		

2		
_		
2		
3		
_		

1		
7		
_		

÷			
•			
]			

•			
3			

ž		
]		

,			
]			

}			

•			
•			
]			

			Į
			1
١			
			1

}			

		1
		1
		•
		ı
		4
		ŧ
		- 1
		3

п

		1
		1
		1

١			

		1
		ı
		Į

l			

		r.
		P
		1
		1
		1
		ı
		А
		z
		L

TAT bisbnsi2

M.A.O.N

Vol**a**tiles

:HGT

×

SAR / ESP / CEC

RCI

RUSH TAT (8t (§§)(ethedules/old) TAT HEUR

BTEK 8021BJ2850 or BTEX 8260

Metals: As Ag Ba Cd Ct Pb Hg Se

9001 XT

Matos

Anions (Cl. SO4, Alkalinity)

Cations (Ca., Mg, Na, K)

2001 XT

1.814

Other (Specify)

folal #, of Containers

belgmaS emiT

Date Sampled

guqing Debth

Reginning Depth

(Vino esu del) # 8A

FIELD CODE

ESN-

ESN-

Freid Filtered

225 7

73

COCSCEN HOEN †05^гн ЮH EONH 901 Fedex Lone Star

Custody seals on cooler(s) Eabels on container(s) (See Custody seals on container(s)

Sample Hand Delivered by Sampler/Client Rep. ? by Counier? UPS DHL

me

Date

Received by:

17:00

Received by:

Time

Special Instructions:

Relinquished by

ပူ

S. C.

Temperature Upon Receipt:

4

パノンワ

5

rappond 1c Tubul

Time

Date

Relinquished by

Sample Containers Intact? ON N

Laboratory Comments:

	- 1	
	- 1	

È		

J		
•		

J			
,			

	- 1
	- 1
	- 1
	- 1
	. 1
	- 1

•		
•		
٦		
J		

•		
;		
-		

J			

7		
2		
•		
-		

RRP		
œ		

		ł
		İ
		ì
		۱
		Į
		I
		ı
		1

2		
2		
-		
]		
_		

1		

	9
	Contract of
	Ł
	ŧ
	3
	1
	4
	£
	1
	u
	ı
	ı
	ŀ
	E

١			

i		

Ļ		
5		
_		
٦		

J'RRP	

]			

ł			

,		
•		
-		
٦		

ł		

L L		
]		

;		
]		

TRRP	

L L		
]		

;		
-		
-		
]		

;			
]			

;		
]		
-		

,		
5		
_		
1		

L		
Ę		
_		
]		

TRRP	

TRRP	

L			
2			
7			
_			
_			
_1			
_			

ì			

L		
2		
7		
_		
٦		
_		

Ļ		
5		
_		
7		
_		

Ž		
_		
_		

181			

Analyze For

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

		÷	
Checklist			
_		Client	Initials
Yes	No	0.5 °C	
(fes	No		
Yes	No	(Not Present	
Yes	No	Not Present	
Xes	No		
tes	No		
Yes	No		
Yes	No	ID written on Cont./ Lid	
X Bs	No	Not Applicable	
Ves	No		
∦eş	No		
VES	No	See Below	
Æs	No	Sea Below	
Ø€\$	No		
/∕es	Nο		
Yes	No		
Y.68	No	See Below	
	No	See Below	
Yes	No		
(Yes	No		
nentation		Dota/Time:	
		Date/ Time.	
	 .		
	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Yes No	Yes No O.S °C Yes No Not Present Yes No Not Applicable Yes No See Below Yes No Not Applicable Yes No Not Applicable

Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: East Shell North Project Number: 2000-10615 Location: Clay Osborn Ranch

Lab Order Number: 6L07002

Report Date: 12/15/06

Plains All American EH & S

1301 S. County Road 1150 Midland TX, 79706-4476 Project: East Shell North

Fax: (432) 687-4914

Project Number: 2000-10615

Project Manager: Camille Reynolds

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
ESN- SP2	6L07002-01	Soil	12/06/06 13:40	12-07-2006 08:00

Project: East Shell North Project Number: 2000-10615

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
ESN- SP2 (6L07002-01) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60810	12/08/06	12/13/06	EPA 8021B	
Toluene	ND	0.0250	**	11	и	**	**	, 14	
Ethylbenzene	ND	0.0250	**	11	n	n	**	"	
Xylene (p/m)	ND	0.0250	"	n	"	n	п	•	
Xylene (o)	ND	0.0250	**	и	"	n	и	n	
Surrogate: a,a,a-Trifluorotoluene		106 %	80-1	120	"	"	"	"	7.1
Surrogate: 4-Bromofluorobenzene		112 %	80-1	120	n	n	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60703	12/07/06	12/08/06	EPA 8015M	
Carbon Ranges C12-C28	91.3	10.0	*	n	tt	n	п	. "	
Carbon Ranges C28-C35	J [9.07]	10.0	н	"	tr	"	11		J
Total Hydrocarbons	91.3	10.0	11	н	ti	и	"	H	
Surrogate: 1-Chlorooctane		92.6 %	70-1	130	n	"	"	"	
Surrogate: 1-Chlorooctadecane		84.0 %	70-1	130	n	"	"	"	

Plains All American EH & S 1301 S. County Road 1150

Midland TX, 79706-4476

Project: East Shell North

Project Number: 2000-10615

Project Manager: Camille Reynolds

Fax: (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
ESN- SP2 (6L07002-01) Soil									
% Moisture	2.2	0.1	%	1	EL60804	12/07/06	12/08/06	% calculation	

Project: East Shell North Project Number: 2000-10615

Project Number: 2000-10013

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EL60703 - Solvent Extraction (GC)										
Blank (EL60703-BLK1)				Prepared:	12/07/06 A	nalyzed: 12	2/08/06			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	#							
Carbon Ranges C28-C35	ND	10.0	**							
Total Hydrocarbons	ND	10.0	**							
Surrogate: 1-Chlorooctane	47.7		mg/kg	50.0		95.4	70-130			
Surrogate: 1-Chlorooctadecane	40.3		" .	50.0		80.6	70-130			
LCS (EL60703-BS1)				Prepared:	12/07/06 A ı	nalyzed: 12	:/08/06			
Carbon Ranges C6-C12	448	10.0	mg/kg wet	500		89.6	75-125			
Carbon Ranges C12-C28	414	10.0	II.	500		82.8	75-125			
Carbon Ranges C28-C35	ND	10.0	- 11	0.00			75-125			
Total Hydrocarbons	862	10.0	п	1000		86.2	75-125			
Surrogate: 1-Chlorooctane	56.6		mg/kg	50.0		113	70-130			
Surrogate: 1-Chlorooctadecane	46.3		"	50.0		92.6	70-130			
Calibration Check (EL60703-CCV1)				Prepared:	12/07/06 A	nalyzed: 12	:/09/06			
Carbon Ranges C6-C12	219		mg/kg	250		87.6	80-120			
Carbon Ranges C12-C28	254		n	250		102	80-120			
Total Hydrocarbons	473		**	500		94.6	80-120			
Surrogate: 1-Chlorooctane	50.1		"	50.0		100	70-130			
Surrogate: 1-Chlorooctadecane	42.0		"	50.0		84.0	70-130			
Matrix Spike (EL60703-MS1)	Sou	rce: 6L06007	7-28	Prepared:	12/07/06 A	nalyzed: 12	2/08/06			
Carbon Ranges C6-C12	456	10.0	mg/kg dry	525	4.06	86.1	75-125			
Carbon Ranges C12-C28	426	10.0	п	525	22.1	76.9	75-125			
Carbon Ranges C28-C35	ND	10.0	11	0.00	ND		75-125			
Total Hydrocarbons	882	10.0	**	1050	22.1	81.9	75-125			
Surrogate: 1-Chlorooctane	51.9		mg/kg	50.0		104	70-130			

50.0

45.0

Surrogate: 1-Chlorooctadecane

90.0

70-130

Project: East Shell North

Project Number: 2000-10615 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL60703 - Solvent Extraction (GC)										
Matrix Spike Dup (EL60703-MSD1)	Sou	rce: 6L06007	7-28	Prepared:	12/07/06 A	nalyzed: 12	./08/06			
Carbon Ranges C6-C12	463	10.0	mg/kg dry	525	4.06	87.4	75-125	1.50	20	
Carbon Ranges C12-C28	435	10.0	"	525	22.1	78.6	75-125	2.19	20	
Carbon Ranges C28-C35	ND	10.0	"	0.00	ND		75-125		20	
Total Hydrocarbons	898	10.0	ч	1050	22.1	83.4	75-125	1.81	20	
Surrogate: 1-Chlorooctane	56.4		mg/kg	50.0		113	70-130			
Surrogate: 1-Chlorooctadecane	43.6		"	50.0		87.2	70-130			
Batch EL60810 - EPA 5030C (GC) Blank (EL60810-BLK1)	·			Prepared:	12/08/06 A:	nalvzed: 12	2/12/06			
Benzene	ND	0.0250	mg/kg wet	· · · · · · · · · · · · · · · · · · ·	12.00.00 11.					
Toluene	ND	0.0250	"							
Ethylbenzene	ND	0.0250	и							
Xylene (p/m)	ND	0.0250	u							
Xylene (o)	ND	0.0250	"							
Surrogate: a,a,a-Trifluorotoluene	35.5		ug/kg	40.0		88.8	80-120			
Surrogate: 4-Bromofluorobenzene	33.5		"	40.0		83.8	80-120			
LCS (EL60810-BS1)				Prepared:	12/08/06 A	nalyzed: 12	/12/06			
Benzene	1.03	0.0250	mg/kg wet	1.25		82.4	80-120			
Toluene	1.01	0.0250	**	1.25		80.8	80-120			
Ethylbenzene	1.23	0.0250	"	1.25		98.4	80-120			
Xylene (p/m)	2.07	0.0250		2.50		82.8	80-120			
Xylene (o)	1.02	0.0250	*1	1.25		81.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	35.6		ug/kg	40.0		89.0	80-120			

40.0

34.2

Surrogate: 4-Bromofluorobenzene

85.5

80-120

Project: East Shell North

Project Number: 2000-10615
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL60810 - EPA 5030C (GC)				-						
Calibration Check (EL60810-CCV1)				Prepared:	12/08/06	Analyzed: 12	2/12/06			
Benzene	43.1		ug/kg	50.0		86.2	80-120			
Toluene	41.3		11	50.0		82.6	80-120			
Ethylbenzene	42.8		11	50.0		85.6	80-120			
Xylene (p/m)	81.2		11	100		81.2	80-120			
Xylene (o)	40.0		**	50.0		80.0	80-120			
Surrogate: a,a,a-Trifluorotoluene	35.5		"	40.0		88.8	80-120			
Surrogate: 4-Bromofluorobenzene	32.3		"	40.0		80.8	80-120			
Matrix Spike (EL60810-MS1)	Sou	rce: 6L07002	:- 0 1	Prepared:	12/08/06	Analyzed: 12	2/12/06			
Benzene	1.08	0.0250	mg/kg dry	1.28	ND	84.4	80-120			
Toluene	1.08	0.0250	II .	1.28	ND	84.4	80-120			
Ethylbenzene	1.11	0.0250	, "	1.28	ND	86.7	80-120			
Xylene (p/m)	2.25	0.0250	11	2.56	ND	87.9	80-120			
Xylene (o)	1.09	0.0250	"	1.28	ND	85.2	80-120			
Surrogate: a,a,a-Trifluorotoluene	35.1		ug/kg	40.0		87.8	80-120			
Surrogate: 4-Bromofluorobenzene	38.4		"	40.0		96.0	80-120			
Matrix Spike Dup (EL60810-MSD1)	Sou	rce: 6L07002	2-01	Prepared:	12/08/06	Analyzed: 12	2/12/06			
Веплепе	1.10	0.0250	mg/kg dry	1.28	ND	85.9	80-120	1.76	20	
Toluene	1.09	0.0250	II .	1.28	ND	85.2	80-120	0.943	20	
Ethylbenzene	1.05	0.0250	11	1.28	ND	82.0	80-120	5.57	20	
Xylene (p/m)	2.24	0.0250	"	2.56	ND	87.5	80-120	0.456	20	
Xylene (o)	1.09	0.0250	11	1.28	ND	85:2	80-120	0.00	20	
Surrogate: a,a,a-Trifluorotoluene	34.4		ug/kg	40.0		86.0	80-120			
Surrogate: 4-Bromofluorobenzene	37.2		, .	40.0		93.0	80-120			

Project: East Shell North

Project Number: 2000-10615 Project Manager: Camille Reynolds Fax: (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Limit	Cilits	Level	Result	70KEC	Littits	KFD	Linn	Notes
Batch EL60804 - General Preparation (Prep)										
Blank (EL60804-BLK1)				Prepared: 1	12/07/06 A	nalyzed: 12	/08/06			
% Solids	100	-	%							
Duplicate (EL60804-DUP1)	Sour	rce: 6L07002-	01	Prepared: 1	12/07/06 A	nalyzed: 12	/08/06			
% Solids	97.5		%		97.8			0.307	20	
Duplicate (EL60804-DUP2)	Sou	rce: 6L07018-	01	Prepared: 1	12/07/06 A	nalyzed: 12	/08/06			
% Solids	96.1		%		97.0			0.932	20	

Project: East Shell North
Project Number: 2000-10615
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Notes and Definitions

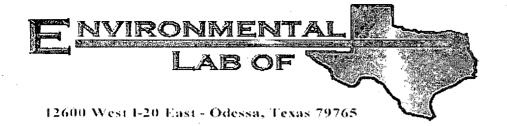
J	Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS .	Laboratory Control Spike
MS	Matrix Spike
D	Duelianta

Report Approved By:	Kaland KJulus	Date:	12/15/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.


