1R - 0432

REPORTS

DATE:

2005

Whole Earth Environmental, Inc.

2103 Arbor Cove Katy, Tx. 77494 281.394.2050 whearth@msn.com

IR 432

November 2, 2005

NMOCD 1220 South Saint Francis Dr. Sante Fe, NM 87505

Attn: Wayne Price

Dear Wayne:

Enclosed, please find a copy of the closure report for the Devon Dickinson Project. Additional copies of the report are being forwarded to your Hobbs office and to the landowner, Darr Angell.

Thank you again for all of your guidance and quick responses throughout the project. It was sincerely appreciated.

Warmest personal regards,

Mike Griffin ⁴ President Whole Earth Environmental, Inc.

B.C. Dickinson Remediation Project Closure Report

Whole Earth Environmental 2103 Arbor Cove Katy, TX 77494 281.394.2050 whearth@msn.com

Executive Summary

Location

The site is located approximately nine miles northwest of the City of Lovington, Lea County, New Mexico on fee lands. The primary land use is grazing of cattle however extensive oil and gas operations are prevalent in the area. The area is semi-arid with a net precipitation / evaporation amount of -73" per year. The legal description of the site is the NW 1/4 of the SW ¹/₄ Section 1, Township 15 South, Range 37East. at an approximate elevation of 3,800 feet above mean sea level. (See exhibits 1-2)

Setting

A thin veneer of windblown sand covers the site and overlies the Ogallala formation. The Ogallala formation consists of poorly to well-cemented sand and sandstone, interbedded with clay, silt and gravel. The Ogallala overlies the Triassic age Chinle formation consisting chiefly of mudstone, shale and sandstone. Groundwater is found at a depth of approximately 60' below ground surface.

Site History

We've little history of the location however from the surface features and aerial photography, it appears that the site was used as a bulk storage and processing point for crude oil and natural gas. A production pit appears to have been in use as a repository for tank bottoms and the storage of contaminated soils. (See exhibits 3-4)

Previous Investigations

The site was characterized by the presence of two plumes of hydrocarbon contamination and one of chlorides. The first appears to be centered within the production pit having TPH concentrations of 1,798 ppm extending to a depth of 60' below ground surface (soil boring # 6). This contaminant plumes appear to consist mainly of aliphatic fractions with a minor BTEX component. The BTEX appeared to drop to acceptable levels at a depth of 55' bgs.

One significant chloride reading (874 ppm) was discovered at the southeast corner of the pit at a depth of 40' below ground surface. There is no data regarding the chloride concentrations within the vertical soil profile of the monitor well situated approximately 10' down-gradient of the anomaly however the chloride concentrations within this monitor well (MW-1) are 363 ppm.

The second area of concern centered around soil boring # 4 in which TPH concentrations of 4,420 ppm are found at a depth of 10' below ground surface and extend to a minimum depth of 55' bgs at a concentration of 242 ppm. Again, the plume appeared to be aliphatic in makeup as the BTEX component cleans up at a depth of approximately 15' bgs.

The final area of concern was the comparatively high chloride concentrations contained within monitor well no. 2. Though no BTEX component was discovered, the groundwater chloride concentrations within this well are 1,360 ppm.

The soil morphology is initially sandy to a depth of approximately 5-7' followed by a 12-15' band of soft caliche underlain by yet another 20' sand lens atop a denser caliche layer. The bulk of the hydrocarbon plume was situated between the caliche bands.

A series of seven monitor wells were advanced prior to remediation activities at the location and the analytical results were used to prepare a preliminary contaminant migration model. (See exhibits 5-7)

Two additional monitor wells were advanced to the south and east of the facility to fully define the lateral extent of contamination. Both wells were found to have non-detectable concentrations of BTEX and nominal chlorides.

Preliminary Modeling

Based on the previous site borings, a comprehensive contaminant migration model was prepared by Dr. Jan M.H. Hendrickx of New Mexico State University. The model data indicated that the contaminant migration from the main plume may be effectively retarded by excavating the extensive surface contamination and placing a one foot layer of compacted clay atop the remaining minor concentrations. Our protocol doubled the thickness of the clay cap to twenty-four inches.

Remediation Activities

Surface Preparation

Prior to major excavation activities, the fence line was extended approximately 100' north and 250' west of the original location. All surface and buried flowlines, metal structures and steel barrels were tested for the presence and concentration of naturally occurring radioactivity materials (NORM), and removed for commercial disposal. (See exhibits 8-9)

Well Plugging

Monitor well no. 2 was situated within the battery area had to be plugged and removed prior to excavation activities. The metal surface box and all accessible plastic casing were removed. The bore hole was then grouted from bottom to surface with cement. (See exhibits 10-11)

Excavation – Battery Area

The plume source centered at the battery area was excavated to an average depth of 5' below ground level with the salt contaminated soils stockpiled for subsequent dilution and re-burial. Approximately 3,500 cubic yards of materials were excavated within the battery area. (See exhibit 12)

Excavation – Pit Area

The excavation of the pit area proved to be especially difficult due to the presence of dozens of large, extremely hard boulders found generally at a depth of 10-15' bgs. (See exhibit 13). An examination of these indurated sandstone formations indicated that despite being in an environment saturated with hydrocarbons and brine for extended periods, the fluid penetration extended only fractions of an inch. (See exhibit 14).

The site was excavated to a total depth of 25' below ground surface at which point we encountered another solid layer of dense sandstone making further excavation impossible without extraordinary efforts such as blasting. The layer is at least five feet thick and extends well outside the project area evidenced by our inability to even drill through it using a conventional auger rig. Each side-wall and the bottom of the excavation was composited and forwarded to Environmental Lab of Texas for confirmation testing. (See the Laboratory Analytical section of this report.). A total of approximately 26,000 cubic yards were excavated within the pit area. Final excavation is illustrated by exhibit 15.

Clay Liner

A two foot layer of clay was placed within the excavation and compacted to achieve a coefficient of permeability of 1.7 X 10-7. (See exhibits 16-18).

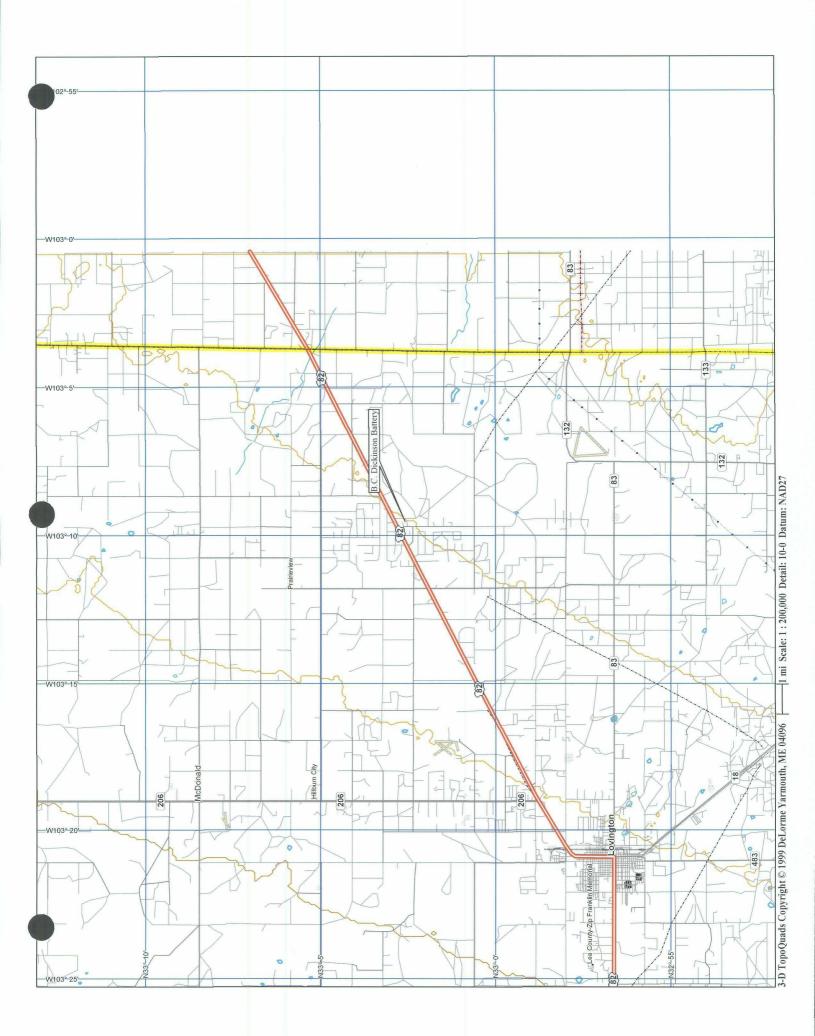
Dilution and Backfill

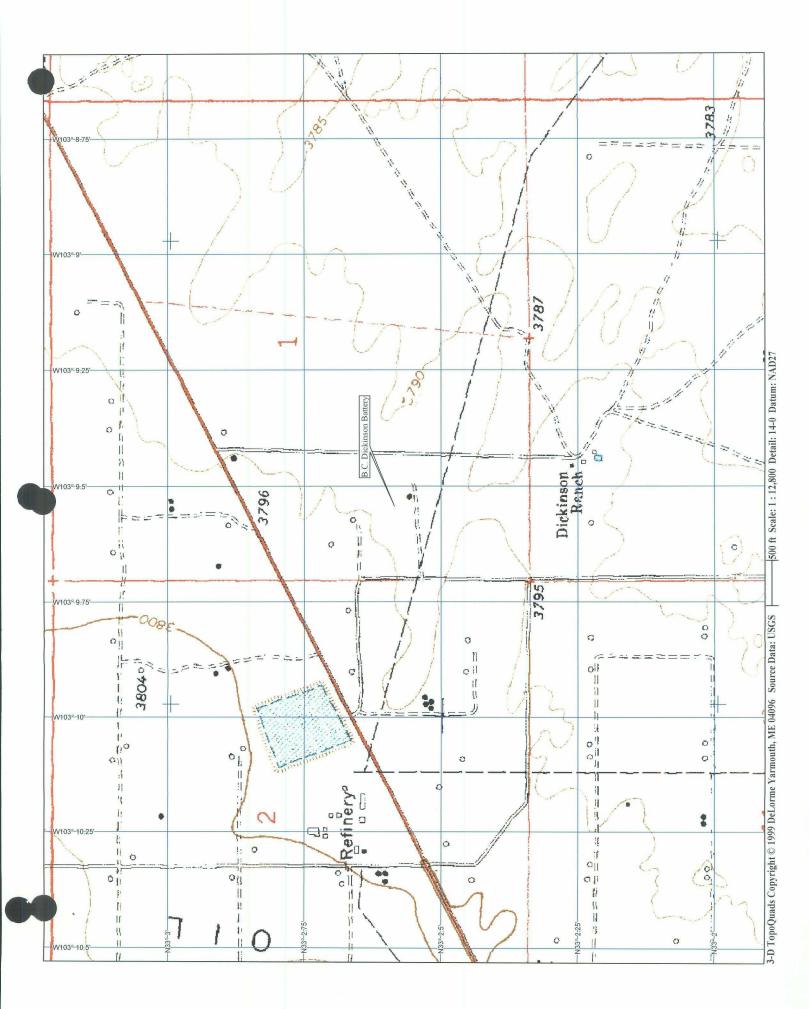
All hydrocarbon and brine contaminated soils were mixed and blended with additional materials located immediately west of the main excavations. Each lift batch (generally measuring approximately 1-2,000 cubic yards), was field tested for the presence and concentrations of hydrocarbons and brine prior to being replaced within the excavations. (See exhibit 19) Each 3' lift was composited and forwarded to Environmental Lab of Texas for confirmation testing. (See the Laboratory Analytical section of this report.).

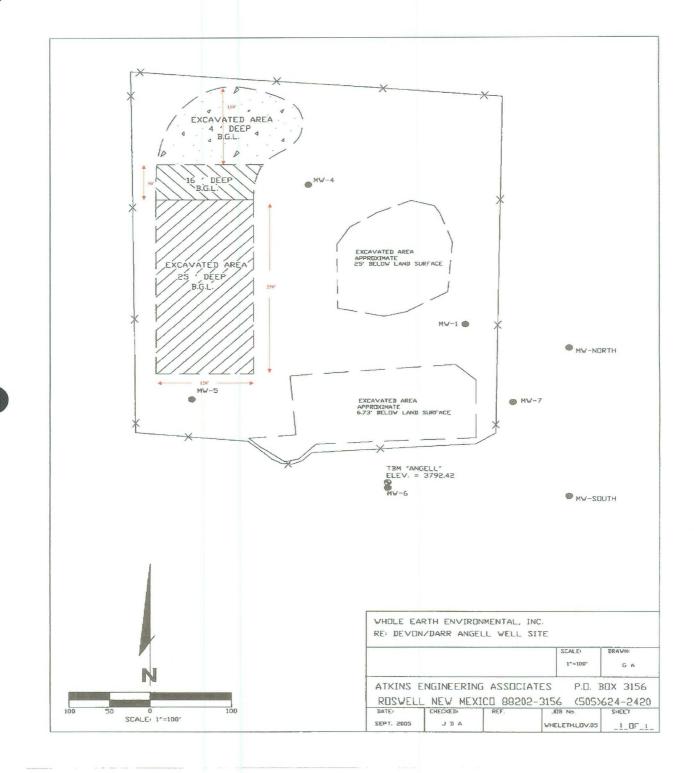
Each backfill lift was watered and compacted to achieve high density and eliminate the "fluffing" phenomenon normally associated with excavated calichi. The locations and dimensions of each excavated area are described within exhibit 20.

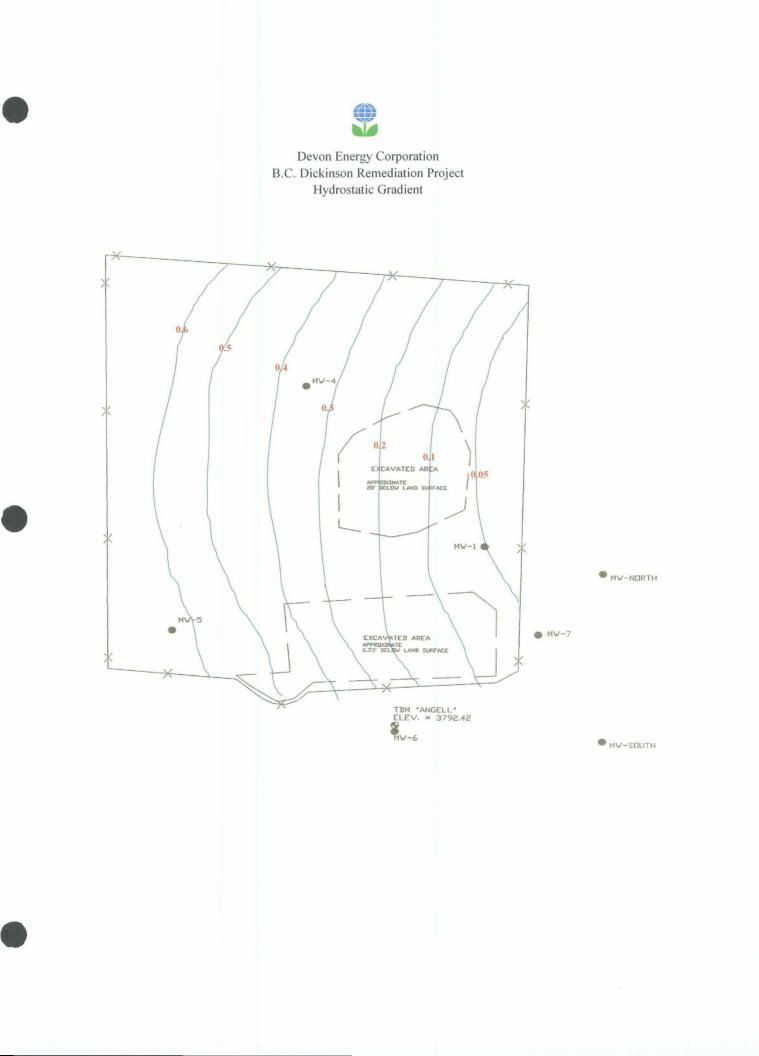
Re-vegetation

The surface of the work zone was contoured to match background elevations and provide positive drainage, hydro-mulched with a combination of 13-13-13 fertilizer, winter oats and rye to provide organic cover over the first winter and a mixture of 70% Loving Blue Gramma and 30% Sideoats Gramma per the landowner's request.



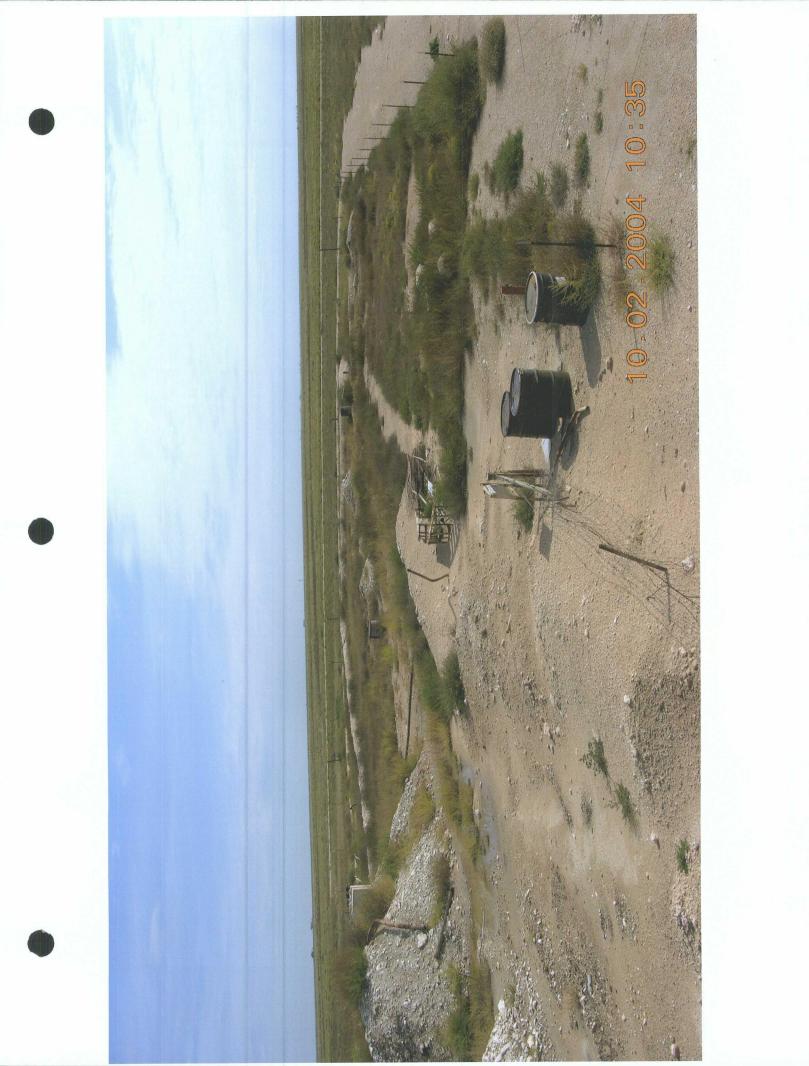

Exhibits Index


- 1. Satellite Photo of Location (Zoom Out)
- 2. Satellite Photo of Location (Zoom In)
- 3. USGS 7.5' Map (Zoom Out)
- 4. USGS 7.5' Map (Zoom In)
- 5. Plat Map of Excavated Areas
- 6. Overall View of Location Prior to Remediation
- 7. Pipe Removal Detail
- 8. Well Plugging Detail
- 9. Boring Log of Plugged Well
- 10. Initial Excavation of Battery Area
- 11. Detail of Typical Boulder Situated Within Excavation
- 12. Detail of Fluid Penetration Within Indurated Sandstone
- 13. Detail of Main Pit Area at Point of Maximum Excavation
- 14. Detail of Clay Compaction
- 15. Detail of Backfilling Operations
- 16. Gradient Chart
- 17. Monitor Well Geocoordinates
- 18. Clay Proctor
- 19. Clay Compaction Test Certificate
- 20. Excavation Depth Chart

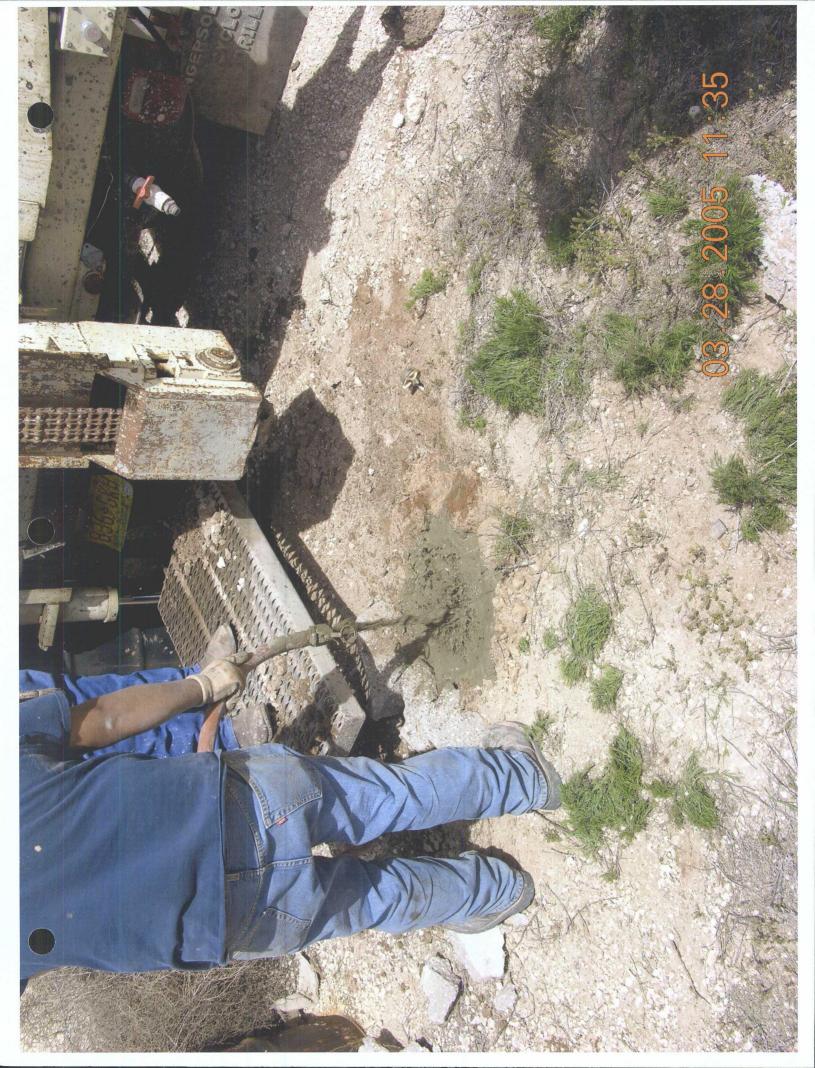


Whole Earth Environmental, Inc. Devon/Darr Angell Site

Well #	State Plane Northing	State Plane Easting	Land Surface Northing	Land Surface Easting	M.S.L. Elevation
MW-1	745232.03	901340.68	745232.06	901340.69	3792.79
MW-4	745432.03	901147.63	745432.08	901147.61	3793.41
MW-5	745124.35	901004.03	745124.37	901004.00	3792.86
MW-6	744996.87	901245.15	744996.87	901245.15	3792.52
MW-7	745120.57	901399.10	745120,58	901399.12	3792.80
MW-South	744985.34	901468.30	744985.34	901468.33	3792.48
MW-North	745198.28	901468.49	745198.30	901468.52	3793.45
ТВМ	745000.81	901244.20	745000.81	901244.20	3792.42

