# 1R - 0433

# REPORTS

# DATE:

2005





Office 405.228.8327 Fax 405.552.7839 Chris.biagi@dvn.com Devon Energy Corporation 20 North Broadway Oklahoma City, Oklahoma 73102-8260

June 23, 2005

New Mexico Oil Conservation Division Attention: Mr. Wayne Price 1220 South St, Francis Drive Santa Fe, New Mexico 87505

RE: Patsy Tank Battery Closure Monument, Lea County, New Mexico

IR433

Dear Mr. Price:

Please find enclosed the Closure Report prepared to detail the remediation activities conducted at the Patsy Tank Battery site located near Monument in Lea County. The remedial activities were conducted and the report prepared by Whole Earth Environmental for Devon Energy. As a result of remedial actions taken at the site, we are requesting that the site be granted no further action required status. Upon receipt of this notification, the monitoring wells associated with the site will be properly abandoned and reported.

If you have any questions relating to this project, please contact me at 405.228.8327.

Sincerely,

Chris Biagi, REM Senior Remediation Specialist

Enclosure



### **Executive Summary**

#### Location

The site is located approximately five miles southwest of Monument, New Mexico on BLM lands. The primary land use is grazing of cattle however extensive oil and gas operations are prevalent in the area. The area is semi-arid with a net precipitation / evaporation amount of -73" per year. The legal description of the site is NW ¼ of S-18, T-20, -37E.

#### **Site History**

Production related activities resulted in three separate areas having environmental impairments. The first area (identified in Exhibit 3 as the Battery Area) appeared to have contained storage tanks along with related processing and load-out equipment. The second area (identified in Exhibit 3 as Area B) served as a production pit for the facility. The third area (identified in Exhibit 3 as Area C) was a spread zone where the contents of the pit were placed on the land surface to evaporate.

#### **Previous Site Investigations**

Two separate investigations were commissioned by Devon Energy Company to determine the vertical and lateral extent of possible contamination. The first study was prepared by Larson Associates and reported on May 15, 2002. In this study, a series of five boreholes were advanced within areas of interest and soil samples analyzed for TPH, BTEX and chlorides. These borings revealed the presence of the three suspect areas described within the Site History section of this summary.

A second investigation conducted by ETGI advanced a series of seven monitor wells at locations suggested by the results of the Larson Associates data. None of the wells registered BTEX concentrations in excess of NMWQCC standards but each had chlorides well in excess of the 250 ppm standard.

#### **Remediation Activities**

The site was initially modeled as a candidate location for a hydrostatic barrier, (essentially, an impermeable clay cap atop the contamination to prevent future vertical migration into the water table). However several factors including the relatively shallow depth and concentrations of the contaminant plumes and the relative ease of excavating sand made simple aeration and dilution a more attractive option.

#### **Removal of Piping**

Approximately two tons of metal flowlines were excavated, checked for the presence of N.O.R.M. and transported to commercial disposal at Hobbs Iron and Metal. (Disposal Manifest and N.O.R.M. logs are contained within the Exhibits section of this report).

#### **Plugging of Monitor Well No. 2**

Monitor Well no. 2 was situated in the approximate center of the battery area. Prior to excavation, Whole Earth contracted Atkins Engineering of Roswell, New Mexico to remove the wellhead, all available casing and to cement grout the well to the surface. (A copy of the plugging report and photographs of the plugging operation are contained within the Exhibits section of this report).

#### **Excavation and Remediation**

The pit area was excavated to a depth of approximately 40' below ground surface (bgs). The water table was found at a depth of 32' bgs. A minor amount of free product was found on the water table. Using a large transfer pump and transport truck Whole Earth completely evacuated the water from the hole and allowed it to recharge seventeen times until no evidence of hydrocarbons such as sheen or odor remained on the water. A total of 180 barrels were removed and sent to commercial disposal. (Disposal manifests and photographs of the fluid removal activities are included within the Exhibits section of this report).

Each site was excavated to the point at which acceptable criteria contaminant concentrations were obtained for each side-wall and bottom. Whole Earth conducted extensive field screening for these criteria contaminants prior to selecting samples for independent laboratory analysis. The Hobbs office of the NMOCD was notified of the various sampling events and witnessed the initial pit sampling on March 18, 2005.

#### Backfilling

The contents from each excavation were mixed and blended with the surrounding soils to achieve TPH concentrations of <5,000 ppm, chlorides of <250 ppm and benzene of less than .010 ppm. Each backfill lift was analyzed by Environmental Labs of Texas.

#### **Re-seeding**

The area was seeded with forty pounds of BLM # 2 (approximately twice the recommended amount) and lightly tilled with a surface drag. (A copy of the seed receipt is included within the Exhibits section of this report).

#### **Recommendations and Conclusions**

Whole Earth Environmental requests final closure of the site and permission to plug the remaining monitor wells.



## **Exhibit Index**

- 1. U.S.G.S. 7.5' map zoom out
- 2. U.S.G.S. 7.5' map zoom in
- 3. Plat Map of Surface Features
- 4. Hydrostatic Head Data
- 5. Groundwater Flow Direction
- 6. May 3, 2005 NORM Inspection
- 7. May 10, 2005 NORM Inspection
- 8. Well Plugging Log
- 9. Main Battery Area Prior to Remediation
- 10. Area B Prior to Remediation
- 11. Area C Prior to Remediation
- 12. Monitor Well Plugging Detail
- 13. Monitor Well Plugging Detail
- 14. Line Excavation Detail
- 15. NORM Inspection
- 16. Pipe Removed from Location
- 17. Area B Initial Excavation Into Water Table
- 18. Area B Installation of Pump
- 19. Area B Final Removal of Free Product
- 20. Area B Clean Water in Hole After Pumping Activities
- 21. Final Contour
- 22. Detail of Seeding
- 23. Disposal Manifests for Steel Pipe
- 24. Disposal Manifests for Water
- 25. BLM # 2 Seed Mix Detail





#### Devon Energy Company Patsy Battery Surface Features





# Devon's Patsy Lease Geological-Hydrostatic Head

|    |           |       |      |       |       |         |       | Y          | X          | Z         |
|----|-----------|-------|------|-------|-------|---------|-------|------------|------------|-----------|
|    |           |       |      |       |       | Groundv | vater | Land S     | Surface    | Geo-Hydro |
| MW | Elevation | RTW   | R    | STW   | TD    | MSL     | MW    | Northing   | Easting    | Head      |
| 1  | 3546.99   | 34.80 | 2.65 | 34.80 | 41.55 | 3512.19 | 1     | 575474.584 | 863628.018 | 0.71      |
| 3  | 3547.39   | 35.40 | 3.03 | 35.40 | 41.80 | 3511.99 | 3     | 575580.346 | 863608.566 | 0.51      |
| 4  | 3546.27   | 33.80 | 2.74 | 33.80 | 41.10 | 3512.47 | 4     | 575564.148 | 863539.895 | 0.99      |
| 5  | 3546.84   | 34.00 | 2.80 | 34.00 | 40.25 | 3512.84 | 5     | 575560.635 | 863260.263 | 1.36      |
| 6  | 3545.24   | 32.50 | 2.22 | 32.50 | 41.35 | 3512.74 | 6     | 575258.500 | 863374.845 | 1.26      |
| 7  | 3543.73   | 32.25 | 2.99 | 32.25 | 40.55 | 3511.48 | 7     | 575349.615 | 863612.419 | 0.00      |



| NAME  | NOR THING   | EASTING     | LATITUDE     | LONGITUDE     | ELEVATION<br>NO. SIDE PVC | ELEVATION<br>CONCRETE |
|-------|-------------|-------------|--------------|---------------|---------------------------|-----------------------|
| MW #1 | N575474.584 | E863628.018 | N32'34'39.6" | W103*17'13.4" | 3549.64'                  | 3546.99'              |
| MW #3 | N575580.346 | E863608.566 | N32*34'40.6" | W10377'13.6"  | 3550.42'                  | 3547.39'              |
| MW #4 | N575564.148 | E863539.895 | N32°34'40.5" | W10377'14.4"  | 3549.01'                  | 3546.27'              |
| MW #5 | N575560.635 | E863260.263 | N32*34'40.5" | W10317'17.7"  | 3549.64'                  | 3546.84'              |
| MW #6 | N575258.500 | E863374.845 | N32*34*37.5" | W10377'16.4"  | 3547.46'                  | 3545.24'              |
| MW #7 | N575349.615 | E863612.419 | N32'34'38.4" | W10377'13.6"  | 3546.72'                  | 3543.73'              |

ALL COORDINATES ARE BASED ON NMSPCE (NAD83)

|                                |                     | Page_         | <u><u>1</u></u>   | of             | <u>1</u>    |
|--------------------------------|---------------------|---------------|-------------------|----------------|-------------|
| Facility Location:             |                     | Survey Date:  |                   | 5/3/2005       |             |
| State:                         | New Mexico          | County:       |                   | <br>           | ·······     |
| Plant/Field                    | Monument            | Oounty.       |                   |                | · · · · · · |
| Lease/Battery/Well             | Patsv               | API No.:      | <u></u>           |                |             |
|                                |                     |               |                   |                | <u></u>     |
| Survey Instrument Information: | Scintillatio        | on Meter      |                   | Coordinate     | S           |
| Meter: Manufacturer            | Ludi                | um            |                   | 32.39946       | 5 N         |
| Model No.                      | 224                 | 41            |                   | 103.15361      | -w          |
| Serial No.                     | 210                 | 777           |                   |                | -           |
| Detector: Manufacturer         | Ludi                |               |                   |                |             |
| Model No                       |                     | _2            |                   |                |             |
| Serial No.                     | <br>                | 23126         |                   |                |             |
| Genaritte.                     | 111-24              | 20120         |                   | <del>_</del> _ |             |
| Date of Last Calibration       | <u>30-Nc</u>        | ov-04         |                   |                |             |
| Battery Check                  | 0                   | <u>K</u>      |                   |                |             |
| Check Source Used (ID/Type)    |                     | Americium (Sm | oke Dete          | ctor)          |             |
| Check Source Reading           |                     | μR/hr         |                   |                |             |
| Background Reading             |                     | µR/hr         |                   |                |             |
|                                |                     | Maximum N     | <i>l</i> eter Rea | ding in uR/h   | r           |
| Description of Item/Equip/Area | Surveyed @ Su       | rface         | @ 1 Foot*         |                | @ 3 Feet*   |
|                                | ,                   |               | •                 |                |             |
| 4" Line to Tanks               | 5.                  | 5             | 4.2               |                |             |
| 2"Flowline                     | 5.                  | 1             |                   |                |             |
| 2"Flowline                     | 5                   | i             |                   |                |             |
| 2"Flowline                     | 4.                  | 6             |                   |                |             |
| 2"Flowline                     | 4.                  | 8             |                   |                |             |
| Barrels                        | 4.                  | 3             |                   |                |             |
|                                |                     |               |                   |                |             |
|                                |                     |               |                   |                |             |
|                                |                     |               |                   |                |             |
| ·····                          |                     |               |                   |                |             |
|                                |                     |               |                   |                |             |
|                                |                     |               |                   |                |             |
|                                |                     |               |                   |                |             |
|                                |                     |               |                   |                |             |
|                                |                     | <u> </u>      |                   | _              |             |
|                                |                     |               |                   | _              |             |
|                                | ages, it necessary) |               |                   |                |             |
| Survey Conducted By:           | Signature           |               | <u> </u>          |                |             |
|                                | Name                | e:            | <u>M</u> .        | Griffin        |             |

#### Devon Energy Company

| Facility Location:  Monument    Lease/Batter/Well:  Patsy    Maximum Meter Reading in µR/hr    Description of item/Equip/Area Surveyed @ Surface  @ 1 Foot*    @ 1 Foot*  @ 3 Feet* |                                               |                                        |                                        | Page         | <u>1</u>                              | of         | 1         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------|----------------------------------------|--------------|---------------------------------------|------------|-----------|
| Plant/Field:    Monument      Lease/Battery/Well:    Patsy      Description of Item/Equip/Area Surveyed    @ Surface    @ 1 Foot*    @ 3 Feet*                                      | Facility Location:                            |                                        |                                        | Surv         | ey Date:                              | 38475      |           |
| Lease/Battery/Well:  Patsy  Maximum Meter Reading in µR/hr    Description of Item/Equip/Area Surveyed  @ Surface                                                                    | Plant/Field:                                  | Monume                                 | nt                                     | _            |                                       |            |           |
| Maximum Meter Reading in µR/hr      Description of Item/Equip/Area Surveyed    @ Surface    @ 1 Foot*    @ 3 Feet*                                                                  | Lease/Battery/Well:                           | Patsy                                  |                                        |              |                                       |            |           |
| Description of Item/Equip/Area Surveyed    @ Surface    @ 1 Foot*    @ 3 Feet*                                                                                                      |                                               |                                        |                                        | Maximum Me   | ter Reading                           | ) in μR/hr |           |
|                                                                                                                                                                                     | Description of Item/Equ                       | iip/Area Surveyed                      | @ Surface                              | <u> </u>     | ) 1 Foot*                             | 0          | 3 Feet*   |
|                                                                                                                                                                                     |                                               |                                        |                                        |              |                                       |            |           |
|                                                                                                                                                                                     |                                               |                                        |                                        |              |                                       |            |           |
|                                                                                                                                                                                     |                                               |                                        |                                        |              |                                       |            |           |
|                                                                                                                                                                                     |                                               |                                        |                                        |              |                                       |            |           |
|                                                                                                                                                                                     |                                               |                                        |                                        |              |                                       |            |           |
|                                                                                                                                                                                     |                                               |                                        |                                        |              |                                       |            |           |
|                                                                                                                                                                                     |                                               |                                        |                                        |              |                                       |            |           |
|                                                                                                                                                                                     |                                               | ······                                 |                                        |              |                                       |            |           |
|                                                                                                                                                                                     |                                               |                                        |                                        |              |                                       |            |           |
|                                                                                                                                                                                     |                                               |                                        |                                        |              |                                       |            |           |
|                                                                                                                                                                                     |                                               |                                        |                                        |              |                                       |            |           |
|                                                                                                                                                                                     |                                               |                                        |                                        |              |                                       |            |           |
|                                                                                                                                                                                     |                                               | <u> </u>                               |                                        |              | · · · · · · · · · · · · · · · · · · · |            |           |
|                                                                                                                                                                                     |                                               | ·····                                  |                                        | -            |                                       |            | . <u></u> |
|                                                                                                                                                                                     | <u>, , , , , , , , , , , , , , , , , , , </u> |                                        |                                        |              |                                       |            |           |
|                                                                                                                                                                                     |                                               | ······                                 |                                        | -            |                                       |            | <u></u>   |
|                                                                                                                                                                                     |                                               | ······                                 | · · · · · · · · · · · · · · · · · · ·  |              |                                       |            |           |
|                                                                                                                                                                                     |                                               |                                        |                                        |              |                                       |            |           |
|                                                                                                                                                                                     |                                               | ······································ |                                        |              |                                       |            |           |
|                                                                                                                                                                                     | ······································        |                                        |                                        |              |                                       |            |           |
|                                                                                                                                                                                     |                                               |                                        | ······································ |              |                                       | — <u>—</u> |           |
|                                                                                                                                                                                     |                                               | ······································ | <u></u>                                |              |                                       |            |           |
|                                                                                                                                                                                     |                                               |                                        |                                        | <u>ـــــ</u> | <u> </u>                              |            |           |
|                                                                                                                                                                                     |                                               |                                        | <u></u>                                |              |                                       |            |           |
|                                                                                                                                                                                     |                                               |                                        |                                        |              |                                       |            | <u> </u>  |
|                                                                                                                                                                                     |                                               | in the instance                        |                                        |              | ·                                     |            |           |
|                                                                                                                                                                                     |                                               |                                        |                                        |              |                                       |            | ·         |
|                                                                                                                                                                                     |                                               | ······································ |                                        |              |                                       | - <u></u>  |           |
|                                                                                                                                                                                     |                                               |                                        | ······································ | • •••••      |                                       | ·          |           |
|                                                                                                                                                                                     |                                               |                                        |                                        |              |                                       | ·          |           |
|                                                                                                                                                                                     |                                               | ······                                 |                                        |              |                                       |            |           |
|                                                                                                                                                                                     |                                               |                                        | ·····                                  |              | <del></del>                           |            |           |
|                                                                                                                                                                                     |                                               | <u></u>                                | ······································ |              |                                       | ·····      |           |
|                                                                                                                                                                                     |                                               |                                        |                                        |              |                                       |            |           |
| (Continue on additional pages if necessary)                                                                                                                                         |                                               | <u></u>                                |                                        |              | <u></u>                               | ·····      |           |
| (Continue on additional pages if necessary)                                                                                                                                         |                                               | ·····                                  |                                        |              |                                       |            |           |
| (Continue on additional pages if necessary)                                                                                                                                         |                                               | ······                                 |                                        |              |                                       |            |           |
| (Continue on additional pages if necessary)                                                                                                                                         |                                               | ······                                 |                                        |              |                                       |            | <u> </u>  |
| (Continue on additional pages if necessary)                                                                                                                                         |                                               |                                        |                                        |              | <u></u>                               |            |           |
| (Continue on additional pages if necessary)                                                                                                                                         |                                               |                                        |                                        |              |                                       | <u> </u>   |           |
| (Continue on additional pages, if necessary)                                                                                                                                        |                                               | ·····                                  |                                        |              |                                       |            |           |
| (Continue on additional pages if necessary)                                                                                                                                         |                                               | <del></del>                            | <u></u>                                |              |                                       | <u> </u>   | <u></u> . |
|                                                                                                                                                                                     | (Continue on additi                           | onal pages, if necess                  | arv)                                   |              | ·····                                 |            |           |

\* Record Geiger Mueller meter readings at distances of 1 foot and 3 feet from equipment surfaces and 3 feet above land surfaces when surface reading with scintillation meter exceeds 250 μR/hr.

|                                               |                                              |                 | Page        | <u>1</u>  | of            | <u> <u> </u></u>                       |
|-----------------------------------------------|----------------------------------------------|-----------------|-------------|-----------|---------------|----------------------------------------|
| Facility Location:                            |                                              | S               | urvev Date: |           | 5/10/2004     | 5                                      |
| Tacility Editation.                           | Now Movie                                    | 0               | County:     |           | 1.02          | ,                                      |
| Diant/Field:                                  | Monumon                                      | •               | . County    |           | Lea           |                                        |
|                                               | Nonumen                                      | ι               |             |           |               |                                        |
|                                               | Patsy                                        |                 | API NO      | , <u></u> | ····          |                                        |
| Survey Instrument Information:                | So                                           | cintillation Me | eter        |           | Coordinate    | es                                     |
| Meter: Manufacturer                           |                                              | Ludlum          |             |           | 32.3994       | <u>5</u> N                             |
| Model No.                                     | <u></u>                                      | 2241            |             |           | 103.1536      | <u>1</u> W                             |
| Serial No.                                    | <u> </u>                                     | 210777          |             |           |               |                                        |
| Detector: Manufacturer                        |                                              | Ludium          |             |           |               |                                        |
| Model No.                                     |                                              | 44-2            |             |           |               |                                        |
| Serial No.                                    |                                              | PR - 223126     | 3           |           |               |                                        |
| Date of Last Calibration                      |                                              | 30-Nov-04       |             |           |               |                                        |
| Battery Check                                 |                                              | OK              |             |           |               |                                        |
| Check Source Used (ID/Type)                   | <u> </u>                                     | Am              | ericium (Sm | oke Dete  | ector)        |                                        |
| Check Source Reading                          |                                              |                 | µR/hr       |           |               |                                        |
| Background Reading                            |                                              | 4.3             | µR/hr       |           |               |                                        |
|                                               |                                              |                 | Maximum N   | leter Rea | ading in µR/I | ١٢                                     |
| Description of Item/Equip/Area                | Surveyed                                     | @ Surface       |             | @ 1 Foot  | *             | @ 3 Feet*                              |
| 2"Flowline                                    |                                              | 4.8             |             |           |               |                                        |
| 2"Flowline                                    |                                              | 4.3             |             |           |               | <u> </u>                               |
| 2"Flowline                                    |                                              | 4.4             |             |           |               |                                        |
| 2"Flowline                                    |                                              | 4.7             |             |           |               |                                        |
| 2"Flowline                                    |                                              | 4.3             |             |           |               | ······································ |
|                                               |                                              | <u> </u>        |             |           |               | <u></u>                                |
|                                               |                                              |                 |             |           |               |                                        |
|                                               |                                              |                 |             |           |               |                                        |
|                                               |                                              |                 |             |           |               |                                        |
| <b></b>                                       |                                              |                 |             |           |               |                                        |
|                                               | ····                                         |                 |             |           |               | <u></u>                                |
|                                               |                                              |                 |             |           |               | <u> </u>                               |
| • <u>•••••</u> •••••••••••••••••••••••••••••• | <u> </u>                                     |                 |             |           |               | <u></u>                                |
| (Continue on additional)                      | (Continue on additional pages, if necessary) |                 |             |           |               | <u></u>                                |
| Survey Conducted By:                          | Sign                                         | ature           |             |           |               |                                        |
|                                               |                                              | Name:           |             | M.        | Griffin       |                                        |

#### Devon Energy Company

|                           |                      |           | Page         | <u>1</u>  | of                      | <u>1</u>        |
|---------------------------|----------------------|-----------|--------------|-----------|-------------------------|-----------------|
| Facility Location:        |                      |           | Survey       | / Date:   | <u>384</u>              | <sup>,</sup> 82 |
| Plant/Field:              | Monume               | ent       | _            |           |                         |                 |
| Lease/Battery/Well:       | Patsy                |           | _            |           |                         |                 |
|                           |                      |           | Maximum Mete | r Reading | <mark>յ in μR/hr</mark> |                 |
| Description of Item/Equip | /Area Surveyed       | @ Surface | @ 1          | Foot*     |                         | @ 3 Feet*       |
|                           |                      |           |              |           | -                       |                 |
|                           |                      |           | <u> </u>     |           | -                       |                 |
|                           |                      |           |              |           | -                       |                 |
|                           |                      |           |              |           |                         |                 |
| ·····                     |                      |           | <u> </u>     |           |                         |                 |
|                           |                      |           |              |           |                         |                 |
|                           |                      |           |              |           | -                       |                 |
|                           |                      |           | - ·          |           |                         |                 |
|                           |                      |           |              |           |                         |                 |
|                           |                      |           | <u>.</u>     |           | -                       |                 |
|                           |                      |           |              |           |                         |                 |
|                           |                      |           |              |           |                         |                 |
|                           |                      |           | _            |           |                         |                 |
|                           |                      | ·         | _            |           |                         |                 |
|                           |                      |           |              |           |                         |                 |
|                           |                      |           |              |           |                         |                 |
|                           |                      |           | <u> </u>     |           | _                       |                 |
|                           |                      |           |              |           | -                       |                 |
|                           |                      |           |              |           |                         |                 |
|                           |                      |           |              |           |                         |                 |
| _                         |                      |           |              |           | _                       |                 |
|                           |                      |           |              |           | -                       |                 |
|                           |                      |           | <u> </u>     |           |                         |                 |
|                           |                      |           |              |           |                         |                 |
|                           |                      |           | _            |           |                         |                 |
|                           |                      |           |              |           |                         |                 |
|                           |                      |           |              |           |                         |                 |
|                           |                      |           |              |           |                         |                 |
|                           |                      |           |              |           |                         |                 |
|                           |                      |           |              |           |                         |                 |
|                           |                      |           | <u> </u>     |           |                         |                 |
|                           |                      |           |              |           |                         |                 |
|                           |                      |           | <u> </u>     |           |                         |                 |
|                           |                      |           |              |           |                         |                 |
|                           |                      |           |              |           |                         |                 |
|                           |                      |           |              |           |                         |                 |
|                           |                      |           | _            |           |                         |                 |
|                           |                      |           |              |           |                         |                 |
|                           |                      |           | <u> </u>     |           | -                       |                 |
|                           |                      |           |              |           |                         |                 |
|                           |                      |           |              |           | -                       |                 |
|                           |                      |           |              |           | -                       |                 |
| (Continue on addition     | nal pages, if necess | sary)     |              |           | •                       |                 |

\* Record Geiger Mueller meter readings at distances of 1 foot and 3 feet from equipment surfaces and 3 feet above land surfaces when surface reading with scintillation meter exceeds 250 µR/hr.



## Whole Earth Environmental, Inc. Well Plugging Log

| Client:                   | Devon En   | ergy Co.          |                    |         |  |  |  |  |
|---------------------------|------------|-------------------|--------------------|---------|--|--|--|--|
| Location:                 | Patsy Batt | ery               |                    |         |  |  |  |  |
| County:                   | Lea        |                   |                    |         |  |  |  |  |
| State:                    | New Mex    | ico               |                    |         |  |  |  |  |
| Plugging Company:         | Atkins En  | tkins Engineering |                    |         |  |  |  |  |
| License No.:              |            |                   |                    |         |  |  |  |  |
| Date:                     | 3/5/2005   |                   |                    |         |  |  |  |  |
|                           |            |                   |                    |         |  |  |  |  |
| Lat:                      | $32^0 34.$ | 675N              | Section            | 18      |  |  |  |  |
| Long.                     | $103^0 17$ | .248W             | Township           | 20-S    |  |  |  |  |
| Surf. Elev.               | 3,550      | ) ft.             | Range              | 37-Е    |  |  |  |  |
| Top of Water:             | 32.75      | Ft. bgs           | Well Type:         | Monitor |  |  |  |  |
| <b>Bottom of Bore:</b>    | 37.63      | Ft. bgs           | Cased?             | Y       |  |  |  |  |
| Cased Bore Volume:        | 1,418.62   | Cu. In.           | <b>Casing Dia.</b> | 2"      |  |  |  |  |
| <b>Cased Bore Volume:</b> | 6.14       | Gal.              |                    |         |  |  |  |  |
|                           |            |                   |                    |         |  |  |  |  |

#### Comments

Measured depths of water using Atkins depth meter. Prepared a 10 gallon cement slurry - pumped directly into 2"casing. Removed the 3' steel well riser with 320 excavator. Pulled one 6' section of casing - parted at joint approx 3' bgs. Bore cemented to surface.





























#### HOBBS IRON & METAL, INC. 920 S. GRIMES • P.O. BOX 2007 • 505-393-1726

HOBBS, NEW MEXICO 88241

Ticket Number: 63631 License Number: RONNIE W

Date: 03/10/05 Name: TATUM BACKHOE Idress: PO BOX 1068 City: TATUM

NM 88267

#### ORIGINAL PRINTED 03/10/05

For and in consideration of the sum of \_\_\_\_\_\_\$55.50 \_\_\_\_\_\_, I hereby bargain, sell, transfer and assign to HOBBS IRON & METAL, INC. the following personal property, to-wit.

| ITEM           | GROSS | TARE  | NET  | PRICE  | AMOUNT  |
|----------------|-------|-------|------|--------|---------|
| prepared Steel | 47940 | 44240 | 3790 | 0.0150 | 55.50   |
|                |       |       |      |        |         |
|                |       |       |      |        |         |
|                |       |       |      |        | ÷       |
|                |       |       |      |        |         |
|                |       |       |      |        |         |
|                |       |       |      |        |         |
|                |       |       |      |        |         |
| PAID BY: CASH  |       |       |      |        |         |
| RECEIVED BY:   | 1/2°  |       |      | TOTAL  | \$55.54 |

| 398-4960 ~ Tatum<br>396-4948 ~ Lovington | GANDY COF<br>WASSERH<br>P.O. Box 827 ~ Tatun | RPORATION<br>UND SWD<br>n, New Mexico 88267                                          | )                                     | Nº      | 19367 |
|------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------|---------|-------|
| Trucking Company:                        | de Det                                       |                                                                                      | Date:                                 | 3-14-05 |       |
| Oil/Company:                             | lalsy                                        | ······································                                               | Time:                                 | ·       |       |
| Lease: <u>S. west</u> M                  | nonument                                     | <u></u>                                                                              | BBLS: _                               | 60      |       |
| Driver: Quiso                            | Porce                                        |                                                                                      | . ·                                   |         |       |
| -                                        | DRIVER CO                                    | <b>PY</b> ~ White                                                                    |                                       |         |       |
|                                          |                                              |                                                                                      |                                       |         |       |
|                                          |                                              |                                                                                      |                                       |         |       |
|                                          |                                              | Maton Diamo                                                                          | al                                    | 4<br>   |       |
| 1                                        | Coopers Salt v<br>505/397                    | 7-2045 No 1                                                                          | 7547                                  | :       |       |
| t<br>t                                   | Box<br>Monument, Nev                         | 55<br>v Mexico 88265                                                                 |                                       |         |       |
|                                          |                                              |                                                                                      |                                       | 7       |       |
|                                          |                                              | DATE <u>3-11/</u>                                                                    | 05                                    |         |       |
|                                          |                                              | Contro Cost                                                                          | ρ                                     |         |       |
|                                          | COMPANY NAME                                 |                                                                                      | <u> </u>                              |         |       |
| •<br>•                                   | ADDRESS                                      | q-free                                                                               |                                       |         |       |
|                                          | and the state                                |                                                                                      |                                       |         |       |
|                                          | CITY Munipage                                |                                                                                      |                                       | • :     |       |
|                                          | NO. OF BARRELS<br>Dww-Pa                     | 20<br>tay Leave                                                                      |                                       | -       |       |
|                                          | SIGNATURE                                    | o Jon Ce                                                                             | · · · · · · · · · · · · · · · · · · · | -       |       |
| ÷                                        | The Print Shop) #4814                        | ÷ .                                                                                  | ν.                                    | t<br>-  |       |
|                                          |                                              | د میشویداند. با ایند این این میتونند. میتونند میتونند این میتونند این میتونند.<br>ما |                                       | . а     |       |

I





### Protocols

This section contains a copy of PR-70, the remediation protocol employed on this project.



#### Remediation Protocol Devon Energy Corporation Patsy Battery

#### 1.0 Purpose

This protocol is to provide a detailed outline of the steps to be employed in the remediation and closure of the Devon Energy Patsy located southwest of Monument, New Mexico.

#### 2.0 Scope

This protocol is site specific for the Devon Energy remediation project.

#### **3.0 Preliminary**

Prior to any field operations, Whole Earth Environmental shall conduct the following activities:

#### 3.1 Client Review

- 3.1.1 Whole Earth shall meet with cognizant personnel within Devon to review this protocol and make any requested modifications or alterations.
- 3.1.2 Changes to this protocol will be documented and submitted for final review by Devon prior to the initiation of actual field work.

#### 4.0 Safety

**4.1** Prior to work on the site, Whole Earth shall obtain the location and phone numbers of the nearest emergency medical treatment facility. We will review all safety related issues with the appropriate Client personnel, sub-contractors and exchange phone numbers.

**4.2** A tailgate safety meeting shall be held and documented each day. All subcontractors must attend and sign the daily log-in sheet.

**4.3** Anyone allowed on to location must be wearing sleeved shirts, steel toed boots, and long pants. Each vehicle must be equipped with two way communication capabilities.



**4.4** Prior to any excavation, New Mexico One Call will be notified. The One Call notification number will be included within the closure report. If lines are discovered within the area to be excavated they shall be marked with pin flags on either side of the line at maximum five-foot intervals.

**4.5** Prior to any field operations, Whole Earth will prepare and submit to Devon Energy a detailed site Health and Safety Plan.

#### **5.0 Preliminary Activities**

5.1 All barrels, trash and piping will be scanned for the presence and concentration of naturally occurring radioactive materials (NORM). Any component containing radiation reading exceeding 10  $\mu$ rems above background will be segregated for further inspection by a third party certified to work in New Mexico on radioactive materials.

**5.2** All clean trash will be collected and sent to a commercial disposal facility. A manifest will be generated and signed by the disposal company. All such manifests shall be collected and included within the final closure report.