(f)
Xas
a
Ô
Q Q
<u>a</u>
m W
-
m
<u>U</u>
All SERVICE
diam'
dane Apart
Court April
nment
nment
dane Apart
ronment
ronment
nment

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST	Phone: 432-563-1600 Fax: 432-563-1713	Project Name: Fast Shell North	Project#: 200c - 106) \$	Project Loc: Clay Osbern Rough	*Od	Report Format: KStandard TRRP NPDES	Analiza For	10107010	TOTAL:	900 S 6H 0	6015h 3, Na, K) 1, Alkalinily) 2C 19 Cd Cr Pb 19 Cd Cr Pb 19 Cd Cr Pb	Heti + 148.1 PH: TX 1000 PH: TX 1000 Indons (Ca, Mg Indons (Cl, SO Retals: As Ag E Volalles Polylies Polylie	7 X X X					Laboratory Comments: (C) Semple Containers Injact? (Y) Noc.s Free of Headspace?	(VZ) Custody seals on containe(s) Custody seals on containe(s)	Time Sample Hand Delivered T N N N N N N N N N N N N N N N N N N	
CHAIN OF CUSTODY F	12600 West f.20 East Odessa, Texas 79765	P.				Repo	Koody & salgens com		Preservation 8 # of Containers Matrix	P!	at SL≖Sludge	otal#, of Contact ce HOD AsSC ₂ O ₃ AssC ₃ O ₃ AssC ₃ O ₃ AssC ₄ O ₃ AssC ₅ O ₃ AssC ₅ O ₃ AssC ₆ O ₃ O ₃ AssC ₆ O ₃ O ₃ O ₃ AssC ₆ O ₃ O ₃ O ₃ AssC ₆ O ₃ O ₃ O ₃ O ₃ O ₃ AssC ₆ O ₃							Date	Date	pare
		Reynolda	ů,			Fax No:	e-mail:					Date Sampli Time Sampli Dereifitered	166 1340	,					Received by:	Received by:	Received by ELOT:
Lab of Texas		Carrille R	Plant F1 (E)	24			The Court					n eginning D	8						Date Time	. / Date Time	Date
Envionmental		Project Manager:	Company Name	Company Address:	City/State/Zip:	Telephone No:	Sampler Signature:	(lab use only)	ER# UNDUNY	-		1400 c 311	ESM					Special Instructions:	Relinquished by:	Refinquished by:	Relinquished by:
				e.				(lab use	ORDER #:		e oujλ)	en del) # 8A	$\perp I$			4			Relinqui	Relinqui	Relinqui

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

ate/Time: 12/100 8:00				
2010# WL0700Z				
itrals W				
			•	
Sample Receipt (Checklist			
			· · · · · · · · · · · · · · · · · · ·	Client Initials
1 Temperature of container/ cooler?	Yes	No	-0,6 °C	
2 Shipping container in good condition?	(ES)	No		
3 Custody Seals intact on shipping container/ cooler?	Yes	<u>No</u>	Not Present	
4 Custody Seals intact on sample bottles/ container?	Yes	No	Not Present	
5 Chain of Custody present?	Xes	No		
6 Sample instructions complete of Chain of Custody?	₹8 3	No		
7 Chain of Custody signed when relinquished/ received?	Yes	No		
8 Chain of Custody agrees with sample label(s)?	Yes	No	ID written on Cont./ Lid	
9 Container label(s) legible and intact?	Yes	No	Not Applicable	
10 Sample matrix/ properties agree with Chain of Gustody?	Yes_	No		
11 Containers supplied by ELOT?	¥es	No		
12 Samples in proper container/ bottle?	Yes _	No	See Below	
13 Samples properly preserved?	Yes	No	See Below	
14 Sample bottles intact?	¥850	No		
Preservations documented on Chain of Custody?	Xes	No		
t16 Containers documented on Chain of Custody?	Xes	No		
17 Sufficient sample amount for indicated test(s)?	Yes,	No	See Below	
+18 All samples received within sufficient hold time?	Yes	No	See Below	
#19 Subcontract of sample(s)?	Yes	No	Not Applicable	
20 VOC samples have zero headspace?	Hese	No	Not Applicable	
Contact: Contacted by:	mentation	_	Date/ Time:	
Regarding:	,			
Corrective Action Taken:				
Corrective Action Taken:		***		

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: East Shell North Project Number: 2000-10615

Location: None Given

Lab Order Number: 6L18011

Report Date: 12/20/06

Project: East Shell North

Project Number: 2000-10615
Project Manager: Camille Reynolds

Fax: (432) 687-4914

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
ESN-WF 1	6L18011-01	Soil	12/18/06 14:10	12-18-2006 16:40
ESN- WF 2	6L18011-02	Soil	12/18/06 14:12	12-18-2006 16:40
ESN- WF 3	6L18011-03	Soil	12/18/06 14:15	12-18-2006 16:40
ESN- WF 4	6L18011-04	Soil	12/18/06 14:20	12-18-2006 16:40

Project: East Shell North

Project Number: 2000-10615 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

	· · ·	Donastina								
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note	
ESN- WF 1 (6L18011-01) Soil							-			
Benzene	ND	0.0250	mg/kg dry	25	EL62007	12/20/06	12/20/06	EPA 8021B		
Toluene	ND	0.0250	"	"	**	**	n	" .		
Ethylbenzene	ND	0.0250	H	**	**	"	"	н		
Xylene (p/m)	ND	0.0250	"	"	"	"	**	**		
Xylene (o)	ND	0.0250	"	н	"	н	u-	ņ		
Surrogate: a,a,a-Trifluorotoluene		92.2 %	80-1	20	"	"	"	"		
Surrogate: 4-Bromofluorobenzene		84.2 %	80-1	20	"	"	"	n		
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL61918	12/19/06	12/19/06	EPA 8015M		
Carbon Ranges C12-C28	310	10.0	**		**	,	11	п		
Carbon Ranges C28-C35	145	10.0	"	**	ŋ	и	n	11		
Total Hydrocarbons	455	10.0	**		"	н	II.	"		
Surrogate: 1-Chlorooctane		76.6 %	70-1	30	"	"	"	"		
Surrogate: 1-Chlorooctadecane		89.6 %	70-1	30	n	"	"	"		
ESN- WF 2 (6L18011-02) Soil										
Benzene	ND	0.0250	mg/kg dry	25	EL62007	12/20/06	12/20/06	EPA 8021B		
Toluene	ND	0.0250	**	11	n .	"	p	tt		
Ethylbenzene	ND	0.0250	**	15	0		"	п		
Xylene (p/m)	ND	0.0250	u	"	**	"	**	ii .		
Xylene (o)	ND	0.0250	"	"	"	"	11	11		
Surrogate: a,a,a-Trifluorotoluene		94.8 %	80-1	20	"	"	,,	"		
Surrogate: 4-Bromofluorobenzene	•	80.0 %	80-1	20	"	"	"	"		
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	. 1	EL61918	12/19/06	12/19/06	EPA 8015M		
Carbon Ranges C12-C28	337	10.0	**	"	n	"	#	. "		
Carbon Ranges C28-C35	145	10.0	11		и	"	"	н		
Total Hydrocarbons	482	. 10.0	"	"	и	н	*	н		
Surrogate: 1-Chlorooctane		82.6 %	70-1	30	"	"	"	"		
Surrogate: 1-Chlorooctadecane		94.0 %	70-1	30	"	"	"	<i>n</i> .		
ESN- WF 3 (6L18011-03) Soil										
Benzene	ND	0.0250	mg/kg dry	25	EL62007	12/20/06	12/20/06	EPA 8021B		
Toluene	ND	0.0250	**	**	"	**	"	11		
Ethylbenzene	ND	0.0250	**	**	"	"	н	"		
Xylene (p/m)	ND	0.0250	*	**	**	n	n	"		
Xylene (o)	ND	0.0250	tt	**	tt .	μ	n	"		
Surrogate: a,a,a-Trifluorotoluene		91.2 %	80-1	20	"	,,	"	"		
Surrogate: 4-Bromofluorobenzene		99.2 %	80-1	20	"	,,	"	n		
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL61918	12/19/06	12/19/06	EPA 8015M		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: East Shell North

Project Number: 2000-10615 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Descend	A confirme 4	Madeal	X 7
ESN- WF 3 (6L18011-03) Soil	Result			Ditution	Batch	Prepared	Analyzed	Method	Notes
	01.0		4 1					ED4 001514	
Carbon Ranges C12-C28	81.8	10.0	mg/kg dry	1	EL61918	12/19/06	12/19/06	EPA 8015M	
Carbon Ranges C28-C35	60.4	10.0	n .	н :	"	н	***		
Total Hydrocarbons	142	10.0	n				11	n	
Surrogate: 1-Chlorooctane		83.2 %	70-1.	30		"	"	n	
Surrogate: 1-Chlorooctadecane		96.8 %	70-1.	30	"	"	"	н	
ESN- WF 4 (6L18011-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL62007	12/20/06	12/20/06	EPA 8021B	
Toluene	ND	0.0250	"	"	n	"	"	п	
Ethylbenzene	ND	0.0250	"	**	н	n	"	н	
Xylene (p/m)	ND	0.0250	**		"	"		н	
Xylene (o)	ND	0.0250	n	н	"	n	n	п	
Surrogate: a,a,a-Trifluorotoluene		95.0 %	80-1.	20	"	n	"	"	
Surrogate: 4-Bromofluorobenzene		95.2 %	80-1.	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL61918	12/19/06	12/19/06	EPA 8015M	
Carbon Ranges C12-C28	146	10.0	н .	*1	1*	n .	ıı	u .	
Carbon Ranges C28-C35	103	10.0	u u	**	n	11	n	tt	
Total Hydrocarbons	249	10.0	"	H	и	11		11	
Surrogate: 1-Chlorooctane	-	98.6 %	70-1.	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		115 %	70-1.	30	"	n	"	"	

Project: East Shell North
Project Number: 2000-10615

Project Number: 2000-10013

Project Manager: Camille Reynolds

Fax: (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
ESN- WF 1 (6L18011-01) Soil									
% Moisture	3.3	0.1	%	1	EL61917	12/18/06	12/19/06	% calculation	
ESN- WF 2 (6L18011-02) Soil									
% Moisture	5.1	0.1	%	1	EL61917	12/18/06	12/19/06	% calculation	
ESN- WF 3 (6L18011-03) Soil									
% Moisture	3.9	0.1	%	1	EL61917	12/18/06	12/19/06	% calculation	
ESN- WF 4 (6L18011-04) Soil									
% Moisture	2.5	0.1	%	1	EL61917	12/18/06	12/19/06	% calculation	

Project: East Shell North Project Number: 2000-10615

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

	D14	Reporting	11.5.	Spike	Source	e/DEC	%REC	0.00	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL61918 - Solvent Extraction (GC)										
Blank (EL61918-BLK1)				Prepared: 1	2/19/06 Ai	nalyzed: 12	/20/06			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	н							
Carbon Ranges C28-C35	ND	10.0	H							
Total Hydrocarbons	ND	10.0	**							
Surrogate: 1-Chlorooctane	42.5		mg/kg	50.0		85.0	70-130			
Surrogate: 1-Chlorooctadecane	49.6		"	50.0		99.2	70-130			
LCS (EL61918-BS1)				Prepared: 1	2/19/06 A	nalyzed: 12	/20/06			
Carbon Ranges C6-C12	609	10.0	mg/kg wet	500		122	75-125			
Carbon Ranges C12-C28	521	10.0	"	500		104	75-125			
Carbon Ranges C28-C35	ND	10.0	**	0.00			75-125			
Total Hydrocarbons	1130	10.0	"	1000		113	75-125			
Surrogate: 1-Chlorooctane	58.8		mg/kg	50.0		118	70-130			
Surrogate: 1-Chlorooctadecane	50.7		"	50.0		101	70-130			
Calibration Check (EL61918-CCV1)				Prepared: 1	2/19/06 Ai	nalyzed: 12	/20/06			
Carbon Ranges C6-C12	231		mg/kg	250		92.4	80-120			
Carbon Ranges C12-C28	298		**	250		119	80-120			
Total Hydrocarbons	529		н	500		106	80-120			
Surrogate: 1-Chlorooctane	50.7		"	50.0		101	70-130			
Surrogate: 1-Chlorooctadecane	51.5		"	50.0		103	70-130			
Duplicate (EL61918-DUP1)	Sou	rce: 6L18001	l-13	Prepared: 1	2/19/06 A	nalyzed: 12	./20/06			
Carbon Ranges C6-C12	ND	10.0	mg/kg dry		ND				20	
Carbon Ranges C12-C28	ND	10.0	**		ND				20	
Carbon Ranges C28-C35	ND	10.0	"		ND				20	
Total Hydrocarbons	ND	10.0	"		ND				20	
Surrogate: 1-Chlorooctane	51.7		mg/kg	50.0		103	70-130			
Surrogate: 1-Chlorooctadecane	61.0		"	50.0		122	70-130			

