

New Mexico Energy, Minerals and Natural Resources Department

Bill Richardson

Governor

Joanna Prukop Cabinet Secretary Reese Fullerton Deputy Cabinet Secretary Mark Fesmire
Division Director
Oil Conservation Division

April 7, 2008

BTA Oil Producers 104 S Pecos Midland, TX 79701

RE: Remediation Work Plan

Pardue SWD Battery N-11-23S-28E Eddy County, New Mexico

2RP-155

Operator;

The New Mexico Oil Conservation Division District 2 office (OCD) is in receipt of a remediation work plan (plan). Included in the plan is a form C-144 requesting closure of a pit. The C-144 assigned a site ranking score of sixty (60) points. The C-144 is accepted for record. The plan proposes to "... excavate approximately one foot of impacted soil, backfill the excavation with a veneer of clean sand, install a 20 mil poly-liner, backfill with a veneer of clean soil to prevent further issues ..."

As presented, the plan cannot be approved. Chloride analytical data only was presented to OCD from soil samples obtained on March 18, 2008. An alternate remediation work plan based on further vertical and horizontal delineation to address TPH, BTEX, and Chlorides must be presented to OCD.

Notify the OCD 48 hours prior to obtaining samples where analyses are to be submitted to the OCD.

Please submit the delineation results and alternate remediation work plan on or before May 7, 2008.

Thank you for your attention to this matter. If I can be of assistance or should you have any questions/concerns, please don't hesitate to contact me.

Respectfully.

Sherry Bonham NMOCD District 2 1301 W Grand Avenue 575.748.1283 Ext. 109 sherry.bonham@state.nm.us

cc: Ben Grimes Skip Baca

8808 JV-P Pardue SWD Injection Facility 20 Miles southeast of Carlsbad, New Mexico Carlsbad, New Mexico BTA Project Number Env. 2008-25

Prepared for:

New Mexico Oil Conservation Division
1301 W. Grand Avenue
Artesia, New Mexico 88210

Prepared By: **BTA Oil Producers** 104 S. Pecos St. Midland, Texas 79701

Geology

Joseph A. Baca, P.G. Environmental Coordinated BTA Oil Producers

TABLE OF CONTENTS

1.0	NTRODUCTION 1
2.0	PURPOSE OF PLAN2
3.0	SUMMARY OF FIELD ACTIVITIES2
4.0	Water Wells and Surface Water2
5.0	LIMITATIONS2
6.0	DISTRIBUTION LIST3
	ATTACHMENTS
<u>FIGU</u>	RES
Figure	Site Location Map
Figure	Site Map of Pardue SWD Injection Facility with sample points and other details
Figure	Site Map of Pardue SWD Injection Facility with Closest Water Wells
Figure	Exaggerated Cross-Sectional Diagrammatic Representation Showing Excavation, Liner and Backfill Materials
TABL	<u>ES</u>
Table 1	Analytical Results
APPE	DICES
Append	ix A Analytical Reports
Append	ix B Completed C-144

BTA Oil Producers (BTA) is pleased to submit this Pardue SWD Site Remediation Plan for the 8808 JV-P Pardue SWD Injection Facility (Pardue). The Pardue site is located approximately 20 miles southeast of the town of Carlsbad, in the NE/4, NE/4, of Section 11, Township 23 South, Range 28 East, and Eddy County, New Mexico. Ground Positioning Satellite (GPS) coordinates are N32°18.771' and W104°03.633'. A site map is provided with this report as Figure 1.

On February 15, 2008 soil samples were collected from the floor of the impacted site and submitted for laboratory analysis. Three soil samples, identified as 1-1'-Spl, 2-2'-Spl and 2-3'-Spl were collected from two (2) separate sample excavations within the impacted area. Sample 1-1'-Spl was collected from an excavation labeled Sample Excavation No. 1 on the floor of the impacted area at a depth of approximately 1-foot below ground surface (bgs). Samples 2-2'-Spl and 2-3'-Spl were collected from an excavation labeled Sample Excavation No. 2 also on the floor of the impacted area at a depth of 2-feet and 3-feet bgs (Figure 2). The samples were submitted for laboratory analysis and the analytical results indicated that the samples exhibited GRO and DRO (8015) concentrations of <50.0 mg/Kg to 680 mg/Kg. The sample exhibiting the highest GRO and DRO was subsequently run for BTEX (8021B) and exhibited <0.100 mg/Kg for Benzene, 0.712 mg/Kg Toluene, .0322 for Ethylbenzene and 2.01 mg/Kg for Xylene. Chloride analytical results ranged from 2,430 mg/Kg to 15,900 mg/Kg (Table 1).

Laboratory submitted samples were placed in a new sterile glass container, equipped with a Teflon-lined lid furnished by the laboratory. The samples were labeled, placed on ice, chilled to a temperature of approximately 4°C and transported to Trace Analysis, Inc in Midland, Texas for analysis of GRO, DRO by method 8015, BTEX by method 8021B and Chlorides by titration. Appropriate chain-of-custody documentation and shipping protocols were followed. The laboratory analytical reports are provided in Appendix A. Figure 2 displays the excavation limits and the location of each confirmation soil sample. Table 1 displays the analytical results of field tested and laboratory analyzed confirmation soil samples.

BTA's Pardue SWD Injection Facility (Pardue) is located on top of an east trending topographic nose, approximately 40-feet above the west bank of the Pecos River. The area of interest is located on the southern end of the topographic nose. The overall nose area measures approximately 541-feet long by 485-feet wide. The impacted site measures approximately 177feet on the west side, 77-feet on the east side and is approximately 163-feet long. The area is parallelogram shaped with the wider end to the west. Soil in the site area is composed of fine sandy loam with large limestone cobbles on the surface and solid rock at approximately 2 to 3 feet below ground surface (bgs). During the sample event of February 15, 2008, while collecting initial soil samples, it was found that solid rock existed below 1-foot and was difficult to excavate with the back-hoe. It is BTA's intention to remove one-foot of impacted soil backfill the excavation with a veneer of clean sand, install a 20 mil poly-liner, backfill with a veneer of clean sand and backfill with approximately 2-feet of clean soil to prevent further issues (Figure 4). The area would be backfilled and leveled to meet the general lay of the existing surface grade. It would not be cost effective to excavate to a greater depth as the solid rock would prevent it.

On March 18, 2008 four soil samples, identified as North-1@1', South-2@1', East-3@-1' and West -4@1' were collected from the historical pit, 1-foot below ground surface (bgs) (Figure 2). The samples were submitted to an analytical laboratory for Chloride analysis, and results were

received March 21, 2008. The samples ranged from 898 mg/Kg to 3110 mg/Kg (Table 1). This would define the area to be excavated at approximately 60-feet by 60-feet.

Laboratory submitted samples were placed in a new sterile glass container, equipped with a Teflon-lined lid furnished by the laboratory. The samples were labeled, placed on ice, chilled to a temperature of approximately 4°C and transported to Trace Analysis, Inc in Midland, Texas for analysis of Chlorides by titration. Appropriate chain-of-custody documentation and shipping protocols were followed. The laboratory analytical reports are provided in Appendix A. Figure 2 displays the excavation limits and the location of each confirmation soil sample. Table 1 displays the analytical results of field tested and laboratory analyzed confirmation soil samples.

PURPOSE OF PLAN

The purpose of this report is to document field activities that will take place at the Pardue in order to remediate the site and present supporting data to meet that end.

2.0 SUMMARY OF FIELD ACTIVITIES

BTA will move in a track-hoe and a front-end loader onto the Pardue site. The track-hoe will excavate the top 1 to 2-feet, remove the material, and level the excavation floor. A 20-mil poly liner would be installed and new fresh soil place over the new liner

4.0 WATER WELLS AND SURFACE WATER

There are two water wells and surface water in close proximity. There are two water wells approximately 3,600-feet west of the impacted site in Section 11, Township 23 South, Range 28 East, Eddy County, New Mexico. Well C00512 has a depth to water at 15-feet and is used for irrigation. Well C 00608 has no depth to water recorded according to the New Mexico Office of the State Engineer and it is used as a domestic well (Figure 3).

