1R -

WORKPLANS

 ∞

CERTIFIED MAIL RETURN RECIEPT NO. 7099 3400 0017 17372008

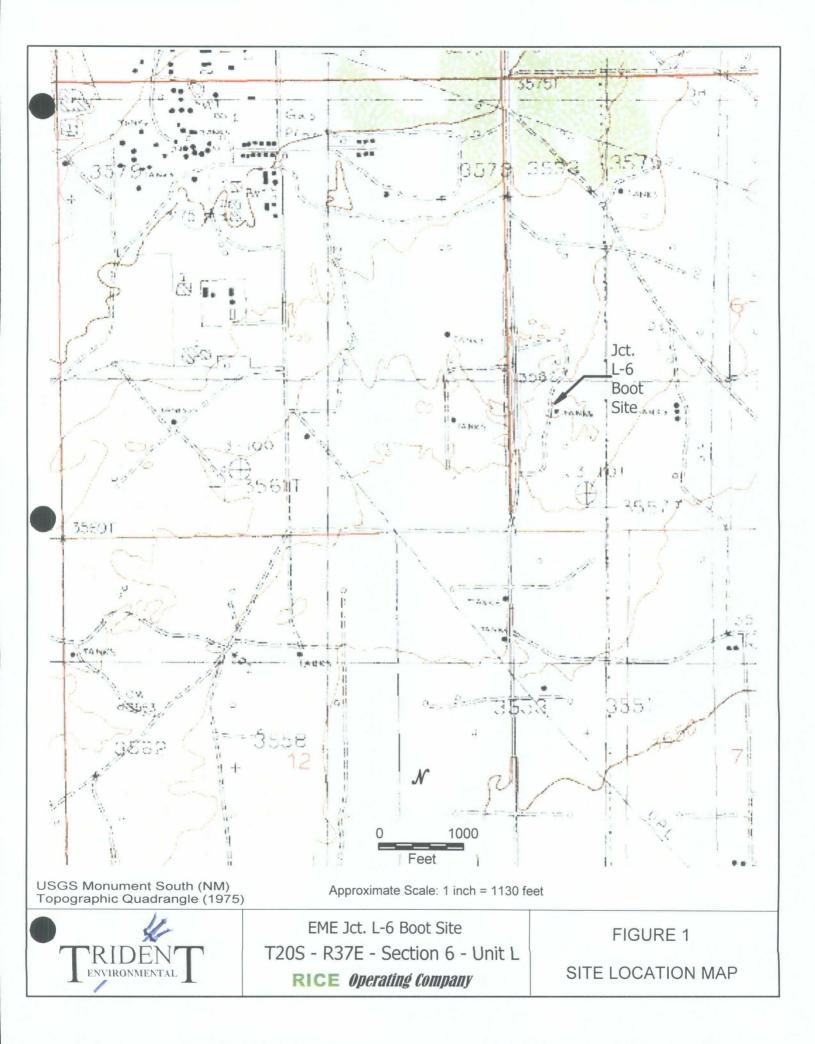
September 5, 2008

Mr. Edward Hansen New Mexico Energy, Minerals, & Natural Resources Oil Conservation Division, Environmental Bureau 1220 S. St. Francis Drive Santa Fe, New Mexico 87504

RE: CORRECTIVE ACTION PLAN EME JUNCTION L-6 BOOT SITE T20S-R37E-SECTION 6, UNIT LETTER L NMOCD CASE No.: 1R-0427-09

Mr. Hansen:

RICE Operating Company (ROC) retained Trident Environmental to address potential environmental concerns at the above-referenced site. ROC submitted a notification of groundwater impact to NMOCD on January 21, 2008 based on the findings of the activities performed in accordance with the Investigation & Characterization Plan (ICP). This Corrective Action Plan (CAP) incorporates the findings from the ICP and proposes recommendations for corrective action as requested by NMOCD in an email dated August 12, 2008.


Site Description

The L-6 Boot site is located at township 20 south, range 37 east, section 6, unit letter L approximately 2.5 miles southwest of Monument, NM as shown on the attached Site Location Map (Figure 1). The site is located on federal land under the jurisdiction of the Bureau of Land Management (BLM). Land in the site area is primarily utilized for crude oil production and cattle ranching. The chloride and TDS concentrations in groundwater are known to be elevated on a regional scale in this area near Monument.

Site History

In February 2003, ROC initiated replacement activities of the L-6 Boot junction box as part of the approved Junction Box Upgrade Program. The L-6 junction box was rebuilt at a location approximately 30 feet to the west. Initial soil sampling activities were conducted on July 15, 2003 and included the excavation of a twelve-foot deep trench. This investigation indicated chloride and hydrocarbon impact to the vadose zone.

An ICP was submitted to NMOCD on December 1, 2006, and approved on July 18, 2007. A subsurface soil investigation which included the installation of one soil boring for vertical delineation and three monitoring wells for horizontal delineation was conducted on October 29 and 31, 2007. The first groundwater sampling event occurred on December 3, 2007. ROC submitted a notification of groundwater impact to NMOCD on January 21, 2008 based on the findings of the activities performed in accordance with the ICP. On August 12, 2008, NMOCD requested submission of a corrective action work plan.

Regional and Local Geology

The site is underlain by Quaternary colluvium deposits composed of sand, silt, and gravel deposited by slopewash, and talus which were re-deposited from the underlying Ogallala Formation. These deposits are often calichified (indurated with cemented calcium carbonate) with caliche layers from 1 to 20 feet thick. The thickness of the colluvium deposits and Ogallala Formation at the site is estimated at 60 feet; however, it varies locally as a result of significant paleo-topography at the top of the underlying Triassic Dockum Group. Since Cretaceous Age rocks in the region have been removed by pre-Tertiary erosion, the colluvial deposits and Ogallala Formation rest unconformably on the Triassic Dockum Group. The uppermost unit of the Dockum Group is the Chinle Formation, which primarily consists of micaceous red clay and shale but also contains thin interbeds of fine-grained sandstone and siltstone. The red clays and shale of the Chinle Formation act as an aquitard beneath the water bearing colluvial deposits and therefore limit the amount of recharge to the underlying Dockum Group.

Based on the descriptions provided in lithologic logs, the subsurface soils are composed of very fine- to medium-grained sand and caliche. More detailed descriptions of the subsurface lithology are provided in the soil boring and monitoring well logs (Appendix A).

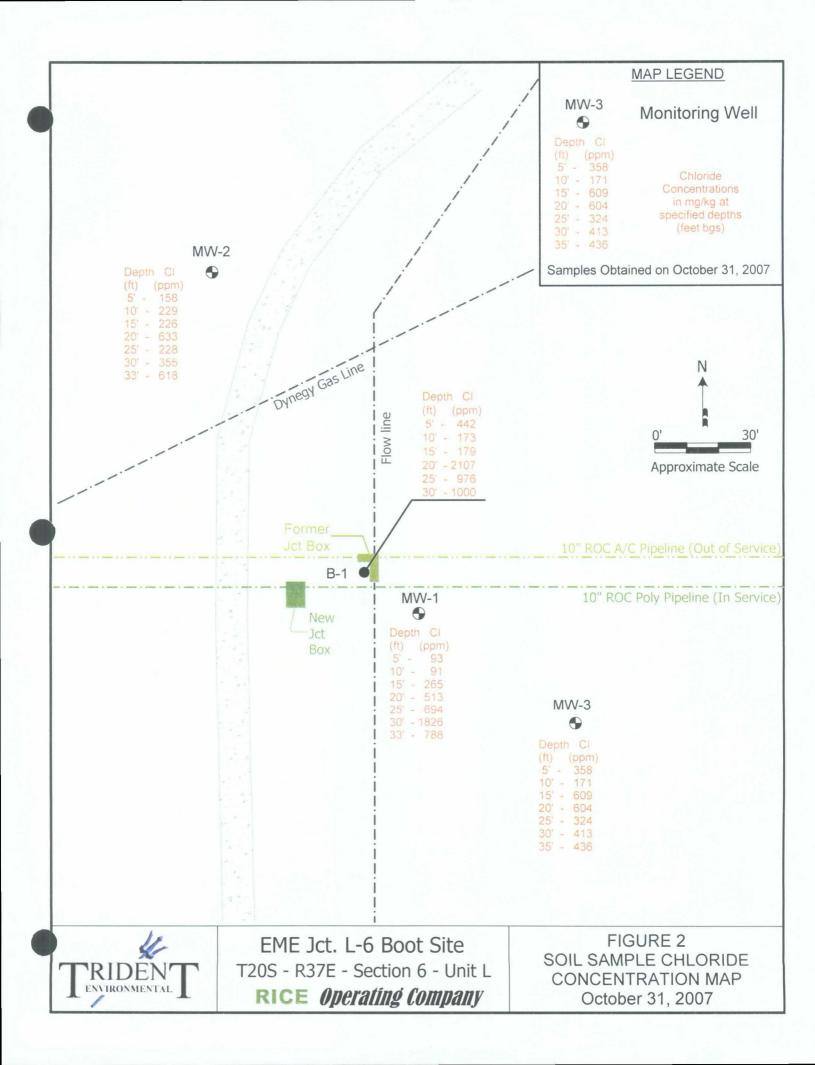
Regional and Local Hydrogeology

Potable ground water used in southern Lea County is derived primarily from the Ogallala Formation (including the colluvial deposits) and the Quaternary alluvium. Lower yields have also been provided by water bearing zones within the Triassic Dockum Group in a few scattered areas within southern Lea County. No potable water is known to be derived below the Triassic Dockum Group. Water from the Ogallala and alluvium aquifers in southern Lea County is used for irrigation, stock, domestic, industrial, and public supply purposes.

Water well records from the Office of the State Engineer (NMOSE) and the United States Geological Survey (USGS) websites were reviewed to determine if there are any active water supply wells in use for domestic, irrigation, livestock, municipal, or industrial purposes in the Jct. L-6 area. As a result of this review and several field reconnaissance

efforts there currently are no known potential water supply receptors within 1,000 feet of the Jct. L-6 site.

Recent data from the three monitoring wells at the Jct L-6 Boot site shows that the water table is at a depth of approximately 33 feet below ground surface (bgs) and slopes towards the southeast at a magnitude of approximately 0.002 ft/ft which is consistent with those of several other groundwater monitoring sites in the Monument area and the regional gradient as cited in published reports. The base of the aquifer is at approximately 60 ft bgs (Nicholson and Clebsch, 1961), therefore the saturated thickness is estimated at 27 feet. There is no surface water body located within a mile of the site.