Project: East Shell North

Project Number: 2000-10615 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike (EL61918-MS1)	Source	e: 6L18001	-13	Prepared: 1	2/19/06 A	nalyzed: 12	2/20/06	
Carbon Ranges C6-C12	487	10.0	mg/kg dry	550	ND	88.5	75-125	
Carbon Ranges C12-C28	529	10.0	11	550	ND	96.2	75-125	
Carbon Ranges C28-C35	ND	10.0	и.	0.00	ND		75-125	
Total Hydrocarbons	1020	10.0	**	1100	ND	92.7	75-125	
Surrogate: 1-Chlorooctane	53.6		mg/kg	50.0		107	70-130	
Surrogate: 1-Chlorooctadecane	52.1		"	50.0		104	70-130	

Blank (EL62007-BLK1)				Prepared & Ana	lyzed: 12/20/06		
Benzene	ND	0.0250	mg/kg wet				
Toluene	ND	0.0250	. *				
Ethylbenzene	ND	0.0250	n				
Xylene (p/m)	ND	0.0250	п				
Xylene (o)	ND	0.0250	н				
Surrogate: a,a,a-Trifluorotoluene	42.2		ug/kg	40.0	106	80-120	
Surrogate: 4-Bromofluorobenzene	41.6		"	40.0	104	80-120	
LCS (EL62007-BS1)				Prepared & Ana	lyzed: 12/20/06		·
Benzene	1.21	0.0250	mg/kg wet	1.25	96.8	80-120	
T 1	1.20	0.0250		1.25	102	00.120	

LCS (EL62007-BS1)	Prepared & Analyzed: 12/20/06									
Benzene	1.21	0.0250	mg/kg wet	1.25	96.8	80-120				
Toluene	1.28	0.0250	**	1.25	102	80-120				
Ethylbenzene	1.26	0.0250	**	1.25	101	80-120				
Xylene (p/m)	2.54	0.0250	11	2.50	102	80-120	•			
Xylene (o)	1.23	0.0250	н	1.25	98.4	80-120				
Surrogate: a,a,a-Trifluorotoluene	40.9		ug/kg	40.0	102	80-120				
Surrogate: 4-Bromofluorobenzene	44.0		"	40.0	110	80-120				

Project: East Shell North Project Number: 2000-10615

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC - Quality Control **Environmental Lab of Texas**

<u>.</u> .	5 !:	Reporting	** **	Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL62007 - EPA 5030C (GC)										
Calibration Check (EL62007-CCV1)				Prepared &	Analyzed:	12/20/06				
Benzene	50.3		ug/kg	50.0		101	80-120			
Toluene	48.7		11	50.0		97.4	80-120			
Ethylbenzene	50.2		**	50.0		100	80-120			
Xylene (p/m)	89.8		11	100		89.8	80-120			
Xylene (0)	45.2		и	50.0		90.4	80-120			
Surrogate: a,a,a-Trifluorotoluene	41.4		"	40.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	39.2		"	40.0		98.0	80-120			
Matrix Spike (EL62007-MS1)	Sou	rce: 6L18011	l-01	Prepared &	k Analyzed:	12/20/06				
Benzene	1.05	0.0250	mg/kg dry	1.29	ND	81.4	80-120			
Toluene	1.09	0.0250	"	1.29	ND	84.5	80-120			
Ethylbenzene	1.10	0.0250	**	1.29	ND	85.3	80-120			
Xylene (p/m)	2.11	0.0250	**	2.59	ND	81.5	80-120		٠	
Xylene (o)	1.11	0.0250	**	1.29	ND	86.0	80-120			
Surrogate: a,a,a-Trifluorotoluene	32.1		ug/kg	40.0		80.2	80-120			
Surrogate: 4-Bromofluorobenzene	33.2		"	40.0		83.0	80-120			
Matrix Spike Dup (EL62007-MSD1)	Sou	rce: 6L18011	1-01	Prepared &	k Analyzed:	12/20/06				
Benzene	1.12	0.0250	mg/kg dry	1.29	ND	86.8	80-120	6.42	20	
Toluene	1.14	0.0250	"	1.29	ND	88.4	80-120	4.51	20	
Ethylbenzene	1.23	0.0250	и ,	1.29	ND	95.3	80-120	11.1	20	
Xylene (p/m)	2.28	0.0250	n	2.59	ND	88.0	80-120	7.67	20	
Xylene (o)	1.12	0.0250	н	1.29	. ND	86.8	80-120	0.926	20	
Surrogate: a,a,a-Trifluorotoluene	32.4		ug/kg	40.0		81.0	80-120			
Surrogate: 4-Bromofluorobenzene	37.4		"	40.0		93.5	80-120			

Project: East Shell North

Project Number: 2000-10615 Project Manager: Camille Reynolds Fax: (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL61917 - General Preparation (Prep)										···
Blank (EL61917-BLK1)		•		Prepared: 1	2/18/06 A	nalyzed: 12	/19/06			
% Moisture	ND	0.1	%							
Duplicate (EL61917-DUP1)	Sou	rce: 6L16004-	01	Prepared: 1	2/18/06 A	nalyzed: 12	/19/06			
% Moisture	21.1	0.1	%		20.9			0.952	20	
Duplicate (EL61917-DUP2)	Sou	rce: 6L18002-	02	Prepared: 1	2/18/06 A	nalyzed: 12	/19/06			
% Moisture	2.7	0.1	%		2.6			3.77	20	
Duplicate (EL61917-DUP3)	Sou	rce: 6L18001-	19	Prepared: 1	2/18/06 A	nalyzed: 12	/19/06			
% Moisture	4.8	0.1	% .		4.6			4.26	20	

Project: East Shell North

Project Number: 2000-10615 Project Manager: Camille Reynolds Fax: (432) 687-4914

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By:

Raland Kotul

Date

12/20/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

Phone: 432-563-1800 CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST 12600 West I-20 East

:zz@ezz FedEx Lone Star Laboratory Comments: Sample Containers Intact □ NPDES As (alubanas-arq) TAT HZUR ပ္စ VOCs Free of Headspace?

Labels on conflainer(s):

Custody seals on container(s)

Custody seals on conflainer(s)

Sample Hand Delivered

by & American Rep. ?

Custody Seals on Coolent Rep. ?

Sample Hand Delivered

by Courrier?

UPS DHL FedEx Lone S 0 Fax: 432-563-1713 TRRP M.9.0,W Gast Shell ВСІ PIBLOW | W.40 | Temperature Upon Receipt: 8 YEX 80Z+8×330 or 8TEX 8260 > Semiyolatiles Analyze 2000 Report Format: Standard Meraja: Va Va Ba Ca Ct Lp Ha Se TOTAL TCLP Anions (Cl, SO4, Alkalinity) Project #: Project Name: Project Loc: # Od Callons (Ca, Mg, Na, K) 9001 XT me BS108 WS108 :Hal 1,814 sdaenv, com GM= Glor W Date Date Other (Specify) Preservation & # of Containers Odessa, Texas 79765 COZSZBN HOEN ---2052H ЮН EONH aoj 2 fotal # of Containers Field Filtered Fax No: e-mail: 1420 Time Sampled ţ (1001.JA Received by ELOJ: 00/21 Received by: Received by: Date Sampled 680 Ending Depth ไเทย e E Beginning Depth Date FIELD CODE TT 15N-WF3 Sampler Signature: Company Address: 3 \leq Project Manager: ? Company Name Telephone No: City/State/Zip: ì Special instructions: 3 11/2/2 187 Refinquished by: Relinquished by: Relinquished by (lab use only) ORDER #: (isp ase only) # 84

TAT bisbnst2

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In Cuent 110-40 Date! Time: Lab ID# Initials Sample Receipt Checklist Client Initials Temperature of container/ cooler? No #2 Shipping container in good condition? Yes' No #3 Custody Seals intact on shipping container/ cooler? Yes No Not Present CNot Present Custody Seals intact on sample bottles/ container? No Yes Chain of Custody present? Yes No Sample instructions complete of Chain of Custody? Yes No Chain of Custody signed when relinquished/ received? #7 Yes No Chain of Custody agrees with sample label(s)? ¥es No ID written on Cont./ Lid Yes Container label(s) legible and intact? No Not Applicable #10 Sample matrix/ properties agree with Chain of Custody? Yes No #11 Containers supplied by ELOT? Æ8 No Yes #12 Samples in proper container/ bottle? No See Below #13 Samples properly preserved? Yes No See Below #14 Sample bottles intact? Yes No #15 Preservations documented on Chain of Custody? (FES No #16 Containers documented on Chain of Custody? VE8 No #17 Sufficient sample amount for indicated test(s)? Yes, No See Below Yes #18 All samples received within sufficient hold time? No See Below #19 Subcontract of sample(s)? Yes No Not Applicable #20 VOC samples have zero headspace? Yes No Not Applicable Variance Documentation Contacted by: Date/ Time: Contacti Regarding: Corrective Action Taken: Check all that Apply: See attached e-mail/ fax

Client understands and would like to proceed with analysis. Cooling process had begun shortly after sampling event

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: East Shell North

Project Number: 2000-10615

Location: None Given

Lab Order Number: 6L22003

Report Date: 01/02/07

Project: East Shell North

Project Number: 2000-10615 Project Manager: Camille Reynolds

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
ESN- 2F2	6L22003-01	Soil	12/21/06 13:55	12-22-2006 08:30
ESN- 2F3	6L22003-02	Soil	12/21/06 14:00	12-22-2006 08:30
ESN- 2F4	6L22003-03	Soil	12/21/06 14:05	12-22-2006 08:30

Fax: (432) 687-4914

Project: East Shell North Project Number: 2000-10615

Project Number: 2000-10013

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
ESN- 2F2 (6L22003-01) Soil				- Ditation	Buten	Tropared	7 mary 200	Wediou	1100
Benzene	ND	0.0250	mg/kg dry	25	EL62220	12/22/06	12/28/06	EPA 8021B	
Toluene	ND	0.0250	н	**	"	"	n	n-	
Ethylbenzene	ND	0.0250	"	"	11	"	n	n	
Xylene (p/m)	ND	0.0250	n	. "	"	"		и	
Xylene (o)	ND	0.0250	n	"	а	, ,	"	н	
Surrogate: a,a,a-Trifluorotoluene		82.5 %	80-1	20	,,	"	"	n	S-
Surrogate: 4-Bromofluorobenzene		87.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL62217	12/22/06	12/22/06	EPA 8015M	
Carbon Ranges C12-C28	133	10.0		11	11	**	н	п	
Carbon Ranges C28-C35	87.9	10.0	· u	11	n	"	и .		
Total Hydrocarbons	221	10.0	н	11	••		**	Ц	
Surrogate: 1-Chlorooctane		93.0 %	70-1	30	n	,, .	,,	"	
Surrogate: 1-Chlorooctadecane		111 %	70-1	30	"	"	"	н :	
ESN- 2F3 (6L22003-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL62220	12/22/06	12/28/06	EPA 8021B	
Toluene	ND	0.0250	. "	н	ч	. "	н	, n	
Ethylbenzene	ND	0.0250	"	**	tt	"	ü	n	
Xylene (p/m)	ND	0.0250	"	**	**	"	**	11	
Xylene (o)	ND	0.0250	. "	"	**	"	u	11	
Surrogate: a,a,a-Trifluorotoluene		85.2 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL62217	12/22/06	12/22/06	EPA 8015M	
Carbon Ranges C12-C28	123	10.0	"	п	n	II.	**	"	
Carbon Ranges C28-C35	79.0	10.0	п	"	n	**	"	n	
Total Hydrocarbons	202	10.0	"	"	n	n	п	п	
Surrogate: 1-Chlorooctane		74.0 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		78.0 %	70-1	30	,,	"	"	TI .	
ESN- 2F4 (6L22003-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL62220	12/22/06	12/28/06	EPA 8021B	
Toluene	ND	0.0250	11	н	н	11	"	11	
Ethylbenzene	ND	0.0250	"	н	"	н	n	н	
Xylene (p/m)	ND	0.0250	11	н	"	н	"	"	
Xylene (o)	ND	0.0250		n	**	11	"	n	
Surrogate: a,a,a-Trifluorotoluene		92.0 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.0 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL62217	12/22/06	12/22/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: East Shell North