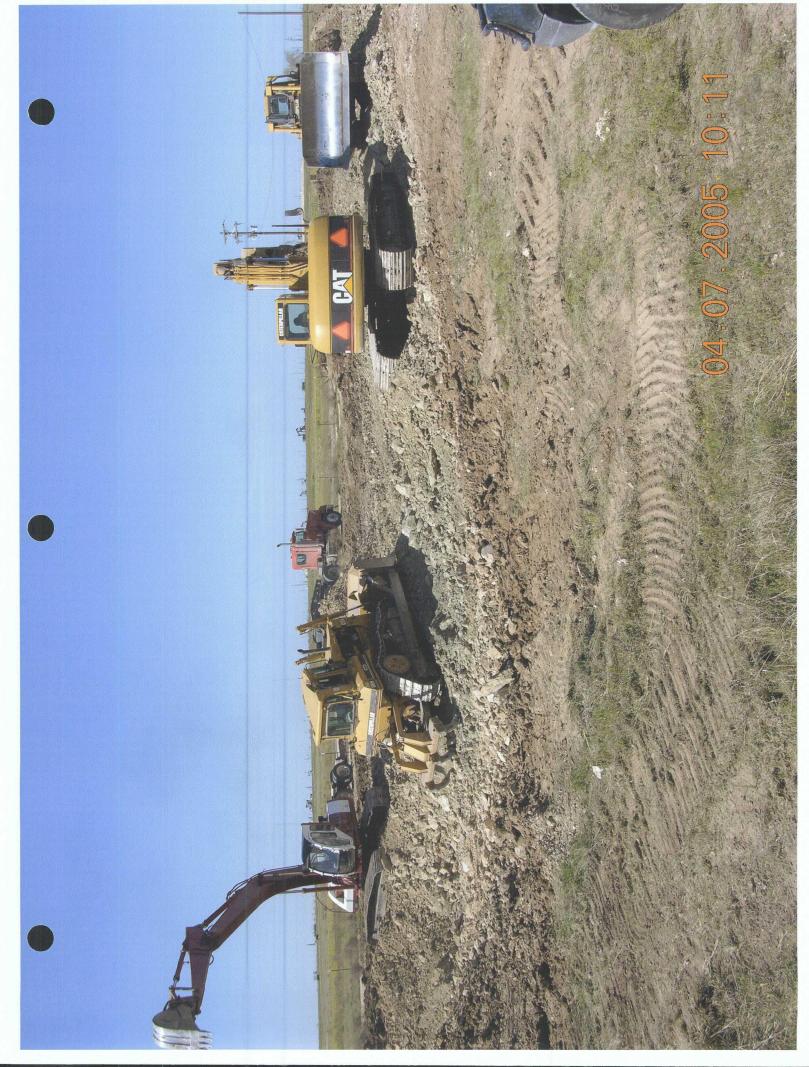

Notes:

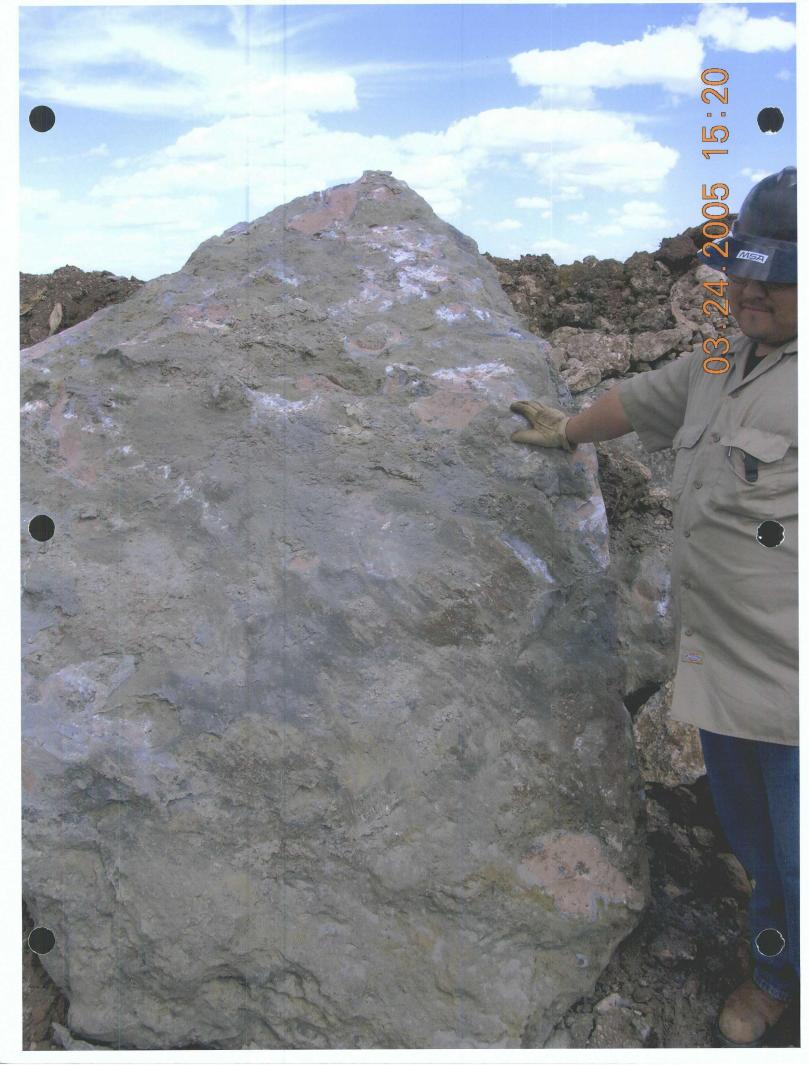
1. Horizontal coordinates are State Plane NAVD 83 datum referenced to USCGS Triangulation Station named "CREAK".


2. Elevations are NAVD 88 datum referenced to USCGS Bench Mark named "G-35".

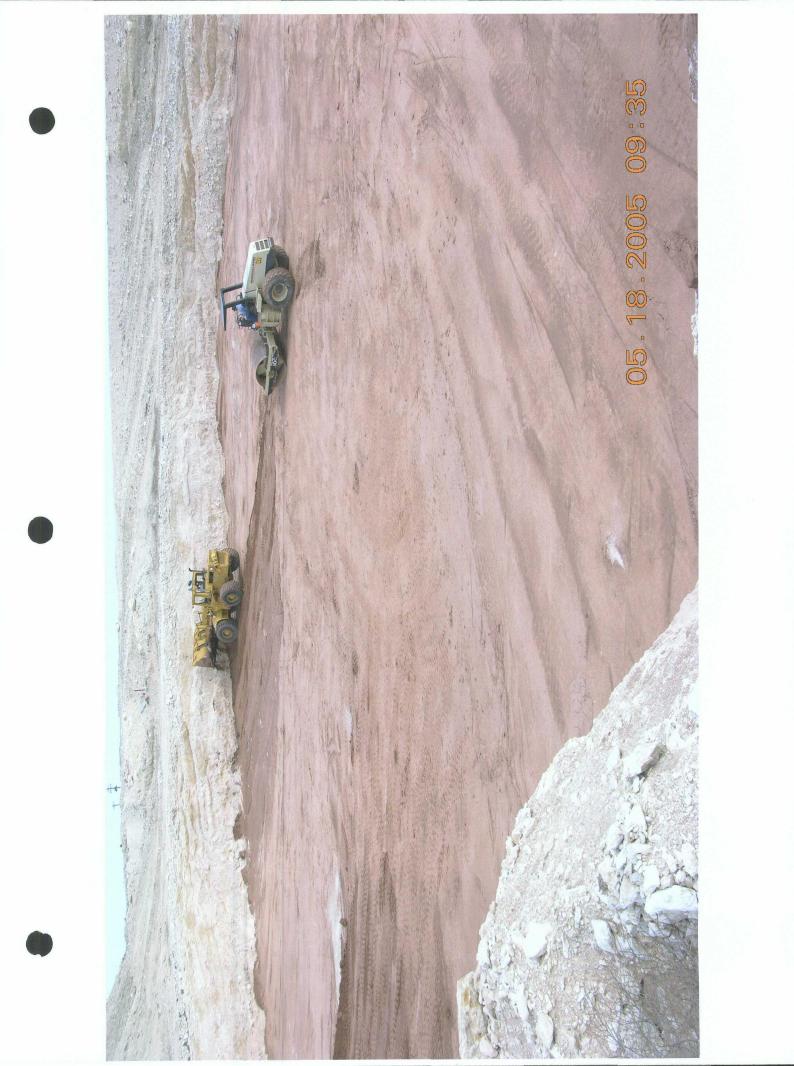
3. Elevations on monitor wells are taken on top of 2'x2' cement pad as requested by Mike Griffin in field 4-12-05.

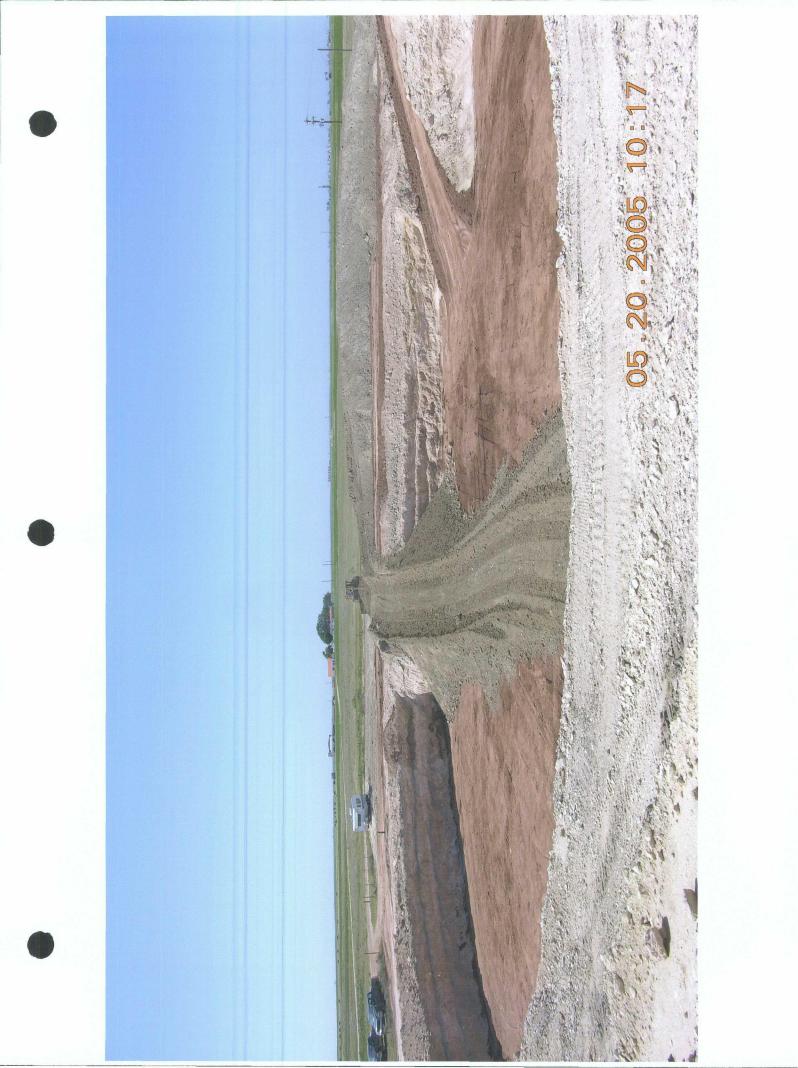
4. TBM is $\frac{1}{2}$ " reinforcing bar with aluminum cap marked "ANGELL" located on the north side of the cement 2'x2' pad of monitor well 6.





Whole Earth Environmental 2103 Arbor Cove Katy, TX: 77494 Contact: Mike Griffin Job#: WHELETH.LOV.05		Date : 03-28-05 Boring Location : Southeast corner of site Site Location : Dickerson Lease, Lovington, NM					
Depth in Feet	GRAPHIC	nscs	Sample		ESCRIPTION		MW-2 East
5				Flug and abandon Mo Devon/Darr Angell Ra Lovington, NM. Water Level 62.0' gro Total Depth 72.48' gro Was not able to pull t through the casing. 4 per gallon.	anch at the Dickersor ound level ound level he casing from well.	n Lease, Grouted well	- Cement Grout





Quality Control Engineering, Inc.

1136 W. Hobbs Roswell, NM 88203 505-625-0005 Fax: 625-0555

By

700 E. First #725C, Alamogordo, NM 88310 505-439-1285 Fax: 439-1283

SOIL REPORT

ASTM D75, D698/1557, C127, C136, C117, D854, D2216, D2487, D4318, D4718

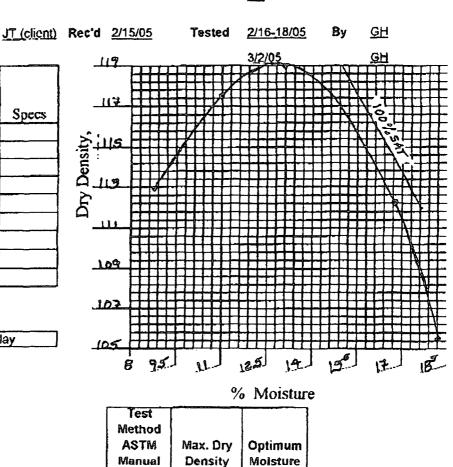
Project Marley Ranch, clay Job # 322 Lab # A19 Sample # 1

Client name & address Gandy Marley, Inc., P.O. Box 827, Tatum, NM 88267 Phone: 505-398-4960 Fax: 396-6887 Material source Marley Ranch, clay Contractor NA

D698

Method A

Nat'l moist 11%


118.4 pcf

uncorrected

Date

sampled 2/15/05

	A COMPANY OF THE OWNER		Contraction of the local division of the loc
U.S.			
Standard	Cumulative	Cumulative	
Sieve No.	% Retained	% Passing	Specs
3"	0%	100%	
1 1/2"	0%	100%	
1"	0%	100%	
3/4"	0%	100%	
3/8"	0%	100%	
#4	0%	100%	
#10	9%	91%	
#40	19%	81%	
#200	44.7%	55.3%	

13.3%

uncorracted

Gs= 2.859

45% Sand 55% Fines______ LL=30 PI=15 Coefficient of Permeability=1.7X10-7 (@ 89.5% compaction of D698A) Sce attachedj Submitted by: K. Byrd-Humphreys

Material Classification (field) Sandy Clay

0% Gravel

Precision Engineering, Inc. P.O. Box 422 Las Cruces, NM 88004 505-523-7674

Flexible Wall Hydraulic Conductivity Falling Head

ATTN: Ms. Katy Byrd-Humphreys, PE Quality Control Engineering, Inc. 1136 W. Hobbs St. Roswell, NM 88203

Project	QCE Contract Testing		File No.:	05-022
Soil Type:	Clay	Date: March 1, 2005	Lab No.:	46894
Sampled From:	Marley Ranch; Job# 322, Lab#	A19, Sample# 1 Per	formed By:	GWG

TEST SPECIMEN CONDITIONS AT BEGINING OF TEST:

Wet Unit Weight: <u>122.1</u> pcf Dry Unit Weight: <u>106.3</u> pcf

% Moisture: _	14.9
% Compaction:	89,5
% Compaction Requested:	90,0

PROCTOR INFORMATION:

Proctor Method: ASTM D-698-A Maximum Dry Density: <u>118.8</u> pcf Optimum Moisture Content: <u>13.1</u> %

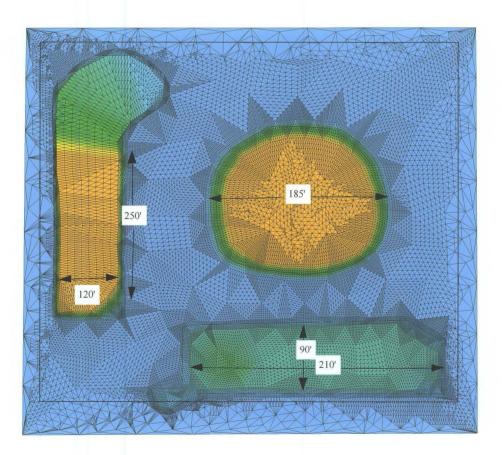
Coefficient of Permeability, k₂₀: 1.7 X 10⁻⁷ cm/sec.

Remarks: Sample compacted at 2.0% above optimum moisture content.

Reviewed By:

Reviewed By:

C Documents and Setungs/Owner/My Occuments/APE/Files/Form Matters/Excel Test Reports Matter/48834 Permeability.stsjRcport


elevation

-1.470588 -3.431373 -5.392157 -7.352941 -9.803922 -12.254902 -14.705882 -16.666667 -18.627451 -20.588235 -22.54902 -24.509804

z

×x

Devon Energy Company Dickinson Remediation Project Excavation Depths

Protocol

This section contains a copy of PR-57D, the final remediation protocol employed on this project.

PR-57D

Remediation Protocol Devon Energy Corporation B.C. Dickinson Battery

1.0 Purpose

This protocol is to provide a detailed outline of the steps to be employed in the remediation and closure of the B.C. Dickenson Battery located east of Lovington, New Mexico.

2.0 Scope

This protocol is site specific for the Devon Energy B.C. Dickenson remediation project.

3.0 Preliminary

Prior to any field operations, Whole Earth Environmental shall conduct the following activities:

3.1 Client Review

- 3.1.1 Whole Earth shall meet with cognizant personnel within Devon, the NMOCD and the landowner to review and approve this protocol.
- 3.1.2 Changes to this protocol will be documented and submitted for final review by all parties prior to the initiation of actual field work.

4.0 Safety

4.1 Prior to work on the site, Whole Earth shall obtain the location and phone numbers of the nearest emergency medical treatment facility. We will review all safety related issues with the appropriate Client personnel, sub-contractors and exchange phone numbers.

4.2 A tailgate safety meeting shall be held and documented each day. All subcontractors must attend and sign the daily log-in sheet.

4.3 Anyone allowed on to location must be wearing sleeved shirts, steel toed boots, and long pants. Each vehicle must be equipped with two way communication capabilities.

4.4 Prior to any excavation, New Mexico One Call will be notified. If lines are discovered within the area to be excavated they shall be marked with pin flags on either side of the line at maximum five-foot intervals.

4.5 Prior to any field operations, Whole Earth will prepare and submit to Devon Energy a detailed site Health and Safety Plan.

5.0 Preliminary Activities

5.1 All barrels, trash and piping will be scanned for the presence and concentration of naturally occurring radioactive materials (NORM). Any component containing radiation reading exceeding 10 μ rems above background will be segregated for further inspection by a third party certified to work in New Mexico on radioactive materials.

5.2 All clean trash will be collected and sent to a commercial disposal facility. A manifest will be generated and signed by the disposal company. All such manifests shall be collected and included within the final closure report.

5.3 All cement shall be collected and deep buried on-site. The top of the cement shall be a minimum distance of 5' below ground level.

5.4 Monitor well no. 2 will be grouted to surface prior to excavation and replaced if required at the conclusion of the project.

6.0 Remediation

6.1 All berms and assorted piles of contaminated soils will be spread to a maximum depth of 6 inches on the surface of the site. The contaminated soils shall be set aside of the excavation but within the fence perimeter.

6.2 The side walls and bottom of each excavated area shall be field screened for the presence and concentration of TPH by means of EPA method 418.1 (modified). Excavation of each site shall continue until the TPH concentrations are <1,000 ppm. Prior to backfill, laboratory confirmation samples shall be taken from each side-wall and bottom. The Hobbs office of the NMOCD will be given a minimum of forty-eight hours notification of the intended sampling event.

6.3 Upon approval by the NMOCD, Whole Earth will install a clay liner in the bottom of the excavation having a minimum thickness of 18". All clay layers will be watered and compacted to 100% density.

6.4 The material originally excavated from the pit shall be replaced within the excavations. Care shall be taken to ensure that the soils coming into direct contact with the clay liner should be finely textured and free of large rocks or sharp edged stones. The soils being replaced within the excavation shall be watered and compacted as required to minimize pore spaces within the cell. Large boulders will be set aside for later disposal or other potentially beneficial use at the conclusion of the project.

6.5 Remediated soils having a maximum chloride concentration of <250 ppm and a maximum TPH concentration of <100 ppm will be placed atop the clay liner. A composite sample of this final backfill material will be submitted to an independent laboratory for analysis of chlorides, TPH and BTEX.

6.6 The land surface shall be re-contoured to match the surrounding topography, seeded with a selection of grasses selected by the landowner.

7.0 Monitoring

The monitor wells will be tested on an annual basis for the presence and concentration of BTEX, and chlorides for a minimum period of five years. If the well shows criteria contaminant concentrations within NMWQCC standards for a minimum of the last three of five years, Devon will request final site closure to include plugging the remaining well.

8.0 Closure Report

8.1 At the conclusion of the project, Whole Earth shall prepare a closure report that contains the following minimum information:

- Photographs of the location prior to remediation
- Photographs of the site at the point of maximum excavation
- Detail photographs of the liner installation
- Photographs of the location at time of final closure
- Lab analysis and related chain of custody for THP, BTEX and chloride testing of each side-wall and excavation bottom
- Lab analysis and related chain of custody for chloride testing of each 3'lift composite
- Procter analysis of the clay
- Clay compaction test report

- Copies of this protocol and all testing procedures
- Shipping manifests for all materials taken to disposal
- Laboratory analysis of water samples obtained from each monitoring well
- Boring logs of any new monitor wells installed at the location

Procedures

This section contains copies of the individual field testing and sample collection procedures employed on this project.

QP-76 (Rev. A)

WHOLE EARTH ENVIRONMENTAL QUALITY PROCEDURE

Procedure for Obtaining Water Samples (Cased Wells) Using One Liter Bailer

Completed By: Approved By: Effective Date: /

1.0 Purpose

This procedure outlines the methods to be employed in obtaining water samples from cased monitoring wells.

2.0 Scope

This procedure shall be used for developed, cased water monitoring wells. It is not to be used for standing water samples such as ponds or streams.

3.0 Preliminary

- 3.1 Obtain sterile sampling containers from the testing laboratory designated to conduct analyses of the water. The shipment should include a Certificate of Compliance from the manufacturer of the collection bottle or vial and a Serial Number for the lot of containers. Retain this Certificate for future documentation purposes.
- 3.2 The following table shall be used to select the appropriate sampling container, preservative method and holding times for the various elements and compounds to be analyzed.

