1R-428-45

# REPORTS



3-31-08

Hobbs F-29-1b Boot

٦, ٣

\*

18428-45

# CLOSURE 3-28-08



3

### RICE OPERATING COMPANY

### JUNCTION BOX CLOSURE REPORT

### BOX LOCATION

|     | SWD SYSTEM            | JUNCTION           | UNIT             | SECTION         | TOWNSHIP               | RANGE                | COUNTY            | BOX DIMENS            | BIONS - FEET         |
|-----|-----------------------|--------------------|------------------|-----------------|------------------------|----------------------|-------------------|-----------------------|----------------------|
|     | Hobbs                 | F-29-1b boot       | F                | 29              | 18S                    | الالكى<br>38E        |                   | Length 🦂 Wi           | dth Depth            |
|     | 10003                 | (#1R428-45)        |                  | 25              | 100                    | 502                  | Lea               | no boxSyste           | m abandoned          |
|     | LAND TYPE: B          | SLMST/             | ATE              | FEE LANDO       | C<br>DWNER             | occidental P<br>(Oxy |                   | OTHER                 |                      |
|     | Depth to Groun        | dwater             | 63               | feet            | NMOCD                  | SITE ASSE            | SSMENT R          | ANKING SCORE          | 2:10                 |
|     | Date Started          | 11/3/20            | 004              | Date Cor        | mpleted                | 8/20/2007            |                   | D Witness             | no                   |
| ×.  | Soil Excavated        | 0                  | <u>cubic yai</u> | ds Exc          | avation Ler            | ngth <u>n/a</u>      | Width             | NaDept                | h n/a feet           |
|     | Soil Disposed         | Ю                  | cubic yai        | rds             | fsite Facility         | C                    |                   | Location 1            |                      |
|     |                       |                    |                  |                 |                        |                      |                   |                       |                      |
| Ge  | 2 2 1                 | •                  | Action:          | ng tingga sa ta |                        |                      |                   | according to the Inve | stigation and        |
| Cha | racterization Plan su | ubmitted by R.T. H | licks Consulta   | nts (2004). TI  | ne Corrective A        | ction Plan (CA       | AP) for this site | was verbally approve  | ed by                |
|     |                       |                    | ~                |                 |                        |                      |                   | tion surrounds the si |                      |
| see |                       | nclosed Hicks rep  | ort (December    | r 2007) docum   | ents the fulfilln      | ent of the app       | proved CAP and    | d requests closure of | this                 |
|     |                       |                    |                  |                 |                        |                      |                   |                       | enclosures as stated |
|     | I HEREB               | Y CERTIFY TH       | IAT THE IN       |                 | DN ABOVE I<br>LEDGE AN |                      | ND COMPLE         | ETE TO THE BE         | ST OF MY             |
| RE  | PORT ASSEMBLED        | ) BY Kr            | istin Farris Po  | ре              | SIGNATURE_             | , Kn                 | 1211n             | Jamis ;               | Pope                 |
|     | DA                    | ATE                | 11/28/2007       |                 | TITLE_                 |                      | Pr                | roject Scientist      |                      |

# R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW 🛦 Suite F-142 🛦 Albuquerque, NM 87104 🛦 505.266.5004 🛦 Fax: 505.266-0745

December 4, 2007

Mr. Ed Hansen New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

COPY

RE: NMOCD Case # 1R0428-45, F-29-1b Junction Boot Hobbs SWD System Abandonment Closure Report

Dear Mr. Hansen:

This letter and Appendices are the final Closure Report for the F-29-1b Junction Boot. The NMOCD approved Corrective Action Plan (Section 4.0, page 3) included creating an infiltration barrier and re-vegetation of the ground surface at the F-29-1b site. Appendix A provides photographs of the re-vegetation at the site. Appendix B includes the junction box closure form. Appendix C includes copies of previous submissions and the NMOCD approval email.

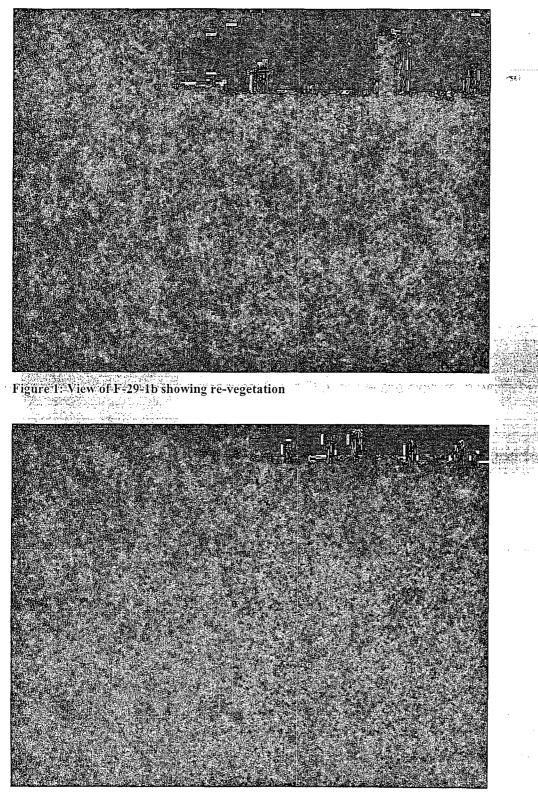
We respectfully request NMOCD approve site closure in writing. Thank you for your attention to this matter.

Sincerely, R.T. Hicks Consultants, Ltd.

Katie Lee Staff Scientist

Copy: Rice Operating Company Hobbs NMOCD Office

### and the second second


# ക്കില് അവരം പ്രിപ്പെടക്ക്കെങ്കായത്. പ്രവിസം വരുപ്പിട്ട് പ്രവിസം നിഷ്ട്രം പ്രവിഷ്ടങ്ങള് തല്ലിനെ പ്രിഷ്

s#1 -

el istra esca de

December 4, 2007 Page 2

Appendix A - Photographs Documenting Re-Vegetation at F-29-1b



u de la cara de la cara

Figure 2: Close-up of re-vegetation



- 4 

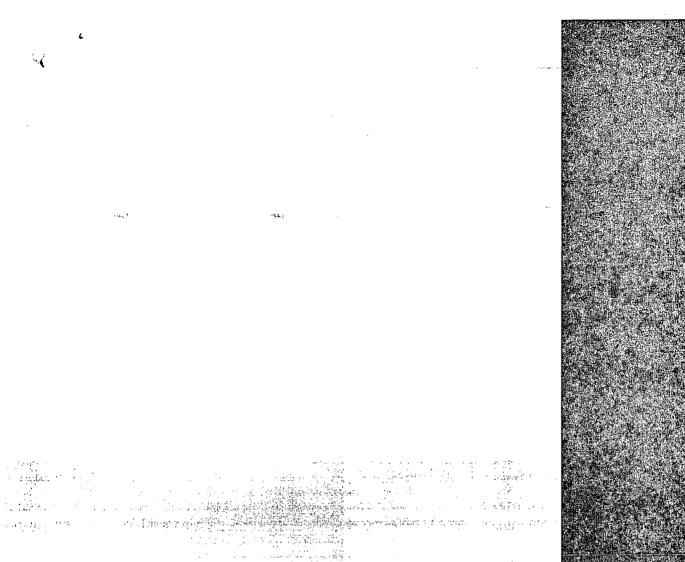
-0.0 areas and the

vier ver

### RICE OPERATING COMPANY

# JUNCTION BOX CLOSURE REPORT

#### BOX LOCATION


|          | SWD SYSTEM              | JUNCTION                                                                                                                                                                                                                                                                                                                                                        | UNIT                | SECTION                                  | TOWNSHIP                                                                                                       | RANGE               | COUNTY          | BOX D                                                                                                           | IMENSIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - FEET          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------|-----------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Hobbs                   | F-29-1b boot <sup>ss</sup>                                                                                                                                                                                                                                                                                                                                      | r<br>F              | 29                                       | 18S                                                                                                            | 38E                 | Lea             | Length                                                                                                          | Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -Depth          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | Radon                   | (#1R428-45)                                                                                                                                                                                                                                                                                                                                                     | F                   | 29                                       | 105                                                                                                            | JOL                 | Lea             | no boxSystem abandoned                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | andoned         | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |                         |                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                                                                                                                |                     |                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | LAND TYPE:              | 3LM ST/                                                                                                                                                                                                                                                                                                                                                         | ATE                 | FEE LANDC                                | OWNER                                                                                                          | ccidental P<br>(Oxy |                 | OTHER                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | Depth to Grour          | ndwater                                                                                                                                                                                                                                                                                                                                                         | 63                  | feet                                     | NMOCE                                                                                                          | SITE ASS            | ESSMENT F       | RANKING S                                                                                                       | SCORE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | Date Started            | 11/3/20                                                                                                                                                                                                                                                                                                                                                         | )04                 | Date Cor                                 | mpleted                                                                                                        | 8/20/2007           | NMOC            | D Witness                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | no              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | Soil Excavated          | 0                                                                                                                                                                                                                                                                                                                                                               | cubic ya            | ds Exc                                   | avation                                                                                                        | ngth                | Width           | n/a                                                                                                             | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n/a             | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          |                         |                                                                                                                                                                                                                                                                                                                                                                 |                     | an a | and a second | -TA                 |                 | n in the second seco |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | Soil Disposed           | <u></u>                                                                                                                                                                                                                                                                                                                                                         | <u>ta</u> cubic yal | ds<br>Off                                | site Facility                                                                                                  |                     | /a · ·          | Cocation                                                                                                        | and a second and a<br>The second and a second and a<br>The second and a second a<br>The second and a s | n/a             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          |                         | المراجعة<br>مراجعة المراجعة الم<br>المراجعة المراجعة الم<br>المراجعة المراجعة الم |                     |                                          |                                                                                                                |                     |                 |                                                                                                                 | ang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | sy se<br>- namerica<br>- sy se<br>- sy |
| Maria di | General Description     | on of Remedial /                                                                                                                                                                                                                                                                                                                                                | Action:             | This junction                            | box site was d                                                                                                 | elineated usin      | g a soil boring | according to t                                                                                                  | he Investigati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | on and          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | Characterization Plan s |                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                                                                                                                |                     |                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | NMOCD on 7/18/2007      | and confirmed via e                                                                                                                                                                                                                                                                                                                                             | email on 8/8/2      | 007. A site vis                          | it on 8/20/200                                                                                                 | 7 revealed that     | t healthy veget | ation surround                                                                                                  | ds the site; add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ditional        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | seed was added. The     | enclosed Hicks rep                                                                                                                                                                                                                                                                                                                                              | ort (Novembe        | r 2007) docum                            | ents the fulfilin                                                                                              | nent of the app     | proved CAP an   | d requests clo                                                                                                  | osure of this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | site.                   |                                                                                                                                                                                                                                                                                                                                                                 |                     | <u>.</u> .                               |                                                                                                                |                     |                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          |                         |                                                                                                                                                                                                                                                                                                                                                                 |                     |                                          |                                                                                                                |                     |                 |                                                                                                                 | е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nclosures as st | tated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### I HEREBY CERTIFY THAT THE INFORMATION ABOVE IS TRUE AND COMPLETE TO THE BEST OF MY KNOWLEDGE AND BELIEF.

| REPORT ASSEMBLED BY | Kristin Farris Pope | SIGNATURE | . * ·             |
|---------------------|---------------------|-----------|-------------------|
| DATE _              | 11/2/2007           | TITLE     | Project Scientist |
| 411-11-11           |                     |           |                   |

Ý

٤



sz.

### Katie Lee

ŝ,

| From:                                | Kristin Pope [kpope@r                               | iceswd.com]                              |                                               |                                                       |                                                                                                                |                                           |
|--------------------------------------|-----------------------------------------------------|------------------------------------------|-----------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Sent:                                | Wednesday, October 3                                | 31, 2007 3:30 PM                         |                                               |                                                       |                                                                                                                |                                           |
| То:                                  | Katie Lee                                           |                                          |                                               |                                                       |                                                                                                                |                                           |
| Subject                              | : Fw: Summary of July 1                             | 8 meeting                                |                                               |                                                       | 1992.7 ·                                                                                                       |                                           |
|                                      | 714                                                 |                                          |                                               |                                                       |                                                                                                                |                                           |
|                                      | al Message                                          |                                          |                                               |                                                       |                                                                                                                |                                           |
| <b>rom</b> : <u>Ha</u><br>o: Kristir | nsen, Edward J., EMNRI                              | 2                                        |                                               |                                                       |                                                                                                                |                                           |
| c: Carol                             | <u>yn Haynes</u> ; <u>Scott Curtis</u>              |                                          | MNRD ; Price, V                               | Vayne, EMNRE                                          | <u>)</u>                                                                                                       |                                           |
|                                      | dnesday, August 08, 200<br>RE: Summary of July 18   |                                          |                                               |                                                       |                                                                                                                |                                           |
| ubject. I                            | C. Summary 0: Suly 10                               | meening                                  |                                               |                                                       |                                                                                                                |                                           |
| ristin,                              |                                                     |                                          |                                               |                                                       |                                                                                                                |                                           |
|                                      | mary appears to be accu<br>s the summary that you : |                                          | m me [OCD case                                | e #s and forma                                        | II (email) approval dates                                                                                      |                                           |
| ll be send                           | ding more formal (via em                            | ail) approvals for the cl                | osures and some                               |                                                       |                                                                                                                |                                           |
| lso, I will                          | review and comment on                               | the other CAPs and th                    | ie APs a.s.a.p.                               |                                                       |                                                                                                                |                                           |
|                                      | r the summary.                                      | a an | te the s                                      |                                                       |                                                                                                                |                                           |
| et me kn                             | ow if you have any ques                             | tions regarding my com                   | iments.                                       | , datto d                                             |                                                                                                                |                                           |
| - 20 K - 2                           | Hansen                                              |                                          | , e dan eren eren eren eren eren eren eren er | in part<br>An an<br>An ann an Anna Anna Anna Anna Ann |                                                                                                                |                                           |
| lydrologi                            | st<br>ental Bureau                                  |                                          | n er skirtiger i sang                         | (新) - 「お人で高<br>(特) - 一<br>(特) - 一                     | The second s |                                           |
| nvironme                             | · · · · · · · · · · · · · · · · · · ·               |                                          |                                               |                                                       |                                                                                                                |                                           |
| 05-476-3                             | 489                                                 |                                          |                                               |                                                       |                                                                                                                |                                           |
|                                      | 489                                                 |                                          |                                               |                                                       |                                                                                                                | ar an |

From: Kristin Pope [mailto:kpope@riceswd.com]
Sent: Wednesday, August 08, 2007 10:34 AM
To: Sanchez, Daniel J., EMNRD; Price, Wayne, EMNRD; Hansen, Edward J., EMNRD
Cc: Carolyn Haynes; Scott Curtis
Subject: Summary of July 18 meeting

Gentlemen,

STREET STREET

Please review the attached summary of our July 18 meeting. Please let me know if anything needs to be changed. OCD and ROC have already moved forward with several of the projects listed but I would like written confirmation for our files. Thanks again for your time.

Kristin Farris Pope Project Scientist RICE Operating Company Hobbs, New Mexico (505) 393-9174

This inbound email has been scanned by the MessageLabs Email Security System.

