AP - 001

ANNUAL MONITORING REPORT

3/27/2008

27 March 2008

Mr. Glenn von Gonten New Mexico Oil Conservation District Environmental Bureau 1220 So. St. Francis Dr. Santa Fe, NM 87505

RE: Submission of the 2007 Annual Groundwater Report for the Former

Brickland Refinery Site Sunland Park, New Mexico Huntsman Corporation Case No. AP-01

Dear Mr. von Gonten:

Enclosed is a copy of the 2007 Annual Groundwater Report for the Former Brickland Refinery Site. As agreed upon on 11 February 2003, the report will be submitted on or before 1 April for the previous year.

Please do not hesitate to contact me at 281-719-3039 any time you have questions or need additional information.

A copy of this report is also being sent to the District 2 office in Artesia.

Sincerely,

Ed L. Gunderson

Manager EHS Center of Excellence - Americas

Huntsman International

cc: NMOCD District 2 – Artesia

Lon Tullos – Huntsman

Edward & Dunderson

cc w/o enclosures:

Mary Wells/Fred Small - Terracon

AP-001

2007 ANNUAL GROUNDWATER MONITORING REPORT

FORMER BRICKLAND REFINERY SITE NMOCD CASE NO. AP-01 SUNLAND PARK, NEW MEXICO

TERRACON PROJECT NO. 68997611 February 11, 2008

Prepared for:

HUNTSMAN INTERNATIONAL, LLC
The Woodlands, Texas

Prepared by:

TERRACON
Las Cruces, New Mexico

leracon

TABLE OF CONTENTS

						Page No.
1.0	EXECUTIV	VE SUMMARY			••••••	1
2.0	INTRODU	CTION	**********		•	2
2.1	Backgro	ound				2
2.2	Scope o	of Services				3
3.0	GROUND	WATER ELEVATION	ON, HYE	RAULIC GRADIEI	NT AND FLOW D	RECTION5
4.0	FREE-PHA	ASE PRODUCT RI	EMOVA	L		5
4.1	Free-Ph	ase Product Thick	ness		•••••	5
4.2	Remova	ıl and Disposal of F	ree-Pha	se Product and Co	ntaminated Grour	ndwater6
5.0	SAMPLE			LABORATORY		
PROC	EDURES		•••••		••••••	6
5.1	Fluid Le	vel Measurements				6
5.2	Deconta	ımination			•••••	6
5.3	Calibrati	on of the Multi-Pro	be Wate	er Analyzer		6
5.4	Well Pur	rging				7
5.5	Field Pa	rameter Measurem	nents			7
5.6	Collectin	ng Groundwater Sa	mples		•••••	7
				ons		
5.7						
5.8				ntrol		
	•					
5.9	•	•		stody Records		
6,0				ST RESULTS		
6.1				ınd Total Xylenes (£		
6		•			•	
6	1.2 Cor	mparison to Prior D)ata			11

Former Suntan	nnual Groundwater Monitoring Report r Brickland Refinery Site od Park, New Mexico on Project No. 68997611	Terracon
6.2	Polynuclear Aromatic Hydrocarbons (PAHs)	11
6.3	Priority Pollutant Metals	11
7.0	REMEDIATION SYSTEM PERFORMANCE	12
8.0	CONCLUSIONS	12
9.0	RECOMMENDATIONS	14

APPENDICES

APPENDIX A:	FIGURES
Figure 1	Site Location Map
Figure 2	Site Map
Figure 3a	Groundwater Elevation Map (June 2007)
Figure 3b	Groundwater Elevation Map (December 2007)
Figure 3c	Groundwater Elevations Versus Time
Figure 3d	Rio Grande Stage Elevations Versus Time
Figure 4a	Free Phase Hydrocarbon Thickness Map (June 2007)
Figure 4b	Free Phase Hydrocarbon Thickness Map (December 2007)
Figure 5	Free Product Recovery Chart
APPENDIX B:	TABLES
Table 1	Summary of Purging and Sampling Methods
Table 2	Summary of Groundwater Elevations
Table 3	Summary of Dissolved BTEX Concentrations
Table 4	Summary of PAH Analytical Results
Table 5	Summary of Priority Pollutant Metal Analytical Results
Table 6	Summary of Free-Phase Product Thickness Measurements

APPENDIX C:

Laboratory Analytical Reports
Chain-of-Custody Documentation
Multi-Probe Calibration Sheets
Field Activity Daily Logs
Groundwater Sampling Information Forms

APPENDIX D:

Xitech product recovery system drawing Specifications Disposal Permits

APPENDIX E:

Brickland Refinery Monitoring & Sampling Protocol

1.0 EXECUTIVE SUMMARY

This 2007 Annual Groundwater Monitoring Report documents the results of two semi-annual groundwater-monitoring operations conducted by Terracon at the former Brickland Refinery site in Sunland Park, New Mexico. The semi-annual groundwater monitoring operations were conducted in June and December 2007. The report contains summaries of the historical groundwater elevations and analytical data for the past five years. The purging and sampling protocol was revised by Huntsman in 2006. Terracon followed the revised protocol for the 2007 monitoring year - see the "Brickland Refinery Monitoring and Sampling Protocol" in Appendix E. In addition, the report includes a summary of the free product recovery system. This monitoring and sampling program was conducted in accordance with the Groundwater Monitoring Plan included in Section 3.5 of the Stage 2 Abatement Plan as approved by Mr. Bill Olson of the New Mexico Oil Conservation Division (NMOCD) in his letter dated December 17, 1998.

Since 2007 is an odd-numbered year, sample collection and testing was conducted only on the five (5) off-site wells (MW-3S, MW-3D, MW-6S, MW-6D, and MW-9S) and the upstream and down-stream river samples during the June and December monitoring events. Conclusions relevant to groundwater conditions and the remediation performance at the former Brickland Refinery are presented below.

- Based on the laboratory report for the June 2007 monitoring event, benzene and toluene were not detected in samples collected from the five (5) off-site wells (MW-9S, MW-6D, MW-6S, MW-3D, and MW-3S) and the river. Trace amounts of ethylbenzene and xylenes were detected in MW-6S (including the duplicate). See Table 3.
- Based on the laboratory report for the December 2007 monitoring event, benzene, toluene, ethylbenzene, and xylenes (BTEX) were not detected in four of the five (5) offsite wells (MW-9S, MW-6D, MW-3D, and MW-3S), the duplicate sample, or the river. A trace concentration of ethylbenzene was detected in sample collected from MW-6S.
- Polynuclear aromatic hydrocarbons (PAH) levels were not detected in the eight samples (including the duplicate) collected from the five off-site monitoring wells and the river during the June 2007 monitoring event (see Table 4).
- Based on the laboratory report of the analyses for priority pollutant metals for the June 2007 monitoring event, concentrations of boron in the groundwater samples collected from the five off-site monitor wells (including the duplicate) exceeded the New Mexico Water Quality Control Commission (NMWQCC) levels. Boron was also detected in the down-stream river sample but was below NMWQCC levels. Boron was not detected in the up-stream river sample. Iron levels exceeded NMWQCC standards in the samples

(including the duplicate) collected from four of the five (5) off-site wells (MW-9S, MW-6S, MW-3D, and MW-3S) and the river. Iron was detected in the sample collected from MW-6D but was below the NMWQCC level. Manganese exceeded NMWQCC standards in the eight samples (including the duplicate) collected from the five off-site monitoring wells and the river. Antimony, arsenic, beryllium, cadmium, chromium, cobalt, copper, lead, mercury, nickel, selenium, silver, thallium and zinc were not detected in the groundwater or the river samples. Minor concentrations of barium and molybdenum were detected in the samples collected from the five off-site wells and the river but the concentrations were below NMWQCC standards. Aluminum was detected in samples collected from MW-6S (including the duplicate) but was below the NMWQCC level. However, aluminum was above NMWQCC standards in the two river samples (see Table 5).

- Free-phase product (sheen) was present in the product recovery/monitoring well, MW-10, during the December 2007 monitoring event. Well points WP-25 and WP-26S had measurable thicknesses of 0.54 foot and 0.48 foot, respectively, during the June 2007 monitoring event, and thicknesses of 0.52 foot and 0.35 foot, respectively for the December event (see Table 6). Free-phase product thickness in well point WP-27S was 0.03 foot during the December 2007 monitoring event (see Table 6).
- Since the installation of the Xitech product recovery system in December 1998, an approximate total of 235 gallons of free-phase product has been extracted from recovery well MW-10. Although a sheen of oil was observed/visible, no product was extracted during the 2007 period. Thus, no free-phase product was removed from the site for disposal during the period.

2.0 INTRODUCTION

2.1 Background

The Brickland Refinery Site is located in Sunland Park, New Mexico and herein known as the site. The site consists of approximately 33 acres situated along the west bank of the Rio Grande (see Figure 1). Huntsman International, LLC. (Huntsman) currently owns the site. From 1933 to 1958, the site was operated as a petroleum refinery and was producing both gasoline and jet fuel. The site was closed and the plant dismantled in 1958. Between 1964 and 1989, the site was leased to various parties to service trucks, conduct automobile salvage operations, graze livestock and store used bricks.

Petroleum hydrocarbons from the operation of the facility have been detected in soil and groundwater at the site. The nature and extent of the petroleum hydrocarbons were initially investigated by Eder and further quantified by GCL and BDM. These investigations provided the basis for the Stage 2 Abatement Plan. The Stage 2 Abatement Plan provides

the methods for abating contamination of groundwater and soil in compliance with New Mexico Water Quality Control Commission regulations on prevention and abatement of water pollution (20NMAC 6.2, Subpart IV), and New Mexico Oil Conservation Division requirements to protect public health and the environment with respect to wastes from the refinement of crude oil (§70-2-12.B (22) NMSA 1978).

Terracon has maintained a stand-alone free-phase product recovery system on the site as part of the Stage 2 Abatement Plan. The system was installed in December 1998 and site visits are now being made approximately every four weeks for maintenance of the system and general observation of the site. The site layout and monitoring well and sampling locations are shown on Figure 2.

2.2 Scope of Services

Terracon performed semi-annual groundwater monitoring at the subject site in June and December 2007. The monitoring program was conducted in accordance with the Groundwater Monitoring Plan and Stage 2 Abatement Plan, approved by Mr. Bill Olsen of the NMOCD in his letter dated December 23, 1998. However, the sampling protocol was modified in 2006 and was first used during the June 2006 monitoring event, which is explained in detail in Appendix E. Tasks were conducted in general accordance with applicable NMOCD, New Mexico Environment Department (NMED) and Environmental Protection Agency (EPA) regulations, procedures and guidelines.

The following items were included in the semi-annual monitoring as required by the Groundwater Monitoring Plan and Stage 2 Abatement Plan and approved by the NMOCD.

- In conjunction with each semi-annual monitoring event, measured depth to groundwater
 in the ten on-site monitoring wells and eight off-site monitoring wells. The water level is
 measured but not reported for fourteen well points since the well points are designed
 only for the purpose of detecting the presence of free-phase product at the measured
 depths.
- Measured free-phase product thickness, if present, in the eighteen monitoring wells and fourteen well points, and provided a summary of the free-phase recovery system performance.
- Submitted groundwater samples collected from the five (5) off-site monitoring wells (MW-3S, MW-3D, MW-6S, MW-6D, and MW-9S) in June and December 2007. Since 2007 is an odd-numbered year, sample collection and testing was conducted only on the five (5) off-site wells (MW-3S, MW-3D, MW-6S, MW-6D, and MW-9S) during the June and the December monitoring events; as per the NMOCD-approved Groundwater Monitoring Plan.

- Submitted two water samples collected from the Rio Grande during each semi-annual monitoring event for laboratory analytical testing. One sample was collected from the upstream end of the site, north of MW-1, and the other sample was collected from the downstream end of the site, south of MW-9S.
- Analytical testing for the June monitoring event included BTEX, PAH, and twenty priority pollutant metals (using US EPA Test Methods 8021B, 8270C-SIM, 7470, and 6010B, respectively). Samples were analyzed for BTEX only for the December monitoring event.
- Transported the purged water to Huntsman Decanter/Recycle Water Stripper in Odessa, Texas in June 2007 and to Rhino Environmental land-farming disposal site in Anthony, Texas in February 2008 for disposal.
- Prepared the field reports summarizing monthly extraction system O&M site-visits. The extraction system is located in MW-10.
- Prepared this Annual Groundwater Monitoring Report, which includes the following elements required by the NMOCD-approved 1998 Groundwater Monitoring Plan and Stage 2 Abatement Plan of 1998.
 - 1. A description of the monitoring activities that occurred during the year, with corresponding conclusions and recommendations.
 - 2. Summary tables of the past and present laboratory analytical results of groundwater and surface water sampling.
 - 3. Plots of benzene concentrations versus time for the off-site groundwater monitoring wells MW-3S, MW-3D, MW-6S, MW-6D, and MW-9S.
 - 4. Copies of laboratory analytical reports for the sampling activities conducted at the site during the past year.
 - 5. Plots of water table elevation versus time for the groundwater monitoring wells.
 - 6. Groundwater surface contour maps for the two 2007 semi-annual monitoring events based on groundwater elevations obtained from the monitoring wells.
 - 7. Free-phase hydrocarbon thickness maps for the two 2007 semi-annual monitoring events.

3.0 GROUNDWATER ELEVATION, HYDRAULIC GRADIENT AND FLOW DIRECTION

The hydraulic gradient beneath the former Brickland Refinery in June 2007 was approximately 0.0007 foot/foot and groundwater flow direction was estimated to be approximately S 4° E. Similarly, the hydraulic gradient in December 2007 was calculated to be approximately 0.0007 foot/foot and the flow direction was approximately S 33° E.

Historical groundwater elevations for the monitoring wells are provided in Table 2. Water levels are not listed for the well points because the well points were specifically designed to detect free-phase product at discrete depth and the screened intervals do not correlate with the monitoring well screens. Groundwater elevation contour maps for the June 2007 and December 2007 monitoring events are depicted in Figures 3a and 3b, respectively.

Groundwater levels in the monitoring wells are influenced by the stage of the Rio Grande bordering the site. Due to seasonal fluctuations in the river, water levels in the monitoring wells may vary as much as 2 feet over the course of a year. Groundwater elevations in June 2007 correlate well with the higher levels measured during the summer months of previous years. Similarly, the groundwater elevations in December 2007 correlate well with the lower levels measured during the winter months of previous years. A groundwater elevation versus time graph for the wells is presented in Figure 3c.

Gage heights for the gage station located on the Rio Grande (near the Courchesne Bridge in west El Paso) in close proximity to the site were obtained from the International Boundary and Water Commission (IBWC). A graphical plot of gage heights versus time (1993 to present) demonstrates that during the summer months the Rio Grande is usually at its highest stage, which correlates with the higher groundwater elevations measured during the same periods. The graphical plot of gage heights versus time is presented on Figure 3d.

4.0 FREE-PHASE PRODUCT REMOVAL

4.1 Free-Phase Product Thickness

Free-phase product thickness in each monitoring well and well point was measured, if present, with a KECK oil/water interface meter. The June and December historical product thickness measurements for each monitoring point are listed in Table 6. Free-Phase Hydrocarbon Thickness maps for the June and December 2007 monitoring events are depicted in Figures 4a and 4b, respectively. Both monitor well and well point (WP) measurements are consistent with prior assessments.

4.2 Removal and Disposal of Free-Phase Product and Contaminated Groundwater

As of December 2007, a total of approximately 235 gallons of free-phase product had been removed from recovery well MW-10 (see Figure 6 in Appendix A). Approximately 80 gallons of free-phase product was removed from the site in 2005. There was no product removal from the site in 2006 and 2007.

Approximately 12 gallons of water were purged from the sampled monitoring wells during the June 2007 monitoring event. Approximately 12 gallons were purged from the sampled wells during the December 2007 monitoring event. The purged volume of water collected during the June 2007 monitoring event was transported to Odessa, Texas for disposal at the Huntsman Decanter/Recycle water stripper. The purged volume from the December 2007 monitoring event was transported to Rhino Environmental for disposal at their land-farming disposal site. Copies of the disposal permits are provided in Appendix C.

5.0 SAMPLE COLLECTION AND LABORATORY ANALYTICAL TESTING PROCEDURES

5.1 Fluid Level Measurements

The ten on-site monitoring wells and eight off-site monitoring wells were probed for the presence of free-phase product using a KECK oil/water interface meter. As specified under the Stage 2 Abatement Plan and in accordance with New Mexico Environment Department (NMED) Petroleum Storage Tank Bureau Regulations, if any detectable free-phase product was found in the wells, the thickness was measured and no sample would be collected from that well; however, no free-phase product was detected in the wells to be sampled. The static water surface elevation in each well was measured and recorded for the wells that did not have detectable free-phase product. The static water surface elevations for the two monitoring periods are shown in Table 2.

5.2 Decontamination

The interface probe was decontaminated prior to each use and between each well to prevent the introduction of external contamination or artifacts into a well. A wash-and-double-rinse decontamination procedure was used. The procedure consisted of washing the probe with Liquinox, a mild, non-phosphate detergent, then double-rinsing with water.

5.3 Calibration of the Multi-Probe Water Analyzer

The multi-probe analyzer was calibrated prior to use at the former Brickland refinery site. Each calibration was carried out in accordance with the equipment manufacturer's

procedures and recommendations. Date, time, calibration readings, and the method of calibration were recorded on Calibration Logs presented in Appendix E.

5.4 Well Purging

The monitoring wells listed above were micropurged prior to sampling. Micropurging consisted of removing small volumes of groundwater at very low pumping rates until certain physiochemical field parameters stabilized. Approximately 2 gallons were removed from each well with pumping rates of 0.2 liter per minute. A water quality monitor with a multiprobe flow-through cell was used during purging to measure the temperature, pH, specific conductance, dissolved oxygen, redox potential, and turbidity of the purged groundwater. These field parameters are displayed on a digital readout screen that is attached to the analyzer. Field data of the purging of each well is provided in Appendix C. The well purging procedure is detailed in Appendix E. Since each pump is dedicated to a specific well, no decontamination was required. The purged volume of water from the June 2007 monitoring event was transported to Huntsman, Odessa, Texas for disposal at the Huntsman Decanter/Recycle water stripper. The purged volume from the December 2007 monitoring event was transported to Rhino Environmental for disposal at their land-farming disposal site.

5.5 Field Parameter Measurements

Field parameter measurements were recorded in five-minute increments while each well was purged through the multi-probe flow cell. The groundwater temperature, pH, specific conductance, dissolved oxygen, redox potential, and turbidity was documented on the Sampling Information Form provided in Appendix C. Micropurging of each well was continued until two consecutive readings for three field parameters (dissolved oxygen, redox potential, and turbidity) stabilized within 10% of one another. When stabilization was achieved, well purging was discontinued and the well sampled. The total volume of water purged prior to sample collection was recorded on the Sampling Information Form. The purged water was containerized for disposal. Groundwater odor, color, and other physically apparent characteristics were also documented. Monitor well integrity was also documented (see the Sampling Information Forms provided in Appendix C).

5.6 Collecting Groundwater Samples

Samples were collected and containerized for laboratory analysis in the order of volatilization sensitivity of the analytical parameters, (i.e., first, volatile organics; second, polynuclear aromatic hydrocarbons; and third, metals). All samples were properly labeled with the correct sampling location, date, time, and testing requirements written on self-adhering labels provided by the laboratory. The samples collected were not filtered.

5.6.1 Volatile Organic Compounds

The groundwater samples were analyzed via US EPA Method 8021B for the following volatile organic compounds (VOCs): benzene, ethylbenzene, toluene, and total xylenes (BTEX). The VOC sample containers are 40 ml. glass vials (2 or 3) that contain a premeasured amount of hydrochloric acid (HCl), prepared by the laboratory. The HCl is a preservative and sample containers for VOCs were not rinsed or allowed to overflow during the collection of samples. Water was collected from the well and slowly poured into the glass vial until a convex meniscus formed above the lip of the bottle. Once capped, the vial was checked for air bubbles (headspace) by turning it upside down, tapping the cap of the inverted bottle, and visually inspecting the bottle contents. No bubbles were observed.

5.6.2 Polynuclear Aromatic Hydrocarbons

Wells sampled in the June 2007 monitoring event were analyzed via US EPA Method 8270C-SIM for the presence of polynuclear aromatic hydrocarbons (PAHs). Sample containers for PAH were amber glass bottles and had no preservative. Samples for PAH were collected from the well by overflowing the sample container with groundwater prior to capping.

5.6.3 Metals

Wells sampled in the June 2007 monitoring event were also analyzed via US EPA Method 6010B for the following list of metals:

Aluminum	Beryllium	Cobalt	Manganese	Selenium
Antimony	Boron	Copper	Mercury	Silver
Arsenic	Cadmium	Iron	Molybdenum	Thallium
Barium	Chromium	Lead	Nickel	Zinc

Sample bottles for these constituents contained a pre-measured amount of nitric acid (HNO₃) prepared in the laboratory. The HNO₃ is a preservative and sample containers for metals were not rinsed before or allowed to overflow during sample collection.

5.7 Surface Water Sampling

Surface water samples from the Rio Grande were collected for chemical analysis from one location up-river and one location down-river from the Brickland facility. The samples were subjected to the same group of analytical testing listed previously for the groundwater samples.

Surface water grab samples were collected by submerging a decontaminated Teflon[®] dipper into the river. The dipper was decontaminated between sampling sites with Liquinox, a non-phosphate detergent followed by three distilled water rinses. Sampling protocols

outlined in the Monitoring and Sampling Protocol presented in Appendix E was strictly adhered to during the sampling process.

5.8 Field Quality Assurance / Quality Control

The Field Quality Assurance / Quality Control (QA / QC) program includes collection of field blanks, equipment blanks, trip blanks, and duplicate samples. Descriptions of the QA / QC samples are presented below.

5.8.1. Field Blanks

The field blanks were used to determine potential absorption of volatile organics from the air into the water samples. One field blank was collected near the beginning of each sampling day at a pre-determined well or surface water sampling location. The blank was collected by filling one 40 ml. glass vial with de-ionized water. The de-ionized water was supplied by the laboratory performing the analysis. The field blank was analyzed for the same volatile organic compounds (BTEX) as the groundwater and surface water samples.

5.8.2. Equipment Blanks

Equipment blanks were collected during each up-river and down-river monitoring event since the non-dedicated sampling equipment (i.e.- Teflon® dipper) was used to collect samples. To collect an equipment blank, the Teflon dipper was decontaminated with Liquinox, a non-phosphate detergent followed by three distilled water rinses. Immediately following decontamination, the equipment blank was collected by pouring de-ionized water into the Teflon® dipper, and then filling one 40 ml. glass vial with the water from the dipper. The de-ionized water was supplied by the laboratory performing the analysis. The equipment blank was analyzed for the same volatile organic compounds (BTEX) as the surface water samples.

5.8.3. Trip Blanks

The trip blank is used to detect and quantify potential organic chemical artifacts occurring in the groundwater or surface water sample which originate from either the sample containers or the de-ionized water comprising the blank. One bottle set for each ice chest was filled with de-ionized water by the laboratory prior to field mobilization. These bottles were transported to the sampling location and returned to the laboratory in the ice chests used to transport groundwater and surface water samples. The trip blanks were analyzed for the same volatile organic compounds (BTEX) as the groundwater and surface water samples.

5.8.4. Duplicate Samples

One duplicate sample was collected during the June and December monitoring events. The duplicate samples collected during the June and December monitoring events were collected from monitor well MW-6S.

5.9 Sample Shipping and Chain-of-Custody Records

The water samples collected during the June and December monitoring events were placed in ice-filled coolers immediately after collection and shipped to Environmental Science Corporation in Mount Juliet, Tennessee for analysis. In each event, chain-of-custody (C-O-C) forms, documenting sample identification numbers; the required analysis for each sample; collection times; and delivery times to the laboratories, were completed for each set of samples. A summary of the purging, volume purged from each well, and sampling methods is provided in Table 1. The laboratory results of the analyses of the water samples and C-O-C forms are provided in Appendix C.

6.0 GROUNDWATER ANALYTICAL TEST RESULTS

6.1 Benzene, Toluene, Ethlybenzene and Total Xylenes (BTEX)

A historical timeline of reported BTEX concentrations for the five offsite monitoring wells (MW-3S, MW-3D, MW-6S, MW-6D, and MW-9S) and four on-site monitoring wells (MW-4, MW-7, MW14, and MW-15) is summarized in Table 3. This table lists BTEX concentrations for the period from June 2003 to December 2007. BTEX concentrations for monitoring events prior to June 2003 are included in previously submitted reports.

6.1.1 Analyses

Based on the laboratory report for the June 2007 monitoring event, benzene and toluene were not detected in samples collected from the five (5) off-site wells (MW-9S, MW-6D, MW-6S, MW-3D, and MW-3S) and the river. Trace amounts of ethylbenzene (0.008 mg/L) and xylenes (0.0015 mg/L) were detected in MW-6S (and the duplicate, 0.0092 and ND, respectively). The field blank had a benzene concentration of 0.00054 mg/L (detection limit = 0.0005 mg/L).

Based on the laboratory report for the December 2007 monitoring event, benzene, toluene, ethylbenzene, and xylenes (BTEX) were not detected in four of the five (5) off-site wells (MW-9S, MW-6D, MW-3D, and MW-3S), the duplicate sample, or the river. Trace concentration of ethylbenzene (0.0022 mg/L) was detected in the sample collected from MW-6S.

Free-phase hydrocarbon maps displaying the hydrocarbon thicknesses for the two 2007 monitoring events are presented in Figure 4a (June 13, 2007) and Figure 4b (December 11, 2007). The relationship between benzene concentrations and static water level for MW-3S, MW-3D, MW-6S, MW-6D, and MW-9S are depicted in Figures 5a through 5e, respectively.

The laboratory reports and Chain-of-Custody (C-O-C) documentation are included in Appendix C.

6.1.2 Comparison to Prior Data

Of the five off-site wells located on the eastern perimeter of the site (MW-3S, MW-3D, MW-6S, MW-6D, and MW-9S), only MW-6S continue to exhibit hydrocarbon concentration above detection levels. However, the hydrocarbon concentration was trace level and was below the MCL for benzene.

6.2 Polynuclear Aromatic Hydrocarbons (PAHs)

Historical analytical results for PAHs for five offsite monitoring wells (MW-3S, MW-3D, MW-6S, MW-6D, and MW-9S) and four on-site monitoring wells (MW-4, MW-7, MW14, and MW-15) being sampled and tested indicate that PAH has not been detected since 1999. Based on the results of the PAH analyses in the June 2007 monitoring event, it appears that groundwater under the site has not been adversely impacted by PAHs. Nor has the surface water in close proximity to the site been impacted by PAHs. As a result, no PAH concentration map was constructed. Historical sample analytical results for PAHs are listed in Table 4. PAH concentrations for monitoring events prior to June 2003 are included in previously submitted reports.

6.3 Priority Pollutant Metals

Historical (2003 through 2007) groundwater and surface water (Rio Grande) sample analytical results for Priority Pollutant metals (antimony, arsenic, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc) are presented in Table 5. Seven metals (aluminum, barium, boron, cobalt, iron, manganese, and molybdenum) were added to the list in 2001, since they are regulated metals under NMOCD. The NMWQCC standards are also listed in the tables for comparison.

Constituents with concentrations above the NMWQCC standards in 2007 are highlighted in boldface type. Analytical results for years prior to 2003 are included in previously submitted reports. The results of the analyses for metals for the 2007 semi-annual monitoring event indicate that boron concentrations exceeded NMWQCC standards in the six (6) groundwater samples (including the duplicate). Boron was also detected in the down-stream river sample but was below NMWQCC levels. Boron was not detected in the up-stream river sample. Iron was detected in concentrations exceeding NMWQCC standards in seven samples (including the duplicate) collected from four wells (MW-9S, MW-6S, MW-3D, and MW-3S) and the river. Iron was detected in the sample collected from MW-6D but was below the NMWQCC level. Manganese levels exceeded NMWQCC standards in the eight samples (including the duplicate) collected from the monitoring wells and the river. Barium and molybdenum were detected in trace concentrations in the samples collected from the

five off-site monitoring wells and the river, but were below the NMWQCC levels. Antimony, arsenic, copper, cadmium, chromium, cobalt, lead, mercury, nickel, selenium, silver, thallium and zinc were not detected in the groundwater or the river samples. Aluminum was detected in the samples collected from MW-6S (including the duplicate) but was below the NMWQCC level. The two river samples exhibited aluminum concentrations above NMWQCC standards (see Table 5).

7.0 REMEDIATION SYSTEM PERFORMANCE

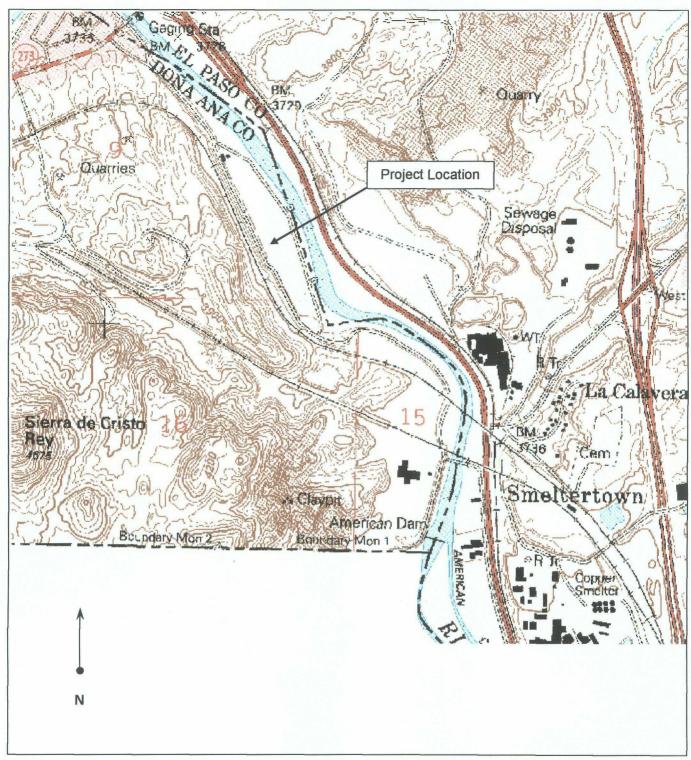
A product recovery system was installed at recovery well MW-10 as recommended in the approved Stage 2 Abatement Plan. Installation of the Xitech product recovery system was completed on December 23, 1998. The product recovery system consists of the following components:

- 1. Xitech Model ADJ 1000 Smart Skimmer with polyethylene tubing.
- 2. Xitech Model 2500 ES Electronic Timer powered by a 12-volt battery with solar panel.
- 3. 80-gallon fiberglass-reinforced plastic (FRP) tank for product recovery containment with automatic shutoff sensor.
- 4. One K-size (220 cubic feet) bottle of nitrogen gas with regulator to supply.
- 5. The components listed above are mounted on a metal stand.
- 6. The components listed above are contained within a 300-gallon capacity corrugated galvanized steel stock tank for secondary containment.
- 7. The Xitech recovery system and monitoring well MW-10 are enclosed within a 10-foot long by 10-foot wide by 8-foot tall chainlink fence. The top foot of the fence has 3 strands of barbed wire. Access is provided through a 5-foot wide locked gate.
- 8. The components listed above are situated on a 6-inch layer of gravel.

A schematic drawing and specifications of the installed Xitech product recovery system is provided in Appendix D. The system does not contain any below-grade lines; therefore no pressurized integrity testing is required. Site visits are now conducted at monthly intervals to monitor system performance, adjust pump depth or cycle if deemed appropriate, replace the bottled nitrogen supply when necessary, perform maintenance to system components, and to check for any vandalism.

8.0 CONCLUSIONS

Since 2007 is an odd-numbered year, sample collection and testing was conducted only the five (5) off-site wells (MW-3S, MW-3D, MW-6S, MW-6D, and MW-9S) during the June and December monitoring events. Conclusions relevant to groundwater conditions and the remediation performance at the former Brickland Refinery are presented below.