5.0 LIMITATIONS

BTA has prepared this Site Remediation Plan to the best of its ability. No other warranty, expressed or implied, is made or intended. BTA has examined and relied upon documents referenced in the plan and on oral statements made by certain individuals. BTA has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements are true and accurate. BTA has prepared this plan in a professional manner, using a degree of skill and care. BTA also notes that the facts and conditions referenced in this report may change over time, and the conclusions set forth herein are applicable only to the facts and conditions as described at the time of this plan.

6.0 DISTRIBUTION LIST Pardue SWD Injection Facility Remediation Plan BTA Oil Producers 8808 JV-P Pardue SWD Injection Facility BTA Project No. Env. 2008-025

Copy 1

Oil Conservation Division (OCD) 1301 W. Grand Avenue Artesia, New Mexico 88210

Copy 2

BTA Central File

ATTACHMENTS

FIGURES

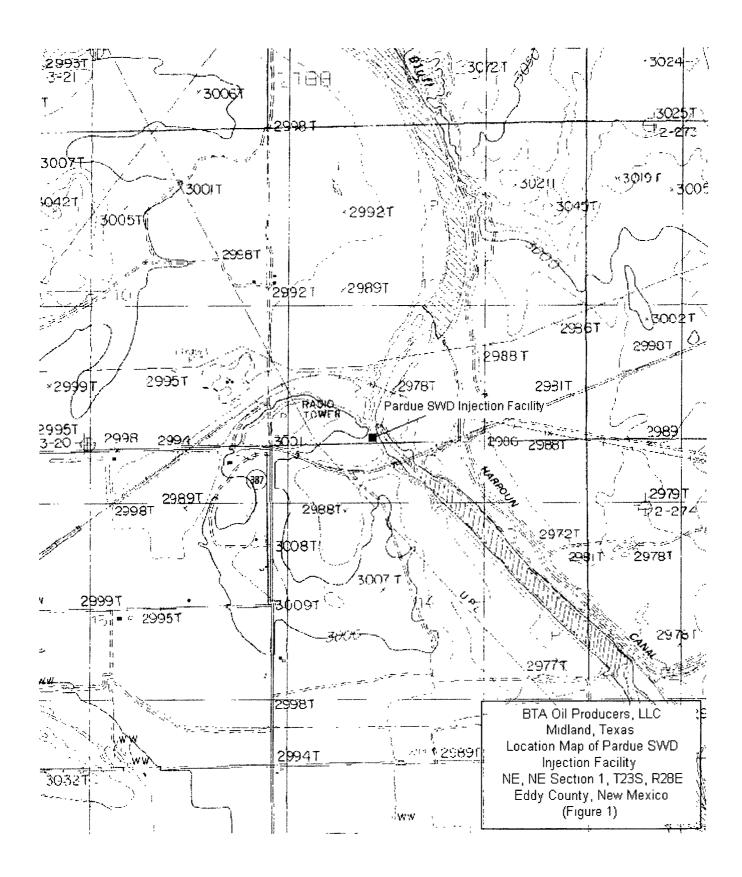
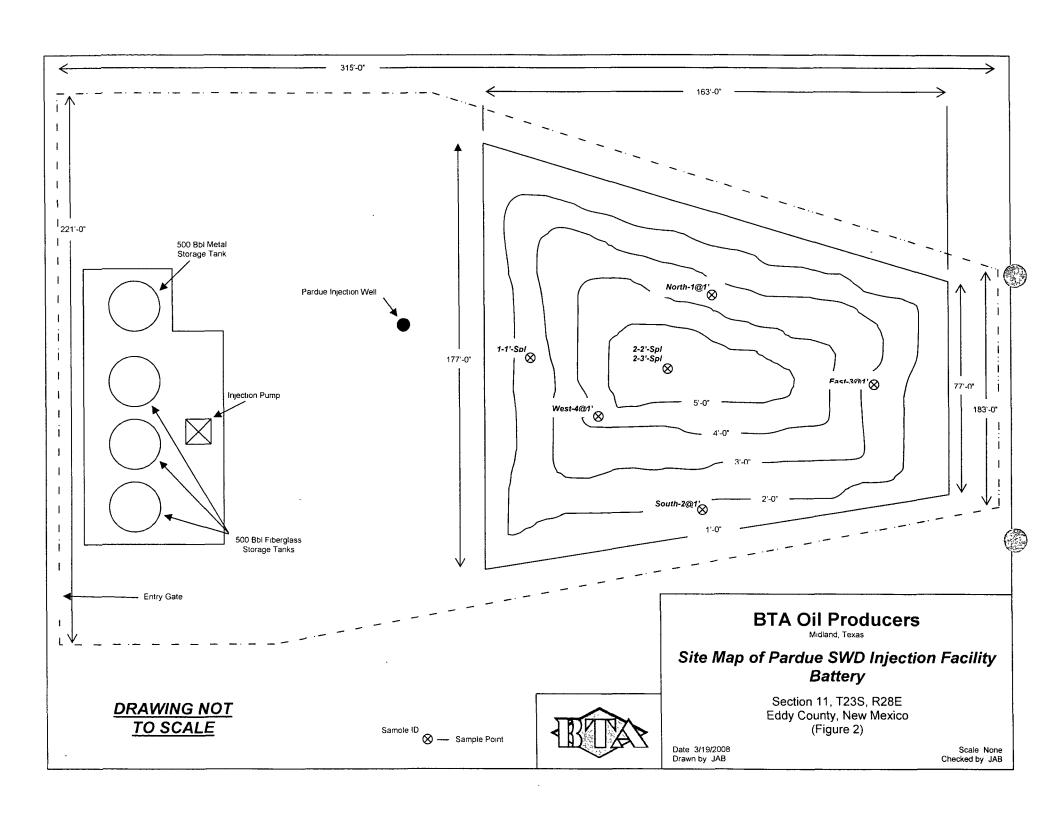
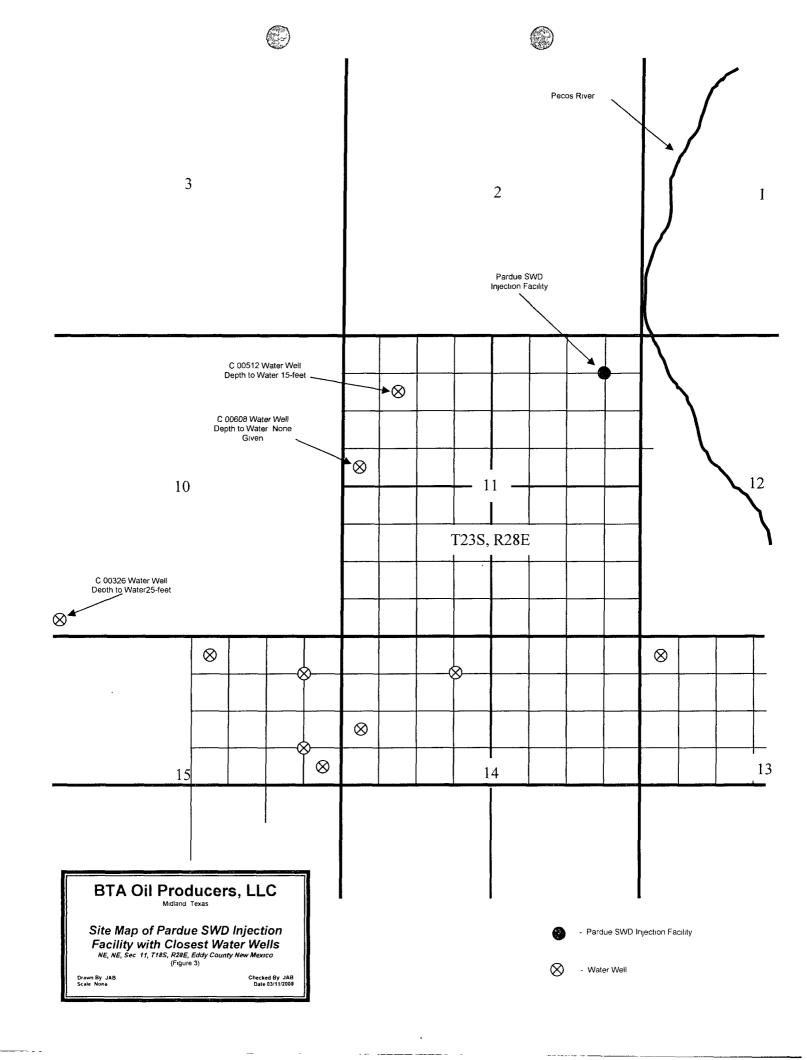
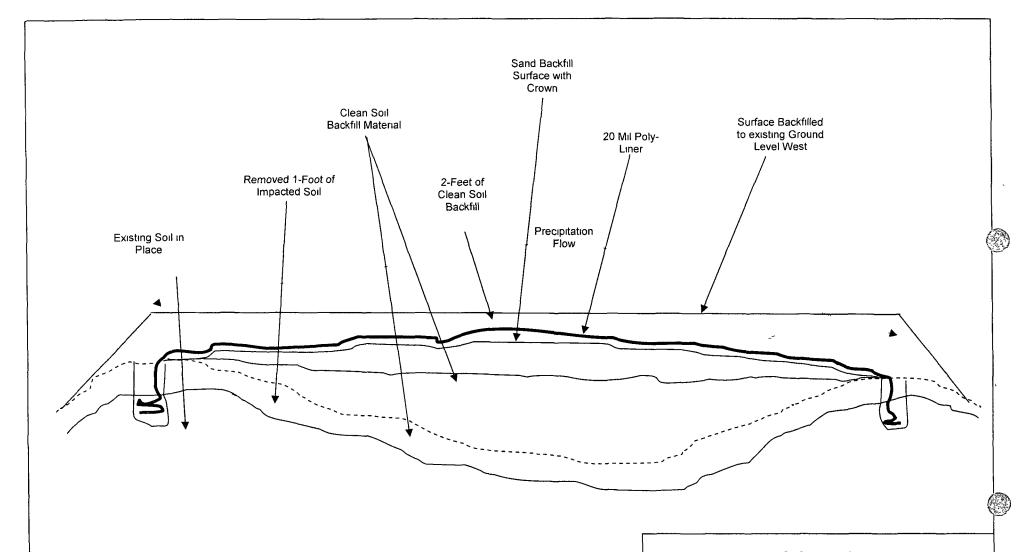