Project Number: 2000-10615
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
ESN- 2F4 (6L22003-03) Soil									
Carbon Ranges C12-C28	129	10.0	mg/kg dry	ı	EL62217	12/22/06	12/22/06	EPA 8015M	
Carbon Ranges C28-C35	80.1	10.0	"	**		н .	**	n	
Total Hydrocarbons	209	10.0	"	"	tr.	**	"	**	
Surrogate: 1-Chlorooctane		104 %	70-12	30	"	"	n	"	
Surrogate: 1-Chlorooctadecane		126 %	70-12	30	"	"	"	"	

Project: East Shell North

Project Number: 2000-10615 Project Manager: Camille Reynolds Fax: (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
ESN- 2F2 (6L22003-01) Soil									
% Moisture	11.9	0.1	%	1	EL62219	12/22/06	12/22/06	% calculation	
ESN- 2F3 (6L22003-02) Soil									
% Moisture	7.1	0.1	%	1	EL62219	12/22/06	12/22/06	% calculation	
ESN- 2F4 (6L22003-03) Soil								·	
% Moisture	12.5	0.1	%	1	EL62219	12/22/06	12/22/06	% calculation	

Project: East Shell North

Project Number: 2000-10615 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

		_								
	Ì	Reporting		Spike	Source		%REC		RPD	
Analyte	 Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Analyte	Result	Lann	Onits	Level	Result	%REC	Limits	KPD	Limit	Notes
Batch EL6221 <mark>7 - Solvent Extraction (GC</mark>	C)									
Blank (EL62217-BLK1)				Prepared &	k Analyzed:	12/22/06				
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	"							
Carbon Ranges C28-C35	ND	10.0	"							
Total Hydrocarbons	ND	10.0	Ħ							
Surrogate: 1-Chlorooctane	36.1		mg/kg	50.0		72.2	70-130			
Surrogate: 1-Chlorooctadecane	39.3		"	50.0		78.6	70-130			
LCS (EL62217-BS1)				Prepared &	k Analyzed:	12/22/06				
Carbon Ranges C6-C12	604	10.0	mg/kg wet	500		121	75-125			
Carbon Ranges C12-C28	523	10.0	11	500		105	75-125			
Carbon Ranges C28-C35	ND	10.0	. "	0.00			75-125			
Total Hydrocarbons	1130	10.0	"	1000		113	75-125			
Surrogate: 1-Chlorooctane	59.3		mg/kg	50.0		119	70-130			
Surrogate: 1-Chlorooctadecane	51.4		"	50.0		103	70-130			
Calibration Check (EL62217-CCV1)				Prepared:	12/22/06 A	.nalyzed: 13	2/23/06			
Carbon Ranges C6-C12	205		mg/kg	250		82.0	80-120			
Carbon Ranges C12-C28	241		"	250		96.4	80-120			
Total Hydrocarbons	446		11	500		89.2	80-120			
Surrogate: 1-Chlorooctane	51.4		н	50.0		103	70-130		****	
Surrogate: 1-Chlorooctadecane	56.9		"	50.0		114	70-130			
Matrix Spike (EL62217-MS1)	Source	e: 6L22004	4-01	Prepared:	12/22/06 A	.nalyzed: 1	2/23/06			
Carbon Ranges C6-C12	595	10.0	mg/kg dry	559	ND	106	75-125			
Carbon Ranges C12-C28	483	10.0	'n	559	27.6	81.5	75-125			
Carbon Ranges C28-C35	ND	10.0	n	0.00	ND		75-125			
Total Hydrocarbons	1080	10.0	ч	1120	27.6	94.0	75-125			
Surrogate: 1-Chlorooctane	53.4		mg/kg	50.0		107	70-130			
Surrogate: 1-Chlorooctadecane	48.9		"	50.0		97.8	70-130			

Project: East Shell North

Project Number: 2000-10615 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

					-					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EL62217 - Solvent Extraction (GC)										
Matrix Spike Dup (EL62217-MSD1)	Sou	rce: 6L22004	i-01	Prepared:	12/22/06 A	nalyzed: 12	2/23/06			
Carbon Ranges C6-C12	595	10.0	mg/kg dry	559	ND	106	75-125	0.00	20	
Carbon Ranges C12-C28	502	10.0	"	559	27.6	84.9	75-125	4.09	20	
Carbon Ranges C28-C35	ND	10.0	11	0.00	ND		75-125		20	
Total Hydrocarbons	1100	10.0	u	1120	27.6	95.8	75-125	1.90	20	
Surrogate: 1-Chlorooctane	57.4		mg/kg	50.0		115	70-130			
Surrogate: 1-Chlorooctadecane	52.1		"	50.0		104	70-130			
Batch EL62220 - EPA 5030C (GC)										
Blank (EL62220-BLK1)				Prepared:	12/22/06 A	nalyzed: 12	2/28/06			
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	"							
Ethylbenzene	ND	0.0250	**							
Xylene (p/m)	ND	0.0250	"							
Xylene (o)	ND	0.0250	"							
Surrogate: a,a,a-Trifluorotoluene	44.2		ug/kg	40.0		110	80-120			
Surrogate: 4-Bromofluorobenzene	43.6		"	40.0		109	80-120			
LCS (EL62220-BS1)				Prepared:	12/22/06 A	nalyzed: 12	2/28/06			
Benzene	1.13	0.0250	mg/kg wet	1.25		90.4	80-120			
Toluene	1.28	0.0250	"	1.25		102	80-120			
Ethylbenzene	1.33	0.0250	**	1.25		106	80-120			
Xylene (p/m)	2.73	0.0250	"	2.50		109	80-120			
Xylene (o)	1.27	0.0250	**	1.25		102	80-120			
Surrogate: a,a,a-Trifluorotoluene	41.0		ug/kg	40.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	45.9		"	40.0		115	80-120			

Project: East Shell North

Project Number: 2000-10615 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL62220 - EPA 5030C (GC)										
Calibration Check (EL62220-CCV1)				Prepared:	12/22/06 A	nalyzed: 12	./29/06			
Benzene	58.8		ug/kg	50.0		118	80-120			
Toluene	55.7		u	50.0		111	80-120			
Ethylbenzene	58.1		"	50.0		116	80-120			
Xylene (p/m)	101		"	100		101	80-120			
Xylene (o)	46.3		**	50.0		92.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	48.0		"	40.0		120	80-120			
Surrogate: 4-Bromofluorobenzene	44.9		"	40.0		112	80-120			
Matrix Spike (EL62220-MS1)	Sou	rce: 6L22004	-04	Prepared:	12/22/06 A	nalyzed: 12	/28/06			
Benzene	1.47	0.0250	mg/kg dry	1.56	ND	94.2	80-120			
Toluene	1.45	0.0250	**	1.56	ND	92.9	80-120			
Ethylbenzene	1.29	0.0250	**	1.56	ND	82.7	80-120			
Xylene (p/m)	2.75	0.0250	"	3.13	ND	87.9	80-120			
Xylene (o)	1.35	0.0250	**	1.56	ND	86.5	80-120			
Surrogate: a,a,a-Trifluorotoluene	37.7		ug/kg	40.0		94.2	80-120			
Surrogate: 4-Bromofluorobenzene	42.2		"	40.0		106	80-120			
Matrix Spike Dup (EL62220-MSD1)	Sou	rce: 6L22004	-04	Prepared:	12/22/06 A	nalyzed: 12	:/28/06			
Benzene	1.77	0.0250	mg/kg dry	1.56	ND	113	80-120	18.1	20	
Toluene	1.77	0.0250	"	1.56	ND	113	80-120	19.5	20	
Ethylbenzene	1.75	0.0250	**	1.56	ND	112	80-120	30.1	20	
Xylene (p/m)	3.48	0.0250	11	3.13	ND	111	80-120	23.2	20	
Xylene (o)	1.63	0.0250	**	1.56	ND	104	80-120	18.4	20	
Surrogate: a,a,a-Trifluorotoluene	46.0		ug/kg	40.0		115	80-120			
Surrogate: 4-Bromofluorobenzene	42.8		"	40.0		107	80-120			

Project: East Shell North

Project Number: 2000-10615

Project Manager: Camille Reynolds

Fax: (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

										ı
	Reporting		Spike	Source		%REC		RPD		ĺ
Analyte Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	ĺ

Batch EL62219 - General Preparation (Prep)

 Blank (EL62219-BLK1)
 Prepared & Analyzed: 12/22/06

 % Solids
 99.8
 %

 Duplicate (EL62219-DUP1)
 Source: 6L22003-01
 Prepared & Analyzed: 12/22/06

 % Solids
 87.2
 %
 88.1
 1.03
 20

Project: East Shell North

Project Number: 2000-10615 Project Manager: Camille Reynolds Fax: (432) 687-4914

Notes and Definitions

R The RPD exceeded the method control limit. The individual analyte QA/QC recoveries, however, were within acceptance limits.

The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

S-04

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

•	Kaland KJulia		
Report Approved By:	(Case as i C i i o	Date:	1/2/2007

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

0

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East

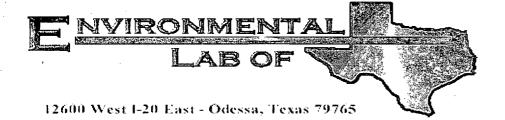
Laboratory Comments:
Sample Codifiners (nact?

VOCs: Free of Headspace?

(V N (abb)isoncontainer(s) (See Not consider (see Not consider (see Not container (see Not con FedEx Lone Star ☐.NPDES RUSH TAT (Pre-Schedule) 24, 48, 72 hrs ပွ East Shell North Phone: 432-563-1800 Fax: 432-563-1713 M.G.R.M. TRRP Cusiodiseals on cooler(s)
Sample Hand Defivered
by Sampler/Client Rep. ?
by Courier? UPS DHL BCI BLEX & 051 BY 5030 & BLEX 8560 × 2000 Standard Standard Metals: As Ag 83 Cd Cr Pb Hg Se TCLP: COTAL Anions (Cl. SO4, Alkalinity) Project #: Project Name: PO #: Project Loc: Cations (Ca, Mg, Na, K) Report Format: 8001 XT наз Тіпе 12/m/no Red 89108 WSLOS) 1'817 :Hd1 acy dass ((2) Stola Caru. Com Date Date Ofher (Specify) Preservation & # of Containers auon Odessa, Texas 79765 EOSSEN HOEN 'OS^tH HCI HMO3 90(Total #, of Containers benetifil blei Received by ELOT. Fax No: e-mail: 1400 1405 18 Dalqms2 amiT Received by: Received by: Date Sampled 0880 Ending Depth Time E gedinuing Depth 90/2r Date FIELD CODE 12003 T Z 7 V Sampler Signature: Company Address: Project Manager: Company Name Telephone No: 1 City/State/Zip: スペダ 5 300 Special Instructions: Relinquished by: Refinquished by: Relinquished by (lab use only) ORDER #: (Yinc eau dai) # 8A

TAT brishnst2

×


Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In Chent 8-20 Date/ Time: Lab ID # 1 Initials Sample Receipt Checklist Client Initials Temperature of container/ cooler? Yes No Shipping container in good condition? d'es No Custody Seals intact on shipping container/ cooler? #3 Yes No Not Present Custody Seals intact on sample bottles/ container? Yes No Not Present Chain of Custody present? #5 Yes. No Sample instructions complete of Chain of Custody? Yes No Chain of Custody signed when relinquished/ received? X99 No #8 Chain of Custody agrees with sample label(s)? <u>¥es</u> No 1D written on Cont./ Lid Container label(s) legible and intact? #9 Yes No Not Applicable #10 Sample matrix/ properties agree with Chain of Custody? Yes No #11 Containers supplied by ELOT? χès No #12 Samples in proper container/ bottle? Yes. No See Below #13 Samples properly preserved? Yes. No See Below #14 Sample bottles intact? Yes No #15 Preservations documented on Chain of Custody? Yes No #16 Containers documented on Chain of Custody? Yes No #17 Sufficient sample amount for indicated test(s)? Yes No See Below #18 All samples received within sufficient hold time? No ',∕e's See Below #19 Subcontract of sample(s)? Yes No Not Applicable VOC samples have zero headspace? **YES** No Not Applicable Variance Documentation Contacted by: Contact Date/ Time: Regarding: Corrective Action Taken:

> Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

See attached e-mail/ fax

Check all that Apply:

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: East Shell North Project Number: 2000-10615 Location: Lea County, NM

Lab Order Number: 7A05010

Report Date: 01/10/07

Project: East Shell North

Project Number: 2000-10615
Project Manager: Camille Reynolds

Fax: (432) 687-4914

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
N FLR	7A05010-01	Soil	01/04/07 14:00	01-05-2007 16:30
MID FLR	7A05010-02	Soil	01/04/07 14:15	01-05-2007 16:30
S FLR	7A05010-03	Soil	01/04/07 14:30	01-05-2007 16:30