Characterization of Vadose Zone Conditions

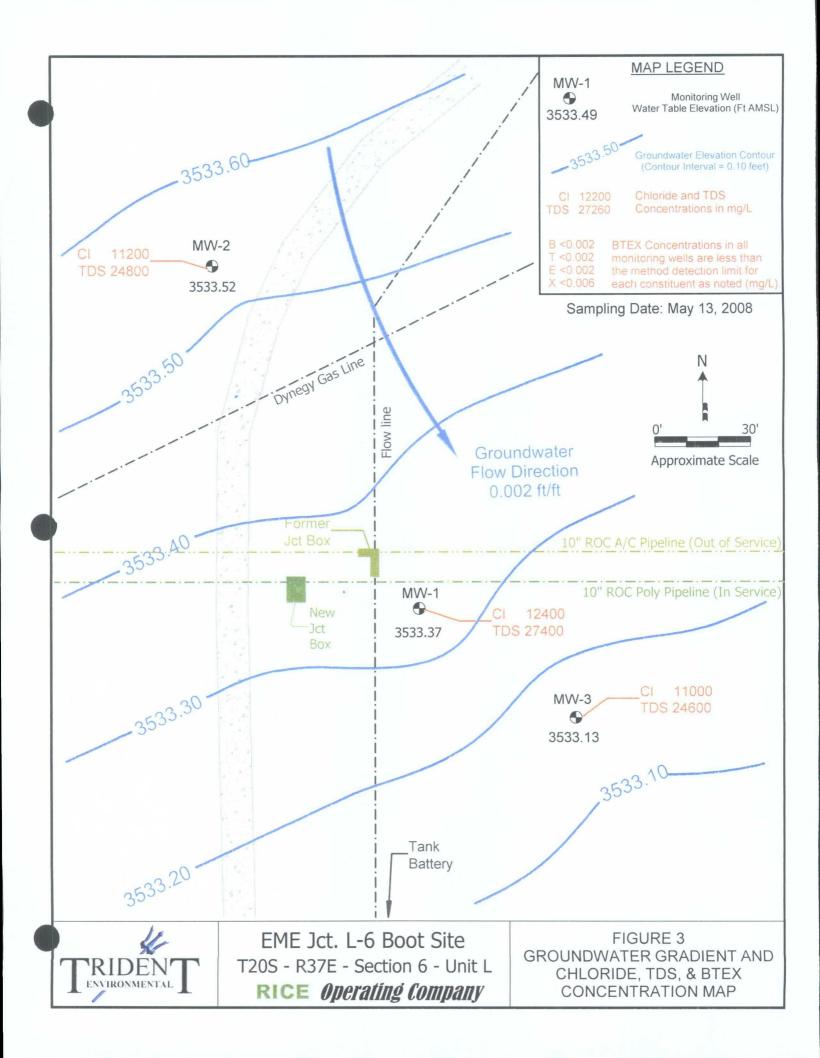
On October 29 and 31, 2007, soil samples were collected at 5-foot intervals using an airrotary drilling rig at four locations to depths of approximately 33 feet. Three of the borings were converted into monitoring wells. Soil samples were tested for chloride content using field-adapted Method 9253 (QP-03) and headspace readings were recorded using a Mini-Rae Model PGM 7006 photoionization detector (PID) calibrated with 100 isobutylene in accordance with procedures explained in QP-07 (ICP Appendices). Select samples were submitted for laboratory analysis of chlorides (EPA Method 300.0), benzene, toluene, ethylbenzene, and xylenes (BTEX; EPA Method 8021B), and gas and diesel range organics (GRO/DRO; Method 8015M). Results of all chloride field tests, PID readings, and lab analytical results are summarized in Table 1 and also depicted in Figure 2.

There was no indication of hydrocarbon impact to the vadose zone in any of the samples, with the exception of boring B-1. Boring B-1 was advanced immediately adjacent to the former junction box and represents very localized and minimal impact. The maximum PID reading in boring B-1 was 196 ppm in at 5 ft bgs with PID readings quickly diminishing below that depth (ranging from 50 ppm at 15 ft bgs to 1 ppm at 20 ft bgs). Laboratory analysis of hydrocarbon constituents of concern (benzene, BTEX, and TPH) in boring B-1 at the 5-ft depth indicate impact is limited to the upper 5 to 10 feet of the vadose zone as summarized in Table 1. The source of this minimal hydrocarbon impact is likely from non-ROC operated crude oil flowlines directly overlying the former L-6 junction box.

	1 abic 1. 11y	uiveai		arytica	ncoun	is mi va	iuuse Za	me	
Boring	Denth (ft has)	PID	Regula	ited Hyd	rocarbo	ns (mg/k	(g)	TPH (r	ng/kg)
Doring	Depth (ft bgs)	(ppm)	В	Т	Е	X	BTEX	GRO	DRO
B-1	5' - 7'	196	0.021	0.017	0.325	1.849	2.213	<16.9	379

Chloride concentrations in the soil borings ranged from a minimum of 91 ppm at 10 ft bgs in MW-1 to a maximum of 1826 ppm at 30 ft bgs in MW-1. Background concentrations of chloride concentrations as represented by monitoring wells MW-2 and MW-3 ranged from 158 ppm to 618 ppm. Table 2 summarizes the chloride concentrations and PID readings measured during the soil sampling investigation.

Boring/	Depth (ft bgs)	Field Chloride	PID
Monitoring Well	Depth (it bgs)	(ppm)	(ppm)
	5' - 7'	442	196
	10' - 12'	173	39
B-1	15' - 17'	179	50
D-1	20' - 22'	1452	1
	25' - 27'	976	31
	28' - 30'	1000	2
	5' - 7'	93	0
	10' - 12'	91	0
	15' - 17'	265	0
MW-1	20' - 22'	513	0
	25' - 27'	694	0
	30' - 32'	1826	0
	33'	788	
	5' - 7'	158	0
	10' - 12'	229	0
	15' - 17'	226	0
MW-2	20' - 22'	633	0
	25' - 27'	228	0
	28' - 30'	355	0
	33' - 35'	618	0
	5' - 7'	358	0
	10' - 12'	171	0
MW-3	15' - 17'	609	0
111 11 -3	20' - 22'	604	0
	25'	324	
	30'	413	


Table 2: Chloride Concentrations and PID Readings in Vadose Zone

Photodocumentation of field activities are included in Appendix B. Laboratory analytical reports and chain of custody documentation are included in Appendix C.

Characterization of Groundwater Conditions

Monitoring wells MW-1, MW-2, and MW-3 have been sampled on a quarterly basis for major ions, TDS, and BTEX, since December 3, 2007. Recent data from the three monitoring wells show that the water table is at a depth of approximately 33 feet below ground surface (bgs) and slopes towards the southeast at a magnitude of approximately 0.002 ft/ft. A summary of historical analytical results and ground water elevations for monitoring wells MW-1, MW-2, and MW-3 are shown in Table 3 below. A map of the most current groundwater conditions for the Jct. L-6 Boot site is depicted in Figure 3. A copy of the laboratory analytical report and chain of custody form for the most recent ground water sampling event are included in Appendix C.

BTEX concentrations in monitoring wells MW-1, MW-2, and MW-3 have been below the WQCC standards for each constituent and for every sampling event taken place.

Chloride concentrations in monitoring wells MW-1 (12,400 mg/L), MW-2 (11,200 mg/L), and MW-3 (11,000 mg/L) exceed the WQCC standard of 250 mg/L.

The TDS concentrations in monitoring wells MW-1 (27,400 mg/L), MW-2 (24,800 mg/L), and MW-3 (24,600 mg/L) exceed the WQCC standard of 1,000 mg/L.

Each monitoring well indicates chloride and TDS concentrations above WQCC standards; however, after three consecutive quarterly sampling events it is clear that the upgradient monitoring well (MW-2) has chloride and TDS concentrations consistent with those observed near the junction box (MW-1) and downgradient well MW-3. Therefore, we conclude with reasonable probability that the elevated chloride and TDS concentrations observed on site are due to the regional impact from an upgradient source(s) northwest of the former Jct L-6 Boot.

Recommendations for Corrective Action to Vadose Zone

The new construction and relocation of a watertight junction box has effectively mitigated any potential threat of chlorides and TDS from the former junction box area. The surrounding area is supportive of vegetation and will be re-seeded with a mixture of native grasses and plants that will re-vegetate the area at a natural rate. ROC will monitor the site for continued healthy growth of native vegetation and add amendments if necessary.

Recommendations for Corrective Action to the Groundwater

It has become clear that the upgradient monitoring well (MW-2) has chlorides and TDS concentrations consistent with those observed near the junction box (MW-1) and downgradient well MW-3, which indicates regional impact from an upgradient source(s) north and/or northwest to the site. Groundwater in this area of Monument, New Mexico, has been reported as regionally impacted with chlorides and unusable as early as 1952 (Nicholson and Clebsch, Groundwater Report 6, 1961). The exact source of groundwater impact at the Jct. L-6 Boot site is unknown because of the numerous potential facilities, past and present, located upgradient of the site.

At the request of the NMOCD via email communication on August 12, 2008 (Appendix D) a groundwater recovery system will be installed to pump and treat chloride-impacted groundwater. It is being conservatively assumed the observed chloride concentrations in monitoring well MW-1 (adjacent to the junction box) are, in part, the result of a release of chlorides to the groundwater table. With that assumption in mind, the following worst-case scenario estimate of chloride mass was calculated based on simple mass balance equations which are explained as follows:

Method 1 (Estimate of chloride mass in groundwater)

First, a 4,600 ft² area of the chloride plume from this release was estimated to be triangularshaped with the apex originating from the former junction box and then fanning out downgradient towards, and ending at, MW-3. The aquifer thickness was estimated to be 27 ft (depth to water table at 33 feet subtracted from aquifer bottom at 60 feet. The total area multiplied by the thickness of the aquifer and its porosity (0.25) results in a total saturated pore space volume of 879,200 liters. Next, the difference between the highest chloride (12,400 mg/L on 05/13/08) observed in MW-1 (near the junction box "source") and the lowest chloride (11,200 mg/L on 05/13/08) observed in upgradient MW-2 was calculated. This net difference (1,200 mg/L) is conservatively presumed to be the chloride concentration in groundwater contributed by a release from the junction box. This chloride concentration multiplied by the saturated pore space volume results in a chloride mass of 1,055 kg. Future sampling results might dictate re-calculation by this method. These calculations are shown in the following table in the same order as described above.

Parameter Type	Value	Parameter Validation (description of equations used)	
Release area	$4,600 \text{ ft}^2$	Area of Commingled Plume (triangulation)	
Aquifer Thickness	27 ft	Known lithology of monitoring well MW-1 and published reports (Nicholson and Clebsch, 1961).	
Porosity	0.25	Professional estimate for water saturated pore volume	
Volume of impacted ground water below former excavation.	31,050 ft ³	Simple multiplication of each parameter listed above	
Volume of Impacted Groundwater below former excavation.	8.792E+05 L	Unit conversion of previous value to liters.	
Chloride concentration	1,200 mg/L	Difference between concentrations in MW-1 and MW-2 (May 13, 2008)	
Total chloride mass	1,055 kg	Simple multiplication of two parameters listed above	

Method 1:	Estimate of	Chloride Mass i	n Groundwater:
-----------	-------------	------------------------	----------------

Method 2 (Estimate of chloride mass in vadose zone)

First, the size of the impacted area is conservatively assumed to be 30-ft by 30-ft based on a combination of the soil delineation data and the maximum size used at other ROC junction box sites in the Monument area. The "*Amigo Massload*" Excel spreadsheet developed by Dave Hamilton with R T Hicks Consultants, Ltd (Albuquerque, NM) was used to calculate the potential chloride mass that could enter groundwater from the chloride load in the vadose zone. Only the equally-weighted chloride data (Table 1) from the near source soil samples (initial trench sampled in July 2003, and borings B-1 and MW-1 sampled last October) were used for this conservative calculation. The resulting chloride mass from this calculation is 1,272 kg as summarized in the following tables.

11100	nou 2. Estimate o	i Chioride Mass in	Tudose Lone	
Soil Sample	Proportional	Chl. Load of	Boring Chl. Loa	d times
Identification	Area Weights	each Borehole	Proport. Of A	Area
B-1	0.33	11.47 kg/m ²	3.78	kg/m ²
MW-1	0.33	7.74 kg/m ²	2.55	kg/m ²
Trench	0.34	26.10 kg/m^2	8.87	kg/m ²
		Total	15.21	kg/m ²
Avera	aged Chloride Load	of All Boreholes =	1.41	kg/ft ²

Method 2: Estimate of	Chloride Mass in	Vadose Zone
-----------------------	------------------	-------------

Parameter Type	Value	Parameter Validation (description of equations used)
Release area	900 ft ²	Typical 30-ft by 30-ft junction box delineation.
Averaged chloride load	1.41 kg/ft ²	Vertical chloride profile of trench, B-1 and MW-1
Total chloride mass	1272 kg	Simple multiplication of two parameters listed above

Adding both of the Method 1 and 2 estimates results in a total chloride mass of 2,327 kg.