Figure 2



DRAWING NOT TO SCALE

BTA Oil Producers Midland, Texas

Exaggerated Diagrammatical Representation Showing Excavation, Liner and Backfill Materials

Section 11, T23S, R28E Eddy County, New Mexico (Figure 4)

Date 3/19/2008 Drawn by JAB

Scale None Checked by JAB

TABLES

BTA Oil Producers

104 S. Pecos St. Midland, Texas 79701 Tele: 432-682-3753

Fax: 432-683-0325

Table I

Excavation Soil TPH GRO and DRO Analytical Results

Excavation Soil BTEX Analysis

Excavation Soil Chloride Analysis

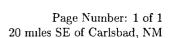
BTA - Pardue SWD Injection Facility - Lea County, New Mexico

New Mexico NMOCD Inspection # iREI0724042324

BTA Project Number Env. 2008-025

GLE 3,804' Analytical Methods									
		[Mod. 8015B	S 8015B		S	8021B		SM 4500-CL B
SAMPLE	SAMPLE	TOTAL	TPH DRO	TPH GRO	BENZENE	TOLUENE	ETHYLBENZEN	XYLENE	CHLORIDES
DATE	IDENTIFICATION		mg/Kg	mg/Kg	mg/Kg	mg/Kg	E mg/Kg	mg/Kg_	(mg/Kg)
Ex	cavation		《新兴》 , 公務	A PARKANAPAS		in the late		17 1,23 7	Me de la companya de
2/15/2008	1-1'-Spl	685.00	455.00	230.00	< 0.100	0.71	0.32	2.01	15,900.00
2/15/2008	2-2'-Spl	216.80	139 00	77.80	NA	NA	NA	NA	3,510.00
2/15/2008	2-3'-Spl	51.80	<50.0	1.08	NA	NA	NA	NA	2,430.00
3/19/2008	North-1@1'	NA	NA	_ NA	NA	NA	NA	NA	3,110.00
3/19/2008	South-2@1'	NA	NA	_ NA	NA	NA	NA	NA	1,190.00
3/19/2008	East-3@1'	NA	NA	NA	NA	NA	NA	NA	898.00
3/19/2008	West-4@1'	NA	NA	NA	NA	NA	NA	NA	2,540.00

Note Values in bold are outside regulatory limits


APPENDICES

Appendix A

ENV 2008-25

Work Order: 8021530 Pardue SWD Battery

Summary Report

Skip Baca BTA Oil Producers 104 S. Pecos Midland, TX, 79701

Report Date. February 19, 2008

Work Order: 8021530

Project Location 20 miles SE of Carlsbad, NM

Project Name·

Pardue SWD Battery

Project Number: ENV 2008-25

			Date	$_{ m Time}$	Date
Sample	Description	Matrix	Taken	Taken	Received
150812	1-1'-Spl	soil	2008-02-15	10:00	2008-02-15
150813	2-2'-Spl	soil	2008-02-15	10:09	2008-02-15
150814	2-3'-Spl	soil	2008-02-15	10:14	2008-02-15

				TPH DRO	TPH GRO	
	Benzene	Toluene	Ethylbenzene	Xylene	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/kg)	(mg/kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
150812 - 1-1'-Spl	< 0 100	0.712	0.322	2.01	455	230
150813 - 2-2'-Spl					139	77.8
150814 - 2-3'-Spl				1	< 50 0	1.08

Sample: 150812 - 1-1'-Spl

Param	Flag	Result	Umits	RL
Chloride		15900	mg/Kg	1.00

Sample: 150813 - 2-2'-Spl

Param	Flag	Result	Units	RL
Chloride		3510	mg/Kg	1.00

Sample: 150814 - 2-3'-Spl

Param	Flag	Result	Umts	RL
Chloride		2430	$_{ m mg/Kg}$	1.00

Analytical and Quality Control Report

Skip Baca BTA Oil Producers 104 S. Pecos Midland, TX, 79701

Report Date. February 20, 2008

Work Order: 8021530

Project Location: 20 miles SE of Carlsbad, NM

Project Name Pardue SWD Battery

Project Number. ENV 2008-25

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc

			Date	${f Time}$	Date
Sample	Description	Matrix	Taken	Taken	Received
150812	1-1'-Spl	soil	2008-02-15	10 00	2008-02-15
150813	2-2'-Spl	soil	2008-02-15	10:09	2008-02-15
150814	2-3'-Spl	soil	2008-02-15	10:14	2008-02-15

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 10 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Dr. Blan Leftwich, Director

Michael alm

Standard Flags

 ${f B}$ - The sample contains less than ten times the concentration found in the method blank

ENV 2008-25

Work Order: 8021530 Pardue SWD Battery

Page Number: 2 of 10 20 miles SE of Carlsbad, NM

Analytical Report

Sample: 150812 - 1-1'-Spl

Analysis BTEX QC Batch 45693 Prep Batch 39337 Analytical Method: S 8021B Date Analyzed: 2008-02-18 Sample Preparation: 2008-02-18 Prep Method: S 5035 Analyzed By DC Prepared By DC

		RL			
Parameter	Flag	Result	Umits	Dilution	RL
Benzene		< 0.100	mg/Kg	10	0.0100
Toluene		0.712	mg/Kg	10	0 0100
Ethylbenzene		0.322	m mg/Kg	10	0 0100
Xylene		2.01	mg/Kg	10	0 0100

					Spike	Percent	Recovery
Surrogate	Flag	Result	$_{ m Units}$	Dilution	Amount	Recovery	Limits
Triffuorotoluene (TFT)		10 7	mg/Kg	10	10.0	107	70 - 130
4-Bromofluorobenzene (4-BFB)		11.1	m mg/Kg	10	10 0	111	70 - 130

Sample: 150812 - 1-1'-Spl

Analysis Chloride (IC) Analytica QC Batch 45695 Date Ana Prep Batch 39345 Sample F

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		15900	mg/Kg	1000	1 00

Sample: 150812 - 1-1'-Spl

Analysis TPH DRO QC Batch. 45679 Prep Batch: 39332 Analytical Method. Mod 8015B
Date Analyzed 2008-02-18
Sample Preparation. 2008-02-18