Project: East Shell North Project Number: 2000-10615

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

	D. 1	Reporting	•••						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
N FLR (7A05010-01) Soil		· · · · · · · · · · · · · · · · · · ·							
Benzene	· ND	0.0250	mg/kg dry	25	EA70806	01/08/07	01/08/07	EPA 8021B	
Toluene	ND	0.0250	"	**	n	n	**	n	
Ethylbenzene	ND	0.0250	11	"	"	11	*	"	
Xylene (p/m)	ND	0.0250	11	"	**	n n	п	**	
Xylene (o)	ND	0.0250	11	n	"	и	11	ij	
Surrogate: a,a,a-Trifluorotoluene		120 %	80-12	?0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.2 %	80-12	20	n	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EA70805	01/08/07	01/08/07	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	n	*	"	н	н	n .	
Carbon Ranges C28-C35	ND	10.0	11	**	"	п	**	n	
Total Hydrocarbons	ND	10.0	n	"	"	11	"	H	
Surrogate: 1-Chlorooctane		92.6 %	70-13	30	"	" .	"	#	
Surrogate: 1-Chlorooctadecane		102 %	70-13	30	n	"	n	n	
MID FLR (7A05010-02) Soil									
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EA70805	01/08/07	01/08/07	EPA 8015M	
Carbon Ranges C12-C28	121	10.0	"	п.	11	"	. "	n.	
Carbon Ranges C28-C35	68.4	10.0	"	0	**	"	**	n	
Total Hydrocarbons	189	10.0	п	0	H	**	* ,	"	
Surrogate: 1-Chlorooctane		81.8 %	70-13	30	n	"	"	"	
Surrogate: 1-Chlorooctadecane		87.6 %	70-13	30	"	"	n	"	
S FLR (7A05010-03) Soil									
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	i	EA70805	01/08/07	01/08/07	EPA 8015M	
Carbon Ranges C12-C28	835	10.0	н	"		п	"	II	
Carbon Ranges C28-C35	165	10.0	n	"	n	rr	11	11	
Total Hydrocarbons	1000	10.0	11	"	Ħ	**	n	tt .	
Surrogate: 1-Chlorooctane		96.0 %	70-13	30	"	"	,,	"	
Surrogate: 1-Chlorooctadecane		107 %	70-13	30	"	"	"	"	

Project: East Shell North

Project Number: 2000-10615
Project Manager: Camille Reynolds

Fax: (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
N FLR (7A05010-01) Soil									
% Moisture	8.3	0.1	%	1	EA70903	01/08/07	01/09/07	% calculation	
MID FLR (7A05010-02) Soil									
% Moisture	5.7	0.1	%	1	EA70903	01/08/07	01/09/07	% calculation	
S FLR (7A05010-03) Soil							•		
% Moisture	11.7	0.1	%	1	EA70903	01/08/07	01/09/07	% calculation	

Project: East Shell North
Project Number: 2000-10615
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

	D 1	Reporting		Spike	Source	a (ppė	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EA70805 - Solvent Extraction (GC)										
Blank (EA70805-BLK1)				Prepared &	Analyzed:	01/08/07				
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	"							
Carbon Ranges C28-C35	ND	10.0	"							
Total Hydrocarbons	ND	10.0	"							
Surrogate: 1-Chlorooctane	38.5		mg/kg	50.0		77.0	70-130			
Surrogate: 1-Chlorooctadecane	41.0		"	50.0		82.0	70-130			
LCS (EA70805-BS1)				Prepared &	Analyzed:	01/08/07				
Carbon Ranges C6-C12	556	10.0	mg/kg wet			- 17	75-125			
Carbon Ranges C12-C28	454	10.0	н				75-125			
Carbon Ranges C28-C35	ND	10.0	**				75-125			
Total Hydrocarbons	1010	10.0	u				75-125			
Surrogate: 1-Chlorooctane	53.3		mg/kg	50.0		107	70-130			
Surrogate: 1-Chlorooctadecane	42.5		"	50.0		85.0	70-130			
Calibration Check (EA70805-CCV1)				Prepared &	Analyzed:	01/08/07				
Carbon Ranges C6-C12	255		mg/kg	250		102	80-120			
Carbon Ranges C12-C28	295		**	250		118	80-120			
Total Hydrocarbons	549		"	500		110	80-120			
Surrogate: 1-Chlorooctane	59.0		"	50.0		118	70-130			
Surrogate: 1-Chlorooctadecane	54.3		"	50.0		109	70-130			
Matrix Spike (EA70805-MS1)	Sou	rce: 7A05011	1-05	Prepared &	Analyzed:	01/08/07				
Carbon Ranges C6-C12	629	10.0	mg/kg dry	511	ND	123	75-125			
Carbon Ranges C12-C28	598	10.0	n	511	69.9	103	75-125			
Carbon Ranges C28-C35	5.08	10.0	u	0.00	2.64		75-125			
Total Hydrocarbons	1230	10.0	"	1020	69.9	114	75-125			
Surrogate: 1-Chlorooctane	65.0		mg/kg	50.0		130	70-130			
Surrogate: 1-Chlorooctadecane	57.4		. "	50.0		115	70-130			

Project: East Shell North

Project Number: 2000-10615 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EA70805 - Solvent Extraction (GC)										
Matrix Spike Dup (EA70805-MSD1)	Sou	rce: 7A05011	1-05	Prepared: (01/08/07 Ai	nalyzed: 01	/09/07			
Carbon Ranges C6-C12	623	10.0	mg/kg dry	511	ND	122	75-125	0.816	20	
Carbon Ranges C12-C28	596	10.0	*r	511	69.9	103	75-125	0.00	20	
Carbon Ranges C28-C35	3.35	10.0	"	0.00	2.64		75-125		20	
Total Hydrocarbons	1220	10.0	H	1020	69.9	113	75-125	0.881	20	
Surrogate: 1-Chlorooctane	63.7		mg/kg	50.0		127	70-130		,	
Surrogate: 1-Chlorooctadecane	55.3		"	50.0		111	70-130			
Batch EA70806 - EPA 5030C (GC)										
Blank (EA70806-BLK1)				Prepared &	& Analyzed:	01/08/07				
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	"							
Ethylbenzene	ND	0.0250	"							
Xylene (p/m)	ND	0.0250	"							
Xylene (o)	ND	0.0250	**							
Surrogate: a,a,a-Trifluorotoluene	43.8		ug/kg	40.0		110	80-120			
Surrogate: 4-Bromofluorobenzene	36.9		n	40.0		92.2	80-120			
LCS (EA70806-BS1)				Prepared &	& Analyzed:	01/08/07				
Benzene	1.47	0.0250	mg/kg wet	1.25		118	80-120			
Toluene	1.43	0.0250	**	1.25		114	80-120			
Ethylbenzene	1.34	0.0250	"	1.25		107	80-120			
Xylene (p/m)	2.65	0.0250	11	2.50		106	80-120			
Xylene (o)	1.26	0.0250	п	1.25		101	80-120			
Surrogate: a,a,a-Trifluorotoluene	45.6		ug/kg	40.0		114	80-120		***************************************	
Surrogate: 4-Bromofluorobenzene	36.6		"	40.0		91.5	80-120			

Project: East Shell North

Project Number: 2000-10615

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

							•			
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD .	Limit	Notes
Batch EA70806 - EPA 5030C (GC)										
Calibration Check (EA70806-CCV1)				Prepared: ()1/08/07 A	.nalyzed: 01	/09/07			
Benzene	59.2		ug/kg	50.0		118	80-120			
Toluene	59.4		"	50.0		119	80-120			
Ethylbenzene	56.4		"	50.0		113	80-120			
Xylene (p/m)	109		11	100		109	80-120			
Xylene (o)	56.6		"	50.0		113	80-120			
Surrogate: a,a,a-Trifluorotoluene	46.7		"	40.0		117	80-120			
Surrogate: 4-Bromofluorobenzene	45.2		"	40.0		113	80-120			
Matrix Spike (EA70806-MS1)	Sour	ce: 7A05010)-01	Prepared: (01/08/07 A	nalyzed: 01	/09/07			
Benzene	1.38	0.0250	mg/kg dry	1.36	ND	101	80-120			
Coluene .	1.49	0.0250	"	1.36	ND	110	80-120			
Ethylbenzene	1.63	0.0250	"	1.36	ND	120	80-120			
Xylene (p/m)	3.00	0.0250	"	2.73	ND	110	80-120			
Xylene (o)	1.45	0.0250	"	1.36	ND	107	80-120			
Surrogate: a,a,a-Trifluorotoluene	40.7		ug/kg	40.0		102	80-120	•		
Surrogate: 4-Bromofluorobenzene	39.2		"	40.0		98.0	80-120			
Matrix Spike Dup (EA70806-MSD1)	Sour	ce: 7A05010)-01	Prepared: (01/08/07 A	nalyzed: 01	/09/07			
Benzene	1.40	0.0250	mg/kg dry	1.36	ND	103	80-120	1.96	20	
Toluene	1.49	0.0250	11	1.36	ND	110	80-120	0.00	20	
Ethylbenzene	1.58	0.0250	Ħ	1.36	ND	116	80-120	3.39	20	
Xylene (p/m)	2.97	0.0250	**	2.73	ND	109	80-120	0.913	20	
Xylene (o)	1.49	0.0250	**	1.36	ND	110	80-120	2.76	20	
Surrogate: a,a,a-Trifluorotoluene	41.5		ug/kg	40.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	45.6		#	40.0		114	80-120			

Plains All American EH & S

Project: East Shell North

Fax: (432) 687-4914

1301 S. County Road 1150 Midland TX, 79706-4476

Project Number: 2000-10615

Project Manager: Camille Reynolds

General Chemistry Parameters by EPA / Standard Methods - Quality Control **Environmental Lab of Texas**

	D 1.	Reporting	** **	Spike	Source	A/DEG	%REC	222	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EA70903 - General Preparation (Prep)							w			
Blank (EA70903-BLK1)				Prepared: 0	1/08/07 A	nalyzed: 01	/09/07			
% Solids	100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	%							
Duplicate (EA70903-DUP1)	Sour	ce: 7A05010-	01	Prepared: 0)1/08/07 A	nalyzed: 01	/09/07			
% Solids	91.9		%		91.7			0.218	20	
Duplicate (EA70903-DUP2)	Sour	ce: 7A08004-	06	Prepared: ()1/08/0 7 A	nalyzed: 01	/09/07			
% Solids	88.3		%		94.6			6.89	20	

Project: East Shell North
Project Number: 2000-10615

Project Number: 2000-10615
Project Manager: Camille Reynolds

Notes and Definitions

Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag) Analyte DETECTED DET Analyte NOT DETECTED at or above the reporting limit ND NR Not Reported Sample results reported on a dry weight basis dry RPD Relative Percent Difference LCS Laboratory Control Spike MS Matrix Spike Duplicate Dup

	Kaland KJulis		
Report Approved By:	Caaran C 110	Date:	1/10/2007

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Fax: (432) 687-4914

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765

Phone: 432-563-1800 Fax: 432-563-1713

□ NPDES TAT HZUS (Pre-Schedule) 24, 48, 72 hrs Ò (v) TRRP A.O.R.M. Project Name: EAST SHELL NORTH 3CI Temperature Upor Receipt: × BTEX 8021B/5030 or BTEX 8260 × PO #: PAA - C. J. Reynolds Sample Containers Intact VOCs Free of Headspace Labels on container(s) Custody seals on contain Custody seals on cooler(Laboratory Comments Project Loc: Lea County, NM Project #: 2000-10615 X Standard Netels: As Ag Ba Cd Ct Pb Hg Se y Courier? TCLP: SAR / ESP / CEC mions (Cl. SO4, Alkalimity) (Ca, Mg, Na, K) Report Format: 9001 XJ 3.5 (a. 20) ime ROLDS MS108 1,814 HH × × SOIL SO SOIL = MO 1.5.07 2 Date M. Drinking Water SL-Siudg Other (Specify) jwalters@basinenv.com ^CO₂S₂EN HOEN **°**ОЅ^ѐН (505) 396-1429 НСІ ^{\$}ONH otal #, of Containers benetliii blei e-mail: Fax No: 1415 1430 1400 balgma2 amiT 5 Received by EL QT 91 OF 4-Jan-07 4-Jan-07 4-Jan-07 Basin Environmental Service Technologies, LLC Date Sampled PAGE 8:13 guqing Depth NOTE: RUN BTEX ANALYSIS IF TPH IS <100 PPM Jime Beginning Depth んながら Date Date Lovington, NM 89260 (505) 441-3307 Kenneth Cody P. O. Box 301 FIELD CODE MID FLR N FLR SFLR LAOROCO Sampler Signature: Company Address: Project Manager: Company Name Telephone No: City/State/Zip: Special Instructions: ORDER #: Religquished by (leb use only) S S (Ajuo asn dei) # AA $\overline{\Diamond}$