1.11

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient (s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.

and the second second

eren er en er

え、 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 111 1997 - S

12

Skill .

gan in a star

## OCD/ROC MEETING SUMMARY July 18, 2007

### **CLOSURES**

- 1. Abatement Completion Report for <u>BD Zachary Hinton EOL</u> submitted by R.T. Hicks Consultants on 3/15/2007. AP-50
- 2. Abatement Completion Report for <u>EME Marathon Barber (jct. E-5)</u> submitted by R.T. Hicks Consultants on 5/16/2007. 1R0427-91 *Approved soil work completed Dec. 2006*

Artes .

- 3. Closure Report for <u>Hobbs I-29 EOL boot</u> submitted by R.T. Hicks Consultants on 5/23/2007. Approved soil work completed in 2006. 1R428-42
- 4. Closure Request for <u>BD jct. N-29</u> submitted by R.T. Hicks Consultants on 2/10/2007. #1R0426-37

### APPROVALS

1. 2.00

- 1. Stage 1&2 Abatement Plan for <u>Vacuum F/G-35 SWD</u> submitted by R.T. Hicks Consultants; proof of public notice submitted Feb. 2006; AP-59 *Vadose zone remedy complete; reclaiming surface; groundwater treatment ongoing at F-35; evaluating treatment potential at G-35* 
  - treatment öngoing at F-35; evaluating treatment potential at G-35
  - 2. INVESTIGATION & CHARACTERIZATION PLANS (ICP) NMOCD Approved (1 – 14) via email August 6, 2007
    - 1. Hobbs O-5 Historical Release by Hicks on 4/11/2007 #1R428-69
    - 2. EME State 'H' EOL by P. Galusky on 5/1/2007 #1R427-15
    - 3. Justis E-1 vent by Highlander on 11/29/2006. #1R0432-06
    - 4. <u>Vacuum State 'P' EOL</u> by Galusky on 4/20/07 #1R425-26
    - 5. <u>Vacuum jet. F-31-1</u> by Hicks on 4/17/07. #1R425-27
    - 6. <u>BD P-26-1 vent</u> by Trident on 2/12/2007. #1R0426-106
    - 7. <u>BD jct. P-26-2</u> by Trident on 2/12/2007. #1R0426-107
    - 8. <u>Hobbs jct. E-4, M-4 vent, & N-4 vent</u> (1 plan) by Hicks on 4/17/07 #1R428-71, #1R428-76, #1R428-68, respectively
    - 9. EME L-6 boot by Trident on 12/1/2006. #1R0427-09
    - 10. EME B-8 leak by Trident on 12/1/2006. #1R0480
    - 11. EME jct. F-18 by Arcadis on 7/6/2007 #1R427-16
    - 12. BD jct. F-25-1 by Arcadis on 7/12/2007 #1R426-10
    - 13. <u>EME L-15-1 vent</u> by Galusky on 7/16/2007 #1R427-173
    - 14. EME State 'Q' EOL boot by Galusky on 7/16/2007 #1R427-174
  - Corrective Action Plan (CAP) for <u>Hobbs E-15 SWD</u> submitted on 11/28/2006 by Arcadis G&M. *Approved with clay or GCL condition* #1R428-40 NMOCD Approved with conditions via email July 27, 2007

- 4. CAP for Hobbs F-29-1b boot submitted by R.T. Hicks Consultants on 4/2/2007. #1R428-45
- CAP for Hobbs O-29 vent submitted by R.T. Hicks Consultants on 4/2/2007. 5. #1R428-43
- CAP for Hobbs I-29 vent submitted by R.T. Hicks Consultants on 4/13/2007. 6. #1R428-41
- CAP for Hobbs jet. E-33-1 submitted by R.T. Hicks Consultants on 1/2/2007. 7. #1R428-67
- CAP for Hobbs B-32 boot submitted by R.T. Hicks Consultants on 1/22/2007. 8. #1R428-57
- 9. CAP for Hobbs jct. E-32-1 submitted by R.T. Hicks Consultants on 1/22/2007. #1R428-65
- CAP for Hobbs F-33 vent submitted by R.T. Hicks Consultants on 1/22/2007. 10. #1R428-58

CAP for EME A-2 leak submitted by Highlander on 5/23/2007. # 1R0427-62 condition: install clay at 4 ft instead of 3 ft as proposed

and a second second

- CAP for jct. A-2-1 submitted by Highlander on 5/23/2007. # 1R0427-177 12. condition: install clay at 4 ft instead of 3 ft as proposed
- CAP for EME I-1 off-site encroachment submitted by Trident on 2/27/07. 13. #1R0464

#### **Rule 19 ABATEMENT PLANS**

÷ċ

en reclamby the horizon. The reclamby the horizon.

OCD granted approval to install monitoring wells as proposed while reviewing plans for administrative completeness:

- Stage 1 & 2 Abatement Plan for Hobbs F-29 SWD submitted on 10/27/2006 by 1. R.T. Hicks Consultants. Public notice ready to submit upon approval. AP-64
- 2. Stage 1 Abatement Plan for EME C-16(1) leak submitted on 5/25/2007 by L. Peter Galusky; #1R0476 Public notice ready to submit upon approval.
- 3. Stage 1 Abatement Plan for EME C-16(2) leak submitted on 5/25/2007 by L. Peter Galusky; #1R0477 Public notice ready to submit upon approval.
- Stage 1&2 Abatement Plan for BD Santa Rita release site submitted on 4. 12/11/2006 by Trident. AP-58 want to drill more MWs

- 5. Stage 1&2 Abatement Plan for <u>EME jct. M-16-1</u> submitted on 1/29/2007 by Arcadis G&M. AP-42
- Stage 1&2 Abatement Plan for <u>EME jct. A-20</u> submitted on 1/29/2007 by Arcadis G&M. AP-43
- Stage 1 Abatement Plan for <u>BD H-35 pit</u> submitted by Arcadis G&M on 3/23/2007. #1R0216
- 8. Stage 1 & 2 Abatement Plan for <u>Justis jct. L-1 boot</u> submitted by Highlander on 1/17/07. AP-48

#### OCD WILL REVIEW

2.

3.

 Stage 1 Final Report & Closure Request for <u>EME jct. K-33-1</u> submitted by Whole Earth on 12/28/2006. AP-60 OCD requests confirmation of regional gradient/impact

CAP for EME M-5 SWD submitted by Hicks on 9/10/2004. #1R424

Rule 19 Release and CAP for soil for <u>BD jct. F-17</u> submitted by Highlander on 8/30/06. Additional information requested by OCD was submitted on 12/29/06 and presented at meeting on 2/21/2007. AP-47

- 4. Request for Release from Rule 19 for <u>EME H-13 release</u> submitted on 8/30/2006 by Highlander Environmental. AP-44 *Additional information requested by OCD was submitted on 12/29/06 and presented at meeting on 2/21/2007. Showed current site photos.*
- 5. Final Investigation Report & CAP for <u>EME jct. K-6</u> submitted by Trident on 3/7/2007. AP-46.

#### OTHER

- 1. CAP for <u>BD K-4 leak</u> submitted by Highlander on 4/23/2007. #1R0459 *APPROVAL to begin pumping from MW-1 as proposed; OCD will evaluate CAP (soil work)*
- 2. CAP for <u>BD O-17-1</u> vent submitted by Highlander on 5/11/2007. #1R426-12 No groundwater impact; soil work only ROC WILL REVISE AND RE-SUBMIT FOR CLARIFICATION

 GEOSYNTHETIC CLAY LINER (GCL) option for Junction Box Upgrade Program Modification request required; can be emailed. NMOCD Approved with conditions via email July 27, 2007

. . . .

# **Corrective Action Plan**

# F-29-1b Junction Site

Section 29, T18S, R 38E NMOCD Case #: 1-R0428-43

Prepared for:

**Rice Operating Company 122 West Taylor** Hobbs, NM 88240

# **R.T. Hicks Consu** 901 RIO GRANDE BLVD. N

ALBUQUER

## **Table of Contents**

| 1.0 | Introduction            | 1 |
|-----|-------------------------|---|
| 2.0 | Work Elements Performed | 1 |
| 3.0 | Conclusions             | 2 |
| 4.0 | Recommendation          | 3 |

### Plates

Plate 1: 2004 Aerial Photograph of F-29-1b Vent Site Plate 2: F-29-1b Boring Log Plate 3: HYDRUS-1D Vadose Zone Soil Profile

## Appendices

| Appendix A: De                           | tails of Characterization Activities                                                         |
|------------------------------------------|----------------------------------------------------------------------------------------------|
|                                          | the F-29-1b Vent Site                                                                        |
|                                          | Chloride Concentrations and PID Readings                                                     |
| an a | From F-29-1b Soil Boring Samples A2                                                          |
| Table A-1                                | Laboratory Analysis Results of F-29-1b Boring                                                |
|                                          | Samples                                                                                      |
| Appendix B.Fie                           | ld Measurements & Laboratory Results                                                         |
| Fo                                       | Soil Samples                                                                                 |
| Appendix C: Mc                           | del Input Parameters and Results                                                             |
| Figure C-1:                              | Predicted Chloride Concentration In the<br>Aquifer At the F-29-1b Site Without Vegetation C2 |
| Table C-1:                               | Hydrus-1D and Mixing Model                                                                   |
|                                          | Input Parameters                                                                             |
| Table C-2:                               | Dispersion Lengths                                                                           |
|                                          |                                                                                              |

Appendix D: Works Consulted

# R.T. HICKS CONSULTANTS, LT

# **1.0 EXECUTIVE SUMMARY**

The F-29-1b Junction Boot, located west of Hobbs, New Mexico, in section 29, T18S, R38E, was a component in the Hobbs Salt Water Disposal system (SWD) system, which disposed of produced-water from the late 1950s until 2002, when the system was closed. Future impacts from the system are not possible. With the abandonment of the system in 2002, Rice Operating Company (ROC) excavated and removed the F-29-1b Junction Boot and the uppermost 5-10 feet of the vadose zone. At the time of investigation, the excavation was filled with a mixture of sand-clay-caliche. The activities at the followed the NMOCD-approved workplan (August 6, 2004).

This Corrective Action Plan presents:

- 1) Characterization activities performed by R.T. Hicks Consultants (Hicks Consultants) and Rice Operating Company (ROC) at the
  - F-29-1b Vent site located in the Hobbs SWD system,
- 2) Evaluations and conclusions drawn from activities performed,
- 3) A proposal for closure of the site after the selected remedy is implemented.

# 2.0 WORK ELEMENTS PERFORMED

Detailed descriptions of characterization activities are provided in Appendix A. Appendix B shows the results of field chloride measurements. Plate 1 is an aerial photograph of the site when it was active, taken between 1996 and 1998, showing the locations of the boring and background boring.

Activities included:

- 1. F-29-1b soil boring characterization.
- 2. Background soil boring characterization.
- 3. Field measurements consisted of chloride titration and PID readings for volatiles.
- 4. Two selected soil samples were submitted for laboratory

Corrective Action Plan F-29-1b Junction Boot Section 29, T18S, R 38E NMOCD CASE 1-R0428-43 PAGE

# . R.T. HICKS CONSULTANTS, LTC

analysis in accordance with the workplan.

- 5. HYDRUS-1D simulation of the site.
- 6. Development of a corrective action plan.

# 3.0 CONCLUSIONS

# 3.1 ACTIVITIES AT THE F-29-1B SITE HAVE NOT CAUSED COCs TO REACH GROUND WATER.

From chloride concentration and PID measurement profiles (confirmed by laboratory analysis), Hicks Consultants concludes that saturated conditions between the surface and ground water never developed, that constituents of concern (COCs) reside in the upper two-thirds of the vadose zone and, therefore, that activities at this site have not caused COCs to reach ground water.

### 3.2 HYDRUS-1D MODEL SIMULATIONS INDICATE THAT CHLORIDE CONCENTRATIONS WILL NOT EXCEED WQCC GROUND WATER STANDARDS.

Using highly conservative input data, HYDRUS-1D modeling of the vadose zone residual chlorides predicts that resulting ground water chloride concentrations will be less than 40 ppm above background concentrations (100 ppm) in the future and below the 250 ppm Water Quality Control Commission (WQCC) secondary drinking water standard. Chloride concentrations are predicted to fluctuate between 110–136 mg/L for less than 9 years of the time interval from 11 and 27 years from now. The modeling inputs and methodology are discussed in Appendix C.

# 3.3 THE SITE PRESENTS NO THREAT TO FRESH WATER, PUBLIC HEALTH OR THE ENVIRONMENT.

Vadose zone samples demonstrate no presence of toxic pollutant(s) as defined in 20.6.2.7 NMAC. Further, because residual petroleum hydrocarbons and chloride are not present in sufficient concentration or sufficient mass, Hicks Consultants concluded that the site represents no threat to fresh water, public health, or the environment (see discussion in Appendix A and Appendix C).



# R.T. HICKS CONSULTANTS, LT

# 4.0 RECOMMENDATION

Hicks Consultants recommends that ROC create an infiltration barrier through re-vegetation of the ground surface at the F-29-1b Junction site. This remedy is protective of ground water quality, human health, and the environment. Upon documentation of this action, a closure report/request will be submitted to NMOCD.

en else an les a les angles de les angles a subservation de les angles angles a subangles de les angles de les



14.2

Corrective Action Plan F-29-1b Junction Boot Section 29, T18S, R 38E NMOCD CASE 1-R0428-43

.)

3

# Detail of Characterization Activities At the F-29-1b Site

1. 1. 19 1947 -

.

# R.T. HICKS CONSULTANTIS, LTI

# **APPENDIX A**

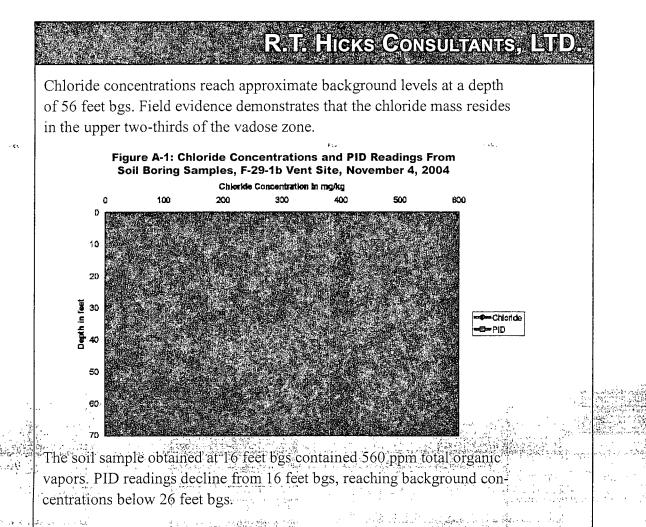
### 1) F-29-1B SOIL BORING CHARACTERIZATION

The boring at the F-29-1b site was drilled in November, 2004, to a depth of 65 feet. Plate 2 illustrates the lithology and distribution of constituents of concern. From 0–36 feet below ground surface (bgs), the split spoon obtained samples at 5-foot intervals.

The dry and unconsolidated nature of the sand-silt from 40–60 feet bgs caused the loss of split-spoon samples during retrieval.