Prep Method: N/A
Analyzed By LD
Prepared By LD

		RL			
Parameter	Flag	Result	Umts	Dilution	RL
DRO		455	mg/Kg	1	50 0

					Spike	Percent	Recovery
Surrogate	Flag	Result	Umts	Dilution	Amount	Recovery	Limits
n-Triacontane	1	173	mg/Kg	1	100	173	39 1 - 137 7

Sample: 150812 - 1-1'-Spl

Analysis	TPH GRO	Analytical Method	S 8015B	Prep Method	S 5035
QC Batch:	45689	Date Analyzed	2008-02-18	Analyzed By:	DC
Prep Batch.	39337	Sample Preparation	2008-02-18	Prepared By	DC

¹High surrogate recovery due to peak interference

Report Date. February 20, 2008 ENV 2008-25

Work Órder: 8021530 Pardue SWD Battery

Page Number: 3 of 10 20 miles SE of Carlsbad, NM $\,$

Parameter	Flag		$ m RL \ Result$		Units		Dılution	Ri
GRO	0		230				10	1 00
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recover:
Trifluorotoluen	e (TFT)	Flag	10.2	mg/Kg	10	10 0	102	70 - 130
	penzene (4-BFB)		11.6	mg/Kg	10	10 0	116	70 - 130
Sample: 1508	313 - 2-2'-Spl							
QC Batch: 4	Chloride (IC) 15695 19345		Date Ar	cal Method ialyzed Preparatio	2008-02-19		Prep M Analyze Prepare	ed By. AR
Parameter	Flag		$ m RL \ Result$		Units	I	Dilution	RI
Chloride			3510		mg/Kg		500	1 00
QC Batch: 4	E 670		D. / - A 1	1	0000 00 10			ID ID
	5679 9332		Date Anal Sample Pr		2008-02-18 2008-02-18		Analyze Prepare	
						I		v
Prep Batch 3	9332		Sample Pr RL		2008-02-18	Ι	Prepare	d By LD
Prep Batch· 3 Parameter	9332	Result	Sample Pr RL Result		2008-02-18 Units mg/Kg Spi	ke	Prepare Dilution	d By LD
Prep Batch 3 Parameter DRO	9332 Flag	Result 129	Sample Pr RL Result 139	eparation	Units mg/Kg Spi	ke unt l	Prepare Dilution 1 Percent	d By LD RL 50 (Recovery
Prep Batch 3 Parameter DRO Surrogate n-Triacontane	9332 Flag Flag		Sample Pr RL Result 139 Units	eparation Dılut	Units mg/Kg Spi	ke unt l	Prepare Dilution 1 Percent Recovery	RECOVERY
Prep Batch 3 Parameter DRO Surrogate n-Triacontane Sample: 1508 Analysis: T	Flag Flag 13 - 2-2'-Spl PH GRO		Sample Pr RL Result 139 Units mg/Kg Analytical	Dılut 1	2008-02-18 Units mg/Kg Spi Sion Amo 10 S 8015B	ke unt l	Prepare Dilution 1 Percent Recovery 129 Prep Metl	RECOVERY LIMITS 39 1 - 137 7
Prep Batch 3 Parameter DRO Surrogate n-Triacontane Sample: 1508 Analysis: T QC Batch 4	Flag Flag 13 - 2-2'-Spl PH GRO 5689		RL Result 139 Units mg/Kg Analytical Date Analy	Dılut 1 Method	2008-02-18 Units mg/Kg Spi Sion Amo 10 S 8015B 2008-02-18	ke unt l	Prepare Dilution 1 Percent Recovery 129 Prep Metl Analyzed	RECOVERY LIMITS 39 1 - 137 7
Prep Batch 3 Parameter DRO Surrogate n-Triacontane Sample: 1508 Analysis: T QC Batch 4	Flag Flag 13 - 2-2'-Spl PH GRO		RL Result 139 Units mg/Kg Analytical Date Analy Sample Pro	Dılut 1 Method	2008-02-18 Units mg/Kg Spi Sion Amo 10 S 8015B	ke unt l	Prepare Dilution 1 Percent Recovery 129 Prep Metl	RECOVERY LIMITS 39 1 - 137 7
Prep Batch 3 Parameter DRO Surrogate n-Triacontane Sample: 1508 Analysis: T QC Batch 4 Prep Batch 3	Flag Flag 13 - 2-2'-Spl PH GRO 5689 9337		RL Result 139 Units mg/Kg Analytical Date Analy Sample Pro	Dılut 1 Method	Units mg/Kg Spi Tion Amo 10 S 8015B 2008-02-18 2008-02-18	ke unt 1 0	Prepare Dilution 1 Percent Recovery 129 Prep Metl Analyzed Prepared	RECOVERY LIMITS 39 1 - 137 7
Prep Batch 3 Parameter DRO Surrogate n-Triacontane Sample: 1508 Analysis: T QC Batch 4	Flag Flag 13 - 2-2'-Spl PH GRO 5689		RL Result 139 Units mg/Kg Analytical Date Analy Sample Pro	Dılut 1 Method	2008-02-18 Units mg/Kg Spi Sion Amo 10 S 8015B 2008-02-18	ke unt 1 0	Prepare Dilution 1 Percent Recovery 129 Prep Metl Analyzed	RECOVERY LIMITS 39 1 - 137 7 and S 5035 By: DC By: DC RI
Prep Batch 3 Parameter DRO Surrogate n-Triacontane Sample: 1508 Analysis: T QC Batch 4 Prep Batch 3: Parameter GRO	Flag Flag 13 - 2-2'-Spl PH GRO 5689 9337	129	RL Result 139 Units mg/Kg Analytical Date Analy Sample Pro RL Result 77.8	Dilut 1 Method yzed eparation	Units mg/Kg Spi Sion Amo 10 S 8015B 2008-02-18 2008-02-18 Units mg/Kg	ke unt] 0	Prepare Dilution 1 Percent Recovery 129 Prep Metl Analyzed Prepared Dilution 10 Percent	RECOVERY LIMITS 39 1 - 137 7 and S 5035 By: DC By: DC RECOVERY
Prep Batch 3 Parameter DRO Surrogate n-Triacontane Sample: 1508 Analysis: T QC Batch 4 Prep Batch 3:	Flag Flag 13 - 2-2'-Spl PH GRO 5689 9337 Flag		RL Result 139 Units mg/Kg Analytical Date Analy Sample Pro	Dılut 1 Method	Units mg/Kg Spi Sion Amo 10 S 8015B 2008-02-18 2008-02-18 Units	ke unt 1 0	Prepare Dilution 1 Percent Recovery 129 Prep Metl Analyzed Prepared Dilution 10	RECOVERY LIMITS 39 1 - 137 7 and S 5035 By: DC By: DC RL 1 00

Report Date: February 20, 2008 ENV 2008-25 Work Order 8021530 Pardue SWD Battery Page Number: 4 of 10 20 miles SE of Carlsbad, NM

Sample: 150814 - 2-3'-Spl

Analysis Chloride (IC) QC Batch: 45695

39345

Prep Batch

Analytical Method Date Analyzed^{*} Sample Preparation: E 300.0 2008-02-19 2008-02-18 Prep Method· N/A Analyzed By: AR Prepared By· AR

`` *

Sample: 150814 - 2-3'-Spl

Analysis TPH DRO QC Batch: 45679 Prep Batch 39332 Analytical Method: Mod. 8015B Date Analyzed 2008-02-18 Sample Preparation 2008-02-18 Prep Method: N/A Analyzed By LD Prepared By LD

Spike Percent Recovery Surrogate Flag Result Units Dilution Amount Recovery Limits n-Triacontane 88 8 mg/Kg $\overline{1}$ 100 89 39 1 - 137 7

Sample: 150814 - 2-3'-Spl

Analysis: TPH GRO QC Batch 45689 Prep Batch. 39337 Analytical Method: S 8015B
Date Analyzed: 2008-02-18
Sample Preparation: 2008-02-18

Prep Method S 5035 Analyzed By: DC Prepared By DC

Percent Spike Recovery Dilution Surrogate Flag Result Units Recovery Limits Amount Trifluorotoluene (TFT) 0.953 mg/Kg 1 1.00 95 70 - 130 4-Bromofluorobenzene (4-BFB) 1 00 mg/Kg 1 1.00 100 70 - 130

