NM1 - 43

MONITORING REPORTS

YEAR(S):

2008-2010

March 8, 2010

RECEIVED OCD

2010 JUN -8 P 1: 02

Ken Livingston Loco Hills Landfarm P.O. Box 2093 Lovington, NM 88260

Re: Soil Samples

Enclosed are the results of analyses for sample number H19330, received by the laboratory on 02/24/10 at 8:35 am.

Cardinal Laboratories is accredited through Texas NELAP for:

Method SW-846 8021 Benzene, Toluene, Ethyl Benzene, and Total Xylenes
Method SW-846 8260 Benzene, Toluene, Ethyl Benzene, and Total Xylenes

Text Provided Head Total Xylenes

Method TX 1005 Total Petroleum Hydrocarbons

Certificate number T104704398-08-TX. Accreditation applies to solid and chemical materials and non-potable water matrices.

Cardinal Laboratories is accredited though the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.2 Regulated VOCs (V2, V3)

Accreditation applies to public drinking water matrices.

Total Number of Pages of Report: 8 (includes Chain of Custody)

Sincerely

Celey D. Keene Laboratory Director

Receiving Date: 02/24/10 Reporting Date: 03/04/10 Project Owner: NOT GIVEN

Project Name: NOT GIVEN Project Location: NOT GIVEN

Analysis Date: 03/02/10 Sampling Date: 02/24/10 Sample Type: SOIL

Sample Condition: INTACT @ 19.5°C

Sample Received By: JH

Analyzed By: HM

		Cl
LAB NO.	SAMPLE ID	(mg/kg)
H19330-1	CELL #1 BATCH SAMPLE	144
H19330-2	CELL #1 2' DEEP	< 16
H19330-3	CELL #2 BATCH SAMPLE	208
H19330-4	CELL #2 2' DEEP	< 16
Quality Con	trol	500
True Value	QC	500
% Recovery	1	100
Relative Pe	rcent Difference	< 0.1

METHOD: Standard Methods 4500-Cl^{*}B

Note: Analyses performed on 1:4 w:v aqueous extracts.

Not accredited for Chloride.

H19330CI Loco Hills Landfarm

Receiving Date: 02/24/10
Reporting Date: 03/01/10
Residet Owner: NOT CIVEN

Project Owner: NOT GIVEN
Project Name: NOT GIVEN
Project Location. NOT GIVEN

Sampling Date: 02/24/10 Sample Type: SOIL

Sample Condition. INTACT @ 19.5°C

Sample Received By: JH

Analyzed By: ZL

LAB NUMBE SAMPLE ID	MTBE (mg/kg)	BENZENE (mg/kg)	TOLUENE (mg/kg)	ETHYL BENZENE (mg/kg)	TOTAL XYLENES (mg/kg)
ANALYSIS DATE	02/25/10	02/25/10	02/25/10	02/25/10	02/25/10
H19330-1 CELL #1 BATCH SAMPLE	<0.050	<0.050	<0.050	0.199	1.63
H19330-2 CELL #1 2' DEEP	<0.050	<0.050	<0.050	<0 050	<0.300
H19330-3 CELL #2 BATCH SAMPLE	<0.050	<0.050	<0.050	<0.050	<0.300
H19330-4 CELL #2 2' DEEP	<0.050	<0.050	<0.050	<0.050	<0.300
					ı
Quality Control	0.046	0.056	0.056	0.056	0.165
True Value QC	0 050	0.050	0 050	0.050	0.150
% Recovery	92.0	112	112	112	110
Relative Percent Difference	3.0	2.3	1.7	1.2	<1.0