Compound to be Analyzed	Sample Container Size	Sample Container Description	Cap Requirements	Preservative	Maximum Hold Time
BTEX	40 ml.	VOA Container	Teflon Lined	HCI	7 days
TPH	1 liter	clear glass	Teflon Lined	HCI	28 days
PAH	1 liter	clear glass	Teflon Lined	lce	7 days
Cation / Anion	1 liter	clear glass	Teflon Lined	None	48 Hrs.
Metals	1 liter	HD polyethylene	Any Plastic	Ice / HNO ₃	28 Days
TDS	300 ml.	clear glass	Any Plastic	Ice	7 Days

QP-76

Page 2

4.0 Chain of Custody

- 4.1 Prepare a Sample Plan. The plan will list the well identification and the individual tests to be performed at that location. The sampler will check the list against the available inventory of appropriate sample collection bottles to insure against shortage.
- 4.2 Transfer the data to the Laboratory Chain of Custody Form. Complete all sections of the form except those that relate to the time of delivery of the samples to the laboratory.
- 4.3 Pre-label the sample collection jars. Include all requested information except time of collection. (Use a fine point Sharpie to insure that the ink remains on the label). Affix the labels to the jars.

5.0 Bailing Procedure

- 5.1 Identify the well from the site schematics. Place pre-labeled jar(s) next to the well. Remove the bolts from the well cover and place the cover with the bolts nearby. Remove the plastic cap from the well bore by first lifting the metal lever and then unscrewing the entire assembly.
- 5.2 The well may be equipped with an individual 1 liter bailing tube. If so, use the tube to bail a volume of water from the well bore equal to 10 liters for each 5' of well bore in the water table. (This assumes a 2" dia. well bore).
- 5.3 Take care to insure that the bailing device and string do not become crosscontaminated. A clean pair of rubber gloves should be used when handling either the retrieval string or bailer. The retrieval string should not be allowed to come into contact with the ground.

6.0 Sampling Procedure

- 6.1 Once the well has been bailed in accordance with 5.2 of this procedure, a sample may be decanted into the appropriate sample collection jar directly from the bailer. The collection jar should be filled to the brim. Once the jar is sealed, turn the jar over to detect any bubbles that may be present. Add additional water to remove all bubbles from the sample container.
- 6.2 Note the time of collection on the sample collection jar with a fine Sharpie.

Page 3

6.3 Place the sample directly on ice for transport to the laboratory. The preceding table shows the maximum hold times between collection and testing for the various analyses.

6.4 Complete the Chain of Custody form to include the collection times for each sample. Deliver all samples to the laboratory.

7.0 Documentation

7.1 The testing laboratory shall provide the following minimum information:

- A. Client, Project and sample name.
- B. Signed copy of the original Chain of Custody Form including data on the time the sample was received by the lab.
- C. Results of the requested analyses
- D. Test Methods employed
- E. Quality Control methods and results

WHOLE EARTH ENVIRONMENTAL QUALITY PROCEDURE

Procedure for Obtaining Soil Samples for Transportation to a Laboratory

	and the second				
Completed By:	Approved By:	Effective Date:	/	/	

1.0 Purpose

This procedure outlines the methods to be employed when obtaining soil samples to be taken to a laboratory for analysis.

2.0 Scope

This procedure is to be used when collecting soil samples intended for ultimate transfer to a testing laboratory.

3.0 Preliminary

- 3.1 Obtain sterile sampling containers from the testing laboratory designated to conduct analyses of the soil. The shipment should include a Certificate of Compliance from the manufacturer of the collection bottle or vial and a Serial Number for the lot of containers. Retain this Certificate for future documentation purposes.
- 3.2 If collecting TPH, BTEX, RCRA 8 metals, cation / anions or O&G, the sample jar may be a clear 4 oz. container with Teflon lid. If collecting PAH's, use an amber 4 oz. container with Teflon lid.

4.0 Chain of Custody

- 4.1 Prepare a Sample Plan. The plan will list the number, location and designation of each planned sample and the individual tests to be performed on the sample. The sampler will check the list against the available inventory of appropriate sample collection bottles to insure against shortage.
- 4.2 Transfer the data to the Laboratory Chain of Custody Form. Complete all sections of the form except those that relate to the time of delivery of the samples to the laboratory.

4.3 Pre-label the sample collection jars. Include all requested information except time of collection. (Use a fine point Sharpie to insure that the ink remains on the label). Affix the labels to the jars.

5.0 Sampling Procedure

- 5.1 Go to the sampling point with the sample container. If not analyzing for ions or metals, use a trowel to obtain the soil. Do not touch the soil with your bare hands. Use new latex gloves with each sample to help minimize any cross-contamination. Try to avoid collecting rocks or vegetation.
- 5.2 Pack the soil tightly into the container leaving the top slightly domed. Screw the lid down tightly. Enter the time of collection onto the sample collection jar label.
- 5.3 Place the sample directly on ice for transport to the laboratory.
- 5.4 Complete the Chain of Custody form to include the collection times for each sample. Deliver all samples to the laboratory.

6.0 Documentation

- 6.1 The testing laboratory shall provide the following minimum information:
 - A. Client, Project and sample name.
 - B. Signed copy of the original Chain of Custody Form including data on the time the sample was received by the lab.
 - C. Results of the requested analyses
 - D. Test Methods employed
 - E. Quality Control methods and results

WHOLE EARTH ENVIRONMENTAL QUALITY PROCEDURE

Sampling and Testing Protocol Chloride Titration Using .1 Normal Silver Nitrate Solution

Completed By:	Approved By:	Effective Date:	/	/	-

1.0 Purpose

This procedure is to be used to determine the concentrations of chlorides in soils.

2.0 Scope

This procedure is to be used as the standard field measurement for soil chloride concentrations.

3.0 Sample Collection and Preparation

- 3.1 Collect at least 80 g. of soil from the sample collection point. Take care to insure that the sample is representative of the general background to include visible concentrations of hydrocarbons and soil types. If necessary, prepare a composite sample of soils obtained at several points in the sample area. Take care to insure that no loose vegetation, rocks or liquids are included in the sample(s).
- 3.2 The soil sample(s) shall be immediately inserted into a one quart or larger polyethylene freezer bag. Care should be taken to insure that no cross-contamination occur between the soil sample and the collection tools or sample processing equipment.
- 3.3 The sealed sample bag should be massaged to break up any clods.

4.0 Sample Preparation

- 4.1 Tare a plastic cup having a minimum six-ounce capacity. Add between 80-120 grams of the soil sample and record the weight.
- 4.2 Add the same weight of distilled water to the soil sample and stir thoroughly using a glass or plastic stir stick.
- 4.3 Allow the sample to set for a period of thirty minutes. The sample should be stirred at least three times before fluid extraction.
- 4.4 Carefully pour off the free liquid from the sample through a paper filter into a clean plastic cup.

5.0 Titration Procedure

- 5.1 Using a graduated pipette, remove 10 ml extract and dispense into a clean plastic cup.
- 5.2 Add 2-3 drops potassium chromate (K_2CrO_4) to mixture.
- 5.3 If the sample contains any sulfides (hydrogen or iron sulfides are common to oilfield soil samples) add 2-3 drops of hydrogen peroxide (H₂O₂) to mixture. Allow the mixture to set for a minimum of five minutes.
- 5.4 Using a 1 ml pipette, carefully add .1 normal silver nitrate solution to sample until solution turns salmon red when viewed with yellow goggles. Be consistent with endpoint recognition.

6.0 Calculation

Multiply the amount of silver nitrate used in step 5.4 by 354.5 to obtain the chloride concentration in mg/L.

QP-06 Rev. C

WHOLE EARTH ENVIRONMENTAL QUALITY PROCEDURE

Procedure for Conducting Field TPH Analysis

Completed By:	Approved By:	Effective Date:	02/15/97

1.0 Purpose

To define the procedure to be used in conducting total percentage hydrocarbon testing in accordance with EPA Method 418.1 (modified) using the "MEGA" TPH Analyzer.

2.0 Scope

This procedure is to be used for field testing and on site remediation information.

3.0 Procedure

- 3.1 The G.A.C. "MEGA" TPH analyzer is an instrument that measures concentrations of aliphatic hydrocarbons by means of infra-red spectrometry. It is manufactured to our specifications and can accurately measure concentrations from two parts per million through 100,000 parts per million. The unit is factory calibrated however minor calibration adjustments may be made in the field. Quality Procedure 25 defines the field calibration methods to be employed.
- 3.2 Prior to taking the machine into the field, insert a 500 ppm and 5,000 ppm calibration standard into the sample port of the machine. Zero out the Range dial until the instrument records the exact standard reading.
- 3.3 Once in the field, insert a large and small cuvette filled with clean Freon 113 into the sample port of the machine. Use the range dial to zero in the reading. If the machine does not zero, do not attempt to adjust the span dial. Immediately implement Quality Procedure 25.

- 3.4 Place a 100 g. weight standard on the field scale to insure accuracy. Zero out the scale as necessary.
- 3.5 Tare a clean 100 ml. sample vial with the Teflon cap removed. Add 10 g. (+/- .01 g), of sample soil into the vial taking care to remove rocks or vegetable matter from the sample to be tested. If the sample is wet, add up to 5 g. silica gel or anhydrous sodium sulfate to the sample after weighing.
- 3.6 Dispense 10 ml. Freon 113 into the sample vial.
- 3.7 Cap the vial and shake for five minutes.
- 3.8 Carefully decant the liquid contents of the vial into a filter/desiccant cartridge and affix the cartridge cap. Recap the sample vial and set aside.
- 3.9 Insert the metal tip of the pressure syringe into the cap opening and slowly pressurize. WARNING: APPLY ONLY ENOUGH PRESSURE ON THE SYRINGE TO EFFECT FLOW THROUGH THE FILTERS. TOO MUCH PRESSURE MAY CAUSE THE CAP TO SEPARATE FROM THE BODY OF THE CARTRIDGE. Once flow is established through the cartridge direct the flow into the 5 cm. cuvette until the cuvette is full. Reverse the pressure on the syringe and remove the syringe tip from the cartridge cap. Set the cartridge aside in vertical position.
- 3.10 The cuvette has two clear and two frosted sides. Hold the cuvette by the frosted sides and carefully insert into the sample port of the machine. Read the right hand digital read-out of the instrument. If the reading is less than 1,000 ppm. the results shall be recorded in the field Soil Analysis Report. If the result is higher than 1,000 ppm, continue with the dilution procedure.

4.0 Dilution Procedure

4.1 When initial readings are greater than 1,000 ppm using the 5 cm. cuvette, pour the contents of the 5 cm. cuvette into a 1 cm. cuvette. Insert the 1. cm cuvette into the metal holder and insert into the test port of the instrument.

- 4.1 Read the left hand digital read-out of the machine. If the results are less than 10,000 ppm, record the results into the field Soil Analysis Report. If greater than 10,000 ppm, continue the dilution process. Concentrations >10,000 ppm are to be used for field screen purposes only.
- 4.2 Pour the contents of the small cuvette into a graduated glass pipette. Add 10 ml. pure Freon 113 into the pipette. Shake the contents and pour into the 1cm. cuvette. Repeat step 4.2. adding two zeros to the end of the displayed number. If the reported result is greater than 100,000 ppm. the accuracy of further readings through additional dilutions is extremely questionable. **Do not use for reporting purposes.**
- 4.4 Pour all sample Freon into the recycling container.

5.0 Split Samples

5.1 Each tenth test sample shall be a split sample. Decant approximately one half of the extraction solvent through a filter cartridge and insert into the instrument to obtain a concentration reading. Clean and rinse the cuvette and decant the remainder of the fluid to obtain a second concentration reading from the same sample. If the second reading varies by more than 1% from the original, it will be necessary to completely recalibrate the instrument.

WHOLE EARTH ENVIRONMENTAL QUALITY PROCEDURE

Procedure for Developing Cased Water Monitoring Wells

Completed By:Approved By:Effective Date:/

1.0 Purpose

This procedure outlines the methods to be employed to develop cased monitoring wells.

2.0 Scope

This procedure shall be used for developed, cased water monitoring wells. It is not to be used for standing water samples such as ponds or streams.

3.0 Preliminary

3.1 Prior to development, the static water level and height of the water column within the well casing will be measured with the use of an electric D.C. probe or a steel engineer's tape and water sensitive paste.

3.2 All measurements will be recorded within a field log notebook and subsequently reported within the driller's boring log report.

3.3 All equipment used to measure the static water level will be decontaminated after each use by means of Alconox, a phosphate free laboratory detergent, and water to reduce the possibility of crosscontamination. The volume of water in each well casing will be calculated.

4.0 Purging

4.1 Wells will be purged by removing a minimum of three well casing volumes by using a 2" decontaminated submersible pump or dedicated one liter Teflon bailer.

4.2 If a submersible is used the pump will be decontaminated prior to use by scrubbing the outside surface of tubing and wiring with an Alconox-water mixture, pumping an Alconox-water mixture through the pump, and a final flush with fresh water.

5.0 Water Disposal

5.1 All purge and decontamination water will be temporarily stored within a 60 gallon portable tank and then pumped into a permanent storage tank to be later disposed of in an appropriate manner.

6.0 Records

6.1 Whole Earth will record the amount of water removed from the well during development procedures. The purge volume will be reported to the appropriate regulatory authority when filing the closure report.

Hydrus 2-D Contaminant Migration Modeling

This section contains a copy the contaminant migration model for the B.C. Dickinson site prepared by Dr. Jan Hendrickx of New Mexico State University.

SIMULATION OF OPTIMAL REMEDIATION STRATEGY

AT THE B.C. DICKINSON A-1 FORMER TANK BATTERY SITE

A Report Prepared for Whole Earth Environmental, Inc. Phone: 281-394-2050 Houston, TX 77084 whearth@msn.com

By

Jan M.H. Hendrickx, Ph.D., Ir. PO Box 897 Los Lunas, NM 87031 Pone: 505-565-9211 JanGraHendrickx@aol.com

September 2005

EXECUTIVE SUMMARY

Whole Earth Environmental, Inc. (WEE) has developed a remediation strategy for the Devon Energy B.C. Dickenson A-1 former tank battery site in Lea County, New Mexico. The selected strategy is technically feasible for a reasonable expenditure. The purpose of this study is to conduct computer simulations for evaluation of the selected optimal remediation strategy.

The remediation plan is to excavate the contaminated site to a depth of approximately 25 feet. The impaired geological layers below 25 feet will be left in place since removal will be cost prohibitive. The impaired excavated soil will be mixed with uncontaminated soil to prepare fill material with a soil chloride concentration of 250 ppm. A 2 feet thick clay cap will be placed on the bottom of the pit to prevent recharge water to enter the impaired soil volume below. The pit will be filled with half the volume of fill material, the other half will be buried around the site to a maximum depth of 10 feet.

In this report we will answer four important questions that determine the effectiveness of the remediation plan. The questions are: (1) It there evidence of lateral brine movement at the site? (2) Will water seep around the clay cap and enter the impaired soil volume underneath? (3) How much chloride may seep out of the impaired volume underneath the clay cap after its installation? (4) Will "wicking" or a sudden rise of ground water level into the impaired sand layer impact future ground water quality at the site?

On the basis of field observations, soil bore logs, and literature reports we conclude that no lateral brine movement has occurred at the site. Therefore, only the soil volume below the excavated pit remains impaired with higher (unknown) chloride concentrations. The impaired soil volume will be isolated from the environment by installation of a clay cap.

On the basis of our field observations, soil physics theory and experiments, and our HYDRUS2D modeling results we conclude that no or very little water will seep around the clay cap and enter the impaired soil volume.

We conclude that the clay cap effectively eliminates the driving force for chloride seepage from the impaired soil volume. As a result the chloride concentrations in the monitoring well are expected to decrease below 250 ppm within a few years.

After simulations with HYDRUS2D we conclude that a sudden rise of ground water level will affect the concentrations in the monitoring well but these effects will be mitigated within only a few years.

The evaluation of the four critical questions clearly has shown that installation of the clay cap is a cost-effective restoration technique at Dickenson tank battery. The clay cap will all but eliminate seepage of chloride from the impaired soil volume into the ground water. The chloride concentrations in the monitoring well are expected to decrease within a few years to less than 250 ppm.

TABLE OF CONTENTS

	Page
EXECUTIVE SUMMARY	ii
TABLE OF CONTENTS	iv
LIST OF TABLES	v
LIST OF FIGURES	v
Purpose	1
Site Description	2
Remediation Approach	3
Input Parameters for Models	5
Question One: Is there evidence of lateral brine movement?	8
Question Two: Will water seep around the clay cap and enter the impaired volume underneath?	9
Question Three: Will chloride seep out of the impaired volume underneath the clay cap after its installation?	10
Question Four: What is the effect of "wicking" or a sudden rise in ground water level?	15
Conclusion	17
References	19

٩

	LIST OF TABLES	Daga
Table 1	Van Genuchten parameters that describe the hydraulic properties of the soil materials in, around, and below the restored pit.	Page 8
	LIST OF FIGURES	_
		Page
Figure 1	Diagram of distribution of soil materials after remediation of the pit. The vertical cross section represents a slice of the circular pit and	4
	surroundings with a radius of 165 feet and a depth of 62 feet. Soil surface at top, ground water at bottom. Material 1 (red) is the top soil; material 2	
	(dark blue) is the calcic horizon; material 3 (green) is the sand; material 4 (pink) is the sandstone; material 5 (light blue) is the clay cap.	
Figure 2	Limiting soil water content profiles as time goes to infinity during	11
_	infiltration from a line source. Numbers on the curves represent values of	
E'	degree of saturation. (After Jury & Horton, 2004).	10
Figure 3	Soil profile inside the excavated pit. The dark area to the right has been darkened due to infiltration of BTEX and brines; the light area at the left	12
	has not been affected. The sharp vertical boundary between the dark and	
	light areas is evidence of the limiting soil water content profiles typical for sand soils during three-dimensional infiltration from the tank battery.	
Figure 4	Soil water content distribution at the remediated site ten years after	13
	installation of the clay cap. The elongated shape with higher water	
	contents is a result of infiltration from the edge of the clay cap. The impaired soil volume to the left of the infiltrating water is not affected by	
	the higher water contents. See also detail in Figure 5.	
Figure 5	Water flow velocity vectors near the edge of the clay pan simulated with	14
	HYDRUS2D ten years after installation of the clay pan. The larger the vector, the more water flow. Note (i) the lateral flow on top of the clay	
	cap and (ii) the absence of vectors inside the impaired soil volume with	
	chloride contamination.	
Figure 6	The chloride concentration in a down-gradient monitoring well as a	16
Diama 7	function of time after clay cap installation.	10
Figure 7	The chloride concentration in a down-gradient monitoring well as a function of time after a sudden 4 feet rise of ground water level	18
	immediately after installation of the clay cap.	

V

.

SIMULATION OF OPTIMAL REMEDIATION STRATEGY AT THE B.C. DICKINSON A-1 FORMER TANK BATTERY SITE

Purpose

Whole Earth Environmental, Inc. (WEE) has developed a remediation strategy for the Devon Energy B.C. Dickenson A-1 former tank battery site in Lea County, New Mexico, taking into account –among other information– a previous simulation study at the site¹. The selected strategy is technically feasible for a reasonable expenditure. The purpose of this study is to conduct computer simulations for evaluation of the selected optimal remediation strategy.

The remediation plan is to excavate the contaminated site to a depth of approximately 25 feet. The impaired geological layers below 25 feet will be left in place since removal will be cost prohibitive. The impaired excavated soil will be mixed with uncontaminated soil to prepare fill material with a soil chloride concentration of 250 ppm, i.e. 250 mg chloride per 1 kg of moist soil. A 2 feet thick clay cap will be placed on the bottom of the pit in order to prevent recharge water to enter the impaired soil volume below. The pit will be filled with half the volume of fill material, the other half will be buried around the site to a maximum depth of 10 feet.

In this report we will answer four important questions that determine the effectiveness of the remediation plan. The questions are: (1) It there evidence of lateral brine movement at the site? (2) Will water seep around the clay cap and enter the impaired soil volume underneath? (3) How much chloride may seep out of the impaired volume underneath the clay cap after its installation? (4) Will "wicking" or a sudden rise of ground water level into the impaired sand layer impact future ground water quality at the site? The study will be conducted on the basis of information provided by Whole Earth Environmental, Inc. as well as data gathered during a one-day field visit.

1

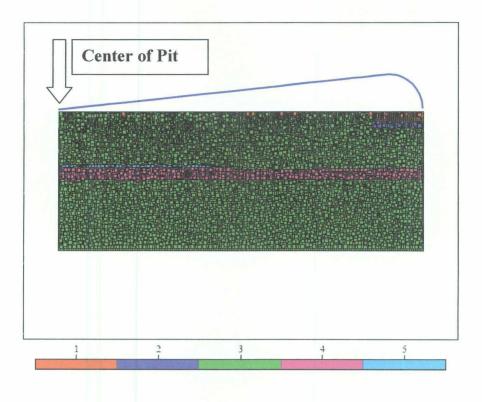
Site Description

The B.C. Dickenson Battery is located in Lea County, New Mexico, South of US 182 on fee land. WEE has provided us with (1) a map of the site and the locations of boreholes for soil sampling and the installation of monitoring wells, (2) laboratory analyses of soil and water samples, (3) logs of soil borings, and (4) a copy of a preliminary site investigation report and remediation work plan dated December 2002. Ground water table depth measurements in May 2002 are all around 60 feet. The direction of flow is from the NW to the SE following the topography. The aquifer is unconfined and, thus, exposed to recharge and solutes leaving the vadose zone at the phreatic level.

On March 30, 2005, the excavated pit was inspected and sampled. The pit is located at UTM coordinates 671980 East and 3657376 North (Zone 13 North, datum WGS84). The soil profile in the pit consists of 3 feet of a silty clay loam topsoil underlain by a caliche layer of 4 feet. The caliche layer is fractured and full of fine roots. Beneath the caliche layer a 17 feet thick sand layer rests on 6 feet of indurated sandstone. The sand layer consists of fine sand with some one to two inch diameter stones. The bottom of the pit was located on the indurated sandstone. The soil bore logs presented in a report by Environmental Technology Group, Inc.² clearly indicate that the sand layers underneath the sandstone are very similar to the one above the sandstone. This finding is corroborated by several geological reports on the Ogallala Aquifer in Eastern New Mexico^{3, 4}.

The pink-tan colored sandstone layer shows grey patches. Many of the grey patches in the sandstone contain hydrocarbons which is an indication that these patches are flow paths for hydrocarbons and brine through the sandstone. There are reports^{5, 6} that organic acids –such as may be present in the leachate under the Dickenson site– can dissolve quartz and, thus, create flow paths through sandstone layers. Another report⁷ presents measurements of the saturated hydraulic conductivity of sandstone taken along trenches with a total length of approximately 3

km. Saturated hydraulic conductivity values of weathered and non-weathered sandstone are similar and range from 1 to 42 cm/day, with geometric means of 17 and 10 cm/day.


The aquifer underneath the B.C. Dickenson site is part of the Ogallala aquifer. In 1967, the saturated thickness at the site is estimated as approximately 125 feet⁸. Taking into account some decline of the water-level in the aquifer near the site⁹ the current saturated thickness is taken as 100 feet in this study. The ground water flux in the aquifer at the site is not known. However, ground water velocities are estimated from 2 to a little less than 5 inches per day^{10,11} in the Ogallala Formation. If we multiply these velocities by the average porosity of 35 percent⁹ assumed for the Ogallala aquifer in Lea county, we arrive at ground water fluxes varying between 1.8 and 4.4 cm/day. Information from another source ¹² yields a typical average ground water flux of 2.1 cm/day. In this study we will use the average value of 2.8 cm/day.