- Based on the laboratory report for the June 2007 monitoring event, benzene and toluene were not detected in seven of the eight (8) samples collected from the monitor wells and the river. Trace concentrations of ethylbenzene and xylenes were detected in samples collected from MW-6S (including the duplicate). Benzene was also detected in the field blank. See Table 3.
- Based on the laboratory report for the December 2007 monitoring event, ethylbenzene
 was detected in the sample collected from MW-6S at a concentration of 0.0022 mg/L,
 which is below the MCL.
- Benzene, toluene, ethylbenzene and total xylenes (BTEX) were not detected in the samples collected from the other four wells (MW-3S, MW-3D, MW-6D, and MW-9S), the duplicate sample or the river during the December 2007 monitoring event.
- Polynuclear aromatic hydrocarbons (PAH) levels were not detected in the eight samples (including the duplicate) collected from the five off-site monitoring wells and the river during the June 2007 monitoring event (see Table 4).
- The results of the analyses for metals for the 2007 semi-annual monitoring event indicate that boron concentrations exceeded NMWQCC standards in the six (6) groundwater samples (including the duplicate). Boron was also detected in the downstream river samples but was below the NMWQCC standards. Boron was not detected in the up-stream river sample. Iron was detected in concentrations exceeding NMWQCC standards in seven samples (including the duplicate) collected from four wells (MW-9S, MW-6S, MW-3D, and MW-3S) and the river. Iron was detected in the sample collected from MW-6D but was below the NMWQCC level. Manganese levels exceeded NMWQCC standards in the eight samples (including the duplicate) collected from the monitoring wells and the river. Barium and molybdenum were detected in trace concentrations in the samples collected from the five off-site monitoring wells and the river, but were below the NMWQCC levels. Antimony, arsenic, copper, cadmium, chromium, cobalt, lead, mercury, nickel, selenium, silver, thallium and zinc were not detected in the groundwater or the river samples. Aluminum was detected in the samples collected from MW-6S (including the duplicate) but was below the NMWQCC level. The two river samples exhibited aluminum concentrations above NMWQCC standards (see Table 5).
- Free-phase product was not detected in the product recovery/monitoring well, MW-10, during the June 2007 monitoring event. Well points WP-25 and WP-26S had measurable thicknesses of 0.54 foot and 0.48 foot, respectively during the June 2007 monitoring event.

- The product recovery well, MW-10, had a trace when checked during the December 2007 monitoring event. The free-phase product thicknesses in four well points (WP-25, WP-26S, WP-27S, and WP-27D) were 0.52 foot, 0.35 foot, trace, and 0.03 foot, respectively during the December 2007 monitoring event (see Table 6).
- Since the installation of the Xitech product recovery system in December 1998, an
 approximate total of 235 gallons of free-phase product has been extracted from
 recovery well MW-10. Although a sheen of oil was observed on the water surface in
 MW-10 for most of 2007, no free-phase product was extracted from the well during the
 2007 period.

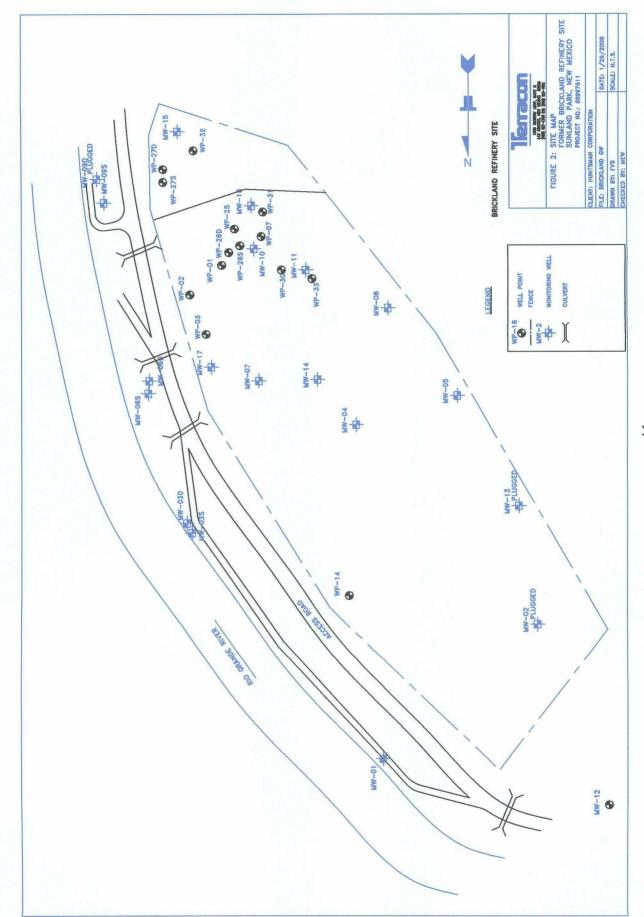
9.0 RECOMMENDATIONS

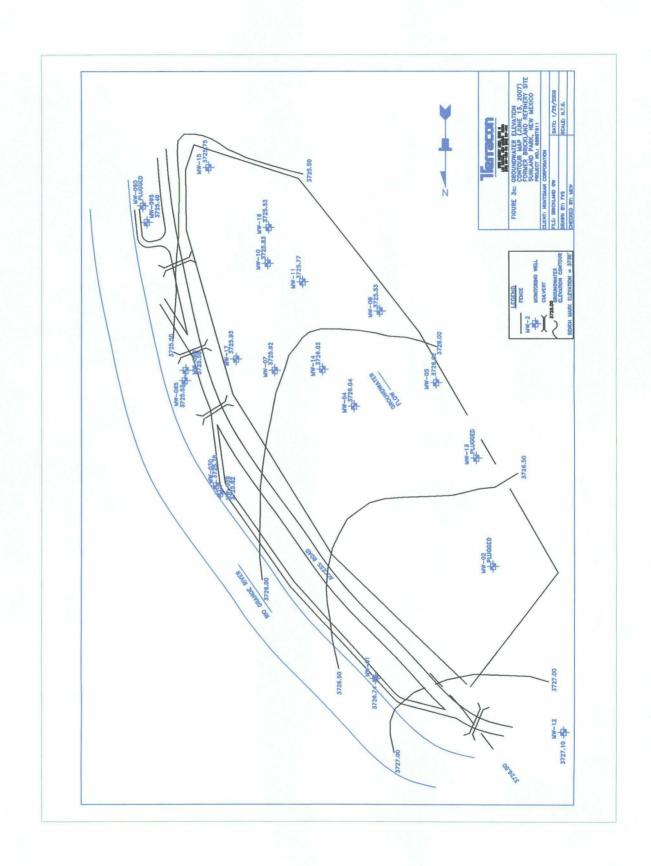
The following recommendations are proposed for the remediation system and monitoring operations at the Brickland Refinery.

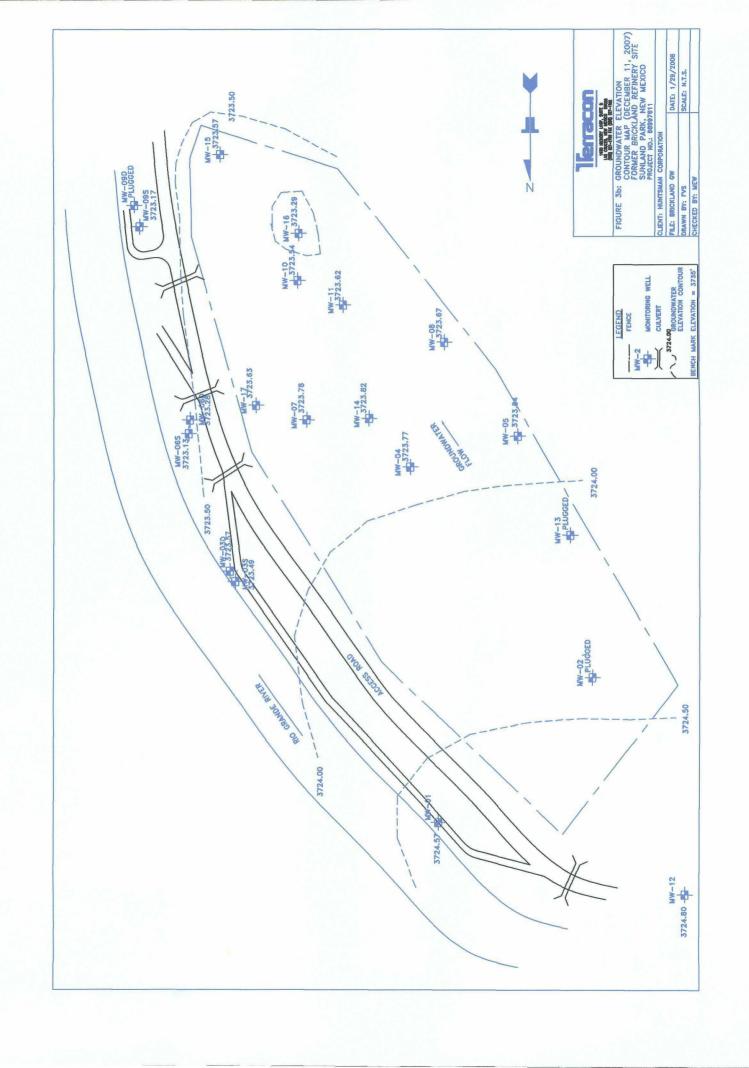
- Continue free product recovery operations.
- Continue with the existing sampling and monitoring program on a semi-annual basis. The next monitoring event is scheduled for June 2008. Since free-phase product was detected in MW-10, continue to monitor MW-10.
- Since the groundwater does not appear to be adversely impacted by PAH, as evidenced throughout eight years of monitoring, analysis of PAH may be an unnecessary expense.
- Well points that are dry or have never contained measurable or trace amounts of freephase product could be removed from the monitoring plan. These well points include the following: WP-3, WP-30, and WP-31. The other well points should be maintained for semi-annual monitoring.

SOURCE: USGS TOPOGRAPHIC MAP, 7.5-MINUTE SERIES, "Smeltertown, New Mexico, 1973".

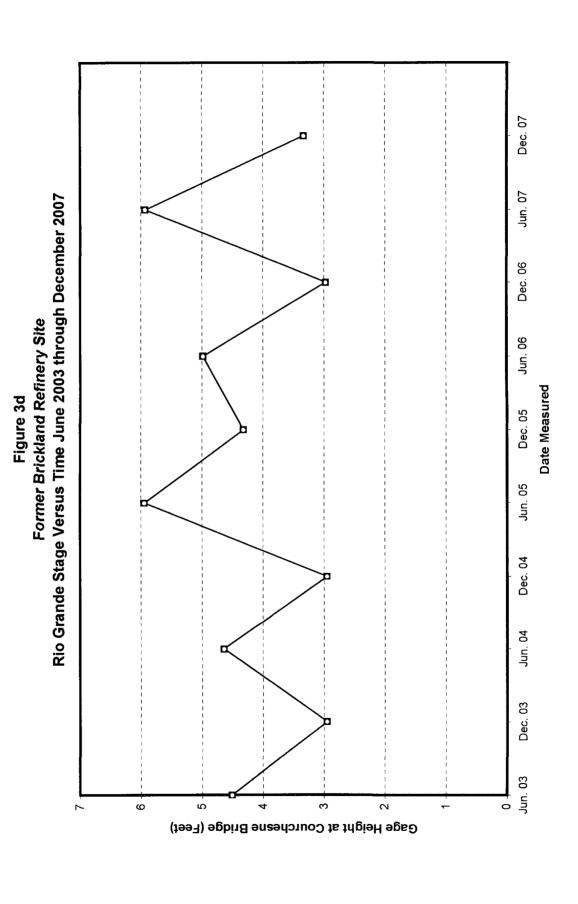
Terracon

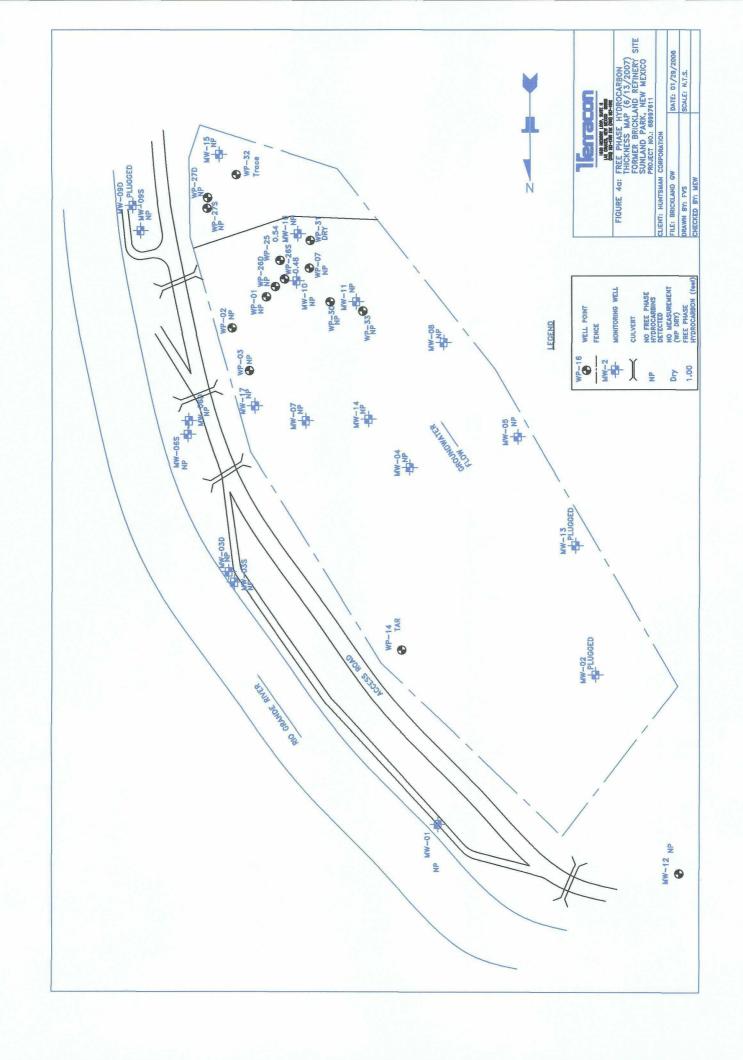

1630 Hickory Loop, Suite H Las Cruces, New Mexico 88005 505.527.1700 Fax: 505.527.1092


SITE LOCATION MAP


Brickland Refinery Site Sunland Park, New Mexico Project No. 68997611 Date: January 16, 2008

Scale: 1 in. = 1000 ft. (approx.)


FIGURE 1



-- MW-8 Dec. 07 MW-16 -- MW-17 - MW-7 Jun. 07 Groundwater Elevations Versus Time (All wells) June 2003 through December 2007 G9-MM Dec. 06 S9-MM---MW-15 Jun. 06 Figure 3c. Former Brickland Refinery Site Dec. 05 MW-14 --- MW-5 Sampling Period Jun. 05 -- MW-13 --- MW-3S --- MW-3D --- MW-4 Dec. 04 * MW-12 Jun. 04 MW-111 Dec. 03 MW-10 Jun. 03 S6-MM → MW-1 3728 3727 3726 3722 3720 3725 3724 3723 3721 Groundwater Elevation (feet above mean sea level

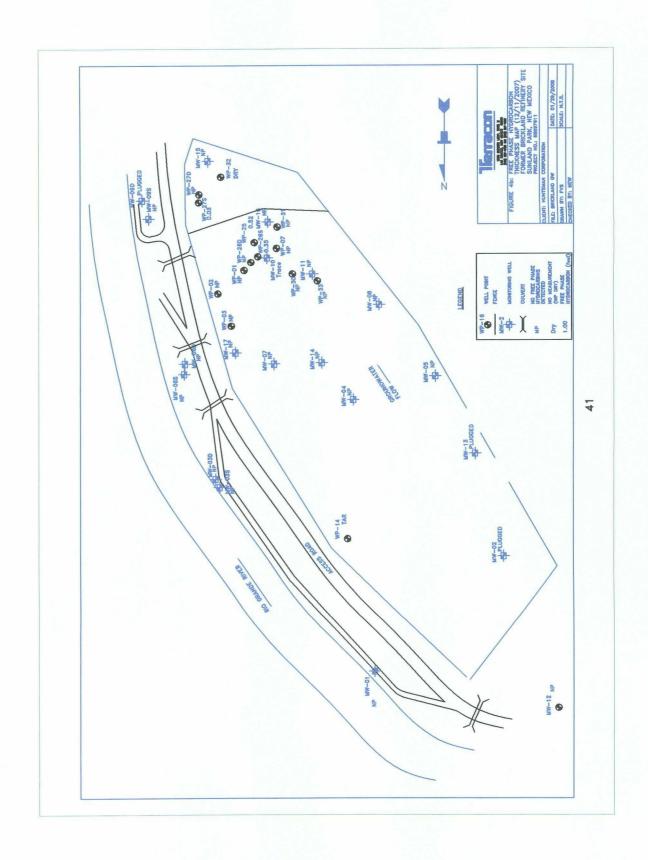
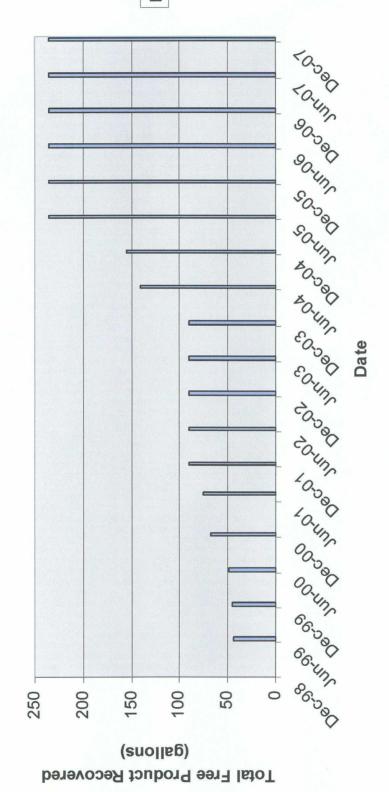



Figure 5 – Free Product Recovery

Table 1 Brickland Refinery Well Sampling and Purging Methods

Well No.	2007 Sample Date	Purge Method	Sampling Method	Purge Volume	Laboratory Analytes
MW-3S	6/13/07	Micropurge	Micropurge Bladder Pump	Approximately 2 gallons	BTEX, Semi Vols, and Metals
	12/17/07	Micropurge	Micropurge Bladder Pump	Approximately 2 gallons	BTEX only
MW-3D	6/13/07	Micropurge	Micropurge Bladder Pump	Approximately 2 gallons	BTEX, Semi Vols, and Metals
	12/17/07	Micropurge	Micropurge Bladder Pump	Approximately 2 gallons	BTEX only
MW-4	6/13/07	NS	NS	NS	NS
10100-4	12/17/07	NS	NS	NS	NS
MW-6S	6/13/07	Micropurge	Micropurge Bladder Pump	Approximately 2 gallons	BTEX, Semi Vols, and Metals
	12/17/07	Micropurge	Micropurge Bladder Pump	Approximately 2 gallons	BTEX only
MW-6D	6/13/07	Micropurge	Micropurge Bladder Pump	Approximately 2 gallons	BTEX, Semi Vols, and Metals
	12/17/07	Micropurge	Micropurge Bladder Pump	Approximately 2 gallons	BTEX only
MW-7	6/13/07	NS	NS	NS	NS
IVIVV-7	12/17/07	NS	NS	NS ·	NS
MW-9S	6/13/07	Micropurge	Micropurge Bladder Pump	Approximately 2 gallons	BTEX, Semi Vols, and Metals
	12/17/07	Micropurge	Micropurge Bladder Pump	Approximately 2 gallons	BTEX only
MW-14	6/13/07	NS	NS	NS	NS
VIVV-14	12/17/07	NS	NS	NS	NS
MW-15	6/13/07	NS	NS	NS	NS
VIVV-13	12/17/07	NS	NS	NS	NS
River Upstream	6/13/07	NA	Teflon Dipper	NA	BTEX, Semi Vols, and Metals
	12/17/07	NA	Teflon Dipper	NA	BTEX only
River Downstream	6/13/07	NA	Teflon Dipper	NA	BTEX, Semi- Vols, and Metals
	12/17/07	NA	Teflon Dipper	NA	BTEX only

Well No. 2007 Sample Purge Method Sampling	Method Purge Volume	Laboratory Analytes
Total volume purged during semi-annual and annual mon	itoring events:	24 gallons

NS Not sampled during an odd-numbered year. NA Not applicable

Table 2
Brickland Refinery
Monitoring Well Groundwater Elevations (feet above mean sea level)

Well ID	6/18/03	12/16/03	6/16/04	12/16/04	6/15/05	12/14/05	6/13/06	12/14/06	6/13/07	12/11/07
MW-1	3725.55	3723.69	3725.56	3723.60	3726.5	3724.01	3725.89	3724.29	3726.74	3724.57
MW-2	Plugged 6/99									
MW-3S	3724.65	3722.69	3724.61	3722.71	3725.56	3723.10	3725.02	3723.34	3725.82	3723.49
MW-3D	3724.57	3722.61	3724.62	3722.64	3725.49	3723.04	3724.96	3723 29	3725.78	3723.57
MW-4	3724.87	3722.88	3724.76	3722.96	3725.75	3723.37	3725.21	3723.62	3726.06	3723.77
MW-5	3724.91	3722.85	3724.83	3722.98	3725.68	3723.38	3725.15	3723.65	3726.02	3723.84
MW-6S	3724.40	3722.38	3724.40	3722.45	3725.21	3722.90	3724.76	3722.99	3725.53	3723.13
MW-6D	3724.36	3722.33	3724.38	3722.41	3725.22	3722.86	3724.74	3722.98	3725.58	3723.28
MW-7	3724.76	3722.69	3724.75	3722.82	3725.53	3723.24	3725.06	3723.45	3725.92	3723.78
MW-8	3724.67	3722.63	3724.62	3722.84	3725.28	3723.25	3724.91	3723.46	3725.53	3723.67
WW-9S	3724.04	3722.02	3723.97	3722.18	3724.85	3722.65	3724.39	3722.89	3725.40	3723.17
Q6-MW	Dry	Dry	Dry	Dry	Dry	Plugged 7/05	Plugged 7/05	Plugged 7/05	Plugged 7/05	Plugged 7/05
MW-10	3725.67	3722.31	3724.41	3722.56	3725.24	3723.11	3724.53	3723.29	3725.83	3723.54
MW-11	3724.51	3721.17	3724.42	3722.74	3725.24	3723.21	3724.65	3723.43	3725.77	3723.62
MW-12	3725.93	3724.09	3725.90	3723.86	3726.74	3724.40	3726.24	3724.66	3727.10	3724.80

Monitoring Well Groundwater Elevations (feet above mean sea level) Table 2 (Continued) Brickland Refinery

Well ID	6/18/03	12/16/03	6/16/04	12/16/04	6/15/05	12/14/05	6/13/06 12/14/06	12/14/06	6/13/07	12/11/07
MW-13	Plugged 6/99	Plugged 6/99	Plugged 6/99	Plugged 6/99	Plugged 6/9	Plugged 6/99	Plugged 6/99	Plugged 6/99	Plugged 6/99	Plugged 6/99
MW-14	3725.30	3722.79	3724.81	3722.88	3725.67	3723.30	3725.17	3723.55	3726.03	3723.82
MW-15	3724.35	3722.38	3724.28	3722.58	3725.16	3723.04	3724.69	3723.42	3725.75	3723.57
MW-16	3724.17	3722.14	3724.13	3722.34	3725.00	3722.78	3724.48	3723.05	3725.53	3723.29
MW-17	3724.67	3722.61	3724.67	3722.71	3725.53	3723.15	3725.06	3723.33	3725.93	3723.63

○	1
	l
2	ł
וַע	
5	
2	ĺ
2	
₹*	15
94	ത്
Į.	0
2	۳.
` :	ō
	=
٠, ١	"
ě.	S
٧,	۱⊆
**************************************] . 으
	ਲ
1000	5
÷ 1	Ö
٠ ا	2
	\sim
3.	ш
÷-1	5
1	15
	Z
	ا≑ا
: 1	. ≥
	<u>~</u>
- 5	ၓ
- 1	⋤
~ 1	123
,	in accordance
	X
٠,	၂ ပ္
[
٠ [ا:ٰٰ
	bandoned (in acc
1	lĕ
	ı⊆
., '	유
ļ	≥
.	g
-:1	님
1	ellat
- 1	ġ.
. !	≥
- 1	Ď.
	.⊆
٠. ا	ö
.	=
- 1	
. 1	Monitoring
: 1	99 = Monitorin
`~	11
ı	g
.	*
- 1	Ψ
: 1	굣
. 1	lugged 6/99
۱.	Ŏ.
.: [Plugg
	a.

cap installation in June 1999
Plugged 7/05 = Monitoring well abandoned (in accordance with NMED regulations) prior to soil cap installation in July 2005

Table 3
Brickland Refinery
BTEX Concentrations (μg/L) in Monitoring Wells and River Surface Water Samples
June 2003 through December 2007

				Now Control of the Co	MW-3S			から、 のでは、 のでは、 のでは、 のない		
Parameter	6/19/03	12/17/03	6/16/04	12/16/04	6/15/05	12/16/05	6/15/06	· 11		12/17/07
Benzene	QN	<u>N</u>	9	Q	Q	QN	QN	QN	CN	ON CIN
Tolinon	2	2))
a lianio i	2	2	2	2	2	2	2	S	S	S
Lthird Dominion	2	2	9))
Etilyi belizene	.	⊋	2	2	2	2	2	Q	QN	CZ
V. Joseph	2	2	١	-					1)
Aylelles	ב	2	2	2	2	2	2	2	2	QN
										2

					MW-3D					
Parameter	6/19/03	12/17/03	6/16/04	12/16/04	6/15/05	12/16/05	6/15/06	12/14/06	6/14/07	12/17/07
Benzene	QN	DN,ON	QN	Q	Q	QN	ΩN	QN	CN	CN CN
Toluene	2	ND,ND	QN	2	QN	CN	CZ	S		
Ethyl Benzene	S	CNCN	CZ					2	2	בא
יייייייייייייייייייייייייייייייייייייי	2	2,1,2	אַנ	2	ON	ם צ	2	<u>Q</u>	2	2
Xylenes	QN	ND, ND,	2	2	g	2	Q	2	QX	GN
)	<u>:</u>

					MW-4					
Parameter	6/28/02	12/6/02	6/19/03	12/17/03	6/16/04	12/16/04	6/14/06	12/14/06	6/14/07	12/17/07
Benzene	100, 87	SN	SN**	SN**	45	NS	S	SN	SN	SN
Tolilene	CZ	ON N	Q1.4**	014**	2	0.1				2
o lonio -	- [2	0	2	2	S S	S	SZ	SS	SS
Ethyl Benzene	ND, ND	SN	SN**	SN**	S	SN	S	SN.	OIZ	ON
\ .\.\.)	2	2	2	02
Aylenes	ND, ND	S	SN**	SN**	2	SN	2	SN	SN	SN

					MW-6S					
Parameter	6/19/03	12/17/03	6/16/04	12/16/04	6/15/05	12/16/05	6/15/06	12/14/06	6/14/07	12/17/07
Benzene	ON	QN	ON,ON	08.0 ON, ON	0.80	QN	ND,ND	11, 6.1	UD, UD	ON ON
Toluene	Ω	2	ON,ON	DN, DN	QN	QN.	UN'UN	ND.ND		CNCN
Ethyl Benzene	QN Q	Q	UD,UD	ON'ON	QN	ND	ON, ON	7.3,	8.0.9.2	2.2.ND
\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	1							QN		
vyienes	8.7	Q N	ON'ON	ON,ON	0.86	2	NDND	1.6,ND	1.5,ND	CN.CN
									•	1

Brickland Refinery

BTEX Concentrations (µg/L) in Monitoring Wells and River Surface Water Samples
June 2003 through December 2007 Table 3 (Continued)

					MW-6D					
Parameter	6/19/03	12/17/03	6/16/04	12/16/04	6/15/05	12/16/05	6/15/06	12/14/06	6/14/07	12/17/07
Benzene	ON N	Q.	QN	QN	QN	QN	QN	QN	ΩN	QN
Toluene	QN	ON.	ON.	ΩN	Q N	QN	Q	Q	Q.	QN
Ethyl Benzene	Q.	QN	QN	Q	Q	Q	QN	QN	QN	QN
Xylenes	Ω	ΩN	QN	QN	ΩN	QN	Q N	QN	Q	S

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2		MW-7					
6/2	6/28/02	12/6/02	6/19/03	12/17/03	6/16/04	12/16/04	6/14/06	12/14/06	6/14/07	12/17/07
	NO ON	SN	SN**	SN**	ΩN	SN	2	SN	SN	SN
	S S	SN	SN**	SN**	S	SZ	2	SN	SN	SZ
	S	NS	SN**	SN**	Q	SN	2	SN	SN	SN
	S	SN	SN**	SN*	S	SN	2	SN	SN	SN

ž.

				33 To 10 Miles	MW-9S			The state of the s		
Parameter	6/19/03	12/17/03	6/16/04	12/16/04	6/15/05	12/16/05	6/15/06	12/14/06	6/14/07	12/17/07
Benzene	ON,ON	ΩN	ΩN	QN	Q.	QN	QN	QN	QN	QN
Toluene	DN,ON	Q	Q.	QV	09.0	Q.	QN	Q	QN	Q
Ethyl Benzene	ON,ON	Q	Q	Ω	2	Q	2	Q	Q	Q
Xylenes	ON'ON	S	Q	Q	1.4	S	2	Q.	ΩN	Q

				をおりない。	MW-14	(1) 大学的文学 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)				
Parameter	6/28/02	12/6/02	6/19/03	12/17/03	6/16/04	12/	6/14/06	12/14/06	6/14/07	12/17/07
Benzene	11	SN	SN**	SN**	230	SN	QN	SN	SN	SN
Toluene	Q	SN	SN**	SN**	S	SN	QV	SN	SN	SN
Ethyl Benzene	ΩN	SZ	SN**	SN**	S	SN	QN	SN	SN	SN
Xylenes	ND	SN	SN**	SN**	S	SN	2	SN	SN	SN

BTEX Concentrations (µg/L) in Monitoring Wells and River Surface Water Samples June 2003 through December 2007 Table 3 (Continued) Brickland Refinery

				2008 BB	MW-15	The state of the s				
Parameter	6/28/02	12/6/02	6/19/03	12/17/03	6/16/04	12/16/04	6/14/06	12/14/06	6/14/07	12/17/07
Benzene	S	SN ·	SN**	SN**	Q	SN	ON	SN	NS	SN
Toluene	ΩN	SN	SN**	SN**	Ω	SN	QN	SN	SN	NS
Ethyl Benzene	ND	SN	SN**	SN**	Q.	NS	QN	SN	SN	SN
Xylenes	QN	SN	SN _{**}	SN**	QN	SN	ND	SN	SN	SN

		Sample of the Contract			iver Upstream	多年7年最高的 第二章		があるないのでは、		
Parameter	6/19/03	12/17/03	6/17/04	12/16/04	6/15/05	12/16/05	6/14/06	12/14/06	6/14/07	12/17/07
Benzene	Ω	Q	Q N	QN	QN	QN	QN	QN	QN	ΩN
Toluene	QN	Q	Q.	QN	ΩN	ON	ΩN	Ω	Q	Q
Ethyl Benzene	QN	2	Q	Q	Q	ΩN	QN	QN	Q	QN
Xylenes	Q	Q	QN	Q	ΩN	ΩN	ΩN	Ω	Q	Q.