**5.3** All cement shall be collected and deep buried on-site. The top of the cement shall be a minimum distance of 5' below ground level.

**5.4** Three of the seven existing monitor wells will be grouted to surface and closed prior to any excavation.

#### **6.0 Remediation**

**6.1** All berms and assorted piles of contaminated soils will be spread to a maximum depth of 6 inches on the surface of the site. Three areas presently known to contain hydrocarbon concentrations in excess of NMOCD standards shall be excavated to a minimum depth of 20' below ground surface. The contaminated soils shall be set aside of the excavation but within the existing fence perimeter.

**6.2** The side walls and bottom of each excavated area shall be field screened for the presence and concentration of TPH by means of EPA method 418.1 (modified). Excavation of each site shall continue until the TPH concentrations are <5,000 ppm. Prior to backfill, laboratory confirmation samples shall be taken from each side-wall and bottom. The Hobbs office of the NMOCD will be given a minimum of forty-eight hours notification of the intended sampling event.
**6.3** Each excavation will be backfilled with soils containing a TPH concentration of <500 ppm to a maximum depth of 5' below ground surface. Composite confirmation samples will be collected each 3' lift and submitted to an independent laboratory for analysis under EPA SW-846 Method 8015M. Records of each test will be incorporated within the closure report.

6.5 All remaining contaminated soils will be land spread over the existing impoundment to a maximum depth of 12" and a maximum TPH concentration of 2,000 ppm. Surface treatment methods may include bio-augmentation, fertilization, inoculation, and phyto-remediation.

#### 7.0 Monitoring

The remaining monitor four monitor wells will be tested on an annual basis for the presence and concentration of BTEX, and chlorides for a minimum period of five years. If the well shows criteria contaminant concentrations within NMWQCC standards for a minimum of the last three of five years, Devon will request final site closure to include plugging the remaining well.

#### 8.0 Closure Report

**8.1** At the conclusion of the project, Whole Earth shall prepare a closure report that contains the following minimum information:

- Photographs of the location prior to remediation
- Photographs of the site at the point of maximum excavation
- Detail photographs of the liner installation
- Photographs of the location at time of final closure
- Lab analysis and related chain of custody for THP, BTEX and chloride testing of each side-wall and excavation bottom
- Lab analysis and related chain of custody for chloride testing of each 3'lift composite
- Copies of this protocol and all testing procedures
- Shipping manifests for all materials taken to disposal
- Laboratory analysis of water samples obtained from the monitoring well



# Procedures

This section contains copies of the individual field testing and sample collection procedures employed on this project.



# QP-06 Rev. C

# WHOLE EARTH ENVIRONMENTAL QUALITY PROCEDURE

#### **Procedure for Conducting Field TPH Analysis**

| Completed By: | Approved By: | Effective Date: | 02/15/97 |
|---------------|--------------|-----------------|----------|

#### 1.0 Purpose

To define the procedure to be used in conducting total percentage hydrocarbon testing in accordance with EPA Method 418.1 (modified) using the "MEGA" TPH Analyzer.

#### 2.0 Scope

This procedure is to be used for field testing and on site remediation information.

#### 3.0 Procedure

- 3.1 The G.A.C. "MEGA" TPH analyzer is an instrument that measures concentrations of aliphatic hydrocarbons by means of infra-red spectrometry. It is manufactured to our specifications and can accurately measure concentrations from two parts per million through 100,000 parts per million. The unit is factory calibrated however minor calibration adjustments may be made in the field. Quality Procedure 25 defines the field calibration methods to be employed.
- 3.2 Prior to taking the machine into the field, insert a 500 ppm and 5,000 ppm calibration standard into the sample port of the machine. Zero out the Range dial until the instrument records the exact standard reading.
- 3.3 Once in the field, insert a large and small cuvette filled with clean Freon 113 into the sample port of the machine. Use the range dial to zero in the reading. If the machine does not zero, do not attempt to adjust the span dial. Immediately implement Quality Procedure 25.

- 3.4 Place a 100 g. weight standard on the field scale to insure accuracy. Zero out the scale as necessary.
- 3.5 Tare a clean 100 ml. sample vial with the Teflon cap removed. Add 10 g. (+/- .01 g), of sample soil into the vial taking care to remove rocks or vegetable matter from the sample to be tested. If the sample is wet, add up to 5 g. silica gel or anhydrous sodium sulfate to the sample after weighing.
- 3.6 Dispense 10 ml. Freon 113 into the sample vial.
- 3.7 Cap the vial and shake for five minutes.
- 3.8 Carefully decant the liquid contents of the vial into a filter/desiccant cartridge and affix the cartridge cap. Recap the sample vial and set aside.
- 3.9 Insert the metal tip of the pressure syringe into the cap opening and slowly pressurize. WARNING: APPLY ONLY ENOUGH PRESSURE ON THE SYRINGE TO EFFECT FLOW THROUGH THE FILTERS. TOO MUCH PRESSURE MAY CAUSE THE CAP TO SEPARATE FROM THE BODY OF THE CARTRIDGE. Once flow is established through the cartridge direct the flow into the 5 cm. cuvette until the cuvette is full. Reverse the pressure on the syringe and remove the syringe tip from the cartridge cap. Set the cartridge aside in vertical position.
- 3.10 The cuvette has two clear and two frosted sides. Hold the cuvette by the frosted sides and carefully insert into the sample port of the machine. Read the right hand digital read-out of the instrument. If the reading is less than 1,000 ppm. the results shall be recorded in the field Soil Analysis Report. If the result is higher than 1,000 ppm, continue with the dilution procedure.

### 4.0 Dilution Procedure

4.1 When initial readings are greater than 1,000 ppm using the 5 cm. cuvette, pour the contents of the 5 cm. cuvette into a 1 cm. cuvette. Insert the 1. cm cuvette into the metal holder and insert into the test port of the instrument.

- 4.1 Read the left hand digital read-out of the machine. If the results are less than 10,000 ppm, record the results into the field Soil Analysis Report. If greater than 10,000 ppm, continue the dilution process. Concentrations >10,000 ppm are to be used for field screen purposes only.
- 4.2 Pour the contents of the small cuvette into a graduated glass pipette. Add 10 ml. pure Freon 113 into the pipette. Shake the contents and pour into the 1cm. cuvette. Repeat step 4.2. adding two zeros to the end of the displayed number. If the reported result is greater than 100,000 ppm. the accuracy of further readings through additional dilutions is extremely questionable. **Do not use for reporting purposes.**
- 4.4 Pour all sample Freon into the recycling container.

#### 5.0 Split Samples

5.1 Each tenth test sample shall be a split sample. Decant approximately one half of the extraction solvent through a filter cartridge and insert into the instrument to obtain a concentration reading. Clean and rinse the cuvette and decant the remainder of the fluid to obtain a second concentration reading from the same sample. If the second reading varies by more than 1% from the original, it will be necessary to completely recalibrate the instrument.



# Procedure for Soil Sample Preparation: Moisture Weight Percentage

| Completed By: | Approved By: | Effective Date: | 1 | / |  |
|---------------|--------------|-----------------|---|---|--|

#### 1.0 Purpose

This procedure outlines the methods to be employed in preparing samples to be tested for electrical conductivity and cation exchange capacities.

#### 2.0 Scope

This procedure shall be followed when preparing any electrical conductivity, (EC), or cation exchange capacity, (CEC), testing.

#### **3.0 Procedure**

3.1 Field collection of all soil samples shall be in plastic containers. Samples may be stored for a maximum of five days prior to processing.

3.2 Homogenize sample thoroughly. Test for hydrophobic characteristics as follows:

- a. examine for visible globs of oil or grease
- b. press soil sample to determine if it compresses into a damp mass
- c. test to determine if the sample stains filter paper

If the sample exhibits hydrophobic characteristics, prepare in accordance with 3.3.2 below. Otherwise, prepare in accordance with 3.3.1.

3.3.1 Weigh  $120 \pm 0.1g$  sample into tared crucible and dry at  $105^{\circ}$  C for 1 hour. Cool and reweigh. Repeat until weight difference is less than 1% value.

3.3.2 Weigh 120 +/- 0.1 g sample into tared crucible and dry in oven at 250<sup>0</sup> C for one hour. Cool and heat with propane torch until sample just begins to smoke. Maintain gradual heating until smoke dissipates (approximately 1/2 hour). DO NOT ALLOW THE SAMPLE TO CATCH FIRE OR EXCEED 390<sup>0</sup> C. Cool and reweigh. Grind to pass 2mm sieve.

3.4 Report percent moisture to three significant figures as follows:

Moisture % = [(W - D)/D] X 100 W = wet sample weight D = dry sample weight

#### 3.5 References

<u>Diagnosis and Improvement of Saline and Alkali Soils</u>; U.S. Salinity Laboratory Staff, Agriculture Handbook No. 60; 1954

Deuel & Holliday, <u>Soil Remediation for the Petroleum Extraction</u> <u>Industry</u>; Houston, Tx. 1993.



| Procedure for Preparing a<br>Paste Extraction |              |                 |   |   |  |  |
|-----------------------------------------------|--------------|-----------------|---|---|--|--|
| Completed By:                                 | Approved By: | Effective Date: | / | / |  |  |

#### 1.0 Purpose

This procedure defines the methods to be employed in preparing a paste extraction to be analyzed for conductivity and exchangeable cations.

#### 2.0 Scope

This procedure shall be used in all electrical Conductivity (EC) and Cation Exchange Capacity (CEC) tests.

#### **3.0 Procedure**

3.1 All samples shall be prepared in accordance with QP-12.

3.2 Weigh 100 +/- 0.1g soil sample into tared sample reservoir of filter assembly. Add deionized reagent water to fill pores, stirring gently with plastic stirrer to achieve saturation. The solid/water mixture is consolidated occasionally by tapping the container on the workbench. At saturation the surface of the mixture glistens and flows slightly when tipped. Let stand for one hour. The mixture should not stiffen or puddle; add more sample or water as required and allow to stand for one additional hour.

3.3 Analyze paste extract directly for EC and pH.

3.4 Connect filter assembly to vacuum assembly and filter extract until air begins to pass through filter. Analyze directly for Na, Ca, Mg, K.



# Procedure for Conducting Sodium Adsorption Ratio (SAR) Testing

| Completed By: | Approved By: | Effective Date: | 1 | 1 |  |
|---------------|--------------|-----------------|---|---|--|

#### 1.0 Purpose

This procedure defines the methods to be employed when conducting sodium adsorption ratio testing from paste extract samples.

#### 2.0 Scope

This procedure shall be used in all SAR's obtained from sample paste extracts.

#### **3.0 Procedure**

3.1 All samples shall be prepared in accordance with QP-12 and 13.

3.2 Calibration of the equipment shall be performed daily. Calibrate using a 5 point series of standards. The range of standards must include a blank, and should span the range of expected concentrations of the samples. The following concentrations are appropriate:

Low Range: 0, 1.0, 3.0, 5.0, 10.0 ppm High Range: 0, 10.0, 20.0, 50.0, 100 ppm

With the instrument on, inject standard mixture with 10  $\mu$ L syringe and start data collection. Store calibration data under the date of generation for use in subsequent analyses.

3.3 Calibrate instrument in accordance with 3.2. Dilute aqueous extract volumetrically so that sample concentrations fall within the working range of the instrument. Enter sample I.D. and operator name into data collection system. Inject 10  $\mu$ L sample and start data collection.

3.4 Report cation concentrations to three significant digits. Milliequivilents conversions are automatically performed in the calculation for SAR as follows:

soluble cations (meq/100g) =  $(\{\underline{Na}\} + \underline{[Ca]} + \underline{[Mg]} + \underline{[K]}\} X SP) / 1000$ 23.0 20.0 12.2 39.1

SAR =  $[Na] / (0.5\{[Ca] + [Mg]\})^{-1/2}$ 23.0 20.0 12.2

Where [] = concentration in ppm



# Procedure for Determining Distribution of Exchangeable Cations

| Completed By: | Approved By: | Effective Date: | / / |
|---------------|--------------|-----------------|-----|

## 1.0 Purpose

This procedure defines the methods to be employed when determining the distribution of cations adsorbed on the solid phase.

#### 2.0 Scope

This procedure shall be used in all exchangeable cation distribution testing.

#### **3.0 Procedure**

3.1 All samples shall be prepared in accordance with QP-12 and 13.

3.2 Calibration of the equipment shall be performed daily. Calibrate using a 5 point series of standards. The range of standards must include a blank, and should span the range of expected concentrations of the samples. The following concentrations are appropriate:

Low Range: 0, 1.0, 3.0, 5.0, 10.0 ppm High Range: 0, 10.0, 20.0, 50.0, 100 ppm

With the instrument on, inject standard mixture with 10  $\mu$ L syringe and start data collection. Store calibration data under the date of generation for use in subsequent analyses.

3.3 Weigh 5 +/- 0.01g sample into fritted extraction tube. Add 20 mL ammonium acetate, cap and shake for 5 minutes. Connect tube into filtration apparatus and collect extract. Repeat three times. Enter sample I.D. and operator name in data collection system. Inject 10  $\mu$ L into 100mL container of deionized water and shake. Extract 10  $\mu$ L of dilute sample and inject into sampling port of the ion Chromatograph.

3.4 Report cation concentrations to three significant digits. Milliequivilents conversions are automatically performed in the calculation for SAR as follows:

extractable cations =  $({\underline{Na}} + [\underline{Ca}] + [\underline{Mg}] + [\underline{K}] X 10) / W$ 23.0 20.0 12.2 39.1

soluble cations = (SC X SP) / 1000

EC = extractable cations - soluble cations

Where [] = concentration in ppm W = sample weight, grams

3.5 References:

Methods for Chemical analysis of Water and Wastes; USEPA; EMSL, Cincinnati, OH 1979

Deuel and Holliday, <u>Soil Remediation for the Petroleum Extraction Industry;</u> Houston, Tx., 1993



# Procedure for Determining Cation Exchange Capacity (CEC)

|               |              |                 |   |   | _ |
|---------------|--------------|-----------------|---|---|---|
| Completed By: | Approved By: | Effective Date: | 1 | / |   |
|               |              |                 |   |   |   |

#### 1.0 Purpose

This procedure defines the methods to be employed when determining the cation exchange capacity of soils.

#### 2.0 Scope

This procedure shall be used in all CEC testing.

## **3.0 Procedure**

3.1 All samples shall be prepared in accordance with QP-12 and 13.

3.2 Calibration of the equipment shall be performed daily. Calibrate using a 5 point series of standards. The range of standards must include a blank, and should span the range of expected concentrations of the samples. The following concentrations are appropriate:

Low Range: 0, 1.0, 3.0, 5.0, 10.0 ppm High Range: 0, 10.0, 20.0, 50.0, 100 ppm

With the instrument on, inject standard mixture with 10  $\mu$ L syringe and start data collection. Store calibration data under the date of generation for use in subsequent analyses.

3.3 Weigh 5 +/- 0.01g sample into fritted extraction tube. Add 30 mL sodium acetate, cap and shake for 5 minutes. Connect tube into filtration apparatus and discard extract. Repeat three times. Rinse sample with 30 mL iso-propyl alcohol, shaken and filtered as above. Add 30 mL ammonium acetate, shake and <u>collect</u> filtrate as in above.Inject 10  $\mu$ L into 100mL container of deionized water and shake. Extract 10  $\mu$ L of dilute sample and inject into sampling port of the ion Chromatograph.

3.4 Report cation concentrations to three significant digits. Milliequivilents conversions are automatically performed in the calculation for SAR as follows:

CEC = 10 [Na] / 23.0 W

Where [] = concentration in ppm W = sample weight, grams

3.5 References: <u>Methods for Chemical analysis of Water and Wastes</u>; USEPA; EMSL, Cincinnati, OH 1979

Deuel and Holliday, <u>Soil Remediation for the Petroleum Extraction Industry;</u> Houston, Tx., 1993



#### **Procedure for Developing Cased Water Monitoring Wells**

|               |              | · · · · · · · · · · · · · · · · · · · |     |
|---------------|--------------|---------------------------------------|-----|
| Completed By: | Approved By: | Effective Date:                       | / / |

#### 1.0 Purpose

This procedure outlines the methods to be employed to develop cased monitoring wells.

#### 2.0 Scope

This procedure shall be used for developed, cased water monitoring wells. It is not to be used for standing water samples such as ponds or streams.

#### 3.0 Preliminary

3.1 Prior to development, the static water level and height of the water column within the well casing will be measured with the use of an electric D.C. probe or a steel engineer's tape and water sensitive paste.

3.2 All measurements will be recorded within a field log notebook and subsequently reported within the driller's boring log report.

3.3 All equipment used to measure the static water level will be decontaminated after each use by means of Alconox, a phosphate free laboratory detergent, and water to reduce the possibility of crosscontamination. The volume of water in each well casing will be calculated.

#### 4.0 Purging

4.1 Wells will be purged by removing a minimum of three well casing volumes by using a 2" decontaminated submersible pump or dedicated one liter Teflon bailer.

4.2 If a submersible is used the pump will be decontaminated prior to use by scrubbing the outside surface of tubing and wiring with an Alconox-water mixture, pumping an Alconox-water mixture through the pump, and a final flush with fresh water.

## 5.0 Water Disposal

60

5.1 All purge and decontamination water will be temporarily stored within a gallon portable tank and then pumped into a permanent storage tank to be later disposed of in an appropriate manner.

## 6.0 Records

during

6.1 Whole Earth will record the amount of water removed from the well development procedures. The purge volume will be reported to the appropriate regulatory authority when filing the closure report.



QP-76 (Rev. A)

# WHOLE EARTH ENVIRONMENTAL QUALITY PROCEDURE

# Procedure for Obtaining Water Samples (Cased Wells) Using One Liter Bailer

Completed By: Approved By: Effective Date: / /

# 1.0 Purpose

This procedure outlines the methods to be employed in obtaining water samples from cased monitoring wells.

# 2.0 Scope

This procedure shall be used for developed, cased water monitoring wells. It is not to be used for standing water samples such as ponds or streams.

# **3.0 Preliminary**

- 3.1 Obtain sterile sampling containers from the testing laboratory designated to conduct analyses of the water. The shipment should include a Certificate of Compliance from the manufacturer of the collection bottle or vial and a Serial Number for the lot of containers. Retain this Certificate for future documentation purposes.
- 3.2 The following table shall be used to select the appropriate sampling container, preservative method and holding times for the various elements and compounds to be analyzed.

| Compound<br>to be<br>Analyzed | Sample<br>Container<br>Size | Sample<br>Container<br>Description | Cap<br>Requirements | Preservative           | Maximum<br>Hold Time |
|-------------------------------|-----------------------------|------------------------------------|---------------------|------------------------|----------------------|
| BTEX                          | 40 ml.                      | VOA Container                      | Teflon Lined        | HCI                    | 7 days               |
| ТРН                           | 1 liter                     | clear glass                        | Teflon Lined        | HCI                    | 28 days              |
| PAH                           | 1 liter                     | clear glass                        | Teflon Lined        | lce                    | 7 days               |
| Cation / Anion                | 1 liter                     | clear glass                        | Teflon Lined        | None                   | 48 Hrs.              |
| Metals                        | 1 liter                     | HD polyethylene                    | Any Plastic         | Ice / HNO <sub>3</sub> | 28 Days              |
| TDS                           | 300 ml.                     | clear glass                        | Any Plastic         | lce                    | 7 Days               |

#### **QP-76**

### Page 2

#### 4.0 Chain of Custody

- 4.1 Prepare a Sample Plan. The plan will list the well identification and the individual tests to be performed at that location. The sampler will check the list against the available inventory of appropriate sample collection bottles to insure against shortage.
- 4.2 Transfer the data to the Laboratory Chain of Custody Form. Complete all sections of the form except those that relate to the time of delivery of the samples to the laboratory.
- 4.3 Pre-label the sample collection jars. Include all requested information except time of collection. (Use a fine point Sharpie to insure that the ink remains on the label). Affix the labels to the jars.

#### **5.0 Bailing Procedure**

- 5.1 Identify the well from the site schematics. Place pre-labeled jar(s) next to the well. Remove the bolts from the well cover and place the cover with the bolts nearby. Remove the plastic cap from the well bore by first lifting the metal lever and then unscrewing the entire assembly.
- 5.2 The well may be equipped with an individual 1 liter bailing tube. If so, use the tube to bail a volume of water from the well bore equal to 10 liters for each 5' of well bore in the water table. (This assumes a 2" dia. well bore).
- 5.3 Take care to insure that the bailing device and string do not become crosscontaminated. A clean pair of rubber gloves should be used when handling either the retrieval string or bailer. The retrieval string should not be allowed to come into contact with the ground.

#### **6.0 Sampling Procedure**

- 6.1 Once the well has been bailed in accordance with 5.2 of this procedure, a sample may be decanted into the appropriate sample collection jar directly from the bailer. The collection jar should be filled to the brim. Once the jar is sealed, turn the jar over to detect any bubbles that may be present. Add additional water to remove all bubbles from the sample container.
- 6.2 Note the time of collection on the sample collection jar with a fine Sharpie.

#### Page 3

6.3 Place the sample directly on ice for transport to the laboratory. The preceding table shows the maximum hold times between collection and testing for the various analyses.

6.4 Complete the Chain of Custody form to include the collection times for each sample. Deliver all samples to the laboratory.

#### 7.0 Documentation

7.1 The testing laboratory shall provide the following minimum information:

- A. Client, Project and sample name.
- B. Signed copy of the original Chain of Custody Form including data on the time the sample was received by the lab.
- C. Results of the requested analyses
- D. Test Methods employed
- E. Quality Control methods and results



# Calculation for Determining the Minimum Bailing Volume for Monitor Wells Formula V = $(\pi r^2 h)$

V= volume

π= pi

r= inside radius of the well bore

h= maximum height of well bore in water table

| π      | r <sup>2</sup> | h (in) | V (cu. in) | V (gal) | X 3 Volumes | Actual |
|--------|----------------|--------|------------|---------|-------------|--------|
| 3.1416 | 1              | 180    | 565.488    | 2.448   | 7.344       | >10    |



# Procedure for Obtaining Water Samples (Cased Wells) Using Enviro-Tech ES-60 Pump

| Completed By: | Approved By: | Effective Date: | / | / |
|---------------|--------------|-----------------|---|---|

#### 1.0 Purpose

This procedure outlines the methods to be employed in obtaining water samples from cased monitoring wells.

#### 2.0 Scope

This procedure shall be used for developed, cased water monitoring wells. It is not to be used for standing water samples such as ponds or streams.

#### **3.0 Preliminary**

- 3.1 Obtain sterile sampling containers from the testing laboratory designated to conduct analyses of the water. The shipment should include a Certificate of Compliance from the manufacturer of the collection bottle or vial and a Serial Number for the lot of containers. Retain this Certificate for future documentation purposes.
- 3.2 The following table shall be used to select the appropriate sampling container, preservative method and holding times for the various elements and compounds to be analyzed.

| Compound<br>to be<br>Analyzed | Sample<br>Container<br>Size | Sample<br>Container<br>Description | Cap<br>Requirements | Preservative           | Maximum<br>Hold Time |
|-------------------------------|-----------------------------|------------------------------------|---------------------|------------------------|----------------------|
| BTEX                          | 40 ml.                      | VOA Container                      | Teflon Lined        | HCI                    | 7 days               |
| ТРН                           | 1 liter                     | clear glass                        | Teflon Lined        | HCI                    | 28 days              |
| PAH                           | 1 liter                     | clear glass                        | Teflon Lined        | Ice                    | 7 days               |
| <b>Cation / Anion</b>         | 1 liter                     | clear glass                        | Teflon Lined        | None                   | 48 Hrs.              |
| Metals                        | 1 liter                     | HD polyethylene                    | Any Plastic         | Ice / HNO <sub>3</sub> | 28 Days              |
| TDS                           | 300 ml.                     | clear glass                        | Any Plastic         | Ice                    | 7 Days               |



#### 4.0 Chain of Custody

- 4.1 Prepare a Sample Plan. The plan will list the well identification and the individual tests to be performed at that location. The sampler will check the list against the available inventory of appropriate sample collection bottles to insure against shortage.
- 4.2 Transfer the data to the Laboratory Chain of Custody Form. Complete all sections of the form except those that relate to the time of delivery of the samples to the laboratory.
- 4.3 Pre-label the sample collection jars. Include all requested information except time of collection. (Use a fine point Sharpie to insure that the ink remains on the label). Affix the labels to the jars.

#### **5.0 Bailing Procedure**

- 5.1 Identify the well from the site schematics. Place pre-labeled jar(s) next to the well. Remove the bolts from the well cover and place the cover with the bolts nearby. Remove the plastic cap from the well bore by first lifting the metal lever and then unscrewing the entire assembly.
- 5.2 Lower the ES-60 pump into the monitor well bore taking care to insure that the pump and first 10' of hose and cable does not touch the ground or become cross-contaminated by contact with anything containing
- hydrocarbon residues. When the pump reaches the bottom of the well bore you will feel the hose and cable assembly go slack. Lift the pump a minimum distance of 18" above the bottom of the well bore and clamp the hose assembly to the top of the well bore by means of vice grips. (Take care to insure that the vice grips are adjusted so as not to "choke" the hose.
- 5.3 Attach the electrical cable leads to an automobile battery and begin pumping the well bore. If the pump does not bring fluid to the surface within one minute, disconnect the electrical leads, and re-connect for four seconds three times to remove air cavitation.
- 5.4 The pump has a minimum volume of 2.8 gallons per minute at 60'. Purge the well by pumping for a minimum of 10 minutes before taking a sample.

#### 6.0 Sampling Procedure

- 6.1 Once the well has been bailed in accordance with 5.2 of this procedure, a sample may be decanted into the appropriate sample collection jar directly from the bailer. The collection jar should be filled to the brim. Once the
  - jar is sealed, turn the jar over to detect any bubbles that may be present. Add additional water to remove all bubbles from the sample container.

#### **QP-78**

- Page 3
- 6.2 Note the time of collection on the sample collection jar with a fine Sharpie.

6.3 Place the sample directly on ice for transport to the laboratory. The preceding table shows the maximum hold times between collection and testing for the various analyses.

6.4 Complete the Chain of Custody form to include the collection times for each sample. Deliver all samples to the laboratory.

#### 7.0 Decontamination

- 7.1 After removing the pump from the well, use an aerosol spray pump bottle filled with denatured isopropyl alcohol to clean the pump and first 10' of the cable and hose assembly. Rinse the sprayed portion with distilled water to remove the alcohol and dry with a clean rag. Discard the rag after
- each use. During transport, the pump assembly should be carried in a 2" PVC protective sleeve.

#### **8.0 Documentation**

- 8.1 The testing laboratory shall provide the following minimum information:
  - A. Client, Project and sample name.
  - B. Signed copy of the original Chain of Custody Form including data on the time the sample was received by the lab.
  - C. Results of the requested analyses
  - D. Test Methods employed
  - E. Quality Control methods and results



# Sampling and Testing Protocol Chloride Titration Using .1 Normal Silver Nitrate Solution

|               | the second se | the second s |   |   |
|---------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---|---|
| Completed By: | Approved By:                                                                                                    | Effective Date:                                                                                                | / | / |

#### 1.0 Purpose

This procedure is to be used to determine the concentrations of chlorides in soils.

#### 2.0 Scope

This procedure is to be used as the standard field measurement for soil chloride concentrations.

## 3.0 Sample Collection and Preparation

- 3.1 Collect at least 80 g. of soil from the sample collection point. Take care to insure that the sample is representative of the general background to include visible concentrations of hydrocarbons and soil types. If necessary, prepare a composite sample of soils obtained at several points in the sample area. Take care to insure that no loose vegetation, rocks or liquids are included in the sample(s).
- 3.2 The soil sample(s) shall be immediately inserted into a one quart or larger polyethylene freezer bag. Care should be taken to insure that no cross-contamination occur between the soil sample and the collection tools or sample processing equipment.
- 3.3 The sealed sample bag should be massaged to break up any clods.

#### 4.0 Sample Preparation

- 4.1 Tare a plastic cup having a minimum six-ounce capacity. Add between 80-120 grams of the soil sample and record the weight.
- 4.2 Add the same weight of distilled water to the soil sample and stir thoroughly using a glass or plastic stir stick.
- 4.3 Allow the sample to set for a period of thirty minutes. The sample should be stirred at least three times before fluid extraction.
- 4.4 Carefully pour off the free liquid from the sample through a paper filter into a clean plastic cup.

#### **5.0 Titration Procedure**

- 5.1 Using a graduated pipette, remove 10 ml extract and dispense into a clean plastic cup.
- 5.2 Add 2-3 drops potassium chromate (K<sub>2</sub>CrO<sub>4</sub>) to mixture.
- 5.3 If the sample contains any sulfides (hydrogen or iron sulfides are common to oilfield soil samples) add 2-3 drops of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) to mixture. Allow the mixture to set for a minimum of five minutes.
- 5.4 Using a 1 ml pipette, carefully add .1 normal silver nitrate solution to sample until solution turns salmon red when viewed with yellow goggles. Be consistent with endpoint recognition.

### 6.0 Calculation

Multiply the amount of silver nitrate used in step 5.4 by 354.5 to obtain the chloride concentration in mg/L.



# Laboratory Analytical Results

This section contains a copy the chain of custody, laboratory analytical results and quality control information for soil samples processed during this project.