A groundwater recovery system employed at the Jct. L-6 Boot site extracting water with chloride concentrations consistent with those in MW-1 (~10,000 mg/L) could extract 13.6 kg per day by (continuously) pumping at a rate of 1 gallon per minute (gpm) eight hours per day. At that rate it would take approximately 171 days and the equivalent of 1,464 barrels (bbls) to remove 2,327 kg of chloride mass.

Installation of a groundwater recovery system is contingent on BLM approval of right-ofway. It will likely be necessary to install a 4-inch diameter recovery well near MW-1 completed to the base of the aquifer (about 60 ft bgs). The conceptual design and specifications of the groundwater recovery system include a submersible or positive displacement pump capable of discharging at a minimum rate of 1 gpm. Due to the remoteness of the site, the necessary power supply for the system will likely be provided by a solar powered panel. Water from the recovery well will be stored on site for treatment by a portable reverse osmosis currently in use by ROC on other groundwater recovery sites. Treated water will be used for irrigation of the site vegetation. Untreated and/or rejected water will be used in pipeline maintenance operations. Flow rate, total volume, and chloride content of the recovered and treated groundwater will be measured.

ROC will continue quarterly groundwater sampling at each of the three monitoring wells.

Closure and Proposed Schedule of Activities

ROC will continue quarterly groundwater sampling at each of the four monitoring wells and vegetation will be monitored for growth and amendments added if necessary.

Upon approval of this Corrective Action Plan, ROC will schedule the site to be re-seeded and procure a drilling rig to install the recovery well. The ground water remedy at the Jct. L-6

Boot site will then be implemented using the same system after its completion at the EME Jct. K-6 site (AP-46).

At the completion of corrective actions as described herein, a final report will be submitted to the NMOCD with a request for closure of the regulatory file associated with this site.

We appreciate the opportunity to work with you on this project. Please feel free to call me at 432-638-8740 or Hack Conder at 505-393-9174, if you have any questions.

Sincerely,

Gilbert J. Van Deventer, REM, PG Trident Environmental

cc: Hack Conder (ROC), Marvin Burrows (ROC)

enclosures: Figures, tables, lithologic logs/well construction diagrams, photodocumentation, and lab reports

APPENDIX A

LITHOLOGIC LOGS

AND

MONITORING WELL CONSTRUCTION DIAGRAMS

BOREHOLE NO.: B-1 TOTAL DEPTH: 30 Feet SITE ID: EME Jct. L-6 Boot CLIENT: RICE Operating O CONTRACTOR: Harrison & Cooper, Inc. COUNTY: Lea DRILLING METHOD: Air Rotary STATE: New Mexico START DATE: 10/29/07 LOCATION: T205-R37E-Sec.6 COMPLETION DATE: 10/29/07 FIELD REP.: G. Van Deventer COMPLETION DATE: 10/29/07 FIELD REP.: G. Van Deventer COMPLETION DATE: 10/29/07 FIELD REP.: G. Van Deventer COMMENTS: Boring located at former junction box (2 feet west of plate marker) Photo at left shows boring activities at B-1 (facing northwest). Vento at left shows boring activities at B-1 (facing northwest). LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOLIDATION, DISTIN Sandy loam (dune sand), light brown (5 YR 6/4), fine-grained, well-sorted, sub-to well-rounded Sandy loam (dune sand, dark grayish, moderately well-sorted, subrounded, unconsolidated, slightly odr. Sample submitted for laboratory analysis with results as follows: Berzene = 0.02 mg/kg, Toluene = 0.17 mg/kg, Etyhylbenzene = 0.33 mg/kg, Xylenes = 1.89 mg/kg GRO < 16.9 mg/kg, DRO = 379 mg/kg, TPH = 379 mg/kg	5-Unit L INGUISHING FEATURES
CONTRACTOR: Harrison & Cooper, Inc. COUNTY: Lea DRILLING METHOD: Air Rotary STATE: New Mexico START DATE: 10/29/07 LOCATION: T20S-R37E-Sec 6 COMPLETION DATE: 10/29/07 FIELD REP: G. Van Deventer COMMENTS: Boring located at former junction box (2 feet west of plate marker) Photo at left shows boring activities at B-1 (facing northwest). Note that the store	5-Unit L INGUISHING FEATURES
DRILLING METHOD: Air Rotary STATE: New Mexico DRILLING METHOD: Air Rotary STATE: New Mexico DRILLING METHOD: START DATE: 10/29/07 LOCATION: T205-R37E-Sec.6 COMPLETION DATE: 10/29/07 FIELD REP.: G. Van Deventer COMMENTS: Boring located at former junction box (2 feet west of plate marker) Photo at left shows boring activities at B-1 (facing northwest). Image: Start Time Type (ppm) (ppm) USCS LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOLIDATION, DISTING Image: Spoon Surface Image: Spoon Sandy loam (dune sand), light brown (5 YR 6/4), fine-grained, well-sorted, sub-to well-rounded Image: Spoon 442 196 SW Fine-grained sand, dark grayish, moderately well-sorted, subrounded, unconsolidated, slightly odor. Sample submitted for laboratory analysis with results as follows: Benzene = 0.02 mg/kg, Toluene = 0.17 mg/kg. Etyhylbenzene = 0.33 mg/kg, Xylenes = 1.89 mg/kg. GRO < 16.9 mg/kg, DRO = 379 mg/kg, TPH = 379 mg/kg	INGUISHING FEATURES
Status Mit Rodary STATE Internet Recomposition Status Status Status Internet Recomposition Internet Recomposition Status Status Status Internet Recomposition Internet Recomposition Internet Recomposition Status Status Status Internet Recomposition Internet Recomposition Internet Recomposition Internet Recomposition Status Status Status Internet Recomposition Internet Recomposition Internet Recomposition Internet Recomposition Internet Recomposition Status Status Status Internet Recomposition Internet Recomposition Internet Recomposition Internet Recomposition Status Status Status Status Internet Recomposition Internet Recomposition Internet Recomposition Internet Recomposition Status Status Status Status Internet Recomposition Internet Recomposition Internet Recomposition Internet Recomposition Internet Recomposition Status Status Internet Recomposition Internet Recomposition Internet Recomposition Internet Recomposition Internet Recomposition	INGUISHING FEATURES
COMPLETION DATE: 10/29/07 FIELD REP.: G. Van Deventer COMPLETION DATE: 10/29/07 FIELD REP.: G. Van Deventer COMMENTS: Boring located at former junction box (2 feet west of plate marker) Photo at left shows boring activities at B-1 (facing northwest). Image: Chloride PID USCS LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOLIDATION, DISTING Image: Chloride PID USCS LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOLIDATION, DISTING Image: Chloride Surface Sandy loam (dune sand), light brown (5 YR 6/4), fine-grained, well-sorted, sub-to well-rounded Image: Chloride Surface Sandy loam (dune sand, dark grayish, moderately well-sorted, subrounded, unconsolidated, slightly odor. Sample submitted for laboratory analysis with results as follows: Image: Chloride SW Senzene = 0.02 mg/kg, Toluene = 0.17 mg/kg, Etyhylbenzene = 0.33 mg/kg, Xylenes = 1.89 mg/kg.	INGUISHING FEATURES
COMPLETION DATE: 10/29/07 FIELD REP.: G. Van Deventer COMPLETION DATE: Boring located at former junction box (2 feet west of plate marker) Photo at left shows boring activities at B-1 (facing northwest). Image: Sample Chloride PID USCS LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOLIDATION, DISTING Image: Sample Chloride PID USCS LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOLIDATION, DISTING Image: Sample Surface Sandy loam (dune sand), light brown (5 YR 6/4), fine-grained, well-sorted, sub-to well-rounded Image: Split 442 196 Swl Image: Split 442 196<	INGUISHING FEATURES
Photo at left shows boring activities at B-1 (facing northwest). Depth Chloride PID USCS LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOLIDATION, DISTIN Image: Chloride in the image in the im	
Sample Chloride PID USCS LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOLIDATION, DISTIN Image: Chloride Depth Time Type (ppm) (ppm) USCS LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOLIDATION, DISTIN Image: Chloride Depth Time Type (ppm) Surface Image: Chloride Sandy loam (dune sand), light brown (5 YR 6/4), fine-grained, well-sorted, sub-to well-rounded Image: Chloride Time Type (ppm) Sandy loam (dune sand), light brown (5 YR 6/4), fine-grained, well-sorted, sub-to well-rounded Image: Chloride Time Type (ppm) Sandy loam (dune sand), light brown (5 YR 6/4), fine-grained, well-sorted, sub-to well-rounded Image: Chloride Time Type (ppm) Split 442 196 Image: Chloride Time Type (ppm) Swl Fine-grained sand, dark grayish, moderately well-sorted, subrounded, unconsolidated, slightly odor. Sample submitted for laboratory analysis with results as follows: Image: Chloride Time Type (ppm) Swl Fine-grained sand, dark grayish, moderately well-sorted, subrounded, unconsolidated, slightly odor. Sample submitted for laboratory analysis with results as follows: Image: Chloride Time Type (ppm) Swl Benzene = 0.02 mg/kg, Toluene = 0.17 mg/kg, Etyhylbenzene = 0.33 mg/kg, Xylenes = 1.89 mg/kg, DRO = 379 mg/kg, TPH = 379 mg/kg	
Depth Time Type (ppm) USCS LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOLIDATION, DISTINCT Image: Subscription of the state of th	
Depth Time Type (ppm) USCS LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOLIDATION, DISTINCT Image: Subscription of the state of th	
Surface Surface 5 Sandy loam (dune sand), light brown (5 YR 6/4), fine-grained, well-sorted, sub-to well-rounded 5 Split 0850 Split 10 SW Fine-grained sand, dark grayish, moderately well-sorted, subrounded, unconsolidated, slightly odor. Sample submitted for laboratory analysis with results as follows: Benzene = 0.02 mg/kg, Toluene = 0.17 mg/kg, Etyhylbenzene = 0.33 mg/kg, Xylenes = 1.89 mg/kg, DRO = 379 mg/kg, TPH = 379 mg/kg	
5 5 5	a grants, unconsolicated, ory.
Image: Spectrum of the spectrum	
Image: Spectrum of the spectrum	
Image: Spectrum of the spectrum	
SW odor. Sample submitted for laboratory analysis with results as follows: Benzene = 0.02 mg/kg, Toluene = 0.17 mg/kg, Etyhylbenzene = 0.33 mg/kg, Xylenes = 1.89 mg/kg, DRO = 379 mg/kg, TPH = 379 mg/kg	moist moderate bydrocarbon
GRO < 16.9 mg/kg, DRO = 379 mg/kg, TPH = 379 mg/kg	moist, moderate nydrocarbon
10	mg/kg
Colla	
0855 Split Spoon 173 39 Fine-grained sand, light brown (5 YR 6/4), moderately well-sorted, subrounded, unconsolidated	d, dry.
BBBBBBBBBBBBB	
15	
Fine-grained sand, moderate orange pink (5YR 8/4) with some very pale orange (10YR 8/2) ca	alcium carbonate in matrix.
Single and the second secon	
2	
SM/CAL	
Fine-grained sand, moderate orange pink (5YR 8/4) with some very pale orange (10YR 8/2) ca	
Spoon Spoon Spoon results as follows: Chloride = 4470 mg/kg	tor laboratory analysis with
25	
Solit	
Fine-grained sand, moderate orange pink (5YR 8/4), moderately well-sorted, subrounded, unc	consolidated, dry.
GVV	
5" 0920 Split Spoon 1000 2 Fine-grained sand, moderate orange pink (5YR 8/4), moderately well-sorted, subrounded, unc	consolidated, damp.
Bottom of boring at 30 ft below ground surface.	
35	
40	
45	
50	