TAT brebnet2

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

		ie Log-ir	ort- Samp	variance/ Corrective Action Rep	
				<u>Pluns</u>	Client:
				115/07 16:30	Date/
				7A05010	Lab II
				(K	Initials
			Checklist	Sample Receipt	
tials	So °C	- NI-	Van	value of contained analysis	44 7
	30 °C	No	Yes	rature of container/ cooler? ng container in good condition?	
	Not Decod	No	≱es Veo	ly Seals intact on shipping container/ cooler?	
	Not Present	No No	Yes	ly Seals intact on sample bottles/ container?	
_	Not Present		¥ês	of Custody present?	
_		No No	¥68 ¥68		
		No No	¥ 9 5 ¥€s	e instructions complete of Chain of Custody?	
	5		1	of Custody signed when relinquished/ received? of Custody agrees with sample label(s)?	
-	D written on Cont./ Lid	No	Yes		
	Not Applicable	No	Yes	ner label(s) legible and intact?	
		No	Yes	le matrix/ properties agree with Chain of Custody?	
_		No	Xes	iners supplied by ELOT?	
	See Below	No.	Yes	les in proper container/ bottle?	
	See Below	No_	Yes	les properly preserved?	
		No No	Yes,	le bottles intact?	
		No	Yes	rvations documented on Chain of Custody?	
	0 5-1	No	Yes	iners documented on Chain of Custody?	
	See Below	No	Yes	ient sample amount for indicated test(s)?	
	The state of the s			The state of the s	
	Not Applicable	No	X-es	samples have zero headspace?	#20
			nentation	Variance Docum	
	Date/ Time:			Contacted by:	Conta
				-	
					Regar
			-		
				Action Taken:	Corre
	·	····			
				of Apply: See attached a mail! for	C h=='
	alveie	ead with	t like to oroc	***	oneci
	-		-		
	alysis		d like to prod	Contacted by:	#19 #20 Conta Regar

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: East Shell North Project Number: 2000-10615 Location: Clay Osborn Ranch

Lab Order Number: 7A12026

Report Date: 01/18/07

Project: East Shell North

Project Number: 2000-10615 Project Manager: Camille Reynolds Fax: (432) 687-4914

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
ESN- NW	7A12026-01	Soil	01/11/07 12:00	01-12-2007 16:30
ESN- EW	7A12026-02	Soil	01/11/07 12:05	01-12-2007 16:30
ESN- WW	7A12026-03	Soil	01/11/07 12:10	01-12-2007 16:30
ESN- SW	7A12026-04	Soil	01/11/07 12:15	01-12-2007 16:30
ESN- 2WF1	7A12026-05	Soil	01/11/07 12:20	01-12-2007 16:30

Project: East Shell North
Project Number: 2000-10615
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC . Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	por el-	D1	D 1	A	M.d. I	
•	Resuit	Linut	Omts	Dilution	Batch	Prepared	Analyzed	Method	Notes
ESN- NW (7A12026-01) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EA71504	01/15/07	01/16/07	EPA 8021B	
Toluene	ND	0.0250	"	и	"	n	**	н	
Ethylbenzene	ND	0.0250	"	11	"	W	u u	n	
Xylene (p/m)	ND	0.0250	"	"	"	**	**	11	
Xylene (o)	ND	0.0250		**	. "	**	**		
Surrogate: a,a,a-Trifluorotoluene		94.0 %	80-1	20	"	"	"	•	
Surrogate: 4-Bromofluorobenzene		110 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EA71509	01/15/07	01/17/07	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	II .	**	п	**	**	st.	
Carbon Ranges C28-C35	ND	10.0	н	**	"	n	n	п	
Total Hydrocarbons	ND	10.0	. "	17	,,,,,,	н	w	It	
Surrogate: 1-Chlorooctane		99.6 %	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		98.4 %	70-1	130	n	"	"	"	
-								•	
ESN- EW (7A12026-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EA71504	01/15/07	01/15/07	EPA 8021B	
Toluene	ND	0.0250	"	11	"	"	и	**	
Ethylbenzene	ND	0.0250	"	11	"	**	11	"	
Xylene (p/m)	' ND	0.0250	"	11		11	n	"	
Xylene (o)	ND	0.0250	"	п	**	**	"	n	
Surrogate: a,a,a-Trifluorotoluene		93.8 %	80-1	120	"	,,	"	"	
Surrogate: 4-Bromofluorobenzene		98.0 %	80-1	120	n	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EA71509	01/15/07	01/17/07	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	31	n	u	11	н	
Carbon Ranges C28-C35	ND	10.0	"	н	ч	"	н	п	
Total Hydrocarbons	ND	10.0	**	н	u	"	"	**	
Surrogate: 1-Chlorooctane		124 %	70-1	130	n	"	"	"	
Surrogate: 1-Chlorooctadecane		124 %	70-1	130	n	n	"	"	
ESN- WW (7A12026-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EA71504	01/15/07	01/15/07	EPA 8021B	
Toluene	ND	0.0250	"	"	"	"	u	"	
Ethylbenzene	ND	0.0250		11	"	"	**	n	
Xylene (p/m)	ND ND	0.0250	"	11	"	11	н	"	
Xylene (p/iii) Xylene (o)	, ND	0.0250	11	**	"	п	"	"	
	, ND	93.8 %	80-	120	,,		"	"	
Surrogate: a,a,a-Trifluorotoluene		97.5 %	80-		,,	"	"	,,	
Surrogate: 4-Bromofluorobenzene	217				" E 4 7 1 5 0 0				
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EA71509	01/15/07	01/17/07	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project Number: 2000-10615
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

Anglista	Dowlt	Reporting	Tluita			_			
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
ESN- WW (7A12026-03) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EA71509	01/15/07	01/17/07	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	"	"	ń	11	"	n,	
Total Hydrocarbons	ND	10.0	"	"	"	"	"	"	
Surrogate: 1-Chlorooctane		122 %	70-1	30	"	"	"	n	
Surrogate: 1-Chlorooctadecane		118 %	70-1	30	"	"	"	"	
ESN- SW (7A12026-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EA71504	01/15/07	01/15/07	EPA 8021B	
Toluene	ND	0.0250	"	"	"	**	11	11	
Ethylbenzene	ND	0.0250	11		•	**	11	11	
Xylene (p/m)	ND	0.0250	11		**	**	n	ú	
Xylene (o)	ND	0.0250	н	"	**	н	It.	н	
Surrogate: a,a,a-Trifluorotoluene		84.8 %	80-1	20	n	"	n	n	
Surrogate: 4-Bromofluorobenzene		86.5 %	80-1	20	,,	"	"	n	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EA71509	01/15/07	01/17/07	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	п	н	"	11	11	"	
Carbon Ranges C28-C35	ND	10.0	11	u	**	II.	"	и	
Total Hydrocarbons	ND	10.0	n	"	**	**	II.	"	
Surrogate: 1-Chlorooctane		115 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		111 %	70-1	30	n	,	"	"	
ESN- 2WF1 (7A12026-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EA71504	01/15/07	01/15/07	EPA 8021B	
Toluene	ND	0.0250	**	н	п	n	н	n	
Ethylbenzene	ND	0.0250	**	"		"	"	11	
Xylene (p/m)	ND	0.0250	*	"	R	11	н	н	
Xylene (o)	ND	0.0250	n	11	11	п	и	Ü	
Surrogate: a,a,a-Trifluorotoluene		95.2 %	80-1	20	,,	"	"	"	-
Surrogate: 4-Bromofluorobenzene		110 %	80-1	20	"	n	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EA71510	01/15/07	01/17/07	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	11	н	11	"	n	
Carbon Ranges C28-C35	ND	10.0	**	11	п	u .	"	Ü	
Total Hydrocarbons	ND	10.0	**	"	и	н	72	11	•
Surrogate: 1-Chlorooctane		104 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		108 %	70-1	30	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: East Shell North

Project Number: 2000-10615

Project Manager: Camille Reynolds

Fax: (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
ESN- NW (7A12026-01) Soil								······································	
% Moisture	3.6	0.1	%	1	EA71607	01/15/07	01/16/07	% calculation	
ESN- EW (7A12026-02) Soil									
% Moisture	5.4	0.1	%	ı	EA71607	01/15/07	01/16/07	% calculation	
ESN- WW (7A12026-03) Soil									
% Moisture	6.8	0.1	%	1	EA71607	01/15/07	01/16/07	% calculation	
ESN- SW (7A12026-04) Soil									
% Moisture	4.7	0.1	%	1	EA71607	01/15/07	01/16/07	% calculation	
ESN- 2WF1 (7A12026-05) Soil								,	
% Moisture	5.0	0.1	%	1	EA71607	01/15/07	01/16/07	% calculation	

Project: East Shell North Project Number: 2000-10615

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EA71504 - EPA 5030C (GC)										
Blank (EA71504-BLK1)				Prepared &	k Analyzed	: 01/15/07				
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	11							
Ethylbenzene	ND	0.0250	ij							
Xylene (p/m)	ND	0.0250	и							
Xylene (o)	ND	0.0250	19							
Surrogate: a,a,a-Trifluorotoluene	40.0		ug/kg	40.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	44.7		"	40.0		112	80-120			
LCS (EA71504-BS1)				Prepared &	k Analyzed	: 01/15/07				
Benzene	1.27	0.0250	mg/kg wet	1.25	-	102	80-120			
Toluene	1.24	0.0250	**	1.25		99.2	80-120			
Ethylbenzene	1.22	0.0250	**	1.25		97.6	80-120			
Kylene (p/m)	2.41	0.0250	**	2.50		96.4	80-120			
Xylene (o)	1.15	0.0250	**	1.25		92.0	80-120			
Surrogate: a,a,a-Trifluorotoluene	35.2		ug/kg	40.0		88.0	80-120			
Surrogate: 4-Bromofluorobenzene	40.8		"	40.0		102	80-120		•	
Calibration Check (EA71504-CCV1)				Prepared &	k Analyzed	: 01/15/07				
Benzene	50.8		ug/kg	50.0		102	80-120			
Foluene Foluene	48.2		"	50.0		96.4	80-120			
Ethylbenzene	48.7		**	50.0		97.4	80-120			
Xylene (p/m)	90.5		"	100		90.5	80-120			
Xylene (o)	43.3		11	50.0		86.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	35.6		n	40.0		89.0	80-120			
Surrogate: 4-Bromofluorobenzene	36.2		"	40.0		90.5	80-120			
Matrix Spike (EA71504-MS1)	Sou	rce: 7A12020	5-02	Prepared:	01/15/07 A	nalyzed: 01	/16/07			
Benzene	1.17	0.0250	mg/kg dry	1.32	ND	88.6	80-120			
Toluene	1.17	0.0250	**	1.32	ND	88.6	80-120			
Ethylbenzene	1.43	0.0250	**	1.32	ND	108	80-120			
Xylene (p/m)	2.31	0.0250	н	2.64	ND	87.5	80-120			
Xylene (o)	1.08	0.0250	13	1.32	ND	81.8	80-120			
Surrogate: a,a,a-Trifluorotoluene	38.4	• • • • • • • • • • • • • • • • • • • •	ug/kg	40.0		96.0	80-120			

Surrogate: 4-Bromofluorobenzene

80-120

40.0

47.5

Project: East Shell North Project Number: 2000-10615

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EA71504 - EPA 5030C (GC)					•					-
Matrix Spike Dup (EA71504-MSD1)	Sou	rce: 7A12026	5-02	Prepared: (01/15/07 Aı	nalyzed: 01	/16/07			
Benzene	1.27	0.0250	mg/kg dry	1.32	ND	96.2	80-120	8.23	20	
Toluene	1.29	0.0250	n	1.32	ND	97.7	80-120	9.77	. 20	
Ethylbenzene	1.59	0.0250	11	1.32	ND	120	80-120	10.5	20	
Xylene (p/m)	2.55	0.0250	и с	2.64	ND	96.6	80-120	9.89	20	
Xylene (o)	1.23	0.0250	п	1.32	ND	93.2	80-120	13.0	20	
Surrogate: a,a,a-Trifluorotoluene	33.3		ug/kg	40.0		83.2	80-120			
Surrogate: 4-Bromofluorobenzene	42.5		"	40.0		106	80-120			
Batch EA71509 - Solvent Extraction (GC)										
Blank (EA71509-BLK1)	Prepared: 01/15/07 Analyzed: 01/17/07									
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	"							
Carbon Ranges C28-C35	ND	10.0	н							
Total Hydrocarbons	ND	10.0								
Surrogate: 1-Chlorooctane	49.4		mg/kg	. 50.0		98.8	70-130			
Surrogate: 1-Chlorooctadecane	48.3		. "	50.0		96.6	70-130			
LCS (EA71509-BS1)				Prepared: (01/15/07 Aı	nalyzed: 01	/17/07			
Carbon Ranges C6-C12	561	10.0	mg/kg wet	500		-112	75-125			
Carbon Ranges C12-C28	473	10.0	**	500		94.6	75-125			
Carbon Ranges C28-C35	ND	10.0	**	0.00			75-125			
Total Hydrocarbons	1030	10.0	**	1000		103	75-125			
Surrogate: 1-Chlorooctane	58.4		mg/kg	50.0		117	70-130			
Surrogate: 1-Chlorooctadecane	49.5	•	"	50.0		99.0	70-130			
Calibration Check (EA71509-CCV1)				Prepared: ()1/15/07 Aı	nalyzed: 01	/17/07			
Carbon Ranges C6-C12	228		mg/kg	250		91.2	80-120			
Carbon Ranges C12-C28	251		"	250		100	80-120			
Total Hydrocarbons	479		'n	500		95.8	80-120			
Surrogate: 1-Chlorooctane	51.3		"	50.0		103	70-130			
Surrogate: 1-Chlorooctadecane	47.1		n	50.0		94.2	70-130			