# Devon Energy Company Patsy Battery Soil Analytical Summary

|              |       | I       | Battery A | rea          |        |           |  |
|--------------|-------|---------|-----------|--------------|--------|-----------|--|
| Location     | ТРН   | Benzene | Toluene   | Ethylbenzene | Xylene | Chlorides |  |
| East Wall    | ND    | ND      | ND        | ND           | 0.0672 | 47.1      |  |
| North Wall   | ND    | ND      | 0.0119    | ND           | ND     | 27.8      |  |
| South Wall   | 895   | 0.0275  | 0.167     | 0.146        | 0.807  | 56.0      |  |
| West Wall    | ND    | ND      | ND        | ND           | ND     | 35.7      |  |
| Bottom       | ND    | ND      | ND        | ND           | ND     | 71.4      |  |
| Backfill 20' | 1,510 | 0.0191  | 0.130     | 0.140        | 0.895  | 107.0     |  |
| Backfill 15' | 1,120 | 0.0506  | 0.381     | 0.442        | 0.928  | 119.0     |  |
| Backfill 10' | 2,320 | ND      | ND        | 0.0231       | 0.0433 | 174.0     |  |
| Backfill 5'  | 2,400 | ND      | 0.134     | 0.187        | 0.478  | 102.0     |  |
| Surface      | 960   | ND      | ND        | ND           | ND     | 22.5      |  |

|              | Pit Area (Area B) |         |         |              |        |           |  |  |  |  |  |  |
|--------------|-------------------|---------|---------|--------------|--------|-----------|--|--|--|--|--|--|
| Location     | ТРН               | Benzene | Toluene | Ethylbenzene | Xylene | Chlorides |  |  |  |  |  |  |
| East Wall    | 53.5              | ND      | ND      | ND           | 0.0294 | 160       |  |  |  |  |  |  |
| North Wall   | ND                | ND      | ND      | ND           | ND     | 274       |  |  |  |  |  |  |
| South Wall   | 5,000             | 0.138   | 0.470   | 0.861        | 3.50   | 127       |  |  |  |  |  |  |
| West Wall    | ND                | ND      | ND      | ND           | ND     | 37        |  |  |  |  |  |  |
| Water        |                   | ND      | ND      | 0.0019       | 0.0022 | 1,060     |  |  |  |  |  |  |
| Backfill 25' | 63.4              | ND      | ND      | ND           | 0.0344 | 25.4      |  |  |  |  |  |  |
| Backfill 20' | 436               | ND      | ND      | ND           | 0.0309 | 38.2      |  |  |  |  |  |  |
| Backfill 15' | 2,500             | ND      | 0.13    | 0.216        | 0.646  | 62.8      |  |  |  |  |  |  |
| Backfill 10' | 214               | ND      | ND      | 0.0294       | 0.0853 | 57.0      |  |  |  |  |  |  |
| Backfill 5'  | 1,160             | ND      | ND      | ND           | 0.0377 | 58.6      |  |  |  |  |  |  |
| Surface      | 6,170             | ND      | ND      | 0.0472       | 0.1741 | 22.2      |  |  |  |  |  |  |

|              | Spread Zone (Area C) |         |         |              |        |           |  |  |  |  |  |  |  |
|--------------|----------------------|---------|---------|--------------|--------|-----------|--|--|--|--|--|--|--|
| Location     | ТРН                  | Benzene | Toluene | Ethylbenzene | Xylene | Chlorides |  |  |  |  |  |  |  |
| East Wall    | 53.5                 | ND      | ND      | ND           | 0.0294 | 20.4      |  |  |  |  |  |  |  |
| North Wall   | ND                   | ND      | 0.0106  | ND           | 0.0447 | 22.5      |  |  |  |  |  |  |  |
| South Wall   | 155                  | ND      | 0.0118  | 0.0184       | 0.0843 | 30.2      |  |  |  |  |  |  |  |
| West Wall    | 89.4                 | ND      | 0.3800  | 0.1270       | 0.3990 | 28.1      |  |  |  |  |  |  |  |
| Bottom       | 25.8                 | ND      | ND      | ND           | ND     | 28.9      |  |  |  |  |  |  |  |
| Backfill 10' | 2,100                | ND      | ND      | ND           | 0.0304 | 129.0     |  |  |  |  |  |  |  |
| Backfill 5'  | 1,590                | ND      | 0.0604  | 0.138        | 0.519  | 40.2      |  |  |  |  |  |  |  |
| Surface      | 1,110                | ND      | ND      | ND           | 0.0244 | 38.2      |  |  |  |  |  |  |  |



# **Devon Energy Company** Patsy Battery Water Analytical Summary

|          | Battery Area |         |              |        |           |  |  |  |  |  |  |  |
|----------|--------------|---------|--------------|--------|-----------|--|--|--|--|--|--|--|
| Location | Benzene      | Toluene | Ethylbenzene | Xylene | Chlorides |  |  |  |  |  |  |  |
| MW-1     | 0.002        | 0.003   | 0.004        | 0.005  | 560.0     |  |  |  |  |  |  |  |
| MW-3     | ND           | ND      | ND           | ND     | 664.0     |  |  |  |  |  |  |  |
| MW-4     | ND           | ND      | ND           | ND     | 472.0     |  |  |  |  |  |  |  |
| MW-5     | ND           | ND      | ND           | ND     | 572.0     |  |  |  |  |  |  |  |
| MW-6     | ND           | ND      | ND           | ND     | 1,190.0   |  |  |  |  |  |  |  |
| MW-7     | ND           | ND      | ND           | ND     | 538.0     |  |  |  |  |  |  |  |











# Analytical Report

# **Prepared for:**

Mike Griffin WHOLE EARTH ENVIRONMENTAL 2103 Arbor Cove Katy, TX 77494

· ;

Project: Devon Project Number: Patsy Battery Pit Area Location: None Given

Lab Order Number: 5C15001

Report Date: 03/18/05

#### ANALYTICAL REPORT FOR SAMPLES

,

| Sampled Date Received                             |
|---------------------------------------------------|
| 05 13:35 03/15/05 08:00                           |
| 05 13:35 03/15/05 08:00                           |
| 05 13:35 03/15/05 08:00                           |
| 05 13:35 03/15/05 08:00                           |
| 05 15:15 03/15/05 08:00                           |
| 05 15:15 03/15/05 08:00                           |
| 05 13:35 0   05 13:35 0   05 15:15 0   05 15:15 0 |

Katy TX, 77494

#### Project: Devon Project Number: Patsy Battery Pit Area Project Manager: Mike Griffin

1

## Organics by GC

#### **Environmental Lab of Texas**

|                                   |        | Reporting     |           |          |         |          |          |           |       |
|-----------------------------------|--------|---------------|-----------|----------|---------|----------|----------|-----------|-------|
| Analyte                           | Result | Limit         | Units     | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
| East Wall #1 (5C15001-01) Soil    |        |               |           |          |         |          |          |           |       |
| Benzene                           | ND     | 0.0250        | mg/kg dry | 25       | EC51702 | 03/16/05 | 03/16/05 | EPA 8021B |       |
| Toluene                           | ND     | 0.0250        | 12        | "        | n       | n        | "        | Ħ         |       |
| Ethylbenzene                      | ND     | 0.0250        | "         | "        | n       | n        | "        | **        |       |
| Xylene (p/m)                      | 0.0394 | 0.0250        | "         | "        | *       | "        | *        | 11        |       |
| Xylene (0)                        | ND     | 0.0250        | н         | "        | "       | n        | "        | n         |       |
| Surrogate: a,a,a-Trifluorotoluene |        | 96.1 %        | 80-1      | 120      | "       | "        | "        | "         |       |
| Surrogate: 4-Bromofluorobenzene   |        | 94.7 %        | 80-1      | 120      | u       | "        | н        | "         |       |
| Gasoline Range Organics C6-C12    | ND     | 10.0          | mg/kg dry | 1        | EC51503 | 03/15/05 | 03/17/05 | EPA 8015M |       |
| Diesel Range Organics >C12-C35    | ND     | 10.0          | n         | n        | "       | U        | n        | "         |       |
| Total Hydrocarbon C6-C35          | ND     | 10.0          | "         | 11       | "       | "        | "        | *         |       |
| Surrogate: 1-Chlorooctane         |        | 81.0 %        | 67.6-     | -140     | "       | "        | "        | "         |       |
| Surrogate: 1-Chlorooctadecane     |        | 96.2 %        | 70-1      | 130      | "       | "        | "        | "         |       |
| North Wall #1 (5C15001-02) Soil   |        |               |           |          |         |          |          |           |       |
| Benzene                           | ND     | 0.0250        | mg/kg dry | 25       | EC51702 | 03/16/05 | 03/16/05 | EPA 8021B |       |
| Toluene                           | ND     | 0.0250        |           | "        | "       | "        | "        | "         |       |
| Ethylbenzene                      | ND     | 0.0250        | "         | "        | "       | "        | и        | "         |       |
| he (p/m)                          | ND     | 0.0250        | n         | "        | "       | "        | **       | "         |       |
| Xylene (o)                        | ND     | 0.0250        | n         |          | n       | "        | "        | μ         |       |
| Surrogate: a,a,a-Trifluorotoluene |        | <i>92.7 %</i> | 80-1      | 120      | "       | "        | "        | "         |       |
| Surrogate: 4-Bromofluorobenzene   |        | 89.7 %        | 80-1      | 120      | и       | "        | "        | "         |       |
| Gasoline Range Organics C6-C12    | ND     | 10.0          | mg/kg dry | 1        | EC51503 | 03/15/05 | 03/17/05 | EPA 8015M |       |
| Diesel Range Organics >C12-C35    | ND     | 10.0          | "         | "        | "       | "        | "        | "         |       |
| Total Hydrocarbon C6-C35          | ND     | 10.0          | ۲         | "        |         | "        | H        | 11        |       |
| Surrogate: 1-Chlorooctane         |        | 89.2 %        | 67.6-     | -140     | "       | "        | н        | ıt        |       |
| Surrogate: 1-Chlorooctadecane     |        | 98.0 %        | 70-1      | 130      | "       | "        | "        | "         |       |
| South Wall #1 (5C15001-03) Soil   |        |               |           |          |         |          |          |           |       |
| Benzene                           | 0.138  | 0.100         | mg/kg dry | 100      | EC51702 | 03/16/05 | 03/16/05 | EPA 8021B |       |
| Toluene                           | 0.470  | 0.100         | "         | "        | н       | "        | "        | 11        |       |
| Ethylbenzene                      | 0.861  | 0.100         | ۳         | "        | "       | "        | "        | n         |       |
| Xylene (p/m)                      | 3.06   | 0.100         | "         | 11       | n       | "        | u        | 14        |       |
| Xylene (o)                        | 0.440  | 0.100         | "         | n        | 11      | n        | "        | u         |       |
| Surrogate: a,a,a-Trifluorotoluene |        | 100 %         | 80-1      | 120      | "       | "        | "        | "         | 1     |
| Surrogate: 4-Bromofluorobenzene   |        | 94.5 %        | 80-1      | 120      | "       | "        | "        | "         |       |
| Gasoline Range Organics C6-C12    | 584    | 50.0          | mg/kg dry | 5        | EC51503 | 03/15/05 | 03/17/05 | EPA 8015M |       |
| Diesel Range Organics >C12-C35    | 4420   | 50.0          | n         | н        | н       | "        | "        | "         |       |
| Total Hydrocarbon C6-C35          | 5000   | 50.0          | 11        | "        | "       | n        |          | n         |       |

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 2 of 11

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

#### Project: Devon Project Number: Patsy Battery Pit Area Project Manager: Mike Griffin

| Organics | by | GC |
|----------|----|----|
|----------|----|----|

#### **Environmental Lab of Texas**

| Analyte                           | Result  | Reporting<br>Limit | Units     | Dilution | Batch   | Prepared | Analyzed   | Method    | Notes |
|-----------------------------------|---------|--------------------|-----------|----------|---------|----------|------------|-----------|-------|
| South Wall #1 (5C15001-03) Soil   |         |                    |           |          | Daten   |          | 7 mary 200 |           |       |
| Surrogate: 1-Chlorooctane         |         | 14.0 %             | 67.6      | -140     | EC51503 | 03/15/05 | 03/17/05   | EPA 8015M | S-06  |
| Surrogate: 1-Chlorooctadecane     |         | 22.8 %             | 70-,      | 130      | "       | "        | n          | N         | S-00  |
| West Wall #1 (5C15001-04) Soil    |         |                    |           |          |         |          |            |           |       |
| Benzene                           | ND      | 0.0250             | mg/kg dry | 25       | EC51702 | 03/16/05 | 03/16/05   | EPA 8021B |       |
| Toluene                           | ND      | 0.0250             | "         | "        | "       | 11       | "          | "         |       |
| Ethylbenzene                      | ND      | 0.0250             |           |          | "       | "        | "          | n         |       |
| Xylene (p/m)                      | ND      | 0.0250             | "         | "        | "       | "        | "          | **        |       |
| Xylene (o)                        | ND      | 0.0250             |           | 11       | "       | "        | n          |           |       |
| Surrogate: a,a,a-Trifluorotoluene |         | 90.8 %             | 80        | 120      | 'n      | "        | "          | "         |       |
| Surrogate: 4-Bromofluorobenzene   |         | 96.2 %             | 80-       | 120      | "       | "        | "          | "         |       |
| Gasoline Range Organics C6-C12    | ND      | 10.0               | mg/kg dry | 1        | EC51503 | 03/15/05 | 03/17/05   | EPA 8015M |       |
| Diesel Range Organics >C12-C35    | ND      | 10.0               | n         | "        | "       | "        | "          | "         |       |
| Total Hydrocarbon C6-C35          | ND      | 10.0               | "         | **       | "       | n        | 11         |           |       |
| Surrogate: 1-Chlorooctane         |         | 75.0 %             | 67.6      | -140     | "       | "        | "          | ti        |       |
| Surrogate: 1-Chlorooctadecane     |         | 88.6 %             | 70        | 130      | "       | "        | "          | n         |       |
| indwater B (5C15001-06) Water     |         |                    |           |          |         |          |            |           |       |
| Benzene                           | ND      | 0.00100            | mg/L      | 1        | EC51509 | 03/15/05 | 03/15/05   | EPA 8021B |       |
| Toluene                           | ND      | 0.00100            | "         | "        |         | "        |            | ri        |       |
| Ethylbenzene                      | 0.00187 | 0.00100            | "         | "        |         | "        |            | 11        |       |
| Xylene (p/m)                      | 0.00217 | 0.00100            | u         | **       | "       | "        |            | 87        |       |
| Xylene (o)                        | ND      | 0.00100            | "         |          | **      | "        | н          | e.        |       |

80-120

80-120

89.0 %

80.8 %

Surrogate: a,a,a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

"

"

"`

"

"

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

#### Project: Devon Project Number: Patsy Battery Pit Area Project Manager: Mike Griffin

#### General Chemistry Parameters by EPA / Standard Methods

#### **Environmental Lab of Texas**

|                                  |        | Reporting |       |          |         |          |          |               |       |
|----------------------------------|--------|-----------|-------|----------|---------|----------|----------|---------------|-------|
| Analyte                          | Result | Limit     | Units | Dilution | Batch   | Prepared | Analyzed | Method        | Notes |
| East Wall #1 (5C15001-01) Soil   |        |           |       |          |         |          |          |               |       |
| Chloride                         | 160    | 10.0      | mg/kg | 20       | EC51611 | 03/16/05 | 03/16/05 | EPA 300.0     |       |
| % Moisture                       | 5.2    | 0.1       | %     | I        | EC51601 | 03/15/05 | 03/16/05 | % calculation |       |
| North Wall #1 (5C15001-02) Soil  |        |           |       |          |         |          |          |               |       |
| Chloride                         | 274    | 10.0      | mg/kg | 20       | EC51611 | 03/16/05 | 03/16/05 | EPA 300.0     |       |
| % Moisture                       | 4.4    | 0.1       | %     | 1        | EC51601 | 03/15/05 | 03/16/05 | % calculation |       |
| South Wall #1 (5C15001-03) Soil  |        |           |       |          |         |          |          |               |       |
| Chloride                         | 127    | 5.00      | mg/kg | 10       | EC51611 | 03/16/05 | 03/16/05 | EPA 300.0     |       |
| % Moisture                       | 18.8   | 0.1       | %     | 1        | EC51601 | 03/15/05 | 03/16/05 | % calculation |       |
| West Wall #1 (5C15001-04) Soil   |        |           |       |          |         |          |          |               |       |
| Chloride                         | 36.9   | 5.00      | mg/kg | 10       | EC51611 | 03/16/05 | 03/16/05 | EPA 300.0     |       |
| % Moisture                       | 5.6    | 0.1       | %     | 1        | EC51601 | 03/15/05 | 03/16/05 | % calculation |       |
| Groundwater A (5C15001-05) Water |        |           |       |          |         |          |          |               |       |
| Chloride                         | 1060   | 10.0      | mg/L  | 20       | EC51609 | 03/15/05 | 03/15/05 | EPA 300.0     |       |

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 4 of 11

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

# ProjectDevonProject NumberPatsy Battery Pit AreaProject ManagerMike Griffin

03/18/05 16:27

#### **Organics by GC - Quality Control**

#### **Environmental Lab of Texas**

|                                         |        | Reporting     | The lat   | Spike       | Source      | WREC        | %REC     |        | RPD   | N-4   |
|-----------------------------------------|--------|---------------|-----------|-------------|-------------|-------------|----------|--------|-------|-------|
| Analyte                                 | Result | Limit         | Units     | Level       | Result      | %REC        | Limits   | КРО    | Limit | Notes |
| Batch EC51503 - Solvent Extraction (GC) |        |               |           |             |             |             |          |        |       |       |
| Blank (EC51503-BLK1)                    |        |               |           | Prepared: ( | 03/15/05 Ai | nalyzed: 03 | 3/17/05  |        |       |       |
| Gasoline Range Organics C6-C12          | ND     | 10.0          | mg/kg wet |             |             |             |          | ·····- |       |       |
| Diesel Range Organics >C12-C35          | ND     | 10.0          | "         |             |             |             |          |        |       |       |
| Total Hydrocarbon C6-C35                | ND     | 10.0          | "         |             |             |             |          |        |       |       |
| Surrogate: 1-Chlorooctane               | 37.7   |               | mg/kg     | 50.0        |             | 75.4        | 67.6-140 |        |       |       |
| Surrogate: 1-Chlorooctadecane           | 44.0   |               | "         | 50.0        |             | 88.0        | 70-130   |        |       |       |
| LCS (EC51503-BS1)                       |        |               |           | Prepared: ( | 03/15/05 Ai | nalyzed: 02 | 3/17/05  |        |       |       |
| Gasoline Range Organics C6-C12          | 431    | 10.0          | mg/kg wet | 500         |             | 86.2        | 76.3-104 |        |       |       |
| Diesel Range Organics >C12-C35          | 491    | 10.0          | ŧ         | 500         |             | 98.2        | 76.1-118 |        |       |       |
| Total Hydrocarbon C6-C35                | 922    | 10.0          | 11        | 1000        |             | 92.2        | 81.8-105 |        |       |       |
| Surrogate: 1-Chlorooctane               | 48.4   |               | mg/kg     | 50.0        |             | 96.8        | 67.6-140 |        |       |       |
| Surrogate: 1-Chlorooctadecane           | 46.8   |               | "         | 50.0        |             | 93.6        | 70-130   |        |       |       |
| Calibration Check (EC51503-CCV1)        |        |               |           | Prepared: ( | 03/15/05 A  | nalyzed: 0. | 3/17/05  |        |       |       |
| Gasoline Range Organics C6-C12          | 482    |               | mg/kg     | 500         |             | 96.4        | 80-120   |        |       |       |
| Diesel Range Organics >C12-C35          | 535    |               | "         | 500         |             | 107         | 80-120   |        |       |       |
| Total Hydrocarbon C6-C35                | 1020   |               | "         | 1000        |             | 102         | 80-120   |        |       |       |
| Surrogate: 1-Chlorooctane               | 49.4   |               | "         | 50.0        |             | 98.8        | 67.6-140 |        |       |       |
| Surrogate: 1-Chlorooctadecane           | 53.2   |               | "         | 50.0        |             | 106         | 70-130   |        |       |       |
| trix Spike (EC51503-MS1)                | Sou    | irce: 5C15001 | -01       | Prepared: ( | 03/15/05 Ai | nalyzed: 0  | 3/17/05  |        |       |       |
| Gasoline Range Organics C6-C12          | 483    | 10.0          | mg/kg dry | 527         | ND          | 91.7        | 75.9-114 |        |       |       |
| Diesel Range Organics >C12-C35          | 582    | 10.0          | "         | 527         | ND          | 110         | 85.3-122 |        |       |       |
| Total Hydrocarbon C6-C35                | 1070   | 10.0          | n         | 1050        | ND          | 102         | 84.4-115 |        |       |       |
| Surrogate: 1-Chlorooctane               | 49.2   |               | mg/kg     | 50.0        |             | 98.4        | 67.6-140 |        |       |       |
| Surrogate: 1-Chlorooctadecane           | 51.8   |               | "         | 50.0        | ,           | 104         | 70-130   |        |       |       |
| Matrix Spike Dup (EC51503-MSD1)         | Seu    | rce: 5C15001  | -01       | Prepared: ( | 03/15/05 Au | nalyzed: 03 | 3/17/05  |        |       |       |
| Gasoline Range Organics C6-C12          | 508    | 10.0          | mg/kg dry | 527         | ND          | 96.4        | 75.9-114 | 5.05   | 10.4  |       |
| Diesel Range Organics >C12-C35          | 576    | 10.0          | "         | 527         | ND          | 109         | 85.3-122 | 1.04   | 10.4  |       |
| Total Hydrocarbon C6-C35                | 1080   | 10.0          | P         | 1050        | ND          | 103         | 84.4-115 | 0.930  | 7.6   |       |
| Surrogate: 1-Chlorooctane               | 48.9   |               | mg/kg     | 50.0        |             | 97.8        | 67.6-140 |        |       |       |
| Surrogate: 1-Chlorooctadecane           | 51.2   |               | "         | 50.0        |             | 102         | 70-130   |        |       |       |

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.



1

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 5 of 11

#### Project Devon Project Number: Patsy Battery Pit Area Project Manager: Mike Griffin

03/18/05 16:27

#### **Organics by GC - Quality Control**

#### **Environmental Lab of Texas**

|                                   |             | Reporting                                                                                                      |       | Spike       | Source                                |            | %REC   |     | RPD            |                                        |
|-----------------------------------|-------------|----------------------------------------------------------------------------------------------------------------|-------|-------------|---------------------------------------|------------|--------|-----|----------------|----------------------------------------|
| Analyte                           | Kesult      | Limit                                                                                                          | Units | Level       | Result                                | %REC       | Limits | RPD | Limit          | Notes                                  |
| Batch EC51509 - EPA 5030C (GC)    |             |                                                                                                                |       |             |                                       |            |        |     |                |                                        |
| Blank (EC51509-BLK1)              |             |                                                                                                                |       | Prepared: 0 | 3/14/05 An                            | alyzed: 03 | /15/05 |     |                |                                        |
| Benzene                           | ND          | 0.00100                                                                                                        | mg/L  |             |                                       |            |        |     |                |                                        |
| Toluene                           | ND          | 0.00100                                                                                                        |       |             |                                       |            |        |     |                |                                        |
| Ethylbenzene                      | ND          | 0.00100                                                                                                        | "     |             |                                       |            |        |     |                |                                        |
| Xylene (p/m)                      | ND          | 0.00100                                                                                                        | "     |             |                                       |            |        |     |                |                                        |
| Xylene (0)                        | ND          | 0.00100                                                                                                        | **    |             |                                       |            |        |     |                |                                        |
| Surrogate: a,a,a-Trifluorotoluene | 87.3        |                                                                                                                | ug/l  | 100         |                                       | 87.3       | 80-120 |     |                |                                        |
| Surrogate: 4-Bromofluorobenzene   | 81.9        |                                                                                                                | "     | 100         |                                       | 81.9       | 80-120 | 3   |                |                                        |
| LCS (EC51509-BS1)                 |             |                                                                                                                |       | Prepared: 0 | )3/14/05 An                           | alyzed: 03 | /15/05 |     |                |                                        |
| Benzene                           | 110         |                                                                                                                | ug/l  | 100         |                                       | 110        | 80-120 |     |                |                                        |
| Toluene                           | 113         |                                                                                                                | "     | 100         |                                       | 113        | 80-120 |     |                |                                        |
| Ethylbenzene                      | 107         |                                                                                                                | *     | 100         |                                       | 107        | 80-120 |     |                |                                        |
| Xylene (p/m)                      | 237         |                                                                                                                | "     | 200         |                                       | 118        | 80-120 |     |                |                                        |
| Xylene (o)                        | 117         |                                                                                                                | "     | 100         |                                       | 117        | 80-120 |     |                |                                        |
| Surrogate: a,a,a-Trifluorotoluene | 111         |                                                                                                                | "     | 100         |                                       | 111        | 80-120 |     |                |                                        |
| Surrogate: 4-Bromofluorobenzene   | <i>98.5</i> |                                                                                                                | n     | 100         |                                       | 98.5       | 80-120 |     |                |                                        |
| Calibration Check (EC51509-CCV1)  |             |                                                                                                                |       | Prepared &  | : Analyzed:                           | 03/14/05   |        |     |                |                                        |
| Benzene                           | 105         |                                                                                                                | ug/l  | 100         | · · · · · · · · · · · · · · · · · · · | 105        | 80-120 |     |                | ······································ |
| luene                             | 105         |                                                                                                                |       | 100         |                                       | 105        | 80-120 |     |                |                                        |
| lbenzene                          | 96.7        |                                                                                                                | "     | 100         |                                       | 96.7       | 80-120 |     |                |                                        |
| Xylene (p/m)                      | 211         |                                                                                                                | 0     | 200         |                                       | 106        | 80-120 |     |                |                                        |
| Xylene (o)                        | 105         |                                                                                                                | "     | 100         |                                       | 105        | 80-120 |     |                |                                        |
| Surrogate: a,a,a-Trifluorotoluene | 94.3        |                                                                                                                | "     | 100         |                                       | 94.3       | 80-120 |     |                |                                        |
| Surrogate: 4-Bromofluorobenzene   | 88.4        |                                                                                                                | "     | 100         |                                       | 88.4       | 80-120 |     |                |                                        |
| Matrix Spike (EC51509-MS1)        | Sou         | rce: 5C15001-                                                                                                  | 06    | Prepared &  | Analyzed:                             | 03/15/05   |        |     |                |                                        |
| Benzene                           | 111         | and the face of the second | ug/l  | 100         | ND                                    | 111        | 80-120 |     | ·              |                                        |
| Totuene                           | 115         |                                                                                                                |       | 100         | ND                                    | 115        | 80-120 |     |                |                                        |
| Ethylbenzene                      | 115         |                                                                                                                | *     | 100         | 1.87                                  | 113        | 80-120 |     |                |                                        |
| Xylene (p/m)                      | 241         |                                                                                                                | "     | 200         | 2.17                                  | 119        | 80-120 |     |                |                                        |
| Xylene (0)                        | 118         |                                                                                                                | 11    | 100         | ND                                    | 118        | 80-120 |     |                |                                        |
| Surrogate: a,a,a-Trifluorotoluene | 107         |                                                                                                                | "     | 100         |                                       | 107        | 80-120 |     | ····· ··· ···· |                                        |
| Surrogate: 4-Bromofluorobenzene   | 103         |                                                                                                                | "     | 100         |                                       | 103        | 80-120 |     |                |                                        |

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 6 of 11

Project: Devon Project Number: Patsy Battery Pit Area Project Manager: Mike Griffin

#### **Organics by GC - Quality Control**

#### **Environmental Lab of Texas**

|         |        | Reporting |       | Spike | Source |      | %REC   |     | RPD   |       |
|---------|--------|-----------|-------|-------|--------|------|--------|-----|-------|-------|
| Analyte | Result | Limit     | Units | Level | Result | %REC | Limits | RPD | Limit | Notes |

#### Batch EC51509 - EPA 5030C (GC)

| Matrix Spike Dup (EC51509-MSD1)   | Source: 50 | Prepared & Analyzed: 03/15/05 |     |      |     |        |       |    |  |
|-----------------------------------|------------|-------------------------------|-----|------|-----|--------|-------|----|--|
| Benzene                           | 113        | ug/l                          | 100 | ND   | 113 | 80-120 | 1.79  | 20 |  |
| Toluene                           | 118        | *                             | 100 | ND   | 118 | 80-120 | 2.58  | 20 |  |
| Ethylbenzene                      | 118        | 'n                            | 100 | 1.87 | 116 | 80-120 | 2.62  | 20 |  |
| Xylene (p/m)                      | 239        |                               | 200 | 2.17 | 118 | 80-120 | 0.844 | 20 |  |
| Xylene (o)                        | 118        | •                             | 100 | ND   | 118 | 80-120 | 0.00  | 20 |  |
| Surrogate: a,a,a-Trifluorotoluene | 112        | "                             | 100 |      | 112 | 80-120 |       |    |  |
| Surrogate: 4-Bromofluorobenzene   | 110        | "                             | 100 |      | 110 | 80-120 |       |    |  |

#### Batch EC51702 - EPA 5030C (GC)

| Blank (EC51702-BLK1)              | Prepared & Analyzed: 03/16/05 |        |           |     |                                       |        |  |  |  |
|-----------------------------------|-------------------------------|--------|-----------|-----|---------------------------------------|--------|--|--|--|
| Benzene                           | ND                            | 0.0250 | mg/kg wet |     | · · · · · · · · · · · · · · · · · · · |        |  |  |  |
| Toluene                           | ND                            | 0.0250 | Ħ         |     |                                       |        |  |  |  |
| Ethylbenzene                      | ND                            | 0.0250 | *         |     |                                       |        |  |  |  |
| Xylene (p/m)                      | ND                            | 0.0250 |           |     |                                       |        |  |  |  |
| Xylene (o)                        | ND                            | 0.0250 | •         |     |                                       |        |  |  |  |
| Surrogate: a,a,a-Trifluorotoluene | 86.8                          |        | ug/kg     | 100 | 86.8                                  | 80-120 |  |  |  |
| Surrogate: 4-Bromofluorobenzene   | 82.4                          |        | "         | 100 | 82.4                                  | 80-120 |  |  |  |
| LCS (EC51702-BS1)                 | Prepared & Analyzed: 03/16/05 |        |           |     |                                       |        |  |  |  |
| Benzene                           | 115                           |        | ug/kg     | 100 | 115                                   | 80-120 |  |  |  |
| Toluene                           | 117                           |        | *         | 100 | 117                                   | 80-120 |  |  |  |
| Ethylbenzene                      | 116                           |        |           | 100 | 116                                   | 80-120 |  |  |  |
| Xylene (p/m)                      | 239                           |        | Ħ         | 200 | 120                                   | 80-120 |  |  |  |
| Xylene (o)                        | 116                           |        |           | 100 | 116                                   | 80-120 |  |  |  |
| Surrogate: a,a,a-Trifluorotoluene | 118                           |        | "         | 100 | 118                                   | 80-120 |  |  |  |

100

119

Surrogate: 4-Bromofluorobenzene

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

119

80-120
### **Organics by GC - Quality Control**

**Environmental Lab of Texas** 

| Analyte                           | Result | Reporting<br>Limit                               | Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|-----------------------------------|--------|--------------------------------------------------|-------|----------------|------------------|----------|----------------|-------|--------------|-------|
| Batch EC51702 - EPA 5030C (GC)    |        | <u></u>                                          |       | <u></u>        | <del></del>      |          |                |       |              |       |
| Calibration Check (EC51702-CCV1)  |        |                                                  |       | Prepared &     | z Analyzed:      | 03/16/05 |                |       |              |       |
| Benzene                           | 113    |                                                  | ug/kg | 100            |                  | 113      | 80-120         |       |              |       |
| Toluene                           | 118    |                                                  | n     | 100            |                  | 118      | 80-120         |       |              |       |
| Ethylbenzene                      | 111    |                                                  |       | 100            |                  | 111      | 80-120         |       |              |       |
| Xylene (p/m)                      | 238    |                                                  | *     | 200            |                  | 119      | 80-120         |       |              |       |
| Xyiene (o)                        | 117    |                                                  | H     | 100            |                  | 117      | 80-120         |       |              |       |
| Surrogate: a,a,a-Trifluorotoluene | 114    |                                                  | *     | 100            |                  | 114      | 80-120         |       |              |       |
| Surrogate: 4-Bromofluorobenzene   | 95.1   |                                                  | "     | 100            |                  | 95. I    | 80-120         |       |              |       |
| Matrix Spike (EC51702-MS1)        | Sou    | Source: 5C15001-04 Prepared & Analyzed: 03/16/05 |       |                |                  |          |                |       |              |       |
| Benzene                           | 112    |                                                  | ug/kg | 100            | ND               | 112      | 80-120         |       |              |       |
| Toluene                           | 119    |                                                  | "     | 100            | ND               | 119      | 80-120         |       |              |       |
| Ethylbenzene                      | 116    |                                                  | ۳     | 100            | ND               | 116      | 80-120         |       |              |       |
| Xylene (p/m)                      | 239    |                                                  | "     | 200            | ND               | 120      | 80-120         |       |              |       |
| Xylene (o)                        | 117    |                                                  | -     | 100            | ND               | 117      | 80-120         |       |              |       |
| Surrogate: a,a,a-Trifluorotoluene | 107    | <del></del>                                      | H     | 100            |                  | 107      | 80-120         |       |              |       |
| Surrogate: 4-Bromofluorobenzene   | 111    |                                                  | "     | 100            |                  | 111      | 80-120         |       |              |       |
| Matrix Spike Dup (EC51702-MSD1)   | Sou    | rce: 5C15001-(                                   | )4    | Prepared &     | Analyzed:        | 03/16/05 |                |       |              |       |
| Benzene                           | 111    |                                                  | ug/kg | 100            | ND               | 111      | 80-120         | 0.897 | 20           |       |
| Toluene                           | 118    |                                                  |       | 100            | ND               | 118      | 80-120         | 0.844 | 20           |       |
| Ethylbenzene                      | 117    |                                                  |       | 100            | ND               | 117      | 80-120         | 0.858 | 20           |       |
| Xylene (p/m)                      | 240    |                                                  | *     | 200            | ND               | 120      | 80-120         | 0.00  | 20           |       |
| Xylene (o)                        | 119    |                                                  | "     | 100            | ND               | 119      | 80-120         | 1.69  | 20           |       |
| Surrogate: a,a,a-Trifluorotoluene | 110    |                                                  | n     | 100            |                  | 110      | 80-120         |       |              |       |
| Surrogate: 4-Bromofluorobenzene   | 113    |                                                  | "     | 100            |                  | 113      | 80-120         |       |              |       |