Remediation Approach

In this report we evaluate the optimal remediation strategy as designed by WEE. The contaminated site has been excavated to a depth of approximately 25 feet. The impaired geological layers below 25 feet have been left in place. The impaired excavated soil has been mixed with uncontaminated soil to prepare fill material with a soil chloride concentration not higher than the legal limit of 250 ppm, i.e. 250 mg of chloride per 1 kg of moist soil. A 2 feet thick clay cap has been placed on the bottom of the pit in order to prevent deep percolation water to enter the impaired formations below. The pit has been filled with approximately half the volume of fill material, the remaining fill material has been buried around the site to a maximum depth of 10 feet. Figure 1 shows all soil materials after completion of the remediation project.

Presently, after remediation there remains one major source of chloride at the site, i.e. the chloride stored below the clay barrier. As a worst-case scenario we assume that the soil chloride content below the clay cap is 874 ppm, i.e. the highest chloride content measured at the site in SB7 at a depth of 40 feet in May 2002. However, due to the clay cap the water flux infiltrating into the impaired soil volume will become very small and –as a consequence– the amount of

chloride released will sharply decrease.

Figure 1. Diagram of distribution of soil materials after remediation of the pit. The vertical cross section represents a slice of the circular pit and surroundings with a radius of 165 feet and a depth of 62 feet. Soil surface at top, ground water at bottom. Material 1 (red) is the top soil; material 2 (dark blue) is the calcic horizon; material 3 (green) is the sand; material 4 (pink) is the sandstone; material 5 (light blue) is the clay cap.

To evaluate the effectiveness of the economically optimal remediation strategy designed by WEE we will answer the four critical questions presented in the section "*Purpose*" using field observations, information from the literature, and modeling. The modeling will be conducted using the models HYDRUS1D¹³ and HYDRUS2D¹⁴ for simulating water movement and chloride transport through the vadose zone. In addition, two models will be coupled: (1) the model HYDRUS1D for simulating vertical water movement and chloride transport through the spreadsheet model to simulate horizontal movement of chloride in the aquifer and to predict the chloride concentration in a down gradient monitoring well. These models are fully described in API Publication Number 4734 "Modeling Study of Produced Water Release Scenarios"¹⁵ that was co-authored by Dr. Hendrickx.

Input Parameters for Models

The models need a number of input parameters: concentration of released brine waters, amount of brine water infiltrated, i.e the height of the spill, site lithology, hydraulic properties of each soil and geological layer, depth of ground water table, thickness of underlying aquifer, porosity of underlying aquifer, chloride content in aquifer, ground water flux in aquifer, daily precipitation rates, daily potential evapotranspiration rates, and initial soil moisture and chloride distributions in the vadose zone. For most brine releases many of these input parameters are not readily available. Therefore, it is necessary to use a combination of forward modeling, pseudo inverse modeling, and expert judgments for evaluation of different remediation strategies. For the B.C. Dickenson site we will not simulate the history of the spill since too few data are available. Instead we will evaluate the effects of the optimal remediation strategy using our knowledge of the conditions that prevail after completion of the remediation project.

Known Input Parameters: At the B.C. Dickenson site information is available for several parameters. Climate data for 47 recent years were obtained for Lea County, NM from the National Climatic Data Center (NCDC, www.ncdc.noaa.gov). The data consisted of historical daily temperature and **precipitation** measurements collected at specific weather stations identified by a NCDC Coop identification number. Data for Lea County were collected at the

Pearl, NM weather station (Coop # 296659). **Potential evapotranspiration** (PET) was calculated from daily temperature observations using the method of Samani and Pessarakli¹⁶. When a HYDRUS simulation was performed for a longer time period than the period of record for the weather station, the climate data was repeated for as many years as was necessary. The thickness of the vadose zone or **ground water table depth** is 62 ft (18.6 m).

Input Parameters with Approximately Known Values. It would take much effort to measure the characteristics of the Ogalla aquifer underlying the B.C. Dickenson site and to exactly determine the size of the release. However, often it is possible to determine reasonable values for these parameters based on literature reports and/or field observations. In this study typical Ogalalla aquifer values will be used as described in the section "*Site Description*". The **groundwater flux** represents the rate of groundwater movement and effects the ability of an aquifer to dilute chloride of a produced water release. A large groundwater flux produces greater dilution. As explained above for this study we will use 2.8 cm/day (about 0.1 foot/day). The **porosity** of the aquifer is estimated as 35 volume percent⁹. The **ambient chloride concentration** in the Ogalalla aquifer is typically 100 ppm or less¹⁷ with a characteristic minimum value of 10 ppm. The measurements at the site indicate an ambient chloride concentration of 56 ppm¹. The thicker the aquifer, the more opportunity for mixing (dilution), and the lower the predicted chloride concentration will be in the aquifer. In this study we use 100 ft (30 m). In many places the Ogalalla Aquifer and other unconfined, alluvial aquifers are thicker than 100 ft.

The **diameter of the release area** and the **location of the monitoring well** also influence the chloride concentration measured in the monitoring well. Based on the data presented by WEE the diameter of the area affected by chloride underneath the clay barrier is about 120 feet. A suitable location for the monitoring well would be at the downstream edge of the remediated site about 140 ft (42 m) away from the center of the pith.

The **dispersion length** of the chloride inside the vadose zone has also an impact on the chloride concentration at the bottom of the vadose zone where the chloride flux enters the aquifer. The

higher the dispersion length the more dilute the chloride concentration will become at the bottom of the vadose zone. The dispersion length depends on a large number of factors; a rule of thumb is to take the dispersion length equal to one-tenth of the scale of the simulation. For the 62 ft (18.6 m) vadose zone at the site we have selected a dispersion length of 180 cm.

Unknown Input Parameters. Generally no quantitative information is available on (i) the **amount of produced water** that has infiltrated into the vadose zone, (ii) the **chloride concentration** in the produced water, and (iii) the **hydraulic properties** of the different geological layers in the vadose zone. Without these parameters it is not possible to even approximately validate models for the evaluation of remediation strategies. Fortunately, at many sites test holes have been drilled and monitoring wells have been installed that provide at least some qualitative information on the composition of the vadose zone and the quality of the ground water. Especially, when chloride and BTEX concentrations have been measured in the vadose zone as well as in the ground water, it is often possible to validate release scenarios and the impact of the vadose zone on the fate and transport of chloride and BTEX.

Unfortunately, at the B.C. Dickenson site no simultaneous measurements have been made of chloride and BTEX concentrations in the vadose zone and in the ground water. For example, in May 2002 BTEX concentrations have been measured in the soil profiles SB1, SB2, SB3, SB4, SB5, and SB6 but no chloride concentrations have been measured in the samples that were taken. In soil profiles SB7, SB8, and SB9 chloride concentrations have been measured at one depth in each profile but no BTEX concentrations were measured at these depths. If chloride concentrations had been measured in soil profile SB6, a model validation would have been possible using a pseudo-inverse method but with the current data set it is not. The only approach feasible is to take the chloride measurements in SB7 and SB9 as indications of the chloride content below the clay cap is 874 ppm, i.e. the highest chloride content measured at the site in SB7 at a depth of 40 feet in May 2002.

8

Figure 1 shows the distribution of soils layers after remediation. The pit has a diameter of 140 feet. On the bottom of the pit a two-feet-thick clay cap (light blue color) is installed to prevent seepage water to enter the sandstone (purple color) and sand layers (green color) below it that contain chlorides. In the upper right hand corner of the cross section the original profile can be seen consisting of a 3 feet thick silty clay loam top soil over a 4 feet thick caliche layer. The caliche layer rests on a 18 feet sand layer underlain by a 6 feet sandstone layer. Between the sandstone and the ground water level is a 31 feet sand layer with properties identical to the sand layer above it. The soil hydraulic properties are derived from our field observations in the pit on March 30, 2005, the logs of soil borings at the site, and literature information. Pedotransfer functions of the HYDRUS code are used for the derivation of the Van Genuchten parameters on the basis of soil texture and bulk density (Table 1). These Van Genuchten parameters determine the soil hydraulic properties¹⁸. The hydraulic properties of the clay cap are based on those for a clay soil with a saturated hydraulic conductivity of 0.001 cm/day or 0.012 foot/year.

Table 1.	Van Genuchten parameters that describe the hydraulic properties of the soil materials in, around,
	and below the restored pit.

Material	Material #	Van Genuchten Hydraulic Parameters ¹				rs¶
		Θ _r	Θs	α	n	K _{sat}
		cm ³ /cm ³	cm ³ /cm ³	cm ⁻¹	-	cm/day
Silty clay loam	1	0.078	0.43	0.036	1.56	24.96
Caliche	2	0.0195	0.12	0.075	1.89	31.8
Sand	3	0.0346	0.3946	0.048	2.1506	198.4
Sandstone	4	0.02	0.24	0.124	2.28	10
Clay cap	5	0.01	0.10	0.005	1.09	0.001

¶ θ_r residual water content, θ_s saturated water content, α and n are shape parameters, K_s saturated hydraulic conductivity.

Question One: It there evidence of lateral brine movement?

Lateral water movement may occur at sudden decreases of hydraulic conductivity in soil profiles¹⁹⁻²¹. Such a sudden decrease of saturated hydraulic conductivity at the Dickenson site is found at the interface between the sand layer and the sandstone. However, our field observations and literature data indicate that sandstone layers are not impermeable boundaries that will cause the brine to move laterally. As has been described in section "*Site Description*" the pink-tan

colored sandstone layer shows gray patches. Many of these patches contain hydrocarbons indicating that these patches are hydrocarbon flow paths through the sandstone. There are also reports^{5, 6} that organic acids –such as may be present in the leachate under the Dickenson site– can dissolve quartz and, thus, create flow paths through sandstone layers. Another report⁷ presents measurements of the saturated hydraulic conductivity of sandstone taken along trenches with a total length of approximately 3 km. Saturated hydraulic conductivity values of weathered and non-weathered sandstone are similar and range from 1 to 42 cm/day, with geometric means of 17 and 10 cm/day. Since a saturated hydraulic conductivity of 1 cm/day would be sufficient to move more than 365 cm or 10 feet of hydrocarbon brines per year downward through the sandstone at the Dickenson site, we conclude that the principal direction of movement through the sandstone has been vertical. Therefore, we conclude that all contaminants remaining from the Dickenson Battery after restoration are located immediately underneath the restored pit.

Question Two: Will water seep around the clay cap and enter the impaired volume underneath?

The clay cap has a saturated hydraulic conductivity of 0.001 cm/day or 0.365 cm/year which is much less than the ground water recharge at the site. Therefore, deep percolation water will start flowing laterally over the clay cap towards its edge. After reaching the edge of the clay cap water will start moving vertically again and might be wicked into the impaired volume underneath the clay cap. How far the water will be wicked into the impaired volume depends on its hydraulic properties. The soil bore logs presented in a report by Environmental Technology Group, Inc.² and geological reports on the Ogallala Aquifer in Eastern New Mexico^{3, 4} clearly indicate that the impaired volume underneath the sandstone consists of a sand layer very similar to the one above the sandstone. In other words the impaired volume has hydraulic properties typical for sand (see Table 1, material 3).

The flow of water from the edge of the clay cap into the underlying sand can be evaluated by considering what is know about infiltration from a line source. Theoretical and experimental evidence^{22, 23} predict that the wetting front of the water infiltrating from a line source into a sand

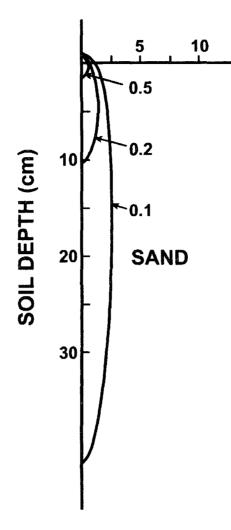
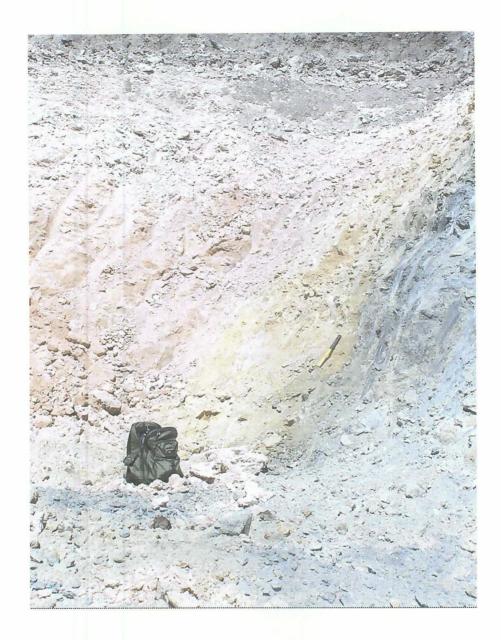
will become elongated with time since gravitational forces in the sand dominate the capillary forces (Figure 2). The same will happen over time with the water flowing over the edge of the clay cap into the sand layer. As a matter of fact during excavation of the pit we have observed a distinct vertical "wetting front" in the sand layer above the sandstone (Figure 3). This "wetting front" resulted from the infiltration of BTEX contaminated brine from the tank battery into the soil. Its vertical elongated shape is exactly what is predicted by the theory in this sand layer. Since the sand layer underneath the clay cap is similar to the one above, the same infiltration pattern will occur.

The model HYDRUS2D was used to simulate how far water would be wicked into the impaired volume. After ten years of simulation an approximately steady water content distribution developed (Figure 4) with a wetting front similar to the one predicted by the theory (Figure 2) and observed in the field (Figure 3). The wetting front wicks some water towards the impaired volume over a distance of about 7 feet. The diameter of the impaired volume is 120 feet; the clay cap has a diameter of 140 feet and, thus, extends 10 feet away from the contaminated sand. Since the wicking action of the sand is less than 10 feet, the chloride in the impaired volume will not be affected. This can be seen clearly in Figure 5 where the water flow velocity vectors are plotted for the area just below and surrounding the edge of the clay pan.

On the basis of our field observations, soil physics theory and experiments, and our HYDRUS2D modeling results we conclude that no or very little water will seep around the clay cap and enter the impaired soil volume.

Question Three: Will chloride seep out of the impaired volume underneath the clay cap after its installation?

One important question remains: what will happen to the chloride in the impaired volume after installation of the clay cap? The installation of the clay cap shuts off the driving force for vertical water movement inside the impaired volume, i.e. deep percolation water that is on its way

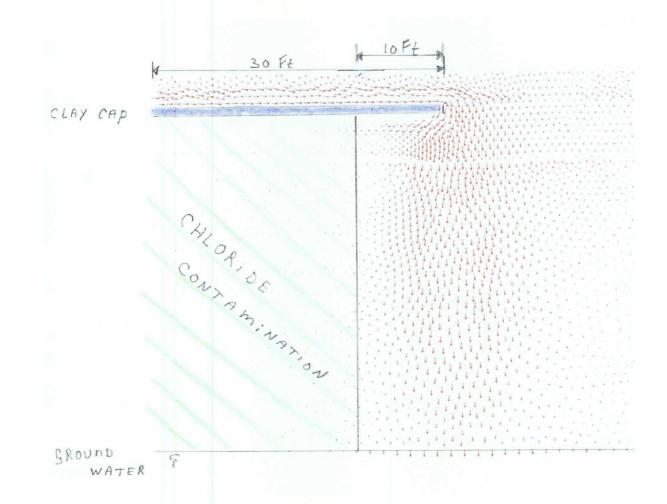

Figure 2. Limiting soil water content profiles as time goes to infinity during infiltration from a line source. Numbers on the curves represent values of degree of saturation. (After Jury & Horton, 2004).

Figure 3. Soil profile inside the excavated pit. The dark area to the right has been darkened due to infiltration of BTEX and brines; the light area at the left has not been affected. The sharp vertical boundary between the dark and light areas is evidence of the limiting soil water content profiles typical for sand soils during three-dimensional infiltration from the tank battery.

Volumetric Water Content (cm³ water/cm³ soil)

Figure 4. Soil water content distribution at the remediated site ten years after installation of the clay cap. The elongated shape with higher water contents is a result of infiltration from the edge of the clay cap. The impaired soil volume to the left of the infiltrating water is not affected by the higher water contents. See also detail in Figure 5.

Figure 5. Water flow velocity vectors near the edge of the clay pan simulated with HYDRUS2D ten years after installation of the clay pan. The larger the vector, the more water flow. Note (i) the lateral flow on top of the clay cap and (ii) the absence of vectors inside the impaired soil volume with chloride contamination.

from the bottom of the root zone towards the ground water table. Therefore, the chloride seepage flux into the aquifer will gradually decrease to a very small negligible flux after installation of the clay cap.

In order to evaluate the decrease of chloride flux with time we have simulated chloride and water dynamics underneath the clay cap using HYDRUS1D. Initial conditions are taken from the HYDRUS2D simulation of the performance of the clay cap. The top boundary condition is set at a very small flux of 0.001 cm/day equal to the saturated hydraulic conductivity of the clay cap. The chloride content in the impaired volume is conservatively taken as 874 ppm, i.e. 974 mg of chloride per 1 kg of moist soil, as explained in section *"Remediation Approach*". The chloride content in the aquifer at the time of the installation of the clay cap is conservatively taken as 496 ppm which is the highest concentration measured in monitoring well MW1. Figure 6 presents the chloride concentrations simulated in a 10 feet deep monitoring well placed at the edge of the impaired soil volume after installation of the clay cap. In about one year the chloride concentrations in Figure 6 are based on uncertain estimates of chloride concentrations in the impaired ground water, actual chloride measurements in the future may be somewhat different. However, Figure 6 clearly demonstrates how effective the clay cap will be for the reduction of future chloride concentrations in the monitoring well.

We conclude that the clay cap effectively eliminates the driving force for chloride seepage from the impaired soil volume. As a result the chloride concentrations in the monitoring well are expected to decrease below 250 ppm within a few years.

Question Four: What is the effect of "wicking" or a sudden rise in ground water level? Water will enter the impaired volume by capillary rise also known as "wicking". However, in a sand layer the effect of wicking is probably not going to be significant. Of more concern is a sudden rise of the ground water table. Therefore, we have simulated the chloride concentrations in the monitoring well if the ground water table would rise by four feet immediately after

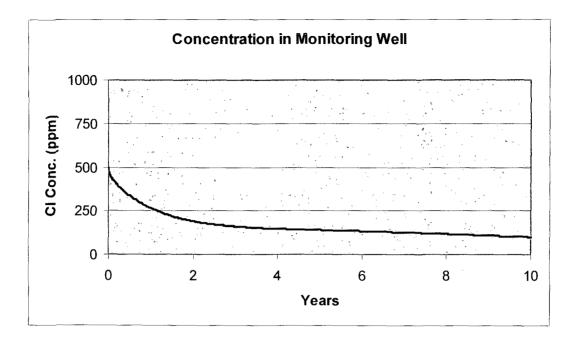


Figure 6. The chloride concentration in a down-gradient monitoring well as a function of time after clay cap installation.

installation of the clay cap. Figure 7 shows that the simulated chloride concentrations are higher than the ones presented in Figure 6. Nevertheless, in about four years the chloride concentration will be less than 250 ppm, even after the most catastrophic event that could happen at the site after installation of the clay cap. Therefore, we conclude that a sudden rise of ground water level will affect the concentrations in the monitoring well but its effect will be mitigated within only a few years.

Conclusion

The evaluation of the four critical questions clearly has shown that installation of the clay cap is a cost-effective restoration technique at Dickenson tank battery. The clay cap will all but eliminate seepage of chloride from the impaired soil volume into the ground water. The chloride concentrations in the monitoring well are expected to decrease within a few years to less than 250 ppm.

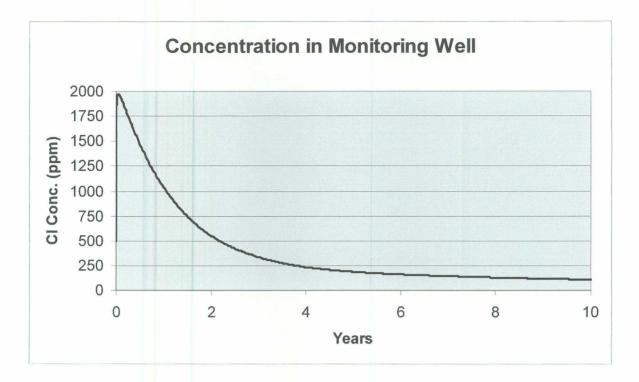
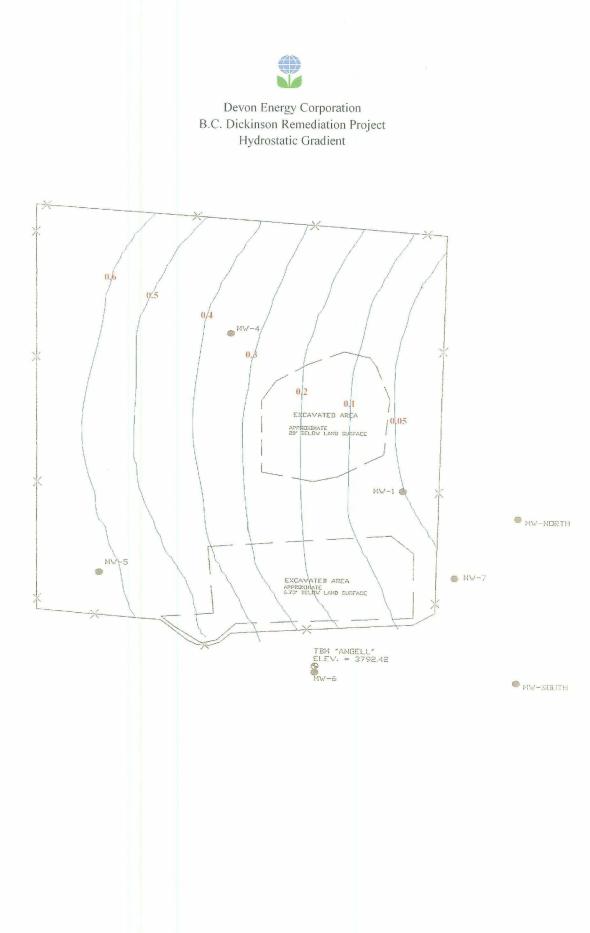


Figure 7. The chloride concentration in a down-gradient monitoring well as a function of time after a sudden 4 feet rise of ground water level immediately after installation of the clay cap.