				Rive	r-Downstream		A STATE OF THE STA	The second of th		
Parameter	6/19/03	12/17/03	6/17/04	12/16/04	6/15/05	12/16/05	6/14/06	12/14/06	6/14/07	12/17/07
Benzene	QN	QN	ΩN	ΩN	QN	ΩN	Q	Q	S	QN
Toluene	S	Q	Q	Ω	QN	Q	2	2	2	QN
Ethyl Benzene	2	S	QV	Ω	Q	ΩN	Q	Q.	QN	Q
Xylenes	QN.	QN	S	Ω	Ω	Q	Q	S.	S	ΩN

Parameter	Detection Limits	esisajon.	ites:
Benzene	1.0 µg/L	ND = Not detected	* Detection limits for the same analyte may
Toluene	1.0 µg/L	NS = Not sampled	vary due to sample dilution
Ethyl Benzene	1.0 µg/L	µg/L = Micrograms per liter	
Xylenes	1.0 µg/L	**NS = Not sampled during odd-numbered	
		years	

Table 4 **Brickland Refinery** Total PAH Concentrations for Samples from the River and Monitoring Wells

Well ID	6/19/03	6/16/04	6/15/05	6/14/06	6/14/07
MW-3S	ND	ND	ND	ND	ND
MW-3D	ND	ND	ND	ND	ND
MW-4	*NS	ND	*NS	ND	NS
MW-6S	ND	ND,ND	ND	ND,ND	ND,ND
MW-6D	ND	ND	ND	ND	ND
MW-7	*NS	ND	*NS	ND	NS
MW-9S	ND,ND	ND	ND	ND	ND
MW-14	*NS	ND	*NS	ND	NS
MW-15	*NS	ND	*NS	ND	NS
River-Upstream	ND	ND	ND	ND	ND
River-Down	ND	ND	ND	ND	ND

Notes:

All Results in Micrograms per Liter (µg/L)

ND indicates constituent was not detected

NS indicates well was not sampled. *NS Not sampled in odd-numbered years

Table 5
Brickland Refinery
Metal Analytical Results for Monitoring Wells and the River Water Samples

			MW-3	S. A. A.		เพลาสต์ เรื่องสร้างเป็นแบบ	waji jilina 1
Parameter	NMWQCC Std.	Reference	6/19/03	6/16/04	6/15/05	6/15/06	6/14/07
Aluminum	5	C	ND	0.130	ND	ND	ND
Antimony	NA	NA	ND	ND	ND	ND	ND
Arsenic	0.1	A	ND	ND	ND	ND	ND
Barium	1.0	A	0.083	0.085	0.075	ND	0.046
Beryllium	NA	NA	ND	ND	ND	ND	ND
Boron	0.8	С	0.940	1.000	0.89	0.973	1.1
Cadmium	0.0100	A	ND	ND	ND	ND	ND
Chromium	0.050	Α	ND	ND	ND	ND	ND
Cobalt	0.050	Cobalt	ND	ND	ND	ND_	ND
Copper	1.0	В	ND	0.013	ND.	ND	ND
Iron	1.0	В	1.700	3.900	1.8	1.25	1.3
Lead ^r	0.05	Α	ND	ND	ND	ND	ND
Manganese	0.20	В	1.700	1.800	1.6	1.64	1.4
Mercury	0.0020	Α	ND	ND	ND	ND	NS
Molybdenum	1.0000	С	ND	ND	ND	ND ·	0.032
Nickel	0.2	C	ND	ND	ND	ND	ND
Selenium	0.05	A	ND	ND	ND	ND	ND
Silver	0.05	Α	ND	ND	ND	ND	ND
Thallium	NA	NA	ND	ND	ND	ND	ND
Zinc	10.0	В	ND	ND	ND	ND	ND

Frequency Control	Carthan Office Top.	. अहं अर्थेक्ट स्टब्र	MW-3	Description		医结果结构大于	্ৰিক্টাৰ্ক্ত (প্ৰজন _ব ু
Parameter	NMWQCC Std.	Reference	6/19/03	6/16/04	6/15/05	6/14/06	6/14/07
Aluminum	5	С	ND	0.070	ND	ND	ND
Antimony	NA	NA	ND	ND	ND	ND	ND
Arsenic	0.1	Α	ND	ND	ND	ND	ND
Barium	1.0	Α	0.063	0.071	0.062	ND	0.062
Beryllium	NA	NA	ND	ND	ND	ND	ND
Boron	0.8	С	1.500	1.800	1.2	1.43	1.6
Cadmium	0.0100	Α	ND	ND	ND	ND	ND
Chromium	0.050	Α	ND	ND	ND	ND	ND
Cobalt	0.050	Cobalt	ND	ND	ND	ND	ND
Copper	1.0	В	ND	ND	ND	ND	ND
Iron	1.0	В	2.100	2.300	2.3	1.92	2.2
Lead	0.05	Α	ND	ND	ND	ND	ND
Manganese	0.20	В	3.300	3.700	3.3	3.05	3.4
Mercury	0.0020	Α	ND	ND	ND	ND	NS
Molybdenum	1.0000	С	ND	ND	ND	ND	0.011
Nickel	0.2	C	ND	ND	ND	ND	ND
Selenium	0.05	Α	ND	ND	ND	ND	ND
Silver	0.05	Α	ND	ND	ND	ND	ND
Thallium	NA	NA	ND	ND	ND	ND	ND
Zinc	10.0	В	ND	ND	ND	ND	ND

Table 5 (Continued) Brickland Refinery Metal Analytical Results for Monitoring Wells and the River Water Samples

			MW-4		N. P. J. N. L. L. New	i de la compania. La compania	
Parameter	NMWQCC Std.	Reference	6/28/02	6/19/03	6/16/04	6/14/06	6/14/07
Aluminum	5	С	0.36.0.23	*NS	0.12	ND	NS
Antimony	NA	NA	ND,ND	*NS	ND	ND	NS
Arsenic	0.1	Α	0.007,ND	*NS	ND	ND	NS
Barium	1.0	А	0.083, 0.059	*NS	0.087	ND	NS
Beryllium	NA	NA	0.005, 0.005	*NS	ND	ND	NS
Boron	0.8	C	1.400,1.400	*NS	1.3	1.24	NS
Cadmium	0.0100	Α	ND,ND	*NS	ND	ND	NS
Chromium	0.050	Α	0.014,ND	*NS	ND	ND	NS
Cobalt	0.050	Cobalt	0.014,ND	*NS	ND	ND	NS
Copper	1.0	В	0.021,ND	*NS	ND	ND	NS
Iron	1.0	В	2.900,3.100	*NS	3.70	2.26	NS
Lead	0.05	Α	ND,ND	*NS	ND	ND	NS
Manganese	0.20	В	5.800,5.800	*NS	5.5	4.36	NS
Mercury	0.0020	Α	NS	*NS	ND	ND	NS
Molybdenum	1.0000	С	ND,ND	*NS	ND	ND	NS
Nickel	0.2	С	ND,ND	*NS	ND	ND	NS
Selenium	0.05	Α	0.032, 0.032	*NS	ND	ND	NS
Silver	0.05	A	0.036, ND	*NS	ND	ND	NS
Thallium	NA	NA	ND,ND	*NS	ND	ND	NS
Zinc	10.0	В	ND,ND	*NS	ND	ND	NS

2. The Section 19		ar i et et alajaja sad	MW-6	S	તીફ પ્લીક્સિમેડ	ti, signita i .	
Parameter	NMWQCC Std.	Reference	6/19/03	6/17/04	06/15/05	6/14/06	6/14/07
Aluminum	5	С	ND	0.14,0.11	0.098	ND,ND	0.13,0.13
Antimony	NA	NA	ND	ND,ND	ND	ND,ND	ND,ND
Arsenic	0.1	А	ND	ND,ND	ND	ND,ND	0.039, 0.030
Barium	1.0	Α	0.780	0.65,0.60	0.72	ND,ND	0.11,0.10
Beryllium	NA	NA	ND	ND,ND	ND	ND,ND	ND,ND
Boron	0.8	С	1.300	1.10,1.10	1.1	1.97,1.98	3.3,3.1
Cadmium	0.0100	A	ND	ND,ND	ND	ND,ND	ND,ND
Chromium	0.050	Α	ND	ND,ND	ND	ND,ND	ND,ND
Cobalt	0.050	Cobalt	ND	ND,ND	ND	ND,ND	ND,ND
Copper	1.0	В	ND	0.057,0.014	0.016	ND,ND	0.097, 0.088
Iron	1.0	В	2.100	7.70,3.80	4.7	8.42,8.64	12.0,12.0
Lead	0.05	Α	ND	ND,ND	ND	ND,ND	ND,ND
Manganese	0.20	В	3.400	1.40,1.50	1.6	0.999,1.03	0.92,0.88
Mercury	0.0020	Α	ND	ND,ND	ND	ND,ND	NS,NS
Molybdenum	1.0000	С	ND	ND,ND	ND	ND,ND	0.041, 0.038
Nickel	0.2	С	ND	ND,ND	ND	ND,ND	ND,ND
Selenium	0.05	Α	ND	ND,ND	ND	ND,ND	ND,ND
Silver	0.05	Α	ND	ND,ND	ND	ND,ND	ND,ND
Thallium	NA	NA	ND	ND,ND	ND	ND,ND	ND,ND
Zinc	10.0	В	ND	ND,ND	ND	ND,ND	ND,ND

Table 5 (Continued)
Brickland Refinery
Metal Analytical Results for Monitoring Wells and the River Water Samples

	-1		MW-60)		. s (4/4)	
Parameter	NMWQCC Std.	Reference	6/19/03	6/17/04	6/15/05	6/15/06	6/14/07
Aluminum	5	С	ND	ND	ND	ND	ND
Antimony	NA	NA	ND	ND	ND	ND	ND
Arsenic	0.1	Α	ND	ND	ND	ND	ND
Barium	1.0	Α	0.053	0.052	0.055	ND	0.049
Beryllium	NA	NA	ND	ND	ND	ND	ND
Boron	0.8	С	1.400	1.500	1.1	1.28	1.4
Cadmium	0.0100	Α	ND	ND	ND	ND	ND ·
Chromium	0.050	Α	ND	ND	ND	ND	ND
Cobalt	0.050	Cobalt	ND	ND	ND	ND	ND
Copper	1.0	В	ND	ND	ND	ND	ND
Iron	1.0	В	0.900	0.910	1.2	ND	0.89
Lead	0.05	Α	ND	ND	ND	ND	ND
Manganese	0.20	В	5.300	5.500	6.1	4.98	6.1
Mercury	0.0020	Α	ND	ND	ND	ND	NS
Molybdenum	1.0000	С	ND	ND	ND	ND	0.0073
Nickel	0.2	С	ND	ND	ND	ND	ND
Selenium	0.05	Α	ND	ND	ND	ND	ND
Silver	0.05	Α	ND	ND	ND	ND	ND
Thallium	NA	NA	ND	ND	ND	ND	ND
Zinc	10.0	В	ND	ND	ND	ND	ND

		a da taglicado a	MW-	<mark>7</mark> i g h a an Luchaid a'	医髓体的 医多数	off of a milk	d John Brad Brain
Parameter	NMWQCC Std.	Reference	6/28/02	6/19/03	6/16/04	6/14/06	6/14/07
Aluminum	5	С	0.200	*NS	0.66	ND	NS
Antimony	NA	NA	ND	*NS	ND	ND	NS
Arsenic	0.1	Α	0.047	*NS	ND	ND	NS
Barium	1.0	Α	0.210	*NS	0.24	ND	NS
Beryllium	NA	NA	ND	*NS	ND	0.003	NS
Boron	0.8	С	0.750	*NS	0.920	ND	NS
Cadmium	0.0100	Α .	ND	*NS	ND	ND	NS
Chromium	0.050	Α	ND	*NS	ND	ND	NS
Cobalt	0.050	Cobalt	ND	*NS	ND	ND	NS
Copper	1.0	В	ND	*NS	0.31	ND	NS
Iron	1.0	В	2.700	*NS	4.90	2.93	NS
Lead	0.05	Α	ND	*NS	0.190	ND	NS
Manganese	0.20	В	1.400	*NS	2.00	0.910	NS
Mercury	0.0020	Α	NS	*NS	0.00045	ND	NS
Molybdenum	1.0000	С	0.011	*NS	0.017	ND	. NS
Nickel	0.2	С	ND	*NS	ND	ND	NS
Selenium	0.05	Α	0.090	*NS	ND	ND	NS
Silver	0.05	Α	ND	*NS	ND	ND	NS
Thallium	NA	NA	ND	*NS	ND	ND	NS
Zinc	10.0	В	ND	*NS	0.110	ND	NS

Table 5 (Continued) Brickland Refinery Metal Analytical Results for Monitoring Wells and the River Water Samples

No and Sign of the			/ MW-9	S	·		
Parameter	NMWQCC Std.	Reference	6/19/03	6/16/04	6/15/05	6/15/06	6/14/07
Aluminum	5	С	ND	0.061	0.43	ND	ND
Antimony	NA	NA	ND	ND	ND	ND	ND
Arsenic	0.1	Α	ND	ND	ND	ND	ND
Barium	1.0	Α	0.130	0.13	0.13	ND	0.059
Beryllium	NA	NA	ND	ND	ND	ND	ND
Boron	0.8	C .	1.100	1.100	1.0	0.954	1.50
Cadmium	0.0100	Α	ND	ND	ND	ND	ND
Chromium	0.050	Α	ND	ND	ND	ND	ND
Cobalt	0.050	Cobalt	ND	ND	ND	ND	ND
Copper	1.0	В	ND	ND	ND	ND	ND
Iron	1.0	В	6.400	8.00	9.8	6.13	4.20
Lead	0.05	Α	ND	ND	ND	ND	ND
Manganese	0.20	В	2.400	3.00	2.7	2.38	1.90
Mercury	0.0020	Α	ND	ND	ND	ND	NS
Molybdenum	1.0000	С	ND	ND	ND	ND	0.010
Nickel	0.2	С	ND	ND	ND	ND	ND
Selenium	0.05	Α	ND	ND	ND	ND	ND
Silver	0.05	A	ND	ND	ND	ND	ND
Thallium	NA	NA	ND	ND	ND	ND	ND
Zinc	10.0	В	ND	ND	ND	ND	ND

	ing majarang s	Tradition and	√ MW-1	40.000.000	"你说我没有我		
Parameter	NMWQCC Std.	Reference	6/28/02	6/19/03	6/16/04	6/14/06	6/14/07
Aluminum	5	С	0.200	*NS	0.056	ND	NS
Antimony	NA	NA	ND	*NS	ND	ND	NS
Arsenic	0.1	Α	0.010	*NS	ND	,ND	NS
Barium	1.0	Α	0.110	*NS	0.14	ND	NS
Beryllium	NA	NA	ND	*NS	ND	0.003	NS
Boron	0.8	C	1.700	*NS	1.80	1.39	NS
Cadmium	0.0100	Α	ND	*NS	ND	ND	NS
Chromium	0.050	Α	ND	*NS	ND	ND	NS
Cobalt	0.050	Cobalt	ND	*NS	ND	ND	NS
Copper	1.0	В	ND	*NS	ND	ND	NS
Iron	1.0	В	7.300	*NS	8.30	5.24	NS
Lead	0.05	Α	ND	*NS	ND	ND	NS
Manganese	0.20	В	7.200	*NS	7.10	5.32	NS
Mercury	0.0020	Α	NS	*NS	ND	ND	NS
Molybdenum	1.0000	С	ND	*NS	0.011	ND	NS
Nickel	0.2	C	ND	*NS	ND	ND	NS
Selenium	0.05	Α	0.041	*NS	ND	ND	NS
Silver	0.05	Α	ND	*NS	ND	ND	NS
Thallium	NA	NA	ND	*NS	0.17	ND	NS
Zinc	10.0	В	ND	*NS	ND	ND	NS

Table 5 (Continued) Brickland Refinery Metal Analytical Results for Monitoring Wells and the River Water Samples

S E M S			MW-1	5	1804		- 1 - 2 2 .
Parameter	NMWQCC Std.	Reference	6/28/02	6/19/03	6/16/04	6/14/06	6/14/07
Aluminum	5	С	0.24	*NS	ND	ND	NS
Antimony	NA	NA	ND	*NS	ND	ND.	NS
Arsenic	0.1	Α :	0.014	*NS	ND	ND	NS
Barium	1.0	Α	0.170	*NS	0.14	ND	NS_
Beryllium	NA	NA	0.006	*NS	ND	0.003	NS
Boron	0.8	С	1.500	*NS	1.500	1.40	NS
Cadmium	0.0100	Α	ND	*NS	ND	ND	NS
Chromium	0.050	Α :	ND	*NS	ND	ND	NS
Cobalt	0.050	Cobalt	ND	*NS	ND	ND	NS
Copper	1.0	В	ND	*NS	ND	ND	NS
Iron	1.0	В	2.000	*NS	2.300	3.67	NS
Lead	0.05	Α	ND	*NS	ND	ND	NS
Manganese	0.20	В	2.300	*NS	2.300	3.01	NS
Mercury	0.0020	A	NS	*NS	ND	ND	NS
Molybdenum	1.0000	C	ND	*NS	ND	ND	NS
Nickel	0.2	С	ND	*NS	ND	ND	NS
Selenium	0.05	Α	0.038	*NS	ND	ND	NS
Silver	0.05	Α	ND	*NS	ND	ND	NS
Thallium	NA	NA	ND	*NS	ND	ND	NS
Zinc	10.0	В	ND	*NS	ND	ND	NS

			River-Ups	tream	(Auganes)		N. J. L. N. Waller
Parameter	NMWQCC Std.	Reference	6/19/03	6/17/04	6/15/05	6/14/06	6/14/07
Aluminum	5	С	3.2	5.20	8.8	5.14	16.0
Antimony	NA	NA	ND	ND	ND	ND	ND
Arsenic	0.1	Α	ND	ND	ND	ND	ND
Barium	1.0	Α	0.110	0.14	0.14	ND	0.24
Beryllium	NA	NA	ND	ND	ND	0.003	ND
Boron	0.8	С	0.200	0.220	0.16	ND	ND
Cadmium	0.0100	Α	ND	ND	ND	ND	ND
Chromium	0.050	Α	ND	ND	ND	ND	ND
Cobalt	0.050	Cobalt	ND	ND	ND	ND	ND
Copper	1.0	В	ND	ND	0.0072	ND	ND
Iron	1.0	В	2.100	3.500	5.7	2.85	9.3
Lead	0.05	Α	ND	ND	ND	ND	0.0071
Manganese	0.20	В	0.180	0.240	0.20	ND	0.30
Mercury	0.0020	Α	ND	ND	ND	ND	NS
Molybdenum	1.0000	С	0.012	ND	ND	ND	0.0082
Nickel	0.2	С	ND	ND	ND	ND	ND
Selenium	0.05	- A	ND	ND	ND	ND	ND
Silver	0.05	Α	ND	ND	ND	ND	ND
Thallium	NA	NA	ND	ND	ND	ND	ND
Zinc	10.0	В	ND	ND	ND	ND	0.036

Table 5 (Continued) Brickland Refinery Metal Analytical Results for Monitoring Wells and the River Water Samples

	A Parker	z i to Mark Mill	River-Dow	nstream	artini.		34 () (18) e
Parameter	NMWQCC Std.	Reference	6/19/03	6/17/04	6/15/05	6/14/06	6/14/07
Aluminum	5	С	3.000	5.50	8.7	5.65	16.0
Antimony	NA	NA	ND	ND	ND	ND	ND
Arsenic	0.1	Α	ND	ND	ND	ND	ND
Barium	1.0	Α	0.110	0.14	0.14	ND	0.24
Beryllium	NA	NA	ND	ND	ND	0.003	ND
Boron	0.8	С	0.210	0.220	0.16	ND	0.20
Cadmium	0.0100	Α	ND	ND	ND	ND	ND
Chromium	0.050	Α	ND	ND	ND .	ND	ND
Cobalt	0.050	Cobalt	ND	ND	ND	ND	ND
Copper	1.0	В	ND	ND	0.0070	ND	ND
Iron	1.0	В	2.100	3.600	5.8	3.06	9.0
Lead	0.05	Α	ND	ND	ND	ND	0.0057
Manganese [.]	0.20	В	0.200	0.240	0.20	ND	0.30
Mercury	0.0020	. A	ND	ND	ND	ND	NS
Molybdenum	1.0000	С	0.010	ND	ND	ND	0.0084
Nickel	0.2	С	ND	ND	ND	ND	ND
Selenium	0.05	Α	ND	ND	ND	ND	ND
Silver	0.05	Α	ND	ND	ND	ND	ND
Thallium	NA	NA	ND	ND	ND	ND	ND
Zinc	10.0	В	ND	ND	ND	ND	0.038

Notes:

mg/L = Milligrams per liter

Concentrations listed in **boldface** type during the current year indicate levels exceed New Mexico Water Quality Control Commission (NMWQCC) standards NS (*NS) indicates sample was not collected/analyzed for this constituent (not collected in odd-numbered years).

ND indicates concentration was below laboratory detection limits.

NA indicates no NMWQCC standard established.

A indicates standard is from NMWQCC Regulatory Standards Section 3103A - Human Health Standard

B indicates standard is from NMWQCC Regulatory Standards Section 3103B - Domestic Water Supply

C indicates standard is from NMWQCC Regulatory Standards Section 3103C - Irrigation Use

ND,ND or 0.13,0.13 are the laboratory results for the primary and duplicate (QA/QC) samples, respectively.

Table 6
Brickland Refinery
Free-Phase Hydrocarbon Thickness Measurements (Feet)

_	_	т-	1	_			_	_	т.	-	_	_		1	_	_			_	_	т		_	_			_	T	r-			Τ-	
Dec 07	0.00	∢	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	Trace	00.00	0.00	A	0.00	00.0	0.00	0.00	0.00	00.0	0.00	0.00	Tar	0.52	0.35	0.00	Trace	0.03	00.0	0.00	Dry	0.00
Jun 07	0.00	A	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	00.0	00.00	0.00	0.00	A	0.00	00.0	0.00	0.00	00.0	00.0	0.00	00.0	Tar	0.54	0.48	0.00	0.00	00:0	00.0	Dry	Trace	0.00
Dec 06	0.00	⋖	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	Trace	0.00	0.00	A	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Tar	0.52	0.47	0.00	0.02	0.04	0.00	0.00	Dry	0.00
90 unf	0.00	A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	Trace	0.00	0.00	A	00.0	00.0	0.00	0.00	0.00	00.0	0.00	0.00	Tar	0.70	0.58	0.00	Trace	0.00	0.00	0.00	Dry	00.00
Dec 05	0.00	A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Tar	Dry	0.52	0.00	0.00	0.04	0.00	0.00	Dry	00.0
Jun 05	0.00	Y	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.1	0.00	00.00	A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Tar	Dry	99.0	0.00	0.00	0.00	0.00	0.00	Dry	00.0
Dec. 04	0.00	А	00.00	00.0	0.00	00.00	00.00	0.00	0.00	0.00	0.00	0.05	0.00	00.00	- Y	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Tar	Dry	99.0	0.00	0.00	0.11	0.00	0.00	Dry	0.00
Jun. 04	0.00	۷	0.00	0.00	0.00	00.00	00.0	0.00	0.00	0.00	0.00	0.08	0.00	0.00	٧	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Tar	Dry	0.63	0.00	0.00	90.0	0.00	0.00	Dry	0.00
Dec. 03	0.00	4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.13	0.00	0.00	Α	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Tar	Dry	09.0	0.00	00:00	0.26	0.00	00.00	Dry	0.00
Jun. 03	0.00	۷	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Tar	Dry	0.35	0.00	0.01	0.12	0.00	0.00	Dry	0.00
Well ID	MW-1	MW-2	MW-3S	MW-3D	MW-4	MW-5	WW-6S	MW-6D	MW-7	MW-8	MW-9S	MW-10	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	WP-1	WP-2	WP-3	WP-7	WP-14	WP-25	WP-26S	WP-26D	WP-27S	WP-27D	WP-30	WP-31	WP-32	WP-33

Tar = Thickness measurement not obtainable because of presence of thick tarlike substance in well point.

Notes:

A = Plugged and Abandoned Dry = Monitoring point was dry

Tax I.D. 62-0814289

Est. 1970

Ms. Mary E. Wells Terracon - Las Cruces 1630 Hickory Loop Ste H

Las Cruces, NM 88005

Report Summary

Tuesday June 26, 2007

Report Number: L298256 Samples Received: 06/16/07 Client Project: 68997611

Description: Huntsman Brickland

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

Terrie Fudge, Est Pepresenjative

Laboratory Certification Numbers

A2LA ~ 1461-01, AIHA - 09227, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375, DW21704, ND - R-140 NJ - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910

This report may not be reproduced, except in full, without written approval from Environmental Science Corp.

11 Samples Reported: 06/26/07 09:26 Revised: 06/26/07 13:33

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Ms. Mary E. Wells Terracon - Las Cruces 1630 Hickory Loop Ste H Las Cruces, NM 88005

June 26, 2007

Date Received : June 16, 2007
Description : Huntsman Brickland Refinery

'ESC Sample # : L298256-01

Site ID :

Sample ID

MW-9S 4.61 FT

Collected By : Fred Small Collection Date : 06/14/07 10:09

Project # : 68997611

Parameter	Result	Det. Limit	Units	Method	Date	Dil
Aluminum	BDL	0.10	mg/l	6010B	06/20/07	1
Antimony	BDL	0.010	mg/l	6010B	06/20/07	1
Arsenic	BDL	0.020	mq/l	6010B	06/20/07	1
Barium	0.059	0.0050	mq/l	6010B	06/20/07	1
Beryllium	BDL	0.0020	mg/l	6010B	06/20/07	1
Boron	1.5	0.20	mq/l	6010B	06/20/07	1
Cadmium	BDL	0.0050	mg/1	6010B	06/20/07	1
Calcium	220	0.50	mg/l	6010B	06/20/07	1
Chromium	BDL	0.010	mg/l	6010B	06/20/07	1
Cobalt	BDL	0.010	mg/l	6010B	06/20/07	1
Copper	BDL	0.020	mg/l	6010B	06/20/07	1
Iron	4.2	0.10	mg/l	6010B	06/20/07	ĩ
Lead	BDL	0.0050	mg/l	6010B	06/20/07	1
Magnesium	76.	0.10	mg/l	6010B	06/20/07	1
Manganese	1.9	0.010	mg/l	6010B	06/20/07	ī
Molybdenum	0.010	0.0050	mg/l	6010B	06/20/07	1
Nickel	BDL	0.020	mg/l	6010B	06/20/07	1
Potassium	15.	0.50	mg/l	6010B	06/20/07	1
	BDL	0.020	mg/l	6010B	06/20/07	1
Selenium	BDL	0.010	mg/l	6010B	06/20/07	i
Silver	2600	2.5	mg/l	6010B	06/20/07	5
Sodium		0.010	mg/l	6010B	06/20/07	1
Strontium	4.8				06/20/07	1
Thallium	BDL	0.020	mg/l	6010B		5
Tin	BDL	0.10	mg/l	6010B	06/20/07	
Titanium	BDL	0.010	mg/l	6010B	06/20/07	1
Vanadium	BDL	0.010	mg/l	6010B	06/20/07	1
Zinc	BDL	0.030	mg/l	6010B	06/20/07	1
Benzene	BDL	0.00050	mg/l	8021B	06/22/07	1
Toluene	BDL	0.0050	mg/l	8021B	06/22/07	1
Ethylbenzene	BDL	0.00050	.mg/l	8021B	06/22/07	1
Total Xylene	BDL	0.0015	mg/l	8021B	06/22/07	1
urrogate Recovery (77-118)			3			
a,a,a-Trifluorotoluene(PID)	80.1		% Rec.	8021B	06/22/07	1
olynuclear Aromatic Hydrocarbons						
Anthracene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Acenaphthene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Acenaphthylene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	i
Benzo (a) anthracene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Benzo(a) anthracene Benzo(a) pyrene	BDL	0.000050	mg/1	8270C-SIM	06/21/07	1
Benzo(a) pyrene Benzo(b) fluoranthene	BDL	0.000050	mg/1	8270C-SIM	06/21/07	1
	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Benzo(g,h,i)perylene		0.000050		8270C-SIM 8270C-SIM		1
Benzo(k)fluoranthene	BDL	0.000030	mg/l	97 /OC-21M	06/21/07	1

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

Page 1 of 21

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Ms. Mary E. Wells Terracon - Las Cruces 1630 Hickory Loop Ste H Las Cruces, NM 88005

June 26, 2007

ESC Sample # : L298256-01

Date Received : June 16, 2007 Description : Huntsman Brickland Refinery

Site ID :

Sample ID

MW-9S 4.61 FT

Collected By : Fred Small Collection Date : 06/14/07 10:09

Project # : 68997611

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Chrysene	BDL	0.000050	mq/l	8270C-SIM	06/21/07	1
Dibenz (a, h) anthracene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Fluoranthene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Fluorene	BDL	0.000050	mq/l	8270C-SIM	06/21/07	1
Indeno(1,2,3-cd)pyrene	BDL	0.000050	mq/l	8270C-SIM	06/21/07	1
Naphthalene	BDL	0.00025	mg/l	8270C-SIM	06/21/07	1
Phenanthrene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Pyrene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
1-Methylnaphthalene	BDL	0.00025	mg/l	8270C-SIM	06/21/07	1
2-Methylnaphthalene	BDL	0.00025	mg/1	8270C-SIM	06/21/07	1
2-Chloronaphthalene	BDL	0.00025	mq/1	8270C-SIM	06/21/07	1
Surrogate Recovery			_			
Nitrobenzene-d5	78.9		% Rec.	8270C~SIM	06/21/07	1
2-Fluorobiphenyl	77.6		% Rec.	8270C-SIM	06/21/07	1
p-Terphenyl-d14	98.1		% Rec.	8270C-SIM	06/21/07	1

BDL - Below Detection Limit

Det. Limit - Practical Quantitation Limit(PQL)

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Ms. Mary E. Wells Terracon - Las Cruces 1630 Hickory Loop Ste H Las Cruces, NM 88005

June 26, 2007

ESC Sample # : L298256-02

Project # : 68997611

Date Received : June 16, 2007
Description : Huntsman Brickland Refinery

Site ID :

Sample ID : MW-6D 5.04 FT

Collected By : Fred Small Collection Date : 06/14/07 11:12

Parameter	Result	Det. Limit	Units	Method	Date_	Dil.
Aluminum	BDL	0.10	mg/l	6010B	06/20/07	1
Antimony	BDL	0.010	mg/l	6010B	06/20/07	1
Arsenic	BDL	0.020	mg/l	6010B	06/20/07	1
Barium	0.049	0.0050	mg/l	6010B	06/20/07	1
Beryllium	\mathtt{BDL}	0.0020	mg/l	6010B	06/20/07	1
Boron	1.4	0.20	mg/l	6010B	06/20/07	1
Cadmium	BDL	0.0050	mg/l	6010B	06/20/07	1
Calcium	630	0.50	mg/l	6010B	06/20/07	1
Chromium	BDL	0.010	mq/1	6010B	06/20/07	1
Cobalt	BDL	0.010	mg/l	6010B	06/20/07	1
Copper	BDL	0.020	mg/l	6010B	06/20/07	1
Iron	0.89	0.10	mg/l	6010B	06/20/07	1
Lead	BDL	0.0050	mg/l	6010B	06/20/07	1
Magnesium	260	0.10	mq/l	6010B	06/20/07	1
Manganese	6.1	0.010	mq/1	6010B	06/20/07	1
Molybdenum	0.0073	0.0050	mg/l	6010B	06/20/07	1
Nickel	BDL	0.020	mg/l	6010B	06/20/07	1
Potassium	28.	0.50	mg/l	6010B	06/20/07	1
Selenium	BDL	0.020	mq/1	6010B	06/20/07	1
Silver	BDL	0.010	mg/l	6010B	06/20/07	1
Sodium	3700	2.5	mg/l	6010B	06/20/07	5 5
Strontium	9.4	0.050	mg/l	6010B	06/20/07	5
Thallium	BDL	0.020	mg/l	6010B	06/20/07	1
Tin	BDL	0.10	mq/l	6010B	06/20/07	5
Titanium	BDL	0.010	mg/l	6010B	06/20/07	1
Vanadium	BDL	0.010	mg/l	6010B	06/20/07	1
Zinc	BDL	0.030	mg/l	6010B	06/20/07	1
			- /3	00017	06/01/07	
Benzene	BDL	0.00050	mg/l	8021B	06/21/07	1
Toluene	BDL	0.0050	mg/l	8021B	06/21/07	1
Ethylbenzene	BDL	0.00050	mg/l	8021B	06/21/07	1
Total Xylene	BDL	0.0015	mg/l	8021B	06/21/07	1
Surrogate Recovery (77-118)					0.010.10.0	_
a,a,a-Trifluorotoluene(PID)	106.		% Rec.	8021B	06/21/07	1
Polynuclear Aromatic Hydrocarbons						
Anthracene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Acenaphthene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Acenaphthylene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Benzo(a)anthracene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Benzo(a) pyrene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Benzo(b) fluoranthene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Benzo(q,h,i)perylene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1.
Benzo(k)fluoranthene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1

BDL - Below Detection Limit Det. Limit ~ Practical Quantitation Limit(PQL)

Page 3 of 21

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Ms. Mary E. Wells Terracon - Las Cruces 1630 Hickory Loop Ste H Las Cruces, NM 88005 June 26, 2007

ESC Sample # : L298256-02

Date Received : Description :

June 16, 2007 Huntsman Brickland Refinery

Site ID :

Sample ID

: MW-6D 5.04 FT

Collected By : Fred Small Collection Date : 06/14/07 11:12

Project # : 68997611

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Chrysene	BDL	0.000050	mg/1	8270C-SIM	06/21/07	1
Dibenz (a, h) anthracene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Fluoranthene	BDL	0.000050	mq/l	8270C-SIM	06/21/07	1
Fluorene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Indeno(1,2,3-cd)pyrene	BDL	0.000050	mq/l	8270C-SIM	06/21/07	1
Naphthalene	BDL	0.00025	mg/l	8270C-SIM	06/21/07	1
Phenanthrene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Pyrene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
1-Methylnaphthalene	BDL	0.00025	mg/l	8270C-SIM	06/21/07	1
2-Methylnaphthalene	BDL	0.00025	mq/l	8270C-SIM	06/21/07	1
2-Chloronaphthalene	BDL	0.00025	mg/l	8270C-SIM	06/21/07	1
Surrogate Recovery			J.			
Nitrobenzene-d5	103.		% Rec.	8270C-SIM	06/21/07	1
2-Fluorobiphenyl	94.4		% Rec.	8270C-SIM	06/21/07	1
p-Terphenyl-d14	121.		% Rec.	8270C-SIM	06/21/07	1

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)
Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Ms. Mary E. Wells Terracon - Las Cruces 1630 Hickory Loop Ste H Las Cruces, NM 88005

June 26, 2007

ESC Sample # : L298256-03

Date Received : June 16, 2007
Description : Huntsman Brickland Refinery

Site ID :

Sample ID

MW-6S 5-12 FT

Project #: 68997611

Collected By : Fred Small Collection Date : 06/14/07 11:50

arameter	Result	Det. Limit	Units	Method	Date	Dil.
Aluminum	0.13	0.10	mg/l	6010B	06/20/07	1
Antimony	BDL	0.010	mq/l	6010B	06/20/07	1
Arsenic	0.039	0.020	mq/1	6010B	06/20/07	1
Barium	0.11	0.0050	mq/l	6010B	06/20/07	1
Beryllium	BDL	0.0020	mg/l	6010B	06/20/07	1
Boron	3.3	0.20	mg/l	6010B	06/20/07	1
Cadmium	BDL	0.0050	mq/l	6010B	06/20/07	1
Calcium	140	0.50	mg/l	6010B	06/20/07	1
Chromium	BDL	0.010	mq/l	6010B	06/20/07	1
Cobalt	BDL	0.010	mg/l	6010B	06/20/07	1
Copper	0.097	0.020	mq/1	6010B	06/20/07	1
Iron	12.	0.10	mg/l	6010B	06/20/07	1
Lead	BDL	0.0050	mg/l	6010B	06/20/07	1
Magnesium	130	0.10	mg/l	6010B	06/20/07	1
Manganese	0.92	0.010	mg/l	6010B	06/20/07	1
Molybdenum	0.041	0.0050	mg/l	6010B	06/20/07	1
Nickel	BDL	0.020	mg/l	6010B	06/20/07	ī
Potassium	24.	0.50	mg/l	6010B	06/20/07	ī
Selenium	BDL	0.020	mg/l	6010B	06/20/07	ī
Silver	BDL	0.010	mg/l	6010B	06/20/07	ī
Silver Sodium	3400	2.5	mg/1	6010B	06/20/07	5
Strontium	3.6	0.010	mg/1	6010B	06/20/07	· 1
Thallium	BDL	0.020	mg/l	6010B	06/20/07	ī
	BDL	0.10	mg/1	6010B	06/20/07	5
Tin	0.033	0.010	mg/1	6010B	06/20/07	1
Titanium		0.010	mg/1	6010B	06/20/07	1
Vanadium	0.038			6010B	06/20/07	1
Zinc	BDL	0.030	mg/l	0010B	06/20/07	1
Benzene	BDL	0.00050	mg/l	8021B	06/22/07	1
Toluene	BDL	0.0050	mg/l	8021B	06/22/07	1
Ethylbenzene	0.0080	0.00050	mg/l	8021B	06/22/07	1
Total Xylene	0.0015	0.0015	mg/l	8021B	06/22/07	1
rrogate Recovery (77-118)						
a,a,a-Trifluorotoluene(PID)	112.		% Rec.	8021B	06/22/07	1
lynuclear Aromatic Hydrocarbons						
Anthracene	BDL	0.000050	mq/l	8270C-SIM	06/21/07	1
Acenaphthene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Acenaphthylene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	ĩ
Benzo(a) anthracene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	ī
Benzo(a) pyrene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	ī
Benzo(a) pyrene Benzo(b) fluoranthene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	ī
Benzo(g,h,i)perylene	BDL	0.000050	mg/1	8270C-SIM	06/21/07	1
Benzo(k) fluoranthene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	ī

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

Page 5 of 21

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Ms. Mary E. Wells Terracon - Las Cruces 1630 Hickory Loop .Ste H Las Cruces, NM 88005

June 26, 2007

ESC Sample # : L298256-03

Date Received : Description :

June 16, 2007 Huntsman Brickland Refinery

MW-6S 5-12 FT

Collected By Collection Date :

Sample ID

Fred Small 06/14/07 11:50

Site ID :

Project #: 68997611

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Chrysene	BDL	0.000050	mg/l	8270C~SIM	06/21/07	1
Dibenz(a,h)anthracene	BDL	0.000050	mg/l	8270C~SIM	06/21/07	1
Fluoranthene	BDL	0.000050	mg/l	8270C~SIM	06/21/07	1
Fluorene	BDL	0.000050	mq/l	8270C~SIM	06/21/07	1
Indeno(1,2,3-cd)pyrene	BDL	0.000050	mq/1	8270C-SIM	06/21/07	1
Naphthalene	BDL	0.00025	mg/l	8270C-SIM	06/21/07	1
Phenanthrene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Pyrene	BDL	0.000050	mq/l	8270C-SIM	06/21/07	1
1-Methylnaphthalene	BDL	0.00025	mq/l	8270C-SIM	06/21/07	1
2-Methylnaphthalene	BDL	0.00025	mg/l	8270C-SIM	06/21/07	1
2-Chloronaphthalene	BDL	0.00025	mg/l	8270C-SIM	06/21/07	1
Surrogate Recovery Nitrobenzene-d5	90.4		% Rec.	8270C-SIM	06/21/07	1
2-Fluorobiphenyl	48.9		% Rec.	8270C-SIM	06/21/07	1
p-Terphenyl-dl4	57.9		% Rec.	8270C-SIM	06/21/07	1

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)

Note:
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Ms. Mary E. Wells Terracon - Las Cruces 1630 Hickory Loop Ste H Las Cruces, NM 88005

June 26, 2007

ESC Sample # : L298256-04

Date Received : Description :

Description

June 16, 2007 Huntsman Brickland Refinery

Site ID :

Sample ID

: MW-3D 4-22 FT

Project # : 68997611

Collected By : Fred Small Collection Date : 06/14/07 12:57

Aluminum BI Antimony BI Arsenic BI Barium 0.0 Beryllium BI Boron 1. Cadmium BI	L L 62 L 6 L 0 U U U U L U L 2 L 2 L 2 L 2 L 2 L 2 L 3 L 4 C 1 L 4 C 1 L 2 L 2 L 4 C 1 L 4 C 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1	0.10 0.010 0.020 0.0050 0.0020 0.20 0.0050 0.50 0.	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B	06/20/07 06/20/07 06/20/07 06/20/07 06/20/07 06/20/07 06/20/07 06/20/07 06/20/07	1 1 1 1 1 1 1 1
Antimony BI Arsenic BE Barium 0.0 Beryllium BE Boron 1.	EL 162 EL 6 EL 0 EL EL EL	0.020 0.0050 0.0020 0.20 0.0050 0.50 0.010 0.010	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	6010B 6010B 6010B 6010B 6010B 6010B 6010B	06/20/07 06/20/07 06/20/07 06/20/07 06/20/07 06/20/07 06/20/07	1 1 1 1 1 1
Arsenic BI Barium 0.0 Beryllium BI Boron 1.	EL 162 EL 6 EL 0 EL EL EL	0.0050 0.0020 0.20 0.0050 0.50 0.010 0.010	mg/l mg/l mg/l mg/l mg/l mg/l mg/l	6010B 6010B 6010B 6010B 6010B 6010B 6010B	06/20/07 06/20/07 06/20/07 06/20/07 06/20/07 06/20/07	1 1 1 1 1
Barium 0.0 Beryllium BE Boron 1.	62 L 6 L 0 L 0 L L L 2 L	0.0020 0.20 0.0050 0.50 0.010 0.010 0.020	mg/l mg/l mg/l mg/l mg/l mg/l	6010B 6010B 6010B 6010B 6010B 6010B	06/20/07 06/20/07 06/20/07 06/20/07 06/20/07	1 1 1 1
Beryllium BI Boron 1.	PL 6 0 0 0 DL DL 2 2 2	0.20 0.0050 0.50 0.010 0.010 0.020	mg/l mg/l mg/l mg/l mg/l	6010B 6010B 6010B 6010B 6010B	06/20/07 06/20/07 06/20/07 06/20/07	1 1 1
Boron 1.	6 L O D L L L 2 2	0.20 0.0050 0.50 0.010 0.010 0.020	mg/l mg/l mg/l mg/l	6010B 6010B 6010B 6010B	06/20/07 06/20/07 06/20/07	1 1 1
	L D L D L D L 2 L	0.50 0.010 0.010 0.020	mg/l mg/l mg/l	6010B 6010B 6010B	06/20/07 06/20/07	1 1
	0 L L L 2	0.010 0.010 0.020	mg/l mg/l mg/l	6010B 6010B	06/20/07	1
Calcium 48	BL DL DL 2	0.010 0.010 0.020	mg/l mg/l	6010B		
Chromium	L L 2	0.010 0.020	mg/1	6010B	06/20/07	
Cobalt	L 2	0.020				1
Copper BE	2			6010B	06/20/07	1
Iron 2.		0.10	mg/1	6010B	06/20/07	1
Lead BI		0.0050	mg/1	6010B	06/20/07	ī
		0.10	mg/l	6010B	06/20/07	1
		0.010	mg/l	6010B	06/20/07	1
		0.0050	mg/l	6010B	06/20/07	1
		0.0030	mg/l	6010B	06/20/07	1
Nickel BE				6010B	06/20/07	1
Potassium 25		0.50	mg/1	6010B	06/20/07	1
Selenium BI		0.020	mg/l			
Silver		0.010	mg/l	6010B	06/20/07	1
	00	2.5	mg/l	6010B	06/20/07	5
Strontium 12		0.050	mg/l	6010B	06/20/07	5
Thallium BI		0.020	mg/l	6010B	06/20/07	1
Tin		0.10	mg/l	6010B	06/20/07	5
Titanium BI		0.010	mg/1	6010B	06/20/07	1
Vanadium BD		0.010	mg/1	6010B	06/20/07	1
Zinc	L	0.030	mg/l	6010B	06/20/07	1
Benzene BI	L	0.00050	mg/l	8021B	06/21/07	1
Toluene BD	L	0.0050	mg/l	8021B	06/21/07	1
Ethylbenzene BI	L	0.00050	mq/1	8021B	06/21/07	1
Total Xylene BI		0.0015	mq/1	8021B	06/21/07	1
Surrogate Recovery (77-118)						
	16.		% Rec.	8021B	06/21/07	1
Polynuclear Aromatic Hydrocarbons						
Anthracene BI)I.	0.000050	mg/l	8270C-SIM	06/21/07	1
Acenaphthene BI		0.000050	mg/l	8270C-SIM	06/21/07	1
Acenaphthylene BI		0.000050	mg/l	8270C-SIM	06/21/07	ī
Benzo(a) anthracene BI		0.000050	mg/l	8270C-SIM	06/21/07	1
Benzo (a) pyrene BI		0.000050	mg/l	8270C-SIM	06/21/07	1
Benzo(b) fluoranthene BI		0.000050	mg/l	8270C-SIM	06/21/07	î
Benzo(g,h,i)perylene BI		0.000050	mg/l	8270C-SIM	06/21/07	ī
Benzo(k) fluoranthene		0.000050	mg/1	8270C-SIM	06/21/07	ī
Denzo (v) Linofanthene Br		0.000000	mg/ ±	52700 5111	00,21,07	+

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

Page 7 of 21

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Ms. Mary E. Wells Terracon - Las Cruces 1630 Hickory Loop Ste H Las Cruces, NM 88005

June 26, 2007

Date Received : June 16, 2007
Description : Huntsman Brickland Refinery

Sample ID

MW-3D 4-22 FT

Collected By : Fred Small Collection Date : 06/14/07 12:57

Site ID :

ESC Sample # : L298256-04

Project #: 68997611

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Chrysene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Dibenz(a,h)anthracene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Fluoranthene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Fluorene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Indeno(1,2,3-cd)pyrene	BDL	0.000050	mg/1	8270C-SIM	06/21/07	1
Naphthalene	BDL	0.00025	mg/l	8270C-SIM	06/21/07	1
Phenanthrene	BDL ·	0.000050	mg/l	8270C-SIM	06/21/07	1
Pyrene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
1-Methylnaphthalene	BDL	0.00025	mq/1	8270C-SIM	06/21/07	1
2-Methylnaphthalene	BDL	0.00025	mg/l	8270C-SIM	06/21/07	1
2-Chloronaphthalene	BDL	0.00025	mq/l	8270C-SIM	06/21/07	1
urrogate Recovery			3.			
Nitrobenzene-d5	86.7		% Rec.	8270C-SIM	06/21/07	1
2-Fluorobiphenyl	79.3		% Rec.	8270C-SIM	06/21/07	1
p-Terphenyl-d14	111.		% Rec.	8270C~SIM	06/21/07	1

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit (PQL)

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

June 26, 2007

Ms. Mary E. Wells Terracon - Las Cruces 1630 Hickory Loop Ste H Las Cruces, NM 88005

ESC Sample # : L298256-05

Date Received : Description :

June 16, 2007 Huntsman Brickland Refinery

Site ID :

Sample ID

MW-3S 4-18 FT

Project # : 68997611

Collected By : Fred Small Collection Date : 06/14/07 13:45

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Aluminum	BDL	0.10	mg/l	6010B	06/20/07	1
Antimony	BDL	0.010	mg/l	6010B	06/20/07	1
Arsenic	BDL	0.020	mg/l	6010B	06/20/07	1
Barium	0.046	0.0050	mg/l	6010B	06/20/07	1
Beryllium	BDL	0.0020	mg/l	6010B	06/20/07	1
Boron	1.1	0.20	mq/1	6010B	06/20/07	1
Cadmium	BDL	0.0050	mg/l	6010B	06/20/07	1
Calcium	250	0.50	mg/l	6010B	06/20/07	1
Chromium	BDL	0.010	mg/l	6010B	06/20/07	1
Cobalt	BDL	0.010	mg/l	6010B	06/20/07	1
Copper	BDL	0.020	mg/l	6010B	06/20/07	1
Iron	1.3	0.10	mg/l	6010B	06/20/07	1
Lead	BDL	0.0050	mg/l	6010B	06/20/07	1
Magnesium	140	0.10	mg/l	6010B	06/20/07	1
Manganese	1.4	0.010	mg/l	6010B	06/20/07	1
Molybdenum	0.032	0.0050	mg/l	6010B	06/20/07	1
Nickel	BDL	0.020	mq/l	6010B	06/20/07	1
Potassium	23.	0.50	mg/l	6010B	06/20/07	1
Selenium	BDL	0.020	mg/l	6010B	06/20/07	1
Silver	BDL	0.010	mg/1	6010B	06/20/07	1
Sodium	2400	2.5	mg/1	6010B	06/20/07	5
Strontium	4.9	0.010	mg/l	6010B	06/20/07	ī
Thallium	BDL	0.020	mg/l	6010B	06/20/07	1 1
Tin	BDL	0.10	mg/1	6010B	06/20/07	5
Titanium	BDL	0.010	mg/l	6010B	06/20/07	ĩ
Vanadium	BDL	0.010	mg/1	6010B	06/20/07	î
Zinc	BDL	0.030	mg/1	6010B	06/20/07	ī
21110	. БЫ	0.030	mg/ I	00100		
Benzene	BDL	0.00050	mg/l	8021B	06/21/07	1
Toluene	BDL	0.0050	mg/l	8021B	06/21/07	1
Ethylbenzene	BDL	0.00050	mg/l	8021B	06/21/07	1
Total Xylene	BDL	0.0015	mg/1	8021B	06/21/07	1
Surrogate Recovery (77-118)						
a,a,a-Trifluorotoluene(PID)	106.		% Rec.	8021B	06/21/07	1
Polynuclear Aromatic Hydrocarbons						
Anthracene	BDL	0.000050	mq/1	8270C-SIM	06/25/07	1
Acenaphthene	BDL	0.000050	mg/l	8270C-SIM	06/25/07	ī
Acenaphthylene	BDL	0.000050	mg/1	8270C-SIM	06/25/07	1
Benzo(a)anthracene	BDL	0.000050	mq/l	8270C-SIM	06/25/07	ī
Benzo (a) pyrene	BDL	0.000050	mg/l	8270C-SIM	06/25/07	1
Benzo(b) fluoranthene	BDL	0.000050	mg/l	8270C-SIM	06/25/07	1
Benzo(g,h,i)perylene	BDL	0.000050	mg/l	8270C-SIM	06/25/07	1
Benzo(k) fluoranthene	BDL	0.000050	mg/l	8270C-SIM	06/25/07	ī
Delize (N/ Lidolonenene	222	2.000000	9/ -	53,00 01.1	00,20,01	-

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Ms. Mary E. Wells Terracon - Las Cruces 1630 Hickory Loop Ste H Las Cruces, NM 88005 June 26, 2007

Date Received : June 16, 2007 Description : Huntsman Brickland Refinery

ESC Sample # : L298256-05

Sample ID MW-3S 4-18 FT Site ID :

Project # : 68997611

Collected By : Fred Small Collection Date : 06/14/07 13:45

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Chrysene	BDL	0.000050	mq/l	8270C-SIM	06/25/07	1
Dibenz(a,h)anthracene	BDL	0.000050	mg/l	8270C-SIM	06/25/07	1
Fluoranthene	BDL	0.000050	mg/l	8270C-SIM	06/25/07	1
Fluorene	BDL	0.000050	mg/l	8270C-SIM	06/25/07	ï
Indeno(1,2,3-cd)pyrene	BDL	0.000050	mq/l	8270C-SIM	06/25/07	ï
Naphthalene	BDL	0.00025	mq/l	8270C-SIM	06/25/07	ī
Phenanthrene	BDL	0.000050	mg/l	8270C-SIM	06/25/07	1
Pyrene	BDL	0.000050	mg/l	8270C-SIM	06/25/07	1
1-Methylnaphthalene	BDL	0.00025	mq/l	8270C-SIM	06/25/07	ī
2-Methylnaphthalene	BDL	0.00025	mg/l	8270C-SIM	06/25/07	1
2-Chloronaphthalene	BDL	0.00025	mq/l	8270C-SIM	06/25/07	1
Surrogate Recovery	•		٥.			_
Nitrobenzene-d5	92.7		% Rec.	8270C-SIM	06/25/07	1
2-Fluorobiphenyl	91.4		% Rec.	8270C-SIM	06/25/07	ī
p-Terphenyl-d14	. 114.		% Rec.	8270C-SIM	06/25/07	1

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

Note:
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.

12065 Lebanon Rd. 12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Ms. Mary E. Wells Terracon - Las Cruces 1630 Hickory Loop Ste H Las Cruces, NM 88005

June 26, 2007

ESC Sample # : L298256-06

Date Received : Description :

June 16, 2007 Huntsman Brickland Refinery

Site ID :

Sample ID

: UP RIVER

Project # : 68997611

Collected By : Fred Small Collection Date : 06/14/07 15:45

Aluminum	Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Antimony Arsenic BDL 0.010 mg/1 6010B 06/20/07 1 Barium 0.24 0.0050 mg/1 6010B 06/20/07 1 Beryllium BDL 0.020 mg/1 6010B 06/20/07 1 Beryllium BDL 0.0020 mg/1 6010B 06/20/07 1 Beryllium BDL 0.020 mg/1 6010B 06/20/07 1 Cadmium BDL 0.0050 mg/1 6010B 06/20/07 1 Calcium 91. 0.50 mg/1 6010B 06/20/07 1 Calcium 91. 0.50 mg/1 6010B 06/20/07 1 Chromium BDL 0.0050 mg/1 6010B 06/20/07 1 Chromium BDL 0.010 mg/1 6010B 06/20/07 1 Copper BDL 0.010 mg/1 6010B 06/20/07 1 Copper BDL 0.020 mg/1 6010B 06/20/07 1 Copper BDL 0.020 mg/1 6010B 06/20/07 1 Lead 0.0071 0.0050 mg/1 6010B 06/20/07 1 Lead 0.0071 0.0050 mg/1 6010B 06/20/07 1 Lead 0.0071 0.0050 mg/1 6010B 06/20/07 1 Manganese 0.30 0.10 mg/1 6010B 06/20/07 1 Manganese 0.30 0.010 mg/1 6010B 06/20/07 1 Molybdenum 0.0082 0.0050 mg/1 6010B 06/20/07 1 Nickel BDL 0.0020 mg/1 6010B 06/20/07 1 Nickel BDL 0.0020 mg/1 6010B 06/20/07 1 Selenium BDL 0.0020 mg/1 6010B 06/20/07 1 Silver BDL 0.0020 mg/1 6010B 06/20/07 1 Sclenium BDL 0.020 mg/1 6010B 06/20/07 1 Strontium BDL 0.036 0.030 mg/1 6010B 06/20/07 1 Strontium BDL 0.080 0.010 mg/1 6010B 06/20/07 1 Strontium 0.080 0.010 mg/1 6010B 06/20/07 1 Strontium 0.080 0.010 mg/1 6010B 06/20/07 1 Strontium 0.080 0.0000000000000000000000000000000	Aliminim	16.	0.10	mg/l			1
Arsenic BDL			0.010	mq/l	6010B	06/20/07	1
Barium					6010B	06/20/07	1
Beryllium					6010B	06/20/07	1
Born Born BDL 0.20 mg/1 6010B 06/20/07 1 Cadmium BDL 0.0050 mg/1 6010B 06/20/07 1 Calcium 91. 0.50 mg/1 6010B 06/20/07 1 Chromium BDL 0.010 mg/1 6010B 06/20/07 1 Copar BDL 0.010 mg/1 6010B 06/20/07 1 Copper BDL 0.010 mg/1 6010B 06/20/07 1 Copper BDL 0.010 mg/1 6010B 06/20/07 1 Copper BDL 0.020 mg/1 6010B 06/20/07 1 Iron 9.3 0.10 mg/1 6010B 06/20/07 1 Lead 0.0071 0.0050 mg/1 6010B 06/20/07 1 Lead 0.0071 0.0050 mg/1 6010B 06/20/07 1 Manganese 0.30 0.010 mg/1 6010B 06/20/07 1 Manganese 0.30 0.010 mg/1 6010B 06/20/07 1 Molybdenum 0.0082 0.0050 mg/1 6010B 06/20/07 1 Mickel BDL 0.020 mg/1 6010B 06/20/07 1 Mickel BDL 0.020 mg/1 6010B 06/20/07 1 Silver BDL 0.020 mg/1 6010B 06/20/07 1 Silver BDL 0.020 mg/1 6010B 06/20/07 1 Silver BDL 0.020 mg/1 6010B 06/20/07 1 Silver BDL 0.0000 mg/1 6010B 06/20/07 1 Titanium 0.88 0.010 mg/1 6010B 06/20/07 1 Titanium 0.40 0.010 mg/1 6010B 06/20/07 1 Titanium 0.40 0.010 mg/1 6010B 06/20/07 1 Vanadium 0.027 0.010 mg/1 6010B 06/20/07 1							1
Cadmium							
Calcium 91. 0.50 mg/1 6010B 06/20/07 1 Chromium BDL 0.010 mg/1 6010B 06/20/07 1 Chromium BDL 0.010 mg/1 6010B 06/20/07 1 Cobalt BBL 0.010 mg/1 6010B 06/20/07 1 Copper BDL 0.020 mg/1 6010B 06/20/07 1 Copper BDL 0.020 mg/1 6010B 06/20/07 1 Copper BDL 0.000 mg/1 6010B 06/20/07 1 Copper BDL 0.0000 mg/1 6010B 06/20/07 1 Copper BDL 0.020 mg/1 6010B 06/20/07 1 Copper BDL 0.00050 mg/1 8021B 06/21/07 1 Copper BDL 0.00050 mg/1 8021B 06/21/07 1 Copper BDL 0.00050 mg/1 8021B 06/21/07 1 Copper BDL 0.00050 mg/1 8270C-SIM 06/21/07 1 Co							1
Chromium Chr							
Cobalt							
Copper							
Tron							
Lead Dead							
Magnesium							
Manganese 0.30 0.010 mg/l 6010B 06/20/07 1 Molybdenum 0.0082 0.0050 mg/l 6010B 06/20/07 1 Nickel BDL 0.020 mg/l 6010B 06/20/07 1 Potassium 12. 0.50 mg/l 6010B 06/20/07 1 Selenium BDL 0.020 mg/l 6010B 06/20/07 1 Silver BDL 0.010 mg/l 6010B 06/20/07 1 Sodium 95. 0.50 mg/l 6010B 06/20/07 1 Strontium 0.88 0.010 mg/l 6010B 06/20/07 1 Thallium BDL 0.020 mg/l 6010B 06/20/07 1 Thallium BDL 0.020 mg/l 6010B 06/20/07 1 Titanium 0.40 0.010 mg/l 6010B 06/20/07 1 Vanadium 0.027 0							
Molybdenum							
Nickel BDL 0.020 mg/l 6010B 06/20/07 1 Potassium 12. 0.50 mg/l 6010B 06/20/07 1 Selenium BDL 0.020 mg/l 6010B 06/20/07 1 Silver BDL 0.010 mg/l 6010B 06/20/07 1 Sodium 95. 0.50 mg/l 6010B 06/20/07 1 Strontium 95. 0.50 mg/l 6010B 06/20/07 1 Strontium 95. 0.50 mg/l 6010B 06/20/07 1 Thallium BDL 0.020 mg/l 6010B 06/20/07 1 Thallium BDL 0.020 mg/l 6010B 06/20/07 1 Tin BDL 0.020 mg/l 6010B 06/20/07 1 Titanium 0.40 0.020 mg/l 6010B 06/20/07 1 Titanium 0.40 0.010 mg/l 6010B 06/20/07 1 Titanium 0.027 0.010 mg/l 6010B 06/20/07 1 Vanadium 0.027 0.010 mg/l 6010B 06/20/07 1 Vanadium 0.027 0.010 mg/l 6010B 06/20/07 1 Titunium 0.036 0.033 mg/l 6010B 06/20/07 1 Since 0.036 0.033 mg/l 6010B 06/20/07 1 Since 0.036 0.030 mg/l 8021B 06/21/07 1 Surrogate Recovery (77-118) A, a, a-Trifluorotoluene (PID) 106. Rec. 8021B 06/21/07 1 Polynuclear Aromatic Hydrocarbons Anthracene BDL 0.00050 mg/l 8021B 06/21/07 1 Acenaphthylene BDL 0.00050 mg/l 8270C-SIM 06/21/07 1 Benzo (a) anthracene BDL 0.00050 mg/l 8270C-SIM 06/21/07 1 Benzo (a) pyrene BDL 0.00050 mg/l 8270C-SIM 06/21/07 1 Benzo (a) pyrene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo (b) fluoranthene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo (b) fluoranthene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo (c) pyrene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo (c) pyrene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo (c) pyrene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo (c) pyrene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo (c) pyrene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo (c) pyrene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo (c) pyrene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo (c) pyrene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo (c) pyrene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1							
Potassium							
Selenium							
Silver							
Sodium							
Strontium							
Thallium BDL 0.020 mg/l 6010B 06/20/07 l Tin BDL 0.020 mg/l 6010B 06/20/07 l Titanium 0.40 0.010 mg/l 6010B 06/20/07 l Vanadium 0.027 0.010 mg/l 6010B 06/20/07 l Zinc 0.036 0.030 mg/l 6010B 06/20/07 l Zinc 0.036 0.030 mg/l 6010B 06/20/07 l Benzene BDL 0.00050 mg/l 8021B 06/21/07 l Toluene BDL 0.00050 mg/l 8021B 06/21/07 l Ethylbenzene BDL 0.00050 mg/l 8021B 06/21/07 l Ethylbenzene BDL 0.00050 mg/l 8021B 06/21/07 l Surrogate Recovery (77-118) a,a,a-Trifluorotoluene(PID) l06. Rec. 8021B 06/21/07 l Polynuclear Aromatic Hydrocarbons Anthracene BDL 0.00050 mg/l 8270C-SIM 06/21/07 l Acenaphthene BDL 0.00050 mg/l 8270C-SIM 06/21/07 l Benzo(a) anthracene BDL 0.00050 mg/l 8270C-SIM 06/21/07 l Benzo(a) anthracene BDL 0.00050 mg/l 8270C-SIM 06/21/07 l Benzo(a) pyrene BDL 0.000050 mg/l 8270C-SIM 06/21/07 l Benzo(b) fluoranthene BDL 0.000050 mg/l 8270C-SIM 06/21/07 l							
Tin BDL 0.020 mg/l 6010B 06/20/07 l Titanium 0.40 0.010 mg/l 6010B 06/20/07 l Vanadium 0.027 0.010 mg/l 6010B 06/20/07 l Vanadium 0.027 0.010 mg/l 6010B 06/20/07 l Vanadium 0.036 0.030 mg/l 8021B 06/21/07 l Vanadium 0.0050 mg/l 8021B 06/21/							
Titanium 0.40 0.010 mg/l 6010B 06/20/07 1 Vanadium 0.027 0.010 mg/l 6010B 06/20/07 1 Zinc 0.036 0.030 mg/l 6010B 06/20/07 1 Benzene BDL 0.00050 mg/l 8021B 06/21/07 1 Toluene BDL 0.0050 mg/l 8021B 06/21/07 1 Ethylbenzene BDL 0.0050 mg/l 8021B 06/21/07 1 Total Xylene BDL 0.00050 mg/l 8021B 06/21/07 1 Surrogate Recovery (77-118) a,a,a-Trifluorotoluene(PID) 106. Rec. 8021B 06/21/07 1 Polynuclear Aromatic Hydrocarbons Anthracene BDL 0.00050 mg/l 8270C-SIM 06/21/07 1 Acenaphthene BDL 0.00050 mg/l 8270C-SIM 06/21/07 1 Benzo(a) anthracene BDL 0.00050 mg/l 8270C-SIM 06/21/07 1 Benzo(a) pyrene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(b) fluoranthene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(g,h,i) perylene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1							
Vanadium							
Sinc							
Benzene							
Toluene BDL 0.0050 mg/l 8021B 06/21/07 1 Ethylbenzene BDL 0.00050 mg/l 8021B 06/21/07 1 Total Xylene BDL 0.00050 mg/l 8021B 06/21/07 1 Surrogate Recovery (77-118) a,a,a-Trifluorotoluene(PID) 106. Rec. 8021B 06/21/07 1 Polynuclear Aromatic Hydrocarbons Anthracene BDL 0.00050 mg/l 8270C-SIM 06/21/07 1 Acenaphthene BDL 0.00050 mg/l 8270C-SIM 06/21/07 1 Benzo(a)anthracene BDL 0.00050 mg/l 8270C-SIM 06/21/07 1 Benzo(a)pyrene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(a)pyrene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(b)fluoranthene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(b)fluoranthene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(b)fluoranthene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(g,h,i)perylene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1	Zinc	0.036	0.030	mg/l	6010B	06/20/07	1
Ethylbenzene BDL 0.00050 mg/l 8021B 06/21/07 1 Total Xylene BDL 0.0015 mg/l 8021B 06/21/07 1 Surrogate Recovery (77-118)	Benzene	BDL	0.00050	mg/l	8021B	06/21/07	1
Total Xylene BDL 0.0015 mg/l 8021B 06/21/07 1 Surrogate Recovery (77-118) a,a,a-Trifluorotoluene(PID) 106. % Rec. 8021B 06/21/07 1 Polynuclear Aromatic Hydrocarbons Anthracene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Acenaphthene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Acenaphthylene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(a)anthracene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(a)pyrene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(b)fluoranthene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(b)fluoranthene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(g,h,i)perylene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1	Toluene	BDL	0.0050	mq/l	8021B	06/21/07	1
Total Xylene	Ethvlbenzene	BDL	0.00050	mg/l	8021B	06/21/07	1
Surrogate Recovery (77-118) a,a,a-Trifluorotoluene(PID) 106. *Rec. 8021B 06/21/07 1 Polynuclear Aromatic Hydrocarbons Anthracene BDL 0.000050 mg/1 8270C-SIM 06/21/07 1 Acenaphthene BDL 0.000050 mg/1 8270C-SIM 06/21/07 1 Benzo(a)anthracene BDL 0.000050 mg/1 8270C-SIM 06/21/07 1 Benzo(a)pyrene BDL 0.000050 mg/1 8270C-SIM 06/21/07 1 Benzo(a)pyrene BDL 0.000050 mg/1 8270C-SIM 06/21/07 1 Benzo(b)fluoranthene BDL 0.000050 mg/1 8270C-SIM 06/21/07 1 Benzo(g,h,i)perylene BDL 0.000050 mg/1 8270C-SIM 06/21/07 1		BDL			8021B	06/21/07	1
a,a,a-Trifluorotoluene(PID) 106.				,			
Anthracene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Acenaphthene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Acenaphthylene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(a)anthracene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(a)pyrene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(b)fluoranthene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(g,h,i)perylene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1		106.		% Rec.	8021B	06/21/07	1
Anthracene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Acenaphthene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Acenaphthylene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(a)anthracene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(a)pyrene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(b)fluoranthene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(g,h,i)perylene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1	Polynuclear Aromatic Hydrocarbons						
Acenaphthene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Acenaphthylene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(a)anthracene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(a)pyrene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(b)fluoranthene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(g,h,i)perylene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1		BDT.	0.000050	ma/l	8270C-SIM	06/21/07	1
Acenaphthylene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(a)anthracene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(a)pyrene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(b)fluoranthene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(g,h,i)perylene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1							
Benzo(a) anthracene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(a) pyrene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(b) fluoranthene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(g,h,i) perylene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1							
Benzo(a)pyrene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(b)fluoranthene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(g,h,i)perylene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1							
Benzo(b)fluoranthene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1 Benzo(g,h,i)perylene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1							
Benzo(g,h,i)perylene BDL 0.000050 mg/l 8270C-SIM 06/21/07 1							
DENZO(K) LIQUEANUNENE DDL 0.000000 mg/1 02/00-31M 00/21/0/ 1							
	benzo(k) iluoranthene	חחם	0.000000	mg/ I	02 / UC-31H	00/21/0/	±