Environmental Lab of Texas

### General Chemistry Parameters by EPA / Standard Methods - Quality Control

### Environmental Lab of Texas

| Analyte                                    | Result | Reporting       | Linits | Spike       | Source<br>Result | %REC        | %REC   | RPD   | RPD<br>Limit | Notes |
|--------------------------------------------|--------|-----------------|--------|-------------|------------------|-------------|--------|-------|--------------|-------|
|                                            |        | Entit           |        |             |                  |             |        |       |              |       |
| Batch EC51601 - General Preparation (Prep) |        |                 |        | <u></u>     |                  |             |        |       |              |       |
| Blank (EC51601-BLK1)                       |        |                 |        | Prepared: ( | 03/15/05 A       | nalyzed: 03 | /16/05 |       |              |       |
| % Moisture                                 | ND     | 0.1             | %      |             |                  |             |        |       |              |       |
| Duplicate (EC51601-DUP1)                   | Sou    | arce: 5C14009-0 | 01     | Prepared: ( | 03/15/05 A       | nalyzed: 03 | /16/05 |       |              |       |
| % Moisture                                 | 15.9   | 0.1             | %      |             | 16.8             |             |        | 5.50  | 20           |       |
| Batch EC51609 - General Preparation (WetCl | hem)   |                 |        |             |                  |             |        |       |              |       |
| Blank (EC51609-BLK1)                       |        |                 |        | Prepared 8  | 2 Analyzed:      | 03/15/05    |        |       |              |       |
| Chloride                                   | ND     | 0.500           | mg/L   |             |                  |             |        |       |              |       |
| LCS (EC51609-BS1)                          |        |                 |        | Prepared 8  | 2 Analyzed:      | 03/15/05    |        |       |              |       |
| Chloride                                   | 10.1   |                 | mg/L   | 10.0        |                  | 101         | 80-120 |       |              |       |
| Calibration Check (EC51609-CCV1)           |        |                 |        | Prepared 8  | 2 Analyzed:      | 03/15/05    |        |       |              |       |
| Chloride                                   | 10.3   |                 | mg/L   | 10.0        |                  | 103         | 80-120 |       |              |       |
| Duplicate (EC51609-DUP1)                   | Sou    | Irce: 5C15002-0 | 92     | Prepared &  | 2 Analyzed:      | 03/15/05    |        |       |              |       |
| Chloride                                   | 392    | 10.0            | mg/L   |             | 391              |             |        | 0.255 | 20           |       |
| Batch EC51611 - Water Extraction           |        |                 |        |             |                  |             |        |       |              |       |
| Blank (EC51611-BLK1)                       |        |                 |        | Prepared &  | z Analyzed:      | 03/16/05    |        |       |              |       |
| Chloride                                   | ND     | 0.500           | mg/kg  |             |                  | ·····       |        |       |              |       |
| LCS (EC51611-BS1)                          |        |                 |        | Prepared &  | Analyzed:        | 03/16/05    |        |       |              |       |
| Chloride                                   | 10.3   |                 | mg/L   | 10.0        |                  | 103         | 80-120 |       |              | ····  |

Environmental Lab of Texas

### General Chemistry Parameters by EPA / Standard Methods - Quality Control

### **Environmental Lab of Texas**

| Analyte                          | Result | Reporting<br>Limit Uni | Spike<br>s Level | Source<br>Result | %REC     | %REC<br>Limits | RPD   | RPD<br>Limit | Notes   |
|----------------------------------|--------|------------------------|------------------|------------------|----------|----------------|-------|--------------|---------|
| Batch EC51611 - Water Extraction |        |                        | ······           |                  |          |                |       |              |         |
| Calibration Check (EC51611-CCV1) |        |                        | Prepared         | & Analyzed:      | 03/16/05 |                |       |              |         |
| Chloride                         | 10.4   | mg                     | L 10.0           |                  | 104      | 80-120         |       |              |         |
| Duplicate (EC51611-DUP1)         | Source | e: 5C14001-01          | Prepared         | & Analyzed       | 03/16/05 |                |       |              |         |
| Chloride                         | 31.5   | 5.00 mg/               | g                | 31.3             | <u> </u> |                | 0.637 | 20           | <u></u> |

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas,

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Fax: (281) 394-2051 Reported: 03/18/05 16:27

### **Notes and Definitions**

| S-06 | The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's. |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| DET  | Analyte DETECTED                                                                                                                                       |
| ND   | Analyte NOT DETECTED at or above the reporting limit                                                                                                   |
| NR   | Not Reported                                                                                                                                           |
| dry  | Sample results reported on a dry weight basis                                                                                                          |
| RPD  | Relative Percent Difference                                                                                                                            |
| LCS  | Laboratory Control Spike                                                                                                                               |
| MS   | Matrix Spike                                                                                                                                           |
| Dup  | Duplicate                                                                                                                                              |
|      |                                                                                                                                                        |



Report Approved By:

Kaland Khub Date:

3/18/05

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713



| Lab of Texas, I | Phone: 915-563-1800<br>Fax: 915-663-1713    |
|-----------------|---------------------------------------------|
| Environmental   | 12600 West I-20 East<br>Odessa, Texas 79763 |

Company Name Whole Earth Environmental, Inc.

Project Manager: M. Griffin

Inc.

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Project #: Patey Battery Pit Area

Project Name: Devon

|                         |                       |               | · · · · · · · · · · · · · · · · · · · | Analyze For: |                 |              | Votentes<br>Sentrovalities<br>602105/000<br>Chordos<br>Chordos<br>E.C.<br>E.C.<br>Standard TAT (Pre-Schedute)<br>RUSH TAT (Pre-Schedute) | X×            |                | XX             |               |               | X             |               |      |      | Disartensis (1997) N.<br>Disartensis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uteonomia<br>1655 trucka k si serifan te s |                                               |
|-------------------------|-----------------------|---------------|---------------------------------------|--------------|-----------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|----------------|---------------|---------------|---------------|---------------|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------|
| Project Loc:            | #04                   |               |                                       |              | TCLP:<br>TOTAL: |              | мененски че ма ве са съ ър.на<br>шън залам своложо<br>цън ЦХ 4002-1009<br>цън ЧХ 4002-1009<br>цън ч19:1<br>цър 419:1<br>сърежа):         | ×             | ×              | X              |               |               |               |               |      |      | <br>production of the contract of | Time another                               |                                               |
|                         |                       |               |                                       |              |                 | I Matrix     | 208<br>Syndfe<br>Osiet ( 26cgk)<br>More<br>Moue                                                                                          | ×             | ×              | ×              | X             |               | XXX           |               |      |      | as per Mike 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date                                       | Date: 1                                       |
|                         |                       | 281.394,205   |                                       |              |                 | Preservative | H <sup>7</sup> 2O <sup>4</sup><br>M <sup>2</sup> CH<br>HCI<br>HKC <sup>2</sup><br>KCO                                                    | ×             | ×              | x              | x             | x             | ×             |               |      |      | TEX to soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                                               |
|                         |                       | Fax No:       |                                       |              |                 | •            | Time Sampled<br>No. of Containers                                                                                                        | 13:35 1       | 13:35 1        | 13:35 1        | 13:35 1       | 16:15 1       | 15:15 2       | _             | <br> | <br> | <br>#AddB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |                                               |
|                         |                       |               |                                       |              |                 |              | bəlqma2 əlaQ                                                                                                                             | 03/14/05      | 03/14/05       | 03/14/05       | 03/14/05      | 03/14/05      | 03/14/05      |               |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Received by:                               | ALL DE LE |
| Arbar Cove              | TX 77494              | 281.394.2050  |                                       |              |                 |              | FIELD CODE                                                                                                                               | East Wall # 1 | North Wall # 1 | South Wall # 1 | West Wall # 1 | Groundwater A | Groundwater B | as par Eilict |      |      | ירי                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 3/13/13 2:001                            | Data Time                                     |
| Company Address: 2103 A | City/State/Zip: Katy, | Telephone No: | Sampier Signature:                    |              |                 |              |                                                                                                                                          |               |                | 100 C          |               |               |               |               |      |      | metructions:<br>H H, O BJEX on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 101 blern                                  | ted by:                                       |

### Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client: While Earth Env.

Date/Time: 03-15-05 @ 0900

Order #: 505001

Initials: JMM

Sample Receipt Checklist

| Temperature of container/cooler?                          | (res)   | No | 0.5 · C        |
|-----------------------------------------------------------|---------|----|----------------|
| Shipping container cooler in good condition?              | (Yes>   | No |                |
| Custody Seals intact on shipping container/cooler?        | Yes     | No | (Not present)  |
| Custody Seals intact on sample bottles?                   | (es)    | No | Not present    |
| Chain of custody present?                                 | (শিল্য) | No |                |
| Sample Instructions complete on Chain of Custody?         | (es)    | No |                |
| Chain of Custody signed when relinquished and received?   | Ces     | No |                |
| Chain of custody agrees with sample label(s)              | (es)    | No |                |
| Container labels legible and intact?                      | Ces     | No |                |
| Sample Matrix and properties same as on chain of custody? | (Yes)   | No |                |
| Samples in proper container/bottle?                       | res     | No |                |
| Samples properly preserved?                               | res     | No |                |
| Sample bottles intact?                                    | (es)    | No |                |
| Preservations documented on Chain of Custody?             | Vez     | No |                |
| Containers documented on Chain of Custody?                | Kes     | No |                |
| Sufficient sample amount for indicated test?              | (es)    | No |                |
| All samples received within sufficient hold time?         | (CS)    | No |                |
| VOC samples have zero headspace?                          | Yes     | No | Not Applicable |

Other observations: \* Client added BTEX to soil request 03-1505

### Variance Documentation:

Contact Person: -<u>Mike Griffin</u> Date/Time: <u>03-15:05 Q 1130</u> Contacted by: <u>Jeanne M4Mur</u> Regarding: <u>coc</u> said <u>Pore</u> <u>40mL voas Label said H2SQ</u> as preservative <u>Client said</u>;+ is <u>HCI</u> Corrective Action Taken:



,

# Analytical Report

## Prepared for:

Mike Griffin

WHOLE EARTH ENVIRONMENTAL 2103 Arbor Cove Katy, TX 77494

Project: Devon Project Number: Patsy Lease Location: Lea County, New Mexico

Lab Order Number: 5C17010

Report Date: 03/23/05

# Reported: 03/23/05 12:15

### ANALYTICAL REPORT FOR SAMPLES

| Sample ID                     | Laboratory ID | Matrix | Date Sampled   | Date Received  |
|-------------------------------|---------------|--------|----------------|----------------|
| Batt'y, North Wall            | 5C17010-01    | Soil   | 03/16/05 09:00 | 03/17/05 12:30 |
| Batt'y, South Wall            | 5C17010-02    | Soil   | 03/16/05 09:00 | 03/17/05 12:30 |
| Batt'y, East Wall             | 5C17010-03    | Soil   | 03/16/05 09:05 | 03/17/05 12:30 |
| Batt'y, West Wall             | 5C17010-04    | Soil   | 03/16/05 09:05 | 03/17/05 12:30 |
| Batt'y, Bottom                | 5C17010-05    | Soil   | 03/16/05 09:10 | 03/17/05 12:30 |
| Batt'y, Backfill at -20'      | 5C17010-06    | Soil   | 03/16/05 09:20 | 03/17/05 12:30 |
| Batt'y, Backfill at -15'      | 5C17010-07    | Soil   | 03/16/05 09:25 | 03/17/05 12:30 |
| Spread Zone, North Wall       | 5C17010-08    | Soil   | 03/16/05 09:30 | 03/17/05 12:30 |
| Spread Zone, South Wall       | 5C17010-09    | Soil   | 03/16/05 09:35 | 03/17/05 12:30 |
| Spread Zone, East Wall        | 5C17010-10    | Soil   | 03/16/05 09:40 | 03/17/05 12:30 |
| Spread Zone, Bottom           | 5C17010-11    | Soil   | 03/16/05 09:40 | 03/17/05 12:30 |
| Spread Zone, West Wall        | 5C17010-12    | Soil   | 03/16/05 09:45 | 03/17/05 12:30 |
| Pit, Backfil at -25'          | 5C17010-13    | Soil   | 03/16/05 09:50 | 03/17/05 12:30 |
| Pit, Backfill at -20'         | 5C17010-14    | Soil   | 03/16/05 09:55 | 03/17/05 12:30 |
| Batt'y, Backfill at -10'      | 5C17010-15    | Soil   | 03/16/05 14:00 | 03/17/05 12:30 |
| Spread Zone, Backfill at -10' | 5C17010-16    | Soil   | 03/16/05 10:30 | 03/17/05 12:30 |
| Pit Backfill at -15'          | 5C17010-17    | Soil   | 03/16/05 14:05 | 03/17/05 12:30 |
| Pit Backfill at -5'           | 5C17010-18    | Soil   | 03/17/05 08:20 | 03/17/05 12:30 |
| Spread Zone Backfill at -5'   | 5C17010-19    | Soil   | 03/16/05 14:10 | 03/17/05 12:30 |
| Pit Backfill at -10'          | 5C17010-20    | Soil   | 03/16/05 10:25 | 03/17/05 12:30 |
| Background, East of Activity  | 5C17010-21    | Soil   | 03/16/05 10:15 | 03/17/05 12:30 |
| Batt'y Backfill at -5'        | 5C17010-22    | Soil   | 03/17/05 08:10 | 03/17/05 12:30 |
| Batt'y Backfill at Surface    | 5C17010-23    | Soit   | 03/17/05 08:10 | 03/17/05 12:30 |
| Pit Backfill at Surface       | 5C17010-24    | Soil   | 03/17/05 08:25 | 03/17/05 12:30 |
| Spread Zone at Surface        | 5C17010-25    | Soil   | 03/17/05 08:15 | 03/17/05 12:30 |

Reported: 03/23/05 12:15

### Organics by GC

### **Environmental Lab of Texas**

|                                      |            | Reporting |               |          |         |            |          |           |       |
|--------------------------------------|------------|-----------|---------------|----------|---------|------------|----------|-----------|-------|
| Analyte                              | Result     | Limit     | Units         | Dilution | Batch   | Prepared   | Analyzed | Method    | Notes |
| Batt'y, North Wall (5C17010-01) Soil |            |           |               |          |         |            |          |           |       |
| Benzene                              | ND         | 0.0250    | mg/kg dry     | 25       | EC51711 | 03/17/05   | 03/17/05 | EPA 8021B |       |
| Toluene                              | J [0.0119] | 0.0250    | *             | "        | 11      | n          | 17       | "         | I     |
| Ethylbenzene                         | ND         | 0.0250    |               | 'n       | "       | <b>1</b> 3 | 11       | **        |       |
| Xylene (p/m)                         | ND         | 0.0250    |               | ۳        | "       | 11         | "        | **        |       |
| Xylene (o)                           | ND         | 0.0250    | "             | n        | n       | 33         | n        | м         |       |
| Surrogate: a,a,a-Trifluorotoluene    |            | 81.2%     | 80            | 120      | "       | "          | n        | "         |       |
| Surrogate: 4-Bromofluorobenzene      |            | 82.3 %    | 80            | 120      | "       | "          | "        | "         |       |
| Gasoline Range Organics C6-C12       | ND         | 10.0      | mg/kg dry     | 1        | EC51714 | 03/17/05   | 03/18/05 | EPA 8015M |       |
| Diesel Range Organics >C12-C35       | ND         | 10.0      | "             | "        |         |            | "        | 72        |       |
| Total Hydrocarbon C6-C35             | ND         | 10.0      | "             | n        | "       | *          | +        | ŧr        |       |
| Surrogate: 1-Chlorooctane            |            | 83.0 %    | 67.6          | -140     | "       | "          | "        | -         |       |
| Surrogate: 1-Chlorooctadecane        |            | 86.6 %    | 70-1          | 130      | n       | *          | n        | "         |       |
| Batt'y, South Wall (5C17010-02) Soil |            |           |               |          |         |            |          |           |       |
| Benzene                              | 0.0275     | 0.0250    | mg/kg dry     | 25       | EC51711 | 03/17/05   | 03/17/05 | EPA 8021B |       |
| Toluene                              | 0.167      | 0.0250    | **            | "        | н       |            | "        | "         |       |
| Ethylbenzene                         | 0.146      | 0.0250    | **            | "        | **      | e          | "        | 67        |       |
| Xylene (p/m)                         | 0.648      | 0.0250    |               |          |         |            | n        |           |       |
| Xylene (0)                           | 0.159      | 0.0250    |               |          | "       | 14         | "        | н         |       |
| Surrogate: a,a,a-Trifluorotoluene    |            | 106 %     | 80-1          | 120      | n       | 17         | "        | 17        |       |
| Surrogate: 4-Bromofluorobenzene      |            | 98.3 %    | 80-1          | 120      | "       | *          | "        | *         |       |
| Gasoline Range Organics C6-C12       | 183        | 10.0      | mg/kg dry     | ł        | EC51714 | 03/17/05   | 03/18/05 | EPA 8015M |       |
| Diesel Range Organics >C12-C35       | 712        | 10.0      | 17            | "        | *       |            | "        | 81        |       |
| Total Hydrocarbon C6-C35             | 895        | 10.0      | "             | н        | "       | "          | "        | 'n        |       |
| Surrogate: 1-Chlorooctane            |            | 93.0 %    | 67.6-         | -140     | "       | **         | n        | 7         |       |
| Surrogate: 1-Chlorooctadecane        |            | 103 %     | 7 <b>0-</b> 1 | 130      | n       | 54         | **       | *         |       |
| Batt'y, East Wall (5C17010-03) Soil  | _          |           |               |          |         |            |          |           |       |
| Benzene                              | ND         | 0.0250    | mg/kg dry     | 25       | EC51711 | 03/17/05   | 03/17/05 | EPA 8021B |       |
| Toluene                              | ND         | 0.0250    | ٣             | ta       | н       |            | ,,       |           |       |
| Ethylbenzene                         | ND         | 0.0250    | •             | *        | "       | "          | "        | *         |       |
| Xylene (p/m)                         | 0.0488     | 0.0250    | m             | "        | и       | "          | *        | "         |       |
| Xylene (o)                           | J [0.0184] | 0.0250    | II            | "        | "       | 11         | *        | 17<br>    | J     |
| Surrogate: a,a,a-Trifluorotoluene    |            | 80.8 %    | 80-1          | 120      | "       | "          | "        | "         |       |
| Surrogate: 4-Bromofluorobenzene      |            | 86.4 %    | 80-1          | 120      | "       | 17         | "        | "         |       |
| Gasoline Range Organics C6-C12       | ND         | 10.0      | mg/kg dry     | 1        | EC51714 | 03/17/05   | 03/18/05 | EPA 8015M |       |
| Diesel Range Organics >C12-C35       | ND         | 10.0      | "             |          | "       | "          | "        | "         |       |
| Total Hydrocarbon C6-C35             | ND         | 10.0      |               | "        | v       | n          | •        | "         |       |

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety,

with written approval of Environmental Lab of Texas.

Page 2 of 23

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Reported: 03/23/05 12:15

### Organics by GC

### **Environmental Lab of Texas**

| Analyte                             | Result | Reporting<br>Limit | Units     | Dilution | Batch    | Prepared | Analyzed | Method                                 | Notes   |
|-------------------------------------|--------|--------------------|-----------|----------|----------|----------|----------|----------------------------------------|---------|
| Batt'y, East Wall (5C17010-03) Soil |        |                    |           |          |          |          |          | ······································ |         |
| Surrogate: 1-Chlorooctane           |        | 82.4 %             | 67.6      | -140     | EC51714  | 03/17/05 | 03/18/05 | EPA 8015M                              |         |
| Surrogate: 1-Chlorooctadecane       |        | 91.2 %             | 70-       | 130      | "        | 4        | "        | "                                      |         |
| Batt'y, West Wall (5C17010-04) Soil |        |                    |           |          |          |          |          |                                        |         |
| Benzene                             | ND     | 0.0250             | mg/kg dry | 25       | EC51711  | 03/17/05 | 03/17/05 | EPA 8021B                              |         |
| Toluene                             | ND     | 0.0250             | n         | n        | "        | n        |          | P                                      |         |
| Ethylbenzene                        | ND     | 0.0250             | u         | •        |          | n        | n        | **                                     |         |
| Xylene (p/m)                        | ND     | 0.0250             | n         | "        | n        |          | "        |                                        |         |
| Xylene (o)                          | ND     | 0.0250             |           | *        | ti<br>ti | "        | *        | *                                      |         |
| Surrogate: a,a,a-Trifluorotoluene   |        | 89.8 %             | 80-       | 120      | #        | n        | n        | r                                      | ••••••• |
| Surrogate: 4-Bromofluorobenzene     |        | 85.2 %             | 80-       | 120      | "        | *        | "        | "                                      |         |
| Gasoline Range Organics C6-C12      | ND     | 10.0               | mg/kg dry | 1        | EC51714  | 03/17/05 | 03/18/05 | EPA 8015M                              |         |
| Diesel Range Organics >C12-C35      | ND     | 10.0               | "         | **       | п        |          | n        |                                        |         |
| Total Hydrocarbon C6-C35            | ND     | 10.0               | n         | *7       | п        | *        |          | "                                      |         |
| Surrogate: 1-Chlorooctane           |        | 96.6 %             | 67.6      | -140     | n        | "        | r        | "                                      |         |
| Surrogate: 1-Chlorooctadecane       |        | 96.0 %             | 70-       | 130      | "        | "        | 77       | n                                      |         |
| Batt'y, Bottom (5C17010-05) Soil    |        |                    |           |          |          |          |          |                                        |         |
| Benzene                             | ND     | 0.0250             | mg/kg dry | 25       | EC51711  | 03/17/05 | 03/17/05 | EPA 8021B                              |         |
| Toluene                             | ND     | 0.0250             | u         | "        | 11       |          | в        | "                                      |         |
| Ethylbenzene                        | ND     | 0.0250             | Ħ         | *        | "        | "        | "        | **                                     |         |
| Xylene (p/m)                        | ND     | 0.0250             | n         | **       | "        | 11       | "        | "                                      |         |
| Xylene (o)                          | ND     | 0.0250             | H         |          | "        | "        |          | "                                      |         |
| Surrogate: a.a,a-Trifluorotoluene   |        | 80.5 %             | 80-       | 120      | n        | 17       | #        | "                                      |         |
| Surrogate: 4-Bromofluorobenzene     |        | 82.8 %             | 80-       | 120      | "        | "        | "        | n                                      |         |
| Gasoline Range Organics C6-C12      | ND     | 10.0               | mg/kg dry | 1        | EC51714  | 03/17/05 | 03/18/05 | EPA 8015M                              |         |
| Diesel Range Organics >C12-C35      | ND     | 10.0               |           | "        | "        | *        | "        |                                        |         |
| Total Hydrocarbon C6-C35            | ND     | 10.0               | v         | •        | *        | n        | "        | *                                      |         |
| Surrogate: 1-Chlorooctane           |        | 94.6 %             | 67.6      | -140     | "        | "        | "        |                                        |         |

Environmental Lab of Texas

Surrogate: 1-Chlorooctadecane

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

70-130

94.0%

### Organics by GC

### **Environmental Lab of Texas**

|                                          |            | Reporting |           |          |         |           |          |           |       |
|------------------------------------------|------------|-----------|-----------|----------|---------|-----------|----------|-----------|-------|
| Analyte                                  | Result     | Limit     | Units     | Dilution | Batch   | Prepared  | Analyzed | Method    | Notes |
| Batt'y, Backfill at -20' (5C17010-06) Se | oil        |           |           |          |         |           |          | <u></u>   |       |
| Benzene                                  | J {0.0191} | 0.0250    | mg/kg dry | 25       | EC51711 | 03/17/05  | 03/17/05 | EPA 8021B | J     |
| Toluene                                  | 0.130      | 0.0250    | "         | *        | "       | **        | "        | *         |       |
| Ethylbenzene                             | 0.140      | 0.0250    | n         | n        | "       | 11        | H        | *         |       |
| Xylene (p/m)                             | 0.688      | 0.0250    |           |          | "       |           | "        | *         |       |
| Xylene (0)                               | 0.207      | 0.0250    | "         | *        | H       | **        | n        | "         |       |
| Surrogate: a,a,a-Trifluorotoluene        |            | 97.5 %    | 80        | 120      | "       | 35        | ,,       | 39        |       |
| Surrogate: 4-Bromofluorobenzene          |            | 101 %     | 80-1      | 120      | *       | "         | n        | n         |       |
| Gasoline Range Organics C6-C12           | 386        | 10.0      | mg/kg dry | 1        | EC51714 | 03/17/05  | 03/18/05 | EPA 8015M |       |
| Diesel Range Organics >C12-C35           | 1120       | 10.0      | **        |          | •       | u         | *        |           |       |
| Total Hydrocarbon C6-C35                 | 1510       | 10.0      | "         | н        |         | **        | "        | n         |       |
| Surrogate: 1-Chlorooctane                |            | 104 %     | 67.6-     | -140     | м       | "         | *        | "         |       |
| Surrogate: 1-Chlorooctadecane            |            | 122 %     | 70-,      | 130      | **      | <b>59</b> | n        | "         |       |
| Batt'y, Backfill at -15' (5C17010-07) S  | oil        |           |           |          |         |           |          |           |       |
| Benzene                                  | J [0.0506] | 0.100     | mg/kg dry | 100      | EC51711 | 03/17/05  | 03/17/05 | EPA 8021B | J     |
| Toluene                                  | 0.381      | 0.100     | v         | "        | Ħ       | "         |          | 25        |       |
| Ethylbenzene                             | 0.442      | 0.100     |           |          | **      | n         | **       | n         |       |
| Xylene (p/m)                             | 1.74       | 0.100     | n         | n        | 17      | 11        | 11       | *         |       |
| Xylene (o)                               | 0.754      | 0.100     | **        | **       | n       | **        |          | 11        |       |
| Surrogate: a,a,a-Trifluorotoluene        |            | 93.7 %    | 80-1      | 120      | "       | H         | a        | 17        |       |
| Surrogate: 4-Bromofluorobenzene          |            | 93.8 %    | 80-1      | 120      | "       | 17        | п        | "         |       |
| Gasoline Range Organics C6-C12           | 316        | 10.0      | mg/kg dry | I        | EC51715 | 03/17/05  | 03/18/05 | EPA 8015M |       |
| Diesel Range Organics >C12-C35           | 807        | 10.0      | н         |          | "       |           | "        |           |       |
| Total Hydrocarbon C6-C35                 | 1120       | 10.0      | n         | *        | n       | *         |          | 4         |       |
| Surrogate: 1-Chlorooctane                |            | 99.8 %    | 67.6-     | -140     | 77      | "         | "        | N         |       |
| Surrogate: 1-Chlorooctadecane            |            | 109 %     | 70-1      | 130      |         | 7         | n        | 29        |       |
| Spread Zone, North Wall (5C17010-08      | B) Soil    |           |           |          |         |           |          |           |       |
| Benzene                                  | ND         | 0.0250    | mg/kg dry | 25       | EC51711 | 03/17/05  | 03/17/05 | EPA 8021B |       |
| Toluene                                  | J [0.0106] | 0.0250    | u         | и        | "       | "         | "        | r         | j     |
| Ethylbenzene                             | ND         | 0.0250    | "         | **       | 0       | *         | 89       | *         |       |
| Xylene (p/m)                             | 0.0447     | 0.0250    | "         | **       | "       |           | "        | "         |       |
| Xylene (o)                               | ND         | 0.0250    |           | н        | 11      | *         | 17       |           | _     |
| Surrogate: a,a,a-Trifluorotoluene        |            | 91.0%     | 80-1      | 120      | "       | "         | "        | n         |       |
| Surrogate: 4-Bromofluorobenzene          |            | 88.1 %    | 80-1      | 120      | 14      | "         | P        | 22        |       |
| Gasoline Range Organics C6-C12           | ND         | 10.0      | mg/kg dry | 1        | EC51715 | 03/17/05  | 03/18/05 | EPA 8015M |       |
| Diesel Range Organics >C12-C35           | ND         | 10.0      | n         | "        | *       |           | 11       | "         |       |
| Total Hydrocarbon C6-C35                 | ND         | 10.0      | "         | "        | *       | n         | н        | *         |       |

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety,

with written approval of Environmental Lab of Texas.

| WHOLE EARTH ENVIRONMENTA            | L          |                    | Project: De | evon        |         |          |          | Fax: (281)     | 394-2051 |  |
|-------------------------------------|------------|--------------------|-------------|-------------|---------|----------|----------|----------------|----------|--|
| 2103 Arbor Cove                     |            | Project N          | lumber: Pa  | tsy Lease   |         |          |          | Reported:      |          |  |
| Katy TX, 77494                      |            | Project M          | lanager: Mi | ike Griffin |         |          |          | 03/23/05       | 12:15    |  |
|                                     |            | 0                  | rganics b   | oy GC       |         |          | x        |                |          |  |
|                                     |            | Environ            | mental I    | Lab of To   | exas    |          |          |                |          |  |
| Analyte                             | Result     | Reporting<br>Limit | Units       | Dilution    | Batch   | Prepared | Analyzed | Method         | Notes    |  |
| Spread Zone, North Wall (5C17010-08 | 3) Soil    |                    |             |             |         |          |          |                |          |  |
| Surrogate: 1-Chlorooctane           |            | 80.8 %             | 67.6        | -140        | EC51715 | 03/17/05 | 03/18/05 | EPA 8015M      |          |  |
| Surrogate: 1-Chlorooctadecane       |            | 94.2 %             | 70-         | 130         | n       | *        | "        | n              |          |  |
| Spread Zone, South Wall (5C17010-09 | )) Soil    |                    |             |             |         |          |          |                |          |  |
| Benzene                             | ND         | 0.0250             | mg/kg dry   | 25          | EC51711 | 03/17/05 | 03/17/05 | EPA 8021B      |          |  |
| Toluene                             | J [0.0118] | 0.0250             | 11          | 14          |         | *        | "        | "              |          |  |
| Ethylbenzene                        | J [0.0184] | 0.0250             |             | **          | "       | "        | "        | •              |          |  |
| Xylene (p/m)                        | 0.0843     | 0.0250             | ۳           |             | *       | "        | -        | **             |          |  |
| Xylene (0)                          | ND         | 0.0250             | "           | 19          | "       | "        | •        | n              |          |  |
| Surrogate: a,a,a-Trifluorotoluene   |            | 87.7 %             | 80-         | 120         | 51      | 8        | 61       | 58             |          |  |
| Surrogate: 4-Bromofluorobenzene     |            | 89.6 %             | 80-         | 120         | "       | "        | "        | "              |          |  |
| Gasoline Range Organics C6-C12      | 16.3       | 10.0               | mg/kg dry   | 1           | EC51715 | 03/17/05 | 03/18/05 | EPA 8015M      |          |  |
| Diesel Range Organics >C12-C35      | 139        | 10.0               | n           | *           |         | "        | **       | **             |          |  |
| Total Hydrocarbon C6-C35            | 155        | 10.0               | н           | "           | n       | "        | "        | "              |          |  |
| Surrogate: 1-Chlorooctane           |            | 89.2 %             | 67.6        | <i>⊷140</i> | H       | 11       | "        | P <sup>2</sup> |          |  |
| Surrogate: 1-Chlorooctadecane       |            | 93.8 %             | 70-         | 130         | n       | n        | "        | *              |          |  |
| Spread Zone, East Wall (5C17010-10) | Soil       |                    |             |             |         |          |          |                |          |  |
| Benzene                             | ND         | 0.0250             | mg/kg dry   | 25          | EC51711 | 03/17/05 | 03/18/05 | EPA 8021B      |          |  |
| Toluene                             | ND         | 0.0250             | **          | "           | 4       | "        | "        | *              |          |  |
| Ethylbenzene                        | ND         | 0.0250             | 41          | **          | •       | n        | n        | •              |          |  |
| Xylene (p/m)                        | 0.0294     | 0.0250             | *           |             | n       | n        | *        |                |          |  |
| Xylene (o)                          | ND         | 0.0250             |             | *           | u       | n        | n        | "              |          |  |
| Surrogate: a,a,a-Trifluorotoluene   |            | 85.9 %             | 80-         | 120         | Π       | "        | #        | n              |          |  |
| Surrogate: 4-Bromofluorobenzene     |            | 86.7 %             | 80-         | 120         | "       | "        | "        | "              |          |  |
| Gasoline Range Organics C6-C12      | J [6.56]   | 10.0               | mg/kg dry   | 1           | EC51715 | 03/17/05 | 03/18/05 | EPA 8015M      |          |  |
| Diesel Range Organics >C12-C35      | 53.5       | 10.0               | n           | 74          |         | **       |          | *              |          |  |
| Total Hydrocarbon C6-C35            | 53.5       | 10.0               |             | 17          | "       | şt       | 14       | "              |          |  |
| Surrogate: 1-Chlorooctane           |            | 90.6 %             | 67.6        | -140        | "       | #        | "        | "              |          |  |
| Surrogate: 1-Chlorooctadecane       |            | 99.6 %             | 70-         | 130         | *       | "        | n        |                |          |  |