METHOD: EPA SW-846 8021B

TEXAS NELAP CERTIFICATION T104704398-08-TX FOR BENZENE, TOLUENE, ETHYL BENZENE,

AND TOTAL XYLENES. Reported on wet weight

Receiving Date: 02/24/10 Reporting Date: 03/01/10

Project Number: NOT GIVEN Project Name: NOT GIVEN

Project Location: NOT GIVEN

1/10 Sample Type: SOIL

Sample Condition: INTACT @ 19.5°C

Sample Received By: JH

Sampling Date: 02/24/10

Analyzed By: AB

GRO DRO (C_6-C_{10}) (> $C_{10}-C_{28}$) (mg/kg) (mg/kg)

LAB NUMBER SAMPLE ID

ANALYSIS D	PATE	02/27/10	02/27/10
H19330-1*	CELL #1 BATCH SAMPLE	<10.0	50.8
H19330-2	CELL #1 2' DEEP	<10.0	<10.0
H19330-3*	CELL #2 BATCH SAMPLE	<10.0	38.6
H19330-4	CELL #2 2' DEEP	<10.0	<10.0
Quality Conti		422	461
True Value C	OC	500	500
% Recovery		84.4	92.2
Relative Per	cent Difference	7.4	3.6

METHODS: TPH GRO & DRO: EPA SW-846 8015 M

*TPH second surrogate outside historical limits due to matrix interference.

Reported on wet weight.

Not accredited for GRO/DRO.

Receiving Date: 02/24/10 Reporting Date: 03/04/10

Project Owner: NOT GIVEN Project Name: NOT GIVEN Project Location: NOT GIVEN Sampling Date: 02/24/10 Sample Type: SOIL

Sample Condition: INTACT @ 19.5°C

Sample Received By: JH Analyzed By: JM/HM

		Na	Ca	Mg	K	Conductivity	T-Alkalinity
LAB NO.	SAMPLE ID	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(<i>u</i> S/cm)	(mgCaCO ₃ /L)
ANALYSIS [DATE:	03/02/10	03/02/10	03/02/10	03/02/10	03/02/10	02/26/10
H19330-1	CELL #1 BATCH SAMPLE	287	98,200	4,130	1,130	26,500	112
H19330-2	CELL #1 2' DEEP	63.8	74,400	5,010	1,810	405	304
H19330-3	CELL #2 BATCH SAMPLE	333	101,000	3,830	1,130	35,700	112
H19330-4	CELL #2 2' DEEP	61.4	81,100	4,830	1,630	426	224
Quality Cont	trol	8.45	5.23	4.98	10 5	1,413	NR
True Value (QC	8.10	5.00	5.00	10.0	1,413	NR
% Recovery		104	105	99.6	105	100	NR
Relative Per	cent Difference	<0.1	1.0	0.7	0.9	1.8	NR
METHODS:		3050/6010	3050/6010	3050/6010	3050/6010	120.1	310.1

		SO₄	CO₃	HCO₃	рН
		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
ANALYSIS	DATE:	02/26/10	02/26/10	02/26/10	03/02/10
H19330-1	CELL #1 BATCH SAMPLE	7,720	0	137	7 67
H19330-2	CELL #1 2' DEEP	< 40	16	288	8.41
H19330-3	CELL #2 BATCH SAMPLE	7,590	0	137	7.80
H19330-4	CELL #2 2' DEEP	< 40	16	208	8.37
Quality Con	trol	39.8	NR	976	7.01
True Value	QC	40.0	NR	1000	7.00
% Recovery	% Recovery		NR	97.6	100
Relative Per	elative Percent Difference		NR	< 0.1	0.3