Due to increased soil moisture at 60 feet bgs, the split spoon was able to retain samples. In the interval between 40 feet bgs and 60 feet bgs, samples were collected from cuttings. This is the only material deviation from the NMOCD-approved workplan. Moist soil was observed at 61 feet bgs and depth to water was estimated at approximately 63 feet. The boring was plugged with Bentonite

## 2) BACKGROUND SOIL BORING CHARACTERIZATION

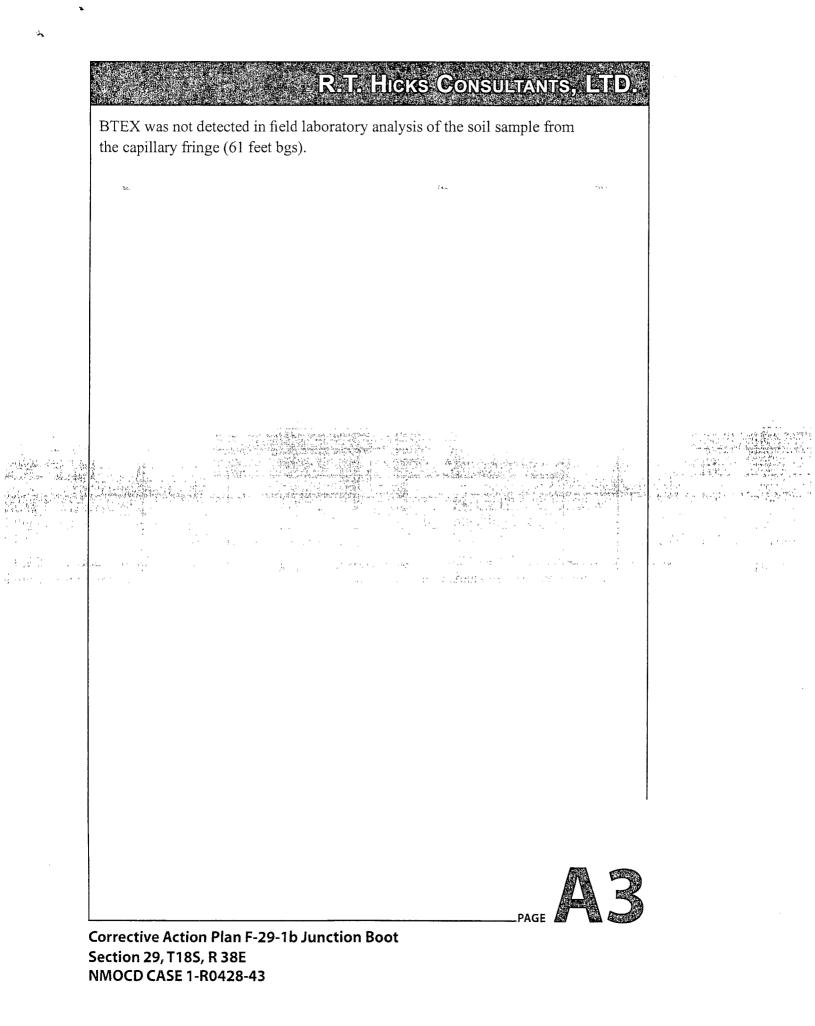

Samples taken from a background boring located about 4000 feet northwest of the site show that background chloride concentrations in the area are approximately 80 mg/kg. Appendix B presents the field data from this boring.

### 3) FIELD MEASUREMENTS

ROC took field measurements from each 5-foot sampling interval for chloride and volatiles in the field using the heated headspace method to measure total organic vapors by photoionization detector (PID). Samples were submitted to a laboratory from depths showing the highest field chloride and PID measurements (16 feet bgs) and from the capillary fringe (61 feet bgs); see Figure A-1. Plate 2 is a lithologic log of the boring with field chloride concentrations and PID measurements. Appendix B provides additional chemical data for the soil samples.

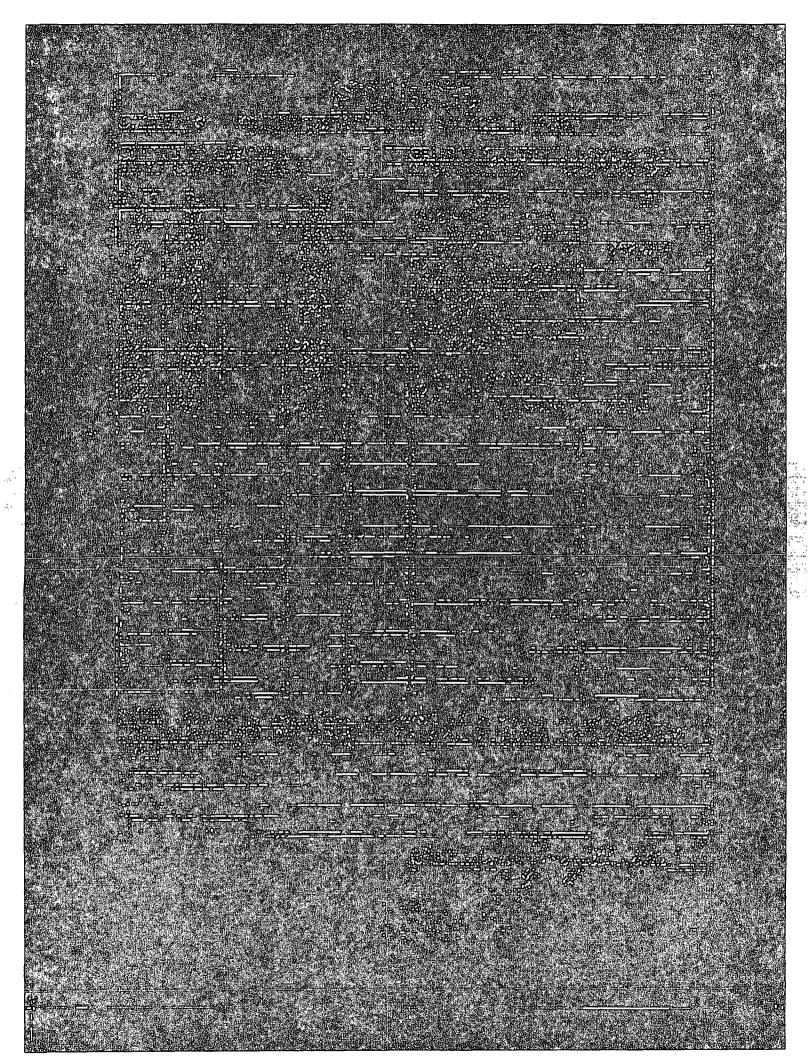
The maximum chloride concentration in the soil is 382 ppm at 31 feet bgs and chloride declines from that depth, as shown by Figure A-1.

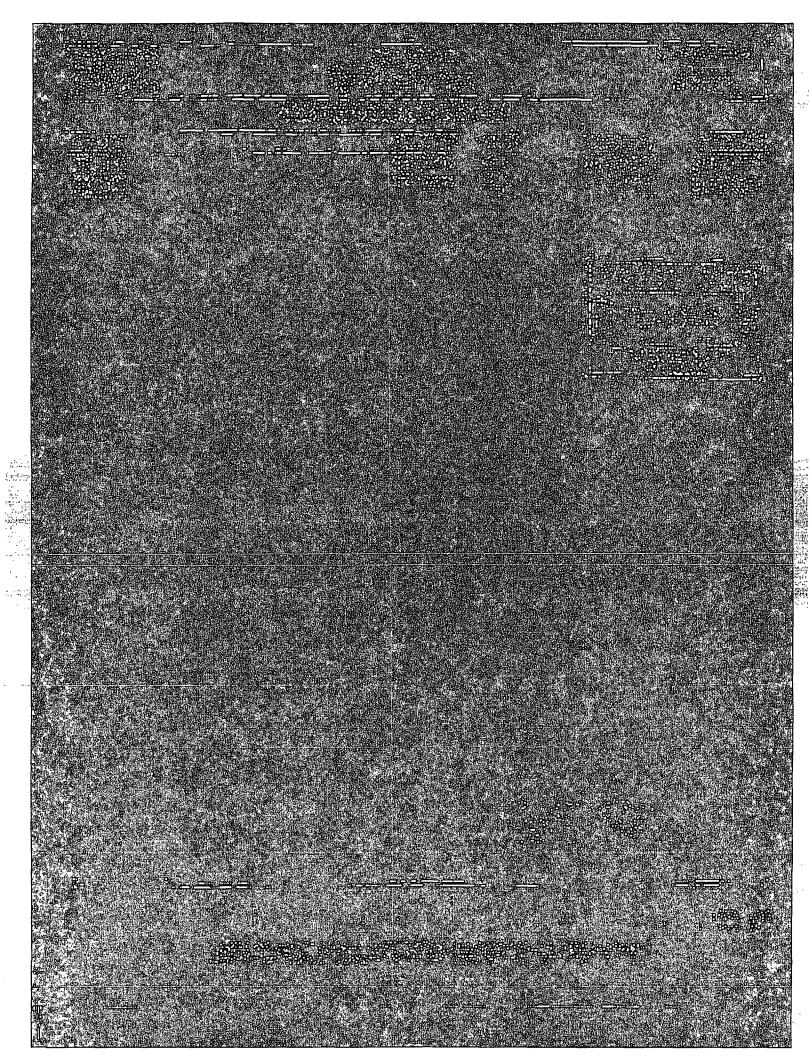


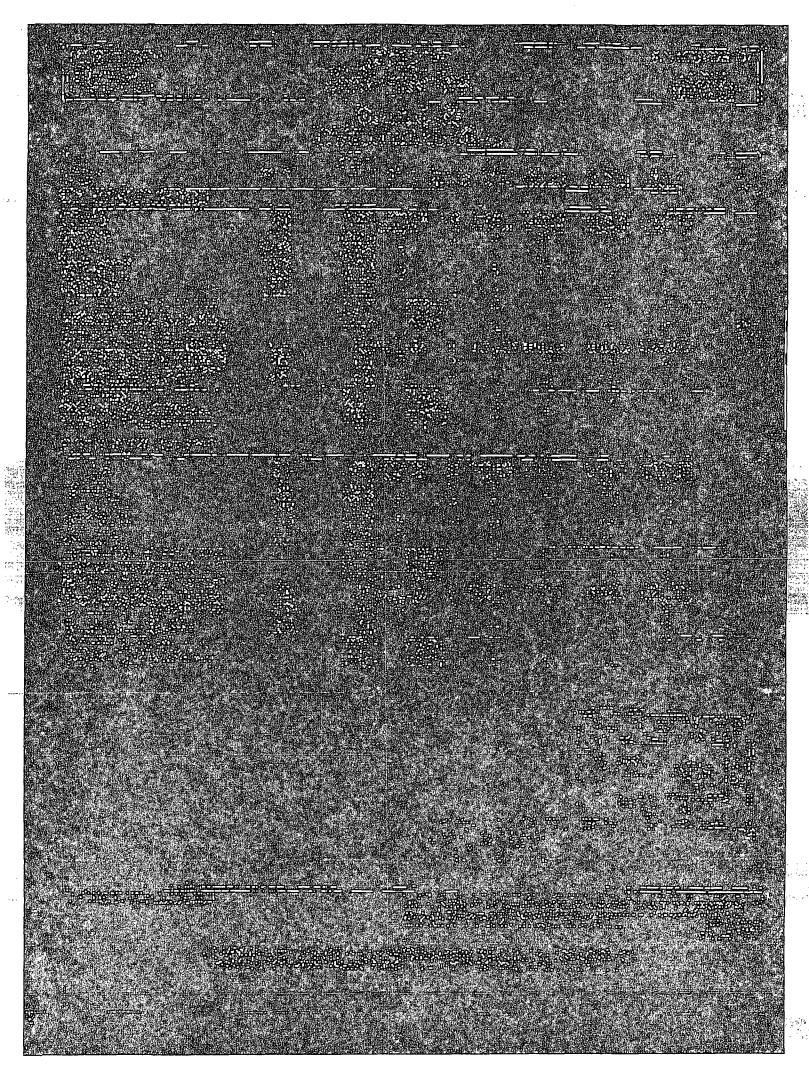


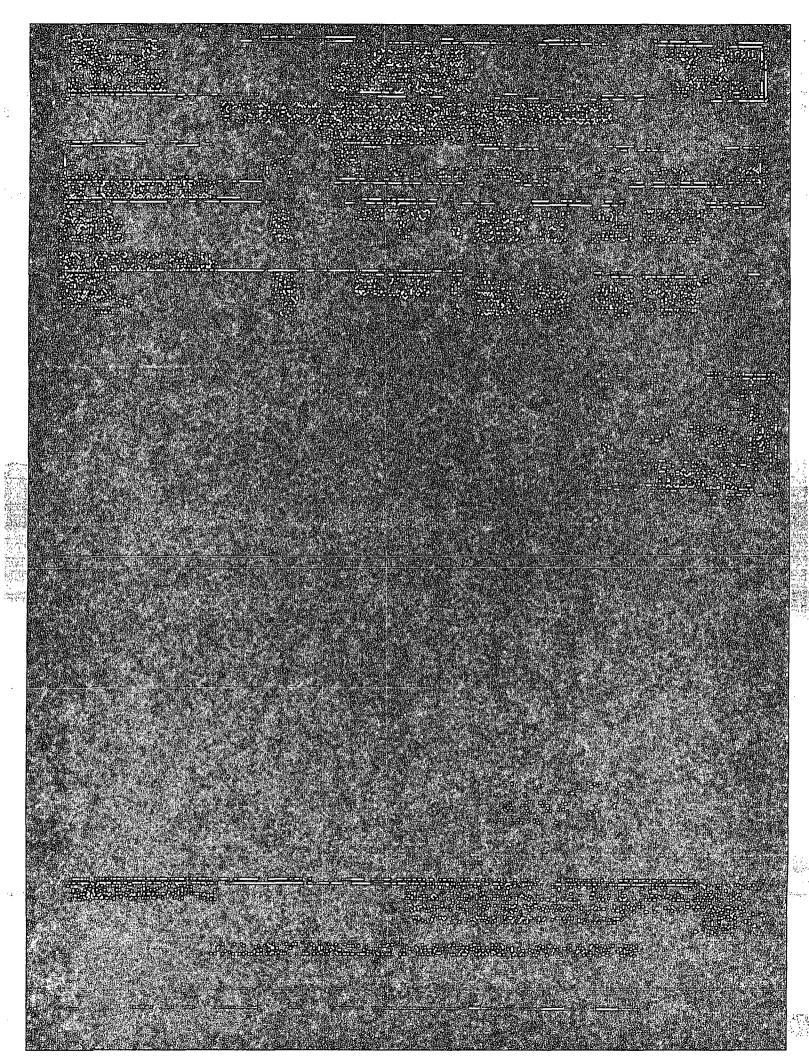

Laboratory analysis of the soil sample from 16 feet bgs showed benzene, toluene, ethylbenzene and xylene (BTEX) are present in total aggregate concentration below 50 ppm (Table A-1).