1	110		~ 20	D-A1	101-101 Table	L	.ITHO	LOGI	IC LOG A	ND MONITORING WELL CONSTRUCTION DIAGRAM			
	1	MW	1			No and American		М	ONITOR WE	LL NO.: <u>MW-1</u> TOTAL DEPTH: <u>51 Feet</u>			
	and the second	•								TTE ID: EME Jct. L-6 Boot CLIENT: RICE Operating Compa	inγ		
										ACTOR: Harrison & Cooper, Inc. COUNTY: Lea			
				-00a	REM	0		[ETHOD: <u>Air Rotary</u> STATE: <u>New Mexico</u>			
			C Doll							DATE: <u>10/31/07</u> LOCATION: <u>T20S-R37E-Sec 6-Unit</u>	L		
			03359	M				(I DATE: 10/31/07 FIELD REP.: G. Van Deventer			
	S.C					O MINIE			COM	MENTS: Monitoring well located approximately 15 feet southeast of former junction box (narker plate).		
	An an]	*,		C. NO		and a second						
100			De	Si pth T	ampl		Chloride		USCS	LITHOLOGIC DESCRIPTION:			
		Г	De	puir	-	Type Surface	(ppm)	(ppm)	CL/CAL	LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOLIDATION, DISTINGUIS Imported clay-caliche pad constructed to allow access for drilling rig.	HING FEATURES		
						Sunace			O LI OI I L	Sandy loam (dune sand), light brown (5 YR 6/4), fine-grained, well-sorted, sub-to well-rounded grain	s, unconsolidated, d		
Cement		Cement											
Ö		Ŭ	-	5		Calit			-				
				1	014	Split Spoon	93	0		Fine and medium-grained sand, light brown (5 YR 6/4), moderately well-sorted, subrounded, unconsolidated, dry.			
									CIM				
									SW				
			1	0					-				
bn	sing	6n		1	018	Split Spoon	91	0		Fine-grained sand, light brown (5 YR 6/4), moderately well-sorted, subrounded, unconsolidated, dry.			
le PI	k Ca	le PI	-						-				
te Ho	Blan	te Ho											
Bentonite Hole Plug	PVC	ntoni	1	5									
8 Bel	Sched 40 PVC Blank Casing	3/8 Bentonite Hole Plug		1	025	Split Spoon	265	0		Very fine and fine-grained sand, grayish orange (10YR 7/4) with some very pale orange (10YR 8/2) matrix. Sand grains are moderately well-sorted, subrounded, unconsolidated, dry.	calcium carbonate		
3/8	Sche	3/								marina. Santa grants are moderately weir-sorted, subjounded, unconsolidated, ury.			
	2"0									Silver and S			
			2	0					SM/CAL				
				1	033	Split	513	0		As above but only slightly calcium carbonate in matrix.			
			Spoon Store Company										
			2	5									
				1	042	Split	694	0	1	Fine-grained sand, light brown (5 YR 6/4) with slight calcium carbonate in matrix, moderately well-so	rted, subrounded,		
						Spoon				unconsolidated, dry.			
									SW/CAL	Fine-grained sand, moderate orange pink (5YR 8/4), moderately well-sorted, subrounded, unconsoli	dated damp		
			3	0							autou, aump.		
					055	Split	1826	0	<u>+</u>	Fine and medium-grained sand, light brown (5 YR 6/4), moderately well-sorted, subrounded, uncons	olidated, dry.		
						Spoon	1020			Sample submitted for laboratory analysis with results as follows: Chloride = 4730 mg/kg			
					100	Cuttings	788						
Pack		Jack		5	100	Saturigs	700		SW	21.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.			
and F	ots	20/40 Brady Silica Sand Pack		-						Fine and medium-grained sand, light brown (5 YR 6/4), moderately well-sorted, subrounded, uncons	olidated, dry.		
20/40 Brady Silica Sand	Screen with 0.010" Slots	ca S											
y Sili	0.01	y Sili	10 (10 N)							and the second			
Brad	with	Brad		0 1	102					As above with some indurated intermittent sandstone streaks.			
0/40	creen	0/40	-	-	102								
2	er So	2											
	Diameter												
	2" Dia			E	105				SW/SS	As above with some indurated intermittent sandstone streaks.			
			4	5 1	105				01100				
									=				
		Ц					-						
	V		5	0						As above with some indurated intermittent sandstone streaks.			
r-	2.	-1								Bottom of boring at 51 ft below ground surface.			
			5	5									

1	, c	2000	≈ 2004	10	Cart	1	М	ONITOR WI	ELL NO.:	MW-2	TOTAL DEPTH:	45 Feet
		0				1			SITE ID:	EME Jct. L-6 Boot	CLIENT:	RICE Operating Company
						A. S. S.		CONTR	ACTOR:	Harrison & Cooper, Inc.	COUNTY:	Lea
			@ B-00	loonellir	, 10		I			Air Rotary	STATE:	New Mexico
			COM O LANSAI							10/29/07		T20S-R37E-Sec 6-Unit L
			1585941		- Alerta		(COMPLETIO				G. Van Deventer
			•,		O WW	4		COM	IMENTS:	Monitoring well located appro	ximately 100 feet northwes	t of former junction box (marker plate).
				Samp		Chloride		USCS			LITHOLOGIC DESCRIPT	ION:
			Depth	Time	Туре	(ppm)	(ppm)					SOLIDATION, DISTINGUISHING FEATURES
					Surface				dry.	am (dune sand), light brown (51K	5/6), lifte-grained, weil-softed,	sub-to well-rounded grains, loose, unconsolid
1												
Cement		Cement										
Ö		Ŭ	5		Solit			-				
				1205	Split Spoon	158	0		Fine and	d medium-grained sand, light brown	n (5 YR 6/4), moderately well-s	orted, subrounded, loose, unconsolidated, dry
	bu							SW				
6r	Casi	6		l.								
le Plu	Slank	le Plug	10		Split							
3/8 Bentonite Hole Plug	Sched 40 PVC Blank Casing	Bentonite Hole		1210	Spoon	229	0		Fine-gra	ined sand, light brown (5 YR 6/4),	moderately well-sorted, subrou	nded, unconsolidated, dry.
ntoni	1 40 F	ntoni										
/8 Be	Sched	3/8 Bel	45									
e	2" S	e	15	1015	Split	226	0					e (10YR 8/2) calcium carbonate in matrix. Sar
				1215	Spoon	226	0			re moderately well-sorted, subroun		
			20					0.4/0.4/				
				1220	Split	633	0	SM/CAL				e (10YR 8/2) calcium carbonate in matrix. San
			grains are moderately well-sorted, subrounded, unconsolidated, d	ded, unconsolidated, dry.								
			10.00.00.00.00.00.00									
			25									
				1230	Split Spoon		Fine-gra	ined sand, light brown (5 YR 6/4),	moderately well-sorted, subrou	nded, unconsolidated, dry.		
				1240	Split	355	0		Fine-ora	ined sand, light brown (5 YR 6/4),	moderately well-sorted subrou	nded, unconsolidated, drv
Pack	Slots	ack	30		Spoon				, no gra			
Sand	010"	Sand Pack										
ilica	ith 0.	ca Sa	V					SW				
20/40 Brady Silica Sand Pack	Diameter Screen with 0.010" Slots	20/40 Brady Silica		1250	Split Spoon	618	0		Fine-gra	ined sand, light brown (5 YR 6/4),	moderately well-sorted, subrou	nded, unconsolidated, slightly moist.
40 Br	r Scre	Brad	35									
20/4	mete	20/40				_						
	2" Dia											
	LN .		40									
									As above	e with some indurated intermittent	sandstone streaks.	
								CIALICO				
								SW/SS				
ł	\checkmark		45						As above	e with some indurated intermittent	sandstone streaks.	
-	5" -	-								Bot	tom of boring at 45 ft below gro	bund surface.
			50									

		E-WA				11.12	M	ONITOR WE	TOTAL DEPTH: 52 Feet		
	100	0						5	SITE ID: EME Jct. L-6 Boot CLIENT: RICE Operating Company		
						args!		CONTR	ACTOR: Harrison & Cooper, Inc. COUNTY: Lea		
	1			Doorein	D	ALC: N	[DRILLING M	ETHOD: Air Rotary STATE: New Mexico		
			004						T DATE: 10/31/07 LOCATION: T20S-R37E-Sec 6-Unit L		
			DARCENCE			Plan	(NDATE: <u>10/31/07</u> FIELD REP.: <u>G. Van Deventer</u>		
	1		•,		O MAR	9. ca		COM	MENTS: Monitoring well located approximately 75 feet southeast of former junction box (marker plate).		
				Samp	le	Chloride	PID	USCS	LITHOLOGIC DESCRIPTION:		
			Depth	Time	Туре	(ppm)	(ppm)		LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOLIDATION, DISTINGUISHING FEATURES		
					Surface			CL/CAL	Imported clay-caliche pad constructed to allow access for drilling rig.		
		1							Fine- and medium-grained dune (loamy) sand, light brown (5YR 5/6), well-sorted, sub-to well-rounded grains, loose, unconsolidated, dry.		
nent		nent									
Cement		Cement	5								
				0833	Split Spoon	358	0		Fine- and medium-grained sand, light brown (5YR 5/6), well-sorted, sub-to well-rounded grains, loose, unconsolidated,		
					00001						
								SW			
			10								
	-			0838	Split	171	0		Fine-grained sand, light brown (5YR 5/6), well-sorted, sub-to well-rounded grains, loose, unconsolidated, dry.		
Bnic	asing	Plug			Spoon						
Bentonite Hole Plug	Sched 40 PVC Blank Casing	lole F									
nite H	C Bla	hite H	15					-			
entor	PVC	Bentonite Hole	15	0844	Split	609	0		Very fine and fine-grained sand, gravish orange (10YR 7/4) with some very pale orange (10YR 8/2) calcium carbonate		
3/8 Be	ed 40	3/8 Be		0844	Spoon	009			matrix. Sand grains are moderately well-sorted, subrounded, unconsolidated, dry. Sample submitted for laboratory ana with results as follows: Chloride = 109 mg/kg		
2		3						SM/CAL			
	2"										
			20	0.000	Split						
			Fine-grained sand, light brown (5 YR 6/4), moderately well-sorte	Fine-grained sand, light brown (5 YR 6/4), moderately well-sorted, subrounded, unconsolidated, dry.							
			25 0856 Cuttings 324	Fine-grained sand, light brown (5 YR 6/4) with slight calcium carbonate in matrix, moderately well-sorted, subrounded,							
								SW/CAL	ine-grained sand, light brown (5 YR 6/4) with slight calcium carbonate in matrix, moderately well-sorted, subrounded, inconsolidated, dry.		
1											
									Vol for and far arrived and arrive process (AND 70) and arrively a		
			30	0858	Cuttings	413			Very fine and fine-grained sand, gravish orange (10YR 7/4), moderately well-sorted, subrounded, unconsolidated, dry.		
								SW			
X		×	35	0859	Cuttings	436			Fine-grained sand, gravish orange (10YR 7/4), moderately well-sorted, subrounded, unconsolidated, slightly moist.		
n La		d Pack	*****								
Call	Slots	Sand									
DIIICa	Screen with 0.010" Slots	Silica									
20/40 brady Silica Sand Pack	th 0.(Brady S	40	0904					Fine-and medium-grained sand, grayish orange (10YR 7/4), slight calcium carbonate content in matrix, moderately wel sorted, subrounded, unconsolidated, slightly moist.		
in n	iw ne	0 Br						SW/CAL			
ZU14	Scree	20/40	******					OTTOAL			
	Diameter		45	0906					Fine-and medium-grained sand, gravish orange (10YR 7/4), with some indurated intermittent sandstone streaks, mode		
	2" [well-sorted, subrounded, unconsolidated, slightly moist.		
								SW/SS			
			50	0910					Fine-and medium-grained sand, grayish orange (10YR 7/4), with some indurated intermittent sandstone streaks, mode		
ł									well-sorted, subrounded, unconsolidated, slightly moist.		
	V								Dollars of house of 20.6 house of a		
-	5" -								Bottom of boring at 52 ft below ground surface.		
			55					-			

APPENDIX B

PHOTO DOCUMENTATION

Boot Site EME Jct

View facing northwest showing sampling activities at B-1

View facing northwest showing sampling activities at MW-1

View facing northwest showing MW-3 (foreground) and MW-1 (background).

View facing southeast showing drilling of MW-2

APPENDIX C

LABORATORY ANALYTICAL REPORTS

AND

CHAIN OF CUSTODY DOCUMENTATION

ANALYTICAL RESULTS FOR RICE OPERATING COMPANY ATTN: KRISTIN FARRIS-POPE 122 W. TAYLOR ST. HOBBS, NM 88240 FAX TO: (575) 397-1471

Receiving Date: 05/15/08 Reporting Date: 05/21/08 Project Number: NOT GIVEN Project Name: EME L-6 BOOT Project Location: T20S-R37E-SEC6 L ~ LEA CO., NM Sampling Date: 05/13/08 Sample Type: WATER Sample Condition: COOL & INTACT Sample Received By: ML Analyzed By: CK

				ETHYL	TOTAL
		BENZENE	TOLUENE	BENZENE	XYLENES
LAB NUMBER	SAMPLE ID	(mg/L)	(mg/L)	(mg/L)	(mg/L)
			······		
ANALYSIS DA	TE	05/19/08	05/19/08	05/19/08	05/19/08
H14821-1	MONITOR WELL #1	<0.002	<0.002	<0.002	<0.006
H14821-2	MONITOR WELL #2	<0.002	<0.002	<0.002	<0.006
H14821-3	MONITOR WELL #3	<0.002	< 0.002	<0.002	<0.006
				· · · · · · · · · · · · · · · · · · ·	
			;	······································	
		_ <u>_</u>			
Quality Contro		0.101	0.094	0.108	0.331
True Value QC		0.100	0.100	0.100	0.300
% Recovery	indetermente antica a construction and a construction of an	101	94.5	108	110
Relative Perce	ent Difference	0.9	0.9	0.8	3.5

METHOD: EPA SW-846 8260B

Meen Chemist

<u>05/21/0</u>7 Date

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or ton, shall be limited to the amount paid by client for analyses. All claims inferted intercement and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal winin thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable to: incidental or consequential damages, including, without limitation, business interruptions, toss of use, or loss of profiles incurren by client, its subsidiaries, affiliates on successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal tories.

ANALYTICAL RESULTS FOR **RICE OPERATING COMPANY** ATTN: KRISTIN FARRIS-POPE 122 W. TAYLOR STREET HOBBS, NM 88240 FAX TO: (575) 397-1471

Receiving Date: 05/15/08 Reporting Date: 05/21/08 Project Number: NOT GIVEN Project Name: EME L-6 BOOT Project Location: T20S-R37E-SEC6 L~LEA COUNTY, NM Sampling Date: 05/13/08 Sample Type: WATER Sample Condition: COOL & INTACT Sample Received By: ML Analyzed By: HM/KS

		Na	Ca	Mg	К	Conductivity	T-Alkalinity
LAB NUMBE	ER SAMPLE ID	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(<i>u</i> S/cm)	(mgCaCO ₃ /L)
ANALYSIS D	DATE:	05/20/08	05/20/08	05/20/08	05/19/08	05/16/08	05/16/08
H14821-1	MONITOR WELL #1	7,900	1,440	462	37.2	38,000	392
H14821-2	MONITOR WELL #2	7,190	1,280	437	33.2	34,700	356
H14821-3	MONITOR WELL #3	6,970	1,240	437	33.8	34,100	352
Quality Cont	rol	, NR	52.1	48.6	3.14	1,405	NR
True Value C		NR	50.0	50.0	3.00	1,413	NR
% Recovery		NR	104	97.2	105	99.4	NR
types parameter and approximit in the	cent Difference	NR	1.5	3.8	1.3	0.9	NR
METHODS:		SM3	3500-Ca-D	3500-Mg E	8049	120.1	310.1

~ ~

		CI	SO₄	CO_3	HCO_3	pН	TDS
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)
ANALYSIS D	DATE:	05/16/08	05/19/08	05/16/08	05/16/08	05/16/08	05/17/08
H14821-1	MONITOR WELL #1	12,400	4,680	0	478	6.62	27,400
H14821-2	MONITOR WELL #2	11,200	4,350	0	434	6.62	24,800
H14821-3	MONITOR WELL #3	11,000	4,080	0	429	6.61	24,600
Quality Conti	rol	500	45.1	NR	976	7.01	NR
True Value C	DC	500	40.0	NR	1000	7.00	NR
% Recovery		100	113	NR	97.6	100	NR
Relative Perce	cent Difference	< 0.1	5.7	NR	1.2	0.3	NR
METHODS:	· · · · · · · · · · · · · · · · · · ·	SM4500-CI-B	375.4	310.1	310.1	150.1	160.1

15/21/08

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analysis. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unleasting, when a business in contact of unit, shall be interfuence on any other cause whatsoever shall be deemed waived unleasting, which is including those for negligence and any other cause whatsoever shall be deemed waived unleasting and tacking by Cardinal within thirty (30) parts after completion of the applicable service H 1482/1 sRICE including to incidental or consequential damages, including, without limitation, business interruptions, loss of use, it is not incidental or consequential damages, including, without limitation, business interruptions, loss of use, it is not incidental or consequential damages, including, without limitation, business interruptions, loss of use, it is to too by the damages. affiliates on successors arising out of or related to the performance of services herebraic arising out of or related to the performance of services herebraic arising out of or related to the performance of services herebraic argardless of whother such claim is based upon any of the above-stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Eaboratories.

4		A
6		I
v.		J.
		2

• 1		
-	- i	
- i		
_	ļ	
٦.	1	
1	-	
,	1	
- 1		
- (
÷.,		
- {		
1		
⊨		
٠,		
•		

of 1 Page

		4	4							e			U	HAIF	CHAIN-OF-CUSTODY	Ŋ	Ĩ.		AND	ANA	۲XS	ANALYSIS REQUEST	<u>n</u>	EST		
Tei (575) 393-2326 Fax (575) 393-2476			ž					-	rut ics, thc.	:					LAB Order ID #	Order	" # 0									
Company Name:	BIL		Company:	suy:				₽0 B	Ħ							ANA	ΥS	S R	ANAL YSIS REQUEST	EST						
RICE Operating Company	Ŷ	RICE Operating	<u>erat</u>	D D D	Company	any									5	Circle	or Sp	scify	(Circle or Specify Method No.)	No.	~					
Project Manager:			Address	SS.			(Stre	(Street, City, Zip)	y. Zip)			-	-	-	-	-	- -	<u> </u>	-	-			_		_	_
Kristin Farris-Pope, Project Scientist	122	122 W Taylor Street - Hobbs, New Mexico 88240	or Stre	∋t - Hc	bbs, N	ew Me	xico 8{	3240																		
Address: (Street, City, Zip)			Phone#	#				Fa	Fax#:																	
122 W Taylor Street ~ Hobbs, New Mexico 88240	(2)	(575) 393-9174	3-91	74				(2	575)3	(575)397-1471	71			00												
Phone #:	Fax#:												(2/8												
(575) 393-9174	(575)397-1471	7-147											635	010												
Project #: Project Name:			ľ	ſ) pe	96												
EME L-6 Boot				··••.,									əpuə	H 9												
Project Location:			Samp	er Sigi	Sampler Signature:	I	sannes	suhor	ion (57:	Rozanne Johnson (575)631-9310	ę		∋tx∃	59										- (3		S
T20S-R37E-Sec6 L ~ Lea County - New Mexico	Mexico	٠ ب	,		Ì		zann	le@	valori	rozanne@valomet.com	۶		90	9 1C					979					202		onu
		· . 	M	MATRIX		PRE	PRESERVATIVE METHOD	TATI OD		SAMPLING	U N		01XT/) b.) e{				624	/2072	80						- 24 H
LAB # FIELD CODE	- <i>(</i>	`ON-11				(AOV		HDPE1	17 (0)	(8					eA gA e		səbi	80928	8 . IoV. ir			tnatno				- ∍mi⊺ b
	D) 10 de1(D)	# CONTRI	SOIL	SLUDGE AIR		HOO ² HCC ⁽⁵ 4044	'OSH₽N	ICE (1-17)(AL		DATE (2001	TIME	MTBE 8021	11.814 H9T	PAH 8270C	TCLP Metal	TCLP Semi	TCLP Pesilo RCI	CCWS AN	BC/MS Sen	Pesticides 8	80D, TSS, 1	Moisture Co	sO) anoiteO	Anions (Cl. Total Disso	Chlorides	Turn Aroun
	 ບ	3 X		-	Ľ	2		-		5-13 13	13:00	×											X	××		
- 2 Monitor Well #2	υ	3 X		<u> </u>		2		+		5-13 12	12:05	×											×	× ×		
3 Monitor Well #3	9	3 X				2		+		5-13 10	10:55	×											×	× ×		
																	-			-+						
		-						+																		
		-		+		+		╋		-		+					+			+	1	+-				
		+	T	-		+	1	+	-		\uparrow	-		+		F	+			+	1	+				
								+	1			-					<u> </u>			$\left \right $		-				
Relinquished by Date: Time:	Received by			1			Date:	ľ	Tíme:		11	Phone Results	Resu	lts	È	Yes	Ŷ	。								
Rozanine Johnson 545 208 2.550	5	later .	X	ih.	to	5/4	5/01	×	\mathcal{O}_{ij}	2.550	<u>ц.</u>	Fax Results	ssults			Yes	° N	0	Addi	tional	Fax h	Additional Fax Number:	ar:			
Relinquished by: Date: Time:	Received By:/ (Laboratory Staff	By://(La	iborat	ory St	aff)	°	Date:	F	Time:		<u>u.</u>	REMARKS:	RKS:													
												Ē	nail R	Email Results to:	s to:	<u>a</u>)) De((Drice	kpope@riceswd.com	.con	~					
Delivered By: (Circle One)	Sample Condition	dition Cool		Intact		HECK	снескер ву:	÷								<u>×</u>	anne	emie v@c	Iweinheimer@riceswd.com	Det D	01.00	εI				
Sampler - UPS - Bus - Other	Yes	7	-Yes No	मि		(Initials)	Ž	1'X	213		-					į			5							
								Ţ			┨															

WELL SAMPLING DATA FORM

CLIENT:	RICE Open	rating Com	рапу	WELL ID:	Monitor Well #1
SYSTEM:	EME			DATE:	May 13, 2008
SITE LOCATION:	L-6 Boot			SAMPLER:	Rozanne Johnson
PURGING METHOD:] Hand Ba	ailed 🗹	Pump, Type:	Purge Pump
SAMPLING METHOD	D: 🖸] Disposa	able Bailer	Direct from Discl	harge Hose 🗌 Other:
DISPOSAL METHOD		WATER	🗌 On-sit	e Drum 🗍 Drums	SWD Disposal Facility
TOTAL DEPTH OF V DEPTH TO WATER:		53.65 37.30	Feet Feet		
			Feet	2	In. Well Diameter
WELL VOLUME:	2.6	Gal.		9	Gallons purged prior to sampling
TIME	TEMP.	COND.	Ha	PHYS	SICAL APPEARANCE AND REMARKS
	°C	mS/cm			
					· · · ·
13:00	20.2	37.18	6.58	Silt/Sand to Clear	with no odor.
				Samples Collecte	d with Disposable Bailer
				BTEX (2-40ml VC	DA)
				Major lons/TDS (*	1-1000ml Plastic)
					· · ·

COMMENTS:

Myron Model 6P instrument used to obtain pH, conductivity, and temperature measurements.

Delivered samples to Cardinal Laboratories in Hobbs, New Mexico for BTEX, Major Ions, and TDS analysis.