375 4

METHODS

Chemist

310.1

310.1

Receiving Date: 02/24/10 Reporting Date: 03/04/10

Project Owner: NOT GIVEN
Project Name: NOT GIVEN
Project Location: NOT GIVEN

Sampling Date: 02/24/10 Sample Type: SOIL

Sample Condition: INTACT @ 19.5°C

Sample Received By: JH

Analyzed By: JM

TOTAL METALS

LAB NUMBER	SAMPLE ID	Cu (mg/kg)	Fe (mg/kg)	Mn (mg/kg)	Zn (mg/kg)
ANALYSIS DA	ſE	03/02/10	03/02/10	03/02/10	03/02/10
H19330-1	CELL #1 BATCH SAMPLE	3.08	4,390	72.4	28.0
H19330-2	CELL #1 2' DEEP	4.78	8,510	161	30.4
H19330-3	CELL #2 BATCH SAMPLE	3.53	4,420	72.9	28.0
H19330-4	CELL #2 2' DEEP	3.72	7,480	147	28.7
Quality Control		5.28	4.99	2.71	2.46
True Value QC		5.00	5.00	2.50	2.50
% Accuracy		106	99.8	108	98.4
Relative Percer	t Difference	0.2	< 0.1	< 0.1	0.5
METHODS:	EPA 600/4-91-010,3050	6010	6010	6010	6010

Analyses subcontracted to Green Analytical Laboratories, a subsidiary of Cardinal Laboratories.

Chemist

Receiving Date: 02/24/10 Reporting Date: 03/04/10 Project Owner: NOT GIVEN Project Name: NOT GIVEN

Project Location: NOT GIVEN

Sampling Date: 02/24/10 Sample Type: SOIL

Sample Condition: INTACT @ 19.5°C

Sample Received By: JH

Analyzed By: JM

TOTAL METALS

LAB NO.	SAMPLE ID	As (mg/kg)	Ag (mg/kg)	Ba (mg/kg)	Cd (mg/kg)	Cr (mg/kg)	Pb (mg/kg)	Hg (mg/kg)	Se (mg/kg)
ANALYSIS	DATE:	03/02/10	03/02/10	03/02/10	03/02/10	03/02/10	03/02/10	03/02/10	03/02/10
H19330-1	CELL #1 BATCH SAMPLE	< 10.0	< 1.0	103	< 1.0	4.91	< 5.0	< 0.1	< 20.0
H19330-2	CELL #1 2' DEEP	< 10.0	< 1.0	360	< 1.0	8.21	< 5.0	< 0.1	< 20.0
H19330-3	CELL #2 BATCH SAMPLE	10.1	< 1.0	112	< 1.0	4.77	< 5.0	< 0.1	< 20.0
H19330-4	CELL #2 2' DEEP	13.5	< 1.0	441	< 1.0	7.49	< 5.0	< 0.1	< 20.0
Quality Cor	ntrol	5.03	0.521	2.52	2.51	2.59	5.22	0.0022	10.2
True Value	QC	5.00	0.500	2.50	2.50	2.50	5.00	0.0020	10.0
% Recover	у	101	104	101	100	104	104	110	102
Relative St	andard Deviation	0.7	< 0.1	0.5	0.5	< 0.1	0.5	4.9	1.0
METHODS	EPA 600/4-91/010,3050	6010	6010	6010	6010	6010	6010	7471	6010

Analyses subcontracted to Green Analytical Laboratories, a subsidiary of Cardinal Laboratories.

Chemist

PHONE (575) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

ZUUU OLT

ANALYTICAL RESULTS FOR LOCO HILLS LANDFARM -ATTN: ANDREW LIVINGSTON

P.O. BOX 2093

LOVINGTON, NM 88260 FAX TO: (575) 391-9895

Receiving Date: 07/08/08 Reporting Date: 07/11/08

Project Number: 03-08

Project Name: PERMIT NM 01-0043

Project Location: S/2 SW/4 32-16S-30E

Sampling Date: 07/07/08

Sample Type: SOIL

Sample Condition: COOL & INTACT

Sample Received By: AB Analyzed By: CK/AB

GRO DRO **ETHYL** TOTAL ... BENZENE XYLENES LAB NO. SAMPLE ID $(C_{6}-C_{10})$ (>C₁₀-C₂₈) BENZENE TOLUENE (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)