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Ms. Mary E. Wells Terracon - Las Cruces 1630 Hickory Loop Ste H Las Cruces, NM 88005

June 26, 2007

ESC Sample # : L298256-06

Description

Date Received : June 16, 2007 Description : Huntsman Brickland Refinery

Site ID :

Sample ID

UP RIVER

Project # : 68997611

Collected By : Fred Small Collection Date : 06/14/07 15:45

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Chrysene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Dibenz(a,h)anthracene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Fluoranthene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Fluorene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Indeno(1,2,3-cd)pyrene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Naphthalene	BDL	0.00025	mg/l	8270C-SIM	06/21/07	1
Phenanthrene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Pyrene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
1-Methylnaphthalene	BDL	0.00025	mg/l	8270C-SIM	06/21/07	1
2-Methylnaphthalene	BDL	0.00025	mg/l	8270C-SIM	06/21/07	1
2-Methylhaphthalene 2-Chloronaphthalene urrogate Recovery	BDT	0.00025	mg/l	8270C-SIM	06/21/07	1
Nitrobenzene-d5	81.8		% Rec.	8270C-SIM	06/21/07	1
2-Fluorobiphenyl	79.6		% Rec.	8270C-SIM	06/21/07	1
p-Terphenyl-d14	119.		% Rec.	8270C-SIM	06/21/07	1

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

June 26, 2007

Ms. Mary E. Wells Terracon - Las Cruces 1630 Hickory Loop Ste H Las Cruces, NM 88005

ESC Sample # : L298256-07

Date Received : Description :

June 16, 2007 Huntsman Brickland Refinery

Sample ID

DOWN RIVER

Collected By : Fred Small Collection Date : 06/14/07 16:05

Site ID : Project #: 68997611

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Aluminum	16.	0.10	mg/l	6010B	06/20/07	1
Antimony	BDL	0.010	mg/l	6010B	06/20/07	1
Arsenic	BDL	0.020	mg/l	6010B	06/20/07	1
Barium	0.24	0.0050	mg/l	6010B	06/20/07	1
Beryllium	BDL	0.0020	mq/l	6010B	06/20/07	1
Boron	0.20	0.20	mg/l	6010B .	06/20/07	1
Cadmium	BDL	0.0050	mg/l	6010B	06/20/07	1
Calcium	90.	0.50	mg/l	6010B	06/20/07	1
Chromium	BDL	0.010	mg/l	6010B	06/20/07	1
Cobalt	BDL	0.010	mg/l	6010B	06/20/07	1
Copper	BDL	0.020	mg/l	6010B	06/20/07	1
Iron	9.0	0.10	mg/l	6010B	06/20/07	1
Lead	0.0057	0.0050	mg/l	6010B	06/20/07	1
Magnesium	18.	0.10	mg/l	6010B	06/20/07	1
Manganese	0.30	0.010	mg/l	6010B	06/20/07	1
Molybdenum	0.0084	0.0050	mg/l	6010B	06/20/07	ĩ
Nickel	BDL	0.020	mg/l	6010B	06/20/07	1
Potassium	11.	0.50	mq/1	6010B	06/20/07	1
Selenium	BDL	0.020	mg/l	6010B	06/20/07	ī
Silver	BDL	0.010	mg/l	6010B	06/20/07	1
Sodium	95.	0.50	mg/l	6010B	06/20/07	ī
Strontium	0.86	0.010	mq/l	6010B	06/20/07	ī
Thallium	BDL	0.020	mg/l	6010B	06/20/07	1
Tin	BDL	0.020	mg/l	6010B	06/20/07	î
Titanium	0.38	0.010	mg/l	6010B	06/20/07	1
Vanadium	0.026	0.010	mg/1	6010B	06/20/07	1
Zinc	0.028	0.030	mg/1	6010B	06/20/07	1
ZINC	0.030	0.030	my/ I	00100	00/20/07	T
Benzene	BDL	0.00050	mg/l	8021B	06/21/07	1
Toluene	BDL	0.0050	mg/l	8021B	06/21/07	1
Ethylbenzene	BDL	0.00050	mg/l	8021B	06/21/07	1
Total Xylene	BDL	0.0015	mg/l	8021B	06/21/07	1
urrogate Recovery (77-118)						
a,a,a-Trifluorotoluene(PID)	106.		% Rec.	8021B	06/21/07	1
olynuclear Aromatic Hydrocarbons						
Anthracene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Acenaphthene	BDL	0.000050	mq/l	8270C-SIM	06/21/07	1
Acenaphthylene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Benzo(a)anthracene	BDL	0.000050	mg/1	8270C-SIM	06/21/07	1
Benzo (a) pyrene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Benzo(b) fluoranthene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Benzo(g,h,i)perylene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	ī
Benzo(k) fluoranthene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Ms. Mary E. Wells Terracon - Las Cruces 1630 Hickory Loop Ste H Las Cruces, NM 88005

June 26, 2007

Date Received : June 16, 2007
Description : Huntsman Brickland Refinery

ESC Sample # : L298256-07

Site ID :

Sample ID

DOWN RIVER

Collected By : Fred Small Collection Date : 06/14/07 16:05

Project # : 68997611

Parameter	Result	Det. Limit	Units	Method	Date	Dil
Chrysene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Dibenz(a,h)anthracene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Fluoranthene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Fluorene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Indeno(1,2,3-cd)pyrene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Naphthalene	BDL	0.00025	mg/l	8270C-SIM	06/21/07	1
Phenanthrene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Pyrene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
1-Methylnaphthalene	BDL	0.00025	mg/l	8270C-SIM	06/21/07	1
2-Methylnaphthalene	BDL	0.00025	mg/l	8270C-SIM	06/21/07	1
2-Chloronaphthalene	BDL	0.00025	mg/l	8270C-SIM	06/21/07	1
urrogate Recovery			-			
Nitrobenzene-d5	59.4		% Rec.	8270C~SIM	06/21/07	1
2-Fluorobiphenyl	56.6		% Rec.	8270C-SIM	06/21/07	1
p-Terphenyl-d14	79.2		% Rec.	8270C-SIM	06/21/07	1

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Ms. Mary E. Wells Terracon - Las Cruces 1630 Hickory Loop Ste H Las Cruces, NM 88005

June 26, 2007

Site ID :

Collected By : Collection Date :

ESC Sample # : L298256-08

Date Received : Description : June 16, 2007 Huntsman Brickland Refinery

Sample ID DUPLICATE

Fred Small 06/14/07 00:00

Project # : 68997611

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Aluminum	0.13	0.10	mg/l	6010B	06/20/07	1
Antimony	BDL	0.010	mg/l	6010B	06/20/07	1
Arsenic	0.030	0.020	mg/l	6010B	06/20/07	1
Barium	0.10	0.0050	mg/l	6010B	06/20/07	1
Beryllium	BDL	0.0020	mg/l	6010B	06/20/07	1
Boron	3.1	0.20	mg/l	6010B	06/20/07	1
Cadmium	BDL	0.0050	mg/l	6010B	06/20/07	1
Calcium	150	0.50	mg/l	6010B	06/20/07	1
Chromium	BDL	0.010	mg/l	6010B	06/20/07	1
Cobalt	BDL	0.010	mg/l	6010B	06/20/07	1
Copper	0.088	0.020	mg/l	6010B	06/20/07	1
Iron	12.	0.10	mg/l	6010B	06/20/07	1
Lead	BDL	0.0050	mq/1	6010B	06/20/07	1
Magnesium	130	0.10	mg/l	6010B	06/20/07	1
Manganese	0.88	0.010	mg/l	6010B	06/20/07	1
Molybdenum	0.038	0.0050	mg/l	6010B	06/20/07	1
Nickel	BDL	0.020	mg/l	6010B	06/20/07	1
Potassium	24.	0.50	mq/l	6010B	06/20/07	1
Selenium	BDL	0.020	mg/l	6010B	06/20/07	1 1
Silver	BDL	0.010	mg/l	6010B	06/20/07	1
Sodium	3300	2.5	mg/l	6010B	06/20/07	5
Strontium	3.5	0.010	mg/l	6010B	06/20/07	1
Thallium	BDL	0.020	mg/l	6010B	06/20/07	1
Tin	BDL	0.10	mg/l	6010B	06/20/07	5
Titanium	0.031	0.010	mq/1	6010B	06/20/07	1
Vanadium	0.035	0.010	mq/l	6010B	06/20/07	1
Zinc	BDL	0.030	mg/l	6010B	06/20/07	1
Benzene	BDL	0.00050	mg/l	8021B	06/22/07	1
Toluene	BDL	0.0050	mg/l	8021B	06/22/07	1
Ethylbenzene	0.0092	0.00050	mq/1	8021B	06/22/07	1
Total Xylene	BDL	0.0015	mg/l	8021B	06/22/07	1
Surrogate Recovery (77-118)			•			
a,a,a-Trifluorotoluene(PID)	112.		% Rec.	8021B	06/22/07	1
Polynuclear Aromatic Hydrocarbons						
Anthracene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Acenaphthene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Acenaphthylene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Benzo (a) anthracene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Benzo(a) pyrene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Benzo(b)fluoranthene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Benzo(g,h,i)perylene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Benzo(k) fluoranthene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Ms. Mary E. Wells Terracon - Las Cruces 1630 Hickory Loop Ste H Las Cruces, NM 88005 June 26, 2007

Date Received : Description :

ESC Sample # : L298256-08

June 16, 2007 Huntsman Brickland Refinery

Site ID :

Sample ID

DUPLICATE

Project #: 68997611

Collected By : Collection Date :

Fred Small 06/14/07 00:00

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Chrysene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Dibenz(a,h)anthracene	BDL	0.000050	mq/1	8270C-SIM	06/21/07	1
Fluoranthene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Fluorene	BDL	0.000050	mq/l	8270C-SIM	06/21/07	1
Indeno(1,2,3-cd)pyrene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Naphthalene	BDL	0.00025	mg/l	8270C-SIM	06/21/07	1
Phenanthrene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
Pyrene	BDL	0.000050	mg/l	8270C-SIM	06/21/07	1
1-Methylnaphthalene	BDL	0.00025	mg/l	8270C-SIM	06/21/07	1
2-Methylnaphthalene	BDL	0.00025	mg/l	8270C-SIM	06/21/07	1
2-Chloronaphthalene	BDL	0.00025	mg/l	8270C-SIM	06/21/07	1
Surrogate Recovery			-			
Nitrobenzene-d5	127.		% Rec.	8270C-SIM	06/21/07	1
2-Fluorobiphenyl	67.6		% Rec.	8270C-SIM	06/21/07	1
p-Terphenyl-d14	74.3		% Rec.	8270C-SIM	06/21/07	1

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Ms. Mary E. Wells Terracon - Las Cruces 1630 Hickory Loop Ste H Las Cruces, NM 88005

June 26, 2007

ESC Sample # : L298256-09

Description

Date Received : June 16, 2007
Description : Huntsman Brickland Refinery

Site ID :

Sample ID

FIELD BLANK

Project # : 68997611

Collected By	:	Fred Smal	.1
Collection Date	:	06/14/07	00:00

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Benzene	0.00054	0.00050	mg/l	8021B	06/21/07	1
Toluene	BDL	0.0050	mg/l	8021B	06/21/07	1
Ethylbenzene	BDL	0.00050	mq/l	8021B	06/21/07	1
Total Xylene Surrogate Recovery (77-118)	BDL	0.0015	mg/l	8021B	06/21/07	1
a,a,a-Trifluorotoluene(PID)	104.		% Rec.	8021B	06/21/07	1

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)
Note:

The reported analytical results relate only to the sample submitted.

This report shall not be reproduced, except in full, without the written approval from ESC.

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Ms. Mary E. Wells Terracon - Las Cruces 1630 Hickory Loop Ste H Las Cruces, NM 88005 June 26, 2007

Date Received : June 16, 2007 Description : Huntsman Brickland Refinery

ESC Sample # : L298256-10

Description

Sample ID

EQUIP BLK

Site ID :

Project #: 68997611

Collected By : Fred Small Collection Date : 06/14/07 00:00

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Benzene	BDL	0.00050	mg/l	8021B	06/21/07	1
Toluene	BDL	0.0050	mg/l	8021B	06/21/07	1
Ethylbenzene	BDL	0.00050	mg/l	8021B	06/21/07	1
Total Xylene	BDL	0.0015	mg/1	8021B	06/21/07	1
Surrogate Recovery (77-118) a,a,a-Trifluorotoluene(PID)	107.		% Rec.	8021B	06/21/07	1

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL) The reported analytical results relate only to the sample submitted.

This report shall not be reproduced, except in full, without the written approval from ESC.

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Ms. Mary E. Wells Terracon - Las Cruces 1630 Hickory Loop Ste H Las Cruces, NM 88005

June 26, 2007

ESC Sample # : L298256-11

Date Received :

June 16, 2007 Huntsman Brickland Refinery

Site ID :

Sample ID TRIP BLANK

Collected By : Fred Small Collection Date : 06/14/07 00:00

Project # : 68997611

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Benzene	BDL	0.00050	mg/l	8021B	06/21/07	1
Toluene	BDL	0.0050	mq/1	8021B	06/21/07	1
Ethylbenzene	BDL	0.00050	mq/l	8021B	06/21/07	1
Total Xylene	BDL	0.0015	mg/l	8021B	06/21/07	1
Surrogate Recovery (77-118) a,a,a-Trifluorotoluene(PID)	106.		% Rec.	8021B	06/21/07	1

BDL - Below Detection Limit Det. Limit ~ Practical Quantitation Limit(PQL) The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Attachment A List of Analytes with QC Qualifiers

Sample #	Analyte	Qualifier
L298256-01	Anthracene	J3
	Benzo(a) anthracene	J4
	Pyrene	J4
	Tin	õ
L298256-02	Anthracene	J3
	Benzo(a) anthracene	J4
	Pyrene	J4
	Tin	0
L298256-03	Anthracene	J3
	Benzo(a) anthracene	J4
	Pyrene	J4
	2-Fluorobiphenyl	J2
	Tin	0
L298256-04	Anthracene	Д3
	Benzo(a) anthracene	J4
	Pyrene	J4
	Tin	0
L298256-05	Pyrene	J4
	Tin	0
L298256-06	Anthracene	J3
	Benzo(a) anthracene	J4
	Pyrene	J4
L298256-07	Anthracene	J3
	Benzo(a) anthracene	J4
	Pyrene	J4
L298256-08	Anthracene	J3
	Benzo(a) anthracene	J4
	Pyrene	J4
	Nitrobenzene-d5	J1
	Tin	0

Attachment B Explanation of QC Qualifier Codes

Qualifier	Meaning
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits
J3	The associated batch QC was outside the established quality control range for precision. $ \label{eq:control}$
J4	The associated batch QC was outside the established quality control range for accuracy.
0	(ESC) Sample diluted due to matrix interferences that impaired the ability to make an accurate analytical determination. The detection limit is elevated in order to reflect the necessary dilution.

Qualifier Report Information

ESC utilizes sample and result qualifiers as set forth by the EPA Contract Laboratory Program and as required by most certifying bodies including NELAC. In addition to the EPA qualifiers adopted by ESC, we have implemented ESC qualifiers to provide more information pertaining to our analytical results. Each qualifier is designated in the qualifier explanation as either EPA or ESC. Data qualifiers are intended to provide the ESC client with more detailed information concerning the potential bias of reported data. Because of the wide range of constituents and variety of matrices incorporated by most EPA methods it is common for some compounds to fall cutied of matrices incorporated by most EPA methods, it is common for some compounds to fall outside of established ranges. These exceptions are evaluated and all reported data is valid and useable unless qualified as 'R' (Rejected).

Definitions

- Accuracy The relationship of the observed value of a known sample to the true value of a known sample. Represented by percent recovery and relevant to samples such as: control samples, matrix spike recoveries, surrogate recoveries, etc.
- Precision The agreement between a set of samples or between duplicate samples. Relates to how close together the results are and is represented by Relative Percent Differrence.
- Surrogate Organic compounds that are similar in chemical composition, extraction, and chromotography to analytes of interest. The surrogates are used to determine the probable response of the group of analytes that are chemically related to the surrogate compound. Surrogates are added to the sample and carried through all stages of preparation and analyses.

 Control Limits (AQ)

 2-Fluorophenol 31-119 Nitrobenzene-d5 43-118 Dibromfluoromethane 68-128 Phenol-d5 12-134 2-Fluorobiphenyl 45-128 Toluene-d8 76-115

 2,4,6-Tribromophenol 51-141 Terphenyl-d14 43-137 4-Bromofluorobenzene 79-127

Dibromfluoromethane 68-128 64-125 2,4,6-Tribromophenol 51-141 Terphenyl-d14 43-137 4-Bromofluorobenzene 79-127 61-134

- Tentatively Identified Compound: Compounds detected in samples that are not target compounds, internal standards, system monitoring compounds, TIC

Summary of Remarks For Samples Printed 06/26/07 at 13:35:02

TSR Signing Reports: 064 R5 - Desired TAT

```
Sample: L298256-01 Account: TERRLCNM Received: 06/16/07 09:00 Due Date: 06/22/07 00:00 RPT Date: 06/26/07 09:26
Sample: L298256-03 Account: TERRLCNM Received: 06/16/07 09:00 Due Date: 06/22/07 00:00 RPT Date: 06/26/07 09:26
Sample: L298256-04 Account: TERRLCNM Received: 06/16/07 09:00 Due Date: 06/22/07 00:00 RPT Date: 06/26/07 09:26
Sample: L298256-04 Account: TERRLCNM Received: 06/16/07 09:00 Due Date: 06/22/07 00:00 RPT Date: 06/26/07 09:26
Sample: L298256-05 Account: TERRLCNM Received: 06/16/07 09:00 Due Date: 06/22/07 00:00 RPT Date: 06/26/07 09:26
Sample: L298256-05 Account: TERRLCNM Received: 06/16/07 09:00 Due Date: 06/22/07 00:00 RPT Date: 06/26/07 09:26
Sample: L298256-07 Account: TERRLCNM Received: 06/16/07 09:00 Due Date: 06/22/07 00:00 RPT Date: 06/26/07 09:26
Sample: L298256-09 Account: TERRLCNM Received: 06/16/07 09:00 Due Date: 06/22/07 00:00 RPT Date: 06/26/07 09:26
Sample: L298256-09 Account: TERRLCNM Received: 06/16/07 09:00 Due Date: 06/22/07 00:00 RPT Date: 06/26/07 09:26
Sample: L298256-10 Account: TERRLCNM Received: 06/16/07 09:00 Due Date: 06/22/07 00:00 RPT Date: 06/26/07 09:26
Sample: L298256-10 Account: TERRLCNM Received: 06/16/07 09:00 Due Date: 06/22/07 00:00 RPT Date: 06/26/07 09:26
Sample: L298256-11 Account: TERRLCNM Received: 06/16/07 09:00 Due Date: 06/22/07 00:00 RPT Date: 06/26/07 09:26
```

		_	Alternate billing in	information:	İ		Analysi	s/Container/	er/Preserva	vative	П	Char	Chain of Custody	
Terracon - Las Cruces	ses						100			113		Page		
1630 Hickory Loop Ste H	Н													
Las Cruces,NM 88005									131 ¹³⁸ 1431	South (1888) P. K. Johnson		Prepared by: **ENVIRONMENTAL	WENTAL	
								iosta (12)	illia					
Report to: Ms. Mary E. Wells			Email: mev	mewells@terracon.com	con.com		TEGE.	: S				SCIENCE CORP	CORF.	
Project Description: Huntsman Brickland			City/State Collected	SUNLAN	AND CAND	Ä		oPre				12065 Lebanon Koad Mt. Juliet, TN 37122	on Road V 37122	
Phone: (205) 537-1700	Client Project #:		Lab Pro	roject #	1000		EC	N٩				Phone (800) 767-5859	767-5859	
FAX:	68997611		TEF	TERRLCNM-68997611	8997611		15 Tax 19 19	ωy				FAX (615) 758-5859	758-5859	
Collected by (print):	Site/Facility ID#:		P.O.#:				HC	-ήľ.				The second secon	The state of the s	
by (s	Rush? (1	ab MUST E	(Lab MUST Be Notified)	Date Results Needed	s Needed	9 85 739 9 85 739	- Art and Table	ΜIS			€.	Acctnum: TERRLCNM (#0	M (lab use only)	
1976mall	Next Day		100%				*********	Нγ	HIBY TYPE		# .	Preiquin	743.796/P212677	
Immediately Packed on Ice N Y	Two Day		50%	١.	×'	120	es Perm	a 0/	11		ర _{్లా} :			
	Three Day		25%	FAX?No	Yes	of O	वादस्य है।	.78	P)		<i>ਨ</i> ੁ	Shipped Via: Fed EX	edEX Ground	
Sample ID	Comp/Grab	Matrix*	Depth	Date	Time		20 V 12 V 1	AS,		CENTÉ	ď	Remarks/Contaminant	Sample # (lab only)	
MM-98	GKAB	GW	1887	6-14-07	10:09	5 X	Z X	X					9972601	
MW-63	,	GW	5.04	/ "	11:12	S X	X	X					2	
mu-65		GW	5.12	,	11:50	S 🗶	X	X					8	
MW-3D		GW	4.22	,	13.57	5 X	X	×	ibniss				5	
MW-35	3	ΜS	4.18	"	13:45		X	X					8	
UP-4WER	,	ΒM	NA	7	15:45		×	×			_		81	
DOWN-RIVER	1	QW.	44	,	16:05	12.12.14.14	my 3	×				2017	70	
F. C. D. Brand, Found By To	M 0	85	NA	"	1	γ γ γ	۲ ا ا	4					80	Hor
S - Soil GW	WasteWater DV	V - Drinking V	Vater OT - Other			1		Caldina second		i i		Temp		-
Remarks:										No.) Other		
		T				6.37		SI	南	•				
Relinquished by: (Signature)	Date:			ved by: (Signatu	7 [5		1	2 0 E	amples returne	via:		Condition	(lab use only)	
Deliverished his of male	. \!	202	i se	A POST			ļ	2	FedEx□Counier	urier	الماراة		シルシ	
C Describing to	2					}	0	ľΫ́	4	727	N	7	$\mathcal{O} \setminus_{\mathbb{R}}$	
Relinquished by April Hoke)	Date:	Time:	Receive	for lab by Si	(ambudis	B	<i>I</i>		الويطا	Time S	7	pH.Checked	NGE. CELLING	
			2)			<i>6</i>			•				

e jegovernosti. Listo

Tax I.D. 62-0814289

Est. 1970

Fred Small Terracon - Las Cruces 1630 Hickory Loop Ste H

Las Cruces, NM 88005

Report Summary

Friday December 28, 2007

Report Number: L324669
Samples Received: 12/19/07
Client Project: 68997611

Description: Huntsman Semi-Annual GW Sampling

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not havitate to call.

Entire Report Reviewed By:

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 09227, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375, DW21704, ND - R-140 NJ - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910

Terrie Fudge,

This report may not be reproduced, except in full, without written approval from Environmental Science Corp.

10 Samples Reported: 12/28/07 13:24 Printed: 12/28/07 15:27

Page 1 of 11

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Fred Small Terracon - Las Cruces 1630 Hickory Loop Ste H Las Cruces, NM 88005

December 28, 2007

ESC Sample # : L324669-01

Date Received : Description :

December 19, 2007 Huntsman Semi-Annual GW Sampling

Sample ID

MW-3S

Collected By Collection Date :

: FVS / CGM e: 12/17/07 14:20

Site ID :

Project #: 68997611

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Benzene	BDL	0.00050	mq/1	8021B	12/23/07	1
Toluene	BDL	0.0050	mg/l	8021B	12/23/07	1
Ethylbenzene	BDL	0.00050	mq/l	8021B	12/23/07	1
Total Xylene	BDL	0.0015	mg/l	8021B	12/23/07	1
Surrogate Recovery (77-118)			٠.			
a,a,a-Trifluorotoluene(PID)	100.		% Rec.	8021B	12/23/07	1

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)
Note:

The reported analytical results relate only to the sample submitted.

This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 12/28/07 13:24 Printed: 12/28/07 15:27

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

December 28, 2007

Fred Small Terracon - Las Cruces 1630 Hickory Loop Ste H Las Cruces, NM 88005

ESC Sample # : L324669-02

Date Received :

December 19, 2007 Huntsman Semi-Annual GW Sampling

Site ID :

Description

Sample ID

MW-3D

Project # : 68997611

Collected By : FVS / CGM Collection Date : 12/17/07 13:45

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Benzene	BDL	0.00050	mq/l	8021B	12/23/07	1
Toluene	BDL	0.0050	mg/l	8021B	12/23/07	1
Ethylbenzene	BDL	0.00050	mq/l	8021B	12/23/07	1
Total Xylene	BDL	0.0015	mg/l	8021B	12/23/07	1
Surrogate Recovery (77-118)			J.			
a,a,a-Trifluorotoluene(PID)	99.8		% Rec.	8021B	12/23/07	1

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

The reported analytical results relate only to the sample submitted.

This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 12/28/07 13:24 Printed: 12/28/07 15:27

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Fred Small Terracon - Las Cruces 1630 Hickory Loop Ste H Las Cruces, NM 88005 December 28, 2007

ESC Sample # : L324669-03

Date Received : December 19, 2007 Description : Huntsman Semi-Annua

Huntsman Semi-Annual GW Sampling

Site ID :

: MW-6D Sample ID

Collected By : FVS / CGM Collection Date : 12/17/07 11:09

Project # : 68997611

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Benzene	BDL	0.00050	mg/l	8021B	12/23/07	1
Toluene	BDL	0.0050	mq/1	8021B	12/23/07	ī
Ethylbenzene	BDL	0.00050	mg/l	8021B	12/23/07	ĩ
Total Xylene	BDL	0.0015	mg/l	8021B	12/23/07	1
Surrogate Recovery (77-118) a,a,a-Trifluorotoluene(PID)	98.8		% Rec.	8021B	12/23/07	1

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

The reported analytical results relate only to the sample submitted.

This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 12/28/07 13:24 Printed: 12/28/07 15:27

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

December 28, 2007

Fred Small Terracon - Las Cruces 1630 Hickory Loop Ste H Las Cruces, NM 88005

ESC Sample # : L324669-04

Date Received :

Description

December 19, 2007 Huntsman Semi-Annual GW Sampling

Site ID :

Sample ID

Project #: 68997611

Collected By : Collection Date : FVS / CGM 12/17/07 11:41

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Benzene	BDL	0.00050	ma/l	8021B	12/26/07	1
Toluene	BDL	0.0050	mg/l	8021B	12/26/07	ī
Ethylbenzene	0.0022	0.00050	mg/l	8021B	12/26/07	ī
Total Xylene	BDL	0.0015	mq/l	8021B	12/26/07	ĩ
Surrogate Recovery (77-118)			J		//	
a,a,a-Trifluorotoluene(PID)	95.2		% Rec.	8021B	12/26/07	1

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL) Note:
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Fred Small Terracon - Las Cruces 1630 Hickory Loop Ste H Las Cruces, NM 88005

December 28, 2007

ESC Sample # : L324669-05

Date Received : Description :

December 19, 2007 Huntsman Semi-Annual GW Sampling

Site ID :

Sample ID

MW-9S

Collected By : FVS / CGM Collection Date : 12/17/07 09:30

Project #: 68997611

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Benzene	BDL	0.00050	mg/l	8021B	12/24/07	1
Toluene	BDL	0.0050	mg/l	8021B	12/24/07	1
Ethylbenzene	BDL	0.00050	mg/l	8021B	12/24/07	1
Total Xylene	BDL	0.0015	mg/l	8021B	12/24/07	1
Surrogate Recovery (77-118) a,a,a-Trifluorotoluene(PID)	100.		% Rec.	8021B	12/24/07	1

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)
Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Fred Small Terracon - Las Cruces 1630 Hickory Loop Ste H Las Cruces, NM 88005

December 28, 2007

Date Received : December 19, 2007
Description : Huntsman Semi-Annual GW Sampling

Sample ID

UR

Site ID :

Collected By : FVS / CGM Collection Date : 12/17/07 14:52

Project # : 68997611

ESC Sample # : L324669-06

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Benzene	BDL	0.00050	mq/l	8021B	12/24/07	1
Toluene	BDL	0.0050	mg/l	8021B	12/24/07	î
Ethylbenzene	BDL	0.00050	mg/l	8021B	12/24/07	ī
Total Xylene	BDL	0.0015	mg/l	8021B	12/24/07	1
Surrogate Recovery (77-118)			-			
a,a,a-Trifluorotoluene(PID)	102.		% Rec.	8021B	12/24/07	1

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL)

The reported analytical results relate only to the sample submitted.