Method Blank (1) QC Batch: 45679

QC Batch: 45679 Prep Batch 39332 Date Analyzed: 2008-02-18 QC Preparation: 2008-02-18

Analyzed By LD Prepared By LD

 MDL

 Parameter
 Flag
 Result
 Units
 RL

 DRO
 <14.6</td>
 mg/Kg
 50

ENV 2008-25

Work Order: 8021530 Pardue SWD Battery Page Number: 5 of 10 20 miles SE of Carlsbad, NM

				•	Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane		131	mg/Kg	1	100	131	33.3 - 157 4

Method Blank (1)

QC Batch: 45689

QC Batch 45689 Prep Batch: 39337 Date Analyzed 2008-02-18 QC Preparation: 2008-02-18 Analyzed By: DC Prepared By DC

Surrogate	Flag	Result	Umts	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)		0 990	mg/Kg	1	1.00	99	70 - 130
4-Bromofluorobenzene (4-BFB)		$1\ 02$	m mg/Kg	1	1 00	102	70 - 130

Method Blank (1)

QC Batch: 45693

QC Batch: 45693 Prep Batch: 39337 Date Analyzed: 2008-02-18 QC Preparation: 2008-02-18 Analyzed By. DC Prepared By: DC

MDL

Parameter	Flag	\mathbf{Result}	Units	RL
Benzene		< 0.00300	mg/Kg	0.01
Toluene		< 0 00300	m mg/Kg	0 01
Ethylbenzene		< 0.00400	m mg/Kg	0 01
Xylene		< 0.0140	m mg/Kg	0.01

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	$rac{ m Recovery}{ m Limits}$
	1100	recourt	CIIIOD	Diracion	Timoune	recevery	Emmo
Trifluorotoluene (TFT)		1 03	m mg/Kg	1	1 00	103	70 - 130
4-Bromofluorobenzene (4-BFB)		1 03	m mg/Kg	1	1.00	103	70 - 130

Matrix Blank (1)

QC Batch 45695

QC Batch. 45695 Prep Batch 39345

Chloride

Date Analyzed 2008-02-19 QC Preparation: 2008-02-18

0 816

Analyzed By: AR Prepared By. AR

Parameter Flag Result

 $\begin{array}{c|c} \text{Umts} & \text{RL} \\ \hline \text{mg/Kg} & 1 \\ \end{array}$

Laboratory Control Spike (LCS-1)

QC Batch 45679 Prep Batch 39332 Date Analyzed 2008-02-18 QC Preparation 2008-02-18 Analyzed By LD Prepared By LD

Report Date. February 20, 2008 ENV 2008-25 Work Order: 8021530 Pardue SWD Battery

Page Number: 6 of 10 20 miles SE of Carlsbad, NM

Param	LCS Result	Units	Dıl.	Spike Amount	$rac{ ext{Matrix}}{ ext{Result}}$	Rec	$egin{array}{c} { m Rec.} \\ { m Limit} \end{array}$
DRO	274	mg/Kg	1	250	<14.6	110	48.1 - 140.9
Percent recovery is bas	ed on the spike result. RPI) is based or	the spik	e and spike dı	iplicate resul	lt	
	LCSD		Spike	Matrix	3	Rec	RPD

	LCSD			Spike	Matrix		Rec		RPD
Param	Result	Units	Dil.	Amount	Result	Rec	Limit	RPD	Limit
DRO	312	m mg/Kg	1	250	<14 6	125	48 1 - 140 9	13	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	$_{ m Units}$	$D_{1}l$	${f Amount}$	Rec	Rec	Limit
n-Triacontane	117	133	mg/Kg	1	100	117	133	42 1 - 138.9

Laboratory Control Spike (LCS-1)

QC Batch 45689 Prep Batch 39337 Date Analyzed 2008-02-18 QC Preparation: 2008-02-18 Analyzed By DC Prepared By. DC

	LCS			Spike	Matrix		Rec
Param	Result	Units	Dil	Amount	Result	Rec.	$_{ m Limit}$
GRO	8.94	mg/Kg	1	10 0	0.79	89	70 - 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec		RPD
Param	Result	\mathbf{Umts}	Dil.	Amount	Result	Rec	Limit	RPD	$_{ m Limit}$
GRO	8.95	mg/Kg	1	10.0	0.79	90	70 - 130	0	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result

Surrogate	$rac{ ext{LCS}}{ ext{Result}}$	$\begin{array}{c} { m LCSD} \\ { m Result} \end{array}$	Umts	Dıl	Spike Amount	$rac{ ext{LCS}}{ ext{Rec}}$	$egin{array}{c} ext{LCSD} \\ ext{Rec} \end{array}$	Rec. Limit
Trifluorotoluene (TFT)	1.00	1 01	mg/Kg	1	1 00	100	101	70 - 130
4-Bromofluorobenzene (4-BFB)	1 06	1.07	mg/Kg	1	1 00	106	107	70 - 130

Laboratory Control Spike (LCS-1)

QC Batch 45693 Prep Batch 39337

Date Analyzed: 2008-02-18 QC Preparation 2008-02-18 Analyzed By: DC Prepared By: DC

	LCS			Spike	Matrix		Rec
Param	Result	Units	Dil.	Amount	Result	Rec.	$_{ m Limit}$
Benzene	0 983	mg/Kg	1	1 00	< 0.00300	98	70 - 130
Toluene	0.984	mg/Kg	1	1 00	< 0 00300	98	70 - 130
Ethylbenzene	0.994	mg/Kg	1	1 00	< 0 00400	99	70 - 130
Xvlene	297	${ m mg/Kg}$	1	3.00	< 0.0140	99	70 - 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result

	LCSD			Spike	Matrix		Rec		RPD
Param	Result	Units	Dıl	Amount	Result	Rec	Limit	RPD	Limit
Benzene	1.01	mg/Kg	1	1 00	< 0 00300	101	70 - 130	3	20

continued .

ENV 2008-25

Work Order: 8021530 Pardue SWD Battery

Page Number: 7 of 10 20 miles SE of Carlsbad, NM

control spikes continued

	LCSD			Spike	Matrix		${ m Rec.}$		RPD
Param	Result	Units	Dil.	Amount	Result	Rec	Limit	RPD	Limit
Toluene	1 01	mg/Kg	1	1 00	< 0 00300	101	70 - 130	3	20
Ethylbenzene	1.02	mg/Kg	1	1 00	< 0 00400	102	70 - 130	3	20
Xylene	3 05	mg/Kg	1	3 00	< 0 0140	102	70 - 130	3	20

Percent recovery is based on the spike result RPD is based on the spike and spike duplicate result

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	$_{ m Units}$	$D_{1}l$	${f Amount}$	$\mathrm{Re}c$	Rec	$_{ m Limit}$
Trifluorotoluene (TFT)	1.04	1 04	mg/Kg	1	1 00	104	104	70 - 130
4-Bromofluorobenzene (4-BFB)	1.05	$1\ 05$	mg/Kg	1	1 00	105	105	70 - 130

Laboratory Control Spike (LCS-1)

QC Batch Prep Batch: 45695

39345

Date Analyzed:

2008-02-19

Analyzed By: AR

Prepared By: AR

LCS Spike Matrix Rec Dıl. Rec Limit Param Result Units Amount Result Chloride 12 7 12.5 < 0 0222 101 90 - 110 mg/Kg 1

QC Preparation: 2008-02-18

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec		RPD
Param	Result	Units	Dıl	Amount	Result	Rec	$_{ m Limit}$	RPD	$_{ m Limit}$
Chloride	12.4	mg/Kg	1	12 5	< 0 0222	100	90 - 110	2	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1)

Spiked Sample 150813

QC Batch: Prep Batch:

45679 39332 Date Analyzed: QC Preparation: 2008-02-18

2008-02-18

Analyzed By: LD

Prepared By

	MS			Spike	Matrix		Rec.
Param	Result	Umts	Dil	Amount	Result	Rec.	$_{ m Limit}$
DRO	281	mg/Kg	1	250	139	57	35.6 - 173.6

Percent recovery is based on the spike result RPD is based on the spike and spike duplicate result