ANALYSIS DATE:	07/08/08	07/08/08	07/10/08	07/10/08	07/10/08	07/10/08
H15115-1 CELL #1 SURFACE S SPOT	<10.0	80.6	<0.025	<0.025	<0.025	<0.075
H15115-2 CELL #1 VADAZOZE 2 1/2 DEEP	<10.0	<10.0	<0.025	<0.025	<0.025	<0.075
H15115-3 CELL #2 SURFACE S SPOT	<10.0	2,200	<0.025	<0.025	<0.025	<0.075
H15115-4 CELL #2 VADAZOZE 2 1/2' DEEP	<10.0	<10.0	<0.025	<0.025	<0.025	<0.075
1						
Quality Control	452	580	0.092	0.109	0.116	0.337
True Value QC	500	500	0.100	0.100	0.100	0.300
% Recovery	90.4	116	92.5	109	116	112
Relative Percent Difference	18.4	5.8	2.9	0.9	<0.1	0.6

METHODS: TPH GRO & DRO - EPA SW-846 8015 M; BTEX - SW-846 8021B.

TEXAS NELAP CERTIFICATION T104704398-08-TX FOR BENZENE, TOLUENE, ETHYL BENZENE, AND TOTAL XYLENES.

H15115BTEXT2 LH

2009 JAN 14 PM 12 00

ANALYTICAL RESULTS FOR LOCO HILLS LANDFARM ATTN: ANDREW LIVINGSTON P.O. BOX 2043 LOVINGTON, NM 88260

Receiving Date: 12/04/08
Reporting Date: 12/05/08
Project Owner: NOT GIVEN

Project Owner: NOT GIVEN
Project Name: NOT GIVEN
Project Location: NOT GIVEN

Sampling Date: NOT GIVEN

Sample Type: SOIL

Sample Condition: INTACT Sample Received By: ZL

Analyzed By: ZL

LAB NUMBI SAMPLE ID	(mg/kg)	TOLUENE (mg/kg)	ETHYL BENZENE (mg/kg)	TOTAL XYLENES (mg/kg)
H16469-1 CELL#1 5 SPOT COMP	12/04/08	12/04/08 <0.050	12/04/08	
			<0.050	0.390
H16469-2 CELL#1 2' VADA ZONE	<0.050	<0.050	<0.050	<0.300
H16469-3 CELL#2 5 SPOT COMP	<0.050	<0.050	<0.050	<0.300
H16469-4 CELL#2 2' VADA ZONE	<0.050	<0.050	<0.050	<0.300
Quality Control	0.047	0.054	0.055	0.166
True Value QC	0.050	0.050	0.050	0.150
% Recovery	94.0	108	110	111
Relative Percent Difference	1.2	2.1	1.9	2.2

METHOD: EPA SW-846 8021

TEXAS NELAP CERTIFICATION T104704398-08-TX FOR BENZENE, TOLUENE, ETHYL BENZENE, AND TOTAL XYLENES.

Chemist

Receiving Date: 12/04/08

Reporting Date: 12/05/08

Project Owner: NOT GIVEN Project Name: NOT GIVEN

Project Location: NOT GIVEN

LAB NUMBER SAMPLE ID

Sampling Date: NOT GIVEN

Sample Type: SOIL

Sample Condition: INTACT Sample Received By: ZL

Analyzed By: ZL

GRO

DRO

 $(C_6 - C_{10})$

(>C₁₀-C₂₈)

(mg/kg)

(mg/kg)

ANALYSIS [DATE	12/05/08	12/05/08
H16469-1	CELL#1 5 SPOT COMP	<10.0	<10.0
H16469-2	CELL#1 2' VADA ZONE	<10.0	<10.0
H16469-3	CELL#2 5 SPOT COMP	<10.0	1,890
H16469-4	CELL#2 2' VADA ZONE	<10.0	<10.0
Quality Cont	rol	535	593
True Value 0	QC .	500	500
% Recovery		107	119
Relative Per	cent Difference	<0.1	8.8