Project: East Shell North

Project Number: 2000-10615

Reporting

591

487

ND

1080

55.7

54.7

10.0

10.0

10.0

10.0

mg/kg wet

mg/kg

Project Manager: Camille Reynolds

Fax: (432) 687-4914

RPD

%REC

Organics by GC - Quality Control Environmental Lab of Texas

Spike

Source

Prepared: 01/15/07 Analyzed: 01/16/07

118

97.4

108

111

109

500

500

0.00

1000

50.0

50.0

75-125

75-125

75-125

75-125

70-130

70-130

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch EA71509 - Solvent Extraction (GC)							w				
Matrix Spike (EA71509-MS1)	Sour	ce: 7A12026	5-04	Prepared: (ed: 01/15/07 Analyzed: 01/17/07						
Carbon Ranges C6-C12	639	10.0	mg/kg dry	525	ND	122	75-125				
Carbon Ranges C12-C28	534	10.0	11	525	ND	102	75-125				
Carbon Ranges C28-C35	ND	· 10.0	11	0.00	ND		75-125				
Total Hydrocarbons	1170	10.0	ш	1050	ND	111	75-125				
Surrogate: 1-Chlorooctane	62.5		mg/kg	50.0		125	70-130				
Surrogate: 1-Chlorooctadecane	62.5		"	50.0		125	70-130				
Matrix Spike Dup (EA71509-MSD1)	Sour	ce: 7A12026	5-04	Prepared: (01/15/07	Analyzed: 01	/17/07				
Carbon Ranges C6-C12	632	10.0	mg/kg dry	525	ND	120	75-125	1.65	20		
Carbon Ranges C12-C28	509	10.0	н	525	ND	97.0	75-125	5.03	20		
Carbon Ranges C28-C35	ND	10.0	п	0.00	ND		75-125		20		
Total Hydrocarbons	1140	10.0	. "	1050	ND	109	75-125	1.82	20		
Surrogate: 1-Chlorooctane	51.1		mg/kg	50.0		102	70-130				
Surrogate: 1-Chlorooctadecane	52.1		"	50.0		104	70-130				
Batch EA71510 - Solvent Extraction (GC)											
Blank (EA71510-BLK1)				Prepared: (01/15/07	Analyzed: 01	/17/07				
Carbon Ranges C6-C12	ND	10.0	mg/kg wet	-	-						
Carbon Ranges C12-C28	ND	10.0	и								
Carbon Ranges C28-C35	ND	10.0	n								
Total Hydrocarbons	ND	10.0	"								
Surrogate: 1-Chlorooctane	45.5		mg/kg	50.0		91.0	70-130				
Surrogate: 1-Chlorooctadecane	49.4		"	50.0		98.8	70-130				

LCS (EA71510-BS1)

Carbon Ranges C6-C12

Carbon Ranges C12-C28

Carbon Ranges C28-C35

Surrogate: 1-Chlorooctane

Surrogate: 1-Chlorooctadecane

Total Hydrocarbons

Project: East Shell North

Project Number: 2000-10615 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EA71510 - Solvent Extraction (GC)										
Calibration Check (EA71510-CCV1)				Prepared &	k Analyzed	: 01/15/07				
Carbon Ranges C6-C12	231		mg/kg	250		92.4	80-120			
Carbon Ranges C12-C28	286		п	250		114	80-120			
Total Hydrocarbons	517		"	500		103	80-120			
Surrogate: 1-Chlorooctane	53.0		"	50.0		106	70-130			
Surrogate: 1-Chlorooctadecane	50.4		"	50.0		101	70-130			
Matrix Spike (EA71510-MS1)	Sou	rce: 7A12026	5-05	Prepared:	01/15/07 A	nalyzed: 01	/17/07			
Carbon Ranges C6-C12	620	10.0	mg/kg dry	526	ND	118	75-125			
Carbon Ranges C12-C28	501	10.0	n	526	ND	95.2	75-125			
Carbon Ranges C28-C35	ND	10.0	11	0.00	ND		75-125			
Total Hydrocarbons	1120	10.0	11	1050	ND	107	75-125			
Surrogate: 1-Chlorooctane	62.6		mg/kg	50.0		125	70-130		-	
Surrogate: 1-Chlorooctadecane	58.7		"	50.0		117	70-130			
Matrix Spike Dup (EA71510-MSD1)	Sou	ırce: 7A12026	5-05	Prepared:	01/15/07 A	nalyzed: 01	/17/07			
Carbon Ranges C6-C12	651	10.0	mg/kg dry	526	ND	124	75-125	4.96	20	
Carbon Ranges C12-C28	518	10.0	n	526	ND	98.5	75-125	3.41	20	
Carbon Ranges C28-C35	ND	10.0	11	0.00	ND		75-125		20	
Total Hydrocarbons	1170	10.0	н	1050	ND	111	75-125	3.67	20	
Surrogate: 1-Chlorooctane	63.1		mg/kg	50.0		126	70-130			
Surrogate: 1-Chlorooctadecane	64.6		"	50.0		129	70-130			

Plains All American EH & S 1301 S. County Road 1150

Midland TX, 79706-4476

Project: East Shell North

Project Number: 2000-10615

Project Manager: Camille Reynolds

Fax: (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EA71607 - General Preparation (Prep)	Kosait		C.11to			·	2			. 10003
Blank (EA71607-BLK1)				Prepared: 0	01/15/07 A	Analyzed: 01	/16/07			
% Solids	99.8		%							
Duplicate (EA71607-DUP1)	Sou	rce: 7A12022-	01	Prepared: 0)1/15/07 <i>A</i>	Analyzed: 01	/16/07			
% Solids	96.4		%		94.6			1.88	20	
Duplicate (EA71607-DUP2)	Sou	rce: 7A12022-	32	Prepared: 0)1/15/07 <i>A</i>	Analyzed: 01	/16/07			
% Solids	95.2		%		95.1			0.105	20	
Duplicate (EA71607-DUP3)	Sou	rce: 7A12024-	20	Prepared: 0)1/15/07 A	Analyzed: 01	/16/07			
% Solids	97.7		%		97.8		,	0.102	20	
Duplicate (EA71607-DUP4)	Sou	rce: 7A12027-	12	Prepared: 0	01/15/07 A	Analyzed: 01	/16/07			
% Solids	92.4		%		92.0			0.434	20	
Duplicate (EA71607-DUP5)	Sou	rce: 7A15002-	03	Prepared: 0	01/15/07 A	Analyzed: 01	/16/07			
% Solids	83.9		%		85.9			2.36	20	

Duplicate

Dup

Project: East Shell North

Project Number: 2000-10615 Project Manager: Camille Reynolds Fax: (432) 687-4914

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Report Approved By:	Kaland KJilus	Date:	1/18/2007

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East

(and son container(s)

Custody seals on container(s) TAT brebnet2 Sample Conditions Intertion (1) No. (1) No. (1) No. (1) No. (1) No. (2) No. (2) No. (3) No. (4) No. (4) No. (5) No. (6) No. (6 Custody seals on container(s)

Custody seals on container(s)

Supplier Hand Delivered

By Sampler Client Rep. ?

Cy N

by Courier?

UPS DHL FedEx Lone Star □ NPDES SUSH TAT (Pre-Schodula) 24, 48, 72 hrs. East Shell North € 2000 - 10615 Phone: 432-563-1800 Fax: 432-563-1713 TRRP M.A.O.M Caraca КCI OTEX 80218/8030 or BTEX 8260 Setti/slovima3 Analyze Standard Project Loc: (//cx Metals: As Ag Ba Cd Ct Pb Hg Se TOLP: 330 / E\$B / CEC Anions (CI, SO4, Alkalinity) Project Name: Project #: PO #; Cations (Ca, Mg, Na, K) Report Format: 9001 XL TX 1005 E 86108 (NEIDB) 1.814 HST -yk(ſ Keen Dodgens com Date Date Date Officer (Specify) Mone Odessa, Texas 79765 Preservation & # of Contain COSSSN HOSN OSZH ЮН PONH əcj ¥ > fotal #, of Containers benefit? blei e-mail: Fax No: 1210 1200 (215 10 Time Sampled ĺη 1-0 Received by ELOT Received by: Received by Date Sampled Ending Depth 1230 aw Time Beginning Detth Date FIELD CODE Sampler Signature; Company Address: バルントの製 アンシーグツ 15.W - W.W. 15/11 - 5W Project Manager: Company Name Telephone No: City/State/Zip: Special Instructions: Relinquished by Relinquished by (lab use only) ORDER #: (ying eeu dei) # 6A

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

Plana		_		
ent: MYB		•		
te/ Time: 1/12/07 10:30				
01D#: <u>TA120ZG</u>				
nals:				,
idis.				
Sample Receipt	Checklist			
			CI	ient Initials
Temperature of container/ cooler?	Yes	No	-(0 °C	
Shipping container in good condition?	Yes	No		
Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present	
Custody Seals intact on sample bottles/ container?	Yes	No	Not Present	
Chain of Custody present?	Yes	No		
Sample instructions complete of Chain of Custody?	¥e3	No		
Chain of Custody signed when relinquished/ received?	Yes	No ·		
Chain of Custody agrees with sample label(s)?	(Xes	No	ID written on Cont./ Lid	
Container label(s) legible and intact?	¥es	No	Not Applicable	
O Sample matrix/ properties agree with Chain of Custody?	\\Xes	No		
1 Containers supplied by ELOT?	Yes	No		
2 Samples in proper container/ bottle?	Xes .	No	See Below	
3 Samples properly preserved?	Yes	No	See Below	
4 Sample bottles intact?	Y98	No		
5 Preservations documented on Chain of Custody?	*es	No		
6 Containers documented on Chain of Custody?	Yes	No		
7 Sufficient sample amount for indicated test(s)?	Yes .	No	See Below	
8 All samples received within sufficient hold time?	Yes	No	See Below	
9 Subcontract of sample(s)?	Yes	No	Not Applicable	
0 VOC samples have zero headspace?	/Yes	No	Not Applicable	
Variance Docum	mentation		Data / Times	
ntact: Contacted by:			Date/ Time:	
garding				
garding:				·
overative Action Takon				
orrective Action Taken:				
	· · · · · · · · · · · · · · · · · · ·			
heck all that Apply: See attached e-mail/ fax				
heck all that Apply: See attached e-mail/ fax Client understands and wou	ald like to proc	eed with	analysis	

A Xenco Laboratories, Inc. Company

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: East Shell North Project Number: 2000-10615 Location: Clay Osborn Ranch

Lab Order Number: 7A18004

Report Date: 01/25/07

Plains All American EH & S 1301 S. County Road 1150 Project: East Shell North

Fax: (432) 687-4914

Midland TX, 79706-4476

Project Number: 2000-10615 Project Manager: Camille Reynolds

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
ESN-LFSP	7A18004-01	Soil	01/18/07 09:40	01-18-2007 14:25

Project: East Shell North
Project Number: 2000-10615

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
ESN-LFSP (7A18004-01) Soil									
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EA71902	01/19/07	01/20/07	EPA 8015M	-
Carbon Ranges C12-C28	87.5	10.0	**	u	Ħ	11	н	#	
Carbon Ranges C28-C35	13.4	10.0	11	11	п	**	"	"	
Total Hydrocarbons	101	10.0	**	п	n ·	**	п	te.	
Surrogate: 1-Chlorooctane		91.8 %	70-1.	30	"	"	n	"	
Surrogate: 1-Chlorooctadecane		93.8 %	70-1.	30	n	"	"	"	

Plains All American EH & S 1301 S. County Road 1150 Project: East Shell North

Fax: (432) 687-4914

Midland TX, 79706-4476

Project Number: 2000-10615 Project Manager: Camille Reynolds

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
ESN-LFSP (7A18004-01) Soil									
% Moisture	5.6	0.1	%	1	EA71901	01/18/07	01/19/07	% calculation	

Project: East Shell North Project Number: 2000-10615

Project Number: 2000-10615

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Volatile Organic Compounds by EPA Method 8260B Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
ESN-LFSP (7A18004-01) Soil									
Benzene	ND	0.00200	mg/kg dry	2	EA72303	01/23/07	01/23/07	EPA 8260B	
Toluene	ND	0.00200	**	н	и	"	*	п	
Ethylbenzene	ND	0.00200	n	**	11	tt.	n		
Xylene (p/m)	ND	0.00200	п	**	*	**	n	D.	
Xylene (o)	ND	0.00200	•	11	**	**	H.	11	
Surrogate: Dibromofluoromethane		110 %	70-1	39	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		104 %	52-1	49	"	"	n	· <i>n</i>	
Surrogate: Toluene-d8		99.6 %	76-1	25	"	"	<i>n</i>	"	
Surrogate: 4-Bromofluorobenzene		114 %	66-1	45	"	n	"	•	