WELL SAMPLING DATA FORM

SYSTEM: EME DATE: May 13, 2008 SITE LOCATION: L-6 Boot SAMPLER: Rozanne Johnson PURGING METHOD: Hand Bailed I Pump, Type: Purge Pump SAMPLING METHOD: Disposable Bailer Direct from Discharge Hose Other: DISPOSAL METHOD OF PURGE WATER: On-site Drum Drums SWD Disposal Facility TOTAL DEPTH OF WELL: 47.67 Feet 2 In. Well Diameter WELL VOLUME: 2.0 Gal. B Gallons purged prior to sampling TIME TEMP. COND. pH PHYSICAL APPEARANCE AND REMARKS 12:05 20.1 33.14 6.58 Silt/Sand to Clear with no odor. 12:05 20.1 33.14 6.58 Silt/Sand to Clear with Disposable Bailer I I BTEX (2-40ml VOA) BTEX (2-40ml VOA) BTEX (2-40ml VOA)	CLIENT:	RICE Oper	rating Com	рапу	WELL ID: Monitor Well #2
PURGING METHOD: Hand Bailed Pump, Type: Purge Pump SAMPLING METHOD: Disposable Bailer Direct from Discharge Hose Other: DISPOSAL METHOD OF PURGE WATER: On-site Drum Drums SWD Disposal Facility TOTAL DEPTH OF WELL: 47.67 Feet DEPTH TO WATER: 34.98 Feet HEIGHT OF WATER COLUMN: 12.69 Feet WELL VOLUME: 2.0 Gal. COND. TIME TEMP. COND. pH PHYSICAL APPEARANCE AND REMARKS PHYSICAL APPEARANCE AND REMARKS 12:05 20.1 33.14 6.58 Samples Collected with Disposable Bailer BTEX (2-40ml VOA)	SYSTEM:	EME			DATE: <u>May 13, 2008</u>
SAMPLING METHOD: Isposable Bailer Direct from Discharge Hose Other:	SITE LOCATION:	L-6 Boot			SAMPLER: Rozanne Johnson
SAMPLING METHOD: Isposable Bailer Direct from Discharge Hose Other:					
DISPOSAL METHOD OF PURGE WATER: ☐ On-site Drum ☐ Drums ☑ SWD Disposal Facility TOTAL DEPTH OF WELL: <u>47.67</u> Feet DEPTH TO WATER: <u>34.98</u> Feet HEIGHT OF WATER COLUMN: <u>12.69</u> Feet <u>2</u> In. Well Diameter WELL VOLUME: <u>2.0</u> Gal. <u>2</u> In. Well Diameter WELL VOLUME: <u>2.0</u> Gal. <u>12:05</u> Gal. <u>12:05</u> 20.1 33.14 6.58 Silt/Sand to Clear with no odor. 12:05 20.1 33.14 6.58 Silt/Sand to Clear with no odor. BTEX (2-40ml VOA)	PURGING METHOD:] Hand Ba	ailed 🗸	Pump, Type: Purge Pump
TOTAL DEPTH OF WELL: 47.67 Feet DEPTH TO WATER: 34.98 Feet HEIGHT OF WATER COLUMN: 12.69 Feet WELL VOLUME: 2.0 Gal. 2 IN. Well Diameter 8 Gallons purged prior to sampling TIME TEMP. °C COND. mS/cm pH PHYSICAL APPEARANCE AND REMARKS 12:05 20.1 33.14 6.58 Silt/Sand to Clear with no odor. 12:05 20.1 33.14 6.58 Silt/Sand to Clear with Disposable Bailer BTEX (2-40ml VOA) BTEX (2-40ml VOA) BTEX (2-40ml VOA)	SAMPLING METHOD): 🖂] Disposa	ble Bailer[Direct from Discharge Hose Other:
TOTAL DEPTH OF WELL: 47.67 Feet DEPTH TO WATER: 34.98 Feet HEIGHT OF WATER COLUMN: 12.69 Feet WELL VOLUME: 2.0 Gal. 2 IN. Well Diameter 8 Gallons purged prior to sampling TIME TEMP. °C COND. mS/cm pH PHYSICAL APPEARANCE AND REMARKS 12:05 20.1 33.14 6.58 Silt/Sand to Clear with no odor. 12:05 20.1 33.14 6.58 Silt/Sand to Clear with Disposable Bailer BTEX (2-40ml VOA) BTEX (2-40ml VOA) BTEX (2-40ml VOA)					
TOTAL DEPTH OF WELL: 47.67 Feet DEPTH TO WATER: 34.98 Feet HEIGHT OF WATER COLUMN: 12.69 Feet WELL VOLUME: 2.0 Gal. 2 IN. Well Diameter 8 Gallons purged prior to sampling TIME TEMP. °C COND. mS/cm pH PHYSICAL APPEARANCE AND REMARKS 12:05 20.1 33.14 6.58 Silt/Sand to Clear with no odor. 12:05 20.1 33.14 6.58 Silt/Sand to Clear with Disposable Bailer BTEX (2-40ml VOA) BTEX (2-40ml VOA) BTEX (2-40ml VOA)					
TOTAL DEPTH OF WELL: 47.67 Feet DEPTH TO WATER: 34.98 Feet HEIGHT OF WATER COLUMN: 12.69 Feet WELL VOLUME: 2.0 Gal. 2 IN. Well Diameter 8 Gallons purged prior to sampling TIME TEMP. °C COND. mS/cm pH PHYSICAL APPEARANCE AND REMARKS 12:05 20.1 33.14 6.58 Silt/Sand to Clear with no odor. 12:05 20.1 33.14 6.58 Silt/Sand to Clear with Disposable Bailer BTEX (2-40ml VOA) BTEX (2-40ml VOA) BTEX (2-40ml VOA)					
TOTAL DEPTH OF WELL: 47.67 Feet DEPTH TO WATER: 34.98 Feet HEIGHT OF WATER COLUMN: 12.69 Feet WELL VOLUME: 2.0 Gal. 2 IME TEMP. COND. pH PHYSICAL APPEARANCE AND REMARKS mS/cm pH 12:05 20.1 33.14 6.58 Silt/Sand to Clear with no odor. 12:05 20.1 33.14 6.58 Silt/Sand to Clear with Disposable Bailer BTEX (2-40ml VOA) BTEX (2-40ml VOA) BTEX (2-40ml VOA)	DISPOSAL METHOD	OF PURGE	WATER:	└ On-sit	
HEIGHT OF WATER COLUMN: 12.69 Feet 2 In. Well Diameter WELL VOLUME: 2.0 Gal. B Gallons purged prior to sampling TIME TEMP. °C COND. mS/cm pH PHYSICAL APPEARANCE AND REMARKS 12:05 20.1 33.14 6.58 Silt/Sand to Clear with no odor. 12:05 20.1 33.14 6.58 Silt/Sand to Clear with no odor. BTEX (2-40ml VOA) BTEX (2-40ml VOA) BTEX (2-40ml VOA)		/ELL:			(
WELL VOLUME: 2.0 Gal. 8 Gallons purged prior to sampling TIME TEMP. °C COND. mS/cm pH PHYSICAL APPEARANCE AND REMARKS 12:05 20.1 33.14 6.58 Silt/Sand to Clear with no odor. 12:05 20.1 33.14 6.58 Silt/Sand to Clear with no odor. BTEX (2-40ml VOA) BTEX (2-40ml VOA) BTEX (2-40ml VOA)		COLUMN:			2 In. Well Diameter
TIME °C mS/cm pH PHYSICAL APPEARANCE AND REMARKS 12:05 20.1 33.14 6.58 Silt/Sand to Clear with no odor. Samples Collected with Disposable Bailer BTEX (2-40ml VOA)					
TIME °C mS/cm pH PHYSICAL APPEARANCE AND REMARKS 12:05 20.1 33.14 6.58 Silt/Sand to Clear with no odor. Samples Collected with Disposable Bailer BTEX (2-40ml VOA)	[]	TEMP			· · · · · · · · · · · · · · · · · · ·
12:05 20.1 33.14 6.58 Silt/Sand to Clear with no odor. Samples Collected with Disposable Bailer BTEX (2-40ml VOA)	TIME			рН	PHYSICAL APPEARANCE AND REMARKS
Samples Collected with Disposable Bailer BTEX (2-40ml VOA)				· · ·	
Samples Collected with Disposable Bailer BTEX (2-40ml VOA)					
BTEX (2-40ml VOA)	12:05	20.1	33.14	6.58	
Major Ions/TDS (1-1000ml Plastic)					BTEX (2-40ml VOA)
					Major Ions/TDS (1-1000ml Plastic)
				<u> </u>	

COMMENTS:

Myron Model 6P instrument used to obtain pH, conductivity, and temperature measurements.

Delivered samples to Cardinal Laboratories in Hobbs, New Mexico for BTEX, Major lons, and TDS analysis.

WELL SAMPLING DATA FORM

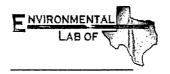
CLIENT:	RICE Oper	rating Com	pany	WELL ID: Monitor Well #3
SYSTEM:	EME			DATE: May 13, 2008
SITE LOCATION:	L-6 Boot			SAMPLER: Rozanne Johnson
PURGING METHOD	: [] Hand Ba	ailed 🗹	Pump, Type: Purge Pump
SAMPLING METHO	D: 🖸	Disposa	ble Bailer[Direct from Discharge Hose Other:
DISPOSAL METHOD			🗌 On-sit	e Drum 🔲 Drums 🛛 SWD Disposal Facility
TOTAL DEPTH OF V DEPTH TO WATER:			Feet Feet	
HEIGHT OF WATER	COLUMN:	17.94	Feet	In. Well Diameter
WELL VOLUME:	2.9	Gal.		10 Gallons purged prior to sampling
TIME	TEMP.	COND.	- 1 1	PHYSICAL APPEARANCE AND REMARKS
I IIVIE	°C	mS/cm	pН	PHISICAL APPEARANCE AND REMARKS
10:55	20.1	32.92	6.60	Silt/Sand to Clear with no odor.
				Samples Collected with Disposable Bailer
				BTEX (2-40ml VOA)
				Major Ions/TDS (1-1000ml Plastic)

COMMENTS:

Myron Model 6P instrument used to obtain pH, conductivity, and temperature measurements.

Delivered samples to Cardinal Laboratories in Hobbs, New Mexico for BTEX, Major Ions, and TDS analysis.

Analytical Report 292192


for

Rice Operating Co.