METHODS: TPH GRO & DRO: EPA SW-846 8015 M

Lab Director

Date

H16469 TCL LOCOHILLS

MECEIVED, 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

5 PM 2 45

ANALYTICAL RESULTS FOR LOCO HILLS LANDFARM ATTN: ANDREW LIVINGSTON P.O. BOX 2093 LOVINGTON, NM 88260 FAX TO: (575) 391-9895

Receiving Date: 04/18/08 Reporting Date: 04/22/08

Project Number: #2

Project Name: NOT GIVEN Project Location: NOT GIVEN Sampling Date: 04/17/08

Sample Type: SOIL

Sample Condition: COOL & INTACT

Sample Received By: ML Analyzed By: CK/AB

TOTAL GRO **ETHYL** DRO **XYLENES** BENZENE TOLUENE BENZENE LAB NO. (C₆-C₁₀) (>C10-C28) SAMPLE ID (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)

			,,	,		
ANALYSIS DATE:	04/19/08	04/19/08	04/18/08	04/18/08	04/18/08	04/18/08
H14677-1 CELL #1 3' DEEP	<10.0	<10.0	<0.001	<0.001	<0.001	<0.003
H14677-2 CELL#1 COMPOSITE	<10.0	369	< 0.005	<0.005	<0.005	<0.015
H14677-3 CELL #2 3' DEEP	<10.0	<10.0	0.003	0.013	0.006	0.016
H14677-4 CELL #2 COMPOSITE	<50.0	5,330	<0.005	0.025	0.060	0.192
and the second of the second o					Total Commence and Administration of the Commence of the Comme	
,						
Quality Control	223	182	0.097	0.088	0.084	0.268
True Value QC	200	200	0.100	0.100	0,100	0.300
% Recovery	112	91.0	97.0	87.6	84.3	89.3
Relative Percent Difference	7.5	4.4	9.0	8.5	7.4	6.2

METHODS: TPH GRO & DRO - EPA SW-846 8015 M; BTEX - SW-846 8021B.

H14677LHLF

ANALYTICAL RESULTS FOR LOCO HILLS LANDFARM ATTN: ANDREW LIVINGSTON P.O. BOX 2093

LOVINGTON, NM 88260 FAX TO: (575) 391-9895

Receiving Date: 07/08/08 Reporting Date: 07/11/08 Project Number: 03-08

Project Name: PERMIT NM 01-0043

Sampling Date: 07/07/08 Sample Type: SOIL

Sample Condition: COOL & INTACT

Sample Received By: AB Analyzed By: CK/AB

Project Location: S/2 SW/4 32-16S-30E GRO DRO **ETHYL** TOTAL SAMPLE ID LAB NO. (C₆-C₁₀) (>C₁₀-C₂₈) BENZENE TOLUENE BENZENE **XYLENES**

	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
ANALYSIS DATE:	07/08/08	07/08/08	07/10/08	07/10/08	07/10/08	07/10/08
H15115-1 CELL#1 SURFACE S SPOT	<10.0	80.6	<0.025	<0.025	<0.025	<0.075
H15115-2 CELL #1 VADAZOZE 2 1/2 DEEP	<10.0	<10.0	<0.025	<0.025	<0.025	< 0.075
H15115-3 CELL #2 SURFACE S SPOT	<10.0	2,200	<0.025	<0.025	<0.025	< 0.075
H15115-4 CELL #2 VADAZOZE 2 1/Z DEEP	<10.0	<10.0	<0.025	<0.025	<0.025	<0.075
Quality Control	452	580	0.092	0.109	D.116	0.337
True Value QC	500	500	0.100	0.100	0.100	0.300
% Recovery	90.4	116	92.5	109	116	112
Relative Percent Difference	18.4	5.8	2.9	0.9	<0.1	0,6

METHODS: TPH GRO & DRO - EPA SW-846 8015 M; BTEX - SW-846 8021B.

TEXAS NELAP CERTIFICATION T104704398-08-TX FOR BENZENE, TOLUENE, ETHYL BENZENE, AND TOTAL XYLENES.