Project: East Shell North

Project Number: 2000-10615 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control

Environmental Lab of Texas

I		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EA71902 - Solvent Extraction (GC)										
Blank (EA71902-BLK1)				Prepared: (01/19/07 A	nalyzed: 01	/20/07			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	u							
Carbon Ranges C28-C35	ND	10.0	н							
Total Hydrocarbons	ND	10.0	"							
Surrogate: 1-Chlorooctane	53.2		mg/kg	50.0		106	70-130			
Surrogate: 1-Chlorooctadecane	54.2		,,	50.0		108	70-130			
LCS (EA71902-BS1)				Prepared: (01/19/07 A	nalyzed: 01	/21/07			
Carbon Ranges C6-C12	505	10.0	mg/kg wet	500		101	75-125			
Carbon Ranges C12-C28	404	10.0	"	500		80.8	75-125			
Carbon Ranges C28-C35	ND	10.0	"	0.00			75-125			
Total Hydrocarbons	909	10.0	"	1000		90.9	75-125			
Surrogate: 1-Chlorooctane	55.0		mg/kg	50.0		110	70-130			
Surrogate: 1-Chlorooctadecane	39.3		"	50.0		78.6	70-130			
Calibration Check (EA71902-CCV1)				Prepared: (01/19/0 7 A	nalyzed: 01	/20/07			
Carbon Ranges C6-C12	272		mg/kg	250		109	80-120			
Carbon Ranges C12-C28	274		"	250		110	80-120			
Total Hydrocarbons	546		"	500		109	80-120			
Surrogate: 1-Chlorooctane	60.9		"	50.0		122	70-130			
Surrogate: 1-Chlorooctadecane	53.1		n	50.0		106	70-130			
Matrix Spike (EA71902-MS1)	Sou	rce: 7A18002	2-02	Prepared: (01/19/07 A	nalyzed: 01	/20/07			
Carbon Ranges C6-C12	573	10.0	mg/kg dry	515	ND	111	75-125			
Carbon Ranges C12-C28	462	10.0	11	515	ND	89.7	75-125			
Carbon Ranges C28-C35	ND	10.0	"	0.00	ND		75-125			
Total Hydrocarbons	1040	10.0	*	1030	ND	101	75-125			
Surrogate: 1-Chlorooctane	57.5		mg/kg	50.0		115	70-130			
Surrogate: 1-Chlorooctadecane	47.6		"	50.0		95.2	70-130			

Project: East Shell North

Project Number: 2000-10615 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control

Environmental Lab of Texas

	Reporting			Spike	Source		%REC	RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EA71902 - Solvent Extraction (GC)										
Matrix Spike Dup (EA71902-MSD1)	Sour	ce: 7A18002	-02	Prepared: (01/19/07 A	nalyzed: 01	/20/07			
Carbon Ranges C6-C12	594	10.0	mg/kg dry	515	ND	115	75-125	3.54	20	
Carbon Ranges C12-C28	476	. 10.0	n	515	ND .	92.4	75-125	2.97	20	
Carbon Ranges C28-C35	ND	10.0	It	0.00	ND		75-125		20	
Total Hydrocarbons	1070	10.0	0	1030	ND	104	75-125	2.93	20	
Surrogate: 1-Chlorooctane	59.6		mg/kg	50.0		119	70-130			
Surrogate: 1-Chlorooctadecane	48.5		"	50.0		97.0	70-130			

% Solids

Project: East Shell North

Project Number: 2000-10615 Project Manager: Camille Reynolds Fax: (432) 687-4914

2.75

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

1										•	
	•		Reporting		Spike	Source		%REC		RPD	
1	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (EA71901-BLK1)			Prepared: 01/18/07 Analyzed: 01/1	9/07	
% Solids	100	%			
Duplicate (EA71901-DUP1)	Source: 7A	17007-01	Prepared: 01/18/07 Analyzed: 01/1	9/07	
% Solids	76.7	%	77.9	1.55	20

62.7

Project: East Shell North

Project Number: 2000-10615 Project Manager: Camille Reynolds Fax: (432) 687-4914

Volatile Organic Compounds by EPA Method 8260B - Quality Control Environmental Lab of Texas

							•			
	•	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EA72303 - EPA 5030C (GCMS)										
Blank (EA72303-BLK1)				Prepared &	: Analyzed:	01/23/07				
Benzene	ND	0.00100	mg/kg wet							
Toluene	ND	0.00100	*							
Ethylbenzene	ND	0.00100								
Xylene (p/m)	ND	0.00100	"							
Xylene (o)	ND	0.00100								
Surrogate: Dibromofluoromethane	57.0		ug/kg	50.0		114	70-139			
Surrogate: 1,2-Dichloroethane-d4	48.6		n	50.0		97.2	52-149			
Surrogate: Toluene-d8	50.1		"	50.0		100	76-125			
Surrogate: 4-Bromofluorobenzene	51.2		<i>"</i> .	50.0		102	66-145			
LCS (EA72303-BS1)				Prepared &	: Analyzed:	01/23/07				
Benzene	0.0517	0.00100	mg/kg wet	0.0500		103	70-130			
Toluene	0.0487	0.00100	D	0.0500		97.4	70-130			
Ethylbenzene	0.0522	0.00100	11	0.0500		104	70-130			
Xylene (p/m)	0.100	0.00100	Ħ	0.100		100	70-130			
Xylene (o)	0.0518	0.00100	**	0.0500		104	70-130			
Surrogate: Dibromofluoromethane	50.9		ug/kg	50.0		102	70-139			
Surrogate: 1,2-Dichloroethane-d4	52.2		"	50.0		104	52-149			
Surrogate: Toluene-d8	50.8		"	50.0		102	76-125			
Surrogate: 4-Bromofluorobenzene	51.1		"	50.0		102	66-145			
Calibration Check (EA72303-CCV1)				Prepared &	: Analyzed:	01/23/07	•			
Toluene	48.4		ug/kg	50.0		96.8	70-130			
Ethylbenzene	53.9		ır	50.0		108	70-130			
Surrogate: Dibromofluoromethane	51.8		n	50.0		104	70-139			-
Surrogate: 1,2-Dichloroethane-d4	46.6		"	50.0		93.2	52-149			
Surrogate: Toluene-d8	46.7		"	50.0		93.4	76-125			
Surrogate: 4-Bromofluorobenzene	51.9		n	50.0		104	66-145			

Project: East Shell North

Project Number: 2000-10615

Project Number: 2000-10013

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Volatile Organic Compounds by EPA Method 8260B - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EA72303 - EPA 5030C (GCMS)				t						
Matrix Spike (EA72303-MS1)	Sou	rce: 7A18002	2-01	Prepared &	Analyzed:	01/23/07	100 0000			
Benzene	0.115	0.00200	mg/kg dry	0.113	ND	102	70-130			
Toluene	0.105	0.00200	II	0.113	ND	92.9	70-130			
Ethylbenzene	0.110	0.00200	11	0.113	ND	97.3	70-130			
Xylene (p/m)	0.207	0.00200	"	0.226	ND	91.6	70-130			
Xylene (o)	0.118	0.00200	"	0.113	ND	104	70-130			
Surrogate: Dibromofluoromethane	60.1		ug/kg	50.0		120	70-139			
Surrogate: 1,2-Dichloroethane-d4	54.4		"	50.0		109	52-149			
Surrogate: Toluene-d8	47.7		"	50.0		95.4	76-125			
Surrogate: 4-Bromofluorobenzene	56.1		"	50.0		112	66-145			
Matrix Spike Dup (EA72303-MSD1)	Sou	rce: 7A18002	2-01	Prepared &	Analyzed:	01/23/07				
Benzene	0.118	0.00200	mg/kg dry	0.113	ND	104	70-130	1.94	20	
Toluene	0.103	0.00200	н	0.113	ND	91.2	70-130	1.85	20	
Ethylbenzene	0.104	0.00200	н	0.113	ND	92.0	70-130	5.60	20	
Xylene (p/m)	0.197	0.00200	"	0.226	ND	87.2	70-130	4.92	20	
Xylene (o)	0.112	0.00200	11	0.113	ND	99.1	70-130	4.83	20	
Surrogate: Dibromofluoromethane	54.9		ug/kg	50.0		110	70-139			
Surrogate: 1,2-Dichloroethane-d4	50.2		"	50.0		100	52-149			
Surrogate: Toluene-d8	46.8		"	50.0		93.6	76-125			

50.0

108

66-145

54.2

Surrogate: 4-Bromofluorobenzene

Plains All American EH & SProject:East Shell NorthFax: (432) 687-49141301 S. County Road 1150Project Number:2000-10615Midland TX, 79706-4476Project Manager:Camille Reynolds

Notes and Definitions

DET Analyte DETECTED ND Analyte NOT DETECTED at or above the reporting limit NR Not Reported Sample results reported on a dry weight basis dry Relative Percent Difference RPD LCS Laboratory Control Spike MS Matrix Spike Dup Duplicate

	 growing the first the house		
Report Approved By:	 ,	Date:	1/25/2007

Brent Barron, Laboratory Director/Corp. Technical Director Celey D. Keene, Org. Tech Director Raland K. Tuttle, Laboratory Consultant James Mathis, QA/QC Officer Jeanne Mc Murrey, Inorg. Tech Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

11 2-1

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East

TAT brebnet2 FedEx Lone Star □ NPDES RUSH TAT (Pre-Schedule) 24, 48, 72 hrs Part Shall North 1 3.0 2000-10615 Phone: 432-563-1800 Fax: 432-563-1713 TRRP M.O.R.M. เวช Temperature Upon Receipt B1EX 802 B 1500 01 B 1 EX 8360 Analyze Standard vetala: Ya Yê ga Cq Ct bp Hê 26 TCLP: **TOTAL** 29K / E\$5 / CEC Anions (Cl., SO4, Alkalinity) Project #: Project Name: Project Loc: PO #: Cations (Ca, Mg, Na, K) Report Format: 9001 XT 4X 1005 Time ime **METOS** 80108 1,814 HdI CAN = CLORUPARIEL 2=20(L20)|4 egbut≳=JS hateM gnishring≠WC Date Date Date Other (Specify) Preservation & # of Containers auoN Odessa, Texas 79765 COSSEN HOPN *05*H нсі ^cONH 55015204 Total #. of Containers benatilia bial e-mail: Fax No: 540 Time Sampled Received by ELOT Received by: Received by Date Sampled 50 Ending Depth 42 Time 9 gediuujud pebth FIELD CODE 1A 1800 H Sampler Signature: Company Address: Project Manager: Company Name Telephone No: City/State/Zip: Special Instructions: Relinquished by: Relinquished by Refinquished by (lab use only) ORDER #: TVB # (Isb nse ouly)

Environmental Lab of Texas
Variance/ Corrective Action Report- Sample Log-In

Client:	PlansP/L			
Date/ Time:	01-18-07@1425			
Lab ID #:	7A 18004 .			
Initials:	JMM			
	Sample Receipt	Checklist		Client Initials
#1 Tempera	ature of container/ cooler?	(Yes)	No	-c.5 °C
#2 Shipping	container in good condition?	∕Yes ⊃	No	
	Seals intact on shipping container/ cooler?	Yes	No	-Not Present
#4 Custody	Seals intact on sample bottles/ container?	Yes	No	(Not Present
	f Custody present?	Yes	No	
	instructions complete of Chain of Custody?	Yes	No	
	f Custody signed when relinquished/ received?	Yes	No	
	f Custody agrees with sample label(s)?	Yes	No	ID written on Cont./ Lid
	er label(s) legible and intact?	(Yes)	No	Not Applicable
	e matrix/ properties agree with Chain of Custody?	Yes	No	
	ners supplied by ELOT?	(Yes.2	No.	
	es in proper container/ bottle?	(Yes-\	No	See Below
	es properly preserved?	Yes	No	See Below
	e bottles intact?	(Yes.)	No	
	vations documented on Chain of Custody?	Yes	No	
	ners documented on Chain of Custody?	(Yes)	<u>No</u>	
	ent sample amount for indicated test(s)?	Yes	<u>No</u>	See Below
\	ples received within sufficient hold time?	(Yes)	<u>No</u>	See Below
	ntract of sample(s)?	Yes	No	Not Applicable
#20 VOC s	amples have zero headspace?	(Yes)	No	Not Applicable
	Variance Docu	mentation		
Contact:	Contacted by:			Date/ Time:
Regarding:			·	
Corrective A	otion Takan		· · · · · · · · · · · · · · · · · · ·	
	noutification.			748
Check all the	at Apply: See attached e-mail/ fax			
	Client understands and wou Cooling process had begun	•		•