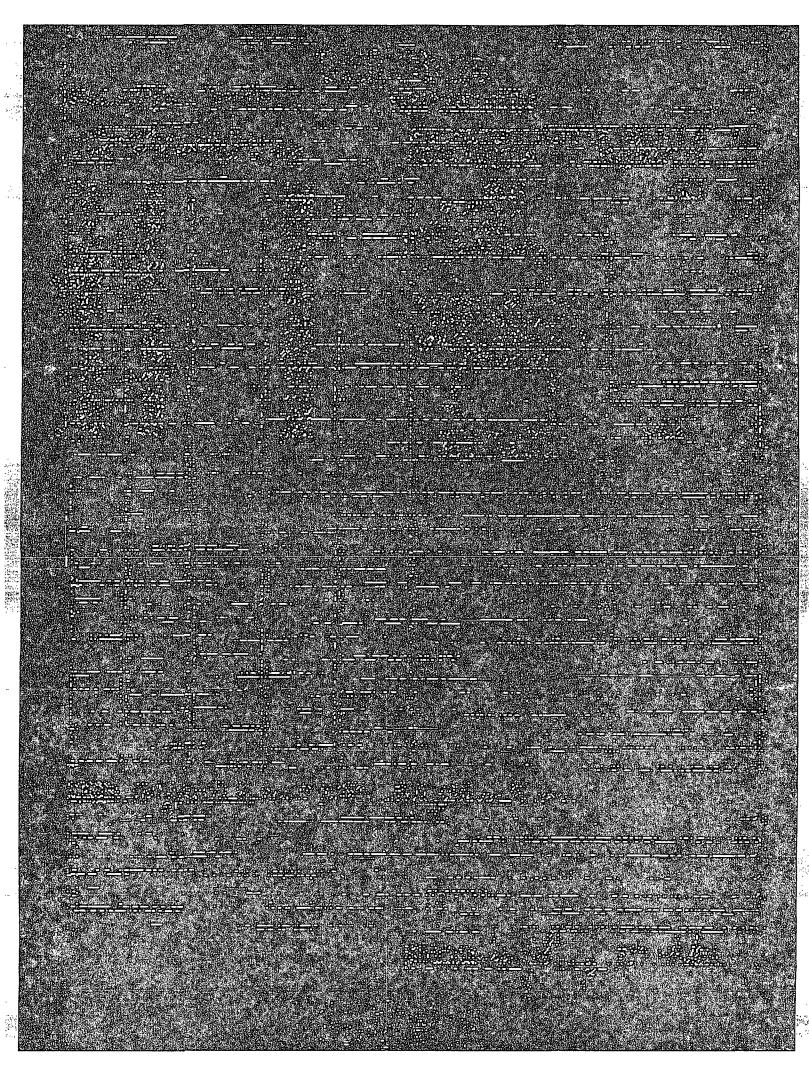
# Table A-1: Laboratory Analysis Results of Samples From the F-29-1b Boring.

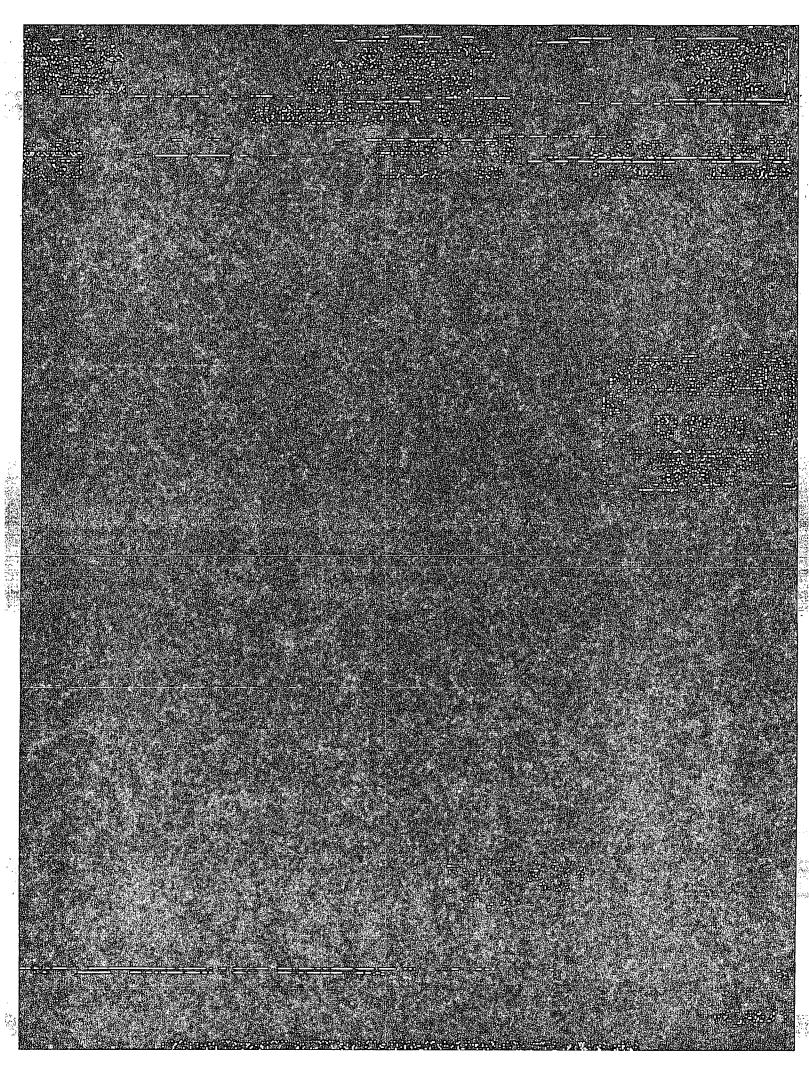

| F-29-1b Junction Boot, November, 2004 |             |             |           |  |  |  |
|---------------------------------------|-------------|-------------|-----------|--|--|--|
|                                       |             |             | Detection |  |  |  |
| Constituent                           | 16 ft. bgs  | 61 ft. bgs  | Limit     |  |  |  |
| of Concern                            |             | mg/kg (dry) |           |  |  |  |
| Benzene                               | ND          | ND          |           |  |  |  |
| Toluene                               | 0.0691      | ND          |           |  |  |  |
| Ethyl benzene                         | 0.349       | ND          | 0.025     |  |  |  |
| Xylene (p/m)                          | 1.53        | ND          |           |  |  |  |
| Xylene (o)                            | 0.379       | ND          |           |  |  |  |
|                                       | mg/kg (wet) |             |           |  |  |  |
| Chloride                              | 362         | 42.5        | 0.20      |  |  |  |

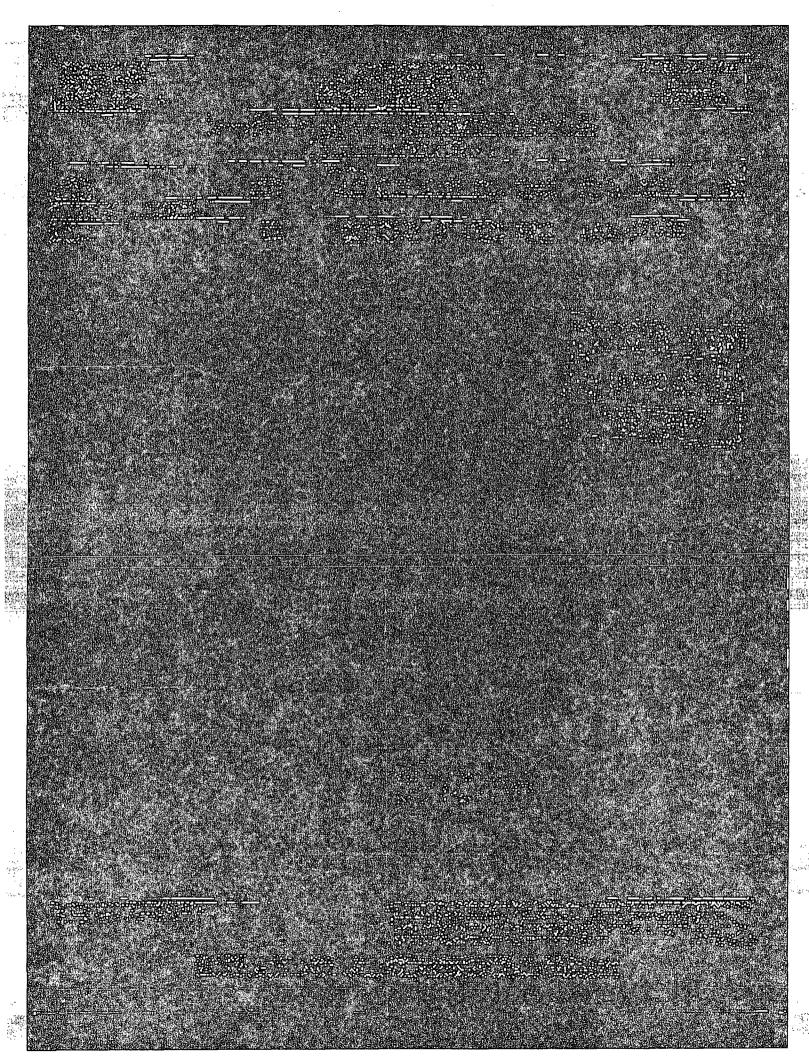




Field Measurements & Laboratory Results For Soil Samples


and the second sec














# Modeling Input Parameters & Results

# R.I. HICKS CONSULTANTS, LT

PAGE

# **APPENDIX C**

To model the effect of the vadose zone remedy's impact on ground water at the F-29-1b-site, output from HYDRUS-1D is used as input to a ground water mixing model.

HYDRUS-1D modeling simulates water and chloride fluxes through the vadose zone. The HYDRUS-1D output becomes the input to a simple ground water mixing model to predict chloride concentration in a simulated monitoring well immediately down-gradient of the site. Section 3.0 of "Modeling Study of Produced Water Release Scenarios" (Hendrickx, et al., 2005) provides a general description of this modeling approach (see Appendix D for references).

The observed vadose zone chloride profile was installed in the model. The present chloride load within the soil profile is the result of all previous activities at the site and is based upon field observation and analysis producing the most accurate modeling approach.

### HYDRUS-1D INPUTS:

A synopsis of modeling inputs for the F-29-1b site is presented in Table C-1. Table C-1: HYDRUS-1D and Mixing Model Input Parameters

| Input Parameter                                          | Source                                                 |
|----------------------------------------------------------|--------------------------------------------------------|
| Vadose zone thickness - 60 feet                          | F-29-1b field data and professional judgement          |
| Vadose zone texture (Plate 3)                            | F-29-1b field data                                     |
| Dispersion length: <6% of model length                   | Professional judgement                                 |
| Climate                                                  | 2004 Hobbs, NM, data and<br>Pearl Weather Station data |
| Soil moisture                                            | HYDRUS-1D initial condition simulation                 |
| Initial soil chloride concentration profile              | From ROC field measurements                            |
| Length of release parallel to ground water flow: 15 feet | Field estimate                                         |
| Background chloride in ground water: 100 ppm             | Chemical analysis                                      |
| Ground water flux: 8.6 cm/day                            | Calculated from published data                         |
| Aquifer thickness: 10 feet                               | Conservative choice                                    |

# R.T. HICKS CONSULTANTS, LTD

### **SOIL PROFILE**

The F-29-1b model has a vadose zone soil profile constructed from the lithologic logs of the F-29-1b boring and five other borings in Section 29. The model's soil profile is representative of a soil profile excavated to a depth of 19 feet bgs (See Plate 3). Although the F-29-1b site was not excavated to this great a depth, this choice is conservative of ground water quality in that the upper 19 feet of the model's soil profile have been replaced with materials featuring equal or greater hydraulic conductivities than the materials at the F-29-1b site.

Vadose zone thickness is 63 feet at the F-29-1b site. The model uses a thickness of 60 feet. The effect of this difference is to reduce time of transit of infiltrated water through the vadose zone.

### **DISPERSION LENGTHS**

Because of Hicks Consultants' recent experience with similar soils, conservative dispersion lengths were employed. Standard practice calls for employing a dispersion length that is 10% of the model length. For each lithologic unit identified in Plate 3, a dispersion length less than 6% of the model thickness was installed (Table C-2 presents the dispersion lengths for each lithology.)

|          | F-29-1b Hy   | drus-1D Soil Prof | ile Properties     |                        |
|----------|--------------|-------------------|--------------------|------------------------|
| Material | Description  | Length (cm)       | Dispersion<br>(cm) | % of Profile<br>Length |
| 1        | Sandy loam   | 30                | 50                 | 2.778                  |
| 2        | Caliche-sand | 60                | 30                 | 1.667                  |
| 3        | Caliche      | 90                | 10                 | 0.556                  |
| 4        | Sand-silt    | 1070              | 100                | 5.556                  |
| 5        | Loamy sand   | 550               | 100                | 5.556                  |

#### Table C-2: Dispersion Lengths

### CLIMATE

Weather data used in the predictive modeling include Hobbs data from November, 2003, to December, 2004, plus an additional 45 years from the Pearl Weather Station, approximately 11 miles west of the Hobbs Airport. The Pearl Weather Station is the



closest station to the F-29-1b site with sufficiently complete weather data for the HYDRUS-1D input files.

R.T. HICKS CONSULTANTS.

### SOIL MOISTURE

An initial soil moisture condition was obtained running a HYDRUS-1D simulation for 45 years using the weather data from the Pearl Weather Station. Because soils are relatively dry in this climate and vadose zone hydraulic conductivity varies with moisture content, it is important that simulation experiments of different remedial strategies begin with an initial "steady state" soil moisture content. Vegetation was not allowed in order to create a "wetter" initial condition. This choice is conservative of ground water quality in that "wetter" soils have greater hydraulic conductivities.

The calculation of soil moisture content begins with an initial soil moisture input estimated by professional judgment. Then, sufficient years of weather data are run through the model to establish a "steady state" moisture content. Because only minimal changes in the HMDRUS-1D soil moisture content profile occurred after year 30 of the initial condition calculation, a.45-year simulation was considered acceptable, to establish the initial moisture condition. Soil profiles hydrated in this manner were used in all simulations of chloride movement.

### **INITIAL CHLORIDE PROFILE**

From the observed field data generated by ROC personnel, linearly interpolated chloride concentrations were assigned to the model's more finely spaced nodes of the hydrated soil profile.

### **MIXING MODEL INPUTS:**

### **INFLUENCE DISTANCE**

As the Boot was oriented vertically, the affected surface area is small. Significant lateral impacts were not observed. The affected diameter of the site parallel to ground water flow was taken as 15 feet.



## R.T. HICKS CONSULTANTS, L

#### **BACKGROUND CHLORIDE CONCENTRATION**

From nearby well data, a value of 100 mg/L chloride for ground water was used for the predictive modeling.

#### HYDRAULIC CONDUCTIVITY

Hicks Consultants believes that the hydraulic conductivity of the saturated zone at the F-29-1b site is similar to that observed for the Ogallala Aquifer throughout the general area. McAda (1984) simulated water level declines using a two-dimensional digital model and employed hydraulic conductivity values of 51–75 feet/day (1.9 E-4 to 2.8 E-4 m/s) in the area. According to Freeze and Cherry (1979), these values correspond to clean sand, which agrees with nearby lithologic descriptions of the saturated zone. A value of 45 feet/day was assumed for hydraulic conductivity of the uppermost saturated zone to be conservative of ground water quality.

#### **GROUNDWATER GRADIENT**

A hydraulic gradient of 0.0063 was calculated for this site (Intera Report and USGS Topographic Map). Using a hydraulic conductivity of 45 ft/day, ground water flux is calculated as 8.6 cm/day.

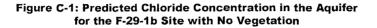
### **AQUIFER THICKNESS**

Field data within Section 29 demonstrate that the aquifer is greater than 40 feet thick. A restricted aquifer thickness of 10 feet was employed in the mixing model in accordance with NMOCD request. This choice is conservative of ground water quality as it results in higher predicted chloride concentrations in a simulated monitoring well.

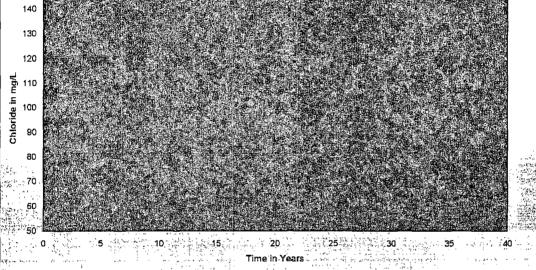
### **MODELING RESULTS:**

Using the input data described above, HYDRUS-1D and the ground water mixing model predict no exceedance of WQCC ground water standards at the F-29-1b site (Figure C-1). For this simulation, it was assumed that no vegetation is present at the site.

As field chloride data demonstrate, impacts at this site are marginally greater than background; thus, an insignificant




122.7


Corrective Action Plan F-29-1b Junction Boot Section 29, T18S, R 38E NMOCD CASE 1-R0428-43



impact to ground water quality would be expected. As shown in Figure C-1, chloride concentration in the aquifer attains a maximum of 136 ppm approximately 13 years from now. The effect of the chloride load is no longer distinguishable 28 years from now.



150



Chloride concentration in ground water varies in response to natural causes. At a nearby background monitoring well, over four years of data show that chloride concentration ranges from 111 mg/L to 301 mg/L with an average concentration of 159 mg/L and a standard deviation of 59 mg/L. Therefore, the predicted chloride concentration increase at the F-29-1b site (36 mg/L) could not be differentiated from natural variation.



Corrective Action Plan F-29-1b Junction Boot Section 29, T18S, R 38E NMOCD CASE 1-R0428-43

## **Works** Consulted

:

·

. .

**`** 

na seren Marana sering di

## R.T. Hicks Consultants, LTD

## **APPENDIX D**

Ash, S.R., 1963, Ground water conditions in northern Lea County, U.S. Geological Survey Hydrologic Investigations Atlas HA-62

Hendrickx, J., Rodriguez, G., Hicks, R. T., and Simunek, January 2005, Modeling Study of Produced Water Release Scenarios, API Publication Number 4734, 11 pp.

Intera Incorporated, July 8, 2003, Windmill Oil Site Ground Water Sampling Results, prepared for the New Mexico Oil Conservation Division, 3 pp.

McAda, D.P., 1985, Projected water-level declines in the Ogallala aquifer in Lea County, New Mexico, US Geological Survey Water-Resources Investigations Report 84-4062, 84 pp.

Musharrafieh, G. and Chudnoff, M., January 1999, Numerical Simulation of Groundwater Flow for Water Rights Administration in the Lea County Underground Water Basin New Mexico, New Mexico Office of the State Engineer Technical Report 99-1, 6 pp.

Nicholson Jr., A. and Clebsch, A., 1961, Geology and Ground Water Conditions of Southern Lea County, New Mexico, Ground Water Report 6, US Geological Survey, New Mexico Bureau of Mines and Mineral Resources

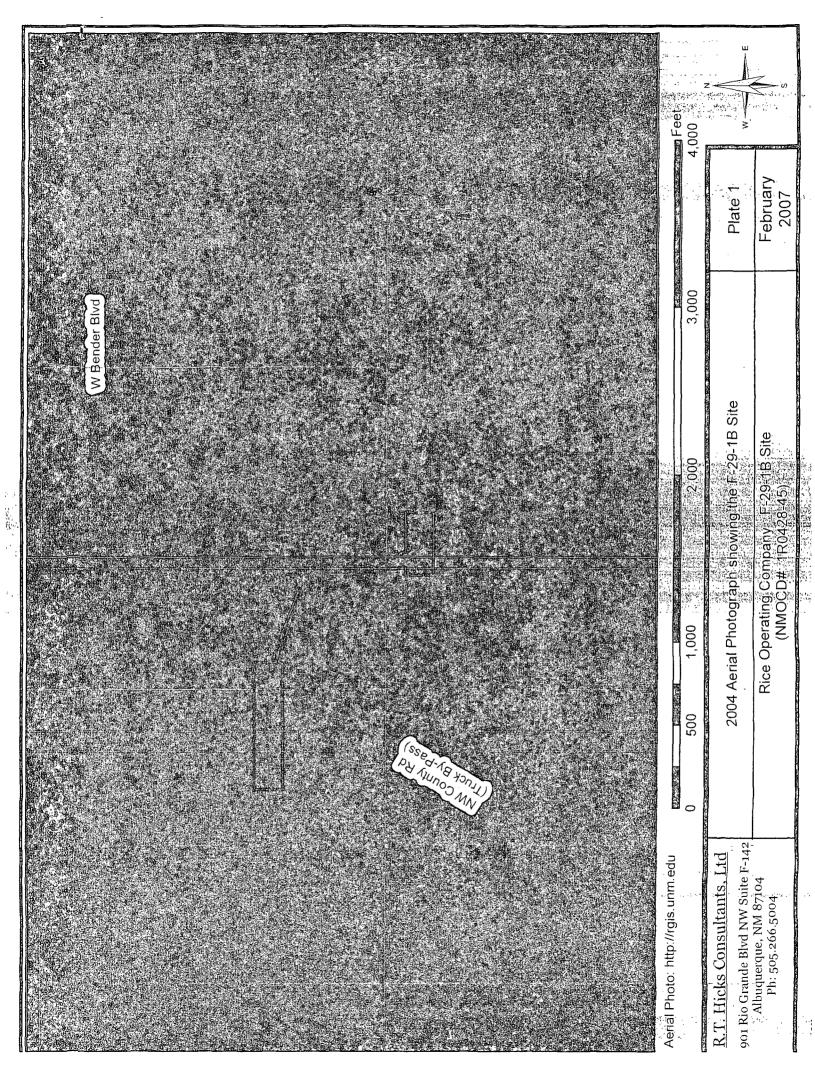




Corrective Action Plan F-29-1b Junction Boot Section 29, T18S, R 38E NMOCD CASE 1-R0428-43



\*:....


in the access

1 they appreced the second state of the second s

1.22

angele surgit fi

n en skrivet stander begreen sterre sterre en sterre Stander som stander stander sterre sterre sterre sterre sterre



|                   | Logger:                 | David Hamiltor                                             | 1                                        | Client:                         | Boring | ID:                | •                     |  |  |  |  |  |  |  |
|-------------------|-------------------------|------------------------------------------------------------|------------------------------------------|---------------------------------|--------|--------------------|-----------------------|--|--|--|--|--|--|--|
|                   | Driller:                | Eades Drilling                                             |                                          | Rice Operating Company          | 1      | -***               |                       |  |  |  |  |  |  |  |
| Drillin           | g Method:               | Air Rotary                                                 |                                          | Project Name:                   |        |                    |                       |  |  |  |  |  |  |  |
| S                 | Start Date:             | 11/3/2004                                                  |                                          | Hobbs F-29-1b Site              |        |                    |                       |  |  |  |  |  |  |  |
|                   | End Date:               | 11/3/2004                                                  |                                          | Location:                       | 1      | 1-23-10 0-1 (03 10 | 2017                  |  |  |  |  |  |  |  |
|                   |                         |                                                            |                                          | T18S R38E                       |        |                    |                       |  |  |  |  |  |  |  |
|                   |                         |                                                            |                                          | Section 29, Unit F              |        |                    |                       |  |  |  |  |  |  |  |
|                   | all and a second second |                                                            |                                          |                                 |        |                    |                       |  |  |  |  |  |  |  |
| Depth             |                         |                                                            |                                          |                                 | ļ      | Field data         |                       |  |  |  |  |  |  |  |
| (feet)            |                         | Description                                                | Lithology                                | Comments                        | Depth  | Chloride mg/kg     | PID ppn               |  |  |  |  |  |  |  |
| 0.0               |                         | Surface, 0 - 1 feet                                        |                                          |                                 |        |                    |                       |  |  |  |  |  |  |  |
| 2.0               |                         |                                                            |                                          |                                 |        |                    |                       |  |  |  |  |  |  |  |
| 4.0               | Sand, calic             | ne, clay, dark brown, 1-10 feet                            | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |                                 | 6.0    | 231                | 3.7                   |  |  |  |  |  |  |  |
| 6.0<br>8.0        |                         |                                                            |                                          |                                 |        |                    |                       |  |  |  |  |  |  |  |
| 10.0              |                         |                                                            |                                          | Strong odor, some discoloration | 11.0   | 154                | 32.4                  |  |  |  |  |  |  |  |
| 12.0              | Sand                    | , caliche, tan, 10-17 feet                                 |                                          |                                 |        | 154                | 52.4                  |  |  |  |  |  |  |  |
| 14.0              | ound,                   |                                                            |                                          | Strong Odor                     |        |                    |                       |  |  |  |  |  |  |  |
| 16.0              | Caliche                 | well indurated, 17-18 feet                                 |                                          |                                 | 16.0   | 349                | 560.0                 |  |  |  |  |  |  |  |
| 18:0              | Sand                    | caliche, tan, 18-20 feet                                   | La Action                                |                                 | 1      |                    |                       |  |  |  |  |  |  |  |
| 20.0              | Caliche                 | well indurated, 20-21 feet                                 |                                          | Some discoloration and odor     | 21:0   | 374                | 178.0                 |  |  |  |  |  |  |  |
| 22:0              |                         | ained sand silt tan: 21-27 feet                            |                                          |                                 |        |                    |                       |  |  |  |  |  |  |  |
| 24 0              | e e                     |                                                            | Present and                              |                                 |        |                    |                       |  |  |  |  |  |  |  |
| 11 21 21 21 21 21 | T Caliche w             | ell indurated tan 27-29 feet : 11                          | Contraction of the                       |                                 | 26 0   | 9.07 M 10854-10    | <sup>2176</sup> 150 0 |  |  |  |  |  |  |  |
|                   |                         |                                                            |                                          |                                 |        |                    |                       |  |  |  |  |  |  |  |
| 128.0             | ∋fiti⇔Sand∖s            | ilt reddish tan: 29-30 feet.<br>well indurated, 30-31 feet |                                          |                                 |        |                    |                       |  |  |  |  |  |  |  |

1. 1.

and States and

1 10 10 1 3 4

1.1.5.6

| 1 <u>-30</u> :0 - | Caliche, well indurated, 30-31 feet.                                                                                                                                                                                                                                                                                                                  |                   | an an ann an Anna an An<br>Anna an Anna an                                                                                                                   | 31.0                                                                                                                                                                                                                                   | 382                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18.5                                     |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 32.0              |                                                                                                                                                                                                                                                                                                                                                       | Received and      | and a second second<br>Second second second<br>Second second | ي و يوني و دور در و يوم.<br>و يا يوني در المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع ا<br>مستوجع المراجع ا | and the second sec                                                                                                                                                                                                                                             | an a |
| 34.0              | n de la service provincia de la construcción de la construcción de la construcción de la construcción de la con<br>La construcción de la construcción<br>La construcción de la construcción d |                   |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                        | and the state of t | 1. A A A A A A A A A A A A A A A A A A A |
| 136.0             | Very fine grained sand-silt reddish tan 31-44*                                                                                                                                                                                                                                                                                                        |                   |                                                                                                                                                                                                                                                                                                                                                      | - 36 D                                                                                                                                                                                                                                 | 232 June 1232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 党的1614年 当会                               |
| 38:0              | feet Caliche 36-36 5 feet                                                                                                                                                                                                                                                                                                                             |                   | না বিদ্যালয় বিদ্যালয় বিদ্যালয় হয়।<br>প্ৰথম প্ৰথম বিদ্যালয় বিদ্যালয় বিদ্যালয় বিদ্যালয় বিদ্যালয় বিদ্যালয় বিদ্যালয় বিদ্যালয় বিদ্যালয় বিদ্যালয়<br>বিদ্যালয় বিদ্যালয় ব                                                                          | 179 (2007)<br>179 (2007)<br>189 (2007)                                                                                                                                                                                                 | and the second and the second and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                        |
| 40.0              |                                                                                                                                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                                                                                                                                                      | 1. 1                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 42.0              |                                                                                                                                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                                                                                                                                                      | 43.0                                                                                                                                                                                                                                   | 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32.6                                     |
| 44.0              | Caliche, sandstone, 44-45 feet                                                                                                                                                                                                                                                                                                                        |                   |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 46.0              |                                                                                                                                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                                                                                                                                                      | 46.0                                                                                                                                                                                                                                   | 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23.7                                     |
| 48.0              | -                                                                                                                                                                                                                                                                                                                                                     | 67 - 7 <b>7</b> 7 |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 50.0              |                                                                                                                                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                                                                                                                                                      | 51.0                                                                                                                                                                                                                                   | 174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.6                                     |
| 52.0              |                                                                                                                                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 54.0              | Very fine grained sand silt, reddish tan, 45-65                                                                                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                                                                                                                                                      | 56.0                                                                                                                                                                                                                                   | 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.6                                     |
| 56.0              | feet                                                                                                                                                                                                                                                                                                                                                  |                   |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 58.0              | -                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                                      | 59.0                                                                                                                                                                                                                                   | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.6                                      |
| 60.0              | _                                                                                                                                                                                                                                                                                                                                                     | Sec. Here         | Drilled to 65 feet, after 20 minutes, water                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 62.0              |                                                                                                                                                                                                                                                                                                                                                       |                   | level was 63 feet. Hole filled with                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 64.0              |                                                                                                                                                                                                                                                                                                                                                       |                   | bentonite.                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 66.0              |                                                                                                                                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                   | -                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
|                   | R.T. Hicks Consultants, Ltd                                                                                                                                                                                                                                                                                                                           |                   | Hobbs F-29-1b Site                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                        | Plate 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |
|                   | 901 Rio Grande Blvd NW Suite F-142                                                                                                                                                                                                                                                                                                                    |                   | 100031-25-10 Sile                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                        | ridle 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |
| 1                 |                                                                                                                                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |

| R.T. Hicks Consultants, Ltd<br>901 Rio Grande Blvd NW Suite F-142 | Hobbs F-29-1b Site | Plate 2        |
|-------------------------------------------------------------------|--------------------|----------------|
| Albuquerque, NM 87104<br>. 505-266-5004                           | Exploratory Boring | February, 2007 |

ł

. ÷

ner generation and generation

17127

|         | r                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                                       |              |  |  |  |  |  |  |  |
|---------|-------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------|--------------|--|--|--|--|--|--|--|
|         |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Client:                   | Location:                             |              |  |  |  |  |  |  |  |
|         |                   |            | DRUS-1D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rice Operating Compa      | any T18                               | 3S R38E      |  |  |  |  |  |  |  |
|         | l Va              | dose Z     | one Soil Profile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Project Name:             |                                       | ction 29     |  |  |  |  |  |  |  |
|         | 0 <b>11</b> 7' ": |            | 2453 g. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F-29-1b Junction Bo       | ot                                    | -754 c       |  |  |  |  |  |  |  |
|         |                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                                       |              |  |  |  |  |  |  |  |
|         | Depth<br>(feet)   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Description               | Model Profil                          | e Depth      |  |  |  |  |  |  |  |
|         | 0.0               |            | Sá                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | andy loam 0-1 feet        |                                       | (feet)       |  |  |  |  |  |  |  |
|         | 2.0               |            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                                       | 2.0          |  |  |  |  |  |  |  |
|         | 4.0               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                                       | 4.0          |  |  |  |  |  |  |  |
|         | 6.0               | ]          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                                       | 6.0          |  |  |  |  |  |  |  |
|         | 8.0               |            | Loa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | amy sand, 1-19 feet       |                                       | 8.0          |  |  |  |  |  |  |  |
|         | 10.0              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,, <b>.</b> . <b></b>     |                                       | 10.0         |  |  |  |  |  |  |  |
|         | 12.0              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                                       | 12.0         |  |  |  |  |  |  |  |
|         | 14.0<br>16.0      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                                       |              |  |  |  |  |  |  |  |
|         | 18.0              |            | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and, silt 19-20feet       |                                       | <u> </u>     |  |  |  |  |  |  |  |
|         | 20.0              | -111 -     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | aliche 20-22 feet         |                                       | 20.0         |  |  |  |  |  |  |  |
|         | 22:0              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                                       | 22.0         |  |  |  |  |  |  |  |
|         | 24:0              |            | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                       | 24 0         |  |  |  |  |  |  |  |
|         | 26.0              |            | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and, silt 22-34 feet      | C. Prairie                            | 26.0         |  |  |  |  |  |  |  |
| م بمبده | 28.0              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                                       | 28.0         |  |  |  |  |  |  |  |
|         | 30.0              |            | <ul> <li>A start of the sta</li></ul> |                           |                                       | 30.0         |  |  |  |  |  |  |  |
| 4Å. 19, | 32.0<br>34.0      |            | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | aliche 34-35 feet         |                                       | 32.0         |  |  |  |  |  |  |  |
| 11. 1   | 36.0              | allerine i |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                                       | 36.0         |  |  |  |  |  |  |  |
|         | 38.0              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           | er wet with                           | 38.0         |  |  |  |  |  |  |  |
|         | 40.0              |            | Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ind, silt, 35-45 feet     |                                       | 40.0         |  |  |  |  |  |  |  |
|         | 42.0              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                                       | 42.0         |  |  |  |  |  |  |  |
|         | 44.0              |            | Sanc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , caliche, 45-47 feet     |                                       | 44.0         |  |  |  |  |  |  |  |
|         | 46.0              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                                       | 46.0         |  |  |  |  |  |  |  |
|         | 48.0<br>50.0      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                                       | 48.0         |  |  |  |  |  |  |  |
|         | 50.0              |            | Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nd, silt, 47-60 feet      |                                       | 50.0<br>52.0 |  |  |  |  |  |  |  |
|         | 54.0              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                                       | 54.0         |  |  |  |  |  |  |  |
|         | 56.0              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                                       | 56.0         |  |  |  |  |  |  |  |
|         | 58.0              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                                       | 58.0         |  |  |  |  |  |  |  |
|         | 60.0 ·            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                                       | 60.0         |  |  |  |  |  |  |  |
|         |                   | ·          | ~ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           | · · · · · · · · · · · · · · · · · · · | ·            |  |  |  |  |  |  |  |
|         |                   |            | Consultants, Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | PI                                    | Plate 3      |  |  |  |  |  |  |  |
|         |                   |            | Blvd NW Suite F-142<br>que, NM 87104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <sup>2</sup> F-29-1b Site |                                       | Plate 3      |  |  |  |  |  |  |  |

. . . .

A set of the set

## R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW 🛦 Suite F-142 🛦 Albuquerque, NM 87104 🛦 505.266.5004 🛦 Fax: 505.266-0745

1.203

October 20, 2004

Mr. Wayne Price New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Hobbs SWD System Abandonment Potential Groundwater-Impacted Junction Box Sites Case 1R0414

Dear Mr. Price

This letter serves as our notification for conducting field work associated with the above-referenced project. We will commence field work on November 2.

As discussed in our approved workplan, we have identified five sites that are representative of the system and we plan to install one boring at each site. These five sites are:

1. I-29 Vent Produced Water Pipeline Vent 18S.38E.29.I

- 2. I-29 EOL Boot End of Line Boot 18S.38E,29.1
- 3. O-29 Vent Produced Water Pipeline Vent 18S.38E.29.O

4. F-29-1A Junction Box 18S.38E.29.F

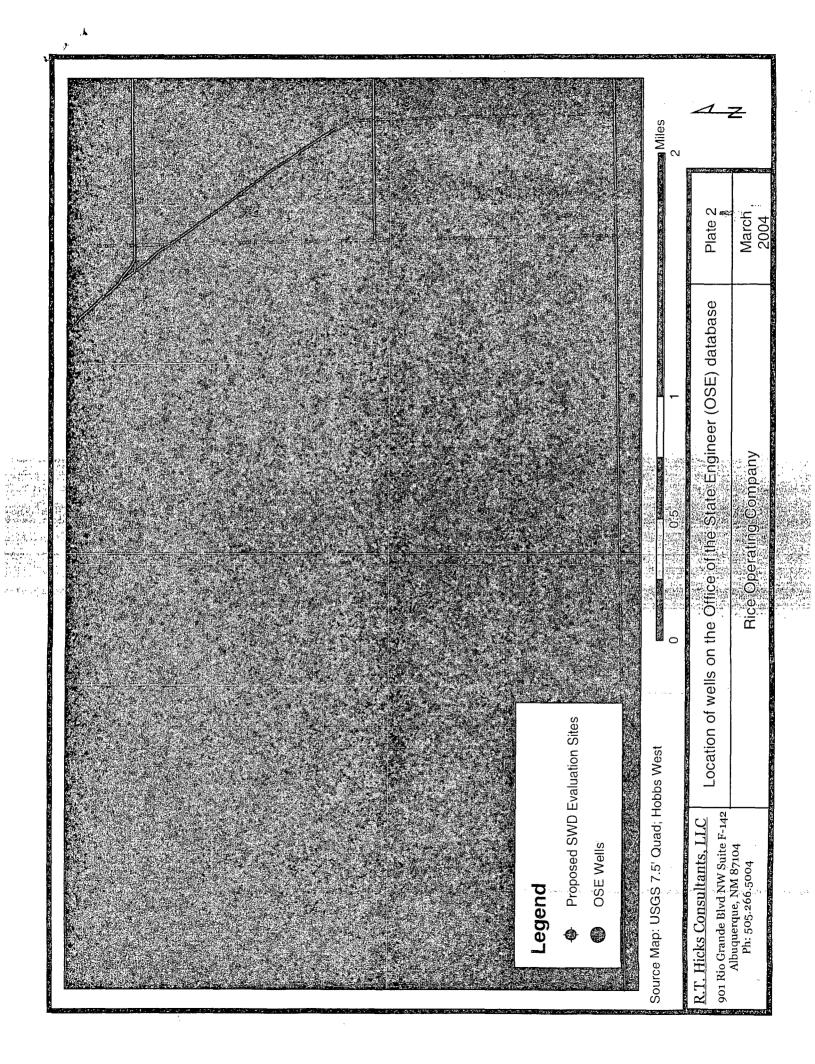
5. F-29-1B Produced Water Pipeline Boot 18S.38E.29.F

Below, we outline our approach as described in the workplan and in response to your August 6, 2004 conditional approval.

- 1. We will locate the vertical definition sampling borehole as close as practical to the suspected release source.
- 2. From each boring, we will obtain a split-spoon soil sample every five or ten feet throughout the entire vadose zone (ground surface to ground water).
- 3. We will evaluate these discrete samples, the borehole drilling characteristics, and drill cuttings to develop a lithologic profile of the vadose zone.
- 4. We will employ standard methods, as described in the Junction Box Replacement Program Plan, to evaluate all soil samples in the field for chloride content, TPH and volatile organic constituent content.
- 5. We will submit at least one soil sample from each boring to a qualified laboratory for evaluation of chloride and BTEXN (benzene, toluene, ethylbenzene, xylene, naphthalene). The field geologist will identify samples for laboratory analysis after review of the field analysis of chloride, TPH and VOCs. For all borings, we will submit the deepest sample for laboratory analysis of these constituents.

October 20, 2004 Page 2

- 6. The geologist will select two samples from the first boring and two samples from the fourth boring for laboratory analysis of soil moisture content and bulk density.
- 7. We will obtain a background soil sample at a depth of about 5 feet at a location 300 feet from any visible or suspected surface releases.
- 8. If field analyses of a borehole show chloride concentrations are consistently greater than 3 times background from ground surface to ground water, we will conclude that periodic discharges from the source created saturated conditions in the past. For any borehole that encounters these potential saturated conditions, we will continue drilling through the saturated zone to the top of the Dockum Group red beds, which form the base of the aquifer in this area. If the saturated thickness of the aquifer in this boring is less than 25 feet, we will install a 2-inch monitoring well with five feet of screen above the water table and 15 feet below the water table, in a manner consistent with industry standards (see NMOCD, ASTM or EPA publications).
- 9. If the saturated thickness of the aquifer is greater than 25 feet we will install one well screen as described above and a second 5-foot screen above the top of the Dockum Group red beds.
- 10. We will sample any ground water monitoring wells using micro-purge and "no-purge" techniques to collect two separate samples from this "flow through" monitoring well. We will collect a water sample just below the air water interface, which will be employed for evaluation of any impact from a release of hydrocarbons as well as chloride and TDS. At the bottom of the aquifer we will obtain a second sample, which we will test for chloride TDS.
- 11. We expect no material horizontal migration from these potential release sites. If previous excavation work did not provide adequate horizontal characterization, we will provide a protocol for such characterization after our evaluation of these vertical delineation borings.


If you have any questions concerning this field program, please contact Andrew Parker of my staff or me.

Sincerely, R.T. Hicks Consultants, Ltd.

andill

Randall Hicks Principal

Copy: Rice Operating Company



## R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW & Suite F-142 & Albuquerque, NM 87104 & 505.266.5004 & Fax: 505.266-0745

March 11, 2004

Mr. Wayne Price New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Hobbs SWD System Abandonment Potential Groundwater-Impacted Junction Box Sites

Dear Mr. Price

Rice Operating Company (ROC) retained Hicks Consultants to address potential environmental concerns at the above referenced sites. This submission proposes a scope of work that we believe will best mitigate any threat to human health and the environment and lead to closure of the regulatory file for this site.

201

### Background

Plate 1 shows the location of the area of the Hobbs SWD System that is the subject of this work plan. During the abandonment process, ROC found evidence of produced water leakage at 36 sites (see Table 1 and Plate 1). Our initial field inspection suggests that past releases at some of these sites are very minor and will pose no threat to human health or the environment, including surface soil. Nevertheless, we propose a more thorough examination of these sites and submission of our findings.

The Hobbs SWD System operated at a capacity of about 40,000 barrels/day from the late 1950s to the late 1980s. During the past decade, about 1000 barrels/day flowed through the system. We believe that the soil staining and other evidence of produced water leakage at these 36 sites dates to the time when the system was operating at capacity. We hypothesize that accidental releases to the environment at many of these sites ceased in the 1990s and natural restoration has mitigated the effects of any past releases. At most release sites, we witnessed no vegetation stress that we could attribute to any past releases. Our proposed scope of work is outlined below.

## Task 1 Collect Regional Hydrogeologic Data

Within the area shown on Plate 1, we found over 2000 wells in the database of the Office of the State Engineer (OSE). Plate 2 shows the location of selected water wells on the OSE and USGS database. Table 2 identifies the well owners and certain other specifics regarding these selected wells. We understand that the NMOCD is currently obtaining water levels and water quality samples in support of an investigation of the nearby Windmill Oil Company site (Section 30). We understand that the results of the NMOCD study are not presently available. We do not plan to duplicate NMOCD efforts and Table 2 excludes all wells found in Section 30.

March 11, 2004 Page 5

Nevertheless, we require some regional data in order to proceed in a timely fashion. We will attempt to sample at least 10 wells identified in Table 2 to provide an understanding of the regional water quality. Where possible, we will obtain static water levels from these wells. For each of these wells, we will obtain available driller's logs to help us define the regional geology.

We will evaluate these data, data available from the NMOCD investigation of the Windmill Oil Company, published data, and available historical data from the USGS database. The purpose of this research is to assist us with the planning of the proposed drilling program (Task 2).

# Task 2Evaluate Chloride and BTEXN Concentrations in Soil at FiveSites, Evaluate Ground Water Quality if Necessary

We have identified five sites that are representative of the system and we plan to install one boring at each site. These five sites (see Plate 1 and Table 1) are:

| 1. | I-29 Vent     | Produced Water Pipeline Vent | 18S.38E.29.I |
|----|---------------|------------------------------|--------------|
| 2. | I-29 EOL Boot | End of Line Boot             | 18S.38E,29.I |
| 3. | O-29 Vent     | Produced Water Pipeline Vent | 18S.38E.29.C |
|    |               |                              | 18S.38E.29.F |
| 5. | F-29-1B       | Produced Water Pipeline Boot | 18S.38E.29.F |

We will locate the sampling borehole as close as practical to the suspected release source. Due to the presence of caliche in the subsurface, we plan to employ air-rotary drilling techniques. From each boring, we will obtain split-spoon soil samples every five or ten feet of the vadose zone.

We will evaluate these discrete samples, the borehole drilling characteristics, and drill cuttings to develop a lithologic profile of the vadose zone. We will employ standard methods, as described in the Junction Box Replacement Program Plan, to evaluate all soil samples in the field for chloride content, TPH and volatile organic constituent content. We will submit at least one soil sample from each boring to a qualified laboratory for evaluation of chloride and BTEXN (benzene, toluene, ethylbenzene, xylene, naphthalene). The field geologist will identify samples for laboratory analysis after review of the field analysis of chloride, TPH and VOCs. The geologist will select two samples from the first boring and two samples from the fourth boring for laboratory analysis of soil moisture content and bulk density. We will also obtain a background soil sample at a depth of about 5 feet.

If field analyses of a borehole show chloride concentrations are consistently greater than 3 times background from ground surface to ground water, we will conclude that periodic discharges from the source created saturated conditions in the past. For any borehole that encounters potential saturated conditions, we will continue drilling through the saturated zone to the top of the Dockum Group red beds, which form the base of the aquifer in this area. If the saturated thickness of the aquifer in this boring is less than 25 feet, we will install a 2-inch monitoring well with five feet of screen above the water table and 15 feet below the water

table, in a manner consistent with industry standards (see NMOCD, ASTM or EPA publications). If the saturated thickness of the aquifer is greater than 25 feet we will install one well screen as described above and a second 5-foot screen above the top of the Dockum Group red beds. We will use micro-purge and "no-purge" techniques to collect two separate samples from this "flow-through" monitoring well. We will collect a sample the air water interface, which will be employed for evaluation of any impact from a release of hydrocarbons as well as chloride and TDS. At the bottom of the aquifer we will obtain a second sample, which we will test for chloride TDS. Appendix A describes the "no-purge" sampling technique we plan to employ at this site after initial sampling using micro-purge techniques.

# Task 3Evaluate Chloride, Benzene and Naphthalene Flux from the<br/>Vadose Zone to Ground Water

We anticipate that one or all of the five sites selected for borehole investigation will show evidence of seepage from the source to a depth of more than 10-feet. For these sites, excavation and disposal of released material can cause more environmental damage than it cures. For such sites, we propose to employ HYDRUS-1D and a simple ground water mixing model to evaluate the potential of any residual chloride and hydrocarbon mass in the vadose zone to materially impair ground water quality at the site. We will employ predictions of the migration of chloride ion, benzene and naphthalene from the vadose zone to ground water in our selection of an appropriate remedy for the land surface and underlying vadose zone. This simulation is the "no action" alternative, which predicts chloride flux to ground water in the absence of any action by ROC. We have selected these three constituents for simulation modeling because each of these constituents exists in the fluids stored in the tanks and each is specifically regulated by New Mexico ground water regulations (WQCC).

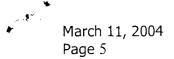
| Tabl                                   | e 3: Input Parameters for HYDRUS-1D                                                 |
|----------------------------------------|-------------------------------------------------------------------------------------|
| Input Parameter                        | Source                                                                              |
| Vadose Zone Thickness                  | Proposed borings and/or well logs on file with the OSE                              |
| Vadose Zone Texture                    | Proposed borings and well logs on file with the OSE                                 |
| Dispersion Length                      | Professional judgment, typically 10% of the model length                            |
| Soil Moisture                          | Field Measurements from borings and/or HYDRUS-1D simulations                        |
| Vadose Zone Chloride Load              | Sampling data from proposed borings                                                 |
| Length of release                      | Field Measurements, these sites are generally less than 30 feet in                  |
| perpendicular to ground                | diameter                                                                            |
| Climate                                | Pearl, NM station (Hobbs)                                                           |
| Background Chloride in<br>Ground Water | Samples from water supply wells                                                     |
| Ground Water Flux                      | Calculated from regional hydraulic data, data from nearby wells, and published data |
| Aquifer Thickness                      | Nicholson and Clebsch (1960), and well logs on file with the OSE                    |

We will employ the input parameters to HYDRUS and the mixing model outlined in Table 3. In

March 11, 2004 Page 5

the no action simulation, we will assume that vegetation is present over the release site. This assumption is consistent with our site observations. We anticipate that any release of chloride to ground water will disperse throughout the entire thickness of the aquifer after a short travel distance. Unless the hydrogeology of the site suggests differently (see Task 1), we plan to use the entire aquifer thickness as the input to the mixing model equation. For hydrocarbons, such as benzene and naphthalene, assuming a chemical stratification within the aquifer is appropriate. For these constituents, we plan to use only the uppermost 10 feet of the aquifer in the mixing model equation.

## Task 4 Design Corrective Action Plan


After ROC completes the abandonment of the Hobbs SWD System, there can be no additional releases of produced water. Our modeling of the "no action alternative" at these five sites may show that the residual chloride and hydrocarbon mass in the vadose zone poses a threat to ground water quality. If such a threat does exist, we will expand upon the HYDRUS-1D model predictions described above to develop a remedy for the vadose zone. If necessary, we will simulate:

- 1. excavation, disposal and replacement of clean soil to remove the chloride and
- hydrocarbon mass,
- Installation of a low permeability barrier to minimize natural infiltration;
   surface grading and seeding to eliminate any ponding of precipitation and promote evapotranspiration, thereby minimizing natural infiltration; and
  - 4. a combination of the above potential remedies.

We will select the vadose zone remedy that offers the greatest environmental benefit while causing the least environmental damage. We will provide a Net Environmental Benefit Analysis to support our selection of the remedy.

We will use the ground water mixing model or a suitable alternative to assist in the design of any required ground water remedy. It is possible, however, that the background chloride and /or hydrocarbon concentrations in ground water measured in the nearby wells are equal to or higher than the concentration in any monitoring well installed under this work plan. Such data would strongly suggest that the site in question has not caused any material impairment of ground water quality. If we find no evidence of impairment of water quality due to past activities, we will not prepare a ground water remedy. If data suggest that the site has contributed chloride or hydrocarbons to ground water and caused ground water impairment, we will examine the following alternatives:

- 1. Natural restoration due to dilution and dispersion,
- 2. Pump and dispose to remove the chloride and hydrocarbon mass in the saturated zone,

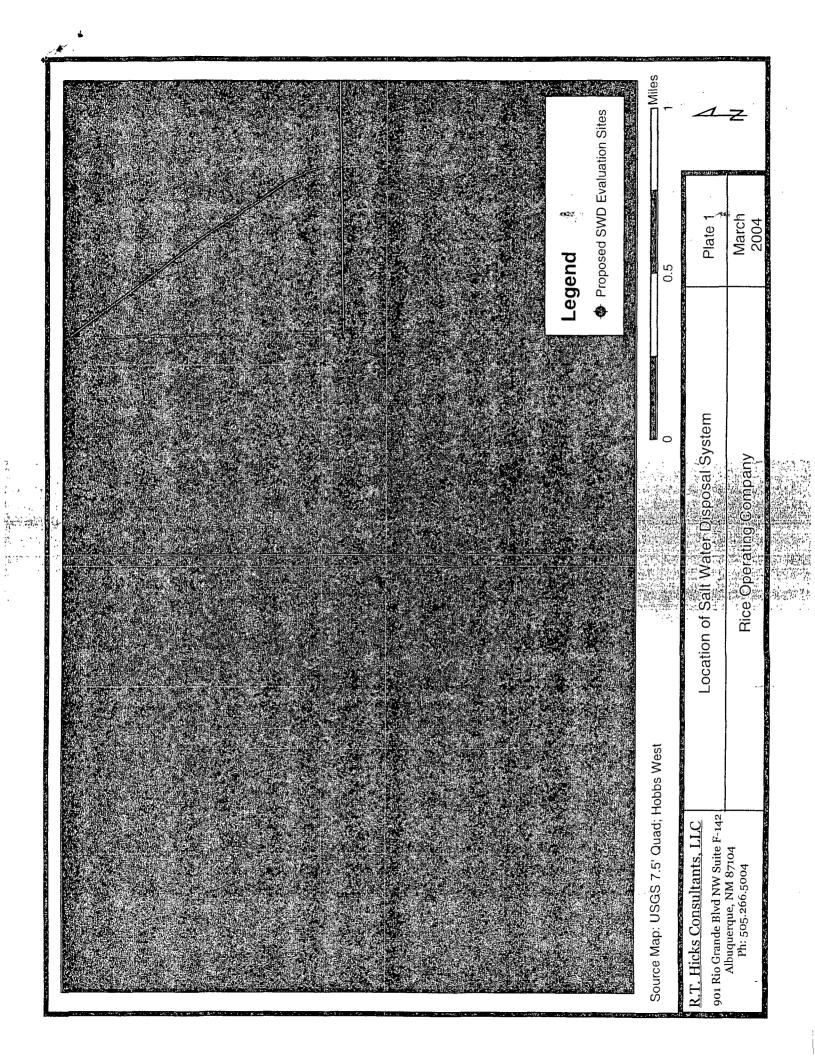


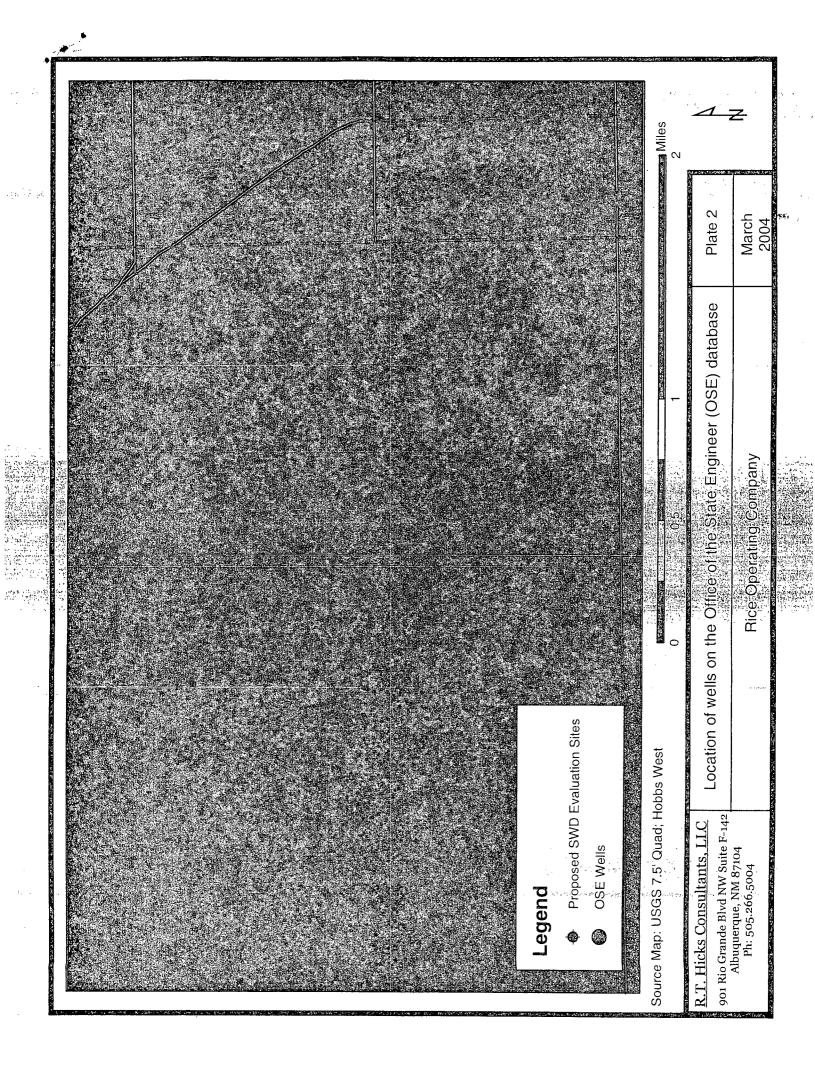
3. Pump and treat to remove the chloride and hydrocarbon mass in the saturated zone,

4. Because of the location of the site, institutional controls negotiated with the landowner may provide an effective remedy. Such controls may be restriction of water use to livestock until natural restoration returns the water quality to state standards, a provision for alternative supply well design, or a provision for well head treatment to mitigate any damage to the water resource.

We will select the ground water remedy that offers the greatest environmental benefit while causing the least environmental damage. We will provide a Net Environmental Benefit Analysis to support our selection of the remedy. We may propose additional ground water monitoring wells to support the evaluation and selection of a remedy.

We plan to deliver a Corrective Action Plan that is similar to the Junction Box Replacement Program Plan. This type of submittal will allow ROC to evaluate each site, prioritize the restoration of each site based upon a risk profile, and then begin restoration of those sites that pose the highest risks. Depending upon the results of the work described herein, ROC may elect to move forward with an area-wide plan rather than proposing 36 individual remedies. We propose to complete the work of described in Tasks 1-3, begin the work outlined in Task 4 and then meet with NMOCD to discuss the scope of the final submittal. We plan to commence data collection for the HYDRUS-1D simulations described above in late late March or early April. Your approval to move forward with this work plan will facilitate our access to nearby wells and approval of expenditures by the System Partners.


Sincerely, R.T. Hicks Consultants, Ltd.


and all T. Hy

Randall T. Hicks Principal

Copy: Rice Operating Company

£\$20 -





|                                             |                           |                 |                                                       |                        |                                                                 | か。<br>(                                                                                                                                                                                                                                                                                           | a status<br>Tetrago<br>La |
|---------------------------------------------|---------------------------|-----------------|-------------------------------------------------------|------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                                             |                           |                 |                                                       |                        | Tablé 1                                                         |                                                                                                                                                                                                                                                                                                   |                           |
| ,<br>,                                      | HOBBS                     | Jur             | <b>HOBBS Junction Box Disclosu</b>                    |                        | res: Potential Groundwater Impact                               | er Impact                                                                                                                                                                                                                                                                                         |                           |
| junction box site                           | es have bec               | come            | "disclosure" rather than                              | "closure"              | sites because significant TPH                                   | These junction box sites have become "disclosure" rather than "closure" sites because significant TPH or salt impact has deemed the site remediation to be                                                                                                                                        | mediation to be           |
| tside the scope of                          | the Rice (                | Dperai          | ting Company Generic J                                | unction B              | ox Plan Each of these sites h                                   | outside the scope of the Rice Operating Company Generic Junction Box Plan, Each of these sites has the potential for groundwater impact, based on                                                                                                                                                 | act, based on             |
| delineaton results. As<br>monitored for gro | s noted, soi<br>bundwater | me of<br>qualit | the sites are continued t<br>y. These sites are being | o have gi<br>evaluateo | oundwater impact and have be<br>for usk-based corrective action | neaton results. As noted, some of the sites are contirmed to have groundwater impact and have been officially reported to the NMOCD and are being<br>monitored for groundwater quality. These sites are being evaluated for usk-based corrective action and plans will be subnatted to the NMOCD. | ) and are being<br>NMOCD. |
| F-24-3 Vent                                 | Hobbs                     | Ч               | Sec 24, T18S, R37E                                    | <50                    | NM N                                                            | Initial evaluation only                                                                                                                                                                                                                                                                           | 1/31/2003                 |
| F-25 EOL                                    | Hobbs                     | ц               | Sec 25, T18S, R37E                                    | <50*                   | NM (                                                            | Initial evaluation only                                                                                                                                                                                                                                                                           | 1/31/2003                 |
| M-20 Vent                                   | Höbbs                     | М               | Sec 20, T18S, R38E                                    | <50                    | Samuel Bruton                                                   | Initial evaluation only                                                                                                                                                                                                                                                                           | 1/31/2003                 |
| E-29 Vent                                   | Hobbs                     | Е               | Sec 29, T18S, R38E                                    | <50                    | 🔬 🔬 🞯 xy Permian                                                | Initial evaluation only                                                                                                                                                                                                                                                                           | 1/31/2003                 |
| 1-29 EOL                                    | Hobbs                     | -               | Sec 29, T18S, R38E                                    | <50.5                  | 👘 👘 Oxy Permian                                                 | Initial evaluation only                                                                                                                                                                                                                                                                           | 1/31/2003                 |
| -29 EOL Boot                                | Hobbs                     | $\mathbf{X}$    | Sec 29, T18S, R38E                                    | <50                    | Oxy Permian                                                     | Initial evaluation only                                                                                                                                                                                                                                                                           | 1/31/2003                 |
| 0-29 EOL                                    | Hobbs                     | 0               | Sec 29, T18S, R38E                                    | <50                    | 🐰 💮 🖉 Oxy Permian                                               | Initial evaluation only                                                                                                                                                                                                                                                                           | .1/31/2003                |
| O-29 Vent                                   | Hobbs                     | 0               | Sec 29, T18S, R38E                                    | <50                    | 🚲 💮 Óxy Permian                                                 | Initial evaluation only                                                                                                                                                                                                                                                                           | 1/31/2003                 |
| O-29-1 Vent                                 | Hobbs                     | 0               | Sec 29, T18S, R38E                                    | <501                   | 🔬 👔 🔊 Oxy Permian                                               | Initial evaluation only                                                                                                                                                                                                                                                                           | 1/31/2003                 |
| P-29 Vent                                   | Hobbs                     | 4               | Sec 29, T18S, R38E                                    | <50%                   | 🗼 👔 🛞 🕅 Yermian                                                 | Initial evaluation only                                                                                                                                                                                                                                                                           | 1/31/2003                 |
| C-30 Vent                                   | Hobbs                     | ပ               | Sec 30, T18S, R38E                                    | <50                    | James Hanson                                                    | Initial evaluation only                                                                                                                                                                                                                                                                           | 1/31/2003                 |
| Jct. F-31-1                                 | Hobbs                     | ш               | Sec 31, T18S, R38E                                    | <50%                   | A R. Jones                                                      | Initial evaluation only                                                                                                                                                                                                                                                                           | 1/31/2003                 |
| Jct. F-31-2                                 | Hobbs                     | ц               | Sec 31, T18S, R38E                                    | <50                    | V.R. Jones                                                      | Initial evaluation only                                                                                                                                                                                                                                                                           | ±1/31/2003                |
| B-32 Boot                                   | Hobbs                     | в               | Sec 32, T18S, R38E                                    | <50                    | OXV Permian                                                     | Initial evaluation only                                                                                                                                                                                                                                                                           | 1/31/2003                 |
| F-33 Vent                                   | Hobbs                     | ш               | Sec 33, T18S, R38E                                    | <502                   | NM                                                              | Initial evaluation only                                                                                                                                                                                                                                                                           | 1/31/2003                 |
| A-6 Vent                                    | Hobbs                     | A               | Sec 6, T19S, R38E                                     | <503                   | MM                                                              | Initial evaluation only                                                                                                                                                                                                                                                                           | 1/31/2003                 |
| Jct. A-25                                   | Hobbs                     | A               | Sec 25, T18S, R37E                                    | <50                    | NM                                                              | Initial evaluation only                                                                                                                                                                                                                                                                           | 1/31/2003                 |
| Jct. P-31                                   | Hobbs                     | ٩               | Sec 31, T18S, R38E                                    | <505                   | Kress Jones                                                     | Initial evaluation only                                                                                                                                                                                                                                                                           | 1/31/2003                 |
| Jct. F-24-1                                 | Hobbs                     | ш               | Sec 24, T18S, R37E                                    | <50                    | MN                                                              | Primary Delineation only                                                                                                                                                                                                                                                                          | 1/3,1/2003                |
| Jct. F-29-1A                                | Hobbs                     | ш               | Sec 29, T18S, R38E                                    | < 50                   | i 👔 🔄 Oxy Permian                                               | Primary Delineation only                                                                                                                                                                                                                                                                          | 1/31/2003                 |
| F-29-1B (G-29)                              | Hobbs                     | ш               | Sec 29, T18S, R38E                                    | <50                    | OXN Permian                                                     | Primary Delineation only                                                                                                                                                                                                                                                                          | 2/4/2004                  |
| I-29 Vent                                   | Hobbs                     | -               | Sec 29, T18S, R38E                                    | <50                    | Oxy Permian                                                     | Primary Delineation only                                                                                                                                                                                                                                                                          | 1/31/2003                 |
| F-30 Vent                                   | Hobbs                     | ш               | Sec 30, T18S, R38E                                    | <50%                   | James Hanson etux                                               | Primary Delineation only                                                                                                                                                                                                                                                                          | 1/3:1/2003                |
| Jct. L-30                                   | Hobbs                     | L               | Sec 30, T18S, R38E                                    | <50                    | NM                                                              | Primary Delineation only                                                                                                                                                                                                                                                                          | 1/31/2003                 |
| Jct. E-32-1 👘                               | Hobbs                     | Щ               | Sec 32, T18S, R38E                                    | $< 50^{\circ}$         | 🔬 👘 Oxý Permian                                                 | Primary Delineation only                                                                                                                                                                                                                                                                          | 1/31/2003                 |
| Jct. E-32-2                                 | Hobbs                     | ш               | Sec 32, T18S, R38E                                    | <5023                  | 💮 👘 💮 xy Permian                                                | Primary Delineation only                                                                                                                                                                                                                                                                          | 1/31/2003                 |
| 3/11/2004                                   |                           |                 |                                                       |                        | Rage 7 of 2                                                     |                                                                                                                                                                                                                                                                                                   |                           |
|                                             |                           |                 |                                                       |                        |                                                                 |                                                                                                                                                                                                                                                                                                   |                           |
|                                             |                           |                 |                                                       |                        |                                                                 |                                                                                                                                                                                                                                                                                                   |                           |

| <b>.</b><br> | 1/31/2003                | 1/31/2003                      | 1/31/2003                | 1/31/2003                 | 1/31/2003                                            | 1/31/2003                | 1/31/2003                | 1/31/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/31/2003                               | 9/11/2003               | re. The Hobbs<br>ater receptors,                                                                                                                                                                                                                                                                         | Environmental                                                                                                                     | on oux sues to<br>pe of the Rice                                                                                                                                                                                                                                                                                    | VICW, ICCUUALK | •     | • . | ۰. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |    |              |   |  |
|--------------|--------------------------|--------------------------------|--------------------------|---------------------------|------------------------------------------------------|--------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|-----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|----|--------------|---|--|
|              | Primary Delineation only | Primary Delineation only       | Primary Delineation only | Primary Delineation only  | Primary Delineation only                             | Primary Delineation only | Primary Delineation only | Primary Delineation only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Primary Delineation only                | Initial evaluation only | a work-status to report as a disclosur<br>cording to vadose zone and groundw                                                                                                                                                                                                                             | resources. The Hobbs SWD System                                                                                                   | and are deemed to be outside the sec                                                                                                                                                                                                                                                                                |                | -44 i |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  | we | 22 · ·       |   |  |
|              | <50: 卡勒尔姆勒德·霍克·NM        | <50; 2.3 2.2 2.2 2.2 2.2 2.2 M |                          | <50 South Sage & Cottrell | <50 [17] [18] [19] [19] [19] [19] [19] [19] [19] [19 | <502 Seed Trst           | <50. 11 11 18 18 NM      | <50 Sec. 1 Sec. | <50 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | <50   A Desoto          | These Hobbs SWD System junction boxes, which have potential for groundwater impact, are not yet at a work-status to report as a disclosure. The Hobbs SWD System Environmental Committee has directed Rice Operating Company to prioritize the sites according to vadose zone and groundwater receptors, | te the most effective and timely use of resources. The Hobbs SWD System Environmenta                                              | be a long-term endeavor, possibly 7-10 years. Each of these sites have significant TPH and salt impact and are deemed to be outside the scope of the Rice<br>Onerating Company Generic Innotion Roy Plan As sites are prioritized work affine will be developed and cubmitted to the NMACD for minimum for the con- | and approvals  |       |     |    | ゆうしゅう かんしょう かんしょう かんしょう かんしょう しょうしん しょうしん しょうしん しょうしょう しょう |  |  |  |  |    | Reage:2.of 2 |   |  |
|              | (-)                      |                                |                          | (1)                       |                                                      | (-)                      | Sec 9, T19S, R38E        | Sec 6, T19S, R38E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | Sec. 4, T19S, R38E      | These Hobbs SWD System junction boxes, which have potential SWD System Environmental Committee has directed Rice Opera                                                                                                                                                                                   | NMOCD score, landowner, surface use, etc. in order to coordinate<br>Committee is committed to completing the abandonment of the H | 0 years. Each of these site<br>Box Plan As sites are nri                                                                                                                                                                                                                                                            |                |       |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |    |              | - |  |
|              | Hobbs E                  | Hobbs N                        | Hobbs O                  | Hobbs H                   | Hobbs E                                              | Hobbs O                  | Hobbs G                  | Hobbs A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hobbs E                                 | Hobbs M                 | m junction<br>ntal Commi                                                                                                                                                                                                                                                                                 | r, surface u                                                                                                                      | possibly 7-                                                                                                                                                                                                                                                                                                         |                |       |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |    |              |   |  |
|              | Jct. E-33-1 Hc           | Jct. N-4 Hc                    |                          | Jct. H-29 Hc              |                                                      | Jct. O-13 (N) Hc         | G-9 Vent Ho              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                       | vent M-4 Hc             | These Hobbs SWD Syster<br>SWD System Environmer                                                                                                                                                                                                                                                          | NMOCD score, landowne                                                                                                             | be a long-term endeavor,<br>Onerating Company Gene                                                                                                                                                                                                                                                                  |                |       | •   |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |    | 3/11/2004    |   |  |

|                                                                                                                 | Date Date                 | 70 3/             | 6/10/1968 6/10/1968      | 3/23/1982 3/24/1982      | 11/25/1977 11/27/1977 |                          |               | • · ·             |                      | 9/8/1977 9/14/1977<br>8/6/1060 8/6/1060     | <i></i>                  | ~                        | 7/31/2001 8/3/2001       |                          |                          | 5                        |                      |                      |               | `<br>                | //28/198/ 8/1/198/    |                                              | γ<br>ω       |                   | ŝ                   | 12/29/1967 12/30/1967    | 9/10/1955 9/11/1955  | 6/25/1954 6/25/1954 |                        | -                      | 8/21/1956 8/22/1956     |  |       |                                       |                                          |                                      |
|-----------------------------------------------------------------------------------------------------------------|---------------------------|-------------------|--------------------------|--------------------------|-----------------------|--------------------------|---------------|-------------------|----------------------|---------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------|----------------------|---------------|----------------------|-----------------------|----------------------------------------------|--------------|-------------------|---------------------|--------------------------|----------------------|---------------------|------------------------|------------------------|-------------------------|--|-------|---------------------------------------|------------------------------------------|--------------------------------------|
|                                                                                                                 | Tws Rna Sec a a .         | 38E 19 3 3        | 18S 38E 19 4 2 6         | 18S 38E 20 2 1 3         | 18S 38E 20 2 2 12     | 38E 20 2 2               | 20 2 3        | 38E 28 1 1        | 38E 29 2 2           | 18S 38E 29 2 4 9                            | 38F 20 2 3               | 38E 29 3 3 3             | 18S 38E 29 4 1 7         | 38E 30 1 2               | 38E 30 1 4               | 38E 30 1 4 '             | 38E 30 4 1           | 38E 30 4 1           | 38E 30 4 1    | 38E 30 4 1           | 185 38E 30 4 1 /      | 30F 3U 4 -                                   | 38F 32 1 3 1 | 38F 32 1 3        | 38E 32 1 .          | 18S 38E 32 1 1           | 32 3 3               | 38E 32 3 3          | 38E 33 1 3             | S 38E 33 3 0           | 18S 38E 34 3 3 8        |  |       |                                       |                                          |                                      |
|                                                                                                                 | Source                    | Shallow           | Shallow                  | Shallow                  | Shallow               | Shallow                  | Shallow       | Shallow           | Shallow              | Shallow                                     | Shallow                  | Shallow                  | Shallow                  | Shallow                  | Shallow                  | Shallow                  | Shallow              | Shallow              | Shallow       | Shallow              | Shallow               | Shallow<br>Wollew                            | Shallow      | Shallow           | Shallow             | Shallow                  | Shallow              | Shallow             | Shallow                | Shallow                | Shallow                 |  |       |                                       |                                          |                                      |
| ds from the OSF Database                                                                                        | Water Depth 3 Well Number | DORE E: 06660 (E) | MPANY L 06337            | 54 CO. L 08716           | L 07810               | SINC L 09475             | 08851         | L 08009           |                      | ст. С. 07754<br>С. С. С. В. Б. Г. ОББ70 (Б) |                          | L 07005                  | (素) LLC- L 11176         |                          | ATION L 05849            | ATION L 05818            | 10093 ··· L          | , L, 10094           | 10095 - 10095 | 10096                | 10001 L 09936         |                                              | L 000/4      |                   | ±21035              | 1. E INC. L 06245        | 745 L 02964          | 25555 L             | 😨 🖓 L 06574 (E)        | L 02232                | L 03516 APPR            |  |       |                                       |                                          |                                      |
| DSF<br>DSF                                                                                                      | Water Denti               | 48                | 40                       | 49                       | 60                    | 60                       | 54            | 9<br>9<br>9       | Zq                   | 50<br>FA                                    | 40                       | 20                       | 51 65a                   | 30                       | 34                       | 32                       | 42                   | 42                   | 42            | 4Z                   | 41<br>7 41            | 4<br>1                                       | 40.40        | 80                | 59<br>1             | 34                       | 30                   | 34                  | 52                     | 56                     | 45                      |  |       | • • • • • • • • • • • • • • • • • • • | 949<br>- 323<br>- 123<br>- 123<br>- 123  | 1757<br>2757<br>1757<br>1757<br>1757 |
| in the second | Well Depth                |                   | 110                      | 130                      | 120                   | 120                      | 120           | 167               | 07L                  | 207<br>110                                  | 122                      | 150                      | 220                      | 87 G                     | 38                       | 32                       | 52                   | 52<br>52             | 52            | 25<br>27             | 200<br>200            | 07<br>102<br>105                             | 158          | 120               | 150                 | 150                      | 100                  | 116                 | 120                    | 112                    | 106                     |  | x 121 |                                       | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |                                      |
| Table 2: Selected Water Well Record                                                                             |                           | D & DRILLIN       | INC. CAPITAN DRILLING CO | OIL FIELD RENTAL SERVICE | MACK TRUCK DEALERSHIP | STOEHR WIRE ROPE OF TEXA | A.A. OILFIELD | INC. HOBBS DIESEL | BIG HUKN IANK KENTAL |                                             | SOUTHWESTERN DRILLING MU | TWO-STATE TANK RENTAL CO | TEXLAND PETROLEUM-HOBBS, | AMERADA PETROLEUM CORPOR | AMERADA PETROLEUM CORPOR | AMERADA PETROLEUM CORPOR | WINDMILL OIL COMPANY | WINDMILL OIL COMPANY |               | WINDMILL UIL COMPANY | VUNDIMILE UIE COMPANY | VUINDIVILLE ULE COMPANY<br>STAD TOOL COMPANY |              | BULL DOG TOOL INC | BALER SERVICE TOOLS | SONNY'S OIL FIELD SERVIC | INC. BAKER OIL TOOLS | SKELLY OIL COMPANY  | PAN AMERICAN PETROLEUM | CONTINENTAL TANKE INC. | CACTUS DRILLING COMPANY |  |       |                                       |                                          |                                      |
| able 2:                                                                                                         | Use Div                   | PRO               | PRO                      | SAN                      | SAN                   | SAN                      | SAN           | SAN               | NAN<br>Nan           | 0BS                                         |                          | SAN                      |                          | PRO                      | PRO                      | PRO                      | PRO                  | PRO                  | PRO<br>C      |                      |                       |                                              | NAS          | SAN               | SAN                 | SAN                      | DOM                  | MOQ                 | PRO                    | MOD                    | РКО                     |  |       |                                       |                                          |                                      |
| F                                                                                                               | DB File Nbr               | L 06660 (E)       | L 06337                  | L 08716                  | L 07810               | L 09475                  | L 08851       | L 08009           | L U886/              | L 07754                                     |                          | L 07005                  | L 11176                  | L 02395                  | L 05849                  | L 05818                  | L 10093              | L 10094              | L 10095       | L 10096              | L U9936               | L 1003/                                      | L 030/4      | L 10558           | L 10035             | q                        | L 02964              | L 02555             | ٩                      | L 02232                | L 03516                 |  |       |                                       |                                          |                                      |

1.7.1

a and a second second