H1511SBTEXT2 LH

ANALYTICAL RESULTS FOR LOCO HILLS LANDFARM ATTN: ANDREW LIVINGSTON P.O. BOX 2093

LOVINGTON, NM 88260

Sampling Date: 01/28/08

Sample Type: SOIL

Sample Condition: COOL & INTACT

JO

Sample Received By: ML

Analyzed By: AB

Receiving Date: 01/28/08
Reporting Date: 01/30/08
Project Number: 1-08
Project Name: NOT GIVEN

Project Location: NOT GIVEN

				ETHYL	TOTAL
		BENZENE	TOLUENE	BENZENE	XYLENES
LAB NUMBER	SAMPLE ID	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)

ANALYSIS D	PATE	01/29/08	01/29/08	01/29/08	01/29/08	
H14170-1	4170-1 3' DEEP CELL #1		<0.020 0.099		<0.060	
H14170-2			0.094	<0.020	0.061	
H14170-3			0.087	<0.020	<0.060	
H14170-4 COMPOSITE CELL #2		<0.020	0.203	0.623	1.68	
Quality Conti	rol	0.100	0.086	0.090	0.263	
True Value C		0.100	0.100	0.100	0.300	
% Recovery		99.5	86.0	90.4	87.7	
Relative Perd	cent Difference	0.8	0.1	0.4	0.5	

METHOD: EPA SW-846 8021B

Date

130100

Receiving Date: 01/28/08
Reporting Date: 01/31/08
Project Number: 1-08

Project Name: NOT GIVEN

Project Location: NOT GIVEN

Sampling Date: 01/28/08

Sample Type: SOIL

Sample Condition: COOL & INTACT

Sample Received By: ML

Analyzed By: BC

		GRO	DRO
		(C_6-C_{10})	(>C ₁₀ -C ₂₈)
LAB NUMBER	SAMPLE ID	(mg/kg)	(mg/kg)

ANALYSIS D	ATE:	01/29/08	01/29/08
H14170-1	3' DEEP CELL #1	<10.0	<10.0
H14170-2	3' DEEP CELL #2	<10.0	<10.0
H14170-3	COMPOSITE CELL #1	<10.0	<10.0
H14170-4	COMPOSITE CELL #2	122	3870
0 -10 0 -10	-1		
Quality Contr		774	764
True Value Q	C	800	800
% Recovery		96.7	95.5
Relative Perc	ent Difference	0.6	6.0

METHOD: SW-846 8015 M

Chemist

Receiving Date: 01/28/08 Reporting Date: 02/06/08 Project Number: 1-08 Project Name: NOT GIVEN

Project Location: NOT GIVEN

Sampling Date: 01/28/08 Sample Type: SOIL

Sample Condition: COOL & INTACT

Sample Received By: ML Analyzed By: HM/KS

		Na	Ca	Mg	K	Conductivity	T-Alkalinity	
LAB NUMBER	SAMPLE ID	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(uS/cm)	(mgCaCO ₃ /kg)	
ANALYSIS DATE:		02/01/08	02/01/08	02/01/08	02/01/08	01/31/08	01/31/08	
H14170-1	3' DEEP CELL #1	118	277	45.2	2.76	2,340	160	
H14170-2	3' DEEP CELL #2	184	383	45.2	2.60	2,860	208	
Quality Control		NR	49.2	51.6	3.16	1,429	NR	
True Value QC		NR	50.0	50.0	3.00	1,413	NR	
% Recovery		NR	98.5	103	105	101	NR	
Relative Percer	nt Difference	NR	< 0.1	1.5	3.2	0.5	NR	
METHODS:		SM	3500-Ca-D	3500-Mg E	8049	120.1	310.1	
			SO ₄	CO ₃	HCO ₃	. pH	TDS	
			(mg/kg)	(mg/kg)	(mg/kg)	(s.u.)	(mg/kg)	
ANALYSIS DAT	ΓE:		01/31/08	01/31/08	01/31/08	01/31/08	02/01/08	
H14170-1	3' DEEP CELL #1		745	0	195	7.89	1,420	
H14170-2	3' DEEP CELL #2		1,090	0	254	7.92	1,910	
Quality Control			23.0	NR	1000	7.03	NR	
Quality Control True Value QC			25.0	NR	1000	7.03	NR NR	
% Recovery			91.8	NR	1000	100	NR NR	
Relative Percer	nt Difference	•	3.7	NR	< 0.1	< 0.1	NR NR	
METHODS:			375.4	310.1	310.1	150.1	160.1	
* Note: Analys	es performed on 1:4 w	ry aqueous exti	acts					