		MSD			Spike	Matrix		${ m Rec}$		RPD
Param		Result	Umits	$D_{1}l$	Amount	Result	Rec	Limit	RPD	Limit
DRO	2	406	mg/Kg	1	250	139	107	35 6 - 173 6	36	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec
Surrogate	Result	Result	$_{ m Umts}$	Dıl	Amount	Rec.	Rec	$_{ m Limit}$
n-Triacontane	99 4	99 6	mg/Kg	1	100	99	100	33 - 156 2

²MS/MSD RPD out of RPD Limits Use LCS/LCSD to demonstrate analysis is under control

ENV 2008-25

Work Order: 8021530 Pardue SWD Battery Page Number: 8 of 10 20 miles SE of Carlsbad, NM

Matrix Spike (MS-1)

Spiked Sample. 150814

QC Batch 45689 Prep Batch: 39337 Date Analyzed: 2008-02-18 QC Preparation 2008-02-18 Analyzed By DC Prepared By DC

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dıl.	Amount	Result	Rec.	Limit
GRO	11.0	mg/Kg	1	10.0	1.0767	99	70 - 130

Percent recovery is based on the spike result RPD is based on the spike and spike duplicate result

	MSD			Spike	Matrix		Rec		RPD
Param	Result	$_{ m Umts}$	Dıl	Amount	Result	Rec.	$_{ m Limit}$	RPD	$_{ m Limit}$
GRO	12 4	mg/Kg	1	10 0	1.0767	113	70 - 130	12	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result

	MS	MSD			Spike	MS	MSD	Rec
Surrogate	Result	Result	Units	Dıl	Amount	Rec	Rec	$_{ m Limit}$
Triffuorotoluene (TFT)	0 851	0.977	mg/Kg	1	1	85	98	70 - 130
4-Bromofluorobenzene (4-BFB)	1.06	1.06	m mg/Kg	1	1	106	106	70 - 130

Matrix Spike (MS-1) Spiked Sample 150805

QC Batch. 45693 Prep Batch: 39337 Date Analyzed: 2008-02-18 QC Preparation. 2008-02-18 Analyzed By: DC Prepared By. DC

	MS			\mathbf{Spike}	Matrix		Rec.
Param	Result	$_{ m Units}$	Dil	Amount	Result	$\mathrm{Re} \epsilon$	Limit
Benzene	1.10	mg/Kg	1	1.00	< 0.00300	110	70 - 130
Toluene	1.12	mg/Kg	1	1.00	0.0096	111	70 - 130
Ethylbenzene	1.14	mg/Kg	1	1.00	< 0 00400	114	70 - 130
Xylene	3.39	${ m mg/Kg}$	1	3 00	< 0 0140	113	70 - 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MSD			Spike	Matrix		$\mathrm{Re} \mathfrak{c}.$		RPD
Param		Result	Units	Dıl	Amount	Result	Rec	$_{ m Limit}$	RPD	Limit
Benzene	3	2.54	mg/Kg	1	1.00	< 0 00300	254	70 - 130	79	20
Toluene	4	$2\ 60$	mg/Kg	1	1 00	0.0096	259	70 - 130	80	20
Ethylbenzene	5	2.65	m mg/Kg	1	1.00	< 0 00400	265	70 - 130	80	20
Xylene	6	8.11	mg/Kg	1	3.00	< 0 0140	270	70 - 130	82	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result

	MS	MSD			Spike	MS	MSD	$\mathrm{Rec.}$
Surrogate	Result	Result	$_{ m Units}$	Dıl.	Amount	Rec .	Rec	$_{ m Limit}$
Trifluorotoluene (TFT)	1.09	1.03	mg/Kg	1	1	109	103	70 - 130
4-Bromofluorobenzene (4-BFB)	1.06	1 06	${ m mg/Kg}$	1	1	106	106	70 - 130

 $^{^3}$ Sample double spiked Use LCS/LCSD to show method is in control $\, \bullet \,$

⁴Sample double spiked Use LCS/LCSD to show method is in control •

⁵Sample double spiked Use LCS/LCSD to show method is in control •

⁶Sample double spiked Use LCS/LCSD to show method is in control •

ENV 2008-25

Work Order: 8021530 Pardue SWD Battery Page Number. 9 of 10 20 miles SE of Carlsbad, NM

Matrix Spike (MS-1)

Spiked Sample: 150861

QC Batch: 45695 Prep Batch: 39345 Date Analyzed: 2008-02-19 QC Preparation: 2008-02-18 Analyzed By: AR Prepared By AR

MS Spike Matrix Rec. Param Result Umts Dıl. Amount Result Rec. Limit Chloride 314 mg/Kg $\overline{5}$ 62 5 257.59 90 90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec		RPD
Param	Result	Units	Dıl	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	323	mg/Kg	5	$62\ 5$	257.59	105	90 - 110	3	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result

Standard (ICV-1)

QC Batch: 45679

Date Analyzed: 2008-02-18

Analyzed By LD

			ICVs	ICVs	ICVs	$\operatorname{Percent}$	
			True	Found	Percent	Recovery	Date
Param	\mathbf{Flag}	Units	Conc	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	274	110	85 - 115	2008-02-18

Standard (CCV-1)

QC Batch. 45679

Date Analyzed: 2008-02-18

Analyzed By: LD

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc	Recovery	Limits	Analyzed
DRO		mg/Kg	250	274	110	85 - 115	2008-02-18

Standard (ICV-1)

QC Batch: 45689

Date Analyzed 2008-02-18

Analyzed By: DC

			ICVs True	${ m ICVs} \ { m Found}$	$rac{ ext{ICVs}}{ ext{Percent}}$	Percent Recovery	Date
Param	Flag	Units	Conc	Conc.	Recovery	Limits	Analyzed
GRO		mg/Kg	1 00	1.13	113	85 - 115	2008-02-18

Standard (CCV-1)

QC Batch: 45689

Date Analyzed 2008-02-18

Analyzed By DC

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			Ti ue	Found	Percent	Recovery	Date
Param	Flag	Units	Conc	Conc	Recovery	Lumts	Analyzed
GRO		mg/Kg	1 00	1 13	113	85 - 115	2008-02-18

ENV 2008-25

Work Order: 8021530 Pardue SWD Battery Page Number: 10 of 10 20 miles SE of Carlsbad, NM

Standard (ICV-1)

			ICVs True	$egin{array}{l} ext{ICVs} \ ext{Found} \end{array}$	${ m ICVs} \ { m Percent}$	Percent Recovery	Date
Param	Flag	Units	Conc	Conc.	Recovery	Limits	Analyzed
Benzene		mg/Kg	0.100	0.0939	94	85 - 115	2008-02-18
Toluene		${ m mg/Kg}$	0 100	0.0948	95	85 - 115	2008-02-18
Ethylbenzene		$_{ m mg/Kg}$	0 100	0.0966	97	85 - 115	2008-02-18
Xylene		${ m mg/Kg}$	0 300	0 288	96	85 - 115	2008-02-18

Standard (CCV-1)

QC Batch: 45693 Date Analyzed: 2008-02-18 Analyzed By: DC

		•	$rac{ ext{CCVs}}{ ext{True}}$	${ m CCVs} \ { m Found}$	${ m CCVs} \ { m Percent}$	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		mg/Kg	0.100	0 108	108	85 - 115	2008-02-18
Toluene		m mg/Kg	0 100	0.108	108	85 - 115	2008-02-18
Ethylbenzene		mg/Kg	0 100	0 108	108	85 - 115	2008-02-18
Xylene		m mg/Kg	0.300	0.322	107	85 - 115	2008-02-18

Standard (ICV-1)

QC Batch: 45695 Date Analyzed: 2008-02-19 Analyzed By: AR

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	12.5	12 4	99	90 - 110	2008-02-19

Standard (CCV-1)

QC Batch 45695 Date Analyzed 2008-02-19 Analyzed By AR

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc	Conc	Recovery	Limits	Analyzed
Chloride		mg/Kg	12 5	12 2	98	90 - 110	2008-02-19

♂

TraceAnalysis, Inc.