Page 5 of 23

### Reported: 03/23/05 12:15

### Organics by GC

### **Environmental Lab of Texas**

|                                        |          | Reporting |           |          |         |          |                                        |           |       |
|----------------------------------------|----------|-----------|-----------|----------|---------|----------|----------------------------------------|-----------|-------|
| Analyte                                | Result   | Limit     | Units     | Dilution | Batch   | Prepared | Analyzed                               | Method    | Notes |
| Spread Zone, Bottom (5C17010-11) Soi   | l        |           |           |          |         |          | ······································ |           |       |
| Benzene                                | ND       | 0.0250    | mg/kg dry | 25       | EC51711 | 03/17/05 | 03/18/05                               | EPA 8021B |       |
| Toluene                                | ND       | 0.0250    | n         |          | "       |          | n                                      | 'n        |       |
| Ethylbenzene                           | ND       | 0.0250    | H         | •        | "       | n        |                                        | **        |       |
| Xylene (p/m)                           | ND       | 0.0250    | ••        | •        | •       | "        |                                        | **        |       |
| Xylene (o)                             | ND       | 0.0250    | "         | "        | "       | **       | "                                      | n         |       |
| Surrogate: a,a,a-Trifluorotoluene      |          | 101 %     | 80-1      | 120      | 11      | 11       | H                                      | **        |       |
| Surrogate: 4-Bromofluorobenzene        |          | 97.5 %    | 80-1      | 120      | "       | "        | "                                      | "         |       |
| Gasoline Range Organics C6-C12         | J [6.10] | 10,0      | mg/kg dry | 1        | EC51715 | 03/17/05 | 03/18/05                               | EPA 8015M | j     |
| Diesel Range Organics >C12-C35         | 25.8     | 10.0      | **        | •        | 14      | **       | "                                      | n         |       |
| Total Hydrocarbon C6-C35               | 25.8     | 10.0      | n         |          | "       | **       |                                        | **        |       |
| Surrogate: 1-Chlorooctane              |          | 80.2 %    | 67.6      | -140     | n       | 11       | 17                                     | n         |       |
| Surrogate: I-Chlorooctadecane          |          | 88.6 %    | 70        | 130      | "       | **       | "                                      | "         |       |
| Spread Zone, West Wall (5C17010-12)    | Soil     |           |           |          |         |          |                                        |           |       |
| Benzene                                | 0.0656   | 0.0250    | mg/kg dry | 25       | EC51711 | 03/17/05 | 03/18/05                               | EPA 8021B |       |
| Toluene                                | 0.380    | 0.0250    |           |          |         | -        | н                                      | 'n        |       |
| Ethylbenzene                           | 0.127    | 0.0250    | м         |          | "       | *        |                                        | н         |       |
| Xylene (p/m)                           | 0.290    | 0.0250    | Þ         |          | n       | "        | n                                      | 14        |       |
| Xylene (o)                             | 0.109    | 0.0250    |           | "        | "       | 14       | 11                                     | **        |       |
| Surrogate: a.a,a-Trifluorotoluene      |          | 89.8 %    | 80-1      | 120      | "       | "        | "                                      | "         |       |
| Surrogate: 4-Bromofluorobenzene        |          | 84.6 %    | 80-1      | 120      | "       | "        | "                                      | "         |       |
| Gasoline Range Organics C6-C12         | ND       | 10.0      | mg/kg dry | 1        | EC51715 | 03/17/05 | 03/18/05                               | EPA 8015M |       |
| Diesel Range Organics >C12-C35         | 89.4     | 10.0      | n         | "        | "       | "        | "                                      | 11        |       |
| Total Hydrocarbon C6-C35               | 89.4     | 10.0      |           |          | "       | n        | "                                      | n         |       |
| Surrogate: 1-Chlorooctane              |          | 92.2 %    | 67.6      | -140     | "       | n        | 7                                      | н         |       |
| Surrogate: 1-Chlorooctadecane          |          | 95.2 %    | 70        | 130      | "       | "        | "                                      | "         |       |
| Pit, Backfil at -25' (5C17010-13) Soil |          |           |           |          |         |          |                                        |           |       |
| Benzene                                | ND       | 0.0250    | mg/kg dry | 25       | EC52108 | 03/17/05 | 03/21/05                               | EPA 8021B |       |
| Toluene                                | ND       | 0.0250    |           |          | "       | n        | 17                                     | **        |       |
| Ethylbenzene                           | ND       | 0.0250    | Ħ         |          | "       | и        | 11                                     | "         |       |
| Xylene (p/m)                           | 0.0344   | 0.0250    | "         | n        | "       | "        | ۳.                                     | 37        |       |
| Xylene (o)                             | ND       | 0.0250    | n         | 11       | ••      | **       | n                                      | n         |       |
| Surrogate: a,a,a-Trifluorotoluene      |          | 89.3 %    | 80-1      | 120      | n       | **       | n                                      | "         |       |
| Surrogate: 4-Bromofluorobenzene        |          | 85.1 %    | 80-1      | 120      | *       | "        | "                                      | "         |       |
| Gasoline Range Organics C6-C12         | ND       | 10.0      | mg/kg dry | 1        | EC51715 | 03/17/05 | 03/18/05                               | EPA 8015M |       |

Environmental Lab of Texas

Diesel Range Organics >C12-C35

**Total Hydrocarbon C6-C35** 

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

,,

6

N

\*\*

н

74

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

...

н

10.0

10.0

63.4

63.4

..

11



# Reported: 03/23/05 12:15

### Organics by GC

### **Environmental Lab of Texas**

|                                           | Desult | Reporting | 11-14-    |          |         |          |          |           |       |
|-------------------------------------------|--------|-----------|-----------|----------|---------|----------|----------|-----------|-------|
| Алануте                                   | Kesuit |           | URIUS     | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
| Pit, Backfil at -25' (5C17010-13) Soil    |        |           |           |          |         |          |          |           | ····· |
| Surrogate: I-Chlorooctane                 |        | 97.0 %    | 67.6-     | 140      | EC51715 | 03/17/05 | 03/18/05 | EPA 8015M |       |
| Surrogate: 1-Chlorooctadecane             |        | 97.2 %    | 70-1      | 30       | H       | *        | "        | 0         |       |
|                                           |        |           |           | •        |         |          |          |           |       |
| Pit, Backfill at -20' (5C17010-14) Soil   |        |           |           |          |         |          |          |           |       |
| Benzene                                   | ND     | 0.0250    | mg/kg dry | 25       | EC52108 | 03/17/05 | 03/20/05 | EPA 8021B |       |
| Toluene                                   | ND     | 0.0250    | 11        | n        | n       | *        | *        | **        |       |
| Ethylbenzene                              | ND     | 0.0250    | *         | "        | 11      | *1       | **       | "         |       |
| Xylene (p/m)                              | 0.0309 | 0.0250    | "         | •        | *       |          | "        | "         |       |
| Xylene (o)                                | ND     | 0.0250    | *         | "        | "       | **       | n        | v         |       |
| Surrogate: a,a,a-Trifluorotoluene         |        | 89.6 %    | 80-1      | 20       | n       | Ħ        | "        | "         |       |
| Surrogate: 4-Bromofluorobenzene           |        | 85.3 %    | 80-1      | 20       | 19      | "        | "        |           |       |
| Gasoline Range Organics C6-C12            | 18.2   | 10.0      | mg/kg dry | 1        | EC51715 | 03/17/05 | 03/18/05 | EPA 8015M |       |
| Diesel Range Organics >C12-C35            | 418    | 10.0      |           | **       |         | *1       | "        | **        |       |
| Total Hydrocarbon C6-C35                  | 436    | 10.0      | 11        | *        | n       | ۳        | "        |           |       |
| Surrogate: 1-Chlorooctane                 |        | 88.2 %    | 67.6-     | 140      | "       | "        | n        | н         |       |
| Surrogate: 1-Chlorooctadecane             |        | 100 %     | 70-1      | 30       | "       | "        | "        | "         |       |
| att'y, Backfill at -10' (5C17010-15) Soil |        |           |           |          |         |          |          |           |       |
| Benzene                                   | ND     | 0.0250    | mg/kg dry | 25       | EC52108 | 03/17/05 | 03/21/05 | EPA 8021B |       |
| Toluene                                   | ND     | 0.0250    | п         | *        | "       | n        | в        |           |       |

| Toluene                           | ND         | 0.0250 | n         | <b>p</b> | "       | n        | 13       |           |   |
|-----------------------------------|------------|--------|-----------|----------|---------|----------|----------|-----------|---|
| Ethylbenzene                      | J [0.0231] | 0.0250 | "         | n        | "       | "        | n        | "         | J |
| Xylene (p/m)                      | 0.0433     | 0.0250 | *         | **       | "       | ч        | "        | "         |   |
| Xylene (o)                        | ND         | 0.0250 | -         |          | 14      | "        | t        | -         |   |
| Surrogate: a,a,a-Trifluorotoluene |            | 87.2 % | 80-120    | )        | H       | n        | n        | "         |   |
| Surrogate: 4-Bromofluorobenzene   |            | 92.1 % | 80-120    | )        | "       | "        | н        | *         |   |
| Gasoline Range Organics C6-C12    | 119        | 10.0   | mg/kg dry | 1        | EC51715 | 03/17/05 | 03/18/05 | EPA 8015M |   |
| Diesel Range Organics >C12-C35    | 2200       | 10.0   |           | m        |         |          | **       | •         |   |
| Total Hydrocarbon C6-C35          | 2320       | 10.0   | n         | ۲        | n       | n        | **       |           |   |
| Surrogate: 1-Chlorooctane         |            | 91.4%  | 67.6-14   | 0        | π       | "        | ıt       | n         |   |
| Surrogate: 1-Chlorooctadecane     |            | 117 %  | 70-130    | ,        | "       | "        | н        | "         |   |
|                                   |            |        |           |          |         |          |          |           |   |

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

, Sing-

### Reported: 03/23/05 12:15

### Organics by GC

### **Environmental Lab of Texas**

|                                         |          | Reporting |               |          |         |          |          |           |       |
|-----------------------------------------|----------|-----------|---------------|----------|---------|----------|----------|-----------|-------|
| Analyte                                 | Result   | Limit     | Units         | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
| Spread Zone, Backfill at -10' (5C17010- | 16) Soil |           |               |          |         |          |          |           |       |
| Benzene                                 | ND       | 0.0250    | mg/kg dry     | 25       | EC52108 | 03/17/05 | 03/20/05 | EPA 8021B |       |
| Toluene                                 | ND       | 0.0250    | "             | 10       | 4       | "        |          | n         |       |
| Ethylbenzene                            | ND       | 0.0250    | "             |          | 'n      | n        | Ħ        | "         |       |
| Xylene (p/m)                            | 0.0304   | 0.0250    | "             | "        | •       | 'n       | *        | **        |       |
| Xylene (o)                              | ND       | 0.0250    | n             | "        | •       | v        |          | "         |       |
| Surrogate: a,a,a-Trifluorotoluene       |          | 88.2 %    | 80            | 120      | #       | "        | Ħ        | π         |       |
| Surrogate: 4-Bromofluorobenzene         |          | 93.6 %    | 80-1          | 120      | "       | "        | "        | "         |       |
| Gasoline Range Organics C6-C12          | 111      | 10.0      | mg/kg dry     | I        | EC51715 | 03/17/05 | 03/18/05 | EPA 8015M |       |
| Diesel Range Organics >C12-C35          | 1990     | 10.0      | *             | "        | *       |          | "        | **        |       |
| Total Hydrocarbon C6-C35                | 2100     | 10.0      | "             | "        | **      | "        | 7        | 19        |       |
| Surrogate: 1-Chlorooctane               |          | 78.2 %    | 67.6-         | -140     | "       | "        | "        | "         |       |
| Surrogate: 1-Chlorooctadecane           |          | 109 %     | 7 <b>0-</b> - | 130      | "       |          | "        | "         |       |
| Pit Backfill at -15' (5C17010-17) Soil  |          |           |               |          |         |          |          |           |       |
| Benzene                                 | ND       | 0.0250    | mg/kg dry     | 25       | EC52108 | 03/17/05 | 03/20/05 | EPA 8021B |       |
| Toluene                                 | 0.130    | 0.0250    | ,,            | "        | *       | 11       |          | **        |       |
| Ethylbenzene                            | 0.216    | 0.0250    | *             | "        | n       | "        | н        | 14        |       |
| Xylene (p/m)                            | 0.367    | 0.0250    | •             | "        | *       | "        | н        |           |       |
| Xylene (o)                              | 0.279    | 0.0250    | **            | "        | **      | "        |          | •         |       |
| Surrogate: a,a,a-Trifluorotoluene       |          | 102 %     | 80-1          | 120      | π       | #        | n        | "         |       |
| Surrogate: 4-Bromofluorobenzene         |          | 114 %     | 80-1          | 120      | "       | H        | "        | "         |       |
| Gasoline Range Organics C6-C12          | 416      | 10.0      | mg/kg dry     | 1        | EC51715 | 03/17/05 | 03/18/05 | EPA 8015M |       |
| Diesel Range Organics >C12-C35          | 2180     | 10.0      | n             | *1       |         | n        | w        | •         |       |
| Total Hydrocarbon C6-C35                | 2500     | 10.0      | "             | "        | *       | 0        | n        | *         |       |
| Surrogate: 1-Chlorooctane               |          | 89.0 %    | 67.6-         | -140     | #       | M        | n        | "         | ····  |
| Surrogate: 1-Chlorooctadecane           |          | 106 %     | 7 <b>0</b> -2 | 130      | "       | "        | 7        | "         |       |
| Pit Backfill at -5' (5C17010-18) Soil   |          |           |               |          |         |          |          |           |       |
| Benzene                                 | ND       | 0.0250    | mg/kg dry     | 25       | EC52108 | 03/17/05 | 03/20/05 | EPA 8021B |       |
| Toluene                                 | ND       | 0.0250    | **            | "        | п       | "        | н        | **        |       |
| Ethylbenzene                            | ND       | 0.0250    |               | "        | "       | "        | "        | "         |       |
| Xylene (p/m)                            | 0.0377   | 0.0250    | "             | "        | ۳       | *        | 14       | •         |       |
| Xylene (o)                              | ND       | 0.0250    | h             | 11       | 55      | 17       | **       | "         |       |
| Surrogate: a,a,a-Trifluorotoluene       |          | 88.4 %    | 80-1          | 120      | "       | rt       | p        | 17        |       |
| Surrogate: 4-Bromofluorobenzene         |          | 94.9 %    | 80-1          | 120      | **      | "        | "        | n         |       |
| Gasoline Range Organics C6-C12          | 61.6     | 10.0      | mg/kg dry     | 1        | EC51715 | 03/17/05 | 03/18/05 | EPA 8015M |       |
| Diesel Range Organics >C12-C35          | 1100     | 10.0      | "             |          | H       | "        | *        | **        |       |

Environmental Lab of Texas

Total Hydrocarbon C6-C35

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety,

14

received in the taboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

..

...

.

10.0

1160

### - . gr

### Reported: 03/23/05 12:15

### Organics by GC

### **Environmental Lab of Texas**

|                                          |        | Reporting |           |          |         |          |          |           |       |
|------------------------------------------|--------|-----------|-----------|----------|---------|----------|----------|-----------|-------|
| Analyte                                  | Result | Limit     | Units     | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
| Pit Backfill at -5' (5C17010-18) Soil    |        |           |           |          |         |          |          |           |       |
| Surrogate: 1-Chlorooctane                |        | 80.2 %    | 67.6-     | 140      | EC51715 | 03/17/05 | 03/18/05 | EPA 8015M |       |
| Surrogate: 1-Chlorooctadecane            |        | 99.6 %    | 70-1      | 30       | M       | #        | "        | "         |       |
| Spread Zone Backfill at -5' (5C17010-19) | Soil   |           |           |          |         |          |          |           |       |
| Benzene                                  | ND     | 0.0250    | mg/kg dry | 25       | EC52108 | 03/17/05 | 03/20/05 | EPA 8021B |       |
| Toluene                                  | 0.0604 | 0.0250    | .,        | "        |         |          | "        | n         |       |
| Ethylbenzene                             | 0.138  | 0.0250    |           |          |         | "        | "        |           |       |
| Xylene (p/m)                             | 0.314  | 0.0250    | **        | "        | •       |          | u        | "         |       |
| Xylene (o)                               | 0.205  | 0.0250    | n         |          | н       | H        | н        | n         |       |
| Surrogate: a,a,a-Trifluorotoluene        |        | 94.4 %    | 80-1      | 20       | "       | "        | n        | π         |       |
| Surrogate: 4-Bromofluorobenzene          |        | 98.5 %    | 80-1      | 20       | "       | "        | "        | "         |       |
| Gasoline Range Organics C6-C12           | 258    | 10.0      | mg/kg dry | ı        | EC51715 | 03/17/05 | 03/18/05 | EPA 8015M |       |
| Diesel Range Organics >C12-C35           | 1330   | 10.0      | "         |          | 17      | •        | "        | **        |       |
| Total Hydrocarbon C6-C35                 | 1590   | 10.0      | Ħ         | 35       | "       | n        | "        | *1        |       |
| Surrogate: 1-Chlorooctane                |        | 83.4 %    | 67.6-     | 140      | n       | "        | Ħ        | "         |       |
| Surrogate: 1-Chlorooctadecane            |        | 98.6%     | 70-1      | 30       | "       | "        | "        | *         |       |
| 'it Backfill at -10' (5C17010-20) Soil   |        |           |           |          |         |          |          |           |       |
| Benzene                                  | ND     | 0.0250    | mg/kg dry | 25       | EC52108 | 03/17/05 | 03/20/05 | EPA 8021B |       |

| Benzene                           | ND       | 0.0250 | mg/kg dry | 25 | EC52108 | 03/17/05 | 03/20/05 | EPA 8021B |   |
|-----------------------------------|----------|--------|-----------|----|---------|----------|----------|-----------|---|
| Toluene                           | ND       | 0.0250 | tr.       | 0  | ́ н     | "        | n        |           |   |
| Ethylbenzene                      | 0.0294   | 0.0250 | **        | n  | "       | •        | ч        | **        |   |
| Xylene (p/m)                      | 0.0468   | 0.0250 | Ħ         | н  | **      | "        | **       | n         |   |
| Xylene (0)                        | 0.0385   | 0.0250 | n         | н  | H       | "        | **       |           |   |
| Surrogate: a,a,a-Trifluorotoluene |          | 90.5 % | 80-120    |    | ท       | 11       | 11       | "         |   |
| Surrogate: 4-Bromofluorobenzene   |          | 80.7 % | 80-120    |    | , #     | "        | "        | "         |   |
| Gasoline Range Organics C6-C12    | J [9.72] | 10.0   | mg/kg dry | 1  | EC51715 | 03/17/05 | 03/18/05 | EPA 8015M | J |
| Diesel Range Organics >C12-C35    | 214      | 10.0   | H         | "  | N       |          | "        | **        |   |
| Total Hydrocarbon C6-C35          | 214      | 10.0   |           | "  |         | "        | "        | M         |   |
| Surrogate: 1-Chlorooctane         |          | 78.4 % | 67.6-14   | )  | "       | W        | n        | 1         |   |
| Surrogate: 1-Chlorooctadecane     |          | 88.0 % | 70-130    |    | n       | "        | "        | *         |   |

Environmental Lab of Texas



Г

### Project: Devon Project Number: Patsy Lease Project Manager: Mike Griffin

**Reported:** 03/23/05 12:15

٦

### Organics by GC

### **Environmental Lab of Texas**

| Analyte                                     | Result | Reporting<br>1 imit | Linits    | Dilutia- | Datah   | Droport  | Anabunad | Mathad    | Mater   |
|---------------------------------------------|--------|---------------------|-----------|----------|---------|----------|----------|-----------|---------|
| Background, East of Activity (5C17010.21)   |        |                     |           |          | Batch   | rrepared | Anaiyzed | Method    | Notes   |
| Daring round, past of Activity (SCI/010-21) |        | 0.0020              |           |          |         |          | 03/00/07 | EDA 80010 |         |
| Benzene                                     | ND     | 0.0250              | mg/kg ary | 25       | EC52108 | 03/17/05 | 03/20/05 | EPA 8021B |         |
| loiuene                                     | ND     | 0.0250              |           |          |         |          |          |           |         |
| Ethylbenzene                                | ND     | 0.0250              |           |          |         |          |          |           |         |
| Xylene (p/m)                                | ND     | 0.0250              | -         |          | "       |          |          |           |         |
| Xylene (o)                                  | ND     | 0.0250              |           | n<br>    |         | "        |          |           |         |
| Surrogate: a,a,a-Trifluorotoluene           |        | 92.4 %              | 80-1      | 20       | "       | "        | "        | "         |         |
| Surrogate: 4-Bromofluorobenzene             |        | 95.3 %              | 80-1      | 20       | "       | 7        | ø        | **        |         |
| Gasoline Range Organics C6-C12              | ND     | 10.0                | mg/kg dry | 1        | EC51715 | 03/17/05 | 03/18/05 | EPA 8015M |         |
| Diesel Range Organics >C12-C35              | ND     | 10.0                | n         | *        | "       |          | "        | 47        |         |
| Total Hydrocarbon C6-C35                    | ND     | 10.0                | "         | "        | "       |          | "        | **        |         |
| Surrogate: 1-Chlorooctane                   |        | 92.6 %              | 67.6-     | 140      | n       | "        | "        | 57        |         |
| Surrogate: 1-Chlorooctadecane               |        | 111 %               | 70-1      | 30       | π       | "        | "        | "         |         |
| Batt'y Backfill at -5' (5C17010-22) Soil    |        |                     |           |          |         |          |          |           |         |
| Benzene                                     | ND     | 0.0250              | mg/kg dry | 25       | EC52108 | 03/17/05 | 03/20/05 | EPA 8021B | <u></u> |
| Toluene                                     | 0.134  | 0.0250              | n         | 'n       | n       | n        | •        | **        |         |
| Ethylbenzene                                | 0.187  | 0.0250              | "         | 'n       | "       | u        | ٣        | •         |         |
| Xylene (p/m)                                | 0.303  | 0.0250              | *         | п        | *       | 58       |          | "         |         |
| Xylene (o)                                  | 0.175  | 0.0250              | "         | *        |         | Ħ        | **       | Ir        |         |
| Surrogate: a,a,a-Trifluorotoluene           |        | 101 %               | 80-1      | 20       | "       | "        | ,1       | 11        |         |
| Surrogate: 4-Bromofluorobenzene             |        | <i>99.7 %</i>       | 80-1      | 20       | "       | "        | •        | "         |         |
| Gasoline Range Organics C6-C12              | 281    | 10.0                | mg/kg dry | 1        | EC51715 | 03/17/05 | 03/18/05 | EPA 8015M |         |
| Diesel Range Organics >C12-C35              | 2120   | 10.0                |           | 57       | *1      | n        | 11       | 11        |         |
| Total Hydrocarbon C6-C35                    | 2400   | 10.0                | "         | **       | *       | "        |          | "         |         |
| Surrogate: 1-Chlorooctane                   |        | 81.2 %              | 67.6-     | 140      | 17      | n        | н        | "         |         |
| Surrogate: 1-Chlorooctadecane               |        | 98.0 %              | 70-1      | 30       | 17      | ,,       | "        | "         |         |
| Batt'y Backfill at Surface (5C17010-23) So  | il     |                     |           |          |         |          |          |           |         |
| Benzene                                     | ND     | 0.0250              | mg/kg dry | 25       | EC52108 | 03/17/05 | 03/20/05 | EPA 8021B |         |
| Toluene                                     | ND     | 0.0250              | ħ         | n        | **      | "        | "        | ès        |         |
| Ethylbenzene                                | ND     | 0.0250              | n         | "        |         | "        | "        | 59        |         |
| Xylene (p/m)                                | ND     | 0.0250              |           | "        | "       | "        |          | *         |         |
| Xylene (o)                                  | ND     | 0.0250              | n         | n        |         |          | "        | ч         |         |
| Surrogate: a,a,a-Trifluorotoluene           |        | 84.9 %              | 80-1      | 20       | ı       | "        | n        | "         |         |
| Surrogate: 4-Bromofluorobenzene             |        | 93.8 %              | 80-1      | 20       | n       | "        | n        | "         |         |
| Gasoline Range Organics C6-C12              | 10.5   | 10.0                | mg/kg dry | ł        | EC51715 | 03/17/05 | 03/21/05 | EPA 8015M |         |
| Diesel Range Organics >C12-C35              | 950    | 10.0                | 17        | n        | *       | "        |          | "         |         |
| Total Hydrocarbon C6-C35                    | 960    | 10.0                | "         | p        | *       |          | "        | **        |         |

Environmental Lab of Texas

### Reported: 03/23/05 12:15

### Organics by GC

### **Environmental Lab of Texas**

| Analyte                                 | Result     | Reporting<br>Limit | Units     | Dilution | Batch   | Prepared | Analvzed | Method    | Notes       |
|-----------------------------------------|------------|--------------------|-----------|----------|---------|----------|----------|-----------|-------------|
| LBatt'y Backfill at Surface (5C17010-23 | ) Soil     |                    |           |          |         |          |          |           |             |
| Surrogate: 1-Chlorooctane               |            | 95.4 %             | 67.6      | -140     | EC51715 | 03/17/05 | 03/21/05 | EPA 8015M | <del></del> |
| Surrogate: 1-Chlorooctadecane           |            | 109 %              | 70-       | 130      | "       | *        | *        | 11        |             |
| Pit Backfill at Surface (5C17010-24) So | bit        |                    |           |          |         |          |          |           |             |
| Benzene                                 | ND         | 0.0250             | mg/kg dry | 25       | EC52108 | 03/17/05 | 03/21/05 | EPA 8021B |             |
| Toluene                                 | ND         | 0.0250             | "         | "        | r       | ۳        | N        | *         |             |
| Ethylbenzene                            | 0.0472     | 0.0250             | n         |          | *       | "        | "        | n         |             |
| Xylene (p/m)                            | 0.118      | 0.0250             | n         | "        |         |          | "        | "         |             |
| Xylene (o)                              | 0.0561     | 0.0250             | "         | н        | "       | "        | n        |           |             |
| Surrogate: a,a,a-Trifluorotoluene       |            | 89.7 %             | 80-       | 120      | "       | "        | "        | "         |             |
| Surrogate: 4-Bromofluorobenzene         |            | 81.4 %             | 80-       | 120      | "       | "        | "        | n         |             |
| Gasoline Range Organics C6-C12          | 423        | 50.0               | mg/kg dry | 5        | EC51715 | 03/17/05 | 03/18/05 | EPA 8015M |             |
| Diesel Range Organics >C12-C35          | 5750       | 50.0               | "         | ٣        |         | "        | "        | **        |             |
| Total Hydrocarbon C6-C35                | 6170       | 50.0               | •         |          | **      | "        | -        |           |             |
| Surrogate: 1-Chlorooctane               |            | 10.8 %             | 67.6      | -140     | "       | "        | <i>n</i> | "         | S-06        |
| Surrogate: 1-Chlorooctadecane           |            | 19.7 %             | 70-       | 130      | "       | "        | "        | "         | S-06        |
| Spread Zone at Surface (5C17010-25)     | Soil       |                    |           |          |         |          |          |           |             |
| Benzene                                 | ND         | 0.0250             | mg/kg dry | 25       | EC52108 | 03/17/05 | 03/21/05 | EPA 8021B |             |
| Toluene                                 | ND         | 0.0250             | *         | "        | *       | n        | 'n       | "         |             |
| Ethylbenzene                            | ND         | 0.0250             | *7        |          | *1      | "        | "        | **        |             |
| Xylene (p/m)                            | J [0.0244] | 0.0250             | n         | "        | tt      | "        | rt       | n         | J           |
| Xylene (o)                              | ND         | 0.0250             | *         |          | **      | "        | **       | 59        |             |
| Surrogate: a,a,a-Trifluorotoluene       |            | 89.5 %             | 80-       | 120      | "       | N        | "        | 11        |             |
| Surrogate: 4-Bromofluorobenzene         |            | 93.8 %             | 80-       | 120      | **      | n        | "        | *         |             |
| Gasoline Range Organics C6-C12          | 36.4       | 10.0               | mg/kg dry | 1        | EC51715 | 03/17/05 | 03/18/05 | EPA 8015M |             |
| Diesel Range Organics >C12-C35          | 1070       | 10.0               |           |          | H       |          | n        |           |             |
| Total Hydrocarbon C6-C35                | 1110       | 10.0               | "         | "        | н       | "        | "        | "         |             |
| Surrogate: 1-Chlorooctane               |            | 80.4 %             | 67.6      | -140     | "       | n        | "        | 12        |             |
| Surrogate: 1-Chlorooctadecane           |            | 97.8 %             | 70-       | 130      |         | "        | "        | n         |             |