^{*} Note: Analyses performed on 1:4 w:v aqueous extracts. Results should therefore be considered approximate.

Chemist

Receiving Date: 01/28/08 Reporting Date: 02/12/08 Project Number: 1-08 Project Name: NOT GIVEN Project Location: NOT GIVEN Sampling Date: 01/28/08 Sample Type: SOIL

Sample Condition: COOL & INTACT

Sample Received By: ML

Analyzed By: HM

WQCC METALS

LAB NO.	SAMPLE ID	Al ppm	Co ppm	Cu ppm	Fe ppm	Mn ppm	Mo ppm	Ni ppm	Zn ppm
ANALYSIS	DATE:	02/08/08	02/11/08	02/06/08	02/06/08	02/06/08	02/08/08	02/11/08	02/11/08
H14170-1	3' DEEP CELL #1	13,900	< 5.0	8.10	10,380	295	< 5.0	15.4	21.5
H14170-2	3' DEEP CELL #2	14,880	< 5.0	9.65	10,350	222	< 5.0	16.8	26.5
									-
Quality Cor	itrol	5.27	1.97	2.02	2.07	1.89	1.86	2.00	0.525
True Value	QC	5.00	2.00	2.00	2.00	2.00	2.00	2.00	0.500
% Recover	y	105	98.5	101	104	94.5	93.0	100	105
Relative Sta	andard Deviation	14.4	0.6	0.4	0.2	0.5	6.0	0.4	8.0
METHODS	EPA 600/4-91/010	202.1	219.1	220.1	236.1	243.1	246.1	249.1	289.1

Ly S. Mario	03-12-08
Chemist	Date

Receiving Date: 01/28/08
Reporting Date: 02/11/08
Project Number: 1-08
Project Name: NOT GIVEN
Project Location: NOT GIVEN

Sampling Date: 01/28/08 Sample Type: SOIL

Sample Condition: COOL & INTACT

Sample Received By: ML Analyzed By: HM/KS

WQCC METALS

LAB NO.	SAMPLE ID	As	Ag	Ba	Cd	Cr	Pb	Hg	Se
		ppm							
ANALYSIS	DATE:	02/04/08	01/31/07	01/31/07	01/30/08	01/30/08	01/30/08	02/01/08	02/01/08
H14170-1	3' DEEP CELL #1	3.65	< 5.0	411	< 5.0	11.8	7.50	< 0.1	< 0.5
H14170-2	3' DEEP CELL #2	4.45	< 5.0	431	< 5.0	15.0	11.1	< 0.1	0.6
		,							
Quality Con	ntrol	0.052	1.96	24.6	2.06	1.99	1.88	0.008	0.049
True Value	QC	0.050	2.00	25.0	2.00	2.00	2.00	0.008	0.050
% Recovery	У	104	98.0	98.4	103	99.5	94.0	100	98.0
Relative Sta	andard Deviation	3.7	0.2	2.2	0.2	0.3	1.1	< 0.1	2.6
METHODS:	EPA 600/4-91/010	206.2	272.1	208.1	213.1	218.1	239.1	245.1	270.2

Busta Suprobo

<u>02////</u>