This report shall not be reproduced, except in full, without the written approval from ESC.

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Fred Small Terracon - Las Cruces 1630 Hickory Loop Ste H Las Cruces, NM 88005 December 28, 2007

ESC Sample # : L324669-07

Date Received : Description :

December 19, 2007 Huntsman Semi-Annual GW Sampling

Sample ID

Site ID :

Collected By : Collection Date :

FVS / CGM 12/17/07 14:57

Project # : 68997611

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Benzene	BDL	0.00050	mg/l	8021B	12/24/07	1
Toluene	BDL	0.0050	mg/l	8021B	12/24/07	1
Ethylbenzene	BDL	0.00050	mg/1	8021B	12/24/07	1
Total Xylene	BDL	0.0015	mg/l	8021B	12/24/07	1
Surrogate Recovery (77-118) a,a,a-Trifluorotoluene(PID)	100.		% Rec.	8021B	12/24/07	1

BDL - Below Detection Limit

Det. Limit - Practical Quantitation Limit(PQL)

The reported analytical results relate only to the sample submitted.

This report shall not be reproduced, except in full, without the written approval from ESC.

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Fred Small Terracon - Las Cruces 1630 Hickory Loop Ste H Las Cruces, NM 88005

December 28, 2007

Date Received : Description :

Collection Date :

December 19, 2007 Huntsman Semi-Annual GW Sampling

Sample ID

DUPLICATE

Collected By

: FVS / CGM e: 12/17/07 00:00

ESC Sample # : L324669-08

Site ID :

Project #: 68997611

Date	Dil.
2/27/07	1
2/27/07	ī
2/27/07	1
2/27/07	1
2/27/07	1
2	2/27/07 2/27/07 2/27/07 2/27/07

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Fred Small Terracon - Las Cruces 1630 Hickory Loop Ste H Las Cruces, NM 88005 December 28, 2007

ESC Sample # : L324669-09

Date Received : Description :

December 19, 2007 Huntsman Semi-Annual GW Sampling

Site ID :

Sample ID

EQUIPMENT BLANK

Project #: 68997611

Collected By : FVS / CGM Collection Date : 12/17/07 14:59

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Benzene	BDL	0.00050	ma/l	8021B	12/24/07	1
Toluene	BDL	0.0050	mg/1	8021B	12/24/07	1
Ethylbenzene	BDL	0.00050	mg/l	8021B	12/24/07	1
Total Xylene	BDL	0.0015	mg/l	8021B	12/24/07	1
Surrogate Recovery (77-118) a,a,a-Trifluorotoluene(PID)	101.		% Rec.	8021B	12/24/07	1

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL)

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Fred Small Terracon - Las Cruces 1630 Hickory Loop Ste H Las Cruces, NM 88005

December 28, 2007

ESC Sample # : L:324669-10

Date Received : December 19, 2007
Description : Huntsman Semi-Annual GW Sampling

Description

Site ID :

Sample ID

TRIP BLANK

Collected By : FVS / CGM Collection Date : 12/17/07 00:00

Project # : 68997611

Parameter	Result	Det. Limit	Units	Method	Date	Dil.
Benzene	BDL	0.00050	mq/l	8021B	12/24/07	1
Toluene	BDL	0.0050	mg/l	8021B	12/24/07	1
Ethylbenzene	BDL	0.00050	mg/l	8021B	12/24/07	1
Total Xylene	BDL	0.0015	mq/l	8021B	12/24/07	1
Surrogate Recovery (77-118)			J.			
a,a,a-Trifluorotoluene(PID)	101.		% Rec.	8021B	12/24/07	1

BDL - Below Detection Limit
Det. Limit - Practical Quantitation Limit(PQL) Note:
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 12/28/07 13:24 Printed: 12/28/07 15:27

Page 11 of 11

Summary of Remarks For Samples Printed 12/28/07 at 15:27:48

TSR Signing Reports: 064 R5 - Desired TAT

Sample: L324	1669-01 Account	: TERRLCNM Rece	ived: 12/19/0	7 09:00	Due Date:	12/27/07	00:00 R	T Date:	12/28/07	13:24
Sample: L324	1669-02 Account	: TERRLCNM Rece	ived: 12/19/0	7 09:00	Due Date:	12/27/07	00:00 R	T Date:	12/28/07	13:24
Sample: L324	1669-03 Account	: TERRLCNM Rece	ived: 12/19/0	7 09:00	Due Date:	12/27/07	00:00 R	T Date:	12/28/07	13:24
Sample: L324	1669-04 Account	: TERRLCNM Rece	ived: 12/19/0	09:00	Due Date:	12/27/07	00:00 R	T Date:	12/28/07	13:24
Sample: L324	1669-05 Account	: TERRLCNM Rece	ived: 12/19/0	7 09:00	Due Date:	12/27/07	00:00 R	T Date:	12/28/07	13:24
Sample: L324	1669-06 Account	: TERRLCNM Rece	ived: 12/19/0	09:00	Due Date:	12/27/07	00:00 R	T Date:	12/28/07	13:24
Sample: L324	1669-07 Account	: TERRLCNM Rece	ived: 12/19/0	09:00	Due Date:	12/27/07	00:00 R	T Date:	12/28/07	13:24
Sample: L324	1669-08 Account	: TERRLCNM Rece	ived: 12/19/0	09:00	Due Date:	12/27/07	00:00 R	T Date:	12/28/07	13:24
Sample: L324	669-09 Account	: TERRLCNM Rece	ived: 12/19/0	09:00	Due Date:	12/27/07	00:00 R	T Date:	12/28/07	13:24
Sample: L324	669-10 Account	: TERRLCNM Rece	ived: 12/19/0	09:00	Due Date:	12/27/07	00:00 R	T Date:	12/28/07	13:24

Chain of Custody Page of of	ENVIRONMENTAL	SCIENCE CORP.	12065 Lebanon Road	Mt. Juliet, TN 37122	Phone (615) 758-5858	Phone (800) 767-5859 FAX (615) 758-5859	And the state of t	Cocode TERRI CNIVE (labuse oniv)	Template/Preiogin		Semarks/Contaminant Sample # (lab only)	7				Ş	***			5	Temp \(\frac{1}{\text{O}} \)	V Other	Condition (lab use only)	led	pH:Checked: NGF
Analysis/Container/Preservative																					Hd	Flow	Samples returned via: Dedex Courier	Bottles Ragen	9 500
Analysis/Conta	SC.	**	77	ا ا ا	10)	μ Jα	100	G	引 分	21 <u>.</u> 31.	W A			×		X H	X			1 2	メメ		Samples r		(S)
A'temate billing information:			1.Small	@terracon.com	Sinland Part LAM	Key:	-10) Date Results Needed:	Email?No_Yes	FAX?No_Yes of	Date .	12/702220Pm 2	1. 45pm \	(11:04 /	(11.41	1 9.50	2:52	7.57		A 2:59 A	Drinking Water 0T - Other RIVE	2874 9420	eceived by: (Signature)	eceived by: (Signature)	Convertion by Signature)
	: :	Report to:	Acd	LYNOG C	ampling City/Sate	#: ESC Key:	#10.4	Be		Two Day50%	Matrix* Depth	₩.A.	GW	GW.	GEV.	GIW	10	7	30	60T	GW - Groundwater WM - WasteWater DW - E	がある	Date: Part 12Rm Re	Time: R	Time:
-000; St	M 8800				I HOMAIS	Client Project #:		Rush?			Comp/Grab	200	Grab	Gras	arab	arab	<u>a</u> 3	900	acolo	2 Grob	Sroundwater ww	·	Dark Dark	Date:	Date:
Terracon Inc. 1630 Hickory Loop; Ste H	Las Cruces, NM 88005				Project HUMSINGN SCHILL HTXCOL SCHIPLING Description:	Phone: 505-527-1700 FAX: 5715 527-1098	Collected by: FUS (CGM	Collected by (signature):		Packed on Ice N Y	Sample ID	MW-35	MW-30	MW - 60	MW - GS	MM-dS	CK.	∞	Duplicate	Equipment Blank	SOUSSIES SEE	Remarks:	Relinquanted by (Signature)	Remanished (Signang)	Relinquished by: (Signature)

ENVIRONMENTAL SCIENCE CORP.

SAMPLE NON-CONFORMANCE FORM

Sample N	10.: <u>L324669-JE</u>
Date:	12-19-07
Evaluate	1 by: Jasen
Client	TERRLONM
Non-Con	formance (check applicable items)
	Chain of Custody is missing Login Clarification Needed
	Improper container type Improper preservation Container lid and in text
	Chain of custody is incomplete Container lid not in tact Parameter(s) past holding time Improper temperature
	volume remains for analysis requested Insufficient packing material around container
	Insufficient packing material inside cooler
	Improper handling by carrier (FedEx / UPS / Courier)
	Sample was frozen
Comment	s: What Aftats? Metals Marked for Trip Blank No Metals container received.
	No Metals container received.
	σ . 1
Login Ins	tructions: TSR Initials:
Client info	rmed by call) email / fax / voice mail date: 2/20/07 time:
Client cor	rmed by call) email / fax / voice mail date: 12/20/07 time:
	J

HUNTSMAN GROUNDWATER SAMPLING EVENT

CALIBRATION OF HYDROLAB QUANTA® MULTI-PROBE

DATE: __ 6/1/07

Dissolved Oxygen:

100% saturation @ 690 barometric pressure.

pH:

7.0 standard calibration.

(Thermal Scientific catalog # RC1551-1)

4.0 standard calibration.

(Thermal Scientific catalog # RC1501-1)

Conductivity:

mS standard calibration @ 25°C. 10

(Thermal Scientific catalog # C5738-4)

5,23 mS slope reading on 5 mS standard @ 25°C.

Turbidity:

0.0 N.T.U. calibration standard.

(Hach/Hydrolab catalog # 26597-49)

10,0 N.T.U. slope calibration on 10 N.T.U. Formazin standard.

(Hach/Hydrolab catalog # 26599-49)

Redox Potential:

Zobell's Solution ORP standard = 433 m.V. @ 23 °C. (Hach/Hydrolab catalog # 013860)

Calibrations performed by:

8	DATE	6	1	4	٥	7
۲	NO.					
Βď	SHEET		1	OF	1	

FIELD ACTIVITY DAILY LOG

ESCRIPT	NAME TIVITY SUE TION OF DA	ILY AC	TIVITIE	SAND	EVEN	TS:	u	r le	exc		per	<u>~</u> ~.	/Ja	orgide	'an	
0900-	San	e sie	المجادرة	ML	U-9!	S	Took	1	ield	0	ara.	تر.	tens	•		
1030 -	Start	pu	Sing	M	w-1	GD.	200	k.	ful	d p	arc	عبيب	E.	<u>a' .</u>		
1127 -	Start Sange	pee	Sin	7. 1	414-	6S.	<u>:2</u>	10 B		e of	pe		معياس	ters.	,	
150-	Sauge	ER 1	401-	65	<i>L</i>	aug	1	de	cali	cate	120	to	As,	reples	, at mu	- لم
225 -	Start	pu	Jus	MI	J-31	D	cok	1	cep	Page	ia ga	يخص	èco	<u> </u>	,	·;
212 -	Sang	1	<u>می - ریرا</u> ا ـ ۱ ـ			+ 1	1				·		<u></u>	 .	- 5	
215-	Start	Pa	as co	-25	-33.	1	1	7	210		******************	<u>بريمري</u> :		' ''		<u>–</u>
																Ż
40 -	Causi	1 6	A Comment	3.40.4.25	*	lela		671	L	ه دماده	سعاد المادية من المادية	A.	1	10	مرسد	-
!	Caug Caug Sarry	a lier	45	10	سا	, :	<u> </u>	- : 	1		· · · · · · · · · · · · · · · · · · ·					<u>-</u> -
44 -	2006	1	C- 40	0	Dana	met	4	12	1 647	ا لام ∔ ا	Live	1 1	are	ale 1 a	rit	Z.
45 -	Same	see	un)	n kir	er	3pl	Rec		Las	cole	2		7	; ;	
04-	2001	fe	10	pa	iam	eter	ر م	ato	low	· -	مداره	7	Jany	Plia	sil	4
<u> - 20</u>	Sam Jook Son p	le	dor	724	بمر	cree_		1 1	Pio.	2	سما	La	-	10		
						<u> </u>	+ + +	(1	<u>i</u>			· · · · · · · · · · · · · · · · · · ·	<u></u>			
				; !			+	!	1 1			:		<u> </u>		· •
		<u> </u>	<u>i</u>	<u> </u>	<u>; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; </u>		1 1		<u> !</u>	+		 		1		·
++			·	<u> </u>		- <u>i</u>	<u>! </u>			<u> </u>	-!-	;		 	 	<u>:</u> _
				· 	1 1	- i			<u> </u>	 ;	<u> </u>	-	!		1 :	;
					1 1		 	·		! ;	<u>\</u>	1	<u>}</u>	ļ	·	: :
			*							<u> </u>		<u></u> j		 	<u>i i</u>	<u></u> -
rors o	N SITE:		41.4			CHAI	NGES	FROM	PLANS	AND	SPECIF	ICAT	IONS,	AND		<u></u>
						UTH	en sp	ECIAL	ORDE	15 ANI) IMPC	MIAN	II DE	CISIONS	·-	
HER CO	NDITIONS:		·	· · · · · · · · · · · · · · · · · · ·		IMPO	RTAN	T TFI	EPHON	ECAL	1 6.					
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									m: : (\\)/4	- 046	 ₩.					
	far	•														
	U				·									_		
					les,	/		5m	-							

GENERAL I Well numb Air Tempe Sampling	INFORMATION per MW-9S performed by	(°F)	Date 6 / 14 . Wea 2 + F.S.	/ 07 ther Cond	Time_ itions	0851
STATIC WA	TER LEVEL (S	NL) MEAS	UREMENTS BELOW 4.61	TOP OF C		
Air / Imm. Immiscible	E FLUID (IF) iscible Fluid e Fluid / Wat nmiscible Flu	l Interfa er Inter	face Level	BELOW TO	OP OF CASING (ft) (ft)	5
Feet of Wa Purging St Pumping Ra Volume of	Below Top of ter in Casin art Time Ote 2 Water Remove	9 <u>/0.89</u> 900 (liters d <u>3</u>	/5.50 (ft) (feet) Vol- Puroper min) Pump (gallons) (Field Paramet	ume of War ging Stop o type: (Sul	ter in Casi Time Bladder Du	ng 7.19 (gal)
Time(min.)	Temp.(°C)	рН	Cond. (mS/cm)	D.O.(∜)	Redox(mV)	Turb. (NTU)
	20.98	7,26	/3.26	4.2	82	
10			13.23		76	46.3
. 15	21.54	7.27		2.0	77	25./
	21,54	7.27	13,12	1.6	75	19.1
<u></u>	2).56	7.27	13.07	1.4	7/	/3.0
<u> 30</u>	21.54	7:27	13.01	1.2	66	10.3
35	21.58	7,27		1.1	63	9.1
40	21.60	7.27	1292	1.0	56	7.7
45	21.61	7.27	12.87	.9	52	7.4
50	21.64	7.27	12.85	. 9	48	6.3
55	21.66	7,27	12.79	, 8	45	.5,0
60	21.67	7.27	12.8/	. 8	4/	4.9
65	21.70	7.28	12.77	. 8	39	
		· · · · · · · · · · · · · · · · · · ·				
Well Integrity	good / n	eeds atten	tion)			
COMMENTS:	_	•				,
	lear 1/ slight	an her	tist			*
	- July Company					· · · · · · · · · · · · · · · · · · ·
			1009			
						•
			<u> </u>			

Well numb Air Tempe	NFORMATION er MW-6] rature gr performed by)(°F)gr	Date 6 / 14 Wea	/ <u>07</u> ther Cond	Time 10: itions far ompany Thurs	a / Jenson
			EMENTS BELOW 5.04		ASING	
Air / Immi Immiscible	scible Fluid	Interfac er Interf	ace Level	*, "	OP OF CASING (ft) (ft) (ft)	;
Volume of V	Below Top o ter in Casind art Time te .7 Water Removed	l(liters pe	38.00 (ft) (feet) Volumer min) Pump gallons)	y type: (Sul	Rladdor Du	74)
Time(min.)	Temp. (°C)	рн	Cond. (mS/cm)	D.O.(*)	Redox(mV)	Turb. (NTU)
\$ /6 /5 20. 25 30 35 40	21.18 22.08 22.16 22.15 22.18 22.14	7.12 7.14 7.15 7.16 7.16 7.16 7.17	21.3 21.3 21.2 21.2 21.2 21.1 21.1	4.5 3.6 2.7 2.3 1.8 1.6 1.4 1.3	/08 /08 /// //2 //0 /08 /06	12.1 3.7 1.1 .7 .4 .2 .3 .4
ell Integrity:	(good) / ne	eeds attenti	(1112)			
· C	lear					

GENERAL I	NFORMATION	, <u>\$</u>				
Air Temper	er <u>MW-6</u> rature 85 performed by	(°F)	Date 6 / 14 Wear	ther Cond:	Time_ itions ompany_#	Med Marian
STATIC WAT Depth to S	FER LEVEL (SW Static Water	L) MEASU Level	REMENTS BELOW	TOP OF CA	SING	
Air / Immi Immiscible	scible Fluid	Interfacer Inter	face Level		P OF CASING (ft) (ft) (ft)	;
Feet of War Purging Sta Pumping Rat Volume of N	Below Top of ter in Casing art Time //2 te / / (Water Removed	7 //.88 	/7.00 (ft) (feet) Volumer min) Pump (gallons) (Field Paramet	ume of Wat ging Stop p type: (Sub	ter in Casi Time Bladder Pu	ng 7.84 (gal)
Time(min.)	Temp. (°C)	рН	Cond. (ms/cm)	D.O.(%)	Redox(mV)	Turb. (NTU)
S Io	21.95 21.96 21.88 21.88	7.06 7.06 7.06 7.06	16.6 16.5 16.5 16.5	1.0	68 67 63 60	3.9 3.7 4.1 4.1
ell Integrity:	good / ne					Accession of the Conference of
comments:	Catch	dup	heate samp	eles,		
			(1150)			
amber	- colored p	unge.	Slight by	drocarbi	nodor.	

Well numbe	VFORMATION Property MW-3 Tature 8 Decrease by	D D D D ga	ate 6 / 14 Wear	/ <u>07</u> ther Condi	Time /: tions fac	220
STATIC WAT Depth to S	PER LEVEL (SV tatic Water	VL) MEASURI Level	MENTS BELOW	TOP OF CA	SING	
Air / Immi Immiscible	FLUID (IF) scible Fluid Fluid / Wat miscible Flu	l Interface er Interfa	ce Level	BELOW TO	P OF CASING(ft)(ft)(ft)	
Feet of Wat Purging Sta Pumping Rat Volume of W	Below Top of the second	g 33.28 (225 . (liters pe: d 2 (37.50 (ft) feet) Volume r min) Pump gallons) Field Paramet	ume of Wat ging Stop p type: (Sub	er in Casin Time /25 Bladder Pum	ng 2/.96 (gal) 5 (None)
Time(min.)	Temp. (°C)	pH C	Cond. (mS/cm)	D.O.(%)	Redox(mV)	Turb. (NTU)
5 10 15 20 25 30	21.50 21.34 21.35 21.40 21.82 22.00	7.00 7.02 7.03 7.04 7.04 7.05	20.2 20.1 20.1 20.2 20.2 20.2	7.6 5.6 4.9 2.9 1.8	144 145 145 143 142 140	7.5 9.7 8.8 8.3 8.3 8.0
Well Integrity;	good / n	eeds attentio	on ;			•
COMMENTS:		The second secon				·
	lear.		(1257)			*
		·.				

Well numb Air Tempe	NFORMATION er MW- rature performed by	3 <u>\$</u> 27 (° F)	Pate 6 / 14 Wea + F.S.	/ 07 ther Cond	Time /	310
	rer Level (<i>s</i> Static Water	WL) MEASUR	EMENTS BELOW			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Air / Immi Immiscible	scible Fluid	l Interfac ter Interfa	ace Level	• •	OP OF CASING (ft) (ft)	
Volume of	Below Top c ter in Casin art Time / te /2 Water Remove	d 2_ (/6.50 (ft) (feet) Volume (from min) Pum (gallons) Field Paramet	(Sul	Estanger La	/ (inches) ng 8./3 (gal) np) / (None) / (Canister)
Time(min.)	Temp. (°C)	Нq	Cond. (m5/cm)	D.O.(%)	Redox (mV)	Turb. (NTU)
5 10	23,40 23,37 23,70	7.15 7.16 7.16	12.95	6.4 4.5 3.8	143 143	12.1 9.8 11.6
20.	23.49	7.16	12.87	3.4	142	11.3
30	23.61	7.16	12.85	3,0	139	10,7
	-	-				
						•
	r			The second second		
		~ 				
Well Integrity;	(good) / n	eeds attenti	on)			
-					·	•
COMMENTS:	The state of the s	· -				
				····		1
Clean		(134	(5)			
	•	<u> </u>				
		-				
					<u></u>	
						:

GENERAL I Well numb Air Tempe Sampling	NFORMATION er <u>UP-R//</u> rature <u>9</u> performed by	1ER 2 (°F)	Date 6 / 14 Wear	1 67 ther Cond	Time /S itions fai ompany fund	38
STATIC WAS	PER LEVEL (S	WL) MEASU	REMENTS BELOW	TOP OF CA		
Air / Immi Immiscible	scible Fluid Fluid / Wat	d Interfac ter Interi	E MEASUREMENTS ce Level face Level	•.	P OF CASING (ft) (ft) (ft)	;
	Below Top of ter in Casin art Time te Water Remove		(ft) (feet) Volumer min) Pump (gallons) (Field Paramet		Diameter ter in Casi Time (Bladder Pur omersible)	(inches) ng (gal) np) / (None) / (Canister)
Time(min.)	Temp. (°C)	рН	Cond. (m5/cm)	D.O.(%)	Redox(mV)	Turb. (NTU)
1544	18.37	7,66	0.911	79.4	205	308
					1	
		Alexander and the second				
ell Integrity:	(good / r	needs attent	ion)			
				1630		•
omments:	aught of	iera 1	blank at	1538.	+ 101	
	aught og	upnest.	Artona Or	dipper	ax 15 40	7.
		154	5			
		(13)				
Re	ier is I	, ll . 2	nuddy + t	in bid		
			y			

GENERAL II Well numbe Air Temper Sampling p	NFORMATION er <i>Down-R</i> eature 73 performed by	IVER (°F)	Date 6 1 14 Wea	/ 07 ther Cond	Time itions (a) ompany (H)	1558
STATIC WAT	ER LEVEL (SW	L) MEASI	DREMENTS BELOW	TOP OF C		
Air / Immi Immiscible	scible Fluid Fluid / Wat	Interfa er Inter	E MEASUREMENTS ICE Level face Level		(ft) (ft)	;
Purging Sca Pumping Rat Volume of W	Below Top of cer in Casing art Time (e(vater Removed	liters	(ft) (feet) Volume Pure per min) Pump (gallons) (Field Paramet	ging Stop c type: (Su)	Diameter ter in Casi Time (Bladder Pub bmersible)	(inches) ng(gal) np) / (None) / (Canister)
Time(min.)	Temp. (°C)	рН	Cond. (ms/cm)	D.O.(%)	Redox(mV)	Turb. (NTU)
1604	27.89	7.95	0.912	77:2	204	3/0
			*			
				A Louisian Company Company		

						PHM2 to annual to the second s
				. *		
					· · · · · · · · · · · · · · · · · · ·	
Y-11 Totageiter	(5001 / 00					
Well Integrity:	(good / ne	eds acten	tion y		•	,
COMMENTS:			\			
		1605)		•	1
				Amanua Amanua		
			4	- A		
	Keire.	es fre	il + mug	E.		

8	DATE	6	15	07
3	NO.			
ă	SHEET	-	OF	1

FIELD ACTIVITY DAILY LOG

ROJ	ECT NAM	ME Bric	bland	l Si	te 1	bun	dus	ter ,	Samp	sling	PROJ	ECT N	10.	Jun	e '0	7
TESC TESC	BIPTION	ITY SUBJECT	ACTIV	ITIES A	NOTEVE	waZ	er.	Pr	t CR	sin	9					
	Lh	ire wa	s a	pro	Kema	tely	12	g	M	ns i	1 6	ىرىدىر ئام	zeu	ate	L	
i 	mul	rapur	ing.	an	d'a	1an	عص	2	Lu	una	th		Au	me	· · · · · · · · · · · · · · · · · · ·	•
	en	est. toma	11	re.	succ	Ru	e te	_ 4	saa!	tra	، ومستخد داست	الر بد	40	to		1 -
	wa	tar u	vas	pu	· Andrews	2	th	1020	R	A.	st	L E Grange		12	lui e	
l. 	70	tetue	ممت	de	g_Z		Rose	A LANGE	<u>* 42</u>	ry	025	a.	د جــــ			
-	m															
	<u> </u>			1 1	· · · · · · · · · · · · · · · · · · ·		<u>;</u>	<u> </u>			!	! <u> </u>	- -	1	.) !.	.·
-;				1	: _1_			.	-		:			-		
			!	_1, _1	; I	:		i ,		1		· · · · · ·			 	
			<u>! </u>	1 !				1	! -1-	1 :		; , ,	<u> </u>	! !	· · · · · · · · · · · · · · · · · · ·	
			 	! !		- ! : 			1			· · ·	<u>i</u>		1	-
· · ·	! i		<u> </u>	<u>;</u>		<u> </u>		i	1		1	-		1		_ !
<u>-</u>	· i · i	in i	<u> </u>	<u>! </u>				<u>i</u> .	!	+ +		; i	! !	!	<u> </u>	
		<u> </u>		1 !		i i	! !			<u> </u>		1		·		
	+ +	1	!		·	1 !			<u> </u>			<u>!</u>			 	:
				1	* 155.00/ 4/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/	1 1			l	_ _		- -	<u>; </u>		! !	, : :
<u>:</u>	<u> </u>	! 		· . ·	ha a jama	i	; . 					1			·	• •
TOR	S ON S	ITE:		: 	·	CHA	ANGES	FROM	PLANS	S AND S	PECIFI	CATIO	DNS, A	ND	:	<u>:</u>
				,		011	HER SP	ECIAL	ORDE	RS AND	IMPOF	RANT	r deci	SIONS.		
THEF	R CONDI	TIONS:				IMP	ORTAN	NT TEL	EPHON	IE CALL	S:	****	····			
		Jan														
ERSC	ONNEL	ON SITE	G	len i	Pho de	,5				···						
ŲTAI	RE	00.	01	1.								ATE:		15-0		

TERRACON GROUNDWATER SAMPLING EVENT

CALIBRATION OF HYDROLAB QUANTA® MULTI-PROBE

DATE: 12-14-07

Dissolved Oxygen:

100% saturation @ 690 barometric pressure.

pH:

7.0 standard calibration.

(Thermal Scientific catalog #RC1551-1)

4.0 standard calibration.

(Thermal Scientific catalog #RC1501-1)

Conductivity:

10 mS standard calibration @ 25°C.

(Thermal Scientific catalog #C5738-4)

5· // mS slope reading on 5 mS standard @ 25 °C.

Turbidity:

0.0 N.T.U. calibration standard.

(Hach/Hydrolab catalog # 26597-49)

10.0 N.T.U. slope calibration on 10 N.T.U. Formazin standard. (Hach/Hydrolab catalog # 26599.49)

Redox Potential:

Zobell's Solution ORP standard= 450 m.V. @ 15 °C.