References

- 1. Hendrickx, J.M.H., *Simulation of remediation strategies for the B.C. Dickenson site, Devon Energy Corporation.* Whole Earth Environmental, Inc.: Houston. p. 18. 2005.
- 2. Environmental Technology Group Inc., *Preliminary site investigation report and remediation work plan. B.C. Dickenson Site A-1 Site.*: Hobbs, New Mexico. 2002.
- 3. Frye, J.C., A.B. Leonard, and H.D. Glass, *Western extent of Ogallala Formation in New Mexico*, in *Circular 175*. New Mexico Bureau of Mines & Mineral Resources: Socorro, New Mexico. p. 41. 1982.
- 4. Frye, J.C. and A.B. Leonard, *Structure of Ogallala Formation in East-central New Mexico*, in *Target Exploration Report E-6*. New Mexico State Bureau of Mines and Mineral Resources: Socorro, New Mexico. p. 8, 1972.
- 5. Bennett, P. and D.I. Siegel, *Increased solubility of quartz in water due to complexing by organic compounds*. Nature. **326**: p. 684-686. 1987.
- 6. Bennett, P.C., M.E. Melcer, D.I. Siegel, and J.P. Hassett, *The dissolution of quartz in dilute aqueous solutions of organic acids at 25°C.* Geochimica et Cosmochimica Acta. **52**: p. 1521-1530. 1988.
- Heilweil, V.M. and D.K. Solomon, Millimeter- to kilometer scale variations in vadose-zone bedrock solutes: implications for estimating recharge in arid settings, in Groundwater recharge in a desert environment. The Southwestern United States, J.F. Hogan, F.M. Phillips, and B.R. Scanlon, Editors., American Geophysical Union: Washington, DC. p. 49-68. 2004.
- 8. Cronin, J.C., *Ground water in the Ogallala formation in the southern high plains of Texas and New Mexico*, in *Hydrologic Investigations Atlas HA-330*. United States Geological Survey: Washington, D.C. p. 9. 1969.
- 9. McAda, D.P., *Projected water-level declines in the Ogallala aquifer in Lea County, New Mexico*, in *Waterresources investigations report 84-4062*, U.S. Geological Survey, p. 84. 1984.
- 10. Ash, S.R., Ground water conditions in northern Lea County, New Mexico, in U.S. Geological Survey Hydrol. Inv. Atlas 62. 1963.
- 11. Cronin, J.C. and L.C. Wells, *Geology and ground water resources of Hale County, Texas*, in U.S. *Geological Survey Water-Supply Paper 1539-U.* p. 38. 1963.
- 12. Nativ, R. and D.A. Smith, *Hydrogeology and geochemistry of the Ogallala aquifer, Southern High Plains.* J. Hydrol. **91**: p. 217-253. 1987.
- Šimünek, J., M. Šejna, and M.T.V. Genuchten, *The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably saturated media. Version 2.0.* Vol. IGWMC-TPS-70. Golden, Colorado: International Ground Water Modelling Center, Colorado School of Mines. 202. 1998.
- 14. Simunek, J., M. Sejna, and M.T. Van Genuchten, *HYDRUS2D Simulating water flow and solute transport in two-dimensional variably saturated media*, in *Ground water modeling software*. International Ground Water Modeling Center: Golden, Colorado. p. 167. 1996.
- 15. Hendrickx, J.M.H., G. Rodríguez-Marín, R.T. Hicks, and J. Simunek, *Modeling study of produced water release scenarios*. API Publication, ed. A.P. Institute. Vol. 4734: American Petroleum Institute Publishing Services. 124. 2005.
- 16. Samani, Z.A. and M. Pessarakli, *Estimating potential crop evapotranspiration with minimum data in Arizona*. Transactions of the ASAE. **29**(2): p. 522-524. 1986.
- Nicholson Jr., A. and A. Clebsch Jr., Geology and Ground Water Conditions in Southern Lea County, New Mexico, in U.S. Geological Survey Ground-Water Report 6. New Mexico Bureau of Mines and Mineral Resources: Socorro, New Mexico. p. 123, 1961.
- 18. Van Genuchten, M.T., A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44: p. 892-898. 1980.
- Hendrickx, J.M.H. and M. Flury, Uniform and preferential flow mechanisms in the vadose zone, in Conceptual models of flow and transport in the fractured vadose zone. National Academy Press: Washington D.C. p. 149-187. 2001.
- 20. Hendrickx, J.M.H., F.M. Phillips, and J.B.J. Harrison, *Chapter 5. Water flow processes in arid and semiarid vadose zones*, in *Understanding water in a dry environment. Hydrological processes in arid and semiarid zones*, I. Simmers, Editor., A.A. Balkema Publishers: Lisse, The Netherlands. p. 151-210. 2003.

- 21. Hendrickx, J.M.H., D. Vega, J.B.J. Harrison, P. Rojas, L.E.C. Gobbeti, and T.W. Miller, *Hydrology of hillslope soils in the Upper Rio Chagres watershed, Panama*, in *The Rio Chagres: A multidisciplinary profile of a tropical watershed*, R.S. Harmon, Editor., Springer: Dordrecht, The Netherlands. p. 113-138. 2005.
- 22. Jury, W.A. and R.E. Horton, Soil physics. Sixth Edition: John Wiley & Sons, Inc. 370. 2004.
- 23. Warrick, A.W., Soil water dynamics. New York: Oxford University Press. 391. 2003.


Laboratory Analytical Results

This section contains a copy the chain of custody, laboratory analytical results and quality control information for soil samples processed during this project.

Groundwater Section

This section contains a plat map of the site showing the locations of the monitor wells and related gradient, a colormetric histograph of the relative chloride concentrations and the individual laboratory analyses, chain of custody and quality control data.

Whole Earth Environmental, Inc. Devon/Darr Angell Site

Well #	State Plane Northing	State Plane Easting	Land Surface Northing	Land Surface Easting	M.S.L. Elevation
MW-1	745232.03	901340.68	745232.06	901340.69	3792.79
MW-4	745432.03	901147.63	745432.08	901147.61	3793.41
MW-5	745124.35	901004.03	745124.37	901004.00	3792.86
MW-6	744996.87	901245.15	744996.87	901245.15	3792.52
MW-7	745120.57	901399.10	745120.58	901399.12	3792.80
MW-South	744985.34	901468.30	744985.34	901468.33	3792.48
MW-North	745198.28	901468.49	745198.30	901468.52	3793.45
ТВМ	745000.81	901244.20	745000.81	901244.20	3792.42

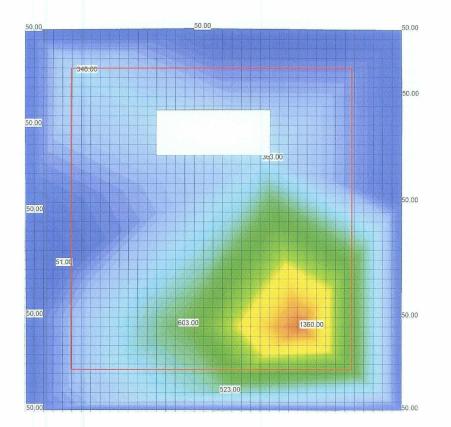
Notes:

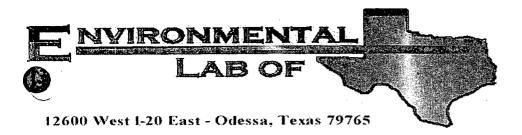
1. Horizontal coordinates are State Plane NAVD 83 datum referenced to USCGS Triangulation Station named "CREAK".

2. Elevations are NAVD 88 datum referenced to USCGS Bench Mark named "G-35".

3. Elevations on monitor wells are taken on top of 2'x2' cement pad as requested by Mike Griffin in field 4-12-05.

4. TBM is $\frac{1}{2}$ " reinforcing bar with aluminum cap marked "ANGELL" located on the north side of the cement $\frac{2}{x^2}$ pad of monitor well 6.




elevation

Y b z z z x

1308.627451 1205.882353 1103.137255 897.647059 794.901961 692.156863 588.411765 486.666667 383.921669 281.17647 178.431373 75.682275

Analytical Report

Prepared for:

Mike Griffin WHOLE EARTH ENVIRONMENTAL 2103 Arbor Cove Katy, TX 77494

Project: Devon Project Number: Dickinson Battery Location: None Given

Lab Order Number: 5E10010

Report Date: 05/11/05

05/12/05 16:49

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Battery Bottom	5E10010-01	Soil	05/10/05 00:00	05/10/05 13:30
MW-1	5E10010-02	Water	05/09/05 00:00	05/10/05 13:30
MW-4	5E10010-03	Water	05/09/05 00:00	05/10/05 13:30
MW-5	5E10010-04	Water	05/09/05 00:00	05/10/05 13:30
MW-6	5E10010-05	Water	05/09/05 00:00	05/10/05 13:30
MW-7	5E10010-06	Water	05/09/05 00:00	05/10/05 13:30

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
216	5.00	mg/kg	10	EE51108	05/10/05	05/10/05	EPA 300.0	
· · · · · · · · · · · · · · · · · · ·								
368	2.50	mg/L	5	EE51107	05/10/05	05/10/05	EPA 300.0	
58.8	2.50	mg/L	5	EE51107	05/10/05	05/10/05	EPA 300.0	
<u>.</u>								
53.1	2.50	mg/L	5	EE51107	05/10/05	05/10/05	EPA 300.0	
			,					
565	5.00	mg/L	10	EE51107	05/10/05	05/10/05	EPA 300.0	
95.4	2.50	mg/L	5	EE51107	05/10/05	05/10/05	EPA 300.0	
	216 368 58.8 53.1 565	Result Limit 216 5.00 368 2.50 58.8 2.50 53.1 2.50 565 5.00	Result Limit Units 216 5.00 mg/kg 368 2.50 mg/L 58.8 2.50 mg/L 53.1 2.50 mg/L 565 5.00 mg/L	Result Limit Units Dilution 216 5.00 mg/kg 10 368 2.50 mg/L 5 58.8 2.50 mg/L 5 53.1 2.50 mg/L 5 565 5.00 mg/L 10	Result Limit Units Dilution Batch 216 5.00 mg/kg 10 EE51108 368 2.50 mg/L 5 EE51107 58.8 2.50 mg/L 5 EE51107 53.1 2.50 mg/L 5 EE51107 565 5.00 mg/L 10 EE51107	Result Limit Units Dilution Batch Prepared 216 5.00 mg/kg 10 EE51108 05/10/05 368 2.50 mg/L 5 EE51107 05/10/05 58.8 2.50 mg/L 5 EE51107 05/10/05 53.1 2.50 mg/L 5 EE51107 05/10/05 565 5.00 mg/L 10 EE51107 05/10/05	Result Limit Units Dilution Batch Prepared Analyzed 216 5.00 mg/kg 10 EE51108 05/10/05 05/10/05 368 2.50 mg/L 5 EE51107 05/10/05 05/10/05 58.8 2.50 mg/L 5 EE51107 05/10/05 05/10/05 53.1 2.50 mg/L 5 EE51107 05/10/05 05/10/05 565 5.00 mg/L 10 EE51107 05/10/05 05/10/05	Result Limit Units Dilution Batch Prepared Analyzed Method 216 5.00 mg/kg 10 EE51108 05/10/05 05/10/05 EPA 300.0 368 2.50 mg/L 5 EE51107 05/10/05 05/10/05 EPA 300.0 58.8 2.50 mg/L 5 EE51107 05/10/05 05/10/05 EPA 300.0 53.1 2.50 mg/L 5 EE51107 05/10/05 05/10/05 EPA 300.0 565 5.00 mg/L 10 EE51107 05/10/05 05/10/05 EPA 300.0

ronmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE51107 - General Preparation	n (WetChem))								
Blank (EE51107-BLK1)				Prepared	& Analyze	ed: 05/10/0	05			
Chloride	ND	0.500	mg/L							
LCS (EE51107-BS1)				Prepared	& Analyze	ed: 05/10/	05			
Chloride	10.1		mg/L	10.0		101	80-120			
Calibration Check (EE51107-CCV1)				Prepared	& Analyze	ed: 05/10/	05			
Chloride	10.3		mg/L	10.0		103	80-120			
Duplicate (EE51107-DUP1)	Sou	rce: 5E1001	0-02	Prepared	& Analyz	ed: 05/10/				
Chloride	367	2.50	mg/L		368			0.272	20	
Batch EE51108 - Water Extraction										
Blank (EE51108-BLK1)				Prepared	& Analyz	ed: 05/10/	05			
Chloride	ND	0.500	mg/kg					······		
LCS (EE51108-BS1)				Prepared	& Analyzo	ed: 05/10/	05			
Chloride	10.3		mg/L	10.0		103	80-120			
Calibration Check (EE51108-CCV1)				Prepared	& Analyz	ed: 05/10/	05			
ride	10.6		mg/L	10.0		106	80-120			
Deplicate (EE51108-DUP1)	Sou	rce: 5E0900	9-01	Prepared	& Analyze	ed: 05/10/	05			
Chloride	871	25.0	mg/kg	<u>-</u>	841			3.50	20	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

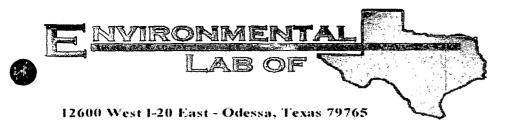
Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Kalancie 740 Report Approved By: 5-12-05 Date:

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.


If you have received this material in error, please notify us immediately at 432-563-1800.

F a conmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 4 of 4

	l		ļ						TAT bue	sbnet2								Т	Т	Т	Τ		(Sec)		
		ļ		Ì		_			TAT (Pre-Schedule)	หรงห															
	1			ĺ]z	ر او در دار او		ĺ
EST	1		ļ			1			· ····												_				
				1															+-		+_	О	ر ۲ کر		ĺ
IS RI				{						5.А.R. E.C.											+	- A	Hor class on preserved "/ label		
r Asi		2							SE	Chloride	×	×	×	X	×	×		-+-	+			₽ E	Ŕ		
ANA	1	Dickinson Battery	[Analyze For	T	8051B/2030		-				_			-+-	+	+-	┼╌	Sample Containers Intact? Temperature Upon Receipt: Laboratory Comments:	C Q	-	
Í du		ğ					alyz	T	səlāslo	vime2									1-	1	+	ers I bon F	د ۱		
D A	_	ISO					₹ <u> </u>	Γ	SƏ	litsloV									Τ			ntain e Up	las.		1
COR	e v o	- İŞ	ļ	l				-L	s Pa Ag Ba Cd Cr Pb Hg	Metals												Cor			1
, KE	Project Name: Devon	ā					TCLP: TOTAL:	L	DAG/ORO Maro												4	mple	7°	-	
λao	eme	ct #	Ĕ	# Od			Ĭ	F	9001/9001 X											4	_	Sa Te	<u> </u>		
UST	ž	Project #:	Project Loc:	a .				\vdash	CLISARIEC	/SOI									+	+-	+	4	e	30 30	
РЕ С	roje	ш.	0 d					┢	(sbecity):										+-	+-	┿─	4	Time	Time (330	
NO	Δ							ļ≚		Eos	×								╋	+	┼─	-			1
CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST								Matrix		Sindge									+	+-	+-	1	ω	0 9	
_]			ł						Water		×	×	×	×	×		-	+	+	+	1	Date	Date 05 - /0 - 05	
								Γ	(Specify)	Other														9	
				}	5					enoN	×	×	\times	×	×	×						2			
				ł	50			ativ	l	'OS ^z H							$ \rightarrow $				\square	P			
					281.394.2051			Preservative		HOEN									\perp	_	1	Wed			1
					81			ă	r	HCI HNO ³									+-	+	+	B,		হ	ა
					17			ł											+	+-				Ž	
								L	f Containers			-	-	-				-+-	╋	+	+	┥		menuner	
					ا . ت														+-	+		-		8	
					Fax No:				belqme2 :															3	
					ш.				halome2.	amiT														N S	
				[2												1		5 2	
											ß	9	ß	В	ß	8							ä	Received by ELOT	
പ									Sampled	Date	05/10/05	05/09/05	05/09/05	05/09/05	05/09/05	05/09/05							Received by:	H N	~
č		5		ļ							ខ	S	ଞ	ଞ	ß	ß							lecel		~
		, I									-1		-1	-1			†		╉		+	1			
S B S F		Ital			ı								-										ک Time 20 - 10 - 20	Time	
3-18 3-18		mei	1	1																			- SO		
5-56 5-56		5			0						_												10	+	
ب <u>و</u> و	1	nvi	ve Ve	-	202					빙	đ												J ^a l	Date	
tone Fax:		ЪЕ	ပို	67	281.394.2050					FIELD CODE	Battery Bottom	MW-1	MW-4	MW-5	9-WM	7-WM									
D 5 -	, =	art	ğ	77							tery	Σ	۶	٤	Ξ	Σ		Ì					}	<u>+</u>	
Ľ	Ë	Б	Arl	Ĥ	58					"	Ba														
R	G	hol b	3	aty																					
ţ	Σ	3	:21	X	j.	.[.		
er	ager	, am	ress	diZ/¢	e No	iture																ł	Ì		
Enviolation 1200 Meeting 1200 Weeting 12000 Weeting 1200 Weeting 120 East Phone: 915-563-1800 Odesses, Texas 79763 Fax: 915-563-1713	Project Manager: M. Griffin	company Name Whole Earth Environmental, Inc.	Company Address: 2103 Arbor Cove	city/State/Zip: Katy, TX 77494	Telephone No:	Sampler Signature:					100.85			220				825 24		N (1962)	1	l. =		4	
с 1 20 10 20 10 20	ject	šdmo	any	Clty/	'elep	iler S			CNOON A)V B # (lab use only)		$\mathbf{z}_{\mathbf{i}}$	M	\mathcal{A}	ما	9						Special Instructions:			
exa	Prc	õ	Ĩ	-	-	amp				use	Ø	3	Ø	õ	ð	q						itruc		Ъ. Д	
Sa, Sa			0			<i>i</i> n				(lab	Υl		L	[]								Su la		Relidquished by:	
											•											oecia	Relinquid		
									<u> </u>	23												3 S	<u>م</u>	<u>15</u>	

Analytical Report

Prepared for: Mike Griffin WHOLE EARTH ENVIRONMENTAL 2103 Arbor Cove Katy, TX 77494

Project: Devon Project Number: Dickinson Lease Location: Lea County, NM

Lab Order Number: 5F30001

Report Date: 07/08/05

Fax: (281) 394-2051

Reported: 07/08/05 15:34

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Trip	5F30001-01	Water	06/29/05 09:45	06/30/05 07:55
North Well	5F30001-02	Water	06/29/05 09:00	06/30/05 07:55
South Well	5F30001-03	Water	06/29/05 09:00	06/30/05 07:55

Reported: 07/08/05 15:34

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Trip (5F30001-01) Water									
Benzene	ND	0.00100	mg/L	1	EG50111	07/01/05	07/05/05	EPA 8021B	
Toluene	ND	0.00100	-			•	n	*	
Ethylbenzene	ND	0.00100	n			"	-		
Xylene (p/m)	ND	0.00100			*		"		
Xylene (o)	ND	0.00100	•				м	**	
Surrogate: a,a,a-Trifluorotoluene		87.0%	80-12	0	"	"	"	17	
Surrogate: 4-Bromofluorobenzene		94.3 %	80-12	0	"	"	p	"	
North Well (5F30001-02) Water									
Benzene	ND	0.00100	mg/L.	1	EG50111	07/01/05	07/02/05	EPA 8021B	
Toluene	ND	0.00100	•		n	*			
Ethylbenzene	ND	0.00100	Ŧ		n			*	
Xylene (p/m)	ND	0.00100	ħ	"			۳		
Xylene (o)	ND	0.00100	-	•	**				
Surrogate: a,a,a-Trifluorotoluene		82.7 %	80-12	0	"	"	17	p	
Surrogate: 4-Bromofluorobenzene		91.8 %	80-12	0	7	"	,	P	
South Well (5F30001-03) Water									
Benzene	ND	0.00100	mg/L.	I	EG50111	07/01/05	07/02/05	EPA 8021B	
Toluene	ND	0.00100		•		-	-	-	
Ethylbenzene	ND	0.00100	-	×	-		-	*	
Xylene (p/m)	ND	0.00100		-	*	"		-	
Xylene (o)	ND	0.00100	n	H	*	*	H	"	
Surrogate: a,a,a-Trifluorotoluene		82.1 %	80-12	0	"	77	п	"	

80-120

90.7 %

Environmental Lab of Texas

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 2 of 10

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

.

Reported: 07/08/05 15:34

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
North Well (5F30001-02) Water									
Chloride	. 99,3	5.00	mg/L	10	EG50711	07/06/05	07/06/05	EPA 300.0	
Specific Conductance (EC)	872	5.00	umhos/cm	1	EG50502	06/30/05	06/30/05	EPA 120.1	
Total Dissofved Solids	583	5.00	mg/L	Ħ	EF53006	06/30/05	07/01/05	EPA 160.1	
South Well (5F30001-03) Water									
Chloride	73.4	5.00	mg/L	10	EG50711	07/06/05	07/06/05	EPA 300.0	
Specific Conductance (EC)	1000	5.00	umhos/cm	1	EG50502	06/30/05	06/30/05	EPA 120.1	
Total Dissolved Solids	573	5.00	mg/L		EF53006	06/30/05	07/01/05	EPA 160.1	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 3 of 10

Reported: 07/08/05 15:34

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

[Reporting					······································		
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
North Well (5F30001-02) Water	· · · · · · · · · · · · · · · · · · ·								
Mercury	ND	0.00100	mg/L	2	EG50807	07/08/05	07/08/05	EPA 7470A	
Arsenic	ND	0.00800		1	EG50102	06/30/05	07/01/05	EPA 6010B	
Barium	0.0718	0.00100	n			14	*	-	
Cadmium	0.00190	0.00100		•	"	n		•	
Chromium	ND	0.00500	-		•			n	
Lead	ND	0.0110	-	"	•		•	**	
Selenium	0.00840	0.00400		-			"	*	
Silver	ND	0.00500		•	"	*	-	n	
South Well (5F30001-03) Water									
Mercury	ND	0.00100	mg/L	2	EG50807	07/08/05	07/08/05	EPA 7470A	
Arsenic	ND	0.00800	•	1	EG50102	06/30/05	07/01/05	EPA 6010B	
Barium	0.203	0.00100	-			*	•	-	
Cadmium	0.00800	0.00100	•	n			-	•	
Chromium	0.0174	0.00500	-					"	
Lead	0.0164	0.0110		•			"	"	
Selenium	ND	0.00400	•	"	*	r			
Silver	ND	0.00500		*	*		-	-	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 4 of 10

Reported: 07/08/05 15:34

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Anatyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG50111 - EPA 5030C (GC)										
Blank (EG50111-BLK1)				Prepared &	Analyzed:	07/01/05				
Benzene	ND	0,00100	mg/L.							
Toluene	ND	0,00100	"							
Ethylbenzene	ND	0.00100	n							
Xylene (p/m)	ND	0.00100	•							
Xylene (o)	ND	0.00100								
Surrogate: a,a,a-Trifluorotoluene	92.1		ug/l	100		92.1	80-120		·····	
Surrogate: 4-Bromofluorobenzene	92.3		"	100		92.3	80-120			
LCS (EG50111-BS1)				Prepared &	Analyzed:	07/01/05				
Benzene	103		ug/l	100		103	80-120			
Toluene	93.6		-	100		93.6	80-120			
Ethylbenzene	97.1			100		97.1	80-120			
Xylene (p/m)	175		-	200		87.5	80-120			
Xylene (o)	89.6		•	100		89.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	116		"	100		116	80-120			
Surrogate: 4-Bromofluorobenzene	115		n	100		115	80-120			
Calibration Check (EG50111-CCV1)				Prepared: (07/01/05 Ai	nalyzed: 07	/05/05			
Benzene	106		ug/l	100		106	80-120		.	
Toluene	93.4			100		93.4	80-120			
Ethylbenzene	95.5		۳	100		95.5	80-120			
Xylene (p/m)	173		"	200		86.5	80-120			
Xylene (0)	91.6		*	100		91.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	107		n	100		107	80-120		····	
Surrogate: 4-Bromofluorobenzene	119		**	100		119	80-120			
Matrix Spike (EG50111-MS1)	Sou	rce: 5F30001-(01	Prepared: 0	7/01/05 Ai	nalyzed: 07	/02/05			
Benzene	91.6		ug/I	100	ND	91.6	80-120			
Toluene	81.3		-	100	ND	81.3	80-120			
Ethylbenzenc	89.5		۳	100	ND	89.5	80-120			
Xylene (p/m)	160			200	ND	80.0	80-120			
Xylene (0)	89.4		**	100	ND	89.4	80-120			
Surrogate: a,a,a-Trifluorotoluene	95.5		n	100		95.5	80-120			
Surrogate: 4-Bromofluorobenzene	120		"	100		120	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entircty, with written approval of Environmental Lab of Texas.

Page 5 of 10

Fax: (281) 394-2051

Reported: 07/08/05 15:34

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte Batch EG50111 - EPA 5030C (GC)	Result	Reporting Limit Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Matrix Spike Dup (EG50111-MSD1)	Sour	e: 5F30001-01	Prepared:	07/01/05 A	nalyzed: 07	/05/05			
Benzene	85.2	ug/l	100	ND	85.2	80-120	7.24	20	
Toluene	83.8	*	100	ND	83.8	80-120	3.03	20	
Ethylbenzene	90.8	•	100	ND	90.8	80-120	1.44	20	
Xylene (p/m)	166		200	ND	83.0	80-120	3.68	20	
Xylene (0)	87.2	*	100	ND	87.2	80-120	2.49	20	
Surrogate: a,a,a-Trifluorotoluene	88.0	<i>n</i>	100		88.0	80-120			
Surrogate: 4-Bromofluorobenzene	113	9	100		113	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 6 of 10

8)

Reported: 07/08/05 15:34

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Kisin				Лсэш					
Batch EF53006 - Filtration Preparation			 							
Blank (EF53006-BLK1)				Prepared: 06/30/05 Analyzed: 07/0		/01/05				
Total Dissolved Solids	ND	5.00	mg/L							
Duplicate (EF53006-DUP1)	Sou	rce: 5F29010	-01	Prepared: 06/30/05 Analyzed: 07/01/05			/01/05			
Fotal Dissolved Solids	7110	10.0	mg/L		7230			1.67	20	
Batch EG50502 - General Preparation (V	VetChem)									
Calibration Check (EG50502-CCV1)				Prepared &	Analyzed:	06/30/05				
Specific Conductance (EC)	1420		umhos/cm	1410		101	80-120			
Duplicate (EG50502-DUP1)	Sou	rce: 5F30001	-02	Prepared &	Analyzed:	06/30/05				
Specific Conductance (EC)	870	5.00	umhos/cm		872			0.230	20	
Batch EG50711 - General Preparation (V	VetChem)									
Blank (EG50711-BLK1)				Prepared &	Analyzed:	07/06/05				
Chloride	ND	0.500	mg/L		<u></u>					
LCS (EG50711-BS1)				Prepared &	Analyzed:	07/06/05				
Chloride	10.5		mg/L	10.0		105	80-120			
Calibration Check (EG50711-CCV1)				Prepared &	Analyzed:	07/06/05				
Chloride	10.7		mg/L	10.0	· · · · · · · · · · · · · · · · · · ·	107	80-120			
Duplicate (EG50711-DUP1)	Sou	rce: 5F30001	-02	Prepared &	: Analyzed:	07/06/05				
Chloride	99.4	5.00	mg/L		99.3			0.101	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 7 of 10

Reported: 07/08/05 15:34

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG50102 - EPA 3005A										
Blank (EG50102-BLK1)				Prepared: (6/30/05 Ar	nalyzed: 07	/01/05			
Arsenic	ND	0.00800	mg/L							
Barium	ND	0.00100								
Cadmium	ND	0.00100	n							
Chromium	ND	0.00500								
Lead	ND	0.0110	"							
Selenium	ND	0.00400								
Silver	ND	0.00500	R							
LCS (EG50102-BS1)				Prepared: (6/30/05 Ar	nalyzed: 07	/01/05			
Arsenic	0.811	0.00800	mg/L	0.800		101	85-115			
Barium	0.197	0.00100	-	0.200		98.5	85-115			
Cadmium	0.187	0.00100	-	0.200		93.5	85-115			
Chromium	0.194	0.00500	"	0.200		97.0	85-115			
Lead	0.936	0.0110		1.10		85.1	85-115			
Selenium	0.364	0.00400	p	0.400		91.0	85-115			
Silver	0.110	0.00500		0.100		110	85-115			
LCS Dup (EG50102-BSD1)				Prepared: 0	6/30/05 Ar	nałyzed: 07	/01/05			
Arsenic	0.778	0.00800	mg/L	0.800		97.2	85-115	4.15	20	
Barium	0.191	0.00100		0,200		95.5	85-115	3.09	20	
Cadmium	0.186	0.00100	*	0.200		93.0	85-115	0.536	20	
Chromium	0.180	0.00500	-	0.200		90.0	85-115	7.49	20	
Lead	1.18	0.0110	**	1.10		107	85-115	23.1	20	
Selenium	0.365	0.00400	•	0.400		91.2	85-115	0.274	20	
Silver	0.0998	0.00500		0.100		99.8	85-115	9.72	20	
Calibration Check (EG50102-CCV1)				Prepared: 0	6/30/05 An	nalyzed: 07	/01/05			
Arsenic	1.10		mg/L	1.00		110	90-110			
Barium	1.09			1.00		109	90-110			
Cadmium	1.08			1.00		108	90-110			
Chromium	1.06		-	1.00		106	90-110			
Lead	0.915			1.00		91.5	90-110			
Selenium	0.929		•	1.00		92.9	90-110			
Silver	0.524		-	0.500		105	90-110			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Reported: 07/08/05 15:34

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Anaryte	Result		Onus	Level	Kçsuli	70REC	Lunats	KID	Linia	notes
Batch EG50102 - EPA 3005A		······································						·		
Matrix Spike (EG50102-MS1)	Sou	rce: 5F16004-	03	Prepared: (6/30/05 A	nalyzed: 07	/01/05			
Arsenic	1.61	0.00800	mg/L	0.800	0.657	119	75-125			
Barium	1.85	0.00100	•	0.200	1.67	90.0	75-125			
Cadmium	0.892	0.00100	"	0.200	0.667	112	75-125			
Chromium	0.476	0.00500	۳	0.200	0.277	99 .5	75-125			
Lead	2.11	0.0110		1.10	1.07	94,5	75-125			
Selenium	1.94	0.00400	•	0.400	1.52	105	75-125			
Silver	0.359	0.00500		0.100	0.282	77.0	75-125			
Batch EG50807 - EPA 7470A										
Blank (EG50807-BLK1)				Prepared &	Analyzed:	07/08/05				
Мегсшту	ND	0.00100	mg/L							· · · · · · · · · · · · · · · · · · ·
LCS (EG50807-BS1)				Prepared &	Analyzed:	07/08/05				
Mercury	0.00170	0.000500	mg/L	0.00200		85.0	85-115			
Calibration Check (EG50807-CCV1)				Prepared &	Analyzed:	07/08/05				
Mercury	0.00103		mg/L	0.00100		103	90-110	······		
Matrix Spike (EG50807-MS1)	Sou	rce: 5G01015-	02	Prepared &	Analyzed:	07/08/05				
Мегсигу	0.00212	0.000500	mg/L		ND	<u> </u>	75-125			
Matrix Spike Dup (EG50807-MSD1)	Sou	rce: 5G01015-	-02	Prepared &	: Analyzed:	07/08/05				
Mercury	0.00206	0.000500	mg/L	·	ND		75-125	2.87	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 9 of 10

Reported: 07/08/05 15:34

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplícate

Report Approved By:

Raland K Junes

7/8/2005

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

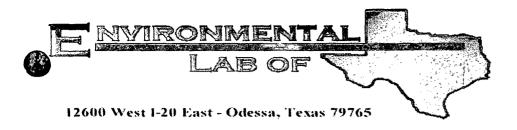
The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 10 of 10

CHAIN OF CUSTODY RECORD AND ANALYSIS RECORD CHAIN OF CUSTODY RECORD AND ANALYSIS RECORD CHAIN OF CUSTODY RECORD AND ANALYSIS RECORD CHAIN OF CUSTODY RECORD AND ANALYSIS RECORD CHAIN OF CUSTODY RECORD AND ANALYSIS RECORD CHAIN OF CUSTODY RECORD AND ANALYSIS RECORD CHAIN OF CUSTODY RECORD AND ANALYSIS RECORD COARD ANALYSIS RECORD CHAIN OF CUSTODY RECORD AND ANALYSIS RECORD COARD ANALYSIS RECORD CHAIN OF CUSTODY RECORD AND ANALYSIS RECORD COARD ANALYSIS RECORD CHAIN OF CUSTODY RECORD AND ANALYSIS COARD ANALYSIS RECORD CHAIN OF CUSTODY RECORD AND ANALYSIS COARD ANALYSIS RECORD CHAIN OF CUSTODY RECORD AND ANALYSIS COARD ANALYSIS RECORD CHAIN OF CUSTODY RECORD AND ANALYSIS COARD ANALYSIS RECORDS CHAIN OF CUSTODY RECORD AND ANALYSIS COARD ANALYSIS RECORDS CHAIN OF CUSTODY RECORD AND ANALYSIS COARD ANALYSIS RECORDS CHAIN OF CUSTODY RECORD AND ANALYSIS COARD ANALYSIS CHAIN OF CUSTODY RECORD AND ANALYSIS COARD ANALYSIS CHAIN OF CUSTODY RECORD AND AND ANALYSIS COARD ANALYSIS CHAIN OF CUSTODY RECORD AND AND ANALYSIS COARD AND ANALYSIS CHAIN OF CUSTODY RECORD AND AND ANALYSIS COARD AND ANALYSIS CHAIN OF CUSTODY RECOR	
CHUM OF CUSTOPY RECORD AND ANLYSIS RECUEST CHUM OF CUSTOPY RECORD AND ANLYSIS RECUEST CHUM OF CUSTOPY RECORD AND ANLYSIS RECUEST POINT IN THE PRIME INCOME POINT INTER PRIME INCOME POINT INTER PRIME INCO	
This Sampled Park No. (281) 7ax No.	
This Sampled Park No. (281) 7ax No.	
This Sampled Park No. (281) 7ax No.	0.155 20 20 255 20 1755 20 20 20 20 20 20 20 20 20 20 20 20 20
This Sampled Park No. (281) 7ax No.	94494 1
This Sampled Park No. (281) 7ax No.	
This Sampled Park No. (281) 7ax No.	0.154 Strange 20.154
This Sampled Park No. (281) 7ax No.	101 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102 - 102
This Sampled Park No. (281) 7ax No.	
This Sampled Park No. (281) 7ax No.	0.048 ac
This Sampled Park No. (281) 7ax No.	242 25 26 28 28 28 28 28 28 28 28 28 28 28 28 28
This Sampled Park No. (281) 7ax No.	2008 - 200
This Sampled Park No. (281) 7ax No.	
This Sampled Park No. (281) 7ax No.	20-31-95
This Sampled Park No. (281) 7ax No.	
This Sampled Park No. (281) 7ax No.	5
Tax No: 7394-21651 1 1 281) 394-21651 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<	8
Time Sampled Time Sampled 1	
Time Sampled Time Sampled 1	
Time Sampled Time Sampled 1	83
Time Sampled Time Sampled 1	1834
BS, Inc. Tat No. 135 11.1. 135 11.1. 135 11.1. 135 11.1. 135 11.1. 135 11.1. 135 11.1. 135 11.1. 136 11.1. 137 11.1. 138 11.1. 139 11.1. 130 11.1. 130 11.1. 130 11.1. 131 11.1. 131 11.1. 131 11.1. 131 11.1. 131 11.1. 131 11.1. 131 11.1. 131 11.1. 131 11.1. 131 11.1. 131 11.1. 131 11.1. 132 11.1. 132 11.1. 133 11.1. 134 11.1. 135 11.1. 135 11.1. 135 11.1. 135 11.1. 136 11.1. 136 11.1. 137 11.1. 137 11.1. <td>Sp</td>	S p
35, Inc. 13 14 15 15 15 15 15 15 15 15 15 15	
as. Inc. 135. 135. 135. <td></td>	
BS, Inc. Tax No 13 111. 13 111. 14 111. 11	
35, Inc. 18, Inc. 18, Inc. 18, Inc. 19, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	27. Ce Par
as, Inc. tal, Inc. 20050629 200506 200	33
as, Inc. tal, Inc. 20050629 20050	
35, Inc. 18, Inc. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	
BS, IDC 133, IDC 133, IDC 133, IDC 133, IDC 133, IDC 134, Inc. 134, Inc. 135, IDC 135, IDC 135	
	NP I
Lab of Texa: Phone: 915-683-1800 Fax: 915-683-1713 Criffin I Arbor Cave I Arbor Cave I Arbor Cave (713) 775-6350 (713) 775-750 (713) 775-750 (713) 775-750 (713) 775-750 (713) 775-750 (715) 77	
Lab of T Phone: 915- Fax: 915-	1
2 20 20 20 20 20 20 20 20 20 20 20 20 20	_
ironmental Lab of esti-20 East Toxes 79763 Fax: 91 Project Namager: M. Griffin Company Address: 2103 Arbor Cove ChylStamatzp: Katty, Texas 77494 ChylStamatzp: Katty,	1
D East 10 East	
Nyironn owesti-20 Eae sea, Texes 7976 Project M Company A Company	1
	1
	1
Environm 12600 Weat I-20 East Company Adu Company Adu	

.

Soils Section


This section contains copies of six individual laboratory analytical reports along with their associated chains of custody and quality control information. A summary sheet is also provided to guide the reader through the various test sections.

Devon Energy Company B.C. Dickinson Remediation Project Laboratory Analytical Summary

Pit Area									
Sample Point	Report Date	Lab. I.D.	Chloride (ppm)						
North Wall	3/31/2005	5C28001-01	76						
East Wall	5/5/2005	5E02020-02	315						
South Wall	5/5/2005	5E02020-03	107						
West Wall	5/5/2005	5E02020-04	351						
Bottom	3/31/2005	5C28001-03	286						

	Pit L	Pit Lifts					
Sample Point	Report Date	Lab. I.D.	Chloride (ppm)				
Lift 1	5/17/2005	5E13026-01	546				
Lift 2	5/17/2005	5E13026-02	169				
Lift 3	5/17/2005	5E13026-03	142				
Lift 4	5/17/2005	5E13026-04	153				
Lift 5	5/17/2005	5E13026-05	155				
Lift 6	5/17/2005	5E13026-06	188				

Borrow Pit Plifts										
Sample Point	Report Date	Lab. I.D.	Chloride (ppm)							
Lift 1	6/16/2005	5F13009-01	621							
Lift 2	6/16/2005	5F13009-02	122							
Lift 3	6/16/2005	5F13009-03	521							
Lift 4	6/16/2005	5F13009-04	103							
Lift 5	6/16/2005	5F13009-05	170							

Analytical Report

Prepared for: Mike Griffin WHOLE EARTH ENVIRONMENTAL 2103 Arbor Cove Katy, TX 77494

Project: Devon Project Number: Dickinson Battery Location: None Given

Lab Order Number: 5C28001

Report Date: 03/31/05

Fax: (281) 394-2051

Reported: 03/31/05 11:15

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Pit N. Wall	5C28001-01	Soil	03/28/05 00:00	03/28/05 10:55
Pit E. Wall	5C28001-02	Soil	03/28/05 00:00	03/28/05 10:55
Bottom	5C28001-03	Soil	03/28/05 00:00	03/28/05 10:55
Spread Composite	5C28001-04	Soil	03/28/05 00:00	03/28/05 10:55

Page 1 of 9

Project: Devon Project Number: Dickinson Battery Project Manager: Mike Griffin

Reported: 03/31/05 11:15

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Pit N. Wall (5C28001-01) Soil		<u></u>		:		·			
Benzene	0.554	0.100	mg/kg dry	100	EC53009	03/28/05	03/28/05	EPA 8021B	
Toluene	3.80	0.100	n	"	۳	*	*		
Ethylbenzene	4.86	0.100	-	*	"	n	*	"	
Xylene (p/m)	18.8	0.100	-	*		77	•		
Xylene (0)	6.15	0.100	-		•		•	-	
Surrogate: a,a,a-Trifluorotoluene		169 %	80-1	20	"	tt	n	17	S-0
Surrogate: 4-Bromofluorobenzene		95.I %	80-1	20	"	"	"	e	
Gasoline Range Organics C6-C12	965	10.0	mg/kg dry	1	EC52901	03/29/05	03/29/05	EPA 8015M	
Diesel Range Organics >C12-C35	4640	10.0	-	"		-		Ħ	
Total Hydrocarbon C6-C35	5600	10.0	۳	"	-	-	"	-	
Surrogate: 1-Chlorooctane		129 %	67.6-	140	"	#	1	F?	
Surrogate: 1-Chlorooctadecane		129 %	70-1	30		"		17	
Pit E. Wall (5C28001-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EC53009	03/28/05	03/28/05	EPA 8021B	
Toluene	ND	0.0250	"					*	
Ethylbenzene	J [0.0246]	0.0250					-		
Xylene (p/m)	0.105	0.0250		"	"	"		-	
Xylene (o)	J [0.0176]	0.0250		-	-	*1	*	-	
Surrogate: a,a,a-Trifluorotoluene	· · · · · · · · · · · · · · · · · · ·	113 %	80-1	20	"	ti	n	"	·····
Surrogate: 4-Bromofluorobenzene		87.7 %	80-1	20	,,	7	"	"	
Gasoline Range Organics C6-C12	36.5	10.0	mg/kg dry	I	EC52901	03/29/05	03/29/05	EPA 8015M	
Diesel Range Organics >C12-C35	128	10.0	n	-			-	-	
Total Hydrocarbon C6-C35	164	10.0		-	N		"	۳	
Surrogate: 1-Chlorooctane		128 %	67.6-	140	H	n	"	n	
Surrogate: 1-Chlorooctadecane		123 %	70-1	30	"	"		7	
Bottom (5C28001-03) Soil									
Benzene	1.24	0.100	mg/kg dry	100	EC53009	03/28/05	03/28/05	EPA 8021B	
Toluene	5.31	0.100	*		"	-	"		
Ethylbenzene	5.69	0.100		*		-	-		
Xylene (p/m)	17.7	0.100	-	•	•	-	-	•	
Xylene (o)	6.31	0.100				n	Ħ	π	
Surrogate: a,a,a-Trifluorotoluene		189 %	80-1	20	"	"	"	"	S-0-
Surrogate: 4-Bromofluorobenzene		105 %	80-1.	20	"	"	"	"	
Gasoline Range Organics C6-C12	1330	10.0	mg/kg dry	1	EC52901	03/29/05	03/29/05	EPA 8015M	
Diesel Range Organics >C12-C35	5280	10.0	*	-		•	•	-	
Total Hydrocarbon C6-C35	6610	10.0	-	-		-			

Environmental Lab of Texas

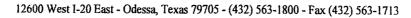
The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 2 of 9

Reported: 03/31/05 11:15

Organics by GC

Environmental Lab of Texas


Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Bottom (5C28001-03) Soil									
Surrogate: 1-Chlorooctane		126 %	67.6-	140	EC52901	03/29/05	03/29/05	EPA 8015M	
Surrogate: 1-Chlorooctadecane		122 %	70-1	30	"	"	"	H	
Spread Composite (5C28001-04) Soil									
Benzene	ND	0.0500	mg/kg dry	50	EC53009	03/28/05	03/28/05	EPA 8021B	•
Toluene	J [0.0403]	0.0500	*		-		ě1	19	ſ
Ethylbenzene	0.169	0.0500		•		"	•	"	
Xylene (p/m)	0.904	0.0500		*	•	Ħ			
Xylene (o)	0.363	0.0500	•	•	•	*	H	-	
Surrogate: a,a,a-Trifluorotoluene		120 %	80-1	20	Ħ	n	"	tt.	
Surrogate: 4-Bromofluorobenzene		84.1 %	80-1.	20	"	"	"		
Gasoline Range Organics C6-C12	416	10.0	mg/kg dry	1	EC52901	03/29/05	03/29/05	EPA 8015M	
Diesel Range Organics >C12-C35	3280	10.0		*			N	-	
Total Hydrocarbon C6-C35	3700	10.0		"		*	"		
Surrogate: 1-Chlorooctane		162 %	67.6-	140	"	17	"	#	S-04
Surrogate: I-Chlorooctadecane		208 %	70-1.	30	"	Π	"	"	S-04

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 3 of 9

. .



Reported: 03/31/05 11:15

General Chemistry Parameters by EPA / Standard Methods

Environmental I	Lab of Texa	IS
-----------------	-------------	----

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Pit N. Wall (5C28001-01) Soil									
Chloride	76.6	5.00	mg/kg	10	EC53014	03/30/05	03/30/05	EPA 300.0	
% Moisture	12.1	0.1	%	1	EC52904	03/28/05	03/29/05	% calculation	
Pit E. Wall (5C28001-02) Soil									
Chloride	668	25.0	mg/kg	50	EC53014	03/30/05	03/30/05	EPA 300.0	
% Moisture	9.2	0.1	%	1	EC52904	03/28/05	03/29/05	% calculation	
Bottom (5C28001-03) Soil									
Chloride	286	10.0	mg/kg	20	EC53014	03/30/05	03/30/05	EPA 300.0	
% Moisture	7.3	0.1	%	1	EC52904	03/28/05	03/29/05	% calculation	
Spread Composite (5C28001-04) Soil									
Chloride	344	10.0	mg/kg	20	EC53014	03/30/05	03/30/05	EPA 300.0	
% Moisture	7.8	0.1	%	i	EC52904	03/28/05	03/29/05	% calculation	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 4 of 9

Reported: 03/31/05 11:15

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EC52901 - Solvent Extraction (GC)										
Blank (EC52901-BLK1)				Prepared &	Analyzed:	03/29/05				
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	10.0	"							
Total Hydrocarbon C6-C35	ND	10.0								
Surrogate: 1-Chlorooctane	35.0		mg/kg	50.0		70.0	67.6-140			
Surrogate: 1-Chlorooctadecane	36.5		"	50.0		73.0	70-130			
LCS (EC52901-BS1)				Prepared &	Analyzed:	03/29/05				
Gasoline Range Organics C6-C12	452	10.0	mg/kg wet	500		90.4	76.3-104			
Diesel Range Organics >C12-C35	560	10.0	"	500		112	76.1-118			
Total Hydrocarbon C6-C35	1010	10.0	-	1000		101	81.8-105			
Surrogate: 1-Chlorooctane	39.9		mg/kg	50.0		79.8	67.6-140			
Surrogate: 1-Chlorooctadecane	37.6		"	50,0		75.2	70-130			
Calibration Check (EC52901-CCV1)				Prepared &	Analyzed:	03/29/05				
Gasoline Range Organics C6-C12	495		mg/kg	500		99.0	80-120			
Diesel Range Organics >C12-C35	494		н	500		98.8	80-120			
Total Hydrocarbon C6-C35	989		-	1000		98.9	80-120			
Surrogate: 1-Chlorooctane	48.8		N	50.0		97.6	67.6-140			·
Surrogate: 1-Chlorooctadecane	40.7		ø	50.0		81.4	70-130			
Matrix Spike (EC52901-MS1)	Sou	rce: 5C28004	i-01	Prepared &	Analyzed:	03/29/05				
Gasoline Range Organics C6-C12	494	10.0	mg/kg dry	570	ND	86.7	75.9-114			
Diesel Range Organics >C12-C35	631	10.0	*	570	ND	111	85.3-122			
Total Hydrocarbon C6-C35	1130	10.0		1140	ND	99.1	84.4-115			
Surrogate: 1-Chlorooctane	50.0		mg/kg	50.0		100	67.6-140			
Surrogate: 1-Chlorooctadecane	64.1		"	50.0		128	70-130			
Matrix Spike Dup (EC52901-MSD1)	Sou	rce: 5C28004	i-01	Prepared &	Analyzed:	03/29/05				
Gasoline Range Organics C6-C12	495	10.0	mg/kg dry	570	ND	86.8	75.9-114	0.202	10.4	
Diesel Range Organics >C12-C35	627	10.0	*	570	ND	110	85.3-122	0.636	10.4	
Total Hydrocarbon C6-C35	1120	10.0	7	1140	ND	98.2	84.4-115	0.889	7.6	
Surrogate: 1-Chlorooctane	50.8		mg/kg	50.0		102	67.6-140			
Surrogate: 1-Chlorooctadecane	62.9		"	50.0		126	70-130			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entircty, with written approval of Environmental Lab of Texas.

Page 5 of 9

03/31/05 11:15

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD					
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes				
Batch EC53009 - EPA 5030C (GC)														
Blank (EC53009-BLK1)				Prepared: ()3/28/05 A	nalyzed: 03	/29/05							
Benzene	ND	0.0250	mg/kg wet	!										
Toluene	ND	0.0250	**											
Ethylbenzene	ND	0.0250	-											
Xylene (p/m)	ND	0.0250	-											
Xylene (0)	ND	0.0250	я											
Surrogate: a,a,a-Trifluorotoluene	98.5		ug/kg	100		98.5	80-120							
Surrogate: 4-Bromofluorobenzene	84.5		"	100		84.5	80-120							
LCS (EC53009-BS1)				Prepared &	Analyzed:	03/28/05								
Benzene	107		ug/kg	100		107	80-120							
Toluene	110			100		110	80-120							
Ethylbenzene	113		"	100		113	80-120							
Xylene (p/m)	237			200		118	80-120							
Xylene (o)	116			100		116	80-120							
Surrogate: a,a,a-Trifluorotoluene	118		"	100		118	80-120							
Surrogate: 4-Bromofluorobenzene	119		*	100		119	80-120							
Calibration Check (EC53009-CCV1)		Prepared: 03/28/05 Analyzed: 03/29/05												
Benzene	93.3		ug/kg	100		93.3	80-120							
Toluene	93.2			100		93.2	80-120							
Ethylbenzene	87.2		*	100		87.2	80-120							
Xylene (p/m)	189			200		94.5	80-120							
Xylene (o)	95.1		-	100		95.1	80-120							
Surrogate: a,a,a-Trifluorotoluene	117		n	100		117	80-120							
Surrogate: 4-Bromojluorobenzene	84.6		"	100		84.6	80-120							
Matrix Spike (EC53009-MS1)	Sou	rce: 5C28005	-05	Prepared: 0)3/28/05 Ai	nalyzed: 03	/29/05							
Benzene	95.1		ug/kg	100	ND	95.1	80-120							
Toluene	98.9		7	100	ND	98.9	80-120							
Ethylbenzene	98.0			100	ND	98.0	80-120							
Xylene (p/m)	217			200	ND	108	80-120							
Xylene (o)	107		-	100	ND	107	80-120							
Surrogate: a,a,a-Trifluorotoluene	117		,,	100		117	80-120							
Surrogate: 4-Bromofluorobenzene	92.7		"	100		<i>92</i> .7	80-120							

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 6 of 9

Reported: 03/31/05 11:15

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD Limit	Notes					
Batch EC53009 - EPA 5030C (GC)														
Matrix Spike Dup (EC53009-MSD1)	Sourc	e: 5C28005-6)5	Prepared: 0)3/28/05 Ai	nalyzed: 03	/29/05							
Benzene	95.3		ug/kg	100	ND	95.3	80-120	0.210	20					
Toluene	98.9		"	100	ND	98.9	80-120	0.00	20					
Ethylbenzene	102			100	ND	102	80-120	4.00	20					
Xylene (p/m)	232			200	ND	116	80-120	7.14	20					

n

-

...

100

100

100

ND

117

113

107

80-120

80-120

80-120

8.93

20

117

113

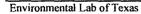
107

Surrogate: a,a,a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene

Xylene (o)

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.


Page 7 of 9

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

				Spike	Source		%REC		RPD	
Analyte	Result	Reporting Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EC52904 - General Preparation (Prep)										
Blank (EC52904-BLK1)				Prepared: 0	3/28/05 A	nalyzed: 03	/29/05			
% Moisture	ND	0.1	%							
Duplicate (EC52904-DUP1)	Sou	rce: 5C28001-	01	Prepared: 0	3/28/05 A	nalyzed: 03	/29/05			
% Moisture	11.1	0.1	%		12.1			8.62	20	
Batch EC53014 - Water Extraction				·····						
Blank (EC53014-BLK1)				Prepared &	Analyzed:	03/30/05				
Chloride	ND	0.500	mg/kg							
LCS (EC53014-BS1)				Prepared &	Analyzed:	03/30/05				
Chloride	10.5		mg/L	10.0		105	80-120			
Calibration Check (EC53014-CCV1)				Prepared &	Analyzed:	03/30/05				
Chloride	10.6		mg/L	10.0		106	80-120			
Duplicate (EC53014-DUP1)	Sour	rce: 5C25006-	51	Prepared &	Analyzed:	03/30/05				
Chloride	449	49 25.0 mg/kg 444						1.12	20	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 8 of 9

Reported: 03/31/05 11:15

Notes and Definitions

- S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
- J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Report Approved By:

Raland K. Just

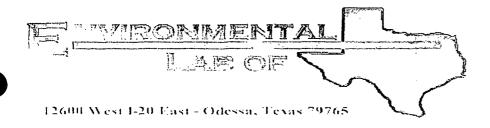
3/31/2005

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.


Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 9 of 9

\mathbf{i}	i	ł	1	1					l	TAT bisbri	med						1	— 1						<u></u>	<u></u>	<u></u>		3
	1									eluberto&-erg) TAT H& TAT history		-									-+	\neg		8788			5.5	
			1			1		<u>مر مين</u>			-	-			ber		_		-1	-+	-+	-				633		
- 5											-†	-1	-1							-	+			541	5.00			8
																								6 N	o'!	S),		
REG											0.3													No t	<u> </u>	2		
SIS											A.2													1. L		101	.	
CHAIN OF CUSTODY RECORD AND ANAL YSIS REQUEST		Project #: Dickinson Battery					È-	17		nides EX 8051842030		<u> </u>	X	××	ΧX					-+	-+	_		niaet's Receip		3	$\hat{\boldsymbol{y}}_{i}$	
DAI		Ba					Analyze For	Ĥ		EX 8031816030	-+	7	শ	$\hat{}$	1						-+	-		U Star		1		
AN		E S					計	T		seggej				-					-		$\neg \uparrow$	-		tanets Lipont	5			
ORI	Project Name: Devon	Ę						T	45	BH dq 10 b0 s6 gA sA selete	111													Sample Coul Feriple ature		÷		
REC	å	ă					914	TOTAL		OSTONEM GROADRO	31	×	×	×	X									Sample C				
λας	ime:	÷	Project Loc:	₽0 ₩			f	- 12		9001/9001 XL H														8 F.	<u>1988/</u>			
I STC	t Na	alor	ect	a .						1814H										_	-+				æ		.	
5	ojec	Ď.	Pol					1		2 \ CF \ 2VB \ EC uet.(sbecg\):		-	_								-		_		Time			
Ő M	ő.								×			×	×	×	×					-	-+					-		
CHAU									Matrix			7	-		<u> </u>					-	-+				ø		¥, X	
Ť		1		1	1		1			1981		1	-						-	-1	$-\mathbf{f}$			۸.	Date		Ğ.	
										ner (Specify)	ю													ASAP				
					5				9	9U														S	. [6287	1
					8				vativ	705											-							
					281.394.2051				Preservative	HO	PN DH	-									\dashv					ľ		
					<u>8</u>				ā	107											-+							
					~]							\mathbf{x}	×	×	×							-			{			r
	-	. taisi			199		1.5		52	of Containera		1		蕸		àс,		ŚŚ.	1	323	28	35	19. 19.		8.30	×.;	(n, 0)	
					ä						-+-	-	-							-+	-+				1		1.11	
					Fax No:					belqms2 em									1						1		10 A	
					84.					helome2.em	"									[1	
											-	_									$ \rightarrow $		_				6	
												8	8	8	05										×		elved fry EEO	
i							İ.			beiqms2 ets		3/28/05	03/28/05	3/28/05	3/28/05										yd bavle		i perte	
Ž		5										ឌ	ខ	ខ	ខ					•					Recei		Recei	Þ
-	1	E									+	-†		\neg					\neg	$\neg \uparrow$	-+				ħ		eens	
8 8 €		tal			ŧ																				amir	5	line I	
X 8-5		- Bel	1																	- [ľ	10:5	}	
b of Texa: Phone: 915-563-1713 Fax: 915-563-1713		ē		ļ	_										g										14	7		1
ų 55		1 A	e e	-	281.394.2050						빙	1			Spread Composite										afe Date	inger 2	Date	[
		HE	ပီ	Ŧ	8					.	FIELD CODE	Pit N. Wall	Pit E. Wall	Bottom	Ę											N	с . ,	
	e	art	ğ	× 1	E						필		in the second se	B	gg						1				<u> </u>	-+	***	1
<u> </u>	E	e E	A	E	2						"	-			ğ													
a	6	(ho	<u></u>	aty											"				1									
li ti	≥] Ľ	2	8: 2	ă X			l									1	·											1
e	1898.	Nem	dress	1Z/0	Je Ni	stun																		~	-			1
	Mar	any	Adi	City/State/Zip: Katy, TX 77494	ohor.	Sign				160 CAL MARGINE 2004					<u>.</u>	223	9993						8 5	4	1	1	5	1
Environmental Lab of Texas 12600 West 1-20 East Odessa, Texas 79783 Fax: 915-663-1713	Project Manager: <u>M. Griffin</u>	company Name Whole Earth Environmental, Inc.	Company Address: 2103 Arbor Cove	CITY.	Telephone No:	Sampler Signature:					۶I													Special Instructions:		4		1
Texa Texa	Ĕđ	U	ШOС		-	Sam				K.	渊			SQ1					渊					at an	10 P	2	Å,	1
Sa y s			-							Contraction of the second second second second second second second second second second second second second s				P										5	Refinquished by	Ţ	Kelinquished by	
m § §																								peci	eling]
- 40									8		34 M	¥.¥	631	1981 (843) 1		89(A		618H	82K	888 B		S.V	ŋ	14	<u> </u>	ž	1

an an a' 17 an an an Arabi da ann an Arabian Arabian an Arabian an Arabian an Arabian an Arabian an Arabian an

Analytical Report

Prepared for: Mike Griffin

WHOLE EARTH ENVIRONMENTAL 2103 Arbor Cove Katy, TX 77494

Project: Devon Project Number: Dickinson Battery Location: None Given

Lab Order Number: 5E02020

Report Date: 05/05/05

ANALYTICAL REPORT FOR SAMPLES

Sample 1D	Laboratory ID	Matrix	Date Sampled	Date Received
Pit N. Wall	5E02020-01	Soil	05/02/05 09:00	05/02/05 14:45
Pit E. Wall	5E02020-02	Soil	05/02/05 09:10	05/02/05 14:45
Pit S. Wall	5E02020-03	Soil	05/02/05 09:15	05/02/05 14:45
Pit W. Wall	5E02020-04	Soil	05/02/05 09:20	05/02/05 14:45
Battery Bottom Composite	5E02020-05	Soit	05/02/05 10:00	05/02/05 14:45

Reported: 05/05/05 12:51

Organics by GC
Environmental Lab of Texas

Analyte	Deret	Reporting Limit	Units						Net
Pit N. Wall (5E02020-01) Soil	Result	t.mm		Dilution	Batch	Prepared	Analyzed	Method	Notes
						·····	~····		
Benzene	ND	0.0250	nug/kg dry	25	EE50306	05/03/05	05/03/05	EPA 8021B	
Toluene	ND	0.0250		*	n	•	•	•	
Ethylbenzene	ND	0.0250			••	54	24	٣	
Xylene (p/m)	ND	0.0250	87 1	*	*	**	**	"	
Xylenc (o)	ND	0.0250	**		f+		• · ·		
Surrogate: a,a,a-Trìfluorotoluene		82.8 %	80	120	"	n		*	
Surrogate: 4-Bromofluorobenzene		96.1 %	80	120	"	**		**	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EE50205	05/02/05	05/02/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	t:	u	*	••	••	•	
Total Hydrocarbon C6-C35	ND	10.0	**				••		
Surrogate: 1-Chlorooctane		77.6 %	70-	130	"	,	r	"	
Surrogate: 1-Chlorooctudecane		72.8 %	70	130	p	**	,,	"	
Pit E. Wall (5E02020-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE50306	05/03/05	05/03/05	EPA 8021B	
Toluene	ND	0.0250		••	•	n	"		
Ethylbenzene	ND	0.0250	۳		"		•-	•	
Xylene (p/m)	ND	0.0250	•		"			۲	
Xylenc (o)	ND	0.0250		•	•	*	**	*	
Surrogate: a,a,a-Trifluorotoluene	·	83.6 %	80	120	"	"		P	
Surrogate: 4-Bromofluorobenzene		91.7 %	80-,	120	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EE50205	05/02/05	05/02/05	EPA 8915M	
Diesel Range Organics >C12-C35	ND	10.0	••	"	n	h	•		
Total Hydrocarbon C6-C35	ND	10.0	,,	"	*		•	••	
Surrogate: 1-Chlorooctane		84.2 %	70-	130	· · · · · · · · · · · · · · · · · · ·	*	· · · ·		
Surrogate: 1-Chlorooctadecane		77.0%	70-	130	11	"	"	"	
Pit S. Wall (5E02020-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE50306	05/03/05	05/03/05	EPA 8021B	
Toluene	ND	0.0250	"		P		•	۰.	
Ethylbenzene	ND	0.0250				•	*1	"	
Xylene (p/m)	ND	0.0250	"			•	•	"	
Xylenc (o)	ND	0.0250	15		*	n	•		
Surrogate: a,a,a-Trifluorotoluene		81.1 %	80-	20	"	n			
Surrogate: 4-Bromofluorobenzene		104%	80	120	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	ł	E£50205	05/02/05	05/02/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0		*	•	••	•	•	
Total Hydrocarbon C6-C35	ND	10.0		"	**	"	n	*	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 2 of 9

Organics by GC

05/05/05 12:51

		Environ	mental L	ab of Te	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Pit S. Wall (5E02020-03) Soil									
Surrogate: 1-Chlorooctane		86.6 %	70-	130	EE50205	05/02/05	05/02/05	EPA 8015M	
Surrogate: 1-Chlorooctadecane		81.2 %	70-	130	81	••	"	P	
Pit W. Wall (5E02020-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EE50306	05/03/05	05/03/05	EPA 8021B	
Toluene	ND	0.0250	"			•	n		
Ethylbenzene	ND	0.0250					"	n	
Xylone (p/m)	ND	0.0250	*1		**		r		
Xylene (o)	ND	0.0250		в	••				
Surrogate: a,a,a-Trifluorotoluene		80.8 %	80-	120	"	"	"		
Surrogate: 4-Bromofluorobenzene		88.4 %	80-	120	"	"	"	12	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	ł	EE50205	05/02/05	05/02/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	••	u		"	•	*	
Total Hydrocarbon C6-C35	ND	10.0		r	0	n		*	
Surrogate: 1-Chlorooctane		81.8 %	70-	130	,	"		· "	
Surrogate: 1-Chlorooctadecane		75.0 %	70-	130	"	"	"	"	
Battery Bottom Composite (5E02020-05)) Soil								
Benzene	ND	0.0250	mg/kg dry	25	EE50306	05/03/05	05/03/05	EPA 8021B	
Toluene	ND	0.0250	•	n	*	'n	br.	••	
Ethylbenzene	ND	0.0250		**		•,			
Xylene (p/m)	ND	0.0250	н	в				4	
Xylene (o)	ND	0.0250	•		"		•		

80.5 %

91.0 %

10.0

10.0

81.2 %

76.2 %

10.0 mg/kg dry

ſ

ND

ND

ND

80-120

80-120

70-130

70-130

1

Environmental Lab of Texas

Surrogate: a,a,a-Trifluorotoluene

Surrogate: 4-Bromofluorobenzene

Gasoline Range Organics C6-C12

Diesel Range Organics >C12-C35

Total Hydrocarbon C6-C35

Surrogate: 1-Chlorooctane

Surrogate: 1-Chlorooctadecane

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Lexas.

05/02/05

,,

EE50205

••

Page 3 of 9

EPA 8015M

05/02/05

..

Reported: 05/05/05 12:51

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Pit N. Wall (5E02020-01) Soil									
Chloride	385	20.0	mg/kg	40	EE50410	05/04/05	05/04/05	EPA 300.0	
% Moisture	6.7	0.1	9 ₀	ł	EE50301	05/02/05	05/03/05	% calculation	
Pit E. Wall (5E02020-02) Soil									
Chloride	315	20.0	mg/kg	40	EE50410	05/04/05	05/04/05	EPA 300.0	
% Moisture	6.6	0.1	%	ł	EE50301	05/02/05	05/03/05	% calculation	
Pit S. Wall (5E02020-03) Soil									
Chloride	107	5.00	mg/kg	10	EE50410	05/04/05	05/04/05	EPA 300.0	
% Moisture	7.0	0.1	%	ł	EE50301	05/02/05	05/03/05	% calculation	
Pit W. Wall (5E02020-04) Soit									
Chloride	351	20.0	mg/kg	40	EE50410	05/04/05	05/04/05	EPA 300.0	
% Moisture	6.1	0.1	%	I	EE50301	05/02/05	05/03/05	% calculation	
Battery Bottom Composite (5E02020-05) Soil	!								
Chloride	464	25.0	mg/kg	50	EE50410	05/04/05	05/04/05	EPA 300,0	
% Moisture	2.6	0.1	96	I	EE50301	05/02/05	05/03/05	% calculation	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 4 of 9

Reported: 05/05/05 12:51

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE50205 - Solvent Extraction (GC										
Blank (EE50205-BLK1)	·/			Prepared &	Analyzed:	05/02/05				
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	10.0								
Total Hydrocarbon C6-C35	ND	10.0	•							
Surragate: 1-Chlorooctane	38.5		mg kg	50.0		77.0	70-130			
Surrogate: 1-Chlorooctadecane	37.4		"	50.0		74.8	70-130			
LCS (EE50205-BS1)				Prepared &	: Analyzed:	05/02/05				
Gasoline Range Organics C6-C12	411	10.0	mg/kg wet	500	*	82.2	75-125			
Diesel Range Organics >C12-C35	444	10.0		500		88.8	75-125			
Total Hydrocarbon C6-C35	855	10.0	۳	1000		85.5	75-125			
Surrogate: I-Chlorooctane	35.7		mg kg	50.0		71.4	70-130			
Surrogate: 1-Chlorooctadecane	39.8			50.0		79.6	70-130			
Calibration Check (EE50205-CCV1)				Prepared &	Analyzed:	05/02/05				
Gasoline Range Organics C6-C12	428	'	mg/kg	500	,	85.6	80-120			
Diesel Range Organics >C12-C35	520			500		104	80-120			
Total Hydrocarbon C6-C35	948		n	1000		94.8	80-120			
Surrogate: 1-Chlorooctane	46.4		···· ··	50.0		92.8	70-130	-		
Surrogate: 1-Chlorooctadecane	38.2		"	50,0		76,4	70-130			
Matrix Spike (EE50205-MS1)	Sou	rce: 5E02002	2-01	Prepared &	Analyzed:	05/02/05				
Gasoline Range Organics C6-C12	411	10.0	mg/kg dry	503	ND	81.7	75-125			
Diesel Range Organics >C12-C35	545	10.0		503	ND	108	75-125			
Total Hydrocarbon C6-C35	956	10.0	14	1010	ND	94.7	75-125			
Surrogate: 1-Chloraoctane	40.7		mg kg	50.0		81.4	70-130			
Surrogate: 1-Chlorooctadecane	36.1		"	50.0		72.2	70-130			
Matrix Spike Dup (EE50205-MSD1)	Sour	-ce: 5E02002	-01	Prepared &	: Analyzed:	05/02/05				
Gasoline Range Organics C6-C12	495	10.0	mg/kg dry	503	ND	98.4	75-125	18.5	20	••
Diesel Range Organics >C12-C35	523	10.0	"	503	ND	104	75-125	4,12	20	
Total Hydrocarbon C6-C35	1020	10.0	*	1010	ND	101	75-125	6.48	20	
Surrogate: 1-Chlorooctane	-12.0		mg/kg	50.0		84.0	70-130			
Surrogate: 1-Chlorooctadecane	\$ 35.8			50.0		71.6	70-130			

Environmental Lab of Texas

The results in this report apply to the samplex analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 5 of 9

Reported: 05/05/05 12:51

Organics by GC - Quality Control

Environmental Lab of Texas

	,¥	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE50306 - EPA 5030C (GC)										
Blank (EE50306-BLK1)				Prepared &	Analyzed:	05/03/05				
Benzene	ND	0.0250	mg/kg wet				-			
Toluene	ND	0.0250	•							
Ethylbenzene	ND	0.0250	••							
Xylene (p/m)	ND	0.0250								
Xylene (0)	ND	0.0250	r							
Surrogate: a,a,a-Trifluorotoluene	87.8		ug kg	100		87,8	80-120			
Surrogate: 4-Bromofluorobenzene	94.7		"	100		94.7	80-120			
LCS (EE50306-BS1)				Prepared &	2 Analyzed	05/03/05				
Benzene	86.9		ug/kg	100		86.9	80-120		•	
Toluene	90,9		**	100		90.9	80-120			
Ethylbenzene	91.8		٣	100		91.8	80-120			
Xylene (p/m)	208			200		104	80-120			
Xylene (0)	99.3			100		99.3	80-120			
Surrogate: 0,0,0-Trifluoratoluene	104		······································	100		104	80-120			
Surrogale: 4-Bromofluorobenzene	117		"	100		117	80-120			
Calibration Check (EE50306-CCV1)				Prepared:	05/03/05 A	nalyzed: 05	5/04/05			
Benzene	86.1		ug/kg	100	· · · · ·	86.1	80-120	·· ·		
Toluene	87.3			100		87.3	80-120			
Ethylbenzene	82.6		*	100		82.6	80-120			
Xylene (p/m)	178		"	200		89.0	80-120			
Xylene (0)	85.5		**	100		85,5	80-120			
Surrogate: 0,0,a-Trifluorotoluene	99.5	·· ·	- " -	100	-	99.5	80-120	•		
Surrogate: 4-Bromofluorobenzene	88.0		м	100		88.0	80-120			
Matrix Spike (EE50306-MS1)	Sou	rce: 5D29014	-02	Prepared:	05/03/05 A	nalyzed: 05	5/04/05			
Benzene	90.6	· · · · · · · · · · · · · · · · · · ·	ug/kg	100	ND	90.6	80-120			
Toluene	93,5			100	ND	93.5	80-120			
Ethylbenzene	93.6			100	ND	93.6	80-120			
Xylene (p/m)	211			200	ND	106	80-120			
Xylene (0)	101		n	100	טא	101	80-120			
Surrogate: a,a,a-Trifluorotoluene	101			100			80-120			
Surrogate: 4-Bromofluorohenzene	106		"	100		106	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 6 of 9

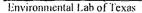
Reported: 05/05/05 12:51

Organics by GC - Quality Control

Environmental Lab of Texas

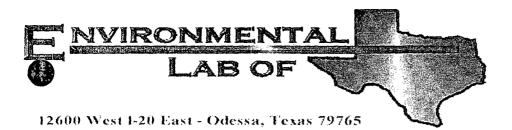
Analyte	Result	Reporting Limit Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE50306 - EPA 5030C (GC)									
Matrix Spike Dup (EE50306-MSD1)	Sour	ce: 5D29014-02	Prepared &	& Analyzed	05/03/05				
Benzene	83.2	ug/kg	100	ND	83.2	80-120	8.52	20	
Foluene	85.0	"	100	ND	85.0	80-120	9.52	20	
Ethylbenzene	82.2	*	100	ND	82.2	80-120	13.0	20	
Xylene (p/m)	182	**	200	ND	91.0	80-120	15.2	20	
Xylene (0)	88.5	*	100	ND	88.5	80-120	13.2	20	
Surrogate: a,a,a-Trifluorotaluene	96.0	· · · · · · · · · · · · · · · · · · ·	100	ana a a	96.0	80-120		-	-
Surrogate: 4-Bromofluorobenzene	113		100		113	80-120			

Environmental Lab of Texas


The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirely, with written approval of Environmental Lab of Texas.