6701

01 Aberdeen Avenue, Suite 9 Lubbock, Texas 79424 Tel (806) 794-1296 Fax (806) 794-1298 1 (800) 378-1296

5002 Basin Street, Suite A1 Mildiand, Texas 79703 Tel (432) 689-6301 Fax (432) 689-6313

200

. Rd., Suite | as 79922 00 East Sunset Rd., Sulte El Paso, Texas 79922 Tel (915) 585-3443 Fax (915) 585-4944 1 (888) 588-3443

8808 Camp Bowie Bivd. West, Sute 180 Ft. Worth. Texas 76116 Tel (817) 201-5260 Fax (817) 560-4336

Turn Around Time if different from standard ZO. or Specify Method **ANALYSIS REQUEST** Circle TCLP Metals Ag As Ba Cd Cr Pb Se Hg Total Metals Ag As Ba Cd Cr Pb Se Hg 6010B/200 7 TPH 8015 GRO / DRO / TVHC Spread btacil. com 432-553-5352 State, NM. US PAINDLE SWD Battery 732 - 683 - 0325 Project Name: Sampler Signature: Phone #: Fax #. E-mail Sherry email: lab@traceanalysıs com Moducers,

TPH 418 1 / TX1005 / TX1005 EX(C35) B1EX 8021B \ 602 \ 8260B \ 624 8021B / 602 / 8260B / 624 **BBTM** SAMPLING TIME **BTA**0 PRESERVATIVE NONE METHOD ICE HOEN OS2H

MATRIX

BTA DACA

(If different from above)

Project #

Invoice to:

City, Zip)

Address

Company Name

S. Mecos

Contact Perso 70/

10:00 460.01 2/15/12

HCI

ЯIA TIOS

×

707

Q

3

Q

718 83

105-

U 1

١ ,

150812

STADGE

MATER

InnomA \ emuloV

CONTAINERS

FIELD CODE

LAB USE

LAB#

S - X - S

Project Location (including state)

10:144

PAH 8270C / 625

TCLP Semi Volatiles TCLP Volatiles

BCI

Pesticides 808 1A / 608 PCB's 8082 / 608 GC/WS 26ml Aol 8270C / 625

BOD, TSS, pH

Moisture Content

29PIVOLAP

GC/W2 AQL 8560B / 624

TCLP Pesticides

-55 --27 --27

Received by

Time: Date:

Company Relinquished by. Relinquished by Spiro

3.5'6 Temp°c: 5:38 Time: BO 19

Dry Weight Basis Required

All tendon Mill

BTEX ON

REMARKS

AB USE

Temp c:

Time:

Date:

Company

ΔNC

Infact ON

TRRP Report Required

3,5

Temp

Time:

Date:

Company

og-in-Review

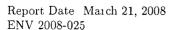
Check If Special Reporting Limits Are Needed

Carmy 25

Carrier #

Company Received by:

Received by: Time: Date:


Company

Relinquished by

Submittal of samples constitutes agreement to Terms and Conditions listed on reverse side of C

ORIGINAL COPY

Ö

Summary Report

Skip Baca BTA Oil Producers 104 S Pecos Midland, TX, 79701

Report Date. March 21, 2008

Work Order 8032010

Project Location 20 miles SE Carlsbad, NM
Project Name Pardue SWD Battery
Pardue SWD Battery

Project Number ENV 2008-025

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
154147	North-1 @ 1'	soil	2008-03-19	11 00	2008-03-19
154148	South-2 @ 1'	soil	2008-03-19	11 10	2008-03-19
154149	East-3 @ 1'	soıl	2008-03-19	11:22	2008-03-19
154150	West-4 @ 1'	soil	2008-03-19	11.30	2008-03-19

Sample: 154147 - North-1 @ 1'

Param	Flag	Result	Units	RL
Chloride		3110	mg/Kg	2.00

Sample: 154148 - South-2 @ 1'

Param	Flag	Result	Units	RL
Chloride		1190	mg/Kg	2 00

Sample: 154149 - East-3 @ 1'

Param	Flag	Result	Units	RL_
Chloride		898	mg/Kg	2.00

Sample: 154150 - West-4 @ 1'

Param	Flag	Result	Units	RL
Chloride		2540	mg/Kg	2 00

P. Weit To risk to Electric the engineer assistent

10. •589•5 WI

ا (ر•ال،•اد

Sidelli Kar B Q

Analytical and Quality Control Report

Skip Baca BTA Oil Producers 104 S Pecos Midland, TX, 79701

Report Date March 21, 2008

Work Order: 8032010

10 102 - 189 - 111 .

Project Location. 20 miles SE Carlsbad, NM
Project Name. Pardue SWD Battery
Project Number. ENV 2008-025

radional Service

Ohlond Britain was

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc

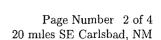
			Date	\mathbf{Time}	Date
Sample	Description	Matrix	Taken	Taken	Received
$\overline{154147}$	North-1 @ 1'	soil	2008-03-19	11.00	2008-03-19
154148	South-2 @ 1'	soil	2008-03-19	11:10	2008-03-19
154149	East-3 @ 1'	soil	2008-03-19	11:22	2008-03-19
154150	West-4 @ 1'	soil	2008-03-19	11:30	2008-03-19

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 4 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc

Dr Blair Leftwich, Director

Standard Flags


 $\,B\,$ - $\,$ The sample contains less than ten times the concentration found in the method blank

Report Date: March 21, 2008

ENV 2008-025

Work Order: 8032010 Pardue SWD Battery

Prep Method.

Analyzed By:

Prepared By

N/A

AR

AR

Analytical Report

Sample: 154147 - North-1 @ 1	Sample:	154147	-	North-1	0	1
------------------------------	---------	--------	---	---------	---	---

AnalysisChloride (Titration)Analytical MethodSM 4500-Cl BQC Batch46705Date Analyzed2008-03-20Prep Batch40179Sample Preparation2008-03-20

Sample: 154148 - South-2 @ 1'

Analysis. Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: N/A QC Batch 46705 Date Analyzed: 2008-03-20 Analyzed By: ARPrep Batch: 40179 Sample Preparation: 2008-03-20 Prepared By: ARRLParameter Flag Result Units Dilution RLChloride 1190 mg/Kg 50 2 00

Sample: 154149 - East-3 @ 1'

Chloride (Titration) N/A Analysis. Analytical Method: SM 4500-Cl B Prep Method: QC Batch 46705 Analyzed By: Date Analyzed: 2008-03-20 ARPrep Batch: 40179 Sample Preparation 2008-03-20 Prepared By ARRLFlag Parameter Result Units Dilution RLChloride 898 mg/Kg 50 2 00

Sample: 154150 - West-4 @ 1'

Analytical Method Chloride (Titiation) SM 4500-Cl B Prep Method Analysis N/A QC Batch: 46705 Date Analyzed. Analyzed By AR 2008-03-20 Prep Batch 40179 Sample Preparation. 2008-03-20 Prepared By: ARRL

 Parameter
 Flag
 Result
 Units
 Dilution
 RL

 Chloride
 2540
 mg/Kg
 50
 2.00

Method Blank (1) QC Batch 46705

QC Batch 46705 Date Analyzed 2008-03-20 Analyzed By: AR
Prep Batch 40179 QC Preparation 2008-03-20 Prepared By: AR

Report Date March 21, 2008 ENV 2008-025

Work Order 8032010 Pardue SWD Battery Page Number: 3 of 4 20 miles SE Carlsbad, NM

		MDL		
Parameter	Flag	Result	Units	RL
Chloride		< 0 500	mg/Kg	2

Laboratory	Control	Spike ((LCS-1)
------------	---------	---------	---------

QC Batch. 46705 Prep Batch 40179 Date Analyzed: 2008-03-20 QC Preparation. 2008-03-20

Analyzed By AR Prepared By AR

	LCS			Spike	Matrix		Rec
Param	Result	Units	Dıl	Amount	Result	Rec	Limit
Chloride	103	mg/Kg	1	100	< 0.500	103	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dıl.	Amount	Result	Rec	\mathbf{Limit}	RPD	Limit
Chloride	102	mg/Kg	1	100	< 0.500	102	85 - 115	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 154151

QC Batch 46705 Prep Batch 40179 Date Analyzed: 2008-03-20 QC Preparation 2008-03-20

Analyzed By: AR Prepared By: AR

	MS			Spike	Matrix		${ m Rec.}$
Param	Result	${ m Units}$	$\mathbf{D}_{\mathbf{l}}$	Amount	Result	Rec	Limit
Chloride	5120	mg/Kg	50	5000	<25 0	102	85 - 115