(Hach/Hydrolab catalog # 013860)

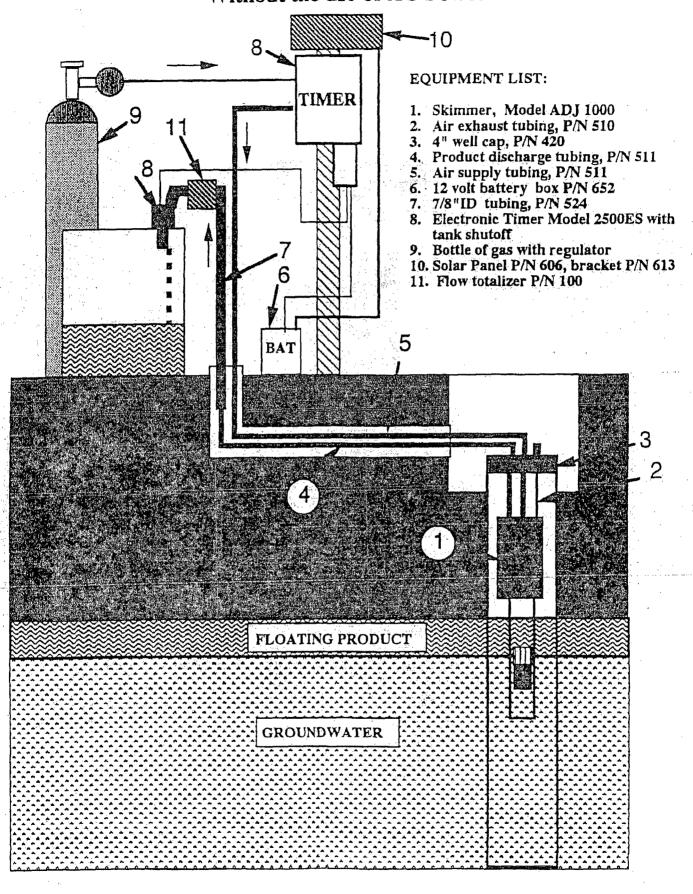
Calibrations performed by: Fred Small

90	DATE	12	17	07
ולער	NO.			
ă	SHEET	Γ (OF	: 1

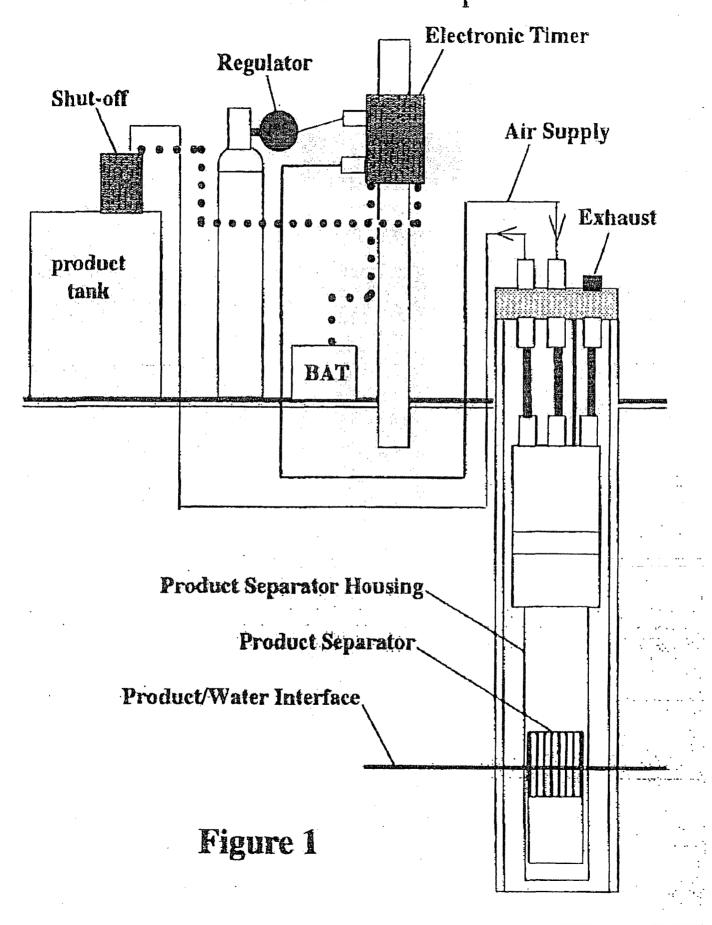
FIELD ACTIVITY DAILY LOG

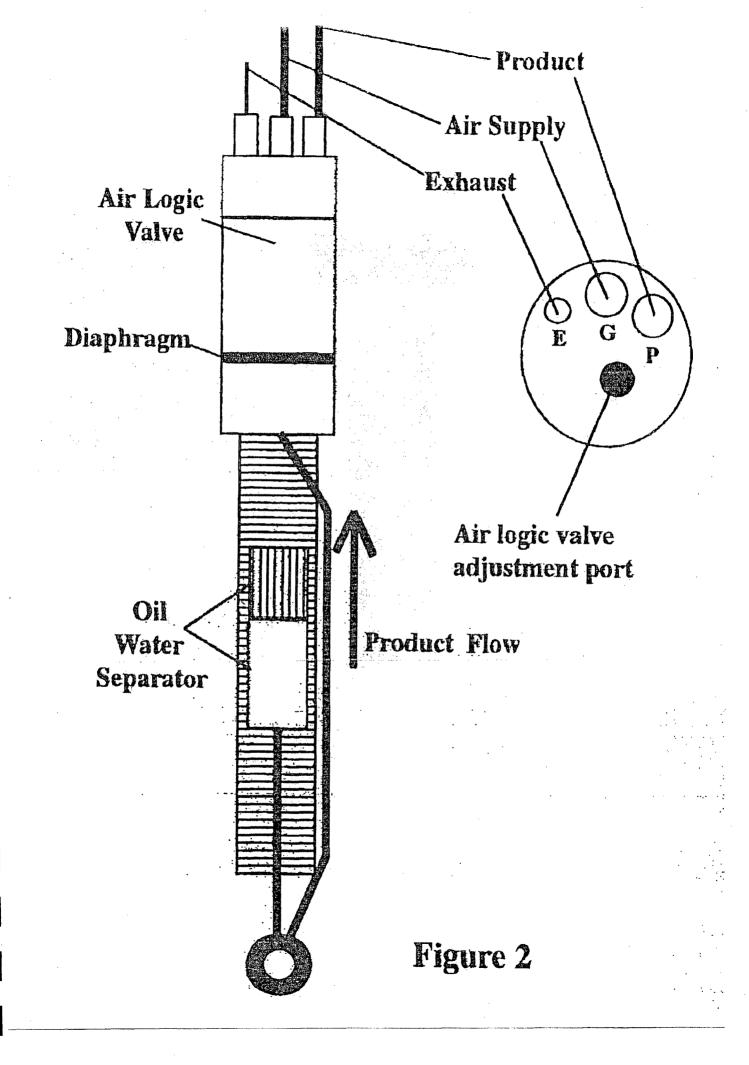
PIELD ACTIVITY SUBJECT: DECEMBER 2001 MONITO(ING) WELL & RIVER SAMPLING DESCRIPTION OF DAILY ACTIVITIES AND EVENTS: Q1 53 BEGIN PURIGINAL MONITO(ING) WELL MW-95. Brad and INCOME HELD PREMINE LO 28 STOP DURGING LO 30 COLLECT SAMPLE LO 30 COLLECT SAMPLE LO 30 COLLECT SAMPLE LO 97 COLLECT SAMPLE LI 09 COLLECT SAMPLE LI 19 COLLECT SAMPLE LI 09 COLLECT SAMPLE COLLECT SAMPLE COLLECT SAMPLE CHANCES FROM LAND CHANCES FROM LAND CHANCES FROM LAND CHANCES COLLECT CHANCES FROM LAND CHANCES COLLECT CHANCES FROM LAND CHANCES COLLECT CHANC	PROJECT NAME FORMER Drick I and Re	finery Stresampling ROJECT NO. 68997611
OGY, BS. BEAD DURGING MONITORING WEM. MW-95. BEAD AND COLOR OF THE ADMINISTRATION OF BALLY ACTIVITIES AND EVENTS. 10:28 Step DURGING. 10:30 COLOR SAMPLE. 10:30 REGIN AURIGING MW-60. Record field parameters. 11:07 Step. 11:08 Begin Auriging MW-60. Record field parameters. 11:39 End purging. 11:41 COLOR SAMPLE. From MW-65. COLOR GROTHER SAMPLE. 11:39 End purging. 11:41 COLOR SAMPLE. From MW-65. COLOR GROTHER SAMPLE. 13:18 Stop purging. 13:18 Stop purging. 13:18 Brg. Auriging from MW-30. Record. 13:14 Brg. Auriging from MW-30. Record. 13:14 Brg. Auriging from MW-30. Record. 13:14 Brg. Auriging from MW-35. Record. 13:14 Brg. Auriging from MW-35. Record. 14:18 Brg. Auriging from MW-35. Record. 14:18 Brg. Auriging from MW-35. Record. 15:14 Brg. Auriging from MW-35. Record. 16:14 Color Sample from MW-35. Record. 16:15 COLOR TESTION BURGE. WITH SECONDER WATER SAID. 16:17 COLOR TESTION DIPPER WITH SECONDER WATER SAID. 16:17 COLOR TESTION DIPPER WITH ALCONOX, COLOR COLOR FOR MALLY THE OUT OF CALLY COLOR	FIELD ACTIVITY SUBJECT: DECEMBER 20	or Monitoring well e River Sampling
IC: 28 Step purguage Lo: 30 Collect Sample Decord field parameters Lo: 42 Began Aurgung MW-60 Becord field parameters Lo: 42 Began Aurgung MW-65 Becord field parameters Lo: 69 datect sample from MW-65 gollect another sample Lo: 41 Collect sample from MW-65 gollect another sample Lo: 41 Collect sample from MW-65 gollect another sample Lo: 42 Began Aurgung MW-30 Berord field parameters Lo: 43 Step purgung Lo: 45 Step purgung Lo: 48 Began Aurgung MW-30 Berord field parameters Lo: 48 Began Aurgung Lo: 48 Began Au	DESCRIPTION OF DAILY ACTIVITIES AND EVENTS:	0
IC: 28 Step purguage Lo: 30 Collect Sample Lo: 30 Collect Sample Lo: 42 Began Aurgung MW-60 Record field parameters Lo: 09 Collect Sample from MW-60 Lo: 09 Collect Sample from MW-60 Record field parameters Lo: 09 End purguage Lo: 41 Collect sample from MW-65 dollect gnother sample Lo: 41 Collect sample from MW-50 Record field parameters Lo: 43 Step purguage Lo: 43 Step purguage Lo: 43 Step purguage Lo: 44 Began purguage Lo: 48 Began purguage Lo: 48 Began purguage Lo: 48 Began purguage Lo: 48 Step purguage Lo: 50 Decen tertor steppe with stepper wi	109: 53 BEOIN DUTGING MOT	itoring wey MW-95. Bead and
LO: 28 Step DUTGING LO: 30 COLLECT SAMPLE (0: 42 BEGIN AUGING MW-60. BECORD FIELD DATAMETERS LI: 07 Step LI: 09 GOLCET SAMPLE FROM MW-65 LI: 09 End purging MW-65 Reford FIELD DATAMETERS LI: 39 End purging MW-65 Reford FIELD DATAMETERS LI: 39 End purging MW-65 Reford FIELD DATAMETERS LI: 39 End purging MW-50 Becord field parameters LI: 30 Begin purging MW-50 Becord field parameters LI: 41 COLLECT SAMPLER FROM MW-50 LI: 45 Stop purging MW-50 Becord field parameters LI: 48 Begin purging MW-35 Record Record LI: 48 Stop purging from MW-50 LI: 48 Stop purging from MW-50 LI: 48 Stop purging from MW-50 LI: 50 Occon Tection Bipate With Stephen Weller Sample LI: 50 COLLECT COWNSTRAM TWO SAMPLE LI: 57 COLLECT COWNSTRAM TWO SAMPLE CHANGE FROM PLANS AND SPECIFICATIONS, AND OTHER SPECIAL ORDERS AND IMPORTANT DECISIONS. MACHINE WALL MATTER FROM V SMALL (ALTING 6. M U NOTE) GERSONNEL ON SITE: FROM V SMALL (ALTING 6. M U NOTE) GERSONNEL ON SITE: FROM V SMALL (ALTING 6. M U NOTE) GERSONNEL ON SITE: FROM V SMALL (ALTING 6. M U NOTE) GERSONNEL ON SITE: FROM V SMALL (ALTING 6. M U NOTE) GERSONNEL ON SITE: FROM V SMALL (ALTING 6. M U NOTE) GERSONNEL ON SITE: FROM V SMALL (ALTING 6. M U NOTE)	roloid field pai	amoters
10:42 Begin Aurging MW-60. Record field parameters 11:07 Stop 11:07 Stop 11:07 Stop 11:07 Stop 11:07 Stop 11:14 Beging purging MW-60. Record field parameters 11:39 End aurging MW-65. Record field parameters 11:45 Collect sample from MW-45. Collect another sample 13:18 Stop purging MW-30 Becord field parameters 13:43 Stop purging MW-30 Becord field parameters 13:43 Stop purging MW-30 Becord field parameters 13:43 Stop purging MW-35 Record field parameters 13:48 Brain purging MW-35 Record field parameters 14:18 Stop aurging from MW-35 Record elected gardened from MW-35 Record elected gardened from MW-35 Record field parameters 14:50 Collect sample from MW-35 Record water sand 14:50 Collect sample from MW-35 Record water sand 14:51 Collect camping from MW-35 Record field water sand 14:51 Collect camping from MW-35 Record water sand 14:51 Collect camping from MW-35 Record field water sand 14:51 Collect camping from MW-35 Record field parameters 14:52 Collect camping from MW-35 Record field parameters 14:53 Collect camping from MW-35 Record field parameters 14:54 Decon Terron Ulpaper WH of Collect camping from MW-35 Record field parameters 14:54 Collect camping from MW-35 Record field parameters 14:57 Collect camping from MW-35 Record field parameters 15:48 Becond from MW-35 Record field parameters 16:48 Beco		
11: 091 GOLLECT SAMPLE HOM MW 60 11: 14 BEGIND PUTGING MW 65 RECORD FIELD PAIRWAGE 11: 39 END PUTGING MW 65 RECORD FIELD PAIRWAGE 11: 31 COLLECT SAMPLE FROM MW 65 GOLLECT ANOTHER SAMPLE 13: 45 Stop PUTGING MW 30 BECORD HOLD PAIRWAGES 13: 45 Stop PUTGING MW 30 BECORD HOLD PAIRWAGES 13: 48 BEGIN PUTGING HOM MW 30 13: 48 BEGIN PUTGING HOM MW 30 14: 18 STOP PUTGING FROM MW 35 14: 18 STOP PUTGING FROM MW 35 14: 50 DECON TECTION PUTGE FROM MW 35 14: 50 DECON TECTON ALPROPE WITH ALE GOALD WATER GOOD 14: 57 OCIOCH UPSTITAM TWO SAMPLE 14: 57 DECON TECTON ALPROPE WITH ALCONOX, ADMINISTRATION OTHER SPECIAL ORDERS AND IMPORTANT DECISIONS. 15: 18 STOP PUTGING PLANS AND SECRET CATIONS AND SAMPLE 14: 57 DECON TECTON PLOPEY WITH ALCONOX, ADMINISTRATION FROM CHANGES FROM PLANS AND SECRET CATIONS AND SAMPLE 15: 15: 15: 15: 15: 15: 15: 15: 15: 15:	10:30 Collect Sample	
II. Of colect sample from MW 60 III. 14 Beging purging MW 65 Record field parameters II. 39 End durging MW 65 Record field parameters II. 41 Collect sample from MW 65. collect another sample IS. 18 Beging purging MW 30 Becord field parameters IS. 145 Stop purging from MW 30 IS. 145 Begin purging from MW 30 IS. 148 Begin purging from MW 35 Record record IF. 18 Stop purging MW 35 Record record IF. 20 Gollect sample from MW 35 Record record IF. 20 Gollect sample from MW 35 IF. 50 Decon terror hipper with elemonical water and collect equipment blant sample IF. 53 Decon terror dipper IF. 53 Decon terror dipper IF. 59 Decon terror dipper IF. 50 Decon terror	10:42 Body Punging M	W-60. Becord freed parameters
III. 14 BEGING PUIGING MW-GS. RECORD FIELD PARAMETERS II. 39 End purging II. 41 COLLECT SAMPLE From MW-GS. COLLECT GNOTHER SAMPLE IS. 18 STOP PURGING MW-30 RECORD FIELD PARAMETERS IS. 45 STOP PURGING MW-30 RECORD FIELD PARAMETERS IS. 45 STOP PURGING MW-30 RECORD FIELD PARAMETERS IS. 48 BROWN PURGING MW-35 PRECIE RECORD IF. 18 STOP PURGING FROM MW-35 IF. 50 OCCON TEFTOR PURPLE WITH ELEMONICAL WATER SAMO COLLECT SAMPLE FROM MW-35 IF. 50 OCCON TEFTOR PURPLE WITH ELEMONY OF WHICH SAMO COLLECT COUNSTITION CUPPER WITH ALCOHOLY COUNTERFEED HAS DECON TEFTOR CUPPER WITH ALCOHOLY COUNTERFEED CHANGES FROM PLANS AND SPECIFICATIONS, AND OTHER SPECIAL ORDERS AND IMPORTANT DECISIONS. SUNNY & 45°F PERSONNEL ON SITE FREY V SMAIL (CALING 6. M U N 02) GINATURE () WITH FREY V SMAIL (CALING 6. M U N 02) GINATURE () WITH FREY V SMAIL (CALING 6. M U N 02)	11:07 Stop	
11:39 End purging: 11:41 Collect sample from Mw-65. Collect another sample 13:18 Pron Diffing Mw-30 Bocard titld parameters 13:45 Stop purging Mw-30 Bocard titld parameters 13:45 Stop purging Mw-30 Bocard titld parameters 13:48 Brain purging from Mw-30 13:48 Brain purging from Mw-30 14:18 Stop purging 14:20 Collect sample from Mw-35 14:50 Docard terror Dipper with elementary worker sand 14:50 Collect campinent blanks Sample - Com. 14:51 Collect upstram river sample 14:57 Collect downstram river sample 14:57 Decard Terror Dipper with Alconox, accubic tinsed 14:57 Decard Terror Dipper with Alconox, accubic tinsed 14:57 Collect downstram river sample 15:48 Decard Terror Dipper with Alconox, accubic tinsed 14:57 Collect downstram river sample 14:57 Decard Terror Dipper with Alconox, accubic tinsed 14:58 Decard Terror Dipper with Alconox, accubic tinsed 14:57 Decard Terror Dipper with Alconox, accubic tinsed 14:58 Decard Terror Dipper with Alconox, accubic tinsed 15:40 Decard Terror Dipper with Alconox, accubic tinsed 16:40 Decard Terror Dipper with Alconox accubic tinsed 16:40 Decard Terror D	11:09 collect sample-	from MW-60
13:45 COLLECT SAMPLE FROM MW-65. GOLLECT GOTTHER SAMPLE 13:45 STOD PUTGING MW-30 BECORD FITTED PATAMETES 13:45 STOD PUTGING MW-30 BECORD FITTED PATAMETES 13:45 STOD PUTGING MW-30 BECORD FITTED PATAMETES 13:48 Brain PUTGING MW-35 RECTION RECORD 14:18 STOD PUTGING FROM MW-30 14:18 STOD PUTGING FROM MW-35 RECTION WATER STOPPE 14:50 DECENTER OF PITTED WITH SECONDER WATER CAMPLE 14:51 DECENTER OF PITTED WITH ALCOMOX, CONSIDER TO SECONDER WITH STOPPE WITH ALCOMOX, CONSIDER TO SECONDER WITH STOPPE WITH ALCOMOX, CONSIDER TO SECONDER WITH STOPPE WITH ALCOMOX, CONSIDER SECONDERS AND IMPORTANT DECISIONS. WHAT SOME ON SITE: WHAT WAS AND SECONDARY OF THE PROPERTY O	11:14 Beging purping	MW-65 Actord field paraimeters
13:18 Brown auging MW-30 Bacord field parameters 13:45 Stop purging 13:45 Collect Sampleage from MW-30 13:48 Brown purging MW-35 Precide Record 14:18 Stop purging 14:20 Collect Sample from MW-35 14:50 Decon reflor Blant With ele-loaned water against thank Sample 14:51 Collect equipment thank Sample 14:57 Collect upstram river sample 14:57 Collect downstram river sample 15:18 Decon Tetion alphan with Alconox downleads and with Highland and Sample others and Important blacks 15:18 Decon Tetion alphan with Alconox downleads and make the conditions. 15:18 Decon Tetion alphan and specifications and sample others and important blacks. 15:18 Decon Tetion alphan with Alconox downleads and important blacks. 15:18 Decon Tetion alphan with Alconox downleads and important blacks. 15:18 Decon Tetion alphan and specifications and sample others are precided and the proper with Alconox downleads. 15:18 Decon Tetion alphan river sample of the proper with Alconox downleads and the proper with Alconox downle		
13:18 Stop purging MW-30 Bocord field parameters 13:45 Stop purging 13:45 Scollect Samplehag from MW-30 13:48 Brain purameters 14:18 Stop purging 14:20 Gollect Sample from MW-35 14:50 Decon Terror Bipper with ele-landed water and 14:51 Collect Cample from MW-35 14:51 Collect Cample from MW-35 14:57 Collect Cample from MW-35 14:57 Collect Cample with Alcanox ample 14:57 Collect Campstram river sample 14:57 Collect Campstram river sample 14:57 Collect Campstram river sample 15:18 Decon Terion dipper with Alcanox and lerinsed with Alcanox and specifications and sample others special orders and important decisions. 15:18 March 11:18 Changes from plans and specifications, and sample others special orders and important decisions. 15:18 March 11:18 March		
13:43 Stop purging 13:45 Collect Sampleng from MW-30 13:48 Brain purging MW-35 Recicl & Becord Field parameters 14:18 Stop purging 14:20 Collect Sample from MW-55 14:50 Decon Terror Staper with ele-lonized water and 14:51 Collect adjunct blant Sample CSM. 14:52 Collect adjunct blant Sample 14:53 Pacon Ferion alphan river sample 14:54 Collect adwnstram river sample 14:57 Decon Terion alphan river sample 15:18 Collect adwnstram river sample 15:18 Collect adwnstram river sample 16:18 Collect advisor advance and river sample 16:18 Collect advance an		
13:45 SOILER SAMPLEAGE FROM MW-30 13:48 Brain purging MW-35 Recicl & Becord 14:18 Stop purging 14:20 Collect Sample From MW-35 14:50 Dean Terror Dipper with ele-lonized water and 14:51 Collect Cownstrain Tiver Sample CSM. 14:52 Collect Westrain Tiver Sample 14:53 Pecon Ferion dipper with Alcanox, dauble-thsed 14:57 Decon Terion dipper with Alcanox, dauble-thsed 15:17 Decon Terion Dipper with Alcanox, dauble-thsed 15:18 Decon Terion Dipper with Alcanox, dauble-thsed 15:18 With Alcanox water through callery and pre- 15:18 Sunny & 45°F PERSONNEL ON SITE: Freq V SMGIL (Gring 6. MU NOZ) IGNATURE DATE: 1217-107		W-30 Bacard field parameters
13:48 Bran purping Mub-35 Read & Redord 14:18 Stop purging 14-20 Gollect Sample from Mub-35 14:50 Dean Tetror Bipper with elemonized water such 14:50 Collect equipment blant sample 14:51 peron terron apper 14:57 collect abunstican river sample 14:57 collect abunstican river sample 14:57 collect abunstican river sample 159 Decon Tetlon Dipper with Atlandy adultetinged 159 Decon Tetlon Dipper with Atlandy adultetinged 1510 Collect abunstican river sample 159 Decon Tetlon Dipper with Atlandy adultetinged 159 Decon Tetlon Dipper with Atlandy adultetinged 159 Decon Tetlon Dipper with Atlandy adultetinged 1510 Collect abunstican river sample 1510 Collect abuns		
FIELD COLLECT SOMPLE FROM MW-35 14: 18 STOP AUTGING FROM MW-35 14: 50 DECON TECTOR PRIME SOMPLE - CGM. 14: 52 COLLECT CONFICAN RIPERSOMPLE - CGM. 14: 53 DECON TECTOR CUPPER 14: 57 COLLECT COWNSTRAM PROPER 15: 59 DECON TECTOR DIPPER WITH ALCONOX, COMBINED FROM PLANS AND SPECIFICATIONS, AND SOMPLE WITH GLONIZE CHANGES FROM PLANS AND SPECIFICATIONS, AND SOMPLE TEATHER CONDITIONS: SUNNY \$ 15°F PERSONNEL ON SITE: FROM V SMGIL (CATING 6. MUND) TEATHER CONDITIONS: IMPORTANT TELEPHONE CALLS: DATE: 1217107	13:45 collect sampleage	
14: 18 Stop pulging 14: 20 Collect sample from MW-35 14: 50 Decon Tetion Bipper with de-loaned water and 14: 52 Collect assignment blant sample 14: 53 peton terion dipper 14: 54 collect aswastican river sample 14: 57 collect aswastican river sample 15: 79 Decon Tetion dipper with Atlanex, asuble-three 15: 15: 10: 10: 10: 10: 10: 10: 10: 10: 10: 10		MW 35 Retict & Becord
14: 20 COLLECT SOMPLE FROM MW-35 14: 50 DEED TEHON BIPPER WITH SE-TONIED WELLES SAND 14: 52 COLLECT UPSTREAM TIVER SAMPLE 14: 57 COLLECT COWASTREAM TIVER SAMPLE 15: 15: 15: 15: 15: 15: 15: 15: 15: 15:		
Decon Teffor Bipper with de Tonted wefer and 14:52 COLLECT UPSTRAM TIVER SAMPLE 14:53 POCON TEFTON UPPER 15:59 Decon Tefton Dipper with Atcomby acutal march than the comby acutal march than the comby acutal march than the comby acutal march than the contract of the special orders and important decisions. TEATHER CONDITIONS: TEATHER CONDITIONS: TEATHER CONDITIONS: THE PERSONNEL ON SITE: Freq V SMAIL / CATING 6. MUNDED TO THE SPECIAL ORDERS AND TO BE DATE: 1217-107		
COLLECT COUNTY STORM PLE 14:52 COLLECT COWNSTRAM THE SAMPLE 14:53 POCON FETION Upper 15:59 Decon Tetion Older with Atlandy counternsed 15:59 Decon Tetion Older with Atlandy counternsed 15:159 Decon Tetion Older with Atlandy counternsed 15:159 Decon Tetion Older with Atlands and specifications, and changes from plans and specifications, and other special orders and important decisions. 15:159 Decon Tetion Older with Atlands and specifications, and other special orders and important decisions. 15:159 Decon Tetion Older with Atlands and specifications, and other special orders and important decisions. 16:157 Collect Cown Strain Older with Atlands and specifications, and other special orders and important decisions. 16:159 Decon Tetion Older with Atlands and specifications, and other special orders and important decisions. 16:159 Decon Tetion Older with Atlands and specifications, and other special orders and important decisions. 16:159 Decon Tetion Older with Atlands and specifications, and other special orders and important decisions. 16:159 Decon Tetion Older with Atlands and specifications, and other special orders and important decisions. 16:159 Decon Tetion Older with Atlands and specifications, and other special orders and important decisions. 16:159 Decon Tetion Older with Atlands and specifications, and other special orders and important decisions. 16:159 Decon Tetion Older with Atlands and specifications and specifications and specifications.		
IN SO COLLECT UPSTRAM FLORESUMPRE 14:57 COLLECT COWASTRAM FIVOR SAMPLE 159 Decon Terian Dipper with Alcondy combleting with Glanized water then we diech equipment bloods risitors on site: CHANGES FROM PLANS AND SPECIFICATIONS, AND SAMPLE OTHER SPECIAL ORDERS AND IMPORTANT DECISIONS. FEATHER CONDITIONS: SUNNY \$\frac{1}{2}\$ 15° F PERSONNEL ON SITE: Fray V SMAIL / (ASINA 6. MUND) DATE: 1217-107		
14:57 COLICCT COWNSTICAN FIVOR SAMPLE 4:57 Decon Tetian Dipper with Alcanox, double-rised with Alcanox, double-rised with Alcanox and specifications, and sample other special orders and important decisions. TEATHER CONDITIONS: SUNNY \$ 45°F PERSONNEL ON SITE: Freq V SMGIL (GING 6. MUNOZ DATE: 1217-107		
PERSONNEL ON SITE: Freq V SMGIL (Gring 6. MUND) CONTECT COUNSTICES PERSONNEL ON SITE: Freq V SMGIL (Gring 6. MUND) DATE: 1217107		(massimple)
TEATHER CONDITIONS: PERSONNEL ON SITE: Freq V SMGIL / CALING 6. MUNDE DATE: 1217-107		
WITH GLON/2001 WOLFO, THE WE COLOCY EQUIDMENT BLOOM VISITORS ON SITE: CHANGES FROM PLANS AND SPECIFICATIONS, AND SOM PLANS OTHER SPECIAL ORDERS AND IMPORTANT DECISIONS. IMPORTANT TELEPHONE CALLS: PERSONNEL ON SITE: From V SMGIL / CALLS 6. MUNDO DATE: 1217-107		
CHANGES FROM PLANS AND SPECIFICATIONS, AND SAM PLANS AND SPECIFICATIONS, AND SAM PLANS AND IMPORTANT DECISIONS. SEATHER CONDITIONS: SUNDY \$ 15° F PERSONNEL ON SITE: From V SMGIL / GIING 6. MUN02 IGNATURE DATE: 12117107		
OTHER SPECIAL ORDERS AND IMPORTANT DECISIONS. IMPORTANT TELEPHONE CALLS: SUNNY \$2 +5° F PERSONNEL ON SITE: Freq V SMGIL / Gring 6. Mundy DATE: 1217-107		
PERSONNEL ON SITE: FROM V SMAIL / CALING 6. MUNDED BOTH DATE: 12/17/07	_	
SUNNY \$ 45°F PERSONNEL ON SITE: FREG V SMGIL / CARING 6. MUNDZ IGNATURE DATE: 12/17/07	WWW.	
SUNNY \$ 45°F PERSONNEL ON SITE: FREG V SMGIL / CARING 6. MUNDZ IGNATURE DATE: 12/17/07	,	
PERSONNEL ON SITE: FROM V SMAIL / CASING 6. MUNDZ IGNATURE DATE: 12/17/07	VEATHER CONDITIONS:	MPORTANT TELEPHONE CALLS:
PERSONNEL ON SITE: FROM V SMAIL / CASING 6. MUNDZ IGNATURE DATE: 12/17/07	Sunny ≈ 45°F	
IGNATURE DATE: 12/17/07		
IGNATURE DATE: 12/17/07		
	The state of the s	
	IGNATURE () ()	DATE: 12/17/07

Well numb Air Tempe	NFORMATION er MW-9S rature 57 performed by	(° F) (° F) 	nte <u>/2 / /7</u> Wea	ther Condi	Time 09 Itions Chompany Ten	20.
	PER LEVEL (SW Static Water		ments below 84	TOP OF CA	SING	
Air / Immi Immiscible	E FLUID (IF) iscible Fluid E Fluid / Wat miscible Flu	Interface er Interfac	Level ce Level	S BELOW TO	P OF CASING (ft) (ft) (ft)	•
Feet of Wa Purging St Pumping Ra Volume of V	NG Below Top of ter in Casing art Time // te / 2 (Water Removed G FIELD MEASU	g(f 753 liters per 2 (g	eet) Vol Pur min) Pum allons)	ume of Wat ging Stop p type: ((Sub	ter in Casin Time (O Bladder Pum	ng (gal ·28kM
Time(min.)	Temp. (°C)	рН С	ond. (mS/cm)	D.O.(%)	Redox(mV)	Turb. (NTU)
5 /° /5 20 25 30 35 40	20,50 20.58 20.06 20.17 20.38 20.40 20.42	6.83 6.83 6.85 6.86 6.86 6.86	/3,85 /3.55 13.22 13.16 13.06 12.93	8,0 4,6 4.3 7.8 3.7 2.7	334 305 289 282 216 269 261	28.3 21.4 48.1 30.5 25.4 23.7 21.4
Well Integrity:	good / ne	eds attentio	n)			
COMMENTS:	10:30 50	ample tim	ન્ડ			4
		,				
		٠.				