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

### 1997

Reported: 03/23/05 12:15

### General Chemistry Parameters by EPA / Standard Methods

### **Environmental Lab of Texas**

| A sha                                      | T 14   | Reporting | 11    |          | <b>.</b> . | _ ·      |          |               |       |
|--------------------------------------------|--------|-----------|-------|----------|------------|----------|----------|---------------|-------|
| Апануте                                    | Kesult | Limit     | URITS | Dilution | Batch      | Prepared | Analyzed | Method        | Notes |
| Batt'y, North Wall (5C17010-01) Soil       |        |           |       |          |            |          |          |               |       |
| Chloride                                   | 27.8   | 5.00      | mg/kg | 10       | EC52218    | 03/19/05 | 03/19/05 | EPA 300.0     |       |
| % Moisture                                 | 18.2   | 0.1       | %     | 1        | EC51803    | 03/17/05 | 03/18/05 | % calculation |       |
| Batt'y, South Wall (5C17010-02) Soil       |        |           |       |          |            |          |          |               |       |
| Chloride                                   | 56.0   | 5.00      | mg/kg | 10       | EC52218    | 03/19/05 | 03/19/05 | EPA 300,0     |       |
| % Moisture                                 | 11.3   | 0.1       | %     | 1        | EC51803    | 03/17/05 | 03/18/05 | % calculation |       |
| Batt'y, East Wall (5C17010-03) Soil        |        |           |       |          |            |          |          |               |       |
| Chloride                                   | 47.1   | 10.0      | mg/kg | 20       | EC52218    | 03/19/05 | 03/19/05 | EPA 300.0     |       |
| % Moisture                                 | 17.8   | 0.1       | %     | 1        | EC51803    | 03/17/05 | 03/18/05 | % calculation |       |
| Batt'y, West Wall (5C17010-04) Soil        |        |           |       |          |            |          |          |               |       |
| Chloride                                   | 35.7   | 5.00      | mg/kg | 10       | EC52218    | 03/19/05 | 03/19/05 | EPA 300.0     |       |
| % Moisture                                 | 16.1   | 0.1       | %     | 1        | EC51803    | 03/17/05 | 03/18/05 | % calculation |       |
| Batt'y, Bottom (5C17010-05) Soil           |        |           |       |          |            |          |          |               |       |
| Chloride                                   | 71.4   | 10.0      | mg/kg | 20       | EC52218    | 03/19/05 | 03/19/05 | EPA 300.0     |       |
| % Moisture                                 | 19.7   | 0.1       | %     | 1        | EC51803    | 03/17/05 | 03/18/05 | % calculation |       |
| Batt'y, Backfill at -20' (5C17010-06) Soil |        |           |       |          |            |          |          |               |       |
| Chloride                                   | 107    | 5.00      | mg/kg | 10       | EC52218    | 03/19/05 | 03/19/05 | EPA 300.0     |       |
| % Moisture                                 | 9.5    | 0.1       | %     | 1        | EC51803    | 03/17/05 | 03/18/05 | % calculation |       |
| Batt'y, Backfill at -15' (5C17010-07) Soil |        |           |       |          |            |          |          |               |       |
| Chloride                                   | 119    | 5.00      | mg/kg | 10       | EC52218    | 03/19/05 | 03/19/05 | EPA 300.0     |       |
| % Moisture                                 | 10.2   | 0.1       | %     | 1        | EC51803    | 03/17/05 | 03/18/05 | % calculation |       |
| Spread Zone, North Wall (5C17010-08) Soil  |        |           |       |          |            |          |          |               |       |
| Chloride                                   | 22.5   | 5.00      | mg/kg | 10       | EC52218    | 03/19/05 | 03/19/05 | EPA 300.0     |       |
| % Moisture                                 | 2.1    | 0.1       | %     | i        | EC51803    | 03/17/05 | 03/18/05 | % calculation |       |

# Reported: 03/23/05 12:15

### General Chemistry Parameters by EPA / Standard Methods

| Environmental La | ab of Texas |
|------------------|-------------|
|------------------|-------------|

| Analyta                                    | Popult  | Reporting | Linite | 64.2     | <b>D</b> . 1 |          |          |               | <b>N</b> . |
|--------------------------------------------|---------|-----------|--------|----------|--------------|----------|----------|---------------|------------|
|                                            | Kesun   | Lunu      | Units  | Dilution | Batch        | Prepared | Analyzed | Method        | Notes      |
| Spread Zone, South Wall (SC17010-09) S     | 011     |           |        |          |              |          |          | <u> </u>      |            |
| Chloride                                   | 30.2    | 5.00      | mg/kg  | 10       | EC52218      | 03/19/05 | 03/19/05 | EPA 300.0     |            |
| % Moisture                                 | 11.8    | 0.1       | %      | 1        | EC51803      | 03/17/05 | 03/18/05 | % calculation |            |
| Spread Zone, East Wall (5C17010-10) So     | il      |           |        |          |              |          |          |               |            |
| Chloride                                   | 20.4    | 5.00      | mg/kg  | 10       | EC52218      | 03/19/05 | 03/19/05 | EPA 300.0     |            |
| % Moisture                                 | 7.4     | 0.1       | %      | i        | EC51803      | 03/17/05 | 03/18/05 | % calculation |            |
| Spread Zone, Bottom (5C17010-11) Soil      |         |           |        |          |              |          |          |               |            |
| Chloride                                   | 28.9    | 5.00      | mg/kg  | 10       | EC52218      | 03/19/05 | 03/19/05 | EPA 300.0     |            |
| % Moisture                                 | 2.8     | 0.1       | %      | 1        | EC51803      | 03/17/05 | 03/18/05 | % calculation |            |
| Spread Zone, West Wall (5C17010-12) Se     | bil     |           |        |          |              |          |          |               |            |
| Chloride                                   | 28.1    | 5.00      | mg/kg  | 10       | EC52218      | 03/19/05 | 03/19/05 | EPA 300.0     |            |
| % Moisture                                 | 5.4     | 0.1       | %      | 1        | EC51803      | 03/17/05 | 03/18/05 | % calculation |            |
| Pit, Backfil at -25' (5C17010-13) Soil     |         |           |        |          |              |          |          |               |            |
| Chloride                                   | 25,4    | 5.00      | mg/kg  | 10       | EC52218      | 03/19/05 | 03/19/05 | EPA 300.0     |            |
| % Moisture                                 | 23.7    | 0.1       | %      | 1        | EC51803      | 03/17/05 | 03/18/05 | % calculation |            |
| Pit, Backfill at -20' (5C17010-14) Soil    |         |           |        |          |              |          |          |               |            |
| Chloride                                   | 38.2    | 5.00      | mg/kg  | 10       | EC52218      | 03/19/05 | 03/19/05 | EPA 300.0     |            |
| % Moisture                                 | 7.3     | 0.1       | %      | 1        | EC51803      | 03/17/05 | 03/18/05 | % calculation |            |
| Batt'y, Backfill at -10' (5C17010-15) Soil |         |           |        |          |              |          |          |               |            |
| Chloride                                   | 174     | 10.0      | mg/kg  | 20       | EC52218      | 03/19/05 | 03/19/05 | EPA 300.0     |            |
| % Moisture                                 | 7.4     | 0.1       | %      | 1        | EC51803      | 03/17/05 | 03/18/05 | % calculation |            |
| Spread Zone, Backfill at -10' (5C17010-1   | 6) Soil |           |        |          |              |          |          |               |            |
| Chloride                                   | 129     | 10.0      | mg/kg  | 20       | EC52218      | 03/19/05 | 03/19/05 | EPA 300.0     |            |
| % Moisture                                 | 8.9     | 0.1       | %      | 1        | EC51803      | 03/17/05 | 03/18/05 | % calculation |            |

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

-

Reported: 03/23/05 12:15

### General Chemistry Parameters by EPA / Standard Methods

| Environmental Lab o | t l'exas |
|---------------------|----------|
|---------------------|----------|

|                                           | Derit    | Reporting | I la * |          |         |          |          |               |       |
|-------------------------------------------|----------|-----------|--------|----------|---------|----------|----------|---------------|-------|
|                                           | Kesun    |           | Units  | Dilution | Batch   | Prepared | Analyzed | Method        | Notes |
| rn Backnil at -15' (5C17010-17) Soil      |          |           |        |          |         |          |          |               |       |
| Chloride                                  | 62.8     | 5.00      | mg/kg  | 10       | EC52218 | 03/19/05 | 03/19/05 | EPA 300.0     |       |
| % Moisture                                | 8.2      | 0.1       | %      | 1        | EC51803 | 03/17/05 | 03/18/05 | % calculation |       |
| Pit Backfill at -5' (5C17010-18) Soil     |          |           |        |          |         |          |          |               |       |
| Chloride                                  | 58.6     | 10.0      | mg/kg  | 20       | EC52218 | 03/19/05 | 03/19/05 | EPA 300.0     |       |
| % Moisture                                | 10.7     | 0.1       | %      | 1        | EC51803 | 03/17/05 | 03/18/05 | % calculation |       |
| Spread Zone Backfill at -5' (5C17010-19)  | ) Soil   |           |        |          |         |          |          |               |       |
| Chloride                                  | 40.2     | 5.00      | mg/kg  | 10       | EC52218 | 03/19/05 | 03/19/05 | EPA 300.0     |       |
| % Moisture                                | 4.3      | 0.1       | %      | 1        | EC51803 | 03/17/05 | 03/18/05 | % calculation |       |
| Pit Backfill at -10' (5C17010-20) Soil    |          |           |        |          |         |          |          |               |       |
| Chloride                                  | 57.0     | 5.00      | mg/kg  | 10       | EC52218 | 03/19/05 | 03/19/05 | EPA 300.0     |       |
| % Moisture                                | 13.2     | 0.1       | %      | 1        | EC51803 | 03/17/05 | 03/18/05 | % calculation |       |
| Background, East of Activity (5C17010-2   | 21) Soil |           |        |          |         |          |          |               |       |
| Chloride                                  | 23.1     | 5.00      | mg/kg  | 10       | EC52217 | 03/19/05 | 03/19/05 | EPA 300.0     |       |
| % Moisture                                | 3.6      | 0.1       | %      | 1        | EC51803 | 03/17/05 | 03/18/05 | % calculation |       |
| Batt'y Backfill at -5' (5C17010-22) Soil  |          |           |        |          |         |          |          |               |       |
| Chloride                                  | 102      | 5.00      | mg/kg  | 10       | EC52217 | 03/19/05 | 03/19/05 | EPA 300.0     |       |
| % Moisture                                | 11.1     | 0.1       | %      | 1        | EC51803 | 03/17/05 | 03/18/05 | % calculation |       |
| Batt'y Backfill at Surface (5C17010-23) S | Soil     |           |        |          |         |          |          |               |       |
| Chloride                                  | 22.5     | 5.00      | mg/kg  | 10       | EC52217 | 03/19/05 | 03/19/05 | EPA 300.0     |       |
| % Moisture                                | 3.2      | 0.1       | %      | 1        | EC51803 | 03/17/05 | 03/18/05 | % calculation |       |
| Pit Backfill at Surface (5C17010-24) Soil |          | -         |        |          |         |          |          |               |       |
| Chloride                                  | 22.2     | 5.00      | mg/kg  | 10       | EC52217 | 03/19/05 | 03/19/05 | EPA 300.0     |       |
| % Moisture                                | 9.6      | 0.1       | %      | 1        | EC51803 | 03/17/05 | 03/18/05 | % calculation |       |



The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Second .

Reported: 03/23/05 12:15

### General Chemistry Parameters by EPA / Standard Methods

### Environmental Lab of Texas

| Analyte                                  | Result | Reporting<br>Limit | Units | Dilution | Batch   | Prepared | Analyzed | Method        | Notes |
|------------------------------------------|--------|--------------------|-------|----------|---------|----------|----------|---------------|-------|
| Spread Zone at Surface (5C17010-25) Soil |        |                    |       |          |         |          |          |               |       |
| Chloride                                 | 38.2   | 5.00               | mg/kg | 10       | EC52217 | 03/19/05 | 03/19/05 | EPA 300.0     |       |
| % Moisture                               | 7.9    | 0.1                | %     | 1        | EC51803 | 03/17/05 | 03/18/05 | % calculation |       |

Environmental Lab of Texas



Reported: 03/23/05 12:15

### **Organics by GC - Quality Control**

### **Environmental Lab of Texas**

|                                   |        | Reporting    |           | Spike      | Source      |          | %REC   |        | RPD   |       |
|-----------------------------------|--------|--------------|-----------|------------|-------------|----------|--------|--------|-------|-------|
| Analyte                           | Result | Limit        | Units     | Level      | Result      | %REC     | Limits | RPD    | Limit | Notes |
| Batch EC51711 - EPA 5030C (GC)    |        |              |           |            |             |          |        |        |       |       |
| Blank (EC51711-BLK1)              |        |              |           | Prepared & | 2 Analyzed: | 03/17/05 |        |        |       |       |
| Benzene                           | ND     | 0.0250       | mg/kg wet |            |             |          |        |        |       |       |
| Toluene                           | ND     | 0.0250       | **        |            |             |          |        |        |       |       |
| Ethylbenzene                      | ND     | 0.0250       | *         |            |             |          |        |        |       |       |
| Xylene (p/m)                      | ND     | 0.0250       | n         |            |             |          |        |        |       |       |
| Xylene (o)                        | ND     | 0.0250       | **        |            |             |          |        |        |       |       |
| Surrogate: a,a,a-Trifluorotoluene | 93.6   |              | ug/kg     | 100        |             | 93.6     | 80-120 |        |       |       |
| Surrogale: 4-Bromofluorobenzene   | 91.4   |              | "         | 100        |             | 91.4     | 80-120 |        |       |       |
| LCS (EC51711-BS1)                 |        |              |           | Prepared & | k Analyzed: | 03/17/05 |        |        |       |       |
| Benzene                           | 111    |              | ug/kg     | 100        |             | 111      | 80-120 |        |       |       |
| Toluene                           | 119    |              | "         | 100        |             | 119      | 80-120 |        |       |       |
| Ethylbenzene                      | 111    |              |           | 100        |             | 111      | 80-120 |        |       |       |
| Xylene (p/m)                      | 239    |              |           | 200        |             | 120      | 80-120 |        |       |       |
| Xylene (0)                        | 115    |              | **        | 100        |             | 115      | 80-120 |        |       |       |
| Surrogate: a,a,a-Trifluorotoluene | 114    |              | H         | 100        |             | 114      | 80-120 |        |       |       |
| Surrogate: 4-Bromofluorobenzene   | 110    |              | *         | 100        |             | 110      | 80-120 |        |       |       |
| Calibration Check (EC51711-CCV1)  |        |              |           | Prepared & | k Analyzed: | 03/17/05 |        |        |       |       |
| lenzene                           | 107    |              | ug/kg     | 100        |             | 107      | 80-120 |        |       |       |
| oluene                            | 110    |              | **        | 100        |             | 110      | 80-120 |        |       |       |
| Ethylbenzene                      | 97.9   |              | "         | 100        |             | 97.9     | 80-120 |        |       |       |
| Xylene (p/m)                      | 209    |              | "         | 200        |             | 104      | 80-120 |        |       |       |
| Xylene (0)                        | 102    |              |           | 100        |             | 102      | 80-120 |        |       |       |
| Surrogate: a,a,a-Trifluorotoluene | 109    |              | #         | 100        |             | 109      | 80-120 | ······ |       |       |
| Surrogate: 4-Bromofluorobenzene   | 95.7   |              | 7         | 100        |             | 95.7     | 80-120 |        |       |       |
| Matrix Spike (EC51711-MS1)        | Sou    | rce: 5C16007 | 7-01      | Prepared & | z Analyzed: | 03/17/05 |        |        |       |       |
| Benzene                           | 108    |              | ug/kg     | 100        | ND          | 108      | 80-120 |        |       |       |
| Toluene                           | 114    |              | 19        | 100        | 15.2        | 98.8     | 80-120 |        |       |       |
| Ethylbenzene                      | 108    |              | **        | 100        | ND          | 108      | 80-120 |        |       |       |
| Xylene (p/m)                      | 239    |              | *1        | 200        | ND          | 120      | 80-120 |        |       |       |
| Xylene (o)                        | 113    |              |           | 100        | ND          | 113      | 80-120 |        |       |       |
| Surrogate: a,a,a-Trifluorotoluene | 107    | - /          | P         | 100        |             | 107      | 80-120 |        |       | •     |
| Surrogate: 4-Bromofluorobenzene   | 110    |              | "         | 100        |             | 110      | 80-120 |        |       |       |

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

10.00

Reported: 03/23/05 12:15

### **Organics by GC - Quality Control**

### **Environmental Lab of Texas**

|         |        | Reporting |       | Spike | Source |      | %REC   |     | RPD   |       |
|---------|--------|-----------|-------|-------|--------|------|--------|-----|-------|-------|
| Analyte | Result | Limit     | Units | Level | Result | %REC | Limits | RPD | Limit | Notes |
|         |        |           |       |       |        |      |        |     |       |       |

Batch EC51711 - EPA 5030C (GC)

| Matrix Spike Dup (EC51711-MSD1)   | Source: 5 | Prepared & | Analyzed: | 03/17/05 |     |        |           |    |  |
|-----------------------------------|-----------|------------|-----------|----------|-----|--------|-----------|----|--|
| Benzene                           | 111       | ug/kg      | 100       | ND       | 111 | 80-120 | 2.74      | 20 |  |
| Toluene                           | 118       | "          | 100       | 15.2     | 103 | 80-120 | 4.16      | 20 |  |
| Ethylbenzene                      | 114       |            | 100       | ND       | 114 | 80-120 | 5.41      | 20 |  |
| Xylene (p/m)                      | 235       | **         | 200       | ND       | 118 | 80-120 | 1.68      | 20 |  |
| Xylene (0)                        | 117       | "          | 100       | ND       | 117 | 80-120 | 3.48      | 20 |  |
| Surrogate: a,a,a-Trifluorotoluene | 112       | "          | 100       |          | 112 | 80-120 | ~ <u></u> |    |  |
| Surrogate: 4-Bromofluorobenzene   | 107       | *          | 100       |          | 107 | 80-120 |           |    |  |

### Batch EC51714 - Solvent Extraction (GC)

| Blank (EC51714-BLK1)           |      |      |           | Prepared: 03/17 | /05 Analyzed: 03 | /18/05   |  |
|--------------------------------|------|------|-----------|-----------------|------------------|----------|--|
| Gasoline Range Organics C6-C12 | ND   | 10.0 | mg/kg wet |                 |                  |          |  |
| Diesel Range Organics >C12-C35 | ND   | 10.0 | "         |                 |                  |          |  |
| Total Hydrocarbon C6-C35       | ND   | 10.0 | *         |                 |                  |          |  |
| Surrogate: 1-Chlorooctane      | 36.7 |      | mg/kg     | 50.0            | 73.4             | 67.6-140 |  |
| Surrogate: 1-Chlorovctadecane  | 39.6 |      | "         | 50.0            | 79. <i>2</i>     | 70-130   |  |

| LCS (EC51714-BS1)              |      | Prepared: 03/17/05 Analyzed: 03/18/05 |      |      |          |        |  |  |  |  |  |
|--------------------------------|------|---------------------------------------|------|------|----------|--------|--|--|--|--|--|
| Gasoline Range Organics C6-C12 | 467  | 10.0 mg/kg wet                        | 500  | 93.4 | 76.3-104 |        |  |  |  |  |  |
| iesel Range Organics >C12-C35  | 512  | 10.0 "                                | 500  | 102  | 76.1-118 |        |  |  |  |  |  |
| Total Hydrocarbon C6-C35       | 979  | 10.0 "                                | 1000 | 97.9 | 81.8-105 |        |  |  |  |  |  |
| Surrogate: 1-Chlorooctane      | 45.0 | mg/kg                                 | 50.0 | 90.0 | 67.6-140 | ······ |  |  |  |  |  |
| Surrogate: 1-Chlorooctadecane  | 47.4 | n                                     | 50.0 | 94.8 | 70-130   |        |  |  |  |  |  |

| Calibration Check (EC51714-CCV1) |      | Prepared: 03/17/05 Analyzed: 03/18/05 |      |      |          |  |  |  |
|----------------------------------|------|---------------------------------------|------|------|----------|--|--|--|
| Gasoline Range Organics C6-C12   | 488  | mg/kg                                 | 500  | 97.6 | 80-120   |  |  |  |
| Diesel Range Organics >C12-C35   | 547  | **                                    | 500  | 109  | 80-120   |  |  |  |
| Total Hydrocarbon C6-C35         | 1040 | "                                     | 1000 | 104  | 80-120   |  |  |  |
| Surrogate: 1-Chlorooctane        | 50.8 | n                                     | 50.0 | 102  | 67.6-140 |  |  |  |
| Surrogate: 1-Chlorooctadecane    | 55.1 |                                       | 50.0 | 110  | 70-130   |  |  |  |

Reported: 03/23/05 12:15

### **Organics by GC - Quality Control**

### **Environmental Lab of Texas**

|                                         | _      | Reporting     | _         | Spike       | Source      |             | %REC     | _    | RPD   |       |
|-----------------------------------------|--------|---------------|-----------|-------------|-------------|-------------|----------|------|-------|-------|
| Analyte                                 | Result | Limit         | Units     | Level       | Result      | %REC        | Limits   | RPD  | Limit | Notes |
| Batch EC51714 - Solvent Extraction (GC) |        |               |           |             |             |             |          |      |       |       |
| Matrix Spike (EC51714-MS1)              | So     | urce: 5C17006 | -06       | Prepared: ( | 03/17/05 Ar | nalyzed: 03 | 1/18/05  |      |       |       |
| Gasoline Range Organics C6-C12          | 554    | 10.0          | mg/kg dry | 543         | ND          | 102         | 75.9-114 |      |       |       |
| Dieseł Range Organics >C12-C35          | 583    | 10.0          | "         | 543         | ND          | 107         | 85.3-122 |      |       |       |
| Total Hydrocarbon C6-C35                | 1140   | 10.0          | **        | 1090        | ND          | 105         | 84.4-115 |      |       |       |
| Surrogate: 1-Chlorooctane               | 52.6   |               | mg/kg     | 50.0        |             | 105         | 67.6-140 |      |       |       |
| Surrogate: 1-Chlorooctadecane           | 52.6   |               | **        | 50.0        |             | 105         | 70-130   |      |       |       |
| Matrix Spike Dup (EC51714-MSD1)         | So     | urce: 5C17006 | -06       | Prepared: ( | 03/17/05 Ar | nalyzed: 03 | 3/18/05  |      |       |       |
| Gasoline Range Organics C6-C12          | 534    | 10.0          | mg/kg dry | 543         | ND          | 98.3        | 75.9-114 | 3.68 | 10.4  |       |
| Diesel Range Organics >C12-C35          | 577    | 10.0          | *         | 543         | ND          | 106         | 85.3-122 | 1.03 | 10.4  |       |
| Total Hydrocarbon C6-C35                | 1110   | 10.0          | "         | 1090        | ND          | 102         | 84.4-115 | 2.67 | 7.6   |       |
| Surrogate: 1-Chlorooctane               | 51.1   | ······        | mg/kg     | 50.0        |             | 102         | 67.6-140 |      |       |       |
| Surrogate: 1-Chlorooctadecane           | 51.4   |               | 17        | 50.0        |             | 103         | 70-130   |      |       |       |
| Batch EC51715 - Solvent Extraction (GC) |        |               |           |             | ·····       |             |          |      |       |       |
| Blank (EC51715-BLK1)                    |        |               |           | Prepared: ( | 03/17/05 Ar | nalyzed: 03 | 3/18/05  |      |       |       |
| Gasoline Range Organics C6-C12          | ND     | 10.0          | mg/kg wet |             |             |             |          |      |       |       |
| Diesel Range Organics >C12-C35          | ND     | 10.0          |           |             |             |             |          |      |       |       |
| Total Hydrocarbon C6-C35                | ND     | 10.0          | "         |             |             |             |          |      |       |       |
| Surrogate: 1-Chlorooctane               | . 38.9 |               | mg/kg     | 50.0        |             | 77.8        | 67.6-140 |      |       |       |
| Surrogate: 1-Chlorooctadecane           | 43.6   |               | #         | 50.0        |             | 87.2        | 70-130   |      |       |       |
| LCS (EC51715-BS1)                       |        |               |           | Prepared: ( | 03/17/05 Ar | nalyzed: 03 | 1/18/05  |      |       |       |
| Gasoline Range Organics C6-C12          | 473    | 10.0          | mg/kg wet | 500         |             | 94.6        | 76.3-104 |      |       |       |
| Diesel Range Organics >C12-C35          | 513    | 10.0          | "         | 500         |             | 103         | 76.1-118 |      |       |       |
| Total Hydrocarbon C6-C35                | 986    | 10.0          | 73        | 1000        |             | 98.6        | 81.8-105 |      |       |       |
| Surrogate: 1-Chlorooctane               | 48.5   |               | mg/kg     | 50.0        |             | 97.0        | 67.6-140 |      |       |       |
| Surrogate: 1-Chlorooctadecane           | 46.9   |               |           | 50.0        |             | 93.8        | 70-130   |      |       |       |

Environmental Lab of Texas

~ ~

### **Organics by GC - Quality Control**

### **Environmental Lab of Texas**

|                                         |        | Reporting                              |           | Spike       | Source     |             | %REC     |       | RPD   |             |
|-----------------------------------------|--------|----------------------------------------|-----------|-------------|------------|-------------|----------|-------|-------|-------------|
| Analyte                                 | Result | Limit                                  | Units     | Level       | Result     | %REC        | Limits   | RPD   | Limit | Notes       |
| Batch EC51715 - Solvent Extraction (GC) |        |                                        |           |             |            |             |          |       |       |             |
| Calibration Check (EC51715-CCV1)        |        |                                        |           | Prepared: ( | 03/17/05 A | nalyzed: 03 | 1/18/05  |       |       |             |
| Gasoline Range Organics C6-C12          | 486    |                                        | mg/kg     | 500         |            | 97.2        | 80-120   |       |       |             |
| Diesel Range Organics >C12-C35          | 518    |                                        | 4         | 500         |            | 104         | 80-120   |       |       |             |
| Total Hydrocarbon C6-C35                | 1000   |                                        | u         | 1000        |            | 100         | 80-120   |       |       |             |
| Surrogate: 1-Chlorooctane               | 51.9   |                                        | 59        | 50.0        |            | 104         | 67.6-140 |       |       | ,           |
| Surrogate: 1-Chlorooctadecane           | 51.6   |                                        | "         | 50.0        |            | 103         | 70-130   |       |       |             |
| Matrix Spike (EC51715-MS1)              | Sou    | ırce: 5C17010                          | -08       | Prepared: ( | 03/17/05 A | nalyzed: 03 | 3/18/05  |       |       |             |
| Gasoline Range Organics C6-C12          | 516    | 10.0                                   | mg/kg dry | 511         | ND         | 101         | 75.9-114 |       |       |             |
| Diesel Range Organics >C12-C35          | 579    | 10.0                                   | **        | 511         | ND         | 113         | 85.3-122 |       |       |             |
| Total Hydrocarbon C6-C35                | 1100   | 10.0                                   | n         | 1020        | ND         | 108         | 84.4-115 |       |       |             |
| Surrogate: 1-Chlorooctane               | 55.1   | ·                                      | mg/kg     | 50.0        |            | 110         | 67.6-140 |       |       | · · · · · · |
| Surrogate: 1-Chlorooctadecane           | 54.7   |                                        | "         | 50.0        |            | 109         | 70-130   |       |       |             |
| Matrix Spike Dup (EC51715-MSD1)         | Sou    | irce: 5C17010                          | -08       | Prepared: ( | 03/17/05 A | nalyzed: 03 | 3/18/05  |       |       |             |
| Gasoline Range Organics C6-C12          | 517    | 10.0                                   | mg/kg dry | 511         | ND         | 101         | 75.9-114 | 0.194 | 10.4  |             |
| Diesel Range Organics >C12-C35          | 544    | 10.0                                   | "         | 511         | ND         | 106         | 85.3-122 | 6.23  | 10.4  |             |
| Total Hydrocarbon C6-C35                | 1060   | 10.0                                   | "         | 1020        | ND         | 104         | 84.4-115 | 3.70  | 7.6   |             |
| Surrogate: 1-Chlorooctane               | 49.7   | ······································ | mg/kg     | 50.0        |            | 99.4        | 67.6-140 |       |       |             |
| Surrogate: 1-Chlorooctadecane           | -48. I |                                        | "         | 50.0        |            | 96.2        | 70-130   |       |       |             |
| Batch EC52108 - EPA 5030C (GC)          |        |                                        |           |             |            |             |          |       |       |             |
| Blank (EC52108-BLK1)                    |        |                                        |           | Prepared: ( | 03/17/05 A | nalyzed: 03 | 3/21/05  |       |       |             |
| Benzene                                 | ND     | 0.0250                                 | mg/kg wet |             |            |             |          |       |       |             |
| Toluene                                 | ND     | 0.0250                                 | n         |             |            |             |          |       |       |             |
| Ethylbenzene                            | ND     | 0.0250                                 | ••        |             |            |             |          |       |       |             |
| Xylene (p/m)                            | ND     | 0.0250                                 | **        |             |            |             |          |       |       |             |
| Xylene (o)                              | ND     | 0.0250                                 | "         |             |            |             |          |       |       |             |
| Surrogate: a,a,a-Trifluorotoluene       | 94.3   |                                        | ug/kg     | 100         |            | 94.3        | 80-120   |       |       |             |
| Surrogate: 4-Bromofluorobenzene         | 80.9   |                                        | *         | 100         |            | 80.9        | 80-120   |       |       |             |

Environmental Lab of Texas

Reported: 03/23/05 12:15

### **Organics by GC - Quality Control**

### Environmental Lab of Texas

|                                   |        | Reporting        | Spike       | Source     |             | %REC   |        | RPD   |        |
|-----------------------------------|--------|------------------|-------------|------------|-------------|--------|--------|-------|--------|
| Analyte                           | Result | Limit Units      | Level       | Result     | %REC        | Limits | RPD    | Limit | Notes  |
| Batch EC52108 - EPA 5030C (GC)    |        |                  |             |            |             |        |        |       |        |
| LCS (EC52108-BS1)                 |        |                  | Prepared: ( | )3/17/05 A | nalyzed: 03 | /21/05 |        |       |        |
| Benzene                           | 2540   | ug/kg            | 2500        |            | 102         | 80-120 |        |       |        |
| Toluene                           | 2320   | n                | 2500        |            | 92.8        | 80-120 |        |       |        |
| Ethylbenzene                      | 2020   | н                | 2500        |            | 80.8        | 80-120 |        |       |        |
| Xylene (p/m)                      | 4290   | "                | 5000        |            | 85.8        | 80-120 |        |       |        |
| Xylene (o)                        | 2040   | 34               | 2500        |            | 81.6        | 80-120 |        |       |        |
| Surrogate: a,a,a-Trifluorotoluene | 102    | "                | 100         |            | 102         | 80-120 |        |       |        |
| Surrogate: 4-Bromofluorobenzene   | 88.7   | 17               | 100         |            | 88.7        | 80-120 |        |       |        |
| Calibration Check (EC52108-CCV1)  |        |                  | Prepared: ( | )3/17/05 A | nalyzed: 03 | /20/05 |        |       |        |
| Benzene                           | 113    | ug/kg            | 100         |            | 113         | 80-120 |        |       | ······ |
| Toluene                           | 109    |                  | 100         |            | 109         | 80-120 |        |       |        |
| Ethylbenzene                      | 105    | n                | 100         |            | 105         | 80-120 |        |       |        |
| Xylene (p/m)                      | 229    |                  | 200         |            | 114         | 80-120 |        |       |        |
| Xylene (o)                        | 115    | •                | 100         |            | 115         | 80-120 |        |       |        |
| Surrogate: a,a,a-Trifluorotoluene | 110    | "                | 100         |            | 110         | 80-120 |        |       |        |
| Surrogate: 4-Bromofluorobenzene   | 88.1   | R                | 100         |            | 88.1        | 80-120 |        |       |        |
| Matrix Spike (EC52108-MS1)        | Sou    | arce: 5C17010-21 | Prepared: ( | 03/17/05 A | nalyzed: 03 | /21/05 |        |       |        |
| Benzene                           | 2730   | ug/kg            | 2500        | ND         | 109         | 80-120 | ······ |       |        |
| Toluene                           | 2620   | *                | 2500        | ND         | 105         | 80-120 |        |       |        |
| Ethylbenzene                      | 2330   | **               | 2500        | ND         | 93.2        | 80-120 |        |       |        |
| Xylene (p/m)                      | 5280   | n                | 5000        | ND         | 106         | 80-120 |        |       |        |
| Xylene (o)                        | 2400   | R                | 2500        | ND         | 96.0        | 80-120 |        |       |        |
| Surrogate: a,a,a-Trifluorotoluene | 98.3   | N                | 100         |            | 98.3        | 80-120 |        |       |        |
| Surrogate: 4-Bromofluorobenzene   | 107    | "                | 100         |            | 107         | 80-120 |        |       |        |
| Matrix Spike Dup (EC52108-MSD1)   | Sou    | rce: 5C17010-21  | Prepared: ( | 03/17/05 A | nalyzed: 03 | /21/05 |        |       |        |
| Benzene                           | 2720   | ug/kg            | 2500        | ND         | 109         | 80-120 | 0.00   | 20    |        |
| Toluene                           | 2660   | n                | 2500        | ND         | 106         | 80-120 | 0.948  | 20    |        |
| Ethylbenzene                      | 2230   | H                | 2500        | ND         | 89.2        | 80-120 | 4.39   | 20    |        |
| Xylene (p/m)                      | 5020   | ų                | 5000        | ND         | 100         | 80-120 | 5.83   | 20    |        |
| Xylene (o)                        | 2190   | H                | 2500        | ND         | 87.6        | 80-120 | 9.15   | 20    |        |
| Surrogate: a,a,a-Trifluorotoluene | 108    | "                | 100         |            | 108         | 80-120 |        | ·     |        |
| Surrogate: 4-Bromofluorobenzene   | 107    | "                | 100         |            | 107         | 80-120 |        |       |        |