Project Manager: Kristin Pope

EME Jct. L-6 Boot Site EME Jct. L-6 Boot

09-NOV-07

12600 West I-20 East Odessa, Texas 79765

A Xenco Laboratories Company

Texas certification numbers: Houston, TX T104704215

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

09-NOV-07

Project Manager: Kristin Pope Rice Operating Co. 122 West Taylor Hobbs, NM 88240

Reference: XENCO Report No: 292192 EME Jct. L-6 Boot Site Project Address: T20S R37E Sec 6L, Lea County, NM

Kristin Pope:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 292192. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 292192 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II Odessa Laboratory Manager

> Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Sample Cross Reference 292192

Rice Operating Co., Hobbs, NM

EME Jct. L-6 Boot Site

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
B-1 (5'-7')	S	Oct-29-07 08:50		292192-001
B-1 (20'-22')	S	Oct-29-07 09:05		292192-002
MW-1 (30'-32')	S	Oct-31-07 10:55		292192-003
MW-3 (15'-17')	S	Oct-31-07 08:44		292192-004

Certificate of Analysis Summary 292192 Rice Operating Co., Hobbs, NM Project Name: EME Jct. L-6 Boot Site

ENTRONMENTAL

Project ld: EME Jct. L-6 Boot Contact: Kristin Pope

Date Received in Lab: Wed Oct-31-07 05:05 pm

Report Date: 09-NOV-07

					Project Manager: B	Brent Barron, II
	Lab Id:	292192-001	292192-002	292192-003		
	Field Id:	B-I (5'-7')	B-1 (20'-22')	MW-1 (30'-32')	MW-3 (15'-17')	
Analysis Kequesiea	Depth:					
	Matrix:	SOIL	SOIL	SOIL	SOIL	
	Sampled:	Oct-29-07 08:50	Oct-29-07 09:05	Oct-31-07 10:55	Oct-31-07 08:44	
DTEV hv EPA 80318	Extracted:	Nov-02-07 12:41				
DIEA UY EL A GUZIE	Analyzed:	Nov-03-07 02:17				
	Units/RL:	mg/kg RL				
Benzene		0.0201 0.0056				
Toluene		0.1694 0.0056				
Ethylbenzene		0.3253 0.0056				
m,p-Xylene		1.514 0.0113				
o-Xylene		0.3354 0.0056				
Total Xylenes		1.8494				
Total BTEX		2.3642				
Inorganic Anions by FPA 300	Extracted:					
	Analyzed:		Nov-08-07 17:50	Nov-08-07 19:27	Nov-08-07 19:51	
	Units/RL:		mg/kg RL	mg/kg RL	mg/kg RL	
Chloride			4470 139	4730 118	109 27.7	
Darrant Maistura	Extracted:					
	Analyzed:	Nov-01-07 09:30				
	Units/RL:	% RL				
Percent Moisture		11.3 1.00				
TPH by SW8015 Mod	Extracted:	Nov-02-07 12:30				
	Analyzed:	Nov-03-07 19:22				
	Units/RL:	mg/kg RL				
C6-C12 Gasoline Range Hydrocarbons		ND 16.9				
C12-C28-Diesel-Range-Hydrocarbons-		329 16.9				
C28-C35 Oil Range Hydrocarbons		50.1 16.9				
		1 020				

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed froughen this analytical report research the bit judgment of YENCO Laboratories. XENCO Laboratories assumes to responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Since 1990

Brent Barron Odessa Laboratory Director

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- RPD exceeded lab control limits. F
- The target analyte was positively identified below the MQL and above the SQL. J
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.

* Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

	Phone	Fax
11381 Meadowglen Lane Suite L Houston, Tx 77082-2647	(281) 589-0692	(281) 589-0695
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, Suite 104, San Antonio, TX 78238	(210) 509-3334	(201) 509-3335
2505 N. Falkenburg Rd., Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555

Form 2 - Surrogate Recoveries

Project Name: EME Jct. L-6 Boot Site

7 ork Order #: 292192 Lab Batch #: 707688 Sample:	202102.002.5 / MS	u u	D: EME Jct. I	L-6 Boot	
Lab Batch #: 707000 Sample: Units: mg/kg		Itch: 1 Matr	ix: Soil	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluorobenzene	0.0323	0.0300	108	80-120	<u> </u>
4-Bromofluorobenzene	0.0340	0.0300	113	80-120	
Lab Batch #: 707688 Sample	: 292192-003 SD / MSD Ba	itch: 1 Matr	ix: Soil	· _ · ·	
Units: mg/kg	SU	JRROGATE R	ECOVERYS	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0346	0.0300	115	80-120	
4-Bromofluorobenzene	0.0352	0.0300	117	80-120	
Lab Batch #: 707688 Sample	: 501055-1-BKS / BKS B	atch: 1 Matr	ix: Solid		
Units: mg/kg	SI	JRROGATE R	ECOVERY S	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Analytes	0.0201	0.0300		80.120	
4-Bromofluorobenzene	0.0301	0.0300	100	80-120 80-120	
			, 	00 120	
Lab Batch #: 707688 Sample Units: mg/kg		atch: 1 Matr URROGATE RI	ix: Solid	STUDV	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
1,4-Difluorobenzene	0.0325	0.0300	108	80-120	
4-Bromofluorobenzene	0.0273	0.0300	91	80-120	
Lab Batch #: 707688 Sample	:: 501055-1-BSD / BSD B	atch: 1 Matr	ix: Solid		
Units: mg/kg	S	URROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene	, 0.0300	0.0300	100	80-120	
4-Bromofluorobenzene	0.0291	0.0300	97	80-120	

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: EME Jct. L-6 Boot Site

ork Order #: 292192		-	D: EME Jct. I	L-6 Boot	
•			ix: Soil		
Units: mg/kg	SU	RROGATE RI	ECOVERY	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.1624	0.1500	108	80-120	
4-Bromofluorobenzene	0.1739	0.1500	116	80-120	· · · · · - · ·
Lab Batch #: 707820 Sample:	501091-1-BKS / BKS Bat	tch: 1 Matri	ix: Solid	1	
Units: mg/kg	SU	RROGATE RI	ECOVERY	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0299	0.0300	100	80-120	
4-Bromofluorobenzene	0.0290	0.0300	97	80-120	
Lab Batch #: 707820 Sample:	501091-1-BLK / BLK Bat	tch: I Matri	ix: Solid	·	
Units: mg/kg		RROGATE RI		STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Analytes					
1,4-Difluorobenzene 4-Bromofluorobenzene	0.0319	0.0300	106	80-120	
			84	80-120	
•			ix: Solid		
Units: mg/kg	SU	RROGATE RI	ECOVERY S	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0300	0.0300	100	80-120	
4-Bromofluorobenzene	0.0275	0.0300	92	80-120	- · · · ·
Lab Batch #: 707874 Sample: 2	292192-001 / SMP Bat	ich: 1 Matri	ix: Soil		
Units: mg/kg	SU	RROGATE RI	ECOVERY S	STUDY	
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	17.6	100	18	70-135	**
o-Terphenyl	9.26	50.0	19	70-135	**

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: EME Jct. L-6 Boot Site

ork Order #: 292192 Lab Batch #: 707874 Sam	ple: 501103-1-BKS / BKS	Ū.	D: EME Jct. I	L-6 Boot	
Units: mg/kg	·	SURROGATE R	ECOVERY	STUDY	
TPH by SW8015 Mo Analytes	Dd Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	108	100	108	70-135	
o-Terphenyl	45.3	50.0	91	70-135	
Lab Batch #: 707874 Sam	ple: 501103-1-BLK / BLK	Batch: 1 Mat	rix: Solid		
Units: mg/kg		SURROGATE F	ECOVERY	STUDY	
TPH by SW8015 Mo	od · Amount Found [A]	True Amount ' [B]	Recovery %R [D]	Control Limits %R	Flags
I-Chlorooctane	91.2	100	91	70-135	
o-Terphenyl	44.6	50.0	89	70-135	
Lab Batch #: 707874 Sam	ple: 501103-1-BSD / BSD	Batch: 1 Mat	rix: Solid	·	
Units: mg/kg		SURROGATE F	RECOVERY	STUDY	
TPH by SW8015 Me Analytes	od Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	107	100	107	70-135	
o-Terphenyl	48.1	50.0	96	70-135	

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.

Project Name: EME Jct. L-6 Boot Site

Work Order #: 292192		Pr	oject ID:		EME Jct. I	L-6 Boot
Lab Batch #: 708123	Sample: 708123	3-1-BKS	Matri	ix: Solid		
Date Analyzed: 11/08/2007	Date Prepared: 11/08/2	2007	Analy	st: MAB		
Reporting Units: mg/kg	Batch #: 1	BLANK /I	BLANK SPI	KE REG	COVERYS	STUDY
Inorganic Anions by EPA 300	Blank Result	Spike Added	Blank Spike	Blank Spike	Control 'Limits	Flags
Analytes	[A]	[B]	Result [C]	%R [D]	%R	
Chloride	ND	50.0	49.6	99	75-125	

Blank Spike Recovery [D] = 100*[C]/[B] All results are based on MDL and validated for QC purposes.

BS / BSD Recoveries

Project Name: EME Jct. L-6 Boot Site

Work Order #: 292192 Lab Batch ID: 707688 Analyst: SHE

Date Prepared: 11/01/2007 Batch #: 1

Sample: 501055-1-BKS

Project ID: EME Jct. L-6 Boot Date Analyzed: 11/01/2007 Matrix: Solid

	2
1	5
1	\square
	-
Т	_
-1	<u> </u>
1	
1	V STUD
1	-
1	>
J.	OVERY
1	2
1	_
	Ξ
I	~
1	춛
L	~
1	C
1	RECC
1	\mathbf{u}
1	r-i
I	-
1	~
1	μ÷η
-1	ANK SPIKE DUPLICATE RECOV
ļ	r-1
1	-
- 1	Ĺ
- 1	-
1	-
1	, 7
1	\cup
J	-
1	
1	_
- 1	ā "
1	5
1	\square
J	Ξ
J	DUPL]
- 1	_
- 1	r-7
1	1
1	\sim
1	PIK
1	Ι
	۵.
1	
	S
1	
1	\mathbf{Y}
1	
- L	Z
	-
	<
	13
	Ē
	00
- 1) Hill
	1
	(T-
	\sim
	K /BLANK SPIKE / BLA
	NK S
	1
	1
	1
	-
	100
	8
	/
	∨
	_
	7
	Z
	Z
	N AN
	LANI
	SLANI
	BLANI
	BLANI
	BLANI
	BLANI

Units: mg/kg		BLAN	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	PIKE / B	LANK S	PIKE DUPL	ICATE 1	RECOVE	RY STUD	Y	
BTEX by EPA 8021B	Blank Sample Result A	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Bik. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[<u>B</u>]		[a]	[E]	Result [F]	[6]				
Benzene	QN	0.1000	0.1006	101	0.1	0.1006	101	0	70-130	35	
Toluene	QN	0.1000	0.1002	100	0.1	0.1005	101	0	70-130	35	
Ethylbenzene	QN	0.1000	0.1021	102	0.1	0.1032	103	1	71-129	35	
m,p-Xylene	QN	0.2000	0.2000	100	0.2	0.2021	101	-	70-135	35	
o-Xylene	ND	0.1000	0.1007	101	0.1	0.1019	102	-	71-133	35	
Analyst: SHE	D2	ite Prepare	Date Prepared: 11/02/2007	7			Date Ai	Date Analyzed: 11/03/2007	1/03/2007		

in a manufact a man	Batch #: 1	
	Sample: 501091-1-BKS	
Audiyst. Still	Lab Batch ID: 707820	

BLANK / BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY Matrix: Solid

Units: mg/kg	•	BLAN	K /BLANK S	PIKE / B	ILANK S	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	ICATE I	RECOVE	RY STUD	Y	
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]		(d)	[E]	Result [F]	[6]				
Benzene	QN	0.1000	0.0891	89	0.1	0.0868	87	3	70-130	35	_
Toluene	ŊŊ	0.1000	0.0889	68	0.1	0.0860	86	3	70-130	35	
Ethylbenzene		0001-0	-0:0929-	-93	- 0:1	0:0877	-99	-9-	71-129		
m,p-Xylene	QN	0.2000	0.1808	60	0.2	0.1710	86	6	70-135	35	
o-Xylene	ŊŊ	0.1000	0.0953	95	0.1	0.0900	06	6	71-133	35	

Relative Percent Difference RPD = 200*((D-F)/(D+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: EME Jct. L-6 Boot Site

 Work Order #:
 292192

 Analyst:
 SHE

 Lab Batch ID:
 707874
 Sample:
 501103-1-BKS

Date Prepared: 11/02/2007

Batch #:]

Project ID: EME Jct. L-6 Boot Date Analyzed: 11/03/2007 Matrix: Solid

Units: mg/kg .		BLAN	K /BLANK S	PIKE / B	LANK S	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	ICATE 1	RECOVE	ERY STUD	Y	
TPH by SW8015 Mod	Blank Sample Result	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	Blk. Spk Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	[¥]	(B)	Result [C]	%R [D]	[B]	Duplicate Result [F]	%R [G]		%R	%RPD	
C6-C12 Gasoline Range Hydrocarbons	QN	1000	929	93	1000	935	94		70-135	35	
C12-C28 Diesel Range Hydrocarbons	ND	1000	933	93	1000	934	93	0	70-135	35	

Relative Percent Difference RPD = 200*((D-F)/(D+F)) Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: EME Jct. L-6 Boot Site