Percent recovery is based on the spike result RPD is based on the spike and spike duplicate result

	MSD			$\mathbf{S}_{\mathbf{p}_{\mathbf{i}}\mathbf{k}\mathbf{e}}$	Matrix		Rec.		RPD
Param	Result	Units	Dıl	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	5020	mg/Kg	50	5000	<25 0	100	85 - 115	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Standard (ICV-1)

QC Batch 46705

Date Analyzed 2008-03-20

Analyzed By AR

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	$_{ m Units}$	Conc	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	100	101	101	85 - 115	2008-03-20

Standard (CCV-1)

QC Batch 46705

Date Analyzed 2008-03-20

Analyzed By AR

Report Date March 21, 2008 ENV 2008-025

Work Order 8032010 Pardue SWD Battery

Page Number. 4 of 4 20 miles SE Carlsbad, NM

Param	Flag	Units	CCVs True Conc	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Chloride		mg/Kg	100	98 8	99	85 - 115	2008-03-20

LAB Order ID#_	8037	201	
LAD Older ID #_	$\frac{1}{1}$	<u> </u>	

age	/ of	:	
-			

TraceAnalysis, Inc.

email: lab@traceanalysis com

6701 Aberdeen Avenue, Suite 9 **Lubbock, Texas 79424** Tel (806) 794-1296 Fax (806) 794-1298 1 (800) 378-1296

5002 Basın Street, Suite A1 Midland, Texas 79703 Tel (432) 689-6301 Fax (432) 689-6313

200 East Sunset Rd , Suite E EI Paso, Texas 79922
Tel (915) 585-3443
Fax (915) 585-4944
1 (888) 588-3443

8808 Camp Bowie Blvd West, Suite 180
Fit Worth, Texas 76116
Tel (817) 201-5260
Fax (817) 560-4336

Company Name: BTA O: Produce Address: (Street, City, Zip) 104 S. Pacos	vs, LL	Pho	ne#: (432)	553-53	52		ANALYSIS REC	QUEST
Address (Street, City, Zip) /DY S. PCOS	,	Fax	#. (432)	683-032	25		(Circle or Specify	alethod (40.)
Contact Person: Skip BACA		E-m	ail. Shacaa) 553-53) 683-032 Obtaoil. com	1	35)	Cr Pb Se Hg 6010B/200 7 a Cd Cr Pb Se Hg 24 0C / 625	standard
Invoice to:						4 S	Se	
(If different from above) Project #: ENV 2008-025		Proj	ect Name: PAVQUE	SWA		/ 8260B / 624 8260B / 624 / TX1005 Ext(C35)	/HC Se Hg Cr Pb 625	t from
Project Location (including state): 20 miles SE of CAN	stadin). MEX	ipler Signature:	Seea	1	8021B / 602 / 8260B / 624 8021B / 602 / 8260B / 624 18 1 / TX1005 / TX1005 Ex		f differen
Fig. 7, 7, 7	AINERS / Amount	MATRIX	PR/ESERV	ATIVE \ CARAD	LING	8021B / 602 / 321B / 602 / 1 / TX1005 /	etals Ag As Ba C Metals Ag As Ba C Metals Ag As Ba C Volatules Semi Volatiles Pesticides S Vol 8260B / S Semi Vol 82	Para if Time if
LAB# FIELD CODE	# CONTAINERS Volume / Amoun	WATER SOIL AIR SLUDGE	_ & & &	ICE NONE DATE	l.	3E 802 EX 8021E 1 418 1 /	7007 700 Alettals Vola Semi Semi Semi Semi Semi Semi Semi Semi	Pesticides 8081A / 608 BOD, TSS, pH Moisture Content Chlau: Rea Turn Around Time if different from Hold
ONLY		 	HCI HNO ₃ H ₂ SO ₄ NaOH	 		MTBE BTEX TPH 4'	44 Per 12 12 12 12 12 12 12 12 12 12 12 12 12	Pesti BODD Mois Turn Turn Hold
1544 North-1@1'	1 402	X		X 3/19/08				
148 South-201'	51			17 (//:/0			
149 East -3@1'				7 7	11:22			
148 South-201' 149 East-301' 150 West-401'	3 3			3	11:30			
The state of the s								
Part of the second of the seco								
\$0.5 mg 1 1 1 1								
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
- 乙酰基								
Relinquished by: Company: Date:	Time	Received by:	Company:	Date: Time:	Ten	mp°c:	LAB USE REMARKS:	
Sooboen BIA 3/90	\$ 5.028	(,,,)	I Talace	ce 3/1/08 17:		3.ა ლ	ONLY All tests	- Midland
Relinquished by: Company: Date:	Time:	Received by:	Company:	Date: Time	: Ten	125	acQ Dry Weigh	nt Basis Required
Relinquished by: Company: Date:	Time:	Received by:	Company:	Date: Time	. Ter	<u> </u>	3 O	port Required Special Reporting Needed
Submittal of samples constitutes agreement to Te	erms and Con	ditions listed on re	verse side of C	O. C.		Carner	A 1	
	ORIGINAL	L COPY					0	

Appendix B

District I
1625 N French Dr , Hobbs, NM 88240
District II
1301 W Grand Avenue, Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV

1220 S St Francis Dr , Santa Fe, NM 87505

Accepted for record

NMOCD

Approval

Printed Name/Title

State of New Mexico Energy Minerals and Natural Resource

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 For drilling and production facilities, submit to appropriate NMOCD District Office For downstream facilities, submit to Santa Fe office

Date 4-7-08

Form C-144

June 1, 2004

Pit or Below-Grade Tank Registration or Closure

Is pit or below-grade tank covered by a "general plan"? Yes \(\subseteq \text{No } \emptysete \)

Type of action Registration of a pit or below-grade tank \(\subseteq \text{ Closure of a pit or below-grade tank } \emptysete \) Operator BTA Oil Producers Telephone 432-682-3753 e-mail address sbaca@btaoil com Address 104 S Pecos St Facility or well name Pardue SWD Injection Facility API # 30-015-26341 U/L or Qtr/Qtr NE/4, NE/4 Sec 11 T 23S Latitude 32° 18 771 N Longitude 104°03 633 _____ NAD 1927 🛛 1983 🔲 Surface Owner Federal ☐ State ☒ Private ☐ Indian ☐ Pit Below-grade tank Volume ____bbl Type of fluid _____ Type Drilling Production Disposal Workover ☐ Emergency ☐ Construction material Lined Unlined 🛛 Double-walled, with leak detection? Yes If not, explain why not Liner type Synthetic Thickness mil Clay Pit Volume 758 bbl Less than 50 feet (20 points) Depth to ground water (vertical distance from bottom of pit to seasonal 50 feet or more, but less than 100 feet (10 points) 20 point high water elevation of ground water) 15-feet 100 feet or more (0 points) Yes (20 points) 20 points Wellhead protection area (Less than 200 feet from a private domestic No (0 points) water source, or less than 1000 feet from all other water sources) Less than 200 feet (20 points) Distance to surface water (horizontal distance to all wetlands, playas, 200 feet or more, but less than 1000 feet (10 points) 20 points irrigation canals, ditches, and perennial and ephemeral watercourses) 1000 feet or more (0 points) Ranking Score (Total Points) 60 points If this is a pit closure: (1) Attach a diagram of the facility showing the pit's relationship to other equipment and tanks (2) Indicate disposal location (check the onsite box if your are burying in place) onsite 🔲 offsite 🗵 If offsite, name of facility________(3) Attach a general description of remedial action taken including remediation start date and end date (4) Groundwater encountered No 🛛 Yes 🔲 If yes, show depth below ground surface ft and attach sample results (5) Attach soil sample results and a diagram of sample locations and excavations Additional Comments See Figure 2 for sample locations I hereby certify that the information above is true and complete to the best of my knowledge and belief. I further certify that the above-described pit or below-grade tank has been/will be constructed or closed according to NMOCD guidelines , a general permit , or an (attached) alternative OCD-approved plan . Your certification and NMOCD approval of this application/closure does not relieve the operator of liability should the contents of the pit or tank contaminate ground water or otherwise endanger public health or the environment. Nor does it relieve the operator of its responsibility for compliance with any other federal, state, or local laws and/or regulations