Well number	NFORMATION er 60 rature 57 performed by	(° F) F/S/C	Date 12 / 17 / Weat	07 Ther Condi	Time (0: tions Chill ompany Terra	38 1 574 CON
STATIC WAT	PER LEVEL (S	WL) MEASU	REMENTS BELOW 7.34	TOP OF CA	SING	,
Air / Immi Immiscible	FLUID (IF) scible Fluid Fluid / Wat miscible Flu	d Interfa der Inter	face Level	BELOW TO	P OF CASING (ft) (ft) (ft)	
Purging Sta Pumping Rat Volume of V	Below Top of ter in Casin art Time 10: te 0.2. Water Remove	(liters pd 2	30° (ft) (feet) Volumer min) Pump (gallons) (Field Paramet	ging Stop p type: (Sul	Time (1.07) (Bladder Pur	mp) / (None)
Time(min.)	Temp. (°C)	Нф	Cond. (mS/cm)	D.O.(%)	Redox(mV)	Turb. (NTU)
5 (0 15 20 25	20.67 20.78 20.84 20.60 20.58	6.07 7 09 7 (0 7 10 7 10	20.6 20.5 20.5 20.5 20.5	15.6 9.6 7.1 6.2 5.7	258 247 241 235 231	3.5 2.1 1.9 1.7 1.8
ell Integrity:	(800g) / I	needs atten	tion)			
COMMENTS:	Sample	TIME	11:09			,
			·,			

Well number	NFORMATION er 65 rature 54 performed by	(°F) 	Date 12 / 17 / Weat	OF ther Condi	Time (1. tions chill company Te	16 15f°F
STATIC WAT Depth to S	TER LEVEL (SW Static Water	L) MEASUR	REMENTS BELOW 7.52	TOP OF CA	SING	
Air / Immi Immiscible	FLUID (IF) scible Fluid Fluid / Wat miscible Flu	Interfac er Interf	ace Level	BELOW TO	P OF CASING (ft) (ft)	
Feet of Wa Purging Sta Pumping Rav Volume of V	Below Top of ter in Casing art Time 11 te 0.2 Water Removed	[4] (liters pe	(子.O (ft) (feet) Volume Purger min) Pump (gallons)	ume of Wat ging Stop o type: (Sub	r in Casi Time (130 Bladder Pu	ng (gal)) mp) / (None)
Time(min.)	Temp. (°C)	рН	Cond. (mS/cm)	D.O.(%)	Redox(mV)	Turb. (NTU)
5 10 15 20 25	20.99 21.03 20.98 20.00	7.09 7.09 7.09 7.08	13.47 13.47 13.47 13.47 13.47	5.8 2.8 2.0 1.7 1.6	233 229 225 222 218	4.4 3.6 3.4 3.4 3.2
ell Integrity:	(good) / n	eeds attent	ion)			•
COMMENTS:	sample tr		16-41			1
		ų.	•			
				·		


GENERAL IN Well number Air Tempera Sampling pe	r_ 30 _	(° F) (° F)	te 12 / 17 Wea	/ <u>OŦ</u> ther Condi	Time itions SVNnc ompany TC((C	11 chilly
STATIC WATH Depth to St	ER LEVEL (SW catic Water	VL) MEASURE Level <u>(</u>	ments below .43	TOP OF CA	SING	
Air / Immis Immiscible	FLUID (IF) cible Fluid Fluid / Wat iscible Flu	Interface er Interfac	Level ce Level	s BELOW TO	P OF CASING (ft) (ft) (ft)	
WELL PURGIN Well Depth Feet of Wat Purging Sta; Pumping Rate Volume of Wa	Below Top o er in Casin rt Time 1:18 e 6.2 ater Removed	g (f 3 PM (liters per 1 2 (g	eet) Vol Pur min) Pum allons)	ume of Warging Stop p type: (Sul	ter in Casin Time 1:4: (Bladder Pur	ng(gal)
PRESAMPLING Time(min.)	Temp. (°C)	•			Redox(mV)	Turb.(NTU)
5 10 15 20 25	19.56 19.35 19.65 19.45 19.70	6.99 6.99 6.99 6.99	19.0 19.0 19.0 19.1 19.0	(0.4 8.9 7.5 5.6 5.6	227 226 222 218 216	9 2 3 4 6 9 6 9 6 5
Well Integrity:	(good) / n	eeds attentio	n.			
COMMENTS:	sample t	aken e,	1:45 PM			``


Well numb Air Tempe	NFORMATION er 3S rature 57 performed by	(°F) 	16 12 / 17 Wear	107 ther Condi	Time itions <u>CNU</u> ompany T	4
	PER LEVEL (SW Static Water		MENTS BELOW	TOP OF CA	SING	
Air / Immi Immiscible	E FLUID (IF) scible Fluid Fluid / Wate miscible Flu	Interface er Interfa	Level ce Level	BELOW TO	P OF CASING (ft) (ft)	
Feet of Wa Purging St Pumping Ra Volume of V	Below Top of ter in Casing art Time 1, te 0.2 (Water Removed	liters per 2 (c	feet) Vol Purc min) Pum gallons) Tield Paramet	ume of Warging Stop o type: (Sul	ter in Casi Fime 2 (Bladder Pur omersible)	ng(gal) 6 mp) / (None) / (Canister)
Time(min.)	Temp. (°C)	pH C	ond. (mS/cm)	D.O.(%)		Turb. (NTU)
10 15 25 25 30 35	19.71 19.63 19.37 19.64 19.76 19.83	7.10 1.22 7.20 7.18 7.17 7.16	11.75 10.96 11.06 11.17 11.26	9.3 21.7 19.9 17.8 16.0	224 224 223 224 218	5.7 5.4 5.3 5.0
_	(good / ne			·		-
OMMENTS:	sample tak	Cr 🕘 2	.20			•
				:		

XITECH LNAPL RECOVERY SYSTEM Without the use of AC Power

2500ES Electronic Timer with Tank Shut-off Without the use of AC power

2500ES Electronic Timer

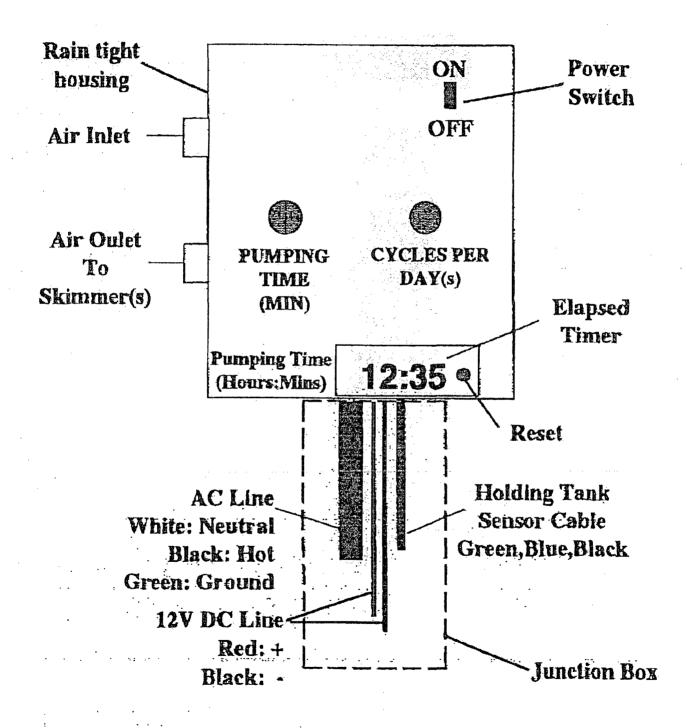


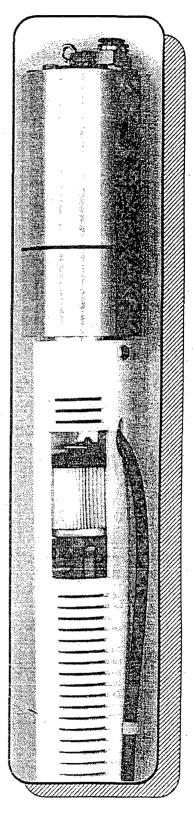
Figure 3

4" LNAPL Recovery Skimmer

The ADJ1000 Skimmer removes product ONLY down to a sheen, operates on bottled gas, is intrinsically safe, and can be installed in less than 1 hour. The ADJ1000 requires no above ground controls to operate, Requires a 4" well diameter, has 30 inches of float travel, uses a dual entry hydrophobic filter, pumps over 25 GPH, and consumes less than .5 CFM of air. The Optional Xitech Programmable Site Managers provide intermittent pumping control for the ADJ1000 Skimmer, continuous electronic monitoring of the high level tank shutoff sensor, displays total run time of system, and operate on a 12DC/120AC/220AC power sources.

Specifications

Pumping range from 5-25 GPH Skimmer float travel: 30 inches


Operating pressure range: 35-125 PSIG Maximum operating well depth: 200 feet Max air requirements: .5 CFM@125 PSIG Air quality requirements: 5-10 Microns

Size: 3-1/2" DIA. X 48" L

Weight: 11 LBS

Materials: PVC, SST, Viton, Buna. Al

Order No. ADJ1000

U.S. Patent# 5.326.458

HUNTS	MAN	DISPOS	AL PERMIT	PERMIT NO	0. 19864
MO. DAY YR.		REQUESTED BY	10B ORDER NO 2832 80-70		TWC WASTE CODE
(AMOUNT	UNITS <u>D. P.(O)</u> Bx	DRUM N	NUMBERS ASSIGNED		DISPOSAL SITE
WASTE DESCRI	<u> </u>	med Water	- Parge fro	m Bi	ichland.
COMMENTS	- Foults				
P-50-0005 (2-05)	RETURN DISPO:	SAL PERMIT (AND)	VEIGHT TICKET) TO FI		CES.

P	ea	se print of type n designed for use on elite (12-pitch) typewnier.)								
Ï	Ì	NON-HAZARDOUS WASTE MANIFEST	1. Generator's US	EPA ID No.	Manifest Doc. No	o. 2. Page 1 of		1		
4		3. Generator's Name and Mailing Address HUNTSMAN 8600 GoSLING ROAD 4. Generator's Phone (281) 719 - 3	, THE WOO			,				
	~	5. Transporter 1 Company Name 1 ERR 9001	7	6. US EPA ID	Number	A. Transpo	ter's Phor	e 7-7-	1700	
	.	7. Transporter 2 Company Name		8. US EPA ID		B. Transpo			<u></u>	
		Designated Facility Name and Site Address RHIND ENVIRONMENTA 1.7 NERTH OF NEWFO	7 L A N	10. US EPA ID	l A	C. Facility's	Phone			·
		11. Waste Shipping Name and Description				1	, Containe	prs pe	13. Total Quantity	14. Unit Wt/Vol
		AYAROCARBON	CONTAMA	WATED N	ATER			7-C Rues	12	GAL
GENER), ·								
RATOR	(· · · · · · · · · · · · · · · · · · ·						77.7
	c									
	C	Additional Descriptions for Materials Listed Above NON-HAZARDOUS				E. Handling	Codes for	Wastes	S Listed Above	
	1:	5. Special Handling Instructions and Additional Inform NOT FOR DRINKIN PREVENT CONTRET	re or i							
	16	GENERATOR'S CERTIFICATION: I certify the ma		ve on this manifest are not s	ubject to federal regul	ations for report	ng proper d	isposal (of Hazardous Wa	
7	17	The second secon	STMAN	Johnson	G Amal	'L		· · · · · · · ·	12/18	
		Printed Typed Name FRED V. Sm41L		Signature	Ganel	<u> </u>			Month Day	
	18	. Transporter 2 Acknowledgement of Receipt of Ma Printed/Typed Name	erials	Signature					Month Day	Year
	19	Discrepancy Indication Space								
- - - -	20	Facility Owner or Operator: Certification of receipt	of waste materials o	covered by this manifest	except as noted in I	tem 19.			Month Day.	Voar
73.5		Wann, Herren			they the	Pyyen			Month Day.	
		yJ. J. KELLER & ASSOCIATES INC. WI 5495743368	T F	RANSPORTER#	1		1	2-BL	S-C5 Rev	12/98

Brickland Refinery Monitoring & Sampling Protocol

Procedure #ECD.094	
Rev.#: 1	
Supercedes: NEW	

Page 1 of 11

Date: 5/25/06

Approval	Signature	Date
Prepared By:	Glen Rhodes	5/25/06
Approved By:	Robert E. Schuler	6/9/06

SCOPE

This procedure applies to Environmental personnel who are involved with monitoring and sampling of the Brickland Site in Sunland Park, New Mexico. Semi-annual sampling events are held for the groundwater monitor wells and the surface water sites of the Rio Grande River adjacent to the facility.

The Brickland Site is an abandoned refinery that was once owned and operated by the El Paso Gas Company. When operations ceased in 1958, the refinery piping and equipment were removed. Through acquisition, Huntsman Polymers Corporation has assumed the environmental liability of the site. A groundwater monitoring and sampling program is in effect under the direction of the New Mexico Oil & Conservation Division (NMOCD). There are 17 monitor wells and 14 well points scattered throughout the facility.

REQUIREMENTS

Semi-annual sampling events are held each June and December at Brickland. Measurement and documentation of monitor well fluid levels is a requirement during each event. Fluid levels are also measured at the 14 well points for the purpose of detecting and reporting hydrocarbon thicknesses.

Also during these sampling events, groundwater and surface water must be collected at respective well and river locations. A breakdown of the sampling protocol can be found in the Stage 2 Abatement Plan for the Former Brickland Refinery Site. Huntsman Environmental has chosen to install dedicated bladder pumps and micropurge specific wells for sample collection. The water samples will be shipped on ice to the analytical laboratory of choice.

A collection of groundwater equipment at Huntsman's Odessa Facility is required to be transported to Brickland to

Brickland Refinery Monitoring & Sampling Protocol

Procedure #ECD.094
Rev.#: 1
Supercedes: NEW
Date: 5/25/06
Dog 2 of 11
Page 2 of 11

do the sampling. The list includes, but is not limited to, the following:

Bladder pumps, air compressor, multi-probe analyzer, oil / water interface meter, Teflon® dipper, ice chests, sample bottles, plastic bags, containers for distilled water and purgewater, buckets, brushes, detergents, solvents, latex / nitrile gloves, gasoline can, and a tool box with hand tools.

Note: A PROPERTY REMOVAL PASS with the required signatures is needed to take the groundwater sampling equipment through the West Guard Gate.

ENVIRONMENTAL

Fluid levels are to be documented at the monitor wells and well points every June and December. Specific monitor wells and two locations along the Rio Grande River are sampled during the same two events. The groundwater and the river water shall be shipped to a certified laboratory for analysis. All of the data generated from the June and December sampling events is submitted to the NMOCD in the Annual Groundwater Report for the Former Brickland Refinery Site. The Annual Report is due to the agency on or before April 1st of each year.

SAFETY

A chain-link fence encompasses Brickland. There are three access gates to the site with Huntsman padlocks to keep the site secure. The Environmental Department has the key to these locks. The same key also fits the Masterlocks® to each of the 17 monitor wells. NO TRESSPASSING signs are posted throughout the exterior of the fenceline in English and Spanish. Each sign lists Huntsman Polymer's address and phone number in case of emergency. The area is heavily monitored by the U.S. Border Patrol.

Personnel who conduct monitoring and sampling activities at the site can be exposed to heat stress, especially during the June sampling event. Light colors and long-sleeved shirts, long pants, and a wide-brimmed hat are recommended clothing. Plenty of drinking water and sunscreen provide further protection from the hot temperatures. Latex or nitrile

Brickland Refinery Monitoring & Sampling Protocol

Procedure	#ECD	.094
Rev #: 1		

Supercedes: NEW

Date: 5/25/06

Page 3 of 11

gloves shall be worn in order to minimize any exposure to contaminants during sampling.

QUALITY

Sample containers and coolers will be provided by a certified laboratory. Some of the bottles contain an acid preservative and will be marked accordingly. Latex / nitrile gloves shall be changed out after each well or river site has been sampled. Doing so will minimize the possibility of cross contamination of the water samples.

Once a batch of samples is collected at a well or river site, they will immediately be placed on ice in a cooler. The samples will remain under ice until they reach their final destination at the laboratory. For quality assurance, the samples must arrive at the laboratory at 4°C or less accompanied by Chain-Of-Custody documentation.

RELEVANT DOCUMENTS

- U.S. Environmental Protection Agency, Test Methods for Evaluating Solid Waste: Physical / Chemical Methods, EPA-SW-846, November 1986.
- 2) Huntsman Polymers Corporation, Stage 2 Abatement Plan, Former Brickland Refinery Site, August 1998.
- 3) Rexene Corporation, Micropurge Sampling Results at the Rexene Corporation Odessa Complex, April 1995.
- 4) Annual Groundwater Monitoring Report, Former Brickland Refinery Site, February 2006.

ATTACHMENTS

- Property Removal Pass
- Field Activity Daily Log
- Groundwater Sampling Information Form
- Semi Annual Fluid Levels Data Sheet
- Multi-probe Analyzer Calibration Log
- Chain-Of-Custody

Brickland Refinery Monitoring & Sampling Protocol Procedure #ECD.094 Rev.#: 1

Supercedes: NEW

Date: 5/25/06

Page 4 of 11

PROCEDURE

This document provides sampling and analysis procedures to be used in the compliance monitoring program for Huntsman's Brickland Facility in Sunland Park, New Mexico. The following is a list of the monitor wells and well points that are subject to the program:

MW-1	MW-6S	MW-11	WP-01	WP-25	WP-30
MW-3S	MW-6D	MW-12	WP-02	WP-26S	WP-31
MW-3D	MW-7	MW-14	WP-03	WP-26D	WP-32
MW-4	MW-8	MW-15	WP-07	WP-27S	WP-33
MW-5	MW-9S	MW-16	WP-14	WP-27D	
	MW-10	MW-17			

This monitor well sampling procedure will also serve as the guideline for surface water sampling at the Rio Grande River locations adjacent to the Brickland facility.

This document contains procedures for:

- Measuring water / hydrocarbon levels in monitor wells and well points,
- Collecting groundwater samples from monitoring wells for field and laboratory measurement,
- · Collecting surface water samples from the Rio Grande River,
- Field Quality Assurance / Quality Control
- Preservation and handling of groundwater / surface water samples collected for analysis, and
- Method of sample documentation including Chain-Of-Custody protocol.

This procedure has been developed in accordance with the <u>U.S. EPA Groundwater Monitoring Technical Enforcement Guidance Document</u>, the <u>Stage 2 Abatement Plan for the Brickland Facility</u>, methodologies developed during previous sampling events conducted at Huntsman's Odessa and Brickland sites, and as practical, <u>Test Methods for Evaluating Solid Waste</u>, <u>EPA SW-836</u>. Any deviations from this specific procedure and the purpose of the deviation will be clearly documented in the field and reported. All sampling activities and data collected during each sampling event will be recorded on a Field Activity Daily Log and a Sampling Information Form (found in the Field Services notebook labeled Brickland Facility Sampling).

COLLECTING FLUID LEVEL DATA

FLUID LEVEL MEASUREMENTS

An interface probe will be used to measure the depth to groundwater and determine the presence and measure the thickness of any immiscible layer in the wells. The probe will be slowly lowered into the well to carefully measure the top and bottom of the floating immiscible layer, if present. The probe provides a distinct signal to indicate the type of material encountered (typically a continuous tone when submerged in hydrocarbon versus a non-continuous, beeping tone when submerged in water). All depth to fluid readings will be measured and recorded to the nearest 0.01 foot. After recording this data, the interface probe will be lowered further in the well to determine whether a heavier than water immiscible layer is present. All fluid level data will be recorded on a Fluid Level Data Sheet (in the Brickland Sampling notebook).

Brickland Refinery Monitoring & Sampling Protocol Procedure #ECD.094

Rev.#: 1

Supercedes: NEW

Date: 5/25/06

Page 5 of 11

DECONTAMINATION

The interface probe must be decontaminated prior to each use and between each well to prevent the addition of external contamination or artifacts into a well. The decontamination will consist of rinsing the probe with a mild, non-phosphate detergent and distilled water. A hexane or acetone rinse may be necessary when hydrocarbons are encountered.

GROUNDWATER SAMPLING PROTOCOL

There are nine monitor wells specified in the Stage 2 Abatement Plan that require sample collection. Each of the nine wells are currently equipped with dedicated gas-driven bladder pumps capable of continuous operation at a pumping rate of 0.2 to 0.3 liters per minute (I/m). This minimal pumping rate is known as the micropurge method (Huntsman has chosen to implement this EPA preferred method). The nine wells equipped with bladder pumps are:

MW-3S	MW-6S	MW-9S
MW-3D	MW-6D	MW-14
MW-4	MW-7	MW-15

During even-numbered years, all nine wells are to be sampled for BTEX, PAH, and Metals in the month of June. During odd-numbered years, only MW-3S, MW-3D, MW-6S, MW-6D, and MW-9S require sampling for BTEX, PAH, and Metals in June. The same five wells are sampled for only BTEX in December of each year.

CALIBRATION OF THE MULTI-PROBE WATER ANALYZER

The multi-probe analyzer will be calibrated one time at Huntsman Polymers Corp. before deployment to Brickland. All calibrations will be carried out in accordance with the equipment manufacturer's procedures and recommendations. Date, time, calibration readings, and the method of calibration will be recorded on a Calibration Log and filed at Environmental Field Services.

WELL PURGING

All monitoring wells listed above will be micropurged prior to sampling. Micropurging will consist of removing small volumes of groundwater at very low pumping rates until certain physiochemical field parameters have stabilized. A water analyzer with a flow cell will be used to measure the temperature, pH, specific conductance, dissolved oxygen, redox potential, and turbidity of the purged groundwater. These field parameters are displayed on a digital readout screen that is attached to the analyzer.

To begin micropurging a well, apply drive gas (i.e.- compressed air) to the bladder pump and establish a flow of groundwater from the discharge tubing at a rate of 0.2- 0.3 l/m. The cycle timers and / or regulator on the air compressor will need to be adjusted in order attain the desired flow of groundwater (a graduated flask may be used to measure the purge volume for one minute). When the desired micropurge flow is achieved, attach the discharge tubing of pump to the flow cell and catch the water that exits the flow cell in a 5-gallon container. Note: At each monitor well, a section of new, latex tubing will be used to couple the pump discharge line to the multi-probe flow cell. Doing so eliminates

Brickland Refinery Monitoring & Sampling Protocol

Procedure #ECD.094

Rev.#: 1

Supercedes: NEW

Date: 5/25/06

Page 6 of 11

the possibility of cross contamination during multiple well sampling events. The latex tubing shall be properly disposed of after each monitor well is sampled.

FIELD PARAMETER MEASUREMENTS

Field parameter measurements will be recorded in five-minute increments while the well purges through the multi-probe flow cell. Document the groundwater temperature, pH, specific conductance, dissolved oxygen, redox potential, and turbidity on a Sampling Information Form. Micropurging of each well will continue until two consecutive readings for three field parameters (dissolved oxygen, redox potential, and turbidity) have stabilized within 10% of one another. When stabilization is reached, well purging will be discontinued and sampling will begin. Record total volume of water purged prior to sample collection on the Sampling Information Form. The purgewater shall be containerized for disposal (most monitor wells micropurge \leq 2 gallons). Groundwater odor, color, and other physically apparent characteristics will also be documented. Monitor well integrity will be documented.

COLLECTING GROUNDWATER SAMPLES

Samples will be collected and containerized for laboratory analysis in the order of volatilization sensitivity of the analytical parameters, (i.e., first, volatile organics; second, polynuclear aromatic hydrocarbons; and third, metals). All samples will be properly labeled with the correct sampling location, date, time, and testing requirements written on self-adhering labels provided by the laboratory. All samples shall be collected non-filtered.

Volatile Organic Compounds

The groundwater samples will be analyzed for the following volatile organic compounds (VOCs): benzene, ethylbenzene, toluene, and total xylenes (BTEX). VOC sample containers are 40 ml. glass vials (2 or 3) that contain a pre-measured amount of hydrochloric acid (HCI), prepared by the laboratory. The HCI is a preservative and sample containers for VOCs must not be rinsed or overflowed during the collection of samples. Water will be collected from the well slowly poured into the glass vial until a convex meniscus forms above the lip of the bottle. Once capped, the vial will be checked for air bubbles (headspace) by turning it upside down, tapping the cap of the inverted bottle, and visually inspecting the bottle contents. If any bubbles are observed, the vial will be uncapped, sample added, and rechecked using the same procedure until no bubbles are present.

Polynuclear Aromatic Hydrocarbons

Wells sampled in the month of June will be analyzed for the presence of polynuclear aromatic hydrocarbons (PAHs). Sample containers for PAH will be amber glass bottles and have no preservative. Samples for PAH are collected from the well by overflowing the sample container with groundwater prior to capping.

Metals

Wells sampled in the month of June will be analyzed for the following list of metals:

Aluminum	Beryllium	Cobalt	Manganese	Selenium
Antimony	Boron	Copper	Mercury	Silver
Arsenic	Cadmium	Iron	Molybdenum	Thallium
Barium	Chromium	Lead	Nickel	Zinc

Brickland Refinery Monitoring & Sampling Protocol Procedure #ECD.094

Rev.#: 1

Supercedes: NEW

Date: 5/25/06

Page 7 of 11

Sample bottles for these constituents will contain a pre-measured amount of nitric acid (HNO₃) that is prepared in the laboratory. The HNO₃ is a preservative and sample containers for metals must not be rinsed or overflowed during sample collection.

SURFACE WATER SAMPLING

Surface water from the Rio Grande River will be collected for chemical analysis from one location up-river and one location down-river from the Brickland facility. The samples will undergo the same group of analytical testing listed previously for the groundwater.

The **UP-RIVER** location is upstream of the Brickland site and will be used to establish background levels representative of urban runoff.

The **DOWN-RIVER** location is downstream of the Brickland site and its analytical values will be used to compare potential impact from the former Brickland Refinery.

COLLECTING SURFACE WATER SAMPLES

Grab samples will be collected from the Rio Grande River by submerging a decontaminated Teflon® dipper into the water. The dipper will be thoroughly decontaminated between sampling sites with a non-phosphate detergent followed by three distilled water rinses.

During collection of the samples, the sampling team will follow the basic guidelines listed below:

- Clean latex / nitrile gloves will be worn during the sample collection and new, clean gloves will be donned at each sample location.
- To avoid turbidity while collecting the sample, the mouth of the dipper will be placed facing downstream.
- The dipper will be placed in the river below the water surface, but at a depth practical to minimize contamination from disturbed bottom sediments.

All sample containers will be supplied by the laboratory. Samples will always be collected in the order of the most volatile compounds to the least volatile compounds as follows:

- 1) Pre-sampling field parameters.
- 2) Volatile Organic Compounds.
- 3) Polynuclear Aromatic Compounds.
- 4) Metals.

FIELD PARAMETER MEASUREMENTS

One set of surface water field parameter measurements will be recorded at each sample location prior to filling the sample containers. Water for measurement will be collected either in a glass beaker or a plastic container triple-rinsed with distilled water. The temperature, pH, specific conductance, dissolved oxygen, redox potential, and turbidity will then be measured and recorded on a Sampling Information Form. Sample odor, color, and other physically apparent characteristics of the river water will also be

Brickland Refinery Monitoring & Sampling Protocol

	Procedure #ECD.094	
•	Rev.#: 1	
	Supercedes: NEW	
	Date: 5/25/06	
	i	

Page 8 of 11

documented. The field parameter readings for surface water will be measured with the same multi-probe water analyzer that is used during the groundwater sampling. The field parameter sample will be properly disposed of after measurements are collected.

FIELD QUALITY ASSURANCE / QUALITY CONTROL

The Field Quality Assurance / Quality Control (QA / QC) program includes collection of field blanks, equipment blanks, trip blanks, and duplicate samples. Descriptions of the QA / QC samples are presented below.

FIELD BLANKS

The field blank will be used to determine potential absorption of volatile organics from the air into a water sample. One field blank will be collected near the beginning of each sampling day at a pre-determined well or surface water sampling location. The blank will be collected by filling one 40 ml. glass vial with deionized water. The de-ionized water will be supplied by the laboratory performing the analysis. The field blank will be analyzed for the same volatile organic compounds (BTEX) as the groundwater and surface water samples. The concentration of any artifact found in the field blank will be noted and compared to the groundwater and surface water sample results.

EQUIPMENT BLANKS

Equipment blanks will be collected during each sampling event if non-dedicated sampling equipment is used (i.e.- Teflon® dipper). The equipment blank will be used to identify organic artifacts originating from the sampling equipment. The monitor wells are equipped with dedicated bladder pumps, and special precautions have been taken to eliminate cross contamination between wells. With these quality checks in place, the need for equipment blanks for groundwater sampling is not required.

To collect an equipment blank, the sampling equipment will be decontaminated with a non-phosphate detergent followed by three distilled water rinses. Immediately following decontamination, the equipment blank will be collected by pouring de-ionized water into the Teflon® dipper, and then filling one 40 ml. glass vial with the water from the dipper. The de-ionized water will be supplied by the laboratory performing the analysis. The equipment blank will be analyzed for the same volatile organic compounds (BTEX) as the surface water samples. The concentration levels of any artifact found in any equipment blank will be noted and compared to the surface water sample results.

TRIP BLANKS

The trip blank will be used to detect and quantify potential organic chemical artifacts occurring in the groundwater or surface water sample which originate from either the sample containers or the de-ionized water comprising the blank. One bottle set for each ice chest will be filled with de-ionized water by the laboratory prior to field mobilization. These bottles will be transported to the sampling location and returned to the laboratory in the ice chests used to transport groundwater and surface water samples. The trip blank will be analyzed for the same volatile organic compounds (BTEX) as the groundwater and surface water samples. The concentration levels of any artifact found in the trip blank will be noted and compared to the groundwater and surface water sample results.

Brickland Refinery Monitoring & Sampling Protocol Procedure #ECD.094

Rev # 1

Supercedes: NEW

Date: 5/25/06

Page 9 of 11

DUPLICATE SAMPLES

One duplicate sample will be collected during each groundwater sampling event. The duplicate will be collected at any monitor well sampling location determined by the sampling personnel. To collect the duplicate, two complete sets of sample bottles will be filled with groundwater from the well. One set will be labeled as the "sample" (normal labeling protocol will be followed), and the other set will be labeled "duplicate" with no well sampling location identification on the label. The location of the duplicate sample will be entered into the Field Activities Daily Log. This duplicate will be analyzed using the same methods as all of the rest of the samples collected during the event. Results of the analysis from this duplicate will be used as a check for repeatability in the analytical procedures.

SAMPLE CONTAINERS, PRESERVATION, AND HANDLING

SAMPLE CONTAINERS

Ice chests used to transport samples for laboratory analysis will be provided by the laboratory performing the analysis. The sample bottles should be prepared by the laboratory according to EPA specifications for environmental sampling as described in <u>Test Methods for Evaluating Solid Waste, EPA SW-846</u>. The bottles will not be opened until immediately before samples are to be collected.

SAMPLE PRESERVATION AND HANDLING

Sample preservation is intended to (1) retard biological action, (2) retard hydrolysis, and (3) reduce absorption effects. Preservation methods include pH control, refrigeration, and protection from light. Chemical preservatives will be added to certain sample containers by the laboratory performing the analysis. Each analytical parameter has specific preservation requirements for the groundwater and surface water:

ANALYTICAL TEST
Volatile Organic Compounds
Polynuclear Aromatic Hydrocarbons
Metals

SAMPLE CONTAINER
40 ml. VOA glass septum vials
1000 ml. amber glass bottle
500 ml. plastic or glass bottle

PRESERVATION

4°C, HCl to pH < 2

4°C

4°C, HNO₃ to pH < 2

Samples will be preserved in the field by placing the samples in an insulated ice chest containing ice immediately after sample collection. Upon receipt of the samples, the authorized laboratory personnel will store and / or prepare the samples for analysis, taking into consideration sample holding times for the analytical parameter of interest.

SAMPLE SHIPPING

Samples will be placed in sealable polyethylene bags then placed into the ice chest and packed with ice. Packing material will be used as necessary to prevent breakage of bottles. Coolers containing samples shall be labeled for shipment to transfer to the appropriate laboratory and should be dispatched at the end of each work day. Samples may be held by the field technician for one night prior to shipment. A separate Chain-Of-Custody (COC) record shall be prepared for and included in each laboratory cooler. Any special conditions or requirements shall be noted on the COC (the COC is provided by the laboratory).

Brickland Refinery Monitoring & Sampling Protocol

Procedure #ECD.094		
Rev.#: 1		
Supercedes: NEW		
Date: 5/25/06		
Page 10 of 11		

Each cooler / package of samples will be custody-sealed with "tamper tape" (provided by the laboratory) as appropriate for shipment. If the cooler / package is to be transferred to a shipper, the custody seal shall be placed over filament tape wrapped around the lid of the package. In this way, access to the contents can only be gained by cutting the filament tape and breaking the seal. The drain hole on the cooler will be taped over to prevent leakage during transport.

CHAIN-OF-CUSTODY RECORDS

Evidence of collection, shipment, laboratory receipt, and laboratory custody until completion of analysis will be documented via a Chain-of-Custody record by the signature of the individuals collecting, shipping, and receiving each sample. **The COC record must be signed and dated** by the sampling team.

COC records must be used by all personnel to record collection and shipment of all samples. A qualified laboratory will not accept samples collected for analysis without a correctly prepared COC record. The COC procedure will be as follows:

- The COC record for all samples and blanks shall be initiated in the field by the person collecting
 the sample or blank. The names of all members of the sampling team will be listed on the COC.
- Each sample will be assigned a unique identification number that is entered on the COC record.
- A completed COC record will accompany each set of samples shipped to the laboratory.
- Each time responsibility for custody of the samples changes, the receiving and relinquishing
 custodians will sign the record and denote the date and time.
- If the samples are shipped to the laboratory by commercial carrier, the COC record will be sealed in a watertight container, placed in the shipping container, and the shipping container sealed prior to giving it to the carrier. The carrier waybill will serve as an extension of the COC record between the final field custodian and receipt in the laboratory.
- Upon receipt in the laboratory, a designated individual will open the shipping containers, compare
 the contents with the COC record, and sign and date the COC. Any discrepancies will be noted
 on the COC record.
- If discrepancies occur, the samples in question will be segregated from normal sample storage and the field personnel notified for clarification.
- The COC record is completed after sample disposal. Samples not consumed during analysis will be kept for six months or as otherwise established by the laboratory.
- The COC record, including waybills, if any, will be maintained as part of the project records.

Brickland Refinery Monitoring & Sampling Protocol

Procedure #ECD.094

Rev.#: 1

Supercedes: NEW

Date: 5/25/06

Page 11 of 11

	Signature	Date
Originator:	Glen Rhodes	5/25/06
Reviewer:	Roger Martin	5/31/06