Work Order #: 292192

Date Analyzed: 11/01/2007 Lab Batch ID: 707688

-Batch #: QC-Sample ID: 292192-003 S

Matrix: Soil

Project ID: EME Jct. L-6 Boot

Date Prepared: 11/01/2007

Analyst: SHE

Reporting Units: mg/kg		Z	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	E / MAT	RIX SPI	KE DUPLICAT	FE RECO	DVERY 5	STUDY		
BTEX by EPA 8021B	Parent Sample Result	Spike	Spiked Sample Result	Spiked Sample		Duplicate Spike Spiked Sample	Spiked Dup. % P	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[V]	[B]	<u>.</u>			[r] mean	[C]	è.			
Benzene	QN	0.1000	0.0859	-86	0.1000	0.0904	90	5	70-130	35	
Toluene	QN	0.1000	0.0828	83	0.1000	0.0862	86	4	70-130	35	
Ethylbenzene	QN	0.1000	0.0814	81	0.1000	0.0860	86	6	71-129	35	
m,p-Xylene	DN	0.2000	0.1661	83	0.2000	0.1715	86	4	70-135	35	
o-Xylene	DN	0.1000	0.0826	83	0.1000	0.0869	87	5	71-133	35	
Lab Batch ID: 708123 Date Analyzed: 11/08/2007	QC- Sample ID: 292192-002 S Date Prepared: 11/08/2007	292192. 11/08/2	-002 S 007	Ba An	Batch #: Analyst:	1 Matrix: Soil MAB	:: Soil				

Reporting Units: mg/kg		W	ATRIX SPIKE	/ MATI	AIX SPII	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	re reco	DVERY 5	STUDY		
Inorganic Anions by EPA 300	Parent Sample	Spike	Spiked Sample Spiked Result Sample	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]		%R D	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Chloride	4470	1390	5930	105	1390	7100	189	57	75-125	20	XF

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation LimitMatrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)(D+G)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

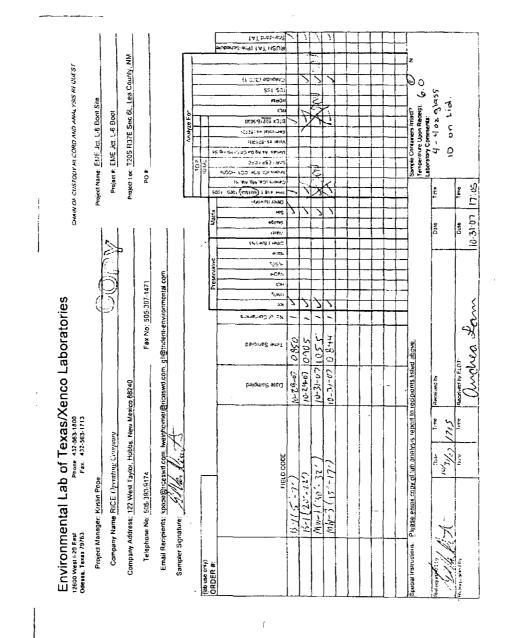
Page 12 of 17

Sample Duplicate Recovery

Project Name: EME Jct. L-6 Boot Site

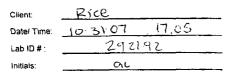
Work Order #: 292192

Lab Batch #: 708123 Date Analyzed: 11/08/2007 E QC- Sample ID: 292192-002 D	Date Prepared: 11/0 Batch #: 1	08/2007	Analy	D: EME Jet /st: MAB /ix: Soil	. L-6 Boot
Reporting Units: mg/kg	SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Inorganic Anions by EPA 300	Parent Sample Result [A]	Sample Duplicate Result	RPÐ	Control Limits %RPD	Flag
Analyte		[B]			
Chloride	4470	4460	0	20	
Lab Batch #: 707814					
	Date Prepared: 11/0	1/2007	Analy	st: RBA	
QC- Sample ID: 292190-001 D	Batch #:		Matr	ix: Soil	
Reporting Units: %	SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Percent Moisture Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Percent Moisture	4.81	5.34	10	20	


Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes.

Pinesson (Pre-Schedule) TAT brebners 0851 521 54011 Project Loc: T20S R37E Sec 6L, Lea County, NM CHAIN DF CUSTODY HECORD AND ANAI YSIS RI QUEST Sample Containers Intac? MAC Project Name: EME Jct. L-6 Boot Site in un Lid. 106 Project #: EME Jct. L-6 Boot 0009/01208 X91H (0758) autoritation INCOX8: SHIDER od pit of the philot para allate 1CLP DID/#SF/BV ₽0*#*: (SOOH COD POS 10) HINN Senous (Co. Mg. No. K) Time Time Cuper (st lioS Matrix əfphiş aşevv Date Date (Alcada) anon anon CS.H HC®N IOH Email Recipients: kpope@riceswd.com. lweinner@riceswd.com. gil@trident-environmental.com Fax No: 505-397-1471 400² ce Environmental Lab of Texas/Xenco Laboratories 12800 West 120 East Odesse, Texas 79753 Fax: 432.563-1713 Indrea Lam 7 No. of Corte rets 10-31-07 1055 0.8.4 0850 balqms2 omiT Special Instructions: Please email copy of lab analysis report to recipients listed above. Received by ELOT: 10-24-07 10-31-67 10 20-07 Received by: Company Address: 122 West Taylor, Hobbs, New Mexico 88240 balqme2 ateQ Date Tince Tine Company Name RICE Operating Company ġ FIELD CODE MW-1(30 32' MW-5 (15-17-Telephone No: 505-393-9174 (1-1 (20-12) Project Manager: Kristin Pope 115-7-Sampler Signature: 2012102 (lab use only) ORDER #: 20 56 50

20:21 LO.12:01


ł .

u

e

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Sample Receipt Checklist

#1 Te	mperature of container/ cooler?	Yes	No	6 0 °C
#2 Sh	ipping container in good condition?	Ves	No	
#3 CL	ustody Seals intact on shipping container/ cooler?	Yes	No	Not Present
#4 Cı	ustody Seals Intact on sample bottles/ container?	Yes	No	NOT Present
#5 CI	nain of Custody present?	Yes	No	
#6 Sa	ample instructions complete of Chain of Custody?	Yes	No	
#7 CI	hain of Custody signed when relinquished/ received?	Yes	No	
#8 CI	hain of Custody agrees with sample label(s)?	Yes	No	Wwritten on Cont 71id
#9 Co	ontainer label(s) legible and intact?	MES	No	Not Applicable
#10 S	ample matrix/ properties agree with Chain of Custody?	1 Ces	No	
#11 C	Containers supplied by ELOT?	Ves	No	
#12 S	Samples in proper container/ bottle?	Xes	No	See Below
#13 S	Samples properly preserved?	Yes	No	See Below
#14 S	Sample bottles intact?	Yes	No	
#15 P	Preservations documented on Chain of Custody?	es	No	
#16 C	Containers documented on Chain of Custody?	Kes	No	
#17 S	Sufficient sample amount for indicated test(s)?	Yes	No	See Below
#18 A	All samples received within sufficient hold time?	Ves	No	See Belcw
#19 5	Subcontract of sample(s)?	Yes	No	Not Applicable
#20 \	/OC samples have zero headspace?	Yes	No	Not Applicable

Variance Documentation

Date/ Time:

Contact:

Regarding:

Corrective Action Taken:

Check all that Apply:

See attached e-mail/ fax

Contacted by:

Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

Ŀ

Carrie Kelly

From:	Gil Van Deventer [gilbertvandeventer@suddenlink.net]		
Sent:	Monday, November 05, 2007 5:53 PM		
To:	carrie kelly@xenco.com		
Cc:	Brent Barron; Lara Weinheimer		
Subject:	Revised COC for EME Jct L-6 Boot		
Attachments: COC_L-6_103107_rev.pdf			

Carrie

I just noticed that I inadvertently checked off the TPH & BTEX analysis boxes instead of the chloride boxes as intended on the chain of custody for three samples I submitted last Wednesday. I have attached the revised COC. Please accept my apologies for this inconvenience and let me know if I need to compensate for any costs resulting from my error.

<u>Requested analyses</u> B-1 (5' - 7') TPH (8015) and BTEX (8021B) B-1 (20' 22') Chloride only MW-1 (30' 32') Chloride only MW-3 (15' - 17') Chloride only

Thanks - Gil

Gilbert J. Van Deventer, PG, REM Trident Environmental www.trident-environmental.com Work/Mobile: 432-638-8740 Fax: 413-403-9968 Home: 432-682-0727

CONFIDENTIALITY NOTICE

This message (including attachments) is subject a confidential communication and is intended solely for the use of the addressee. It is not intended for transmission to, or receipt by, any unauthorized person. If you are not the intended recipient or received these documents by mistake, please do not read it and immediately notify me by telephone (432-638-4740) for instructions on its destruction or return. If you are on the intended recipient, you are hereby notified that any disclosure, copying, distribution, action or reliance upon the contents of the documents is strictly prohibited.

11/6/2007

APPENDIX D

NMOCD CORRESPONDENCE

From: Hansen, Edward J., EMNRD Sent: Tuesday, August 12, 2008 4:35 PM To: 'Hack Conder' Cc: Price, Wayne, EMNRD; 'Marvin Burrows' Subject: Workplans for 1R427-09, 1R426-09, 1R428-76, and 1R427-172

Dear Mr. Conder:

The New Mexico Oil Conservation Division (OCD) has determined after reviewing your Notification of Groundwater Impact for each of the following four sites:

- Rice EME L-6 Boot Unit L, Section 6, T20S, R37E Lea County, New Mexico OCD Case #1R0427-09
- 2) Rice BD H-19 Unit H, Section 19, T21S, R37 Lea County, New Mexico OCD Case #1R0426-09
- 3) Rice Hobbs Jct. M-4 Unit M, Section 4, T19S, R38E Lea County, New Mexico OCD Case #1R0428-76
- 4) Rice EME Gaither Boot Unit I, Section 34, T19S, R36E Lea County, New Mexico OCD Case #1R0427-172

that the Rice Operating Company (ROC) must submit for each of the four sites a separate corrective action workplan in accordance with OCD Rule 116 (19.15.3.116 NMAC) to remediate the ground water contamination at each of these sites. The workplans must include a schedule for immediate implementation of groundwater remediation and source control. The workplans must be submitted to the OCD Santa Fe Office within 30 days.

Specifically, the workplan for the <u>Rice EME L-6 Boot</u> site must include that an estimation of the chloride mass that has contaminated the groundwater by the release at the <u>Rice EME L-6 Boot</u> Site and a plan for the removal of that chloride mass from the groundwater. An existing groundwater monitoring well may be used for this purpose. Also, please propose a treatment and / or disposal method for that chloride mass.

Also, for the Rice <u>EME Gaither Boot</u> additional site investigation must be performed at the site; i.e., an upgradient groundwater monitoring well must be installed at the site to determine the regional background groundwater quality. If the background quality is similar to the downgradient well sample results, then the workplan must include that an estimation of the chloride mass that has contaminated the groundwater by the release at the Rice <u>EME Gaither Boot</u> Site and a plan for the removal of that chloride

mass from the groundwater. An existing groundwater monitoring well may be used for this purpose. Also, please propose a treatment and / or disposal method for that chloride mass. [However, if the background quality is not similar to the downgradient well sample results, then an Abatement Plan may be required. Therefore, please submit the analytical results for the upgradient well to the OCD prior to submitting the workplan. Additional time for submittal of the workplan for this site may be requested.]

ROC should submit one paper copy and an electronic copy on CD for each of the workplans and for all future workplans and/or reports for each of the sites. Please be sure to include the current corresponding OCD Case # on each of the respective workplans. If you have any questions regarding this matter, please call me at (505) 476-3489.

Edward J. Hansen Hydrologist Environmental Bureau

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. – This email has been scanned by the Sybari - Antigen Email System.