Reported: 05/05/05 12:51

General Chemistry Parameters by EPA / Standard Methods - Quality Control


Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE50301 - General Preparation (Pr	ер)									
Blank (EE50301-BLK1)				Prepared: ()5/02/05 A	nalyzed: 05	/03/05			
% Moisture	ND	0.1	%						• •	
Duplicate (EE50301-DUP1)		ce: 5E02002-	01	Prepared: (05/02/05 A	nalyzed: 05	5/03/05			
% Moisture	0.5	0.1	%		0.5			0.00	20	
Batch EE50410 - Water Extraction							<u></u>			
Blank (EE50410-BLK1)				Prepared &	Analyzed:	05/04/05				
Chloride	ND	0.500	mg/kg							
LCS (EE50410-BS1)				Prepared &	Analyzed:	05/04/05				
Chloride	10.5		ing/L	10.0		105	80-120			•
Calibration Check (EE50410-CCV1)				Prepared &	Analyzed:	05/04/05				
Chloride	10.6		ng/L	10.0		106	80-120			
Duplicate (EE50410-DUP1)	Sour		01	Prepared &	Analyzed:	05/04/05				
Chloride	383	20.0	ng/kg		385			0.521	20	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 8 of 9

Analytical Report

Prepared for:

Mike Griffin WHOLE EARTH ENVIRONMENTAL 2103 Arbor Cove Katy, TX 77494

Project: Devon Dickinson Lease Project Number: None Given Location: Lea County, New Mexico

Lab Order Number: 5E13026

Report Date: 05/17/05

Project: Devon Dickinson Lease Project Number: None Given Project Manager: Mike Griffin

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BL-1	5E13026-01	Soil	05/12/05 16:00	05/13/05 11:40
BL-2	5E13026-02	Soil	05/12/05 16:00	05/13/05 11:40
BL-3	5E13026-03	Soil	05/12/05 16:00	05/13/05 11:40
BL-4	5E13026-04	Soil	05/12/05 16:00	05/13/05 11:40
BL-4A	5E13026-05	Soil	05/12/05 16:00	05/13/05 11:40
Clay- QC	5E13026-06	Soil	05/12/05 16:00	05/13/05 11:40

Project: Devon Dickinson Lease Project Number: None Given Project Manager: Mike Griffin

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BL-1 (5E13026-01) Soil									
Chloride	428	10.0	mg/kg	20	EE51607	05/14/05	05/16/05	EPA 300.0	
BL-2 (5E13026-02) Soil						·			
Chloride	434	10.0	mg/kg	20	EE51607	05/14/05	05/16/05	EPA 300.0	
BL-3 (5E13026-03) Soil					<u> </u>				
Chloride	357	10.0	mg/kg	20	EE51607	05/14/05	05/16/05	EPA 300.0	
BL-4 (5E13026-04) Soit									
Chloride	544	10.0	mg/kg	20	EE51607	05/14/05	05/16/05	EPA 300.0	
BL-4A (5E13026-05) Soil									
Chloride	367	10.0	mg/kg	20	EE51607	05/14/05	05/16/05	EPA 300.0	
Clay- QC (5E13026-06) Soil					_				
ride	189	10.0	mg/kg	20	EE51607	05/14/05	05/16/05	EPA 300.0	

vironmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE51607 - Water Extraction					<u></u>					
Blank (EE51607-BLK1)				Prepared:	05/14/05	Analyzed	: 05/16/05			
Chloride	ND	0.500	mg/kg		-					
LCS (EE51607-BS1)				Prepared:	05/14/05	Analyzed	: 05/16/05			
Chloride	10.4	· · · · · · · · · · · · · · · · · · ·	mg/L	10.0		104	80-120			
Calibration Check (EE51607-CCV1)				Prepared:	05/14/05	Analyzed	: 05/16/05			
Chloride	10.5	······	mg/L	10.0	-	105	80-120			
Duplicate (EE51607-DUP1)		urce: 5E1302	25-25	Prepared:	05/14/05	Analyzed	: 05/16/05			
Chloride	7690	1000	mg/kg		7760			0.906	20	

invironmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirely, with written approval of Environmental Lab of Texas.

Notes and Definitions

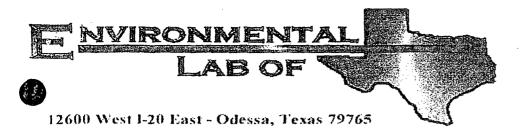
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike

Dup Duplicate

Report Approved By: Ralandk swall Date: 5-17-05

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.


If you have received this material in error, please notify us immediately at 432-563-1800.

vironmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

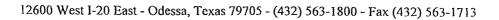
Page 4 of 4

ů,	Fexas 2-563-1800 2-563-1713		•	A						ΰ	HAIN	OFC	USTO	DYR	ECORD AND	D AN	A	ALYS	IS RE	NALYSIS RE	-	÷	ć
Project Manager: VIDE CICHT	Carthol Education Michael	AM P. K. C. H.								{		Proje	Project Name: Project #:	t ne:	2	Ś				2 S	4		H
2105 4	cové											Pro	Project Loc: Left Mr. J. Y	oc: 4	- Cont	KN	X	Ne	20	New MEALLS	27		ł
1212										1			d.	∣ ₩Od									1
775	i:350		Fax No:							1													
Sampler Signature:			-							ł		<u> </u>				An	Analvze For	For					
Email:												<u> </u>		TOTAL:									
						Pres	Preservative	e Ie	H	≥	Matrix						09	1	<u> </u>			[;	Г
LAR # (Ish use only)		bəlqms2 ə is O	bəlqme2 əmiT	No. of Containers	HNO ²	HCI	'OS ² H HO ^b N	ອບດ _{່ໃ}	Огрег (Specify)	Water Studge	lioS	Ofher (specify):	TPH: 418.1 8015M 1005 101 Cations (Ca. Mg. Na. K)	Anions(CI) SCA, 808, 40007	SAR / ESP / CEC Metals: As Ag 8a Cd Ct Pb Hg	səlileloV	Semivolatiles BTEX 8021B/5030 or BTEX 82	RCI	.м.я.о.и			elubedo2-919) TAT H2UA	TAT bisbrist2
B1-1		5/12/02	11000	-				×			>			X				_			-+		
-02		7))			>		-	7									
1		7	3					7			\geq	$\neg \uparrow$		\mathbf{Z}			-+		-+		-+		
-64 82-4			`	~				1			\sum			7			\rightarrow				-		1
-05 BL-4A		7	Ż					Z			>			1			-+		\rightarrow	1	-+		
-06 CLAY - QC		7	7	~			-+	7			51			7									
										+		╺┼╼┤							+		-		
							_					-+					-+-		-+	1			
Special In structions:												-		Sam		ntain	Sample Containers Intact?	tact?		<u>ل</u> ج	-z		<u>;</u>
ζ.														Labe Cust Tem	Labels on container? Custody Seals: Cont Temperature Upon R	conta eals: re Up	Labels on container? Custody Seals: Containers. Temperature Upon Receipt:	ainers sceipt:	/ Cool	Labels on container?	100 100 100 100 100 100 100 100 100 100	<u> </u>	
Retinquished Mr. / / / / / Date	Time	Received by:								Date		F	1 ime	Labo	rator	V Cor	Laboratory Comments:	ts:					
GUNER SI	11									100		j.	Timo	11-	ies.		plastic bags	C C	Drisz	nupreserved			
Relinquished by: Date	lime	Received by ELOT:																					
		N C.K. C.K.N	the ANCH	Burk	37				ŝ	0- 5/-00	2	5											7

Analytical Report

Prepared for:

Darrell Glueck WHOLE EARTH ENVIRONMENTAL 2103 Arbor Cove Katy, TX 77494


Project: Devon Dickinson Lease Project Number: None Given Location: Lea County, NM

Lab Order Number: 5F13009

Report Date: 06/16/05

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Backfill +3	5F13009-01	Soil	06/10/05 09:50	06/10/05 16:42
Backfill 0 (Surface)	5F13009-02	Soil	06/10/05 09:45	06/10/05 16:42
Backfill -3	SF13009-03	Soil	06/10/05 09:50	06/10/05 16:42
Backfill -6	5F13009-04	Soil	06/10/05 09:35	06/10/05 16:42
Backfill -9	5F13009-05	Soil	06/10/05 09:40	06/10/05 16:42

Organics by GC

Surrogate: 1-Chlorooctadecane123 %70-Backfill 0 (Surface) (5F13009-02) SoilGasoline Range Organics C6-C1234.010.0 mg/kg dryDicsel Range Organics >C12-C3523110.0"Total Hydrocarbon C6-C3526510.0"Surrogate: 1-Chlorooctane94.2 %70	Dilution 1	Batch EF51309	Prepared	Analyzed	Method	Notes
Gasoline Range Organics C6-C12 154 10.0 mg/kg dry Diesel Range Organics >C12-C35 1260 10.0 " Total Hydrocarbon C6-C35 1410 10.0 " Surrogate: 1-Chlorooctane 96.0 % 70- Surrogate: 1-Chlorooctadecane 123 % 70- Backfill 0 (Surface) (5F13009-02) Soil 10.0 mg/kg dry Diesel Range Organics C6-C12 34.0 10.0 mg/kg dry Diesel Range Organics >C12-C35 231 10.0 " Total Hydrocarbon C6-C35 265 10.0 " Surrogate: 1-Chlorooctane 94.2 % 70 Surrogate: 1-Chlorooctane 107 % 70 Backfill -3 (5F13009-03) Soil 10.0 mg/kg dry		EF51309				
Diesel Range Organics >C12-C35 1260 10.0 " Total Hydrocarbon C6-C35 1410 10.0 " Surrogate: 1-Chlorooctane 96.0 % 70- Surrogate: 1-Chlorooctadecane 123 % 70- Backfill 0 (Surface) (5F13009-02) Soil Gasoline Range Organics C6-C12 34.0 10.0 mg/kg dry Diesel Range Organics >C12-C35 231 10.0 " Total Hydrocarbon C6-C35 265 10.0 " Surrogate: 1-Chlorooctane 94.2 % 70 Surrogate: 1-Chlorooctane 107 % 70 Backfill -3 (5F13009-03) Soil 10.0 mg/kg dry 10.0 mg/kg dry		EF51309	000000			
Total Hydrocarbon C6-C35141010.0"Surrogate: 1-Chlorooctane96.0 %70-Surrogate: 1-Chlorooctadecane123 %70-Backfill 0 (Surface) (5F13009-02) Soil34.010.0mg/kg dryGasoline Range Organics C6-C1234.010.0mg/kg dryDiesel Range Organics >C12-C3523110.0"Total Hydrocarbon C6-C3526510.0"Surrogate: 1-Chlorooctane94.2 %70Surrogate: 1-Chlorooctadecane107 %70Backfill -3 (5F13009-03) Soil10.0mg/kg dry	н		06/13/05	06/14/05	EPA 8015M	
Surrogate: 1-Chlorooctane96.0 %70-Surrogate: 1-Chlorooctadecane123 %70-Backfill 0 (Surface) (5F13009-02) SoilGasoline Range Organics C6-C1234.010.0 mg/kg dryDiesel Range Organics >C12-C3523110.0 "Total Hydrocarbon C6-C3526510.0 "Surrogate: 1-Chlorooctane94.2 %70Surrogate: 1-Chlorooctadecane107 %70Backfill -3 (5F13009-03) Soil10.0 mg/kg dry		n	"	1 7	n	
Surrogate: 1-Chlorooctadecane123 %70-Backfill 0 (Surface) (5F13009-02) SoilGasoline Range Organics C6-C1234.010.0 mg/kg dryDiesel Range Organics >C12-C3523110.0"Total Hydrocarbon C6-C3526510.0"Surrogate: 1-Chlorooctane94.2 %70Surrogate: 1-Chlorooctane107 %70Backfill -3 (5F13009-03) Soil10.0 mg/kg dry			#	U)) 	
Backfill 0 (Surface) (5F13009-02) Soil Gasoline Range Organics C6-C12 34.0 10.0 mg/kg dry Diesel Range Organics >C12-C35 231 10.0 " Total Hydrocarbon C6-C35 265 10.0 " Surrogate: 1-Chilorooctane 94.2 % 70 Surrogate: 1-Chilorooctadecane 107 % 70 Backfill -3 (5F13009-03) Soil 10.0 mg/kg dry	130	"	**	11	"	
Gasoline Range Organics C6-C12 34.0 10.0 mg/kg dry Diesel Range Organics >C12-C35 231 10.0 " Total Hydrocarbon C6-C35 265 10.0 " Surrogate: 1-Chlorooctane 94.2 % 70 Surrogate: 1-Chlorooctadecane 107 % 70 Backfill -3 (5F13009-03) Soil 10.0 mg/kg dry	130	"	"	"	"	
Diesel Range Organics >C12-C3523110.0"Total Hydrocarbon C6-C3526510.0"Surrogate: 1-Chlorooctane94.2 %70Surrogate: 1-Chlorooctadecane107 %70Backfill -3 (5F13009-03) Soil10.0mg/kg dry						
Total Hydrocarbon C6-C3526510.0"Surrogate: 1-Chlorooctane94.2 %70Surrogate: 1-Chlorooctadecane107 %70Backfill -3 (5F13009-03) Soil3030Gasoline Range Organics C6-C1212510.0 mg/kg dry	1	EF51309	06/13/05	06/14/05	EPA 8015M	
Surrogate: 1-Chlorooctane94.2 %70Surrogate: 1-Chlorooctadecane107 %70Backfill -3 (5F13009-03) SoilGasoline Range Organics C6-C1212510.0 mg/kg dry		B1	11	17	0	
Surrogate: 1-Chlorooctadecane107 %70Backfill -3 (5F13009-03) SoilGasoline Range Organics C6-C1212510.0 mg/kg dry	1)	#I	11	11		
Backfill -3 (5F13009-03) Soil Gasoline Range Organics C6-C12 125 10.0 mg/kg dry	-130	"	"	"	"	
Gasoline Range Organics C6-C12 125 10.0 mg/kg dry	-130	**	"	"	11	
Diesel Range Organics >C12_C35 070 10.0 "	· 1	EF51309	06/13/05	06/14/05	EPA 8015M	
10.0 9/9 10.0	11	н	"	±7	11	
1 Hydrocarbon C6-C35 1100 10.0 "	17	U	н	e t	h 	
rrogate: 1-Chlorooctane 89.2 % 70	-130	11	"	"	11	
Surrogate: 1-Chlorooctadecane 114 % 70	-130	**	\$7	v	11	
Backfill -6 (5F13009-04) Soil						
Gasoline Range Organics C6-C12 14.4 10.0 mg/kg dr	/ 1	EF51309	06/13/05	06/14/05	EPA 8015M	
Diesel Range Organics >C12-C35 123 10.0 "	8	"	"	11	•	
Total Hydrocarbon C6-C35 137 10.0 "	н	R		**	· •	
Surrogate: 1-Chlorooctane 88.8 % 70	-130	11	"	"	31	
Surrogate: 1-Chlorooctadecane 103 % 70	-130	*1	"	"	"	
Backfill -9 (5F13009-05) Soil						
Gasoline Range Organics C6-C12 34.0 10.0 mg/kg dr	y 1	EF51309	06/13/05	06/14/05	EPA 8015M	
Diesel Range Organics >C12-C35 259 10.0 "	er	ff	17	21	*	
Total Hydrocarbon C6-C35 293 10.0 "	11	H	n	u 	n	
Surrogate: 1-Chlorooctane 90.8 % 70	-130	"			"	
Surrogate: 1-Chlorooctadecane 104 % 76		••		<i>n</i>	"	

vironmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

General Chemistry Parameters by EPA / Standard Methods

		Environn	nental L	ab of I	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Backfill +3 (5F13009-01) Soil									
Chloride	621	10.0	mg/kg	20	EF51507	06/14/05	06/14/05	EPA 300.0	
% Moisture	7.8	0.1	%	1	EF51401	06/13/05	06/14/05	% calculation	
Backfill 0 (Surface) (5F13009-02) Soil									
Chloride	122	5.00	mg/kg	10	EF51507	06/14/05	06/14/05	EPA 300.0	
% Moisture	15.7	0.1	%	1	EF51401	06/13/05	06/14/05	% calculation	
Backfill -3 (5F13009-03) Soil									
Chloride	521	10.0	mg/kg	20	EF51507	06/14/05	06/14/05	EPA 300.0	
% Moisture	6.8	0.1	%	1	EF51401	06/13/05	06/14/05	% calculation	
Backfill -6 (5F13009-04) Soil									
Chloride	163	5.00	mg/kg	10	EF51507	06/14/05	06/14/05	EPA 300.0	
% Moisture	7.5	0.1	%	1	EF51401	06/13/05	06/14/05	% calculation	
TPH 418.1	1450	10.0	mg/kg dry	10	EF51409	06/14/05	06/14/05	EPA 418.1	
P ^^kfill -9 (5F13009-05) Soil									
oride	170	5.00	mg/kg	10	EFS1507	06/14/05	06/14/05	EPA 300.0	
% Moisture	10.7	0.1	%	1	EF51401	06/13/05	06/14/05	% calculation	
TPH 418.1	2780	. 10.0	mg/kg dry	10	EF51409	06/14/05	06/14/05	EPA 418.1	

vironmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirely, with written approval of Environmental Lab of Texas.

06/16/05 11:13

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF51309 - Solvent Extraction										
Blank (EF51309-BLK1)				Prepared:	06/13/05	Analyzed	1: 06/14/05			
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	10.0	"							
Total Hydrocarbon C6-C35	ND	10.0	**							
Surrogate: 1-Chlorooctane	35.3		mg/kg	50.0		70.6	70-130			
Surrogate: 1-Chlorooctadecane	36.8		"	50.0		73.6	70-130			
LCS (EF51309-BS1)				Prepared	& Analyze	ed: 06/13/	05			
Gasoline Range Organics C6-C12	410	10.0	mg/kg wet	500		82.0	75-125			
Diesel Range Organics >C12-C35	408	10.0	**	500		81.6	75-125			
Total Hydrocarbon C6-C35	818	10.0	*	1000		81.8	75-125			
Surrogate: 1-Chlorooctane	41.9		mg/kg	50.0		83.8	70-130			* v*
Surrogate: 1-Chlorooctadecane	37.6		н	50.0		75.2	70-130			
Calibration Check (EF51309-CCV1)				Prepared	: 06/13/05	Analyzed	1: 06/14/05			
Gasoline Range Organics C6-C12	502		mg/kg	500		100	80-120			•••
Diesel Range Organics >C12-C35	571		14	500		114	80-120			
Total Hydrocarbon C6-C35	1070		n	1000		107	80-120			
Surrogate: 1-Chlorooctane	55.6		11	50.0		111	70-130		· · •·	
ogate: 1-Chlorooctadecane	56.1		"	50.0		112	70-130			
trix Spike (EF51309-MS1)	So	urce: 5F130	10-01	Prepared	: 06/13/05	Analyzed	d: 06/14/05			
Gasoline Range Organics C6-C12	557	10.0	mg/kg dry	522	ND	107	75-125			
Diesel Range Organics >C12-C35	575	10.0	11	522	ND	110	75-125			
Total Hydrocarbon C6-C35	1130	10.0	n	1040	ND	109	75-125			
Surrogate: 1-Chlorooctane	62.5		mg/kg	50.0		125	70-130			
Surrogate: 1-Chlorooctadecane	63.5		**	50.0		127	70-130			
Matrix Spike Dup (EF51309-MSD1)	So	urce: 5F13()10-01	Prepared	: 06/13/05	Analyze	d: 06/14/05			
Gasoline Range Organics C6-C12	587	10.0	mg/kg dry	522	ND	112	75-125	5.24	20	
Diesel Range Organics >C12-C35	571	10.0	9	522	ND	109	75-125	0.698	20	
Total Hydrocarbon C6-C35	1160	10.0		1040	ND	112	75-125	2.62	20	
Surrogate: 1-Chlorooctane	62.6		mg/kg	50.0		125	70-130	•••		· ···
Surrogate: 1-Chlorooctadecane	64.4		"	50.0		129	70-130			

nvironmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 4 of 6

General Chemis	•	neters by Environm				ods - Q	Quality (Control		
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF51401 - General Preparation	n (Prep)									
Blank (EF51401-BLK1)				Prepared:	06/13/05	Analyzed	: 06/14/05			
% Moisture	ND	0.1	%	· · · · · · · · · · · · · · · · · · ·						
Duplicate (EF51401-DUP1)	So	urce: 5F1300)1-01	Prepared:	06/13/05	Analyzed	1: 06/14/05			
% Moisture	7.1	0.1	%		6,9			2.86	20	
Batch EF51507 - Water Extraction										
Blank (EF51507-BLK1)				Prepared	& Analyz	ed: 06/14/	05			
Chloride	ND	0.500	mg/kg							
LCS (EF51507-BS1)				Prepared	& Analyz	cd: 06/14/	05			
Chloride	11.4	······	mg/L	10.0		114	80-120			
Calibration Check (EF51507-CCV1)				Prepared	& Analyz	ed: 06/14/	05			
Chloride	11.3		mg/L	10.0	· · · · · · · · · · · · · · · · · · ·	113	80-120			
Duplicate (EF51507-DUP1)	So	urce: 5F130(06-04	Prepared	& Analyz	ed: 06/14/	05			
Chloride	586	10.0	mg/kg		573			2.24	20	

vironmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirely, with written approval of Environmental Lab of Texas.

Page 5 of 6

s

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike

Dup Duplicate

alandk Report Approved By: Date: 6-16-05

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 6 of 6