### General Chemistry Parameters by EPA / Standard Methods - Quality Control

### Environmental Lab of Texas

| Anabite                                    | Recult | Reporting     | Unite | Spike       | Source                                        | %DEC        | %REC   | ppn  | RPD<br>Limit | Notes |
|--------------------------------------------|--------|---------------|-------|-------------|-----------------------------------------------|-------------|--------|------|--------------|-------|
| ////////                                   |        |               | Juits |             |                                               | /onet       |        |      |              |       |
| Batch EC51803 - General Preparation (Prep) |        |               |       |             |                                               | . <u></u>   |        | ·    | ······       |       |
| Blank (EC51803-BLK1)                       |        |               |       | Prepared: ( | )3/17/05 Ar                                   | ualyzed: 03 | /18/05 |      |              |       |
| % Moisture                                 | ND     | 0.1           | %     |             |                                               |             |        |      |              |       |
| Duplicate (EC51803-DUP1)                   | Sour   | 'ce: 5C17002- | 01    | Prepared: ( | )3/17/05 Ar                                   | nalyzed: 03 | /18/05 |      |              |       |
| % Moisture                                 | 3.6    | 0.1           | %     |             | 4.6                                           |             |        | 24.4 | 20           |       |
| Batch EC52217 - Water Extraction           |        |               |       |             |                                               |             |        |      |              |       |
| Blank (EC52217-BLK1)                       |        |               |       | Prepared &  | : Analyzed:                                   | 03/19/05    |        |      |              |       |
| Chloride                                   | ND     | 0.500         | mg/kg |             |                                               |             |        |      |              |       |
| LCS (EC52217-BS1)                          |        |               |       | Prepared &  | : Analyzed:                                   | 03/19/05    |        |      |              |       |
| Chloride                                   | 10.6   |               | mg/L  | 10.0        |                                               | 106         | 80-120 |      |              |       |
| Calibration Check (EC52217-CCV1)           |        |               |       | Prepared &  | : Analyzed:                                   | 03/19/05    |        |      |              |       |
| Chloride                                   | 10.0   |               | mg/L  | 10.0        |                                               | 100         | 80-120 |      |              |       |
| Duplicate (EC52217-DUP1)                   | Sour   | ·ce: 5C17010- | 21    | Prepared &  | : Analyzed:                                   | 03/19/05    |        |      |              |       |
| Chloride                                   | 21.0   | 5.00          | mg/kg |             | 23.1                                          |             |        | 9.52 | 20           |       |
| Batch EC52218 - Water Extraction           |        | <u></u>       |       |             |                                               |             |        |      |              |       |
| Blank (EC52218-BLK1)                       |        |               |       | Prepared &  | : Analyzed:                                   | 03/19/05    |        |      |              |       |
| Chloride                                   | ND     | 0.500         | mg/kg |             | , <b>,,,</b> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |             |        |      |              |       |
| LCS (EC52218-BS1)                          |        |               |       | Prepared &  | : Analyzed:                                   | 03/19/05    |        |      |              |       |
| Chloride                                   | 10.5   |               | mg/L. | 10.0        |                                               | 105         | 80-120 |      |              |       |

### General Chemistry Parameters by EPA / Standard Methods - Quality Control

### Environmental Lab of Texas

| Analyte                          | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|----------------------------------|--------|--------------------|-------|----------------|------------------|----------|----------------|-------|--------------|-------|
| Batch EC52218 - Water Extraction |        |                    |       |                |                  |          |                |       |              |       |
| Calibration Check (EC52218-CCV1) |        |                    |       | Prepared &     | 2 Analyzed:      | 03/19/05 |                |       |              |       |
| Chloride                         | 10.6   |                    | mg/L  | 10.0           |                  | 106      | 80-120         |       |              |       |
| Duplicate (EC52218-DUP1)         | Sour   | ce: 5C17010-       | 01    | Prepared &     | 2 Analyzed:      | 03/19/05 |                |       |              |       |
| Chloride                         | 27.9   | 5.00               | mg/kg |                | 27.8             |          |                | 0,359 | 20           |       |



|   | WHOLE EA    | ARTH ENVIRONMENTAL                                                             | Project:              | Devon                                                 | Fax: (281) 394-2051 |
|---|-------------|--------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------|---------------------|
|   | 2103 Arbor  | Cove                                                                           | Project Number:       | Patsy Lease                                           | Reported:           |
|   | Katy TX, 77 | 494                                                                            | Project Manager:      | Mike Griffin                                          | 03/23/05 12:15      |
| ) |             |                                                                                | Notes and De          | finitions                                             |                     |
|   | S-06        | The recovery of this surrogate is outside control limit matrix interference's. | ts due to sample di   | ution required from high analyte concentration and/or |                     |
|   | J           | Detected but below the Reporting Limit; therefore, re                          | esult is an estimated | concentration (CLP J-Flag).                           |                     |
|   | DET         | Analyte DETECTED                                                               |                       |                                                       |                     |
|   | ND          | Analyte NOT DETECTED at or above the reporting limit                           |                       |                                                       |                     |
|   | NR          | Not Reported                                                                   |                       |                                                       |                     |
|   | dry         | Sample results reported on a dry weight basis                                  |                       |                                                       |                     |
|   | RPD         | Relative Percent Difference                                                    |                       |                                                       |                     |

- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate



Report Approved By:

Raland Kester

Date: 3/23/2005

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

|                                              | Lab of Texas,                            | Inc.                      |             |                        |                  |       |               |       |                  |                     |          |                  |                                         |                |                                     |          |               |                                                                                                                 |        |      |      | đ             | e            |              |
|----------------------------------------------|------------------------------------------|---------------------------|-------------|------------------------|------------------|-------|---------------|-------|------------------|---------------------|----------|------------------|-----------------------------------------|----------------|-------------------------------------|----------|---------------|-----------------------------------------------------------------------------------------------------------------|--------|------|------|---------------|--------------|--------------|
| 12600 VVest I-20 East<br>Odessa, Texas 79763 | Phone: 915-563-1800<br>Fax: 915-663-1713 |                           |             |                        |                  |       |               |       |                  | Q                   | HAIN     | OFC              | usto                                    | DYF            | ECO                                 | RD A     | A UN          | NAL                                                                                                             | SISA   | REC  | IDES | F             |              |              |
| Project Manager: M. GI                       | riffin                                   |                           |             |                        |                  |       |               |       |                  | {                   |          | Proje            | ct Na                                   | 18:            | Dev                                 | E        |               |                                                                                                                 |        |      |      | 1             |              |              |
| Company Name Whole                           | e Earth Environmental, In                | 10,                       |             |                        |                  |       |               |       |                  | ł                   |          | _                | rojec                                   | #              | Pats                                | v Le     | ase           |                                                                                                                 |        |      |      | [             |              | 1            |
| Company Address: 2103 /                      | Arbor Cove                               |                           |             |                        |                  |       |               | {     |                  | 1                   |          | Pro              | ject L                                  | ij             | CeB                                 | S        | nty,          | Ne                                                                                                              | N N    | [exi | 8    |               |              | 1            |
| City/State/Zip: Katy,                        | Texas 77494                              |                           |             |                        |                  |       |               |       |                  | 1                   |          |                  | ă                                       | *              |                                     |          |               |                                                                                                                 |        |      |      |               |              | 1            |
| Telephone No:                                | (281) 394-2050                           |                           | Fax No:     |                        | (28              | 1) 3  | 94-2          | 150   |                  | 1                   |          |                  |                                         |                |                                     |          |               |                                                                                                                 |        |      |      |               |              |              |
| Samplor Signeture:                           |                                          |                           |             |                        |                  |       |               |       |                  |                     |          | ł                |                                         |                |                                     |          |               |                                                                                                                 |        |      |      |               |              |              |
|                                              |                                          |                           |             |                        |                  |       |               |       |                  | ł                   |          |                  |                                         | 11             | à, j                                | ×∏       |               | 2 –                                                                                                             |        |      |      |               |              |              |
|                                              |                                          |                           |             | L_                     |                  | Pres  | aveth         | 9     | T                | ſ                   | Aatrix   | +                | Ē                                       |                |                                     |          | +             | T                                                                                                               | •      |      |      |               |              |              |
|                                              |                                          | F                         | r<br>F      | sua                    | ļ                |       |               |       |                  |                     |          |                  | AWSIC                                   | 90             | CACIPHA                             |          |               |                                                                                                                 |        |      |      |               | einberios-a  | [            |
| er Historia                                  | FIELD CODE                               | xelqme2 ets0              | eiqme2 emiT | No. of Containe        | <sup>6</sup> ONH | нсі   | YOSH<br>HORN  | auon  | Other ( Specify) | JARAY               | 105      | Other (specify): | 100 10 10 10 10 10 10 10 10 10 10 10 10 | 01/9001 X1 Hd1 | DAD Marus Hy I<br>BB DA 2A :sleisim | seitaioV | sellislovime2 | SOLUDIO                                                                                                         | S.A.R. | E.C. |      |               | 19) TAT HEUR | IAI DISOREIC |
|                                              | att'y, North Wall                        | 03/16/05                  | 9:00        | <u></u><br><u></u> − - |                  |       |               |       | $\mathbf{t}$     | ╂──                 | ×        |                  | ×                                       |                |                                     |          |               | <del>\</del>                                                                                                    |        |      |      |               |              |              |
| B                                            | latt'y, South Wall                       | 03/16/05                  | 8:00        | -<br>-                 |                  |       |               |       |                  |                     | ×        |                  | ×                                       |                |                                     |          |               | X                                                                                                               |        |      |      |               |              |              |
|                                              | Batty, East Wali                         | 03/16/05                  | 9:05        | -<br>-                 |                  |       |               |       |                  |                     | ×        |                  | ×                                       |                |                                     |          |               | $\hat{\mathbf{x}}$                                                                                              |        |      |      |               |              |              |
| to<br>Here                                   | 3att'y, West Well                        | 03/16/05                  | 9:05        | -                      |                  |       |               |       |                  |                     | ×        |                  | ×                                       |                |                                     |          |               | Ŷ                                                                                                               |        |      |      |               |              | 1            |
|                                              | Batt'y, Bottom                           | 03/16/05                  | 9:10        | -<br>-                 |                  |       |               |       |                  |                     | ×        |                  | ×                                       |                |                                     |          |               | Ĵ                                                                                                               |        |      | -    |               |              |              |
| Bai                                          | itty, Backfili at -20'                   | 03/16/05                  | 9:20        | Ĵ                      |                  |       |               |       |                  | -+                  | <u>×</u> |                  | ×                                       | -              | -                                   |          |               | 쉿                                                                                                               |        |      | -+   | $\neg$        |              |              |
| Bai                                          | tt'y, Backfill at -15'                   | 03/16/05                  | 9:25        | 귀                      | J                |       | -+            |       | -                | -+                  | ×        |                  | ×                                       | -1             |                                     |          |               | 쉿                                                                                                               | -      |      | -    |               |              | Т            |
| Spre.                                        | ad Zone, North Wall                      | 03/16/05                  | 9:30        | 귀                      | J                |       | $\rightarrow$ |       | -+               | -+                  | <u>×</u> |                  | ×                                       | -              |                                     |          | +             | 끐                                                                                                               | -      |      | -+   | _             |              | Т            |
| Sprei                                        | ad Zone, South Wall                      | 03/16/05                  | 9:35        | $\frac{1}{2}$          | J                |       | -+            |       | -†               | -+                  | 쐰        |                  | ×                                       | -†             | -+                                  |          | 1             | 긧                                                                                                               | ᅪ      |      | -+   | -+-           |              |              |
| Spre                                         | sad Zone, East Wall                      | 03/16/05                  | 9:40        | -                      | J                |       | $\rightarrow$ |       | -+               | $\dashv$            | <u>×</u> | $\neg$           | ×                                       |                | -+                                  | _        | -             | $\frac{2}{2}$                                                                                                   | ᆉ      |      | -+   | $\rightarrow$ |              | Т            |
| Spi                                          | read Zone, Bottom                        | 03/16/05                  | 9:40        | -                      | J                |       | +             |       | -                | -+                  | ×        |                  | ×                                       |                | -                                   |          | -+            | 굿                                                                                                               | ┛      |      | -+   | -             |              | T            |
| Spre.                                        | ad Zone, West Wall                       | 03/16/05                  | 9:45        | -                      | J                |       | -             |       | -1               | -                   | 쐭        |                  | ×                                       |                |                                     |          |               | $\frac{1}{2}$                                                                                                   |        |      |      | _             |              | l.           |
| Special Instructions:                        | Piease notify Dameil Glueck at           | (713) 77 <b>6-6360</b> H: | TPH>6000mg  | n; 811                 | EX>CI            | WA; ( | Chior         | idee> | 250n             | η <mark>θ</mark> η. |          |                  |                                         |                |                                     |          |               |                                                                                                                 | 12     |      |      |               |              | 1382/5       |
| Relinquished by All I BA                     | Date Time<br>3/17/05 (2:30               | Received by:              |             |                        |                  |       |               |       |                  | Date                |          | Ē                | 90                                      |                |                                     |          | - O S         |                                                                                                                 |        | 1.2  |      | ÷.            | <b>.</b>     |              |
| Relinquished by:                             | Date Time                                | R. E. Porteror            | 14.3        |                        |                  |       |               |       |                  |                     |          |                  | 191                                     | ÷              |                                     |          |               | in the second |        |      |      |               |              |              |
|                                              |                                          |                           |             |                        |                  |       |               |       |                  |                     |          |                  |                                         |                |                                     |          |               |                                                                                                                 |        |      |      |               |              |              |

÷

| е                                                                    |               |                 |                   |             |              |                  |             |      | Pre-Schedule) TAT HRUR<br>TAT brishing |                |                 |                 |               |                 |                 | +              | +-             |                  |                        |                 | С.<br>1. ж.            |                       |                                               |
|----------------------------------------------------------------------|---------------|-----------------|-------------------|-------------|--------------|------------------|-------------|------|----------------------------------------|----------------|-----------------|-----------------|---------------|-----------------|-----------------|----------------|----------------|------------------|------------------------|-----------------|------------------------|-----------------------|-----------------------------------------------|
| ð.                                                                   |               |                 |                   |             | Γ            | Ţ                |             |      |                                        |                |                 |                 |               |                 | $\square$       | T              |                |                  |                        |                 | 2                      |                       |                                               |
| 2<br>JEST                                                            |               |                 |                   |             |              | -                |             |      |                                        |                |                 |                 |               | $\downarrow$    | +               | +              | +-             | $\left  \right $ |                        | _               |                        |                       |                                               |
| age<br>Fol                                                           |               | xic             |                   |             |              | $\left  \right $ |             |      | E.C.                                   |                |                 |                 |               | -+              | +               | ╉              | ╉              | ╉┥               |                        | $\neg$          |                        |                       | N CA                                          |
| F SIS F                                                              |               | Me              |                   |             | Į            | ł                |             |      | .S.A.S                                 |                |                 |                 | -1            |                 | +               | ╈              | +              | +                |                        | -               | e.                     |                       |                                               |
| λ, 14                                                                |               | wa              |                   |             |              | Ē                | ······      |      | Chlorides                              | ×              | ×               | ×               | ×             | ×               | ×               | ××             | ۲×             | ×                | ×                      | ×               |                        |                       |                                               |
| ANI                                                                  |               | Υ. Ν            |                   |             |              |                  |             |      | BLEX 80548\2030                        | ×              | ×               | ×               | ×             | ×               | ×               | × >            | <   ×          | ×                | ×                      | ×               |                        |                       |                                               |
| AND                                                                  | eas           | ant             |                   |             |              |                  |             | L    | selitslovime2                          |                |                 |                 |               |                 |                 |                | $\bot$         |                  |                        |                 |                        |                       |                                               |
| Of IC                                                                | 1<br>T        | Ce              |                   |             | X            | ₹                |             |      | Volatiles                              |                |                 |                 |               | _               | 4               | -              | 4              | $\vdash$         |                        |                 |                        |                       | i de sala<br>Setas S                          |
| eco<br>evi                                                           | ats           | ,ea             |                   |             |              |                  | <u>ت تە</u> |      | OPROVID METOR PHIL                     |                |                 |                 |               |                 | +               | +              | +              | +                | $\left  \cdot \right $ |                 |                        |                       |                                               |
| e: L                                                                 | ⊶<br>**       | ן דין<br>ני     |                   |             |              |                  |             | ┝    | AUCTORS MATOR HAT                      | -              |                 |                 | -             |                 | ╉               | +              | ╉              | ╋                | $\left  \cdot \right $ | -               |                        | . <del></del> .       |                                               |
| TOD                                                                  | lect          | ť Lo            | ğ                 |             |              |                  |             | ┢    | WSIOS HOLTHAL                          | ×              | ×               | X               | ×             | ×               | ×;              | $\times$       | ۲×             | ×                | ×                      | ×               | 925936993 <del>9</del> | <u>094738030</u>      | Kees.                                         |
| CUS<br>ect 1                                                         | 0<br>2        | ojec            |                   |             |              |                  |             | F    | TD\$ / CL / SAR / EC                   |                |                 |                 |               |                 | +               | +              | +              |                  | Η                      |                 |                        | me                    | e s                                           |
| Proj                                                                 | •             | å               |                   |             | 1            |                  |             |      | Other (specify):                       |                |                 |                 |               |                 | 1               | 1              | $\top$         | T                |                        |                 |                        | -                     |                                               |
| AIN                                                                  |               |                 |                   |             |              |                  |             | Ě    | lios                                   | ×              | ×               | ×               | ×             | ×               | ×               | × >            | <  ×           | ×                | ×                      | ×               |                        |                       | Less.                                         |
| CH                                                                   | 1             | 1 1             | , ,               | , .         |              |                  |             | Ž    | esprijs                                |                |                 |                 |               | $\square$       |                 | T              | $\bot$         | L                |                        |                 | Z                      | ate                   |                                               |
|                                                                      |               |                 |                   |             |              |                  |             |      | Mater                                  | -              |                 |                 |               |                 | 4               | +              | +              | -                | Ц                      |                 | GmO                    |                       |                                               |
|                                                                      |               |                 |                   |             |              |                  |             |      | Other ( Specify)                       | -              |                 |                 |               |                 | +               | +              | +-             |                  | $\vdash$               |                 | 8>25                   |                       |                                               |
|                                                                      |               |                 |                   | 205         |              |                  |             | Ve   | 1002u                                  |                |                 |                 |               | $\neg$          | +               | +              | ╇              | +                |                        | _               | ride                   |                       |                                               |
|                                                                      |               |                 |                   | 4           |              |                  |             | Nat  | HORN                                   | $\vdash$       |                 |                 |               | +               | ╉               | +              | ╋              | +                |                        | -               | Chlo                   |                       |                                               |
|                                                                      |               |                 |                   | 6           |              |                  |             | 1086 | HCI                                    |                |                 |                 |               |                 | +               | +              | +              | +                |                        |                 | VA; C                  |                       |                                               |
|                                                                      |               |                 |                   | 281         |              |                  |             | 1    | <sup>2</sup> ONH                       | $\square$      |                 |                 |               |                 | +               | $\uparrow$     | ╈              | 1                |                        | -               | NO A                   |                       |                                               |
|                                                                      |               |                 |                   |             |              |                  |             |      | 501                                    | ×              | ×               | ×               | ×             | ×               | ×               | × >            | ۲×             | ×                | ×                      | ×               | тех                    |                       |                                               |
|                                                                      |               |                 |                   |             |              |                  |             |      | No. of Configurers                     | -              | 1               |                 |               | -               | -               |                |                | -                |                        | ÷               | n9/1; B                |                       |                                               |
|                                                                      |               |                 |                   | Fax No:     |              |                  |             |      | bəlqme2 əmi1                           | 9:50           | 9:55            | 14:00           | 10:30         | 14:05           | 8:20            | 14:10          | 10:15          | 8:10             | 8:10                   | 8:25            | f: TPH>5000n           |                       | т<br>С. С. С |
| lnc.                                                                 | uc.           |                 |                   |             |              |                  |             |      | balqma2 atsO                           | 03/16/05       | 03/16/05        | 03/16/05        | 03/16/05      | 03/16/05        | 03/17/05        | 03/16/05       | 03/16/05       | 03/17/05         | 03/17/05               | 03/17/05        | (713) 775-8360         | Received by:          | Received EC                                   |
| <b>exas</b> ,<br>563-1800<br>563-1713                                | nmental, I    |                 |                   |             |              |                  |             |      |                                        |                |                 | y.              | t10'          |                 |                 | 1-5.           | tivity         |                  | ace                    | e               | rell Glueck at         | 1 time                | Time                                          |
| <b>ID OT 1</b><br>Phone: 915-<br>Fax: 915-<br>11                     | arth Envire   | or Cove         | xas 77494         | 1) 394-2050 |              |                  |             |      | ELD CODE                               | ackfill at -25 | ackfill at -20' | Backfill at -1( | ne Backfill a | ackfill at -15' | lackfill at -5' | one Backfill a | id. East of Ar | Backfill at -5   | ickfill at Surfi       | kfill at Surfac | ase notify Dar         | Date<br>3/7/05        | Date                                          |
| <b>Jental Lá</b><br>Jental Lá<br>M. Griffi                           | Name Whole Ea | dress: 2103 Arb | to/Zip: Katy, Te. | ne No: (28. | ature:       |                  |             |      | ā.                                     | Pit, B         | Pit, B          | Batty           | Spread Zc     | BHA             | Pit             | Spread Z       | Backgroun      | Batty            | Batt'y Ba              | Plt Bac         | 8<br>1                 | LEOL<br>Environmental |                                               |
| LNIFONT<br>12600 West I-20 East<br>Ddesse, Texes 79763<br>Project Ma | Company       | Company Ad      | Clty/Sta          | Telepho     | Sampler Sign |                  |             |      | tanan<br>Laboration<br>Biatananan      |                |                 |                 |               |                 |                 |                |                |                  |                        |                 | pecial instructions:   | elinguished by        | elinquished by,                               |

| R. |    |
|----|----|
| 1  | Η, |



# Environmental Lab of Texas, Inc.

Phone: 915-563-1800 Fax: 915-563-1713 12600 West I-20 East Odessa, Texas 79763

Project Manager: M. Griffin Company Name Whole Earth Environmental, Inc. Company Address: 2103 Arbor Cove City/State/Zip: Katy, Texas 77494

Page 3 of 3 CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Project Loc: Lea County, New Mexico

Project Name: Devon Project #: Patsy Lease

|      |        |      |             |          |         |      | ٢    | TAT brebnet?                           |           |          |           |              |               |                 |               |          |           |      |                 | T        |        |        |                |                           |
|------|--------|------|-------------|----------|---------|------|------|----------------------------------------|-----------|----------|-----------|--------------|---------------|-----------------|---------------|----------|-----------|------|-----------------|----------|--------|--------|----------------|---------------------------|
|      |        |      |             |          |         |      | ł    | RUSH TAT (Pre-Schedule)                | $\square$ |          | $\square$ |              |               |                 | -             |          |           | -    |                 | -        |        |        |                |                           |
|      |        |      |             | <b></b>  |         |      | -    |                                        | -         |          |           | -            |               | -               |               |          |           | -    |                 | -        | 2      |        | 1000           |                           |
|      |        |      |             | ┢─       |         |      |      |                                        |           |          |           |              |               |                 |               |          |           |      |                 |          |        | 15.S)  |                |                           |
|      |        |      |             | ┢        |         |      | •••• |                                        |           |          |           |              |               |                 | -             | $\vdash$ |           | -    |                 | -        |        |        |                |                           |
|      |        |      |             | ┢─       |         |      |      | E.C.                                   |           |          | $\square$ | -            | -             |                 |               |          |           | -    | -+              | -        |        |        | 40. j. j. j.   |                           |
|      |        |      |             | ┢        |         | •    |      | AAd                                    |           |          | Η         |              |               |                 |               |          |           | -    |                 | $\neg$   |        |        |                |                           |
|      |        |      | ļ.,         | <u> </u> |         |      |      | 5904080                                | ×         | -        |           | X            | Y             | 5               | X             |          | -         | -    |                 | -        | 4      | Sec.   | 140.5          | Self-the                  |
|      |        |      | ğ           | ┝─       | <b></b> | Т    |      | 000001709 V215                         |           | 5        | 5         |              | 5             | 0               | 3             |          | Ð         |      |                 | -        | 8 3    |        |                |                           |
|      |        |      | 2           | ┝        | ┝       | ┢    |      | Salabian and a                         |           |          | $\square$ |              | _             | -               |               | Ê        | 7         |      |                 | -        | 一個     |        | сл.<br>1       |                           |
|      |        |      | Page<br>Age | -        | ┝       | ╀    |      | Sainthoa                               |           |          |           |              |               |                 |               |          |           |      | -+              | -        | 自治     |        |                |                           |
|      |        |      |             | ┝─       | ┝─      | +    |      | אייייייייייייייייייייייייייייייייייייי |           |          |           |              |               |                 |               |          |           |      |                 | -        | E<br>得 | 4      | i da da        |                           |
|      |        |      |             | la.      |         | +    |      |                                        |           |          |           |              |               |                 |               |          |           |      | -+              | _        |        |        |                |                           |
| #    | l      |      |             | 걸        | Ę       | ┡    | •••• |                                        | -         | -        | $\vdash$  |              | _             |                 | _             |          |           | -    | -+              | -        |        |        |                |                           |
| Š    |        |      |             |          | ۴       | ┝    |      | Storison XI Hal                        | _         |          |           |              |               | _               |               |          |           |      |                 | -        | Ú F    |        |                | 1782-92<br>078269         |
| -    |        |      |             |          |         | F    |      |                                        | $\cap$    | $\hat{}$ | 9         | $\widehat{}$ |               |                 | $\hat{}$      |          | $\cap$    |      |                 | _        |        |        | ø              | 2.5                       |
|      |        |      | <b>I</b>    | l        | L       | ┢    | 7    |                                        |           |          | -         |              |               |                 |               | $\vdash$ | $\vdash$  |      | $ \rightarrow $ | _        |        |        | 1 <sup>1</sup> |                           |
|      |        |      |             |          |         | ١.   | ļ    | Other (specify):                       |           | Ļ        |           |              |               | H               |               |          | Ļ         |      |                 | _        |        |        | ļ              | Contraction of the second |
|      |        |      |             |          |         | i te | Į,   | Soil                                   | ×         | ľ        | Ľ         | ×            | ×             | ×               | ×             | ×        | ×         | _    | $\square$       |          |        |        |                |                           |
| 1    | , i    |      |             |          |         | P    | ₹ļ   | agouis                                 |           | ļ        |           |              |               |                 |               |          |           |      |                 |          |        | ΎĒ     | ate            |                           |
|      |        |      |             |          |         | L    |      | Maler                                  |           |          |           |              |               |                 |               |          |           |      |                 |          |        | Ĕ      | ρ              |                           |
|      |        |      |             |          |         | l    | ļ    | Officer ( Specify)                     |           |          |           |              |               |                 |               |          |           |      |                 |          |        | >28    | L              | 100                       |
|      | 15     |      |             |          |         |      |      | Aone                                   |           |          |           |              |               |                 |               |          |           |      |                 |          |        | des    | 1              |                           |
|      | Ž      |      |             |          |         | athu |      | *os²h                                  |           |          |           |              |               |                 |               |          |           |      |                 |          |        | Ĩ      | ł              |                           |
|      | 39     |      |             |          |         | 29   |      | HOBN                                   |           |          |           |              |               |                 |               |          |           |      |                 |          |        | 5      |                |                           |
|      | -      |      |             |          |         | à    | Ë    | нсі                                    |           |          |           |              |               |                 |               |          |           |      |                 |          |        | M      |                | 18/18/2                   |
|      | 28     |      |             |          |         |      |      | <sup>s</sup> onh                       |           |          |           |              |               |                 |               |          |           |      |                 |          |        | Š      | 1              |                           |
|      | $\sim$ |      |             |          |         |      |      | 80)                                    | X         | ×        | Х         | X            | ×             | ×               | X             | ×        | ×         |      |                 |          |        | Ē      |                | 1. 1. 1. 1.               |
|      |        |      |             |          |         |      | T    | No. of Containers                      | +         |          | -         |              | -             | -               | -             | -        |           |      |                 | ٦        |        | 7; B   | ]              |                           |
|      | ö      | •    |             |          |         |      | ł    |                                        |           |          | $\vdash$  |              |               |                 |               |          | $\square$ |      |                 | -        |        | B      |                |                           |
|      | X      |      |             |          |         |      |      |                                        | S         |          |           |              |               |                 |               |          |           |      |                 |          |        | 200    |                |                           |
|      | ы.     |      |             |          |         |      |      | beigme2 amiT                           | 8:1       |          |           |              |               |                 |               |          |           |      |                 |          |        | £      | ]              |                           |
|      |        |      |             |          |         |      |      |                                        |           |          |           |              |               |                 |               |          |           |      |                 |          |        | E<br>E | 1              |                           |
|      |        |      |             |          |         |      | ł    |                                        |           |          |           |              |               |                 |               |          |           |      |                 | -        |        | 202    |                |                           |
|      |        |      |             |          |         |      |      |                                        | 705       |          |           |              |               |                 |               |          |           |      |                 |          |        | -63    | ă              | \$ 95                     |
|      |        |      |             |          |         |      |      | beigmeS eteC                           | 3/17      |          |           |              |               |                 |               |          |           |      |                 |          |        | Ë      | ived           |                           |
|      |        |      |             |          |         |      |      |                                        | 8         |          |           |              |               |                 |               |          |           |      |                 |          |        | 13     | ec ec          |                           |
|      |        |      |             |          |         |      | t    |                                        |           |          |           |              |               |                 |               | H        | $\vdash$  |      |                 | -1       |        | at (   | 5              | PHOHODOLA                 |
|      |        |      |             |          |         |      |      |                                        |           |          |           |              |               |                 |               |          |           |      |                 |          |        | 8ck    | e m            | an<br>A                   |
|      |        |      |             |          |         |      |      |                                        |           |          |           |              |               |                 |               |          |           |      |                 |          |        | 90     | F N            | F                         |
|      |        |      |             |          |         |      | 1    |                                        | 8         |          |           |              |               |                 |               |          |           |      |                 |          |        | le     | -+-            | ļ                         |
| 4    | 20     |      |             |          |         |      |      |                                        | urf.      |          |           |              |               |                 |               |          |           |      |                 |          |        | Dar    | Nº S           |                           |
| 5    | 12     |      |             |          |         |      |      | JOE JOE                                | at S      |          |           |              |               |                 |               |          |           |      |                 |          |        | ₫Ĵ     |                | Date                      |
| 5    | ŝ      |      |             |          |         |      |      | 20                                     | 9         |          |           |              |               |                 |               |          |           |      |                 |          |        | ou e   | 6              |                           |
| Xa   |        |      |             |          |         |      |      |                                        | Ž         |          |           |              |               |                 |               |          |           |      |                 |          |        | 9866   | <u>}</u>       | 1                         |
| Le 1 | 82)    |      |             |          |         |      | 1    | μ.<br>Γ                                | ad        |          |           |              |               |                 |               |          |           |      |                 |          |        | đ      |                |                           |
| ity. |        |      |             |          |         |      |      |                                        | ă         |          |           |              |               |                 |               |          |           |      |                 |          |        | •      | later          | }                         |
| Ka   |        |      |             |          |         |      |      |                                        | <i></i>   |          |           |              |               |                 |               |          |           |      |                 |          |        |        | ľ∖∕ ľ          |                           |
| ğ    | ÿ      | Ë    |             |          |         |      |      |                                        |           |          |           |              |               |                 |               |          |           |      |                 |          |        |        | Nico N         | 1                         |
| tel? | -ue    | natu |             |          |         |      | ļ    |                                        |           |          |           |              |               |                 |               |          |           |      |                 |          |        |        |                |                           |
| /Sta | bho    | Sigr |             |          |         |      | 1000 |                                        |           |          |           |              |               |                 |               |          |           |      |                 |          | 3      | ¥,     |                | <b>I</b>                  |
| City | lele   | ler  |             |          |         |      |      | i she she she she                      |           |          |           |              |               | 譋               |               |          |           |      |                 |          | ŝ      |        | 1/2/8          |                           |
| -    |        | dini |             |          |         |      |      |                                        |           |          |           | 癵            |               |                 |               |          |           |      |                 |          | truc   |        | A 12           | р.<br>Г                   |
|      |        | ő    |             |          |         |      |      |                                        |           |          |           |              |               |                 |               |          |           |      |                 |          | 2      |        | 5 1 S          | shec                      |
|      |        |      |             |          |         |      | 1    |                                        |           |          |           |              |               |                 |               |          |           |      |                 | <b>M</b> | cial   |        | Į <u>ž</u> (Jo | inbl                      |
|      |        |      |             |          |         |      |      | 5 F                                    |           |          |           |              |               |                 |               |          | 溯         |      |                 |          | Spe    |        |                | Sellir                    |
|      |        |      |             |          |         |      | Ľ    |                                        | needs     | 0.447    | -74       | an tr        | 54 <b>6</b> 5 | 9 <u>80,3</u> 6 | 4.99 <u>7</u> | 4487     | N         | 9880 | 90.97           | 99       |        |        | Lin            | L                         |

.



# Analytical Report

### **Prepared for:**

Mike Griffin WHOLE EARTH ENVIRONMENTAL 2103 Arbor Cove Katy, TX 77494

> Project: Devon Project Number: Patsy Battery Location: None Given

Lab Order Number: 5C28002

Report Date: 04/05/05

| WHOLE EARTH ENVIRONMENTAL | Project: Devon                | Fax: (281) 394-2051 |
|---------------------------|-------------------------------|---------------------|
| 2103 Arbor Cove           | Project Number: Patsy Battery | Reported:           |
| Katy TX, 77494            | Project Manager: Mike Griffin | 04/05/05 09:36      |

### ANALYTICAL REPORT FOR SAMPLES

| Sample ID | Laboratory ID | Matrix | Date Sampled   | Date Received  |
|-----------|---------------|--------|----------------|----------------|
| MW-1      | 5C28002-01    | Water  | 03/27/05 12:20 | 03/28/05 10:55 |
| MW-3      | 5C28002-02    | Water  | 03/27/05 13:00 | 03/28/05 10:55 |
| MW-4      | 5C28002-03    | Water  | 03/27/05 13:50 | 03/28/05 10:55 |
| MW-5      | 5C28002-04    | Water  | 03/27/05 14:30 | 03/28/05 10:55 |
| MW-6      | 5C28002-05    | Water  | 03/27/05 15:10 | 03/28/05 10:55 |
| MW-7      | 5C28002-06    | Water  | 03/27/05 15:45 | 03/28/05 10:55 |

**Reported:** 04/05/05 09:36

### Organics by GC

**Environmental Lab of Texas** 

|                                   |             | Reporting |       |          |         |          |          |           |       |
|-----------------------------------|-------------|-----------|-------|----------|---------|----------|----------|-----------|-------|
| Analyte                           | Result      | Limit     | Units | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
| MW-1 (5C28002-01) Water           | 5 . A. Mit- |           |       |          |         |          |          |           |       |
| Benzene                           | 0.00202     | 0.00100   | mg/L  | 1        | ED50105 | 03/31/05 | 04/01/05 | EPA 8021B |       |
| Toluene                           | 0.00269     | 0.00100   | "     |          | "       | v        |          |           |       |
| Ethylbenzene                      | 0.00419     | 0.00100   | "     | "        | н       | "        | u        | **        |       |
| Xylene (p/m)                      | 0.00258     | 0.00100   | H     | **       | *       | "        | n        | **        |       |
| Xylene (0)                        | 0.00242     | 0.00100   | 17    | *        |         | 11       |          | **        |       |
| Surrogate: a,a,a-Trifluorotoluene |             | 134 %     | 80-1  | 20       | "       | 11       | п        | "         | S-04  |
| Surrogate: 4-Bromofluorobenzene   |             | 87.0 %    | 80-1  | 20       | "       | "        | "        | n         |       |
| MW-3 (5C28002-02) Water           |             |           |       |          |         |          |          |           |       |
| Benzene                           | ND          | 0.00100   | mg/L  | 1        | ED50105 | 03/31/05 | 03/31/05 | EPA 8021B |       |
| Toluene                           | ND          | 0.00100   | н     | "        | n       |          |          | "         |       |
| Ethylbenzene                      | ND          | 0.00100   | n     | "        | "       | "        | "        | "         |       |
| Xylene (p/m)                      | ND          | 0.00100   | "     | "        | "       |          | "        | "         |       |
| Xylene (o)                        | ND          | 0.00100   | "     | "        |         | "        | **       | "         |       |
| Surrogate: a,a,a-Trifluorotoluene |             | 114 %     | 80-1  | 20       | "       | 11       | "        | n         |       |
| Surrogate: 4-Bromofluorobenzene   |             | 85.0 %    | 80-1  | 20       | "       | "        | "        | "         |       |
| MW-4 (5C28002-03) Water           |             |           |       |          |         |          |          |           |       |
| Benzene                           | ND          | 0.00100   | mg/L  | 1        | ED50105 | 03/31/05 | 03/31/05 | EPA 8021B |       |
| Toluene                           | ND          | 0.00100   | "     | **       | и       | H        | H        | **        |       |
| Ethylbenzene                      | ND          | 0.00100   | н     | "        | п       | "        | "        | "         |       |
| Xylene (p/m)                      | ND          | 0.00100   | "     | "        | "       | "        | "        | "         |       |
| Xylene (o)                        | ND          | 0.00100   | n     | **       | "       | n        | .,       | 11        |       |
| Surrogate: a,a,a-Trifluorotoluene |             | 114 %     | 80-1  | 20       | "       | "        | "        | n         |       |
| Surrogate: 4-Bromofluorobenzene   |             | 84.5 %    | 80-1  | 20       | n       | "        | "        | "         |       |
| MW-5 (5C28002-04) Water           |             |           |       |          |         |          |          |           |       |
| Benzene                           | ND          | 0.00100   | mg/L  | 1        | ED50105 | 03/31/05 | 04/01/05 | EPA 8021B |       |
| Toluene                           | ND          | 0.00100   | "     | n        | н       | "        | "        | "         |       |
| Ethylbenzene                      | ND          | 0.00100   | "     |          | "       | "        |          | "         |       |
| Xylene (p/m)                      | ND          | 0.00100   | "     | "        | "       | "        |          | "         |       |
| Xylene (o)                        | ND          | 0.00100   | "     | "        | "       | "        | "        | "         |       |
| Surrogate: a,a,a-Trifluorotoluene |             | 111 %     | 80-1  | 20       | "       | "        | "        | "         |       |
| Surrogate: 4-Bromofluorobenzene   |             | 81.5 %    | 80-1  | 20       | "       | "        | "        | "         |       |
#### Reported: 04/05/05 09:36

#### Organics by GC

#### **Environmental Lab of Texas**

| Analyte                           | Result       | Reporting | Units | Dilution | Batch   | Prenared | Analyzed | Method    | Notes |
|-----------------------------------|--------------|-----------|-------|----------|---------|----------|----------|-----------|-------|
| MW-6 (5C28002-05) Water           |              |           |       |          | Baten   |          | Anaryzaa |           | TOICS |
| Benzene                           | J [0.000724] | 0.00100   | mg/L  | 1        | ED50105 | 03/31/05 | 04/01/05 | EPA 8021B | J     |
| Toluene                           | ND           | 0.00100   | *     | n        | "       | 11       | "        | *         |       |
| Ethylbenzene                      | ND           | 0.00100   | "     | n        | n       | "        | "        | "         |       |
| Xylene (p/m)                      | ND           | 0.00100   | *     | n        | "       | "        | "        | "         |       |
| Xylene (0)                        | ND           | 0.00100   | **    | "        | "       | "        |          | **        |       |
| Surrogate: a,a,a-Trifluorotoluene |              | 110 %     | 80-   | 120      | "       | "        | "        | "         |       |
| Surrogate: 4-Bromofluorobenzene   |              | 85.5 %    | 80-   | 120      | "       | п        | "        | 17        |       |
| MW-7 (5C28002-06) Water           |              |           |       |          |         |          |          |           |       |
| Benzene                           | ND           | 0.00100   | mg/L  | 1        | ED50105 | 03/31/05 | 04/01/05 | EPA 8021B |       |
| Toluene                           | ND           | 0.00100   | "     | "        | "       | "        | 11       | н         |       |
| Ethylbenzene                      | ND           | 0.00100   | **    | "        | "       | 11       | "        | "         |       |

| Xylene (p/m)                      | ND | 0.00100 | "      | "  | ** | " | ** | " |  |
|-----------------------------------|----|---------|--------|----|----|---|----|---|--|
| Xylene (o)                        | ND | 0.00100 | n      | 'n | ** | " | n  | " |  |
| Surrogate: a,a,a-Trifluorotoluene |    | 110 %   | 80-120 |    | "  | " | "  | " |  |
| Surrogate: 4-Bromofluorobenzene   |    | 88.5 %  | 80-120 |    | "  | " | "  | " |  |



04/05/05 09:36

#### General Chemistry Parameters by EPA / Standard Methods

#### **Environmental Lab of Texas**

|                         |        | Reporting |       |          |         |          |          |           |       |
|-------------------------|--------|-----------|-------|----------|---------|----------|----------|-----------|-------|
| Analyte                 | Result | Limit     | Units | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
| MW-1 (5C28002-01) Water |        |           |       |          |         |          |          |           |       |
| Chloride                | 560    | 10.0      | mg/L  | 20       | EC53105 | 03/31/05 | 03/31/05 | EPA 300.0 |       |
| MW-3 (5C28002-02) Water |        |           |       |          |         |          |          |           |       |
| Chloride                | 664    | 10.0      | mg/L  | 20       | EC53105 | 03/31/05 | 03/31/05 | EPA 300.0 |       |
| MW-4 (5C28002-03) Water |        |           |       |          |         |          |          |           |       |
| Chloride                | 472    | 10.0      | mg/L  | 20       | EC53105 | 03/31/05 | 03/31/05 | EPA 300.0 |       |
| MW-5 (5C28002-04) Water |        |           |       |          |         |          |          |           |       |
| Chloride                | 572    | 10.0      | mg/L  | 20       | EC53105 | 03/31/05 | 03/31/05 | EPA 300.0 |       |
| MW-6 (5C28002-05) Water |        |           |       |          |         |          |          |           |       |
| Chloride                | 1190   | 12.5      | mg/L  | 25       | EC53105 | 03/31/05 | 03/31/05 | EPA 300.0 |       |
| MW-7 (5C28002-06) Water |        |           |       |          |         |          |          |           |       |
| Chloride                | 538    | 10.0      | mg/L  | 20       | EC53105 | 03/31/05 | 03/31/05 | EPA 300.0 |       |

**Reported:** 04/05/05 09:36

#### **Organics by GC - Quality Control**

**Environmental Lab of Texas** 

|        | Reporting                                                                                                                                                                              |                                                                                                                                                                                                                                                                | Spike                                                                                                                                                                                                       | Source                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                               | %REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                             | RPD                                                                                                             |                                                                                  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Result | Limit                                                                                                                                                                                  | Units                                                                                                                                                                                                                                                          | Level                                                                                                                                                                                                       | Result                                                                                                                                                                                                                                                                                                                                                                                    | %REC                                                                                                                                                                                                                                                                                                                                                                                                          | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RPD                                                                                                                                                         | Limit                                                                                                           | Notes                                                                            |
|        |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                 |                                                                                  |
|        |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                | Prepared &                                                                                                                                                                                                  | Analyzed                                                                                                                                                                                                                                                                                                                                                                                  | : 03/31/05                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                 |                                                                                  |
| ND     | 0.00100                                                                                                                                                                                | mg/L                                                                                                                                                                                                                                                           |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                 |                                                                                  |
| NÐ     | 0.00100                                                                                                                                                                                | "                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                 |                                                                                  |
| ND     | 0.00100                                                                                                                                                                                | "                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                 |                                                                                  |
| ND     | 0.00100                                                                                                                                                                                | н                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                 |                                                                                  |
| ND     | 0.00100                                                                                                                                                                                | "                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                 |                                                                                  |
| 22.3   |                                                                                                                                                                                        | ug/l                                                                                                                                                                                                                                                           | 20.0                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                           | 112                                                                                                                                                                                                                                                                                                                                                                                                           | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                 |                                                                                  |
| 16.2   |                                                                                                                                                                                        | "                                                                                                                                                                                                                                                              | 20.0                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                           | 81.0                                                                                                                                                                                                                                                                                                                                                                                                          | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                 |                                                                                  |
|        |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                | Prepared &                                                                                                                                                                                                  | Analyzed                                                                                                                                                                                                                                                                                                                                                                                  | 03/31/05                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                 |                                                                                  |
| 106    |                                                                                                                                                                                        | ug/l                                                                                                                                                                                                                                                           | 100                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                           | 106                                                                                                                                                                                                                                                                                                                                                                                                           | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                 |                                                                                  |
| 105    |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                           | 105                                                                                                                                                                                                                                                                                                                                                                                                           | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                 |                                                                                  |
| 107    |                                                                                                                                                                                        | "                                                                                                                                                                                                                                                              | 100                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                           | 107                                                                                                                                                                                                                                                                                                                                                                                                           | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                 |                                                                                  |
| 223    |                                                                                                                                                                                        | 11                                                                                                                                                                                                                                                             | 200                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                           | 112                                                                                                                                                                                                                                                                                                                                                                                                           | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                 |                                                                                  |
| 108    |                                                                                                                                                                                        | "                                                                                                                                                                                                                                                              | 100                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                           | 108                                                                                                                                                                                                                                                                                                                                                                                                           | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                 |                                                                                  |
| 23.5   |                                                                                                                                                                                        | "                                                                                                                                                                                                                                                              | 20.0                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                           | 118                                                                                                                                                                                                                                                                                                                                                                                                           | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                 | · · · · · · · · · · · · · · · · · · ·                                            |
| 19.5   |                                                                                                                                                                                        | "                                                                                                                                                                                                                                                              | 20.0                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                           | 97.5                                                                                                                                                                                                                                                                                                                                                                                                          | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                 |                                                                                  |
|        |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                | Prepared: 0                                                                                                                                                                                                 | 3/31/05 A                                                                                                                                                                                                                                                                                                                                                                                 | nalyzed: 04                                                                                                                                                                                                                                                                                                                                                                                                   | /01/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                 |                                                                                  |
| 95,6   |                                                                                                                                                                                        | ug/l                                                                                                                                                                                                                                                           | 100                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                           | 95.6                                                                                                                                                                                                                                                                                                                                                                                                          | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                 |                                                                                  |
| 95.4   |                                                                                                                                                                                        | n                                                                                                                                                                                                                                                              | 100                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                           | 95.4                                                                                                                                                                                                                                                                                                                                                                                                          | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                 |                                                                                  |
| 95.5   |                                                                                                                                                                                        | "                                                                                                                                                                                                                                                              | 100                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                           | 95.5                                                                                                                                                                                                                                                                                                                                                                                                          | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                 |                                                                                  |
| 191    |                                                                                                                                                                                        | "                                                                                                                                                                                                                                                              | 200                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                           | 95.5                                                                                                                                                                                                                                                                                                                                                                                                          | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                 |                                                                                  |
| 91.6   |                                                                                                                                                                                        | "                                                                                                                                                                                                                                                              | 100                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                           | 91.6                                                                                                                                                                                                                                                                                                                                                                                                          | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                 |                                                                                  |
| 22.6   |                                                                                                                                                                                        | "                                                                                                                                                                                                                                                              | 20.0                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                           | 113                                                                                                                                                                                                                                                                                                                                                                                                           | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                 |                                                                                  |
| 17.7   |                                                                                                                                                                                        | "                                                                                                                                                                                                                                                              | 20.0                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                           | 88.5                                                                                                                                                                                                                                                                                                                                                                                                          | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                 |                                                                                  |
| So     | urce: 5C28003-                                                                                                                                                                         | 03                                                                                                                                                                                                                                                             | Prepared: 0                                                                                                                                                                                                 | 3/31/05 A                                                                                                                                                                                                                                                                                                                                                                                 | nalyzed: 04                                                                                                                                                                                                                                                                                                                                                                                                   | /01/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                 |                                                                                  |
| 103    |                                                                                                                                                                                        | ug/l                                                                                                                                                                                                                                                           | 100                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                        | 103                                                                                                                                                                                                                                                                                                                                                                                                           | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                 |                                                                                  |
| 103    |                                                                                                                                                                                        | 11                                                                                                                                                                                                                                                             | 100                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                        | 103                                                                                                                                                                                                                                                                                                                                                                                                           | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                 |                                                                                  |
| 105    |                                                                                                                                                                                        | "                                                                                                                                                                                                                                                              | 100                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                        | 105                                                                                                                                                                                                                                                                                                                                                                                                           | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                 |                                                                                  |
| 218    |                                                                                                                                                                                        | n                                                                                                                                                                                                                                                              | 200                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                        | 109                                                                                                                                                                                                                                                                                                                                                                                                           | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                 |                                                                                  |
| 108    |                                                                                                                                                                                        | n                                                                                                                                                                                                                                                              | 100                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                        | 108                                                                                                                                                                                                                                                                                                                                                                                                           | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                 |                                                                                  |
| 23.1   |                                                                                                                                                                                        | "                                                                                                                                                                                                                                                              | 20.0                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                           | 116                                                                                                                                                                                                                                                                                                                                                                                                           | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             | ······                                                                                                          |                                                                                  |
| 21.3   |                                                                                                                                                                                        | "                                                                                                                                                                                                                                                              | 20.0                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                           | 106                                                                                                                                                                                                                                                                                                                                                                                                           | 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                 |                                                                                  |
|        | Result   ND   ND   ND   ND   22.3   16.2   106   105   107   223   108   23.5   19.5   95.6   95.4   95.5   191   91.6   22.6   17.7   Sol   103   103   105   218   108   23.1   21.3 | Reporting<br>Limit   ND 0.00100   22.3 16.2   106 105   107 223   108 23.5   95.6 95.4   95.5 191   91.6 22.6   17.7 Source: 5C28003-   103 103   105 218   108 23.1   21.3 21.3 | Result Reporting<br>Limit Units   ND 0.00100 mg/L   ND 0.00100 "   22.3 ug/l //////////////////////////////////// | Result Limit Units Spike<br>Level   ND 0.00100 mg/L Prepared &   ND 0.00100 " 100   22.3 ug/l 20.0   106 ug/l 100   105 " 100   105 " 100   22.3 " 200   108 " 100   23.5 " 20.0   19.5 " 20.0   19.5 " 20.0   19.5 " 100   25.6 ug/l 100   95.6 ug/l 100   191 " 20.0   17.7 " 20.0   10.1 " 20.0   10.1 " 2 | Result Limit Units Spike<br>Level Source<br>Result   ND 0.00100 mg/L Prepared & Analyzed   ND 0.00100 " 100   22.3 ug/l 20.0   16.2 " 20.0   105 " 100   105 " 100   223 " 200   108 " 100   23.5 " 20.0   19.5 " 100   95.6 ug/l 100   95.5 " 100   191 " 20.0   17.7 " 20.0   17.7 " 20.0   103 ug/l 100 ND< | Result Limit Units Spike<br>Level Source<br>Result %REC   ND 0.00100 mg/L Prepared & Analyzed: 03/31/05 Prepared & Analyzed: 03/31/05   ND 0.00100 " Prepared & Analyzed: 03/31/05 Prepared & Analyzed: 03/31/05   ND 0.00100 " Prepared & Analyzed: 03/31/05 Prepared & Analyzed: 03/31/05   ND 0.00100 " Prepared & Analyzed: 03/31/05 Prepared & Analyzed: 03/31/05   106 ug/l 100 106 107   106 ug/l 100 107   107 " 100 107   223 " 20.0 112   108 " 100 108   23.5 " 20.0 112   108 " 100 95.6   95.6 ug/l 100 95.5   191 " 20.0 95.5   95.5 " 100 95.5   91.6 " 100 95.5 | Reporting<br>Limit Spike<br>Units Source<br>Level Source<br>Result %REC %REC   ND 0.00100 mg/L       ND 0.00100 mg/L       ND 0.00100 "        ND 0.00100 " | Result Limit Units Spike<br>Level Source<br>Result %REC Limits RPD   ND 0.00100 mg/L      RPD   ND 0.00100 mg/L | Result Limit Units Spike Source<br>Result %REC %REC MRPD Limit   ND 0.00100 mg/L |

## **Reported:** 04/05/05 09:36

#### **Organics by GC - Quality Control**

**Environmental Lab of Texas** 

|                                 |        | Reporting |       | Spike | Source |      | %REC   |     | RPD   |       |
|---------------------------------|--------|-----------|-------|-------|--------|------|--------|-----|-------|-------|
| Analyte                         | Result | Limit     | Units | Level | Result | %REC | Limits | RPD | Limit | Notes |
| Batch ED\$0105 EPA 5030C (CC)   |        |           |       |       |        |      |        |     |       |       |
| Datch ED SUIUS · EFA SUSUC (GC) |        |           |       |       |        |      |        |     |       |       |

| Matrix Spike Dup (ED50105-MSD1)   | Source: 50 | Prepared: 0 | )3/31/05 A | nalyzed: 04 |      |        |       |    |  |
|-----------------------------------|------------|-------------|------------|-------------|------|--------|-------|----|--|
| Benzene                           | 106        | ug/l        | 100        | ND          | 106  | 80-120 | 2.87  | 20 |  |
| Toluene                           | 106        | "           | 100        | ND          | 106  | 80-120 | 2.87  | 20 |  |
| Ethylbenzene                      | 103        | n           | 100        | ND          | 103  | 80-120 | 1.92  | 20 |  |
| Xylene (p/m)                      | 218        | "           | 200        | ND          | 109  | 80-120 | 0.00  | 20 |  |
| Xylene (0)                        | 107        | "           | 100        | ND          | 107  | 80-120 | 0.930 | 20 |  |
| Surrogate: a,a,a-Trifluorotoluene | 22.8       | "           | 20.0       |             | 114  | 80-120 |       |    |  |
| Surrogate: 4-Bromofluorobenzene   | 18.2       | "           | 20.0       |             | 91.0 | 80-120 |       |    |  |





### General Chemistry Parameters by EPA / Standard Methods - Quality Control

#### **Environmental Lab of Texas**

|                                        |         | Reporting     |       | Spike      | Source      |          | %REC   |      | RPD   |       |
|----------------------------------------|---------|---------------|-------|------------|-------------|----------|--------|------|-------|-------|
| Analyte                                | Result  | Limit         | Units | Level      | Result      | %REC     | Limits | RPD  | Limit | Notes |
| Batch EC53105 - General Preparation (W | etChem) |               |       |            |             |          |        |      |       |       |
| Blank (EC53105-BLK1)                   |         |               |       | Prepared & | Analyzed:   | 03/31/05 |        |      |       |       |
| Chloride                               | ND      | 0.500         | mg/L  |            |             |          |        |      |       |       |
| LCS (EC53105-BS1)                      |         |               |       | Prepared & | Analyzed:   | 03/31/05 |        |      |       |       |
| Chloride                               | 10.5    | ,             | mg/L  | 10.0       |             | 105      | 80-120 |      |       |       |
| Calibration Check (EC53105-CCV1)       |         |               |       | Prepared & | z Analyzed: | 03/31/05 |        |      |       |       |
| Chloride                               | 10.7    |               | mg/L  | 10.0       |             | 107      | 80-120 |      |       |       |
| Duplicate (EC53105-DUP1)               | Sou     | rce: 5C28002- | 01    | Prepared & | Analyzed:   | 03/31/05 |        |      |       |       |
| Chloride                               | 560     | 10.0          | mg/L  |            | 560         |          |        | 0.00 | 20    |       |



**Reported:** 04/05/05 09:36

#### **Notes and Definitions**

| S-04 | The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect. |
|------|----------------------------------------------------------------------------------------------------------------|
| j    | Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).          |

- DET Analyte DETECTED
- NÐ Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- Sample results reported on a dry weight basis dry
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Duplicate Dup

Report Approved By:

Raland K Junits

4/5/2005

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.



Environmental Lab of Texas

| s REQUEST                                            |                         |                        |                                                                                                                 |                       |               |                    |              |              | 5.6.<br>RUSH TAT (Pre-Schedule)<br>Standard TAT (TAT                                                                   |           |           |          |           |          |           |      |       |  | z 27<br>[€.C                                                            |              |                  |
|------------------------------------------------------|-------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|---------------|--------------------|--------------|--------------|------------------------------------------------------------------------------------------------------------------------|-----------|-----------|----------|-----------|----------|-----------|------|-------|--|-------------------------------------------------------------------------|--------------|------------------|
| RECORD AND ANAL YSI                                  | Devon                   | Patsy Battery          |                                                                                                                 |                       |               |                    | Analyze For: | *            | TPH 8015M GROADRO<br>Metale: As Ag Ba Cd Cr Pb Hg 5<br>Semivolatiles<br>BTEX 80218/5030<br>Chlorides<br>S A R<br>S A R | XX        | XX        | ××       | XX        | XX       | ××        |      |       |  | npie Containers Intact?<br>nperature Upon Receipt<br>bejatory Comments: |              |                  |
| IN OF CUSTODY                                        | Project Name:           | Project #:             | Project Loc:                                                                                                    | :# 0d                 |               |                    | 1(           |              | 16H 1X 1002/1009<br>16H 418'1<br>DD2 / C7 / 2V5 / EC<br>Quec (ebecy):<br>208                                           |           |           |          |           |          |           | <br> |       |  | Sar<br>Teg                                                              | Time         | Time<br>Ac SG    |
| СНА                                                  |                         |                        |                                                                                                                 |                       | -             |                    |              | I Matr       | (1) 22/2/2-2/2 aron<br>(Vibaq2) ranu<br>vataw<br>agbui2<br>                                                            | X X       | X X       | XX       | x x       | X X      | ×         | +    |       |  |                                                                         | Date         | Date<br>03-25 V  |
|                                                      |                         |                        |                                                                                                                 |                       | 281.394.205   | 5                  | 1009m (      | Preservative | H,50,<br>HOB<br>HUO3<br>HUO3<br>HUO3<br>HUO3<br>HUO3<br>HUO3<br>HUO3<br>HUO3                                           | X X       | x   x     | ×        | X X       |          | ×         |      |       |  |                                                                         |              |                  |
|                                                      |                         |                        |                                                                                                                 |                       | Fax No:       |                    |              | <u>, ter</u> | Time Sampled<br>No. of Containers                                                                                      | 12:20 3 3 | 13:00 3.1 | 13:50 3  | 14:30 3 3 | 15:10 3  | 15:45 3 2 | <br> | <br>N |  |                                                                         |              | mm               |
| Inc.                                                 |                         | nc.                    | والمحاوية والمحاولة المحاولة المحاولة والمحاولة والمحاولة والمحاولة والمحاولة والمحاولة والمحاولة والمحاولة وال |                       |               |                    |              |              | baiqms2 alsQ                                                                                                           | 03/27/05  | 03/27/05  | 03/27/05 | 03/27/05  | 03/27/05 | 03/27/05  |      |       |  |                                                                         | Received by: | Received by ELOT |
|                                                      | iffa                    | Earth Environmental, 1 | krbor Cove                                                                                                      | 1X 77494              | 281.394.2050  |                    |              |              | FIELD CODE                                                                                                             | MW - 1    | MW - 3    | MW - 4   | MW - 5    | MW - 6   | MW - 7    |      |       |  |                                                                         | Date & Time  | Date             |
| Vironmental L<br>West 1-20 East<br>essa, Texes 79763 | Project Manager: M. Gri | Company Name Whole     | Company Address: 2103 A                                                                                         | City/State/Zip: Katy, | Telephone No: | Sampler Signature: |              |              | CC BOO                                                                                                                 |           | -02       | -03      | -04       | -05      | 010       |      |       |  | scial Instructions:                                                     | rquished by  | nquished by      |

-

## Environmental Lab of Texas

|     | V | /ariance | 1 | Corrective | Action | Report- | Sample | Log-In |
|-----|---|----------|---|------------|--------|---------|--------|--------|
| . 1 | 1 | A .      | * | 1          |        | •       | •      | -      |

| Client:    | whole Earth   |
|------------|---------------|
| Date/Time  | 3/20/05 11:00 |
| Order #: _ | 5028002       |
| Initials:  | · UK          |

#### Sample Receipt Checklist \_\_\_\_\_

| Temperature of container/cooler?                          | Yes     | No 1 | 1,5 CT         |
|-----------------------------------------------------------|---------|------|----------------|
| Shipping container/cooler in good condition?              | Cer     | No i |                |
| Custody Seals intact on shipping container/cooler?        | Yes     | No 1 | Aci presento I |
| Custody Seals Intact on sample bottles?                   | (B)     | Na i | Not present    |
| Chain of custody present?                                 | 1 Kessi | No   | -              |
| Sample Instructions complete on Chain of Custocy?         | 125     | No 1 |                |
| Chain of Custody signed when relinguished and received?   | 12a     | No 1 |                |
| Chain of custody agrees with sample label(s)              | 1754    | No ( | 1              |
| Container labels legible and intact?                      | 103     | No , |                |
| Sample Matrix and properties same as on chain of custody? | (es     | Na 1 |                |
| Samples in proper container/bottle?                       | Ces :   | No I |                |
| Samples procerly creserved?                               | 1 (33)  | No   |                |
| Semcle bottles intact?                                    | 1 CO    | No   |                |
| Preservations documented on Chain of Custody?             | Nes:    | Nc : |                |
| Centainers documented on Chain of Custody?                | 23      | No   |                |
| Sufficient sample amount for indicated test?              | XE      | No   | :              |
| Ail samples received within sufficient hold time?         | 1 7 3   | No   |                |
| VOC samples have zero headscace?                          | 1(73)   | Nc   | Not Applicas e |

Other observations:

Variance Documentation:

Contact Person: -\_\_\_\_\_ Date Time: \_\_\_\_\_ Contacted by: \_\_\_\_\_ Regardingt

~~~~~

•

• -

Corrective Action Taken: