AP - 16

STAGE 2 WORKPLANS

DATE: 0.1, 2008

SOIL CLOSURE PROPOSAL CEVED 2008 OCT 29 PM 2 36

BOB DURHAM

NE ¼ NW ¼ SECTION 32, TOWNSHIP 19 SOUTH, RANGE 37 EAST LEA COUNTY, NEW MEXICO NMOCD Reference Number AP-0016 Plains SRS #: TNM LF 2000-7

Prepared for:

Plains Marketing, L.P. 333 Clay Street, Suite 1600 Houston, Texas 77002

Prepared by:

NOVA Safety and Environmental 2057 Commerce Drive Midland, Texas 79703

October 2008

Ronald K. Rounsaville Project Manager

04

Todd K. Choban, P.G. Vice President, Technical Services

TABLE OF CONTENTS

1.0	INTRODUCTION AND PURPOSE 1
2.0	NMOCD SITE CLASSIFICATION 1
3.0	BACKGROUND INFORMATION 1
4.0	RESULTS OF 2008 SOIL INVESTIGATION ACTIVITIES2
5.0	PROPOSED ACTIONS
6.0	REPORTING
7.0	QA/QC PROCEDURES.57.1SoilSampling.7.2Decontamination of Equipment.557.3Laboratory Protocol5
8.0	LIMITATIONS
9.0	DISTRIBUTION

FIGURES

Figure 1:	Site Location Map
Figure 2:	Site Map
Figure 3:	Proposed Excavation Map

•

•

> 0 0

TABLES

Table 1:Concentrations of BTEX and TPH in Soil

APPENDICES

Appendix A:	Soil Boring Log Details
Appendix B:	Laboratory Reports

1.0 INTRODUCTION AND PURPOSE

0

Ô

0

0

0

0

0

A

Ð

0

Ð

0

4

()

Ð

0

(H)

Ð

0

Ø

0

On behalf of Plains Marketing, L.P. (Plains), NOVA Safety and Environmental (NOVA) has prepared this Soil Closure Proposal for the site known as Bob Durham (SRS # TNM LF 2000-7). The site is located in the NE ¹/₄ of the NW ¹/₄ of Section 32, Township 19 South, Range 37 East in Lea County, New Mexico. A site location map is provided as Figure 1.

The Bob Durham crude oil release was discovered in January 2000, while installing a polyethylene liner in the subject pipeline. During initial response activities, approximately 2,000 cubic yards (cy) of impacted soil was excavated from the release area. The impacted soil was reportedly transported to J & L Land Farm, located near Eunice, New Mexico. The initial excavation measured approximately 130 feet in length, 60 feet in width and approximately 16 feet below ground surface (bgs) at the deepest extent. The volume of crude oil release from the pipeline is unknown. During initial response activities, concluding in March 2000, approximately 108 barrels of crude oil was recovered. A site map depicting the locations of the soil borings, initial excavation, the locations of monitor wells and other site details, is provided as Figure 2. The Release Notification and Corrective Action (Form C-141) is provided as Appendix D.

2.0 NMOCD-SITE CLASSIFICATION

The depth to groundwater at the site is approximately 15 feet bgs. Based on the NMOCD soil classification system, 20 points would be assigned to the site as a result of this criterion. There are receptor water wells located within 200 feet of the site. Based on the NMOCD Soil Classification System, 20 points would be assigned to the site as a result of this criterion. There are no surface-water features identified within a one-mile radius of the site. Based on the NMOCD Soil Classification System, 0 points would be assigned to the site as a result of this criterion. There are no surface-water features identified within a one-mile radius of the site. Based on the NMOCD Soil Classification System, 0 points would be assigned to the site as a result of this criterion. The NMOCD guidelines indicate that the site would have a Ranking Score of >19. The soil action levels for a site with a Ranking Score of >19 points are as follows:

- Benzene 10 mg/Kg
- BTEX 50 mg/Kg
- TPH 100 mg/Kg

3.0 BACKGROUND INFORMATION

From January 25 through June 28, 2000, a previous contractor installed thirty-six monitor wells and advanced three soil borings at the site. Soil samples were collected at five foot intervals as the monitor wells and soil borings were being installed / advanced. The analytical results of the soil samples indicated Total Petroleum Hydrocarbons (TPH) and Benzene, Toluene, Ethyl benzene and Xylene (BTEX) concentrations were below the NMOCD regulatory standard of 100 mg/Kg TPH, 10 mg/Kg benzene and 50 mg/Kg BTEX, in all of the installed monitor wells and advanced soil borings, with the exception of monitor wells MW-1, MW-5, MW-7, MW-8, MW-12, MW-16, MW-23 and soil boring SB-3. The analytical results of the soil samples indicated all thirty-six monitor wells and three soil borings exhibited benzene concentrations below the NMOCD regulatory standard of 10 mg/Kg.

Monitor well MW-1 is located adjacent to the reported release source and exhibited a TPH concentration of 5,499 mg/Kg and a BTEX concentration of 98.21 mg/Kg at five bgs in 2000. The soil sample collected at fifteen feet bgs indicated TPH, benzene and Total BTEX concentrations were below the NMOCD regulatory standards of 100 mg/Kg, 10 mg/Kg and 50 mg/Kg, respectively. Monitor well MW-5 exhibited a TPH concentration of 221 mg/Kg and a BTEX concentration of 0.167 mg/Kg at fifteen feet bgs. Monitor well MW-7 exhibited a TPH concentration of 469 mg/Kg and a Total BTEX concentration of 1.439 mg/Kg at fifteen feet bgs. Monitor well MW-8 exhibited a TPH concentration of 124 mg/Kg and a Total BTEX concentration of 0.131 mg/Kg at fifteen feet bgs. Monitor well MW-12 exhibited a TPH concentration of 3,501 mg/Kg and a Total BTEX concentration of 11.99 mg/Kg at fifteen feet bgs and a TPH concentration of 967 mg/Kg and a Total BTEX concentration of 5.863 mg/Kg at twenty feet bgs. Monitor well MW-16 exhibited a TPH concentration less than the method detection limit (MDL) of 0.1 mg/Kg and a Total BTEX concentration of 0.797 mg/Kg at five feet bgs and TPH and Total BTEX concentrations less than the MDL of 0.1 mg/Kg at ten feet bgs. Monitor well MW-16 exhibited a TPH concentration of 2,826 mg/Kg and a Total BTEX concentration of 15.422 mg/Kg at twenty feet bgs. Monitor well MW-23 exhibited a TPH concentration of 349 mg/Kg and a Total BTEX concentration less than the MDL at fifteen feet bgs. The analytical results indicated soil boring SB-3 exhibited a TPH concentration of 463 mg/Kg and a Total BTEX concentration of 0.184 mg/Kg at ten feet bgs.

On June 17, 2002, monitor wells MW-37 and MW-38 and soil boring SB-4 were installed/advanced to complete the delineation of the site. The analytical results indicated TPH, benzene and Total BTEX concentrations were below the MDL of 10 mg/Kg, 0.025 mg/Kg and 0.025 mg/Kg, respectively in all of the submitted soil samples.

On September 13, 2005, monitor wells MW-17, MW-18, MW-19, MW-22, MW-34, MW-35 and MW-36 were plugged and abandoned with NMOCD approval.

4.0 RESULTS OF 2008 SOIL INVESTIGATION ACTIVITIES

Ð

đ)

0

C

(D)

()

0 0

0

The objective of the 2008 Soil Investigation was to re-evaluate those areas identified during the initial soil investigation conducted in 2000 as having TPH and/or BTEX concentrations above the NMOCD remediation guidelines for the site.

On July 14, 2008, five soil borings were advanced within 4 separate areas of concern previously identified in the *Site Investigation Work Plan* dated February 2008. Soil samples were collected at the same intervals as samples collected during the 2000 drilling and sampling activities. Soil boring SB-5 was advanced adjacent to soil boring location SB-3. Analytical results of soil samples collected from soil boring SB-5 exhibited a TPH concentration of 1,172 mg/Kg and a Total BTEX concentration of 0.4312 mg/Kg at 5 feet bgs. The soil samples collected at ten and fifteen feet bgs indicated TPH, benzene and Total BTEX concentrations were below the NMOCD regulatory standards of 100 mg/Kg, 10 mg/Kg and 50 mg/Kg, respectively. Soil boring SB-6 was advanced adjacent to monitor well location MW-23. Analytical results of soil samples collected from soil boring SB-6 indicated TPH, benzene and BTEX concentrations were below the NMOCD regulatory standards at the five, ten and fifteen foot sample depths.

Soil boring SB-7 was advanced adjacent to monitor well location MW-7. Analytical results of soil samples collected from soil boring SB-7 indicated TPH, benzene and BTEX concentrations

were below the NMOCD regulatory standards at the five, ten and fifteen foot sample depths. Soil boring SB-8 was advanced to the southeast of monitor well location MW-1. Analytical results of soil samples collected from soil boring SB-8 exhibited a TPH concentration of 1,626 mg/Kg and a BTEX concentration of 4.901 mg/Kg at 5 feet bgs and a TPH concentration of 599 mg/Kg and a BTEX concentration of 0.866 mg/Kg at ten feet bgs. The soil sample collected at fifteen feet bgs indicated TPH, benzene and BTEX concentrations were below the NMOCD regulatory standards of 100 mg/Kg, 10 mg/Kg and 50 mg/Kg, respectively. Soil boring SB-9 was advanced adjacent to monitor well location MW-12. Analytical results of soil samples collected from soil boring SB-9 indicated TPH, benzene and Total BTEX concentrations were below the NMOCD regulatory standards respectively, at the five and ten foot sample depths. The soil sample collected at fifteen feet bgs exhibited a TPH concentration of 147 mg/Kg and a BTEX concentration below the laboratory method detection limit of 0.010 mg/Kg.

A summary of the Concentrations of BTEX and TPH in Soil is provided as Table 1. Lithologic and Soil Boring logs for the five soil borings are provided as Appendix A. Laboratory reports are included as Appendix B.

5.0 **PROPOSED ACTIONS**

4)

0

6

0

0

6

0

0

Ø

0

(1)

9

0

0

0

6)

9

1

(1

4)

G)

Based on analytical results, Plains proposes a risk-based soil closure strategy to progress the site known as Bob Durham towards an NMOCD approved soil closure:

- Plains proposes to excavate an area east of the Plains pipelines including monitor well MW-1 and soil boring SB-8 (Excavation Area #1) to a depth of approximately fifteen feet bgs (groundwater level) to remove soils exhibiting TPH concentrations above the NMOCD regulatory standard. A map depicting the Proposed Areas of Excavation is provided as Figure 3. The limits of this excavation will be determined by field screening using a Photo Ionization Detector (PID) and visual and olfactory evaluation of the excavation sidewalls. Confirmation sidewall soil samples will be collected at fifty foot intervals from excavation sidewalls and analyzed for concentrations of BTEX and TPH. The proposed area of excavation defined by the area including monitor well MW-1 and soil boring SB-8 contains approximately 2,000 cubic yards (cy) of hydrocarbon impacted soil.
- An additional proposed area of excavation is centered on soil boring SB-3 (Excavation Area #2). Plains proposes to excavate this area to a depth of approximately ten feet bgs to remove soils exhibiting TPH concentrations above the NMOCD regulatory standard. The limits of this excavation will be determined by field screening using a PID and visual and olfactory evaluation of the excavation sidewalls. Confirmation sidewall soil samples will be collected at appropriate intervals from excavation sidewalls and analyzed for concentrations of BTEX and TPH. The proposed area of excavation centered on soil boring SB-3 contains approximately 680 cy of hydrocarbon impacted soil. Reference Figure 3 for the Proposed Areas of Excavation.
- Soil samples collected during the advancement of soil borings SB-9, adjacent to MW-12, exhibited elevated TPH concentrations due to the presence of PSH within the capillary

fringe zone. The elevated TPH concentrations appear to be an artifact of groundwater impact versus soil impact and will not be addressed in the Soil Closure Proposal.

- Soil samples collected during the advancement of soil borings SB-6 exhibited BTEX and TPH concentrations below laboratory method detection limits of 0.010 mg/Kg and 50 mg/Kg, respectively. In comparison of the soil samples collected at the 10 ft. interval from both the MW-23 soil boring and SB-6 soil boring, TPH concentrations have decreased below the laboratory method detection limits through natural attenuation.
- When the confirmation analytical results of excavation sidewalls indicate TPH concentrations are below the NMOCD regulatory standard of 100 mg/Kg TPH, Plains proposes a risk-based strategy for soil closure at the site. With NMOCD approval, a twenty-millimeter (mil) polyurethane liner, manufactured for this purpose, will be placed on the floor of the two excavation areas. A six-inch layer of non-impacted sand placed beneath the liner will cushion the liner. On completion of the liner installation, a six-inch layer of non-impacted sand will be placed on top the liner to cushion any sharp objects from puncturing the liner. This engineered control will inhibit vertical migration of contaminants below the liner, by the process of shedding moisture to the edge of the liner and beyond the maximum horizontal extent of underlying impacted soil. Monitor well locations within the excavation will be fitted with a forty mil protective boot to maintain the impermeability of the liner.
- Stockpile soil samples will be collected and analyzed for each 500 cy of impacted soil. On receipt of analytical results, the stockpiled soils exhibiting TPH concentrations in excess of 1,000 mg/Kg TPH will be blended with non-impacted, over-excavated soil and resampled until TPH concentrations are below 1,000 mg/Kg. When the analytical results indicate TPH concentrations are below 1,000 mg/Kg, the blending of the stockpiles will be complete. Plains will request NMOCD permission to backfill each of the excavation areas with blended soil. The upper one foot of the excavation will be backfilled with locally obtained non-impacted soil exhibiting a TPH concentration less than 100 mg/Kg and contoured to fit the surrounding topography. Areas disturbed by the excavation activities will be reseeded with vegetation acceptable to the landowner.
- The site monitor wells will be maintained for continued monitoring of groundwater, until such a time as the NMOCD permits the cessation of these activities.

6.0 **REPORTING**

8

0

8

Ð

0

()

9

8

(b)

Plains is prepared to begin field activities and perform the corrective actions summarized in this Soil Closure Proposal, upon review and approval of the proposal by the NMOCD. Upon completion of the field activities summarized in this proposal, Plains will submit a Soil Closure Request to the NMOCD, documenting the results of confirmation soil samples, and final topography restoration activities. In this report, Plains will request the NMOCD grant closure to soil issues at the site. A groundwater closure request will follow after eight successive quarterly groundwater sampling events have demonstrated that hydrocarbon concentrations are below regulatory guidelines.

7.0 QA/QC PROCEDURES

7.1 Soil Sampling

0

0

0

0

0

1

0

0

4

4)

A

Soil samples will be obtained utilizing single-use, disposable, latex gloves. Representative soil samples will be divided into two separate portions using clean, disposable gloves and clean sampling tools. One portion of the soil samples will be placed in a disposable sample bag. The bag will be labeled and sealed for headspace analysis using a PID calibrated to a 100-ppm isobutylene standard. Each sample will be allowed to volatilize for approximately thirty minutes at ambient temperature prior to conducting the analysis.

The other portion of the soil sample will be placed in a sterile glass container equipped with a Teflon-lined lid furnished by the analytical laboratory. The container will be filled to capacity to limit the amount of headspace present. Each container will be labeled and placed on ice in an insulated cooler. Upon selection of samples for analysis, the cooler will be sealed for shipment to the laboratory. Proper chain-of-custody documentation will be maintained throughout the sampling process.

Soil samples will be delivered to Trace Analysis in Lubbock, Texas for BTEX and TPH analyses using the methods described below.

- BTEX concentrations in accordance with EPA Method SW846-8021B/5030
- TPH concentrations in accordance with EPA Method SW846-8015b

7.2 Decontamination of Equipment

Soil sampling tools such as small hand shovels will be washed with Liqui-Nox[®] detergent and rinsed with distilled water between soil sample locations.

7.3 Laboratory Protocol

The laboratory will be responsible for proper QA/QC procedures after signing the chain-of-custody form.

8.0 LIMITATIONS

NOVA has prepared this Soil Closure Proposal to the best of its ability. No other warranty, expressed or implied, is made or intended. NOVA has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. NOVA has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. NOVA has prepared this report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. NOVA also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This Soil Closure Proposal has been prepared for the benefit of Plains. The information contained in this report including all exhibits and attachments may not be used by any other party without the express written consent of NOVA and/or Plains.

Ð

9.0 **DISTRIBUTION**

• • • • • • •

•

• Õ 9 ${ }^{ \bullet }$

Copy 1:	Ed Hansen New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division, 1220 South St. Francis Drive Santa Fe, NM 87505
Copy 2:	Larry Johnson New Mexico Oil Conservation Division (District 1) 1625 French Drive Hobbs, NM 88240
Copy 3:	Daniel Bryant Plains Pipeline, L.P. 3705 East Highway 158 Midland, TX 79702 dmbryant@paalp.com
Copy 4:	Jeff Dann Plains Pipeline, L.P. 333 Clay Street, Suite 1600 Houston, TX 77002 jpdann@paalp.com
Copy 5:	NOVA Safety and Environmental. 2057 Commerce Drive Midland, TX 79703 rrounsaville@novatraining.cc

FIGURES

TABLES

15

,

Table 1

CONCENTRATIONS OF TPH & BTEX IN SOIL

Bob Durham

Plains Marketing, L.P.

Monument, New Mexico All concentrations are in mg/Kg

			· 8	SW 846-80	15M GRO	/DRO				SW 846-8021B, 5030			
SAMPLE DATE	SAMPLE LOCATION	GRO C ₆ -C ₁₀	GRO C ₆ -C ₁₂	DRO >C ₁₀ -C ₂₈	DRO >C ₁₂ -C ₃₅	ТРН С ₆ -С ₂₈	TPH C6-C35	BENZENE	TOLUENE	ETHYL- BENZENE	M,P- XYLENES	O- XYLENES	BTEX
NMOC	D REGULATORY STANDARD					1	00	10					50
1/25/2000	MW-1 (5')	1838	-	3661	-	5499	-	2.51	13.7	13.2	51.5	17.3	98.21
1/25/2000	MW-1 (15')	<10	-	<10	-	<10		< 0.100	<0.100	<0.100	<0.100	<0.100	<0.100
1/25/2000	MW-2 (5')	<10	-	<10		<10	-	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100
1/25/2000	MW-2 (15')	<10	-	26		26		<0.100	0.106	<0.100	0.129	<0.100	0,235
1/25/2000	MW-3 (15')	<10	-	<u></u>				<0.100	0.143	<0.100	<0.15	<0.100	0.293
1/25/2000	MW-5 (15')	11	-	210	-	221		<0.100	<0.100	<0.100	0.167	<0.100	0.167
1/25/2000	MW-6 (15')	<10	-	37	-	37		<0.100	<0.100	< 0.100	<0.100	<0.100	<0.100
1/25/2000	MW-7 (15')	49	-	420	-	469	-	<0.100	0,166	0.17	0.72	0.383	1.439
1/26/2000	MW-8 (15')	<10	-	124	-	124	-	<0.100	< 0.100	< 0.100	0.131	<0.100	0.131
1/26/2000	MW-9 (15')	<10	-	<10	-	<10	-	<0.100	0.452	0.312	0.978	0.583	2.325
1/26/2000	MW-10 (15')	<10		<10		<10		<0.100	<0.100	<0.100	<0.100	<0.100	<0.100
1/26/2000	MW-11 (20')	<10		<10		<10		<0.100	<0.100	<0.100	<0.100	<0.100	<0.100
1/26/2000	MW-12 (13)	104	-	863	-	967		<0.100	1.1	0.513	2 59	1.46	5 863
1/27/2000	MW-13 (5')	<10		<10		<10		<0.100	0.11	<0.0100	<0.100	<0.100	0.11
1/27/2000	MW-13 (15')	<10		<10	-	<10	-	<0.100	<0.100	< 0.100	<0.100	<0.100	<0.100
1/27/2000	MW-14 (15')	<10	-	<10	-	<10	-	< 0.100	0.216	0.543	0.264	0.143	1.166
1/27/2000	MW-15 (15')	<10		<10	-	<10		<0.100	<0.100	<0.100	<0.100	<0.100	<0.100
1/27/2000	MW-16 (5')	<10		<10	-	<10	-	< 0.100	0.114	0.107	0.314	0.262	0.797
1/27/2000	MW-16 (10')	<10	<u> </u>	<10	-	<10		<0.100	<0.100	<0.100	<0.100	<0.100	<0.100
1/28/2000	MW-16(15)	/94	-	2032	-	17		<0.942	1.38	<0.100	0.115	<u> </u>	0.115
2/7/2000	MW-17 (15')	<10		<10	-	<10		<0.100	<0.100	<0.100	<0.110	<0.100	<0.100
2/7/2000	MW-18 (20')	<10	-	<10	-	<10	-	<0.100	< 0.100	<0.100	< 0.100	<0,100	<0.100
2/9/2000	MW-19 (15')	<10	-	<10	-	<10	-	<0.100	< 0.100	<0.100	< 0.100	<0.100	< 0.100
2/9/2000	MW-20 (15')	<10	-	<10	-	<10	-	<0.100	0.264	0.153	0.272	0.129	0.818
2/9/2000	SB-2 (15')	<10	-	<10	-	<10	-	< 0.100	<0.100	<0.100	0.19	<0.100	0.19
2/9/2000	SB-2 (5')	<10	-	<10	-	<10	-	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100
2/9/2000	SB-3 (10)	14	-	449		463	-	<0.100	<0.100	<0.100	0.184	<0.100	0.184
2/10/2000	MW-22 (15)	<10	-	<10		<10	-	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100
2/10/2000	MW-23 (15')	<10	-	349	-	349	-	<0.100	<0.100	<0,100	< 0.100	<0.100	<0.100
2/10/2000	MW-23 (20')	<10	-	<10	-	<10		<0.100	< 0.100	< 0.100	<0.100	<0.100	<0.100
2/10/2000	MW-24 (15')	<10	-	<10	-	<10	-	<0.100	< 0.100	< 0.100	< 0.100	< 0.100	<0.100
2/10/2000	MW-25 (15')	<10	-	<10		<10	-	< 0.100	<0.100	<0.100	<0.100	<0.100	<0.100
6/7/2000	MW26SS (5')	<10	-	<10	-	<10		· ·	-	-	-		
6/7/2000	MW26SS (10)	<10	-	<10	•	<10	-	· · · · · · · · · · · · · · · · · · ·		-		-	·····
6/7/2000	MW26C (13)	<10	-	<10		<10		<u> </u>	-	-	-		
6/7/2000	MW26C (29')	<10	-	<10	-	<10	-		-	-	-	-	-
6/7/2000	MW27C (5')	<10	-	<10	-	<10	-	-	-	-	-	-	-
6/7/2000	MW27C (10')	<10	-	<10	-	<10	-			-	-	-	-
6/7/2000	MW27C (15')	<10	-	<10	-	<10	-			-	-	-	<u> </u>
6/7/2000	MW27C (20')	<10	-	<10	-	<10	-			-	-	-	-
6/7/2000	MW27C (27)	<10	-	<10	-	<10				-			
6/26/2000	MW-28C (0-2)	<10	-	<10	-	<10	-		_	-		-	-
6/26/2000	MW-28SS (3-5)	<10	-	<10	-	<10	-	-	-	•	-	-	-
6/26/2000	MW-28SS (8-10)	<10	-	<10	-	<10	-	-	-	-	-	-	-
6/26/2000	MW-28SS (13-15)	<10	-	<10	-	<10	-	-	-	-		-	
6/26/2000	MW-28SS (18-20)	<10	-	<10	-	<10	-	<u> </u>	-	-		·	
6/26/2000	MW-28SS (23-25)	<10	-	<10		<10	-	<u> </u>		-	-	-	
6/26/2000	MW-29C (0-2)	<10		<10		<10			-		-		
6/26/2000	MW-2955 (3-3)	<10		<10	<u> </u>	<10	-			-	-	-	
6/26/2000	MW-29SS (13-15)	<10	-	<10	-	<10	-	<u>i</u>	-		-	-	-
6/26/2000	MW-29C (18-20)	<10		<10	-	<10	-	<u> </u>	-	-	-	-	-
6/26/2000	MW-29SS (23-25)	<10	-	<10	-	<10	-	-	-	-	-	-	-
6/26/2000	MW-30C (0-2)	<10	-	22	-	22	-			-	-		
6/26/2000	MW-30C (3-5)	<10	-	<10	····	<10	-	· ·	-	· -	-	-	
6/26/2000	1 MW-30C (8-10)	<10	-	1 <10	1 -	<10	-		1 -	-			

Table 1

0

0

• • ۲ 6 Ô • Q • 6 • Ô • Ô • • 0 0 Ò 0 0

CONCENTRATIONS OF TPH & BTEX IN SOIL

Bob Durham

Plains Marketing, L.P.

Monument, New Mexico

All concentrations are in mg/Kg

			S	SW 846-80	5M GRO	DRO				SW 846-8021B, 5030			
SAMPLE DATE	SAMPLE LOCATION	GRO C6-C10	GRO C6-C12	DRO >C ₁₀ -C ₂₈	DRO >C ₁₂ -C ₃₅	ТРН С ₆ -С ₂₈	ТРН С6-С35	BENZENE	TOLUENE	ETHYL- BENZENE	M,P- XYLENES	O- XYLENES	BTEX
NMOC	D REGULATORY STANDARD					10	00	10					50
6/26/2000	MW-30C (13-15)	<10	-	<10	-	<10	-	-	-	-	-	-	-
6/26/2000	MW-30SS (18-20)	<10	-	<10	-	<10	-	-	-	-	-	-	-
6/26/2000	MW-30SS (23-25)	<10	-	<10	-	<10	-	-	-		-	-	-
6/30/2000	MW-31C (0-2)	<10	-	<10	-	<10	-	-	-	-	-	-	~
6/30/2000	MW-31SS (3-5)	<10	-	<10	-	<10	-	-	-	-	-		-
6/30/2000	MW-31SS (8-10)	<10	-	<10	-	<10		-	-	-	-	-	
6/30/2000	MW-31C (13-15)	<10	-	<10	-	<10	-	-	-	-	-	-	-
6/27/2000	MW-31SS (18-20)	<10	-	<10	-	<10	-	-	-	-		-	-
6/27/2000	MW-31SS (21-23)	<10		<10	-	<10	-	-	-	-	-		
6/27/2000	MW-32C (0-2)	<10	-	<10	-	<10	-	-	-	-		-	-
6/27/2000	MW-32C (3-5)	<10	-	<10	-	<10	-	-	-		-		
6/27/2000	MW-32SS (8-10)	<10	-	18	-	18	-	-	-	-	-	· · · · ·	
6/27/2000	MW-32C (13-15)	<10	-	43	-	43	-				-	-	-
6/2//2000	MW-3255 (18-20)	<10	-	<10		<10	·		-	-	-	-	
6/27/2000	MW-3255 (25-25)	<10	-	<10	-	<10		-	-	-			
6/27/2000	MW-33C (0-2)	<10		<10	-	<10		-	•	-		-	-
6/27/2000	MW-33C (8-10)	<10		<10		<10		-	-				
6/27/2000	MW-33C (13-15)	<10		<10	· · · · · ·	<10						-	-
6/27/2000	MW-33SS (18-20)	<10		<10		<10					-	-	-
6/27/2000	MW-33SS (23-25)	<10	-	<10	-	<10		-	-	-	-	-	-
6/28/2000	MW-34C (0-2)	<10	-	<10	-	<10	_	-	-	-	-	-	-
6/28/2000	MW-34C (3-5)	<10	-	<10	-	<10		-	-	-	-		-
6/28/2000	MW-34C (8-10)	<10	-	<10	-	<10	-	-	-	-	-	-	-
6/28/2000	MW-34C (13-15)	<10	-	<10	-	<10	-	-	-	-	-	-	-
6/28/2000	MW-34SS (18-20)	<10	-	<10	-	<10	-	-	-	-	-	-	-
6/28/2000	MW-34SS (23-25)	<10	-	<10	-	<10	-	-	-	-	-	-	-
6/28/2000	MW-35C (0-2)	<10	-	<10	-	<10		-	-	-	-	-	-
6/28/2000	MW-35C (3-5)	<10	•	<10	-	<10	-	-	-	-	-	-	-
6/28/2000	MW-35C (8-10)	<10	-	<10	-	<10	-	-	-	-	-	-	·
6/28/2000	MW-35C (13-15)	<10	-	<10	-	<10	-	-		-		-	-
6/28/2000	MW-35C (18-20)	<10		<10	-	<10					-	-	-
6/28/2000	MW-35SS (23)	<10		<10	-	<10	-	-	-	-	_	-	
6/28/2000	MW-36C (0-2)	<10	-	<10		<10	•		-	-		-	-
6/28/2000	MW-30C (3-5)	<10		<10	-	<10	-				~	-	-
6/28/2000	MW 36C (13 15)	<10		<10		<10			-	-			
6/28/2000	MW-36SS (18-20)	<10	-	<10	-	<10				-			
6/28/2000	MW-36SS (230	<10		<10		<10			-				
6/17/2002	MW 37 15-17'	-	<10	-	<10		<10	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
6/17/2002	MW 37 20-22'	-	<10	-	<10	-	<10	< 0.025	< 0.025	< 0.025	<0.025	<0.025	< 0.025
6/17/2002	MW-38 10'	-	<10	-	<10	-	<10	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
6/17/2002	MW-38 15'	-	<10	-	<10	-	<10	<0.025	< 0.025	< 0.025	< 0.025	<0.025	<0.025
6/17/2002	MW-38 20'		<10	-	<10	-	<10	<0.025	< 0.025	<0.025	< 0.025	<0.025	<0.025
6/17/2002	SB-415'	-	<10		<10	-	<10	<0.025	< 0.025	< 0.025	<0.025	<0.025	<0.025
6/17/2002	SB-4 20'	<u> </u>	<10	· · · · ·	<10	-	<10	<0.025	< 0.025	<0.025	<0.025	<0.025	<0.025
7/14/2008	SB-5, 4-5' (SB-3)		72.3	L	1100		1172	< 0.010	< 0.010	0.0972	0.334		0.4312
7/14/2008	SB-5, 9-10' (SB-3)		8.42		<50		<50	<0.010	<0.010	<0.010	<0.010		<0.010
7/14/2008	SB-5, 14-15' (SB-3)		3.00	·	<50		<50	<0.010	<0.010	<0.010	<0.010		<0.010
7/14/2008	SP 6 9 10 0 00 22		1.2		<50		<0	<0.010	<0.010	<0.010	<0.010		<0.010
7/14/2008	SB 6 14 15' (MW-23)		292	<u> </u>	250		250	<0.010	<0.010	<0.010	<0.010		<0.010
7/14/2008	SB-7 4-5' (MW-25)	<u> </u>	1.02		<50		<50	<0.010	<0.010	<0.010	<0.010		<0.010
7/14/2008	SB-7 9-10' (MW.7)		<1.02	t	<50		<50	<0.010	<0.010	<0.010	<0.010		<0.010
7/14/2008	14/2008 SB-7 14-15' (MW-7)		1.89	1	70	<u> </u>	72	<0.010	<0.010	<0.010	<0.010		<0.010
7/14/2008	14/2008 SB-8 4-5' (MW-1)		416	<u> </u>	1210		1626	< 0.050	< 0.050	0.921	3.98		4,901
7/14/2008	4/2008 SB-8, 9-10' (MW-1)		425	<u> </u>	174		599	<0.020	<0.020	0.119	0.747	1	0.866
7/14/2008	14/2008 SB-8, 14-15' (MW-1)		12.2	1	<50	1	<50	< 0.010	< 0.010	<0.010	< 0.010		< 0.010
7/14/2008	SB-9, 4-5' (MW-12)		2.25		<50		<50	< 0.010	< 0.010	< 0.010	< 0.010		< 0.010
7/14/2008	SB-9, 9-10' (MW-12)		1.04		<50		<50	< 0.010	< 0.010	< 0.010	< 0.010		<0.010
7/14/2008	SB-9, 14-15' (MW-12)		3.54		144		147	<0.010	< 0.010	<0.010	<0.010		<0.010
			L		1								

APPENDICES

0

-

Î

9 A

đ

APPENDIX A: Soil Boring Log Details

.

•

•

•

0

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

	PODNUMP			MREP)				·····			OSE EILE NIL				
z	BOB DU	IRHA	MS	B-5							OSE FILE NO	MDER(3)			
rio	WELLOWN		AE(E)								DUONE (OPT				
CA	PLAINS										PHONE (OPT)	UNAL)			
10						· · ·					01771	<i>a</i>			
ELL	333 (1 4			T SINTE	1600										ZIP 7070
- S		1 31		21, 30112	1000				. <u>.</u>		100310	IN			078
	WELL			•	DE	GREES MINUTES SECONDS									
F	LOCATIO	DN LATITUDE 32 37 31.00 N * ACCURACY REQUIRED: ONE TENTH OF A SE					COND								
ER	(FROM G	PS)	LON	GITUDE		103		16	54	.00 W	* DATUM RE	QUIRED: WGS 84			
EN	DESCRIPTI	ION REI	ATIN	G WELL LOCAT	ON TO	STREET ADDRE	ESS AN	D COMMON I	ANDMA	ARKS					
1. 0	FROM	ION	JME	NT CAFE	GO V	V ON MON	IUME	ENT HWY	Y TO	GPS #					
	(2.5 ACR	E)	((10 ACRE)		(40 ACRE)	T	(160 ACRE)		SECTION		TOWNSHIP		RANGE	
L L	4	4		1/4		1/4 1/4									L EAST
ANC	SUBDIVISIO	ON NAM	1E				1			LOT NUM	IBER	BLOCK NUMBER	L soon	UNIT/TRA	
PTI(
0.	HYDROGR	APHIC S	URVE	Y								MAP NUMBER	· · · ·	TRACT NU	JMBER
	LICENSE N	UMBER		NAME OF LIC	ENSED	DRILLER						NAME OF WELL D	RILLING CON	(APANY	
	WD	1478		EDWARD	BRY	AN						STRAUB CO	RPORA	ΓΙΟΝ	
	DRILLING	STARTE		DRILLING EN	DED	DEPTH OF COM	/PLETE	ED WELL (FT)		BOREHO	LE DEPTH (FT)	DEPTH WATER FIL	RST ENCOUN	TERED (FT)	· · · _ - · · · · · · · · · · · · · · · · · · ·
7	7-14	4-08		7-14-08	3		0				15				
Ĩ	· · · · · · · · · · · · · · · · · · ·				l	· ·····					<u> </u>	STATIC WATER LE	VEL IN COM	PLETED WEI	LL (FT)
RMA	COMPLETE	D WEL	L 1S:	ARTESIA	N	V DRY HOLE	: [SHALLOW	(UNCO)	NFINED)	N/A				<u> </u>
FO	DRILLING	FLUID:		✓ AIR		MUD		ADDITIVE	S – SPEC	CIFY:					
0	DRILLING	METHO	D:	ROTARY		HAMMER	Ľ	CABLE TO	OL	🗌 отне	ER - SPECIFY:				
LIN	DEPT	H (FT)	1	BORE HOI	F		CASI	NG		CON			CASIN	G WALL	SLOT
RIL	FROM	тс		DIA. (IN)		Ν	IATER	RIAL		TYPE	(CASING)	CASING (IN)	THICKN	NESS (IN)	SIZE (IN)
3. D	0	15	5	5			N//	4			N/A	N/A		I/A	N/A
											<u> </u>				
l													1	·	
[-	·									1		
	DEPT	- 	1	THOM			COPM								VIELD
	FROM	н (г 1) тс		THICKNE (FT)	55	t	IN AL	ICLUDE W	ATER-I	BEARING	CAVITIES (R FRACTURE ZOI	NES)		(GPM)
TAT			, 	· · · · ·											<u> </u>
STI	<u> ·</u>	ļ									<u>,,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u></u>	····		
NG											·				
ARI										_ <u></u>		· · · · · · · · · · · · · · · · · · ·			
BE						.									<u>├</u> ────
LER				l									D 1101 1 14-	D. (CD: 1)	L
NA1	METHOD L	JSED TO) ESTI	MATE YIELD OF	WATE	R-BEARING STR	RATA					TOTAL ESTIMATE	D WELL YIEI	LD (GPM)	
4	ł														
<u>}</u>													<u>.</u>		
	EOB OST		DNA	LISE								WELL RECO	001&00	(Version 6	/9/08)

FOR OSE INTERNAL USE		well Record & Log (version 6/9			
FILE NUMBER	POD NUMBER	TRN NUMBER			
LOCATION			PAGE 1 OF 2		

	TYPE OF	PUMP		SIBLE	Tal 🗌	NO PUMP – WELL NOT EQUIPPED					
IWD			TURBINI	E	CYLINDER	OTHER - SPECIFY:					
d Q			DEPTH (FT)		BORE HOLE	MATERIAL TYPE AND SIZE	AMOUNT	METH	DD OF		
AN	ANNULAR		FROM	то	DIA. (IN)		(CUBIC FT)	PLACE	MENT		
SEAL	SEAL GRAVE	AND L PACK	0	2	5	.5 BAGS OF CEMENT		TOPL	OAD		
5			2	15	5	3 BAGS OF 3/8 PLUG		TOPL	OAD		
					<u></u>			I			
[DEPTI	H (FT)	THICK	NESS		COLOR AND TYPE OF MATERIAL ENCOUNTE	RED		TER		
	FROM	10	(11)	···		DE WATER-BEARING CAVITIES OK FRACTO					
	0	2	2		0.110	BROWN FINE SAND - CLAY - CALIC		U YES			
	2	5	3	· · · · · · · · · · · · · · · · · · ·	CALIC	CALICHE - TAN FINE SAND - (DENCE) SANDSTONE					
	5	11	6								
į	11	15	4		· · · · · · · · · · · · · · · · · · ·	TAN FINE SAND - (DENCE) SANDSTONE					
113		15									
F WI					}			LI YES			
6 0]											
ro.											
0190					<u> </u>						
OLO											
, GE					l						
9					<u></u>	· 		TYES			
.)											
				·			<u></u>				
					<u> </u>	<u> </u>					
	[ATTACH	ADDITION	AL PAGES AS NE	EDED TO FULLY DESCRIBE THE GEOLOGIC					
õ		TC 0 T	METHOD:	BAILE	R DPUMP	AIR LIFT OTHER – SPECIFY:					
AL INI	WELL	1651	TEST RESU AND A TAE	LTS - ATTA BLE SHOWI	ACH A COPY OF D NG DISCHARGE A	ATA COLLECTED DURING WELL TESTING, IN AND DRAWDOWN OVER THE TESTING PERIC	NCLUDING START TI D.	ME, END TI	ME,		
ION	ADDITION	AL STATEN	IENTS OR EXPL	ANATIONS:				- <u></u>			
DIT	SOIL B	ORING	ONLY- SO	IL BORIN	IG WAS PLUG	GED AND ABANDONED UPON CON	IPLETION OF SA	MPLING			
¢ AD											
ST 4											
7. TE											
	<u> </u>										
RE	THE UN CORREC	DERSIGNI CT RECOR	ED HEREBY (D OF THE AB	CERTIFIES	THAT, TO THE BE RIBED HOLE AND	ST OF HIS OR HER KNOWLEDGE AND BELIE THAT HE OR SHE WILL FILE THIS WELL RE	F, THE FOREGOING IS CORD WITH THE STA	S A TRUE A	ND ER AND		
ATL	THE PE	RMIT HOL	DER WITHIN	20 DAYS A	FTER COMPLETI	ON OF WELL DRILLING:					
SIGN	2	hand	Drow			8-12-08					
×		k _	SIGNATUR	RE OF DRIL	LER	DATE					
<u> </u>	<u> </u>										
						-					

FOR OSE INTERNAL USE		WELL RECORD & LOO	G (Version 6/9/08)
FILE NUMBER	POD NUMBER	TRN NUMBER	
LOCATION			PAGE 2 OF 2
			,

.....

•

0

•

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

	POD NUMB	ER (WEL	L NUMBER)				OSE FILE NU				
N	BOB DU	RHAN	ASB-6								
тic	WELL OWN	ERNAM	E(S)		······		PHONE (OPT)	ONAL)			
DCA	PLAINS	MAR	KETING LP					,	•		
L L	WELL OWN	ER MAIL	ING ADDRESS	<u> </u>			CITY		STATE		ZIP
/EL	.333 CLA	Y STF	REET, SUITE	1600			HOUSTO	N	ТХ	77	7078
ΜQ		<u> </u>		DEGREES	MINUTES	SECONDS	1				
AN	WELL			32	37	31 00 M	+ ACCURACY	REQUIRED ONE TEN	ITH OF A SE	COND	
RAL	(FROM G	PS)	LATITUDE			51.00 N	* DATUM RE	QUIRED: WGS 84			
ENE			LONGITUDE	103	16	54.00 **					
1. Gł	FROM N	ION RELA	MENT CAFE	GO W ON MON	SS AND COMMON LA	ANDMARKS TO GPS #					
	(2.5 ACR	.E)	(10 ACRE)	(40 ACRE)	(160 ACRE)	SECTION		TOWNSHIP		RANGE	
L L	У	4	1/4	1/4	1/4			2		} 	EAST
NO	SUBDIVISIO	ON NAME				LOT NU	MBER	BLOCK NUMBER		UNIT/TRA	СТ
PTI								1			
2.0	HYDROGR	APHIC SU	RVEY					MAP NUMBER		TRACT NU	JMBER
										,	
	LICENSE N	UMBER	NAME OF LICI	ENSED DRILLER				NAME OF WELL DE	ULLING CON	APANY	
	WD'	1478	EDWARD	BRYAN				STRAUB CO	RPORAT	FION	
	DRILLING STARTED DRILLING ENDED DEPTH OF COMPLETED WELL (FT) BORE HO							DEPTH WATER FIR	ST ENCOUN	TERED (FT)	
z	7-14	4-08	7-14-08	3		15					
MATIC	COMPLETE	DWELL	IS: ARTESIA	N I DRY HOLE	HOLE SHALLOW (UNCONFINED)			STATIC WATER LEVEL IN COMPLETED WELL (FT)			
FOR	DRILLING I	FLUID:	✓ AIR	MUD	ADDITIVES	- SPECIFY:					
N	DRILLING	METHOD	ROTARY			и. Потн	ER - SPECIFY:				
N	DEPT	H (FT)			CASING		NECTION			C IVAL I	CLOT
RILI	FROM	то	DIA. (IN)	M	ATERIAL	TYPE	(CASING)	CASING (IN)	THICKN	VESS (IN)	SIZE (IN)
3. DI	0	15	5		N/A		N/A	N/A	N	I/A	N/A
					<u></u>						
									1		
	DEPT	H (FT)	THICKNES	SS F	ORMATION DESC	CRIPTION OF	PRINCIPAL W	ATER-BEARING S	TRATA		YIELD
TA	FROM	то	(FT)		(INCLUDE WA	TER-BEARING	GCAVITIES O	R FRACTURE ZON	(ES)		(GPM)
TRA				,			. <u> </u>				
IG S							· · · · · · · · · · · · · · · · · · ·				
RIN											
BEA							<u> </u>				
ERI	l										L
AT /	METHOD L	JSED TO E	ESTIMATE YIELD OF	WATER-BEARING STR	ATA			TOTAL ESTIMATED	OWELL YIEL	.D (GPM)	
4.11	-										
<u> </u>	L							······································			

FOR OSE INTERNAL USE	WELL RECORD & LOG	WELL RECORD & LOG (Version 6/9/08)			
FILE NUMBER	POD NUMBER	TRN NUMBER			
LOCATION			PAGE 1 OF 2		

•3,

Ø

AMU	TYPE O	f PUMP:	SUBMER	RSIBLE	☐ JET ☐ CYLINDER	NO PUMP – WELL NOT EQUIPPED	,		
ND P			DEPTH	H (FT)	BORE HOLE	MATERIAL TYPE AND SIZE		METH	OD OF
AL A	ANNI		FROM	2	5	5 BAGS OF CEMENT		TOPI	
S. SE/	GRAVE	L PACK	2	15	5	3 BAGS OF 3/8 PLUG		TOPL	
								1	
	DEPT	H (FT)	THICK	NESS	C	OLOR AND TYPE OF MATERIAL ENCOUN	TERED	WA	TER
	FROM	TO	(F)	Г) 	(INCLU	DE WATER-BEARING CAVITIES OR FRAC	TURE ZONES)	BEAR	RING?
	0	1	1		Į	BROWN FINE SAND - CLAY - CAL	ICHE	☐ YES	1 🖸
	1	11	1(00	AT	N FINE SAND - SANDSTONE - C.	ALICHE	T YES	1
	11	15	4		T.	AN FINE SAND - (DENCE) SANDS	STONE	I YES	ı []
	TD	15	· ·				·····		
ELL	ļ				· · · ·	······		VES	
F WI	ļ						······		
0 00					·				
CCC									
,0GI									
EOL							·····		
6. G						<u> </u>	<u> </u>		
						n,		I YES	
	-			-, - <u>,</u>				🗖 YES	
						· · ·		□ YES	
								S YES	
								☐ YES	
	l	<u>.</u>	ATTACH	ADDITIO	AL PAGES AS NEE	DED TO FULLY DESCRIBE THE GEOLOG	IC LOG OF THE WELL		- <u></u>
0]		METHOD:	🗌 BAIL	ER 🗍 PUMP	AIR LIFT OTHER – SPECIFY:			
AL INF	WELI	. TEST	TEST RESU AND A TAE	ILTS - ATT BLE SHOW	ACH A COPY OF DA NG DISCHARGE A	ATA COLLECTED DURING WELL TESTING ND DRAWDOWN OVER THE TESTING PER	, INCLUDING START T RIOD	IME, END T	IME,
7. TEST & ADDITION	ADDITION SOIL B	NAL STATER ORING	AENTS OR EXPL	ANATIONS:	IG WAS PLUG	GED AND ABANDONED UPON CO	OMPLETION OF S	AMPLING	
8. SIGNATURE	THE UN CORREC THE PE	DERSIGN CT RECOR RMITHOL	ED HEREBY (D OF THE AE DER WITHIN	CERTIFIES BOVE DESC 20 DAYS	THAT, TO THE BES RIBED HOLE AND AFTER COMPLETIC	ST OF HIS OR HER KNOWLEDGE AND BEL THAT HE OR SHE WILL FILE THIS WELL ON OF WELL DRILLING: 8 - 12 - 08	IEF, THE FOREGOING RECORD WITH THE ST	IS A TRUE A ATE ENGIN	ND EER A

FOR OSE INTERNAL USE		WELL RECORD & LOG	(Version 6/9/08)
FILE NUMBER	POD NUMBER	TRN NUMBER	
LOCATION			PAGE 2 OF 2

₿

•

@

0

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

N	POD NUMB	JRHA	LL NUM	BER) -7						OSE FILE NUN	MBER(S)			
VTIC	WELL OWN		ME(S)							PHONE (OPTI	ONAL)			
,0C/	PLAINS	MAR	KETI	NG LP										
LL L	WELL OWN	NER MAI	LING AL	DDRESS						CITY	··· _	STATE		ZIP
WE	333 CLA	AY ST	REE	T, SUITE	1600					HOUSTO	N	ТХ	77	078
UND ND	WELL	.			DEGREES	• •	MINUTES	SECON	IDS				·····	
AL /	LOCATI	ON	LATIT	UDE	32		37	31	.00 N	* ACCURACY	REQUIRED: ONE TEN	TH OF A SEC	COND	
NER	(FROM G	PS)	LONGI		103		16	54	.00 W	* DATUM REG	QUIRED: WGS 84			
1. GE	DESCRIPT	ION REL	ATING N	WELL LOCATI	ON TO STREET	ADDRES MON	UMENT HW	LANDM. Y TO	ARKS GPS #					
	(2.5 ACR	(E)	(10	ACRE)	(40 ACRE	;)	(160 ACRE)	SECTION		TOWNSHIP		RANGE	
٩٢	5	4		1/4	1	4	1/4					SOUTH		WEST
NO N	SUBDIVISI	ON NAM	1E				······································		LOT NUM	IBER	BLOCK NUMBER		UNIT/TRA	СТ
OPT	111150000			·										
2.	HYDROGR.	APHIC S	URVEY								MAPNUMBER		TRACTINU	JMBER
	LICENSE N	UMBER	1	NAME OF LICE	ENSED DRILLER						NAME OF WELL DR	LILLING CON	APANY	
	WD	1478	E	DWARD	BRYAN						STRAUB CO	RPORAT	ΓΙΟΝ	
		STARTE	D I	DRILLING END	DED DEPTH	OF COM	PLETED WELL (FT		BORE HO	LE DEPTH (FT)	DEPTH WATER FIR	ST ENCOUN	TERED (FT)	
ION	. /-14	4-08		7-14-00						15	STATIC WATER (E)		PI ETED WEI	L (FT)
RMAT	COMPLETE	ED WELL	L IS: [ARTESIAN		Y HOLE	SHALLOW	V (UNCO	NFINED)		STATIC WATER DE	N/A		
VF0	DRILLING	FLUID:		🗸 AIR	ми	D	ADDITIV	ES – SPEC	CIFY:		•			
U D	DRILLING	метно	D: ·	ROTARY	П на	MMER	CABLE T	OOL	ОТНЕ	R - SPECIFY:				
TLIP	DEPT	H (FT)		BORE HOL	Æ	C	CASING		CON	NECTION	INSIDE DIA.	CASIN	G WALL	SLOT
DRI	FROM	ТО)	DIA. (IN)		M	ATERIAL		ТҮРЕ	(CASING)	CASING (IN)	THICKN	NESS (IN)	SIZE (IN)
, Line and L	0	15	5	5			N/A			N/A	N/A	N	/A	N/A
				<u></u>			<u></u>							
												·		
	DEPT	H (FT)		THICKNES	is l	FC	ORMATION DE	SCRIPT	TON OF P	RINCIPAL W	ATER-BEARING S	TRATA		YIELD
TA	FROM	TO)	(FT)	-		(INCLUDE W	ATER-I	BEARING	CAVITIES O	R FRACTURE ZON	IES)		(GPM)
TRA														
NG S		L								····				
ARIT							<u> </u>			<u></u>	<u></u>			
L BE.								·····		<u> </u>				
TER	METHOD				WATER-BEARI	NGSTRA					TOTAL ESTIMATED	WELL YIE	D (GPM)	
WA.			- 20111417										(,)	
4														
				105							WELL DECO		(Marian C	0.000

FOR USE INTERNAL USE		WELL KLOOKD & LOO	(version 0/9/06)
FILE NUMBER	POD NUMBER	TRN NUMBER	
LOCATION			PAGE 1 OF 2

	TYPE O	F PUMP:	SUBMER	SIBLE] JET	NO PUMP – WELL NOT EQUIPPED			
IWN				<u> </u>	CYLINDER	OTHER – SPECIFY:			
VD P			DEPTH	(FT)	BORE HOLE	MATERIAL TYPE AND SIZE	AMOUNT	METH	OD OF
LAI	ANNU	ULAR	FROM	<u>TO</u>	DIA. (IN)	E DAGE OF OFMENT	(CUBICFT)	PLACE	
SEA	GRAVE	L PACK	2	<u> </u>	5	3 BAGS OF CEMENT			
Ś			<u> </u>	15		3 5 4 6 5 6 1 3 6 1 2 6 6			0/10
	DEPT	H (FT)	тиск					<u> </u>	
	FROM	то	(FT))	(INCLU	DE WATER-BEARING CAVITIES OR FRACTU	JRE ZONES)	BEAR	IER ING?
	0	1	1			BROWN FINE SAND - CLAY		I YES	Ø NO
	1	12	11		TA	AN FINE SAND - SANDSTONE - CAL	ICHE	🛛 YES	Ø NO
	12	15	3		Т	AN FINE SAND - (DENCE) SANDST	ONE	S YES	🗹 NO
	TD	15						T YES	🗖 NO
Н							·	☐ YES	N NO
WEI								S YES	D NO
OF	-							☐ YES	
FO	· · · · · ·				<u>_</u>			T YES	□ NO
GIC								VES	D NO
)LO								T YES	□ NO
GE(······		☐ YES	D NO
ʻoʻ		 						T YES	□ NO
								YES	
					<u> </u>			☐ YES	
		. 					<u> </u>	VES	
			}				·····		
								☐ YES	
			ATTACH	ADDITION	IAL PAGES AS NEI	EDED TO FULLY DESCRIBE THE GEOLOGIC	LOG OF THE WELL		
PO	WELL	TFOT	METHOD:	BAILE	ER 🗌 PUMP	AIR LIFT OTHER – SPECIFY:			
T INI	WELL	. 1551	TEST RESUL	LTS - ATTA LE SHOWI	ACH A COPY OF DA NG DISCHARGE A	ATA COLLECTED DURING WELL TESTING, I ND DRAWDOWN OVER THE TESTING PERIO	NCLUDING START TI DD.	ME, END TI	ME,
ONA	ADDITION	NAL STATEN	MENTS OR EXPLA	ANATIONS:					
DITI	SOIL B	ORING	ONLY- SOI	L BORIN	IG WAS PLUG	GED AND ABANDONED UPON COI	MPLETION OF SA	MPLING	
¢ AD	1								
ST&									
TE									
ш	THE UN	DERSIGN	ED HEREBY C	CERTIFIES	THAT, TO THE BE	ST OF HIS OR HER KNOWLEDGE AND BELIE	F, THE FOREGOING I	S A TRUE A	ND FER AND
TUP	THE PE	RMITHOL	DER WITHIN	20 DAYS A	FTER COMPLETIC	ON OF WELL DRILLING:			
GNA		10	12			6-12 28			
8. SI		def	A B	E OF DRII	LER				
L	l								
	FOR OS	E INTERN	AL USE			W	ELL RECORD & LOG (Version 6/9/()8)

		11000100000	
FILE NUMBER	POD NUMBER	TRN NUMBER	
LOCATION	· · · · · · · · · · · · · · · · · · ·		PAGE 2 OF 2

 F

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

7		BER (WEI	LNI	MBER)							(BED/E)			
z	BOB DI	IRHA	MS	B-8						OBETTEENON				
2	WELLOW	NEPNAM	(E(S))							BHONE (OBTI	281473			
Š	PLAINS	MAR	KE1							FROME (OF TH	JINAL)			
2		1917-11 V								OFTY		07.475		
ELL	333 CL		REI		1600	1				HOUSTO	N		77	21P 2078
- S										100010				
N	WELI	L			DEC	GREES	MINUTES	SECO	NDS					
۹L /	LOCATI	ION	LAT	ITUDE		32	37	3	1.00 N	* ACCURACY	REQUIRED: ONE TEN	ITH OF A SEC	COND	
ER.	(FROM C	GPS)	LON	GITUDE		103	16	54	4.00 W	* DATUM REC	QUIRED: WGS 84			
EN	DESCRIPT	TION REL	ATIN	G WELL LOCAT	ION TO	STREET ADDRE	SS AND COMM	MON LANDA	IARKS					
	FROM	MONU	ME		GO V	V ON MON	UMENT H	IWY TO	GPS #					
	(2.5 ACI	RÉ)		(10 ACRE)	(40 ACRE)	(160 A	CRE)	SECTION		TOWNSHIP		RANGE	——————————————————————————————————————
۲.	ļ	/4		1/4		1/4		1/4						U EAST
NO	SUBDIVISI	ION NAM	E				I		LOT NUM	BER	BLOCK NUMBER		UNIT/TRA	ст
PT														
0.2	HYDROGR	APHIC SU	URVE	Y					L		MAP NUMBER		TRACT NU	MBER
	LICENSE N	UMBER		NAME OF LICE	ENSED	DRILLER	<u> </u>				NAME OF WELL DR	LILLING CON	I MPANY	
	WD	1478		EDWARD	BRY	AN					STRAUB CO	RPORAT	TION	
	DRILLING	STARTED		DRILLING ENI	DED	DEPTH OF COM	PLETED WELL	- (FT)	BORE HO	E DEPTH (FT)	DEPTH WATER FIR	ST ENCOUN	TERED (FT)	
z	7-1	4-08		7-14-08	3		0			15				
10									L		STATIC WATER LE	VEL IN COM	PLETED WEI	LL (FT)
MA	COMPLET	ED WELL	IS:	ARTESIA	N	✓ DRY HOLE	SHAL	LOW (UNCO	ONFINED)			N/A	N Contraction	
P. N.	DRILLING	FLUID:		AIR			ADDI	TIVES - SPE	CIFY:		······································			
N	DRILLING	METHOD);	ROTARY		HAMMER		LE TOOL	Потне	R - SPECIFY:				
Ň	DEPT	°Н (БТ)			F		CASING					0.000	0.11444	
SILI	FROM			DIA. (IN)		Ň	ATERIAL		TYPE	(CASING)	CASING (IN)	THICKN	G WALL NESS (IN)	SLOT SIZE (IN)
ā	0	15		5			N/A		<u> </u>	N/A	N/A	N	1/A	N/A
·**														
		<u> </u>			<u> </u>									
				<u> </u>		• <u> </u>								
	DEPT			THORNE		·		DESCRIP				TRATA		
, e	EPOM			THICKNES (FT)	ss	г	(INCLUD	E WATER-	BEARING	CAVITIES OF	R FRACTURE ZON	IRATA IES)		(GPM)
RAT	PROM				\rightarrow									
STF												·····		
Ŋ		<u> </u>												
ARI	ļ									··				
BE.	<u>├</u>										·			
TER		<u> </u>											D. (0)	
WA.	METHOD	USED TO	ESTI	MATE YIELD OF	WATE	K-BEARING STR	ATA				I TOTAL ESTIMATED	WELL YIEL	.D (GPM)	
4						•								

FOR OSE INTERNAL USE		WELL RECORD & LOG	(Version 6/9/08)
FILE NUMBER	POD NUMBER	TRN NUMBER	
LOCATION			PAGE I OF 2

AMU	TYPE O	F PUMP:	SUBMER	E] JET CYLINDER	☐ NO PUMP – WELL NOT EQUIPPED ☐ OTHER – SPECIFY:			
AND PI			DEPTH FROM	I (FT) TO	BORE HOLE DIA. (IN)	MATERIAL TYPE AND SIZE	AMOUNT (CUBIC FT)	METH PLACE	OD O EMEN
AL.	SEAL	AND	0	2	5	.5 BAGS OF CEMENT		TOPI	.OAI
S.S.	GRAVE	L PACK	2	15	5	3 BAGS OF 3/8 PLUG		TOPI	OA
	DEPT	H (FT)	THICK	NESS		COLOR AND TYPE OF MATERIAL ENCOUN	TERED	WA	TER
		9	() () () () () () () () () () () () () ()	TA	IN FINE SAND - SANDSTONE - CA		T YES	
	9	10	1			TAN FINE SAND - SANDSTON	E	☐ YES	 []
	10	15	5		TAN FI	NE SAND - (DENCE) SANDSTONE	- - CALICHE	U YES	 0
	TD	15			+			I YES	
Ļ								U YES	
WEL								S YES	
OF								T YES	
rog								TYES	
GIC								☐ YES	
010			 					☐ YES	
GEO			ļ					☐ YES	
ġ								YES	
							<u> </u>	VES	<u></u>
								U YES	
			<u> </u>		<u> </u>				
			<u> </u>						
		L	ATTACH	ADDITION	I IAL PAGES AS NEI	EDED TO FULLY DESCRIBE THE GEOLOGI	C LOG OF THE WELL		
	<u></u>		METHOD:			AIR LIFT OTHER – SPECIFY:			- 1
L INFC	WELL	. TEST	TEST RESU AND A TAE	LTS - ATTA	ACH A COPY OF DA	ATA COLLECTED DURING WELL TESTING ND DRAWDOWN OVER THE TESTING PER	, INCLUDING START 7 IOD.	TIME, END T	IME,
LIONA	ADDITIO	NAL STATE	MENTS OR EXPL	ANATIONS:					
ADDI	SUIL B	URING	UNLY- SU			GED AND ABANDONED OPON CC	JMPLETION OF 5.	AMPLING	I
EST &									
7. TI									
ATURE	THE UN CORREC THE PEI	DERSIGN CT RECOR	ED HEREBY (D OF THE AB .DER WITHIN	CERTIFIES OVE DESC 20 DAYS A	THAT, TO THE BE RIBED HOLE AND FTER COMPLETIC	ST OF HIS OR HER KNOWLEDGE AND BEL THAT HE OR SHE WILL FILE THIS WELL I IN OF WELL DRILLING:	IEF, THE FOREGOING RECORD WITH THE ST	IS A TRUE A ATE ENGIN	ND EER
SIGN,		3l_	18			ちーねーろ			
U 22			SIGNATUR	E OF DRIL	IFR	DATE			

U O

• • • • • • ${}^{\bullet}$ • • ●

0

		WELL RECORD & LOU	(version or nos)
FILE NUMBER	POD NUMBER	TRN NUMBER	
LOCATION			PAGE 2 OF 2
			,

•

0

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

z				MBER)				·			OSE FILE NUM	MBER(S)			
TIO	WELL OWN			D-9 						<u> </u>	PHONE (OPTI				
OCA	PLAINS	MAR	KET	ING LP							FROME (OF IN	UNAL)			
יר	WELL OWN	ER MAII	LING	ADDRESS							CITY		STATE		ZIP
WEL	333 CLA	Y ST	REE	ET, SUITE	160	0					HOUSTO	N	ТХ	77	7078
â	WELL		_		DE	GREES	MINUTE	ES S	SECON	DS					
ALA	LOCATIO	л	LATI	TUDE		32	3	7	26	.00 N	* ACCURACY	REQUIRED: ONE TEN	TH OF A SE	COND	
VER	(FROM GI	PS)	LON	GITUDE		103	1	6	54	.00 W	* DATUM REC	QUIRED: WGS 84			
I. GEI	DESCRIPTION FROM M	ON REL	ATING	NT CAFE	ON TO	STREET ADDRE	SS AND CO	DMMON LA	TO (GPS #					
	(2.5 ACR	E)	(10 ACRE)		(40 ACRE)	(16	0 ACRE)	T	SECTION		TOWNSHIP		RANGE	
٩٢	1/4	4		1/4	/	1/4		1/4							west
PTION	SUBDIVISIC	ON NAMI	E							LOT NUM	BER	BLOCK NUMBER		UNIT/TRA	cr
2. 01	HYDROGRA	APHIC SU	JRVE	Y		<u></u>						MAP NUMBER		TRACT NU	JMBER
		IMPER	— <u>-</u>		INSED										
	WD1	1478		EDWARD	BR	AN						STRAUB CO	RPORAT	FION	
	DRILLING S	STARTE	5	DRILLING ENI	DED	DEPTH OF COM	PLETED W	ELL (FT)		BORE HO	LE DEPTH (FT)	DEPTH WATER FIR	ST ENCOUN	TERED (FT)	
ION	/-14	+-08 		7-14-08	·		0			<u> </u>	15	STATIC WATER LE		PL FTED WE	
RMAT	COMPLETE	D WELL	IS:	ARTESIAN	4	DRY HOLE	si	HALLOW (I	UNCON	IFINED)			N/A		
NFOI	DRILLING F	FLUID:		✓ AIR				DDITIVES -	- SPEC	IFY:					
NC II	DRILLING	METHOD	D:	ROTARY		HAMMER	C.	ABLE TOO	L	ОТНЕ	R - SPECIFY:	<u> </u>			
מורדוו	DEPTI	H (FT)	_	BORE HOL	Æ	0	CASING ATERIAI			CONN TYPE	VECTION (CASING)	INSIDE DIA. CASING (IN)	CASIN	G WALL IESS (IN)	SLOT SIZE (IN)
3. DI	0	15	_	5			N/A				N/A	N/A	N	I/A	N/A
	├								\rightarrow				<u> </u>		
Z	FROM	TO		THICKNES (FT)	58	F	(INCL	UDE WAT	TER-B	EARING	CAVITIES OF	R FRACTURE ZON	IKATA IES)		(GPM)
FRA'															
IC S						<u></u>								· · · ·	
ARIN						<u></u>	<u> </u>	. <u></u> .							
BE/															
ATER	METHOD U	ISED TO	ESTIN	MATE YIELD OF	WATE	R-BEARING STR						TOTAL ESTIMATE	WELL YIEL	.D (GPM)	L
4. W.															
	!											<u></u>			

FOR OSE INTERNAL USE		WELL RECORD & LOC	(Version 6/9/08)
FILE NUMBER	POD NUMBER	TRN NUMBER	
LOCATION			PAGE OF 2
L		· · · · · · · · · · · · · · · · ·	A

d,	TYPE O	F PUMP:		SUBMERSIBLE JET NO PUMP - WELL NOT EQUIPPED TURBINE CVLINDER OTHER SPECIES					
ΜŲ				: 		OTHER – SPECIFY:			
A UD P		ILAR	DEPTH FROM	(FT) TO	BORE HOLE DIA. (IN)	MATERIAL TYPE AND SIZE	AMOUNT (CUBIC FT)	METH PLACE	od (Emen
EAL	SEAL	, AND	0	2	5	.5 BAGS OF CEMENT		TOPI	.OA
5	GRAVE	L PACK	2	15	5	3 BAGS OF 3/8 PLUG		TOPI	_0A
	DEPT	H (FT)	THICKI	NESS		COLOR AND TYPE OF MATERIAL ENCOUR	NTERED	WA	TER
	FROM	TO)		DE WATER-BEARING CAVITIES OR FRAC	TURE ZONES)	BLAP	
			1			BROWN FINE SAND - CLAY			<u></u>
	12	12	11			AN FINE SAND - SANDSTONE - C			⊻
		15				INE SAND - (DENCE) SANDSTON	E - CALICHE		
			<u> </u>			<u></u>			
/ELI				<u></u>	+				
DF W	}								 r
000			<u> </u>						 Г
ic L			 						 ר
,0GI			<u></u>						
EOI									
و. 6								U YES	C
			<u> </u>		1			☐ YES	Ē
	 		<u>}</u>					T YES	Γ
								☐ YES	Γ
								S YES	C
								T YES	_ C
	<u> </u>		ATTACH	ADDITIO	NAL PAGES AS NE	EDED TO FULLY DESCRIBE THE GEOLOG	IC LOG OF THE WELL		
0			METHOD:	🗍 BAIL	ER 🗌 PUMP	AIR LIFT OTHER – SPECIFY:			
INF	WELL	. TEST	TEST RESU	LTS - ATT	ACH A COPY OF D	ATA COLLECTED DURING WELL TESTING	G, INCLUDING START	TIME, END T	IME
NAL				LE SHOW		AND DRAWDOWN OVER THE TESTING PE	RIUD.		
7. TEST & ADDITI	SOIL B	ORING	ONLY- SOI	L BORIN	NG WAS PLUG	GED AND ABANDONED UPON C	OMPLETION OF S	AMPLING	ł
8. SIGNATURE	THE UN CORRE THE PE	IDERSIGN CT RECOI RMIT HOI	ED HEREBY C RD OF THE AB LDER WITHIN SIGNATUR	E OF DRIL	THAT, TO THE BE CRIBED HOLE ANI AFTER COMPLETIN	ST OF HIS OR HER KNOWLEDGE AND BE D THAT HE OR SHE WILL FILE THIS WELL ON OF WELL DRILLING: $\frac{g - 12 - 68}{}$ DATE	LIEF, THE FOREGOING RECORD WITH THE ST	IS A TRUE A	AND EER
	EOBOO	E INITED					WELL RECORD & LOC	(Varias (10)	001
	FILE NU	JMBER				POD NUMBER	TRN NUMBER	version 0/9/	<u>uo)</u>
	F					•			

. .

٠.

FOR OSE INTERNAL USE		WELL RECORD & LOG	(Version 6/9/08)
FILE NUMBER	POD NUMBER	TRN NUMBER	
LOCATION			PAGE 2 OF 2
· · · · · · · · · · · · · · · · · · ·			

APPENDIX B: Laboratory Analytical Reports

In the the TraceAnalysis, Inc.

 6701-Aberdeen Avenue, Suite 9
 Lubbock, Texas 79424

 200 East Sunset Road, Suite 8
 El Paso, Texas 79922

 5002 Basin Street, Suite A1
 Midland, Texas 79703

 6015 Harris Parkway, Suite 110
 Ft. Worth, Texas 76132

9 Lubbock, Texos 79424 800•378•1296 El Paso, Texas 79922 888•588•3443 Micland, Texas 79703 0 Ft. Worth, Texas 76132 E-Mail: lab@traceanalysis.com

800+378+1296 806+794+1296 F. 888+588+3443 915+585+3443 F. 432+689+6301 F. 817+201+5260

6 FAX 806 • 794 • 1298 3 FAX 915 • 585 • 4944 1 FAX 432 • 689 • 6313 0

NELAP Certifications

Lubbock T104704219-08-TX

El Paso T104704221-08-TX

Midland T104704392-08-TX

Analytical and Quality Control Report

Ron Rounsaville Nova Safety & Environmental 2057 Commerce St. Midland, TX, 79703

D

0

a

Report Date: July 23, 2008

Work Order: 8071628

Project Location:Monument, Lea County, NMProject Name:Bob DurhamProject Number:TNM LF 2000-07

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
167191	SB-5 4'-5'	soil	2008-07-14	10:00	2008-07-16
167192	SB-5 9'-10'	soil	2008-07-14	10:07	2008-07-16
167193	SB-5 14'-15'	soil	2008-07-14	10:13	2008-07-16
167194	SB-6 4'-5'	soil	2008-07-14	10:36	2008-07-16
167195	SB-6 9'-10'	soil	2008-07-14	10:39	2008-07-16
167196	SB-6 14'-15'	soil	2008-07-14	10:45	2008-07-16
167197	SB-7 4'-5'	soil	2008-07-14	10:56	2008-07-16
167198	SB-7 9'-10'	soil	2008-07-14	11:02	2008-07-16
167199	SB-7 14'-15'	soil	2008-07-14	11:08	2008-07-16
167200	SB-8 4'-5'	soil	2008-07-14	11:15	2008-07-16
167201	SB-8 9'-10'	soil	2008-07-14	11:18	2008-07-16
167202	SB-8 14'-15'	soil	2008-07-14	11:12	2008-07-16

			Date	Time	Date	
Sample	Description	Matrix	Taken	Taken	Received	
167203	SB-9 4'-5'	soil	2008-07-14	11:35	2008-07-16	
167204	SB-9 9'-10'	soil	2008-07-14	11:39	2008-07-16	
167205	SB-9 14'-15'	soil	2008-07-14	11:46	2008-07-16	

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 31 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Blain Lefturch

Dr. Blair Leftwich, Director

Standard Flags

0

6

0 0 $\,B\,$ - The sample contains less than ten times the concentration found in the method blank.

Case Narrative

Samples for project Bob Durham were received by TraceAnalysis, Inc. on 2008-07-16 and assigned to work order 8071628. Samples for work order 8071628 were received intact at a temperature of 3.2 deg. C.

Samples were analyzed for the following tests using their respective methods.

Test	Method
BTEX	S 8021B
TPH DRO	Mod. 8015B
TPH GRO	S 8015B

•

0

0

0

() () ()

A

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 8071628 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Page 3 of 31

Report Date: July 23, 2008 TNM LF 2000-07

Analytical Report

Sample: 167191 - SB-5 4'-5'

Laboratory:	Midland								
Analysis:	BTEX			Analytical N	fethod:	S 8021B		Prep Meth	od: S 5035
QC Batch:	50474			Date Analyz	ed:	2008-07-18		Analyzed 1	By: DC
Prep Batch:	43301			Sample Prep	paration:	2008-07-17		Prepared I	By: DC
				RL					
Parameter		Flag		Result		Units	D	ilution	RL
Benzene				< 0.0100		mg/Kg		1	0.0100
Toluene				< 0.0100		mg/Kg		1	0.0100
Ethylbenzene	•			0.0972		mg/Kg		1	0.0100
Xylene				0.334		mg/Kg		1	0.0100
							Spike	Percent	Recovery
Surrogate			Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotolue	ene (TFT)			0.944	mg/Kg	1	1.00	94	68 - 136.9

mg/Kg

1

1.00

105

48.2 - 155

1.05

Sample: 167191 - SB-5 4'-5'

4-Bromofluorobenzene (4-BFB)

0

() () ()

0 0 0

() ()

()

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO 50434 43283		Analytical Me Date Analyze Sample Prepa	Analytical Method: Date Analyzed: Sample Preparation:		8015B 7-17 7-17	Prep Method: Analyzed By: Prepared By:		N/A LD LD	
_				RL						D.T.
Parameter		Flag		Result		Uni	its	Dilution		RL
DRO				1100		mg/ł	Кg	1		50.0
							Spike	Percent	Rec	overy
Surrogate	Fla	ag	\mathbf{Result}	Units	Dilu	ition	Amount	Recovery	Li	mits
n-Triacontan	e ¹		421	mg/Kg		1	100	421	10 -	250.4

Sample: 167191 - SB-5 4'-5'

Laboratory:	Midland TPH GBO	Analytical Method:	S 8015B	Prep Method:	S 5035
Allarysis.	11 11 0110	Analytical Method.	D 0010D	i tep metiloa.	0 0000
QC Batch:	50475	Date Analyzed:	2008-07-18	Analyzed By:	DC
Prep Batch:	43301	Sample Preparation:	2008-07-17	Prepared By:	DC

continued ...

¹High surrogate recovery due to peak interference.

Report Date: Jul TNM LF 2000-07	Report Date: July 23, 2008 TNM LF 2000-07			Order: 80 Bob Durha)71628 m		Page Number: 5 of 31 Monument, Lea County, NM		
sample 167191 co	ntinued								
			\mathbf{RL}						
Parameter	Flag		Result		Units	·····	Dilution	RL	
			BL						
Parameter	Flag		Result		Units		Dilution	RL	
GRO	0		72.3		mg/Kg		1	1.00	
					·	0.1	D /		
Sumerata		Flor	Dogult	Unita	Dilution	Spike	Percent	Recovery	
Trifugate	ጥኮጥ	Flag		mg/Kg	1			67.5 125.2	
4-Bromofluorober	$1\Gamma I$		1.09	mg/Kg	1	1.00	109	63.8 - 141	
Samples 16710	SB 5 0' 10'								
Sample: 107192	2 - 50-5 9-10								
Laboratory: Mic	lland								
Analysis: BT	EX		Analytical	Method:	S 8021B		Prep Me	thod: S 5035	
QC Batch: 504	.74		Date Analy	zed:	2008-07-18		Analyzed	i By: DC	
Prep Batch: 433	01		Sample Pre	paration:	2008-07-17		Preparec	By: DC	
			RL						
Parameter	Flag		Result		Units	Γ	Dilution	\mathbf{RL}	
Benzene	<u>_</u>		< 0.0100		mg/Kg		1	0.0100	
Toluene			< 0.0100	I	mg/Kg		1	0.0100	
Ethylbenzene			< 0.0100	I	mg/Kg		1	0.0100	
Xylene			< 0.0100		mg/Kg		1	0.0100	
						Snika	Percent	Recovery	
Surrogate		Flag	Result	Units	Dilution	Amount	Recoverv	Limits	
Trifluorotoluene (TFT)	0	0.928	mg/Kg	1	1.00	93	68 - 136.9	
4-Bromofluoroben	zene (4-BFB)		0.955	mg/Kg	- 1	1.00	96	48.2 - 155	

Sample: 167192 - SB-5 9'-10'

8

D 0 0 • 0 • •

0

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO 50434 43283	Analytical Method: Date Analyzed: Sample Preparation:	Mod. 8015B 2008-07-17 2008-07-17	Prep Method: Analyzed By: Prepared By:	N/A LD LD
		RL	TT '4		DI
Parameter	Flag	Result	Units	Dilution	RL
DRO		<50.0	mg/Kg	1	50.0

Report Date: July 23, 2008 TNM LF 2000-07			Work E	Order: 80 Sob Durha		Page Number: 6 of 31 Monument, Lea County, NM		
Surrogate Fl:	ag	Result	Units	Di	lution	Spike Amount	Percent Recovery	Recovery Limits
n-Triacontane		119	mg/Kg		1	100	119	10 - 250.4
Sample: 167192 - SB	-5 9'-10'							
Laboratory: Midland					6 • • • • • •			
Analysis: TPH GRC)		Analytical	Method:	S 8015B		Prep Met	thod: $S = 5035$
QC Batch: 50475 Prop Batch: 43301			Date Anal Sample Pi	yzea: constration:	2008-07-18		Propared	BW: DC
Frep Datch: 45501			Sample F	eparation:	2008-07-17		r Tepareu	by: DC
			\mathbf{RL}					
Parameter	Flag		\mathbf{Result}		Units		Dilution	RL
GRO			8.42		mg/Kg		1	1.00
Surrogate		Flag	Result	Units	Dilution	Spike	Percent Becovery	Recovery Limits
Trifluorotoluene (TFT)		1 100	1.06	mg/Kg	1	1.00	106	67.5 - 135.2
4-Bromofluorobenzene (4	4-BFB)		1.14	mg/Kg	1	1.00	114	63.8 - 141
Sample: 167193 - SB- Laboratory: Midland Analysis: BTEX QC Batch: 50474 Prep Batch: 43301	-5 14'-15	,	Analytical Date Analy Sample Pre	Analytical Method: S 8021B Date Analyzed: 2008-07- Sample Preparation: 2008-07-			Prep Method: S Analyzed By: D(Prepared By: D(
			DT					
Parameter	Flag		Result		Units		Dilution	RL
Benzene	0		< 0.0100		mg/Kg		1	0.0100
Toluene			< 0.0100		mg/Kg		1	0.0100
Ethylbenzene			< 0.0100	ļ	mg/Kg		1	0.0100
Xylene			< 0.0100		mg/Kg		1	0.0100
						Spike	Percent	Recovery
Surrogate		Flag	Result	Units	Dilution	Amount	Recovery	Limits
Surrogate Trifluorotoluene (TFT)		Flag	Result 0.927	Units mg/Kg	Dilution 1	Amount 1.00	Recovery 93	Limits 68 - 136.9

•

•

0 ● ● • ● ● ۲ • 6 • • • 0 • •

Report Date TNM LF 200	: July 23, 2008 00-07		Worl	c Order: 80 Bob Durha		Page Number: 7 of 3 Monument, Lea County, NM		
Sample: 16	7193 - SB-5 14'-1	5'						
Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO 50434 43283		Analytica Date Ana Sample P	al Method: alyzed: reparation	Mod. 8015 2008-07-17 2008-07-17	5B 7 7	Prep 1 Analy Prepa	Method: N/A zed By: LD red By: LD
			RL					
Parameter	\mathbf{Flag}		Result		Units		Dilution	RL
DRO			<50.0		mg/Kg		1	50.0
Surrogate	Flag	Result	Units	Di	lution	Spike Amount	Percent Recovery	Recovery Limits
n-Triacontan	e	124	mg/Kg	 S	1	100	124	10 - 250.4
Analysis: QC Batch: Prep Batch: Parameter	TPH GRO 50475 43301 Flag		Analytica Date Ana Sample P RL Result	u Method: Ilyzed: reparation	S 8015B 2008-07-18 2008-07-17 Units	3	Prep Me Analyze Prepare Dilution	ethod: S 5035 d By: DC d By: DC RL
GRO	В		3.00		mg/Kg		1	1.00
Surrogate Trifluorotolue	ene (TFT)	Flag	Result	Units mg/Kg	Dilution 1	Spike Amount 1.00	Percent Recovery 108	Recovery Limits 67.5 - 135.2
Sample: 16	7194 - SB-6 4'-5'		1.10	mg/ rvg	1	1.00	110	
Laboratory: Analysis: QC Batch: Prep Batch:	Midland BTEX 50474 43301		Analytical Date Anal Sample Pr	Method: yzed: eparation:	S 8021B 2008-07-18 2008-07-17		Prep Me Analyze Prepare	ethod: S 5035 d By: DC d By: DC
_	_ .		RI	L.				
Parameter	Flag	5	Resul	t	Units		Dilution	· RL
Benzene			< 0.010	U	mg/Kg		1	0.0100
Toluene	_		<0.010	0	mg/Kg		1	0.0100
Ethylbenzene	2		< 0.010	U N	mg/Kg		1	0.0100
луlene			<0.010	0	mg/rrg		T	0.0100

Report Date: July 23, 2008 TNM LF 2000-07			Work H	Order: 807 Bob Durham	Page Number: 8 of 3 Monument, Lea County, NN			
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotolu 4-Bromofluor	ene (TFT) robenzene (4-BFB)	<u> </u>	0.926 0.948	mg/Kg mg/Kg	1	1.00 1.00	93 95	68 - 136.9 48.2 - 155
Sample: 16	7194 - SB-6 4'-5'							
Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO 50434 43283		Analytica Date Ana Sample P	l Method: lyzed: reparation:	Mod. 8015B 2008-07-17 2008-07-17		Prep M Analyz Prepar	fethod: N/A ed By: LD ed By: LD
Parameter	Flag		RL Besult		Units		Dilution	BL
DRO	Tiag		<50.0		mg/Kg		1	50.0
Surrogate	Flag	Result	Units	Dila	ation A	Spike mount	Percent Recovery	Recovery Limits
n-Triacontan	e	104	mg/Kg		1	100	104	10 - 250.4
Sample: 16 Laboratory: Analysis: QC Batch: Prep Batch:	7194 - SB-6 4'-5' Midland TPH GRO 50475 43301		Analytica Date Ana Sample P	l Method: lyzed: reparation:	S 8015B 2008-07-18 2008-07-17		Prep Me Analyzed Prepared	thod: S 5035 l By: DC l By: DC
			RL					
Parameter	Flag B		Result		Units		Dilution	RL
GRU			1.20		mg/Kg		I	1.00
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotolu	ene (TFT)		1.06	mg/Kg	1	1.00	106	67.5 - 135.2
4-Bromofluor	robenzene (4-BFB)		1.07	mg/Kg	1	1.00	107	63.8 - 141
Sample: 16	7195 - SB-6 9'-10),						

Laboratory:	Midland				
Analysis:	BTEX	Analytical Method:	S 8021B	Prep Method:	S 5035
QC Batch:	50595	Date Analyzed:	2008-07-21	Analyzed By:	\mathbf{DC}
Prep Batch:	43396	Sample Preparation:	2008-07-21	Prepared By:	DC

• ۲ • ۲ • ●

Report Date: July 23, 2008 TNM LF 2000-07		<u></u> ,	Work Order: 8071628 Bob Durham			Page Number: 9 of 31 Monument, Lea County, NM			
			RL	ı					
Parameter	\mathbf{F} lag		Result	i	Units	Di	lution	RL	
Benzene			< 0.0100)	mg/Kg		1	0.0100	
Toluene			< 0.0100)	mg/Kg		1	0.0100	
Ethylbenzene			< 0.0100)	mg/Kg		1	0.0100	
Xylene			< 0.0100)	mg/Kg		1	0.0100	
						Spike	Percent	Recovery	
Surrogate		\mathbf{Flag}	Result	Units	Dilution	Amount	Recovery	Limits	
Trifluorotoluene (TFT)			0.952	mg/Kg	1	1.00	95	68 - 136.9	
4-Bromofluorobenzene (4-E	BFB)		0.952	mg/Kg	1	1.00	95	48.2 - 155	

Sample: 167195 - SB-6 9'-10'

Ø

0

1

() () () ()

n-Triacontane	e	140	mg/Kg	1	100	140	10 - 250.4
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
					Spike	Percent	Recovery
DRO			<50.0	mg/I	Кg	1	50.0
Parameter	Fla	g	RL Result	Uni	its	Dilution	RL
QC Batch: Prep Batch:	50434 43283		Date Analyze Sample Prepa	d: 2008-0 aration: 2008-0	7-17 7-17	Analyz Prepar	ed By: LD ed By: LD
Laboratory: Analysis:	Midland TPH DRO		Analytical M	ethod: Mod. 8	8015B	Prep M	fethod: N/A

Sample: 167195 - SB-6 9'-10'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH GRO 50597 43396		Analytical Date Ana Sample Pr	l Method: lyzed: reparation:	S 8015B 2008-07-21 2008-07-21		Prep Me Analyze Preparec	ethod: S 5035 d By: DC d By: DC
			RL					
Parameter	Flag		\mathbf{Result}		Units		Dilution	RL
GRO			<1.00		mg/Kg		1	1.00
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotolu	ene (TFT)		1.15	mg/Kg	1	1.00	115	67.5 - 135.2
4-Bromofluor	robenzene (4-BFB)		1.15	mg/Kg	1	1.00	115	63.8 - 141

Report Date: July 23, 2008	Work Order: 8071628	Page Number: 10 of 31
TNM LF 2000-07	Bob Durham	Monument, Lea County, NM

Sample: 167196 - SB-6 14'-15'

9

0

Laboratory: Analysis: QC Batch: Prep Batch:	Midland BTEX 50595 43396			Analytical Date Analy Sample Pre	Method: zed: paration:	S 8021B 2008-07-21 2008-07-21		Prep Meth Analyzed J Prepared I	od: S 5035 3y: DC 3y: DC
				RL	ı				
Parameter		\mathbf{Flag}		Result	i	Units		Dilution	RL
Benzene				< 0.0100)	mg/Kg		1	0.0100
Toluene				< 0.0100)	mg/Kg		1	0.0100
Ethylbenzene	;			< 0.0100)	mg/Kg		1	0.0100
Xylene				< 0.0100)	mg/Kg		1	0.0100
Surrogate			Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotolue	ene (TFT)		Ŭ	0.916	mg/Kg	1	1.00	92	68 - 136.9
4-Bromofluor	obenzene (4-E	BFB)		0.928	mg/Kg	1	1.00	93	48.2 - 155

Sample: 167196 - SB-6 14'-15'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO 50434 43283		Analytical M Date Analyze Sample Prepa	ethod: Mod. ed: 2008-(aration: 2008-(8015B)7-17)7-17	Prep M Analyz Prepar	Method: N/A zed By: LD red By: LD
			RL				
Parameter	Fl	ag	\mathbf{Result}	Ur	its	Dilution	RL
DRO			<50.0	mg/	Kg	1	50.0
Surrogate	\mathbf{Flag}	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Triacontane	e	111	mg/Kg	1	100	111	10 - 250.4

Sample: 167196 - SB-6 14'-15'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH GRO 50597 43396	Analytical Method: Date Analyzed: Sample Preparation:	S 8015B 2008-07-21 2008-07-21	Prep Method: Analyzed By: Prepared By:	S 5035 DC DC
		RL			
Parameter	Flag	\mathbf{Result}	Units	Dilution	RL
GRO	В	2.83	mg/Kg	1	1.00

Report Date TNM LF 200	: July 23, 2008 00-07		Work B	Order: 80 ob Durha	Page Number: 11 of Monument, Lea County, I			
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotolue 4-Bromofluor	ene (TFT) obenzene (4-BFB)		1.11 1.13	mg/Kg mg/Kg	1 1	1.00 1.00	111 113	67.5 - 135.2 63.8 - 141
Sample: 16	7197 - SB-7 4'-5	,•						
Laboratory: Analysis: QC Batch: Prep Batch:	Midland BTEX 50595 43396		Analytical M Date Analy: Sample Prej	Method: zed: paration:	S 8021B 2008-07-21 2008-07-21		Prep Me Analyzec Prepared	thod: S 5035 l By: DC l By: DC
Parameter	FI	a.	RL Besult		Unite		Dilution	BT.
Benzene Toluene Ethylbenzene Xylene	<u>г Iс</u>	<u>18</u>	<pre></pre>		mg/Kg mg/Kg mg/Kg mg/Kg		1 1 1 1 1	0.0100 0.0100 0.0100 0.0100 0.0100
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotolue 4-Bromofluor	ene (TFT) obenzene (4-BFB)		$\begin{array}{c} 0.914\\ 0.936\end{array}$	mg/Kg mg/Kg	1 1	$\begin{array}{c} 1.00\\ 1.00\end{array}$	91 94	68 - 136.9 48.2 - 155
Sample: 16	7197 - SB-7 4'-5	,						
Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO 50434 43283		Analytical Date Anal Sample Pr	Method: yzed: eparation:	Mod. 8015 2008-07-17 2008-07-17	В	Prep M Analyz Prepar	fethod: N/A ed By: LD ed By: LD
Parameter	Flag	·	RL Result		Units		Dilution	RL
			<00.0		mg/Kg		1	00.0
Surrogate	Flag	Result	Units	Di	lution	Spike Amount	Percent Recovery	Recovery Limits
n-Iriacontan	<u> </u>	124	mg/Kg		1	100	124	10 - 250.4

0

•

() ()

•

Report Date: July 23, 2008 TNM LF 2000-07		Work B	Order: 80 ob Durhar		Page Nur Monument, Le	mber: 12 of 31 a County, NM	
Sample: 167197 - SB-7 4'-5	,						
Laboratory: Midland Analysis: TPH GRO QC Batch: 50597 Prep Batch: 43396		Analytical Date Anal Sample Pr	Method: yzed: eparation:	S 8015B 2008-07-21 2008-07-21		Prep Met Analyzed Prepared	thod: S 5035 By: DC By: DC
Parameter Flag		${ m RL} { m Result}$		Units]	Dilution	RL
GRO B		1.02		mg/Kg		1	1.00
Surrogate Trifluorotoluene (TFT)	Flag	Result	Units mg/Kg	Dilution	Spike Amount 1.00	Percent Recovery 111	Recovery Limits 67.5 - 135.2
Sample: 167198 - SB-7 9'-1	זי.						
Laboratory: Midland Analysis: BTEX QC Batch: 50595 Prep Batch: 43396	5	Analytical M Date Analy: Sample Prep	Method: zed: paration:	S 8021B 2008-07-21 2008-07-21		Prep Me Analyzed Prepared	thod: S 5035 l By: DC l By: DC
Parameter Ela	~	RL		Unite	Г	Vilution	DI
Benzene	в	<0.0100		mg/Kg	L	1	0.0100
Toluene		< 0.0100		mg/Kg		1	0.0100
Ethylbenzene Xvlene		$< 0.0100 \\ < 0.0100$		mg/Kg mg/Kg		1 1	$0.0100 \\ 0.0100$
<u> </u>	Flor	Decult	Ilmita	Dilution	Spike	Percent	Recovery
Triffuorotoluene (TET)	Flag	<u> </u>	mg/Kg	<u></u>	1 00	03	
4-Bromofluorobenzene (4-BFB)		0.938	mg/Kg	1	1.00	94	48.2 - 155
Sample: 167198 - SB-7 9'-1()'						
Laboratory: Midland							
Analysis: TPH DRO		Analytical	Method:	Mod. 8015B		Prep M	Iethod: N/A
QU Batch: 50434 Prep Batch: 43283		Date Anal Sample Pr	yzed: eparation:	2008-07-17 2008-07-17		Analyz Prepar	ed By: LD ed By: LD
		RL		•• •			
Parameter Flag		Result	<u> </u>	Units		Dilution	RL
DRO		< 20.0		mg/Kg		1	50.0

-

• ${ }^{ \bullet }$ 0 9 • • 0 •

•

Report Date: July 23, 2008 TNM LF 2000-07			Work E	Order: 80 Bob Durhai	Page Number: 13 of 31 Monument, Lea County, NM			
Surrogate	Flag	Result	Units	Di	lution	Spike Amount	Percent Recovery	Recovery Limits
n-Triacontane		117	mg/Kg		1	100	117	10 - 250.4
Sample: 167198	- SB-7 9'-10	,						
Laboratory: Mid Analysis: TP QC Batch: 505 Prep Batch: 433	land H GRO 97 96		Analytical Date Anal Sample Pr	Method: lyzed: reparation:	S 8015B 2008-07-21 2008-07-21	1	Prep Me Analyzeo Prepareo	thod: S 5035 l By: DC l By: DC
D	E 1		RL		TT:4-		Dilution	рт
CRO	Flag				mg/Kg	· · ·· ··· ··	1	<u> </u>
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene ('	FFT)		1.12	mg/Kg	1	$1.00 \\ 1.00$	112	67.5 - 135.2 63.8 - 141
Sample: 167199 Laboratory: Mid	- SB-7 14'-1 land	5'						
Analysis: BTI QC Batch: 505 Prep Batch: 433	EX 95 96		Analytical Date Analy Sample Pre	Method: zed: paration:	S 8021B 2008-07-21 2008-07-21		Prep Me Analyzeo Prepareo	thod: S 5035 l By: DC l By: DC
Parameter	Flag	,	RL Besult	I	Units		Dilution	BL
Benzene Toluene Ethylbenzene Xylene	1 188	<u> </u>	<0.0100 <0.0100 <0.0100 <0.0100 <0.0100		mg/Kg mg/Kg mg/Kg mg/Kg		1 1 1 1	0.0100 0.0100 0.0100 0.0100
Surrogate		Flag	Regult	Unite	Dilution	Spike	Percent	Recovery
Trifluorotoluene (4-Bromofluoroben	ГFT) zene (4-BFB)	<u>_</u>	0.917 0.923	mg/Kg mg/Kg	1 1	1.00 1.00	92 92	68 - 136.9 48.2 - 155

•

1

0

•

•

Report Date TNM LF 20	: July 23, 2008 00-07		Work Order: 8071628 Bob Durham				Page Number: 14 of 31 Monument, Lea County, NM		
Sample: 16	7199 - SB-7 14	-15'							
Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO 50434 43283		Analytica Date Ana Sample P	l Method: lyzed: reparation	Mod. 801; 2008-07-1 2008-07-1	5B 7 7	Prep M Analy: Prepar	Method: N/A zed By: LD red By: LD	
			RL						
Parameter	Fla	g	Result		Units		Dilution	RL	
DRO			70.0		mg/Kg		1	50.0	
Surrogate	Flag	Result	Units	Di	lution	Spike Amount	Percent Recovery	Recovery Limits	
n-Triacontan	e	105	mg/Kg	, , 	1	100	105	10 - 250.4	
Sample: 16 Laboratory: Analysis: QC Batch: Prep Batch:	7199 - SB-7 14' Midland TPH GRO 50597 43396	-15'	Analytica Date Ana Sample P	l Method: lyzed: reparation	S 8015B 2008-07-22 2008-07-22	1	Prep Me Analyzee Prepareo	thod: S 5035 d By: DC d By: DC	
D			RL		TT •.			DI	
Parameter	Flag B	g	Result		Units		Dilution		
GRO			1.89		mg/Kg		l	1.00	
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits	
Trifluorotolu	ene (TFT)		1.11	mg/Kg	1	1.00	111	67.5 - 135.2	
4-Bromofluor	obenzene (4-BFB	()	1.12	mg/Kg	1	1.00	112	63.8 - 141	
Sample: 16 Laboratory: Analysis: QC Batch: Prep Batch:	7200 - SB-8 4'- Midland BTEX 50595 43396	5'	Analytical Date Analy Sample Pre	Method: vzed: eparation:	S 8021B 2008-07-21 2008-07-21		Prep Me Analyzee Prepareo	thod: S 5035 1 By: DC 1 By: DC	
			RI	J					
Parameter	Fl	lag	Result	t	Units		Dilution	RL	
Benzene			< 0.0500)	mg/Kg		5	0.0100	
Toluene			< 0.0500)	mg/Kg		5	0.0100	
Ethylbenzene	; '		0.921	L	mg/Kg		5	0.0100	
Xylene			3.98	3	mg/Kg		5	0.0100	

6

1 9 • 9 • • • • •

•

Report Date: July 23, 2008 TNM LF 2000-07		Work Order: 8071628 Bob Durham				Page Number: 15 of 31 Monument, Lea County, NM		
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits	
Trifluorotoluene (TFT)		4.51	mg/Kg	5	5.00	90	68 - 136.9	
4-Bromofluorobenzene (4-BFB)		5.58	mg/Kg	5	5.00	112	48.2 - 155	
Sample: 167200 - SB-8 4'-5'								
Laboratory:MidlandAnalysis:TPH DROQC Batch:50434		Analytica Date Ana	l Method: lyzed:	Mod. 8015 2008-07-17	В	Prep 1 Analys	Method: N/A zed By: LD	
Prep Batch: 43283		Sample P	reparation:	2008-07-17		Prepar	red By: LD	
		RL		T T 1 .		D1	DI	
Parameter Flag		Result		Units		Dilution	KL	
		1210		mg/Kg		1	30.0	
					Spike	Percent	Recovery	
Surrogate Flag	\mathbf{Result}	Units	Dilı	ition	Amount	Recovery	Limits	
n-Triacontane ²	256	mg/Kg		1	100	256	10 - 250.4	
Sample: 167200 - SB-8 4'-5'								
Laboratory: Midland		Applution	Mothad	C 2015D		Dron Me	thad. 8 5025	
OC Batch: 50597		Date Ana	lwzed.	2008_07_21		A nalyze	$d B_{W} = DC$	
Prep Batch: 43396		Sample P	reparation:	2008-07-21		Prepare	t By: DC	
-						-	·	
		RL		TT 14			זת	
Parameter Flag		Kesult		Units	······································	Dilution		
<u></u>		410		mg/Kg			1.00	
					Spike	Percent	Recovery	
Surrogate	\mathbf{F} lag	Result	Units	Dilution	Amount	Recovery	Limits	
Trithuarataluene (TFT)	• • •	* • • •	1 -		N A A		Am H	
		5.49	mg/Kg	5	5.00	110	67.5 - 135.2	

Sample: 167201 - SB-8 9'-10'

•

Laboratory:	Midland				
Analysis:	BTEX	Analytical Method:	S 8021B	Prep Method:	S 5035
QC Batch:	50595	Date Analyzed:	2008-07-21	Analyzed By:	DC
Prep Batch:	43396	Sample Preparation:	2008-07-21	Prepared By:	DC

²High surrogate recovery due to peak interference.

Report Date: July 23, 2008 TNM LF 2000-07			Work Order: 8071628 Bob Durham			Page Number: 16 of 3 Monument, Lea County, NM			
			RL						
Parameter	\mathbf{Flag}		Result		Units	Di	lution	RL	
Benzene			< 0.0200		mg/Kg		• 2	0.0100	
Toluene			< 0.0200)	mg/Kg		2	0.0100	
Ethylbenzene			0.119		mg/Kg		2	0.0100	
Xylene			0.747		mg/Kg	·····	2	0.0100	
						Spike	Percent	Recovery	
Surrogate		\mathbf{Flag}	Result	Units	Dilution	Amount	Recovery	Limits	
Trifluorotoluene (TFT)			1.85	mg/Kg	2	2.00	92	68 - 136.9	
4-Bromofluorobenzene (4-	BFB)		2.14	mg/Kg	2	2.00	107	48.2 - 155	

Sample: 167201 - SB-8 9'-10'

0

-

Laboratory: Analysis:	Midland TPH DRO		Analytical M	ethod: Mod. 8	3015B	Prep M	Method: N/A
QC Batch:	50434		Date Analyze	ed: 2008-0	7-17	Analyz	zed By: LD
Prep Batch:	43283		Sample Prepa	aration: 2008-0	7-17	Prepar	red By: LD
			\mathbf{RL}				
Parameter	Fla	g	Result	Uni	ts	Dilution	RL
DRO		····	425	mg/ł	Кg	1	50.0
					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontan	e	113	mg/Kg	1	100	113	10 - 250.4

Sample: 167201 - SB-8 9'-10'

Laboratory:MidlandAnalysis:TPH GROQC Batch:50597Prep Batch:43396			Analytical Method: Date Analyzed: Sample Preparation:		S 8015B 2008-07-21 2008-07-21		ethod: S 5035 d By: DC d By: DC	
			\mathbf{RL}					
Parameter	\mathbf{Flag}		Result		Units		Dilution	RL
GRO			174		mg/Kg		2	1.00
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotolue	ene (TFT)	<u>_</u>	2.21	mg/Kg	2	2.00	110	67.5 - 135.2
4-Bromofluor	obenzene (4-BFB)		2.51	mg/Kg	2	2.00	126	63.8 - 141

Report Date: July 23, 2008	Work Order: 8071628	Page Number: 17 of 31
TNM LF 2000-07	Bob Durham	Monument, Lea County, NM

Sample: 167202 - SB-8 14'-15'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland BTEX 50595 43396			Analytical 1 Date Analy Sample Pre	Method: zed: paration:	S 8021B 2008-07-21 2008-07-21		Prep Me Analyzee Preparec	ethod: S d By: D d By: D	5035)C)C
				RL						
Parameter		Flag		Result		Units		Dilution		RL
Benzene				< 0.0100		mg/Kg		1	0	.0100
Toluene				< 0.0100		m mg/Kg		1	0	.0100
Ethylbenzene	:			< 0.0100		mg/Kg		1	0	.0100
Xylene				< 0.0100		mg/Kg		1	0	.0100
							Spike	Percent	Reco	overy
Surrogate			Flag	Result	Units	Dilution	a Amount	t Recovery	Lin	nits
Trifluorotolue	ene (TFT)			0.951	mg/Kg	1	1.00	95	68 -	136.9
4-Bromofluor	obenzene (4-B	FB)		0.989	mg/Kg	1	1.00	99	48.2	- 155

Sample: 167202 - SB-8 14'-15'

0

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO 50434 43283		Analytical Me Date Analyze Sample Prepa	ethod: Mod. d: 2008-6 vration: 2008-6	8015B 07-17 07-17	Prep M Analyz Prepar	Method: N/A zed By: LD red By: LD
Parameter	Flag		RL Result	Ur	nits	Dilution	RL
DRO			<50.0	mg/	Kg	1	50.0
Surrogate n-Triacontane	Flag	Result 119	Units mg/Kg	Dilution 1	Spike Amount 100	Percent Recovery 119	Recovery Limits 10 - 250.4

Sample: 167202 - SB-8 14'-15'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH GRO 50597 43396	Analytical Method: Date Analyzed: Sample Preparation:	S 8015B 2008-07-21 2008-07-21	Prep Method: Analyzed By: Prepared By:	S 5035 DC DC
		RL			
Parameter	Flag	Result	Units	Dilution	RL
GRO		12.2	mg/Kg	1	1.00

Report Date: July 23, 2008 TNM LF 2000-07			Work Order: 8071628 Bob Durham				Page Number: 18 of 31 Monument, Lea County, NM		
Surrogate	(M T M)	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits	
1 Triffuorotolue	ene (TFT)		1.14	mg/Kg	1	1.00	114	67.5 - 135.2	
4-DI011011001	obelizelle (4-DFD)		1.20	mg/ Kg	1	1.00	120	03.8 - 141	
Sample: 16	7203 - SB-9 4'-5	,							
Laboratory:	Midland								
Analysis:	BTEX		Analytical I	Method:	S 8021B		Prep Me	thod: S 5035	
QC Batch:	50595		Date Analy	zed:	2008-07-21		Analyzed	By: DC	
Prep Batch:	43396		Sample Pre	paration:	2008-07-21		Preparec	By: DC	
			RL						
Parameter	Fla	g	Result		Units		Dilution	RL	
Benzene		<u> </u>	< 0.0100		mg/Kg		1	0.0100	
Toluene			< 0.0100		mg/Kg		1	0.0100	
Ethylbenzene			< 0.0100		mg/Kg		1	0.0100	
Xylene			< 0.0100		mg/Kg		1	0.0100	
						Spike	Percent	Recovery	
Surrogate	·	Flag	Result	Units	Dilution	Amount	Recovery	Limits	
Trifluorotolue	ene (TFT)		0.910	mg/Kg	1	1.00	91	68 - 136.9	
4-Bromofluor	obenzene (4-BFB)		0.920	mg/Kg	1	1.00	92	48.2 - 155	
Sample: 167	7203 - SB-9 4'-5	,							
Laboratory:	Midland					_			
Analysis:	TPH DRO		Analytical	Method:	Mod. 8015	В	Prep M	1ethod: N/A	
QC Batch:	50434		Date Anal	yzed:	2008-07-17		Analyz	ed By: LD	
Prep Batch:	43283		Sample Pr	eparation:	2008-07-17		Prepar	ed By: LD	
Danamatan	Elam		RL		TTo:to		Dilution	DI	
Parameter DPO	Flag				mg/Kg	·····	Dilution	<u></u>	
			< <u>00.0</u>		mg/Kg		<u>1</u>	0.06	
Surrogate	Flag	Result	Units	Dil	ution	Spike Amount	Percent Recovery	Recovery Limits	
n-Triacontane	<u> </u>	117	mø/Kø		1	100	117	10 - 250 4	
	-		010				•		

0

Ō

Report Date TNM LF 200	: July 23, 2008 00-07		Work E	Order: 80 Bob Durhar	71628 n		Page Number: 19 of 3 Monument, Lea County, N		
Sample: 16	7203 - SB-9 4'-5'								
Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH GRO 50597 43396		Analytica Date Ana Sample Pi	l Method: lyzed: reparation:	S 8015B 2008-07-21 2008-07-21		Prep Me Analyzed Prepared	thod: S 5035 l By: DC l By: DC	
Parameter	Flag		RL Result		Units]	Dilution	RL	
GRO	B		2.25		mg/Kg		1	1.00	
Surrogate	2110 (TFT)	Flag	Result	Units mg/Kg	Dilution	Spike Amount	Percent Recovery	Recovery Limits 67.5 - 135.2	
4-Bromofluor	obenzene (4-BFB)		1.09	mg/Kg	1	1.00	109	63.8 - 141	
Sample: 16 Laboratory: Analysis: QC Batch: Prep Batch:	7204 - SB-9 9'-10 Midland BTEX 50595 43396	,	Analytical Date Analy Sample Pre	Method: vzed: eparation:	S 8021B 2008-07-21 2008-07-21		Prep Me Analyzec Prepared	thod: S 5035 l By: DC l By: DC	
Parameter	Flag		RL Result		Units	Г	Dilution	RL	
Benzene			< 0.0100)	mg/Kg		1	0.0100	
Toluene			< 0.0100)	mg/Kg		1	0.0100	
Ethylbenzene	2		< 0.0100)	mg/Kg		1	0.0100	
Xylene			< 0.0100)	mg/Kg		1	0.0100	
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits	
Trifluorotolue	ene (TFT)		0.901	mg/Kg	1	1.00	90	68 - 136.9	
4-Bromofluor	obenzene (4-BFB)	v	0.916	mg/Kg	1	1.00	92	48.2 - 155	
Sample: 16' Laboratory: Analysis: QC Batch: Prep Batch:	7204 - SB-9 9'-10 Midland TPH DRO 50434 43283	,	Analytica Date Ana Sample P	l Method: lyzed: reparation:	Mod. 8015B 2008-07-17 2008-07-17		Prep M Analyz Prepar	fethod: N/A ed By: LD ed By: LD	
			DT						
Paramoter	Flag		KL Result		Unite	I	Dilution	БI	
DRO	+ 10g	<u> </u>	<50.0		mg/Kg		1	50.0	

 ${ }^{ \bullet }$ • • • •

0 •

Report Date: TNM LF 200	July 23, 2008 00-07		Work	c Order: 80 Bob Durhai	71628 m		Page Number: 20 of 31 Monument, Lea County, NM			
Surrogate	Flag	Result	Units	Di	lution	Spike Amount	Percent Recovery	Recovery Limits		
n-Triacontane	<u>}</u>	100	mg/Kg	5	1	100	100	10 - 250.4		
Sample: 167	7204 - SB-9 9'-1	.0'								
Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH GRO 50597 43396		Analytica Date Ana Sample P	l Method: lyzed: reparation:	S 8015B 2008-07-21 2008-07-21	L L	Prep Me Analyzeo Prepareo	thod: S 5035 l By: DC l By: DC		
			RL							
Parameter	Flag	<u>.</u>	Result		Units		Dilution	RL		
GRO	B		1.04		mg/Kg		1	1.00		
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits		
Trifluorotolue	me (TFT)		1.08	mg/Kg	1	1.00	108	67.5 - 135.2		
4-Bromofluor	obenzene (4-BFB))	1.08	mg/Kg	1	1.00	108	63.8 - 141		
Sample: 167 Laboratory: Analysis: QC Batch: Prep Batch:	7205 - SB-9 14'- Midland BTEX 50595 43396	-15'	Analytical Date Analy Sample Pre	Method: yzed: eparation:	S 8021B 2008-07-21 2008-07-21		Prep Me Analyzed Prepared	thod: S 5035 l By: DC l By: DC		
			RI							
Parameter	Fla	ag	Result	t	Units		Dilution	RL		
Benzene			< 0.0100)	mg/Kg		1	0.0100		
Toluene			< 0.0100)	mg/Kg		1	0.0100		
Ethylbenzene			< 0.0100) J	mg/Kg		1	0.0100		
Aylene			< 0.0100	J	mg/Kg		I	0.0100		
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits		
Trifluorotolue	ne (TFT)		0.899	mg/Kg	1	1.00	90	68 - 136.9		
4-Bromofluor	obenzene (4-BFB))	0.914	mg/Kg	1	1.00	91	48.2 - 155		

• • O • • ● • • •

Report Date: TNM LF 2000	July 23, 2008)-07		Work I	a Order: 80 Bob Durha	071628 um		Page Nu Monument, Le	mber: 21 of 31 ea County, NM
Sample: 167	205 - SB-9 14	·-15'						
Laboratory: Analysis:	Midland TPH DRO		Analytica	l Method:	Mod. 80	15B	Prep M	Method: N/A
QC Batch: Prep Batch:	50434 43283		Date Ana Sample P	lyzed: reparation	2008-07-1 1: 2008-07-1	17 17	Analyz Prepa	zed By: LD red By: LD
Descuration	Fla	_	RL Bogult		TIn:to		Dilution	DI
DRO	<u>г Ia</u>	8	144		mg/Kg	·	1	50.0
Surrogate	Flag	Result	Units	D	ilution	Spike Amount	Percent Recovery	Recovery Limits
n-Triacontane	<u>v</u>	118	mg/Kg	5	1	100	118	10 - 250.4
QC Batch: Prep Batch:	50597 43396		Date Ana Sample P RL	lyzed: reparation	2008-07-2 2008-07-2	21 21	Analyze Prepared	d By: DC d By: DC
Parameter	Fla	g	Result		Units		Dilution	RL
GRO	В		3.54		mg/Kg		1	1.00
Surrogate		Flag	Result	Units	Dilutior	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluer	ne (TFT)		1.08	mg/Kg	1	1.00	108	67.5 - 135.2
4-Bromofluoro	benzene (4-BFE	<u>B)</u>	1.08	mg/Kg	1	1.00	108	63.8 - 141
Method Blar QC Batch: Prep Batch:	nk (1) QC 50434 43283	Batch: 50434	Date An. QC Prep	alyzed: aration:	2008-07-17 2008-07-17		Analy Prepa	yzed By: LD ared By: LD
Parameter		Flag		MD Resul	L lt	U	nits	RL
DRO				<15.	8	mg	;/Kg	50
Surrogate	Flag	Result	Units	Dil	ution	Spike Amount	Percent Recovery	Recovery Limits
		70.0			1	100	71	00.0 140.4

Report Date: July 23, 200 TNM LF 2000-07	8	Worl	k Order: 807 Bob Durhan	71628 1	Page Number: 22 of 3 Monument, Lea County, NN				
Method Blank (1)	QC Batch: 50474								
QC Batch: 50474 Prep Batch: 43301		Date An QC Prep	alyzed: 20 paration: 2	008-07-18 008-07-17		Analy Prepa	vzed By: DC ared By: DC		
			мі)L					
Parameter	Flag		Rest	ılt	Un	its	RL		
Benzene			< 0.005	80	mg	/Kg	0.01		
Toluene			< 0.004	70	mg	/Kg	0.01		
Ethylbenzene			< 0.005	30	mg/	/Kg	0.01		
Xylene			<0.01	36	mg/	Kg	0.01		
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits		
Trifluorotoluene (TFT)		1.01	mg/Kg	1	1.00	101	48.3 - 132.5		
4-Bromofluorobenzene (4-E	BFB)	0.931	mg/Kg	1	1.00	93	37.7 - 128.9		
QC Batch: 50475 Prep Batch: 43301		Date An QC Prep	alyzed: 20 paration: 20	008-07-18 008-07-17		Analy Prepa	yzed By: DC ared By: DC		
D			MDL				DI		
Parameter	Flag	- <u></u> · ·	Result		<u>Uni</u>	ts V ~			
<u>GRU</u>			0.830		mg/	ng	1		
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits		
Trifluorotoluene (TFT)		1.14	mg/Kg	1	1.00	114	39.2 - 135.2		
4-Bromofluorobenzene (4-E	SFB)	1.04	mg/Kg	1	1.00	104	16.8 - 138.1		
Method Blank (1)	QC Batch: 50595								
QC Batch: 50595		Date An	alyzed: 20	008-07-21		Analy	yzed By: DC		
Prep Batch: 43396		QC Prep	paration: 20	008-07-21		Prepa	ared By: DC		
			MI	DL					
Parameter	Flag		Rest	1lt	Un	its	RL		
Benzene			<0.005	8U 70	mg/	Kg Ka	0.01		
roiuene Ethylbenzene			<0.004 20.004	30	mg	/Kg	0.01 0.01		
Xylene			< 0.01	36	mg/	/Kg	0.01		

• •

•

Report Date: July 23, 200 TNM LF 2000-07	8	Wo	rk Order: Bob Durł	8071628 nam			Page N Monument, I	umber: 2 Jea Cour	23 of 31 hty, NM
Surrogate	Flag	Result	Units	Di	lution	Spike Amount	Percent Recovery	Rec Li	overy mits
Trifluorotoluene (TFT)	FR)	0.936	mg/K_{i}	g o	1	$1.00 \\ 1.00$	94 92	48.3	- 132.5 - 128 9
	r.b)	0.010		5	1	1.00			- 120.5
Method Blank (1)	QC Batch: 50597	7							
QC Batch: 50597 Prep Batch: 43396		Date A QC Pre	nalyzed: eparation:	2008-07 2008-07	7-21 7-21		Anal Prep	yzed By ared By:	DC DC
			MI	DL					
Parameter	Flag		Res	ult		Un	its		RL
GRO			0.7	746		mg/	Kg		1
Surrogate	Flag	Result	Units	Dil	ution	Spike Amount	Percent Recovery	Rec Li	overy mits
Trifluorotoluene (TFT)		1.11	mg/K	во Бо	1	1.00	111	39.2	- 135.2
4-Bromofluorobenzene (4-B	FB)	1.09	mg/K	g	1	1.00	109	16.8	- 138.1
LaboratoryControl SpinQC Batch:.50434Prep Batch:43283	ke (LCS-1)	Date A QC Pre	nalyzed: eparation:	2008-07 2008-07	7-17 7-17		Anal Prep	yzed By ared By	: LD : LD
	L	CS			Spike	Matr	ix	R	lec.
Param	Re	esult	Units	Dil.	Amount	Resu	lt Rec.	Li	mit
DRO	2	235 n	ng/Kg	1	250	<15.	8 94	27.8	- 152.1
Percent recovery is based of	n the spike resul	lt. RPD is	based on t	he spike	and spike	duplicate	result.		
	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO	245	mg/Kg	1	250	<15.8	98	27.8 - 152.1	4	20
Percent recovery is based of	n the spike resul	t. RPD is	based on t	he spike	and spike	duplicate :	result.		
	LCS LCS	SD			Snike	LCS	LCSD		Rec
Surrogate	Result Res	ult (Units	Dil.	Amount	Rec	. Rec.	I	.imit
n-Triacontane	103 10	7 m	ig/Kg	1	100	103	107	38	- 130.4
Laboratory Control Spil	ke (LCS-1)	Data A	naluradı	2008 07	10		A	1 D	DC
Prep Batch: 43301		QC Pre	paration:	2008-07	-10		Anar Prep	yzed By: ared By:	DC
•		-					° r	5	

Ō

Report Date: July 23, 2008 TNM LF 2000-07			ork Orde Bob D	r: 807162 urham	8			Mon	Page Nu ument, L	ımber: ea Cour	24 of 31 hty, NM
	\mathbf{LC}	S			Spi	ke	Ma	trix		I	Rec.
Param	Resi	ılt	Units	Dil.	Amo	\mathbf{unt}	Res	sult	Rec.	L	imit
Benzene	0.95	58 n	ng/Kg	1	1.0	00	<0.0	0580	96	73.3	- 116.6
Toluene	0.96	63 n	ng/Kg	1	1.0	00	< 0.0	0470	96	78.6	- 115.1
Ethylbenzene	0.96	57 n	ng/Kg	1	1.0	00	< 0.0	0530	97	77.4	- 114.9
<u>Xylene</u> Percent recovery is based on the s	2.8 spike result	9 n . RPD is	ng/Kg s based o	n the spik	$\frac{3.0}{2}$)0 spike d	0.0> uplicat	0136 te result	96 t.	78.2	- 114.7
	LCSD			Spike	Ma	atrix		F	Rec.		RPD
Param	Result	Units	Dil.	Amount	Re	esult	Rec.	L	imit	RPD	Limit
Benzene	1.09	mg/Kg	1	1.00	<0.	00580	109	73.3	- 116.6	13	20
Toluene	1.10	mg/Kg	1	1.00	<0.	00470	110	78.6	- 115.1	13	20
Ethylbenzene	1.09	mg/Kg	1	1.00	<0.0	00530	109	77.4	- 114.9	12	20
Xylene	3.28	mg/Kg	1	3.00	<0.	.0136	109	78.2	- 114.7	13	20
Percent recovery is based on the s	pike result	. RPD is	s based o	on the spik	ce and	spike d	uplicat	e result	t.		
		S LO	CSD			Spi	ke	LCS	LCSD	Ι	Rec.
Surrogate	Resu	ilt Re	esult	Units	Dil.	Amo	unt	Rec.	Rec.	I	imit
Triffuorotoluene (TFT)	0.95	53 1	.00	mg/Kg	1	1.0	0	95	100	45	- 124.2
<u>4-Bromofluorobenzene (4-BFB)</u>	0.89	97 0.	.946	mg/Kg	1	1.0	0	90	95	47.2	- 130.4
2	rc	S		54	S	pike	Ma	atrix		I	Rec.
Param	Res		Units	D1l	Am	ount		sult	$\underline{\text{Rec.}}$	L	imit
GRO	9.6	64	mg/Kg	1	1	0.0	0.	836	88	57.5	- 106.4
Percent recovery is based on the s	pike result	. RPD is	s based c	on the spik	te and a	spike d	uplicat	e result			
Daram	LCSD Bosult	Unite	Dil	Spike	Ma + Ra	atrix	Roc	R	lec. mit	DDD	RPD Limit
	$\frac{104}{104}$	mg/Ke	$\frac{D11}{r}$	10.0		836	96	57.5	$\frac{1110}{1064}$	8	20
Percent recovery is based on the s	pike result	. RPD is	s based c	on the spik	te and	spike d	uplicat	e result	- <u>100.4</u> t.		
	\mathbf{LC}	S LO	CSD			\mathbf{Spi}	ke	LCS	LCSD	I	Rec.
Surrogate	Resu	ilt Re	esult	Units	Dil.	Amo	unt	Rec.	Rec.	L	imit
Trifluorotoluene (TFT)	1.0	8 1	.12	mg/Kg	1	1.0	0	108	112	63.8	- 134.3
4-Bromofluorobenzene (4-BFB)	1.0	2 1	.05	mg/Kg	1	1.0	0	102	105	53.3	- 123.6
Laboratory Control Spike (L0	CS-1)										
QC Batch: 50595		Date A	Analyzed	: 2008-0	07-21				Anal	yzed By	: DC
QC Batch: 50595 Prep Batch: 43396		Date A QC Pr	Analyzed reparatio	: 2008-0 n: 2008-0	$07-21 \\ 07-21$				Analy Prep	yzed By ared By	: DC : DC
QC Batch: 50595 Prep Batch: 43396		Date A QC Pr	Analyzed eparatio	: 2008-(n: 2008-(07-21 07-21				Anal Prep	yzed By ared By	: DC : DC

() ()

•

() ()

() **(**)

Report Date: July 23, 2008 TNM LF 2000-07		Worl	« Order: Bob Dur	8071628 ham				Mon	Page Nu ument, L	umber: Jea Cour	25 of 31 1ty, NM
	LCS				Spil	ke	Ma	trix		Ι	lec.
Param	Result	Uı	nits	Dil.	Amo	unt	Re	sult	Rec.	L	imit
Benzene	0.914	\mathbf{mg}	/Kg	1	1.0	0	<0.0	0580	91	73.3	- 116.6
Toluene	0.927	mg	/Kg	1	1.0	0	<0.0	0470	93	78.6	- 115.1
Ethylbenzene	0.929	mg	/Kg	1	1.0	0	<0.0	0126	93	77.4	- 114.9
Percent recovery is based on the s	z.19 spike result. F	RPD is h	ased on	the spike	3.0 e and s	spike d	$\frac{<0.1}{\text{uplicat}}$	te result	93		- 114.7
				Spike	Ma	triv	apiroa	F	Roc		RPD
Param	Besult 1	Unite	Dil	Amount	Ro	enlt	Rec	T.	iec. imit	RPD	Limit
Bongona	<u>0.088</u> m	$\frac{1115}{2\pi/K\sigma}$	1	1.00		00580	00	73.3	116.6	<u>- 101 D</u>	20
Toluene	0.988 n	ng/Kg	1	1.00		00000	100	78.6	- 115.1	7	20
Ethylbenzene	1.00 m	16/116 10/Ko	1	1.00	<0.0	0530	100	77.4	- 110.1 - 114 Q	7	20
Xvlene	3.00 n	ng/Kg	1	3.00	<0.	0136	100	78.2	- 114.7	7	$\frac{20}{20}$
Percent recovery is based on the s	spike result. F	RPD is t	based on	the spike	e and s	spike d	uplicat	te result			
	LCS	LCS	D			Spi	ke	LCS	LCSD	I	Rec.
Surrogate	Result	Resi	ilt U	nits	Dil.	Amo	unt	Rec.	Rec.	L	imit
Trifluorotoluene (TFT)	0.939	0.97	71 m	g/Kg	1	1.0)0	$\overline{94}$	97	45 -	124.2
4-Bromofluorobenzene (4-BFB)	0.944	0.96	35 m;	g/Kg	1	1.0)0	94	96	47.2	- 130.4
QC Batch: 50597 Prep Batch: 43396]	Date An QC Prep	alyzed: paration:	2008-0 2008-0	7-21 7-21				Anal Prep	yzed By ared By	: DC : DC
	LCS				$\mathbf{S}_{\mathbf{I}}$	oike	Ma	atrix		I	Rec.
Param	Result	; U	Inits	Dil.	Am	ount	Re	sult	Rec.	L	imit
GRO	10.0	m	g/Kg	1	1	0.0	0.	746	92	57.5	- 106.4
Percent recovery is based on the s	spike result. F	RPD is b	based on	the spike	e and s	spike d	uplicat	te result			
	LCSD			Spike	Ma	atrix		R	.ec.		RPD
Param	Result	Units	Dil.	Amount	Re	sult	Rec.	Li	mit	RPD	Limit
GRO	10.6 r	ng/Kg	1	10.0	0.	746	98	57.5	- 106.4	6	20
Percent recovery is based on the s	spike result. F	RPD is b	oased on	the spike	e and s	spike d	uplicat	te result	•		
_	LCS	LCS	D			Spi	ke	LCS	LCSD	I	Rec.
Surrogate	Result	Resi	ilt U	nits	Dil.	Amo	unt	Rec.	Rec.	L	imit
Triffuorotoluene (TFT)	1.14	1.1	$4 m_{i}$	g/Kg	1	1.(00	114	114	63.8	- 134.3
4-Bromofluorobenzene (4-BFB)	1.15	1.1	6 m;	g/Kg	1	1.(0	115	116	53.3	- 123.6
Matrix Spike (MS-1) Spike	d Sample: 167	7191									
QC Batch: 50434]	Date An	alyzed:	2008-0	7-17				Anal	yzed By	: LD
Prep Batch: 43283	(QC Prer	paration:	2008-0	7-17				Prep	ared By	: LD

Report Date: July 23, 2008 TNM LF 2000-07		Work Order: 8071628 Bob Durham						Page Number: 26 of 31 Monument, Lea County, NM				
		N	ſS			Sp	ike	Ma	trix	_		Rec.
Param		Re	sult	Units	Dil.	Amo	ount	Re	sult	Rec.		Limit
DRO		14	10	mg/K	g 1	25	50	1]	100	124	18	- 179.5
Percent recovery is based on t	he spik	e result	. RPD	is based	on the spik	e and sp	ike du	plicate	result			
		MOD			Spile	Ма	+		г	200		חספ
Panam		Rocult	Uni	ta Di		t Ros	uix mlt	Boc	L.	iec. imit	RPD	Limit
		1000000000000000000000000000000000000	0111	$\frac{15}{K\sigma}$ 1	<u>1. Amour</u> 250	11	$\frac{1}{00}$	<u> </u>	18 -	179.5	12	20
	1	1200		· 1 1	(1 1	1	·i i	1	10 -	110.0		
Percent recovery is based on t	he spik	te result	. RPD	is based	on the spik	e and sp	ike du	iplicate	result	•		
	MS	M	SD			S	pike	Ν	1S	MSD		Rec.
Surrogate R	lesult	Re	sult	Units	Dil.	Am	iount	R	ec.	Rec.		Limit
n-Triacontane ^{3 4}	421	4	25	mg/K	g 1	1	.00	4	21	425	34	.1 - 158
гтер Batcn: 43301		MS	QU F	reparati	ion: 2008-0	Spike		Matr	ix	rrep	ared by	. DC Rec.
Param		Resi	ult	Units	Dil.	Amour	nt	Resu	lt	Rec.	L	imit
Benzene		0.99	97	mg/Kg	1	1.00		< 0.00	580	100	62.2	- 134.3
Toluene		1.0	2	mg/Kg	1	1.00		< 0.00	470	102	62.6	- 145.4
Ethylbenzene		1.0	4	mg/Kg	1	1.00		< 0.00	530	104	64.6	- 146.4
Xylene		3.1	4	mg/Kg	1	3.00		< 0.01	.36	104	64.3	- 148.8
Percent recovery is based on t	he spik	e result	. RPD	is based	on the spik	e and sp	ike du	iplicate	result			
		MSD			Snike	Matr	viv		F	lec		RPD
Param	F	Result	Units	Dil.	Amount	Resu	ilt.	Rec.	L	imit	RPD	Limit
Benzene		0.973	mg/K	g 1	1.00	<0.00	580	97	62.2	- 134.3	2	20
Toluene		1.00	mg/K	g 1	1.00	< 0.00	470	100	62.6	- 145.4	2	20
Ethylbenzene		1.03	mg/K	g 1	1.00	< 0.00	530	103	64.6	- 146.4	1	20
Xylene		3.12	mg/K	g 1	3.00	< 0.01	136	104	64.3	- 148.8	1	20
Percent recovery is based on t	he spik	e result	. RPD	is based	on the spik	e and sp	ike du	plicate	result			
		٦.4	C	MCD			C	1	MC	MCD	1	D
Surrogato		Rec	o ult 1	Result	Unite	Dil	Δmo	ke unt	Rec	Rec	ן ד	imit
Triffuorotoluene (TFT)			44	0.922	mø/Kø	1	1	4116	<u>94</u>	92	38.8	- 127 5
4-Bromofluorobenzene (4-BFB	3)	0.9	40	0.920	mg/Kg	1	1		94	92	49.3	- 142.4
³ High surrogate recovery due to ⁴ High surrogate recovery due to	peak intpeak int	terference	e. e.								<u></u>	

TNM LF 2000-07		Worl	к Uraer Bob Du	rham			Monu	ment, L	imper: .ea Coui	nty, NM
Matrix Spike (MS-1) Spike	d Sample: 1	67194								
QC Batch: 50475		Date An	alyzed:	2008-07	-18			Anal	yzed By	: DC
Prep Batch: 43301		QC Prep	paration	ı: 2008-07	-17			Prep	ared By	: DC
	M	5			Spike	Ma	atrix			Rec.
Param	Res	ult 1	Units	Dil.	Amount	Re	sult	Rec.]	Limit
GRO	10.	7 m	1g/Kg	1	10.0	1.2	2023	95	10	- 139.3
Percent recovery is based on the	spike result.	RPD is b	based or	n the spike	and spike d	uplicate	result.			
	MSD			Spike	Matrix		R	ec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Li	mit	RPD	Limit
GRO	11.8	mg/Kg	1	10.0	1.2023	106	10 -	139.3	10	20
Percent recovery is based on the	spike result.	RPD is b	based or	n the spike	and spike d	uplicate	result.			
	MS	5 MS	SD		S	pike	MS	MSI)	Rec.
Surrogate	Rest	ilt Res	sult	Units	Dil. An	nount	Rec.	Rec	•	Limit
Trifluorotoluene (TFT)	1.0	6 1.	05	mg/Kg	1	1	106	105	21	.3 - 119
4-Bromofluorobenzene (4-BFB)	1.1	1 1.	13	mg/Kg	1	1	111	113	52	.5 - 154
QC Batch: 50595 Prep Batch: 43396		Date An	alyzed:	2008-07	7-21 7-21			Analy	yzed By	: DC
-		QO 1 16F	paration	1: 2008-07				riepa	ared by	: DC
-	MS	QU I IEL	paration	1: 2008-07	Spike	Matı	rix	riepa	ared by	: DC Rec.
Param	MS Resu	t U:	nits	Dil.	Spike Amount	Matı Resu	rix 1lt	Rec.	ared by I L	: DC Rec. imit
Param Benzene	MS Resu 5 1.94	lt U:	nits g/Kg		Spike Amount 1.00	Matu Resu	rix 1lt 580	Rec. 194	$\frac{1}{\frac{1}{62.2}}$: DC Rec. imit - 134.3
Param Benzene Toluene	MS Resu ⁵ 1.94 ⁶ 2.00	lt U: l mg	nits g/Kg	Dil. 1 1	Spike Amount 1.00 1.00	Matr Resu <0.00 <0.00	rix ılt 580 470	Rec. 194 200	$\frac{1}{1}$ $\frac{1}{62.2}$ 62.6	: DC Rec. imit - 134.3 - 145.4
Param Benzene Toluene Ethylbenzene	MS Resu ⁵ 1.94 ⁶ 2.00 7 2.07	lt U l mg) mg 7 mg	nits g/Kg g/Kg	Dil. 1 1 1	Spike Amount 1.00 1.00 1.00	Matr Resu <0.00 <0.00 0.04	rix ilt 580 470 47	Rec. 194 200 202	$ \begin{array}{r} I \\ \underline{L} \\ \underline{62.2} \\ 62.6 \\ 64.6 \\ \end{array} $: DC Rec. imit - 134.3 - 145.4 - 146.4
Param Benzene Toluene Ethylbenzene Xylene	MS Resu ⁵ 1.94 ⁶ 2.00 ⁷ 2.07 ⁸ 6.22	lt U: l mg) mg l mg	nits g/Kg g/Kg g/Kg g/Kg	Dil. 1 1 1 1	Spike Amount 1.00 1.00 1.00 3.00	Matu Resu <0.00 <0.00 0.04 0.06	rix 1lt 580 470 47 72	Rec. 194 200 202 205	$ \begin{array}{r} 1 \\ 1 \\ 62.2 \\ 62.6 \\ 64.6 \\ 64.3 \end{array} $: DC Rec. imit - 134.3 - 145.4 - 146.4 - 148.8
Param Benzene Toluene Ethylbenzene Xylene Percent recovery is based on the	MS Resu 5 1.94 6 2.00 7 2.07 8 6.2 spike result.	lt U l mg) mg l mg RPD is l	nits g/Kg g/Kg g/Kg g/Kg g/Kg pased or	Dil. 1 1 1 1 1 1 1 1 1 1 1 1 1	Spike Amount 1.00 1.00 1.00 3.00 and spike d	Matr Resu <0.00 <0.00 0.04 0.06 uplicate	rix 1lt 580 470 470 72 result.	Rec. 194 200 202 205	I 62.2 62.6 64.6 64.3	: DC Rec. imit - 134.3 - 145.4 - 146.4 - 148.8
Param Benzene Toluene Ethylbenzene Xylene Percent recovery is based on the	MS Resu 5 1.94 6 2.00 7 2.07 8 6.21 spike result.	lt U l mg) mg Z mg RPD is h	nits g/Kg g/Kg g/Kg g/Kg oased or	Dil. 1 1 1 1 1 1 1 1 1 1 5 Spike	Spike Amount 1.00 1.00 3.00 and spike d Matrix	Matr Resu <0.00 <0.00 0.04 0.06 uplicate	rix 1lt 580 470 17 72 result. R	Rec. 194 200 202 205 	1 1 62.2 62.6 64.6 64.3	: DC Rec. imit - 134.3 - 145.4 - 146.4 - 148.8 RPD
Param Benzene Toluene Ethylbenzene Xylene Percent recovery is based on the Param	MS Resu 5 1.94 6 2.00 7 2.07 8 6.22 spike result. MSD Result	lt U l mg) mg Z mg RPD is h Units	nits g/Kg g/Kg g/Kg g/Kg based or Dil.	Dil. 1 1 1 1 1 1 1 1 1 1 1 1 1	Spike Amount 1.00 1.00 3.00 and spike d Matrix Result	Mata Resu <0.00 <0.00 0.04 0.06 uplicate Rec.	rix 1lt 580 470 47 72 result. R Li	Rec. 194 200 202 205 ec. mit	I 62.2 62.6 64.6 64.3 RPD	: DC Rec. imit - 134.3 - 145.4 - 146.4 - 148.8 RPD Limit
Param Benzene Toluene Ethylbenzene Xylene Percent recovery is based on the Param Benzene Toluene	$MS \\ Resu \\ 5 \\ 1.94 \\ 6 \\ 2.00 \\ 7 \\ 2.07 \\ 8 \\ 6.27 \\ 8 \\ 6.27 \\ 8 \\ 6.27 \\ 8 \\ 8 \\ 6.27 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 1.12 \\ 0 \\ 1.14 \\ 1.12 \\ 0 \\ 1.14 \\ $	lt U: l mg mg RPD is h Units mg/Kg mg/Kg	nits g/Kg g/Kg g/Kg pased or Dil. 1	Dil. 1 1 1 1 1 1 1 1 1 1 1 1 1	Spike <u>Amount</u> 1.00 1.00 3.00 and spike d Matrix <u>Result</u> <0.00580 <0.00470	MatuResu<0.00<0.000.040.06uplicateRec.112114	rix 1lt 580 470 72 result. R Li 62.2 62.6	Rec. 194 200 202 205 ec. mit - 134.3 145.4	I 62.2 62.6 64.6 64.3 RPD 54 54	: DC Rec. - 134.3 - 145.4 - 146.4 - 148.8 RPD Limit 20 20
Param Benzene Toluene Ethylbenzene Xylene Percent recovery is based on the Param Benzene Toluene Ethylbenzene	$MS \\ Resu \\ \hline 5 \\ 1.94 \\ 6 \\ 2.00 \\ 7 \\ 2.07 \\ 8 \\ 6.21 \\ \hline 7 \\ 2.07 \\ 8 \\ 6.21 \\ \hline 7 \\ 2.07 \\ 8 \\ 6.21 \\ \hline 7 \\ 2.07 \\ 8 \\ 6.21 \\ \hline 7 \\ 2.07 \\ 1.14 \\ \hline 1.18 \\ \hline 1.$	lt U l mg mg RPD is h Units mg/Kg mg/Kg	nits g/Kg g/Kg g/Kg pased or Dil. 1 1	Dil. 1 1 1 1 1 1 1 1 1 1 1 1 1	Spike Amount 1.00 1.00 3.00 and spike d Matrix Result <0.00580 <0.00470 0.047	Matı Resu <0.00 <0.00 0.04 0.06 uplicate Rec. 112 114 113	rix ilt 580 470 72 result. R Li 62.2 62.6 64.6	Rec. 194 200 202 205 ec. mit - 134.3 - 145.4 - 146.4		: DC Rec. - 134.3 - 145.4 - 146.4 - 148.8 RPD Limit 20 20 20
Param Benzene Toluene Ethylbenzene Xylene Percent recovery is based on the Param Benzene Toluene Ethylbenzene Continued	$MS \\ Resu \\ \hline S $	lt U l mg) mg Z mg RPD is h Units mg/Kg mg/Kg	nits g/Kg g/Kg g/Kg based or Dil. 1 1 1	Dil. 1 1 1 1 1 1 1 1 1 1 1 1 1	Spike Amount 1.00 1.00 3.00 and spike d Matrix Result <0.00580 <0.00470 0.047	Matı Resu <0.00 <0.04 0.06 uplicate Rec. 112 114 113	rix 1lt 580 470 72 result. 62.2 62.6 64.6	Rec. 194 200 202 205 ec. mit - 134.3 - 145.4 - 146.4	RPD 54 55 55	: DC Rec. imit - 134.3 - 145.4 - 146.4 - 148.8 RPD Limit 20 20 20 20
Param Benzene Toluene Ethylbenzene Xylene Percent recovery is based on the Param Benzene 9 Toluene 10 Ethylbenzene 11 <i>continued</i>	MS Resu 5 1.94 6 2.00 7 2.07 8 6.22 spike result. MSD Result 1.12 9 1.14 1.18	lt U l mg) mg Z mg RPD is h Units mg/Kg mg/Kg mg/Kg	nits g/Kg g/Kg g/Kg based or Dil. 1 1 1	Dil. 1 1 1 1 1 1 1 1 1 1 1 1 1	Spike Amount 1.00 1.00 3.00 and spike d Matrix Result <0.00580 <0.00470 0.047	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	rix 1lt 580 470 72 result. R Li 62.2 62.6 64.6	Rec. 194 200 202 205 ec. mit - 134.3 - 145.4 - 146.4	1 62.2 62.6 64.6 64.3 <u>RPD</u> 54 55 55	: DC Rec. imit - 134.3 - 145.4 - 148.4 - 148.4 RPD Limit 20 20 20 20

⁸Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control.

⁹MS/MSD RPD out of RPD Limits. Use LCS/LCSD to demonstrate analysis is under control.

¹⁰MS/MSD RPD out of RPD Limits. Use LCS/LCSD to demonstrate analysis is under control. ¹¹MS/MSD RPD out of RPD Limits. Use LCS/LCSD to demonstrate analysis is under control.

0

Report Da TNM LF 2	te: July 23, 20 000-07	08			ork Ord Bob E	er: 8071628 urham			N	Page Ionument	Number: , Lea Cou	28 of 31 inty, NM
matrix spik	es continued	•••				a 11				7		222
D			MSD	TT • /	D :1	Spike	Ma	trix		Rec.	חחמ	RPD
Param		19	Result	Units	Dil.	Amount	Re	sult Re	$\frac{c}{c}$	Limit	RPD	Limit
<u>Xylene</u>			3.54	mg/K	g I	3.00	0.0	672 11	.0 0	4.3 - 148.8	5 55	20
Percent rec	overy is based	on the spil	ke result.	RPD i	s based	on the spike	e and s	pike duplic	ate re	sult.		
			MS	5 N	MSD			Snike	М	S MS	D	Bec.
Surrogate			Resu	ılt. R	esult	Units	Dil.	Amount	Re	ec. Ree		Limit
Trifluorotol	uene (TFT)		0.94	1 0	0.879	mg/Kg	1	1	9	4 88	38.8	3 - 127.5
4-Bromoflu	orobenzene (4-	BFB)	0.97	7 0).904	mg/Kg	1	1	9	8 90	49.3	3 - 142.4
QC Batch: Prep Batch	ыке (MS-1) 50597 : 43396	Spiked S	ample: 1	Date A QC Pi	Analyzeo reparatio	l: 2008-0 on: 2008-0	7-21 7-21			Ar Pr	alyzed B epared B	y: DC y: DC
D.			M	IS	TT 14.	D:1	S	pike	Matri	x		Rec.
Param		13	Res	sult	Units		Ar	nount	Resul	lt Re	<u></u>	$\frac{\text{Limit}}{120.2}$
<u>nu</u>			10	DDD 1	mg/Kg	<u>, 1</u>	······································	., , ,	<0.73			- 139.3
Percent rec	overy is based	on the spil	ke result.	RPD is	s based	on the spike	e and s	pike duplic	< 0.73	sult.) - 159.5
Percent rec	overy is based	on the spil	ke result. MSD	RPD is	s based	on the spike	e and s	pike duplic atrix	<0.73	sult. Rec.		RPD
Percent rec Param	overy is based	on the spil	xe result. MSD Result	RPD is	mg/Kg s based : s Di	on the spike Spike . Amour	e and s M nt R	pike duplic latrix esult R	< 0.73	sult. Rec. Limit	RPD	RPD Limit
Percent rec Param GRO	overy is based	on the spil	MSD Result 22.3	RPD is Unit	mg/Kgs based s based s Di	n the spike Spike . Amour 10.0	e and s M nt R <	pike duplic latrix esult R 0.739 2	<0.73 ate res ec. 23	sult. Rec. Limit 10 - 139.3	$\frac{\text{RPD}}{20}$	RPD Limit 20
Percent rec Param GRO Percent rec	overy is based	on the spil	MSD Result 22.3 ke result.	RPD is Unit mg/F RPD is	$\frac{mg/Kg}{s based}$	n the spike Spike Amour 10.0 on the spike	e and s M at R < e and s	pike duplic latrix esult R 0.739 2 pike duplic	ec. 23 23	sult. Rec. Limit 10 - 139.3 sult.	$\frac{\text{RPD}}{20}$	RPD Limit 20
Percent rec Param GRO Percent rec	overy is based	on the spil	MSD Result 22.3 ke result.	RPD is Unit mg/H RPD is	$\frac{mg/Kg}{s \text{ based}}$	on the spike Spike Amour 10.0 on the spike	e and s M at R < e and s	pike duplic latrix esult R 0.739 2 pike duplic	<0.73 eate res ec. 23 eate res	Rec. Limit 10 - 139.3 sult.	$\frac{\text{RPD}}{20}$	RPD Limit 20
Percent rec Param GRO Percent rec	overy is based	on the spil	MSD Result 22.3 ke result. MS	RPD is Unit mg/H RPD is	$\frac{mg/Kg}{s based}$	on the spike Spike . Amour 10.0 on the spike	e and s M at R e and s E and s	pike duplic latrix esult R 0.739 2 pike duplic Spike	ec. 23 cate res	sult. Rec. Limit 10 - 139.3 sult. MS M	RPD 20 SD	RPD Limit 20 Rec.
Percent rec Param GRO Percent rec Surrogate	overy is based	on the spil	A result. MSD Result 22.3 A result. MS Resu	RPD is Unit mg/F RPD is S ult F	$\frac{mg/Kg}{s based}$	5 1 on the spike Spike . Amour 10.0 on the spike Units	e and s M at R e and s Dil.	pike duplic latrix esult R 0.739 2 pike duplic Spike Amoun	<pre><c. 23="" co<="" control="" td=""><td>sult. Rec. Limit 10 - 139.3 sult. MS M Rec. R</td><td>$\frac{\text{RPD}}{20}$ SD ec.</td><td>RPD Limit 20 Rec. Limit</td></c.></pre>	sult. Rec. Limit 10 - 139.3 sult. MS M Rec. R	$\frac{\text{RPD}}{20}$ SD ec.	RPD Limit 20 Rec. Limit
Percent rec Param GRO Percent rec Surrogate Trifluorotol	overy is based overy is based uene (TFT)	on the spil	MSD Result 22.3 Ke result. MS Result 1.1	RPD in Unit mg/F RPD in S 1 alt F 0	$\frac{mg/Kg}{s based}$ s based is based in the second	5 1 on the spike Spike . Amour 10.0 on the spike Units mg/Kg	e and s M t R e and s Dil. 1	pike duplic latrix esult R 0.739 2: pike duplic Spike Amoun 1	<pre><c. 23="" cate="" re:="" re:<="" td=""><td>$\begin{array}{c} \text{sult.} \\ \text{Rec.} \\ \text{Limit} \\ \hline 10 - 139.3 \\ \text{sult.} \\ \text{MS} \\ \text{MS} \\ \text{MS} \\ \text{Rec.} \\ R \\ \hline 110 \\ 1 \\ 17 \\ 1 \end{array}$</td><td>$\frac{\text{RPD}}{20}$ SD ec. 10 22</td><td>RPD Limit 20 Rec. Limit 1.3 - 119</td></c.></pre>	$\begin{array}{c} \text{sult.} \\ \text{Rec.} \\ \text{Limit} \\ \hline 10 - 139.3 \\ \text{sult.} \\ \text{MS} \\ \text{MS} \\ \text{MS} \\ \text{Rec.} \\ R \\ \hline 110 \\ 1 \\ 17 \\ 1 \end{array}$	$\frac{\text{RPD}}{20}$ SD ec. 10 22	RPD Limit 20 Rec. Limit 1.3 - 119
Percent rec Param GRO Percent rec Surrogate Trifluorotol 4-Bromoflu	overy is based overy is based uene (TFT) orobenzene (4-	on the spil 14 on the spil BFB)	Ke result. MSD Result 22.3 Ke result. MS Resu 1.1 1.1	RPD in Unit mg/H RPD in S alt H 0 7	mg/Kg s based S Di Kg 1 s based MSD Result 1.10 1.16	n the spike Spike Amour 10.0 on the spike Units mg/Kg mg/Kg	e and s M t R < e and s Dil. 1	pike duplic fatrix esult R 0.739 2 pike duplic Spike Amoun 1 1	<pre>c.c. 23 it Fe it Fe</pre>	sult. Rec. Limit 10 - 139.3 sult. MS M Rec. R 10 1 110 1	RPD 20 SD ec. 10 2 16 5	RPD Limit 20 Rec. Limit 1.3 - 119 2.5 - 154
Percent rec Param GRO Percent rec Surrogate Trifluorotol 4-Bromoflu Standard	overy is based overy is based uene (TFT) orobenzene (4- (ICV-1)	on the spil 14 on the spil BFB)	xe result. MSD Result 22.3 xe result. MS Ress 1.1 1.1	RPD in Unit mg/H RPD in S alt H 0 7	mg/Kg s based b Ss Di Kg 1 s based b MSD Result 1.10 1.16	5 I on the spike Spike . Amour 10.0 on the spike Units mg/Kg mg/Kg	e and s M e and s e and s Dil. 1	pike duplic latrix esult R 0.739 2 pike duplic Spike Amoun 1 1	<pre>c. cate res cate</pre>	sult. Rec. Limit 10 - 139.3 sult. MS M Rec. R 110 1 117 1	RPD 20 SD ec. 10 2: 16 5:	RPD Limit 20 Rec. Limit 1.3 - 119 2.5 - 154
Percent rec Param GRO Percent rec Surrogate Trifluorotol 4-Bromoflu Standard QC Batch:	overy is based overy is based uene (TFT) orobenzene (4- (ICV-1) 50434	on the spil	xe result. MSD Result 22.3 xe result. MS Resu 1.1 1.1	RPD is Unit mg/H RPD is Sult F 0 7 Date A	mg/Kg s based S Di Kg 1 s based MSD Result 1.10 1.16	in the spike Spike Amour 10.0 on the spike Units mg/Kg mg/Kg	e and s Mat R < e and s Dil. 1 1	pike duplic fatrix esult R 0.739 2 pike duplic Spike Amoun 1 1	<0.73 eate researcher	sult. Rec. Limit 10 - 139.3 sult. MS M Rec. R 110 1 117 1	RPD 20 SD ec. 10 2: 16 5: nalyzed B	RPD Limit 20 Rec. Limit 1.3 - 119 2.5 - 154 y: LD
Percent rec Param GRO Percent rec Surrogate Trifluorotol 4-Bromoflu Standard QC Batch:	overy is based overy is based uene (TFT) orobenzene (4- (ICV-1) 50434	on the spil	xe result. MSD Result 22.3 xe result. MS Resu 1.1 1.1	RPD is Unit mg/H RPD is Content Unit RPD is Content Date A ICVs	mg/Kg s based b Ss Di Kg 1 s based b MSD Result 1.10 1.16	5 I on the spike Spike . Amour 10.0 on the spike Units mg/Kg mg/Kg d: 2008-07 ICVs	e and s M t R < e and s Dil. 1 1	pike duplic latrix esult R 0.739 2 pike duplic Spike Amoun 1 1	<0.73 ate researched for the second s	$\frac{10}{10} + \frac{10}{10} + 10$	RPD 20 SD ec. 10 2: 16 5: nalyzed B	RPD Limit 20 Rec. Limit 1.3 - 119 2.5 - 154 y: LD
Percent rec Param GRO Percent rec Surrogate Trifluorotol 4-Bromoflu Standard QC Batch:	overy is based overy is based uene (TFT) orobenzene (4- (ICV-1) 50434	on the spil	xe result. MSD Result 22.3 xe result. MS Resu 1.1 1.1	RPD is Unit mg/H RPD is Content O 7 Date A ICVs True	mg/Kg s based f s based f s based f MSD Result 1.10 1.16	5 I 5 Spike Spike . Amour 10.0 5 On the spike Units mg/Kg mg/Kg 10 Mag/Kg 10 M	e and s Mat R e and s Dil. 1 1 -17 I4 Pe	pike duplic [atrix esult R 0.739 2 pike duplic Spike Amoun 1 1 CVs rcent	<0.73 ate researched for the second s	$\frac{10}{10} = \frac{10}{10}$ sult. $\frac{10}{10} = 139.3$ sult. $\frac{10}{10} = 1$ $\frac{10}{117} = 1$ $\frac{117}{117} = 1$ Percent ecovery	RPD 20 SD ec. 10 2 16 5 halyzed B	RPD Limit 20 Rec. Limit 1.3 - 119 2.5 - 154 y: LD Date
Percent rec Param GRO Percent rec Surrogate Trifluorotol 4-Bromoflu Standard QC Batch: Param	overy is based overy is based uene (TFT) orobenzene (4- (ICV-1) 50434 Flag	on the spil 14 on the spil BFB) Units	xe result. MSD Result 22.3 xe result. MS Resu 1.1 1.1	RPD is Unit mg/F RPD is Salt F 0 7 Date A ICVs True Conc.	$\frac{mg/Rg}{s based}$ s based of the second s	5 I on the spike Spike . Amour 10.0 on the spike Units mg/Kg mg/Kg H: 2008-07 ICVs Found Conc.	e and s Mat R e and s e and s Dil. 1 1 1 1 1 1 References	pike duplic fatrix esult R 0.739 2 pike duplic Spike Amoun 1 1 1	<pre><c. co.="" co.<="" td=""><td>sult. Rec. Limit 10 - 139.3 sult. MS M Rec. R 110 1 117 1 Ar Percent ecovery Limits</td><td>RPD 20 SD ec. 10 2 16 5 halyzed B</td><td>RPD Limit 20 Rec. Limit 1.3 - 119 2.5 - 154 y: LD Date nalyzed</td></c.></pre>	sult. Rec. Limit 10 - 139.3 sult. MS M Rec. R 110 1 117 1 Ar Percent ecovery Limits	RPD 20 SD ec. 10 2 16 5 halyzed B	RPD Limit 20 Rec. Limit 1.3 - 119 2.5 - 154 y: LD Date nalyzed

¹²MS/MSD RPD out of RPD Limits. Use LCS/LCSD to demonstrate analysis is under control.

÷f) 0 Ø 6 B 6

6) 6)

() ()

0

0 F

¹³Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control. ¹⁴Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control.

Units mg/Kg Units mg/Kg	Date Analy CCVs True Conc. 250 Date Analy CCVs True Conc. 250 Date Analy	yzed: 2008-07 CCVs Found Conc. 238 yzed: 2008-07 CCVs Found Conc. 236	-17 CCVs Percent Recovery 95 -17 -17 CCVs Percent Recovery 94	Anal Percent Recovery Limits 85 - 115 Anal Percent Recovery Limits 85 - 115	yzed By: LD Date Analyzed 2008-07-17 yzed By: LD Date Analyzed 2008-07-17
Units mg/Kg Units mg/Kg	Date Analy CCVs True Conc. 250 Date Analy CCVs True Conc. 250 Date Analy	yzed: 2008-07 CCVs Found Conc. 238 yzed: 2008-07 CCVs Found Conc. 236	-17 CCVs Percent Recovery 95 -17 -17 CCVs Percent Recovery 94	Anal Percent Recovery Limits 85 - 115 Anal Percent Recovery Limits 85 - 115	yzed By: LD Date Analyzed 2008-07-17 yzed By: LD Date Analyzed 2008-07-17
Units mg/Kg Units mg/Kg	CCVs True Conc. 250 Date Analy CCVs True Conc. 250 Date Analy	CCVs Found Conc. 238 yzed: 2008-07 CCVs Found Conc. 236	CCVs Percent Recovery 95 -17 -17 CCVs Percent Recovery 94	Percent Recovery Limits 85 - 115 Anal Percent Recovery Limits 85 - 115	Date Analyzed 2008-07-17 yzed By: LD Date Analyzed 2008-07-17
Units mg/Kg	250 Date Analy CCVs True Conc. 250 Date Analy	238 yzed: 2008-07- CCVs Found Conc. 236	95 -17 CCVs Percent Recovery 94	85 - 115 Anal Percent Recovery Limits 85 - 115	2008-07-17 yzed By: LD Date Analyzed 2008-07-17
Units mg/Kg	Date Analy CCVs True Conc. 250 Date Analy	yzed: 2008-07- CCVs Found Conc. 236	-17 CCVs Percent Recovery 94	Anal Percent Recovery Limits 85 - 115	yzed By: LD Date Analyzed 2008-07-17
Units mg/Kg	Date Analy CCVs True Conc. 250 Date Analy	yzed: 2008-07 CCVs Found Conc. 236	-17 CCVs Percent Recovery 94	Anal Percent Recovery Limits 85 - 115	Date Analyzed 2008-07-17
Units mg/Kg	CCVs True Conc. 250 Date Analy	CCVs Found Conc. 236	CCVs Percent Recovery 94	Percent Recovery Limits 85 - 115	Date Analyzed 2008-07-17
Units mg/Kg	Conc. 250 Date Analy	Conc. 236	Recovery 94	Limits 85 - 115	Analyzed 2008-07-17
mg/Kg	250 Date Analy	236	94	85 - 115	2008-07-17
	Date Analy				
	CCVs	yzed: 2008-07- CCVs	-17 CCVs	Anal Percent	yzed By: LD
	True	Found	Percent	Recovery	Date
Units	Conc.	Conc.	Recovery	Limits	Analyzed
mg/Kg	250	244	98	85 - 115	2008-07-17
	Date Analy	yzed: 2008-07-	-18	Analy	yzed By: DC
	ICVs True	ICVs Found	ICVs Percent	Percent Recovery	Date
Units	Conc.	Conc.	Recovery	Limits	Analyzed
mg/Kg	0.100	0.0951	95	85 - 115	2008-07-18
mg/Kg	0.100	0.0960	90 05	85 - 115 85 - 115	2008-07-18
mg/Ng mg/Kg	0.100	0.0949	90 95	00 - 110 85 - 115	2008-07-18
	Units mg/Kg mg/Kg mg/Kg	ICVs True Units Conc. mg/Kg 0.100 mg/Kg 0.100 mg/Kg 0.300	ICVs ICVs True Found Units Conc. Mg/Kg 0.100 0.0951 mg/Kg 0.100 0.0960 mg/Kg 0.100 0.0949 mg/Kg 0.300 0.285	ICVs ICVs ICVs True Found Percent Units Conc. Conc. Recovery mg/Kg 0.100 0.0951 95 mg/Kg 0.100 0.0960 96 mg/Kg 0.100 0.0949 95 mg/Kg 0.300 0.285 95	ICVs ICVs ICVs Percent True Found Percent Recovery Units Conc. Conc. Recovery Limits mg/Kg 0.100 0.0951 95 85 - 115 mg/Kg 0.100 0.0949 96 85 - 115 mg/Kg 0.100 0.0949 95 85 - 115 mg/Kg 0.300 0.285 95 85 - 115

QC Batch: 50474

9 • P 0 . • 9 •

•

Date Analyzed: 2008-07-18

Analyzed By: DC

TNM LF 2	te: July 23, 2008 000-07	8	Work (Bo	Drder: 8071628 b Durham		Page N Monument, L	umber: 30 of 31 Jea County, NM
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Benzene	<u>`</u>	mg/Kg	0.100	0.0920	92	85 - 115	2008-07-18
Toluene		mg/Kg	0.100	0.0927	93	85 - 115	2008-07-18
Ethylbenzer	ne	mg/Kg	0.100	0.0912	91	85 - 115	2008-07-18
Xylene		mg/Kg	0.300	0.274	91	85 - 115	2008-07-18
Standard	(ICV-1)						
QC Batch:	50475		Date Analy	/zed: 2008-07-	-18	Anal	yzed By: DC
			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analvzed
GRO	0	mg/Kg	1.00	1.08	108	85 - 115	2008-07-18
Standard QC Batch:	(CCV-1) 50475		Date Analy	vzed: 2008-07-	-18	Anal	yzed By: DC
Standard QC Batch:	(CCV-1) 50475		Date Analy CCVs	/zed: 2008-07- CCVs	-18 CCVs	Anal Percent	yzed By: DC
Standard QC Batch:	(CCV-1) 50475		Date Analy CCVs True	zed: 2008-07- CCVs Found	-18 CCVs Percent	Anal Percent Recovery	yzed By: DC Date
Standard QC Batch: Param	(CCV-1) 50475 Flag	Units	Date Analy CCVs True Conc.	zed: 2008-07- CCVs Found Conc.	-18 CCVs Percent Recovery	Anal Percent Recovery Limits	yzed By: DC Date Analyzed
Standard QC Batch: Param GRO	(CCV-1) 50475 Flag	Units mg/Kg	Date Analy CCVs True Conc. 1.00	zed: 2008-07- CCVs Found Conc. 1.15	-18 CCVs Percent Recovery 115	Anal Percent Recovery Limits 85 - 115	yzed By: DC Date Analyzed 2008-07-18
Standard QC Batch: Param GRO Standard	(CCV-1) 50475 Flag (ICV-1)	Units mg/Kg	Date Analy CCVs True Conc. 1.00	zed: 2008-07- CCVs Found Conc. 1.15	-18 CCVs Percent Recovery 115	Anal Percent Recovery Limits 85 - 115	yzed By: DC Date Analyzed 2008-07-18
Standard QC Batch: Param GRO Standard QC Batch:	(CCV-1) 50475 Flag (ICV-1) 50595	Units mg/Kg	Date Analy CCVs True Conc. 1.00 Date Analy	/zed: 2008-07- CCVs Found Conc. 1.15 //zed: 2008-07-	-18 CCVs Percent Recovery 115	Anal Percent Recovery Limits 85 - 115 Anal	yzed By: DC Date Analyzed 2008-07-18 yzed By: DC
Standard QC Batch: Param GRO Standard QC Batch:	(CCV-1) 50475 Flag (ICV-1) 50595	Units mg/Kg	Date Analy CCVs True Conc. 1.00 Date Analy ICVs	/zed: 2008-07- CCVs Found Conc. 1.15 /zed: 2008-07- ICVs	-18 CCVs Percent Recovery 115 -21 ICVs	Anal Percent Recovery Limits 85 - 115 Anal Percent	yzed By: DC Date <u>Analyzed</u> 2008-07-18 yzed By: DC
Standard QC Batch: Param GRO Standard QC Batch:	(CCV-1) 50475 Flag (ICV-1) 50595	Units mg/Kg	Date Analy CCVs True Conc. 1.00 Date Analy ICVs True	vzed: 2008-07- CCVs Found Conc. 1.15 vzed: 2008-07- ICVs Found	-18 CCVs Percent Recovery 115 -21 -21 ICVs Percent	Anal Percent Recovery Limits 85 - 115 Anal Percent Recovery	yzed By: DC Date Analyzed 2008-07-18 yzed By: DC Date
Standard QC Batch: Param GRO Standard QC Batch: Param	(CCV-1) 50475 Flag (ICV-1) 50595 Flag	Units mg/Kg Units	Date Analy CCVs True Conc. 1.00 Date Analy ICVs True Conc.	vzed: 2008-07- CCVs Found Conc. 1.15 vzed: 2008-07- ICVs Found Conc.	-18 CCVs Percent Recovery 115 -21 -21 ICVs Percent Recovery	Anal Percent Recovery Limits 85 - 115 Anal Percent Recovery Limits	yzed By: DC Date Analyzed 2008-07-18 yzed By: DC Date Analyzed
Standard QC Batch: Param GRO Standard QC Batch: Param Benzene	(CCV-1) 50475 Flag (ICV-1) 50595 Flag	Units mg/Kg Units mg/Kg	Date Analy CCVs True Conc. 1.00 Date Analy ICVs True Conc. 0.100	vzed: 2008-07- CCVs Found Conc. 1.15 vzed: 2008-07- ICVs Found Conc. 0.0971	-18 CCVs Percent Recovery 115 -21 -21 -21 -21 -21 -21 -21 -21 -21 -21	Anal Percent Recovery Limits 85 - 115 Anal Percent Recovery Limits 85 - 115	yzed By: DC Date Analyzed 2008-07-18 yzed By: DC Date Analyzed 2008-07-21
Standard QC Batch: Param GRO Standard QC Batch: Param Benzene Toluene	(CCV-1) 50475 Flag (ICV-1) 50595 Flag	Units mg/Kg Units mg/Kg mg/Kg	Date Analy CCVs True Conc. 1.00 Date Analy ICVs True Conc. 0.100 0.100	 2008-07- CCVs Found Conc. 1.15 zed: 2008-07- ICVs Found Conc. 0.0971 0.0978 	-18 CCVs Percent Recovery 115 -21 -21 -21 -21 -21 -21 -21 -21 -21 -21	Anal Percent Recovery Limits 85 - 115 Anal Percent Recovery Limits 85 - 115 85 - 115	yzed By: DC Date Analyzed 2008-07-18 yzed By: DC Date Analyzed 2008-07-21 2008-07-21
Standard QC Batch: Param GRO Standard QC Batch: Param Benzene Toluene Ethylbenzer	(CCV-1) 50475 Flag (ICV-1) 50595 Flag	Units mg/Kg Units mg/Kg mg/Kg mg/Kg	Date Analy CCVs True Conc. 1.00 Date Analy ICVs True Conc. 0.100 0.100 0.100	 zed: 2008-07- CCVs Found Conc. 1.15 zed: 2008-07- ICVs Found Conc. 0.0971 0.0978 0.0973 	-18 CCVs Percent Recovery 115 -21 -21 -21 ICVs Percent Recovery 97 98 97	Anal Percent Recovery Limits 85 - 115 Anal Percent Recovery Limits 85 - 115 85 - 115 85 - 115 85 - 115	yzed By: DC Date Analyzed 2008-07-18 yzed By: DC Date Analyzed 2008-07-21 2008-07-21 2008-07-21

Standard (CCV-1)

0

•

0 0

•

QC Batch: 50595

Date Analyzed: 2008-07-21

Analyzed By: DC

Report Date: Ju TNM LF 2000-0	uly 23, 2008 07		Work (Bo	Order: 8071628 b Durham	Page Number: 31 of 31 Monument, Lea County, NM		
Power	Flor	Unite	CCVs True Conc	CCVs Found	CCVs Percent Bosovery	Percent Recovery	Date
Param Bongono	r lag	mg/Kg	0.100	0.0025		85 115	2008-07-21
Toluene		mg/Kg	0.100	0.0925	92 94	85 - 115	2008-07-21
Ethylbenzene		mg/Kg	0.100	0.0928	93	85 - 115	2008-07-21
Xylene		mg/Kg	0.300	0.280	93	85 - 115	2008-07-21
Standard (ICV QC Batch: 505	V-1) 997		Date Analy	vzed: 2008-07-	-21	Anal	yzed By: DC
			ICVs True	ICVs Found	ICVs Percent	Percent Recovery	Date

Standard	(CCV-1)
Stanuaru	(00 - 1)

Flag

 $\frac{Param}{GRO}$

Units mg/Kg

Conc.

1.00

QC Batch:	50597		Date Ana	alyzed: 2008-0	Anal	Analyzed By: DC						
			CCVs True	CCVs Found	CCVs Percent	Percent Becovery	Date					
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed					
GRO		mg/Kg	1.00	1.14	114	85 - 115	2008-07-21					

Conc.

1.12

Recovery

112

Limits

85 - 115

Analyzed

2008-07-21

0

Bowie Blvd. West, Suite 180 Worth, Faxas 76116 al (817) 201-5260 x (817) 560-4335				ומפול	nste m	nt fron	liffere	b îi ə		bnuorA mu1	-											a second	 52	0	
108 Camp 1 Ft v Fa		JEST ethod						1	uətru. H	BOD, TSS, p Moisture Cor												J	sis Require	Required al Reportin, ded	
2 2		IF M	••••••••••••••••••••••••••••••••••••••				8(09/V 8	/180	PCB's 8082 /	 		-			 					4		Veight Ba	Report I k If Specie Are Need	
unset Rd., Sui 1, Texas 7992 15) 585-3443 15) 585-4944	8) 588-3443	NALYSIS or Spec				929 /	20C 954	91.82	səb 826(TCLP Pestici BC/MS Vol. 8 BC/MS Vol. 8	· · · · · · · · · · · · · · · · · · ·										REMARKS:			Cheol	
200 East S EI Paso Tel (9' Fax (9	1 (88	Circle c		6 _F		Cr Pr	b) 68	A sa B selut	gA se slov	TCLP Semi Actilie												- 2	Ş		
t, Suite A1 s 79703 H6301 9-6313))	- -	2 UUC/AL	EC)tx3	ΛΗC 102 Ε		ני כי פ אם א ו טא	1X1 102 102	1014 418.1 / PAH 8270C / IO141 8270C /	×	×	×	X	×	Х	X	×	X			NO		8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. ۲ ر ۲
asin Street Ind, Texa: (432) 689 (432) 689		····	_		54 254	8 / 80 8 / 80	8260	205 / 1 605		MTBE 8021	≫	\times	\times	\succ	×	X	X	X	Х		mp°c:	<u> </u>	np ĉ	mp°c:	-
5002 Ba Midla Tel Fax				2.0						BMIT	1/10/	1001	1013	1036	6201	SHal	1201	2011	108/108		me: Ter	1155	ne: Tei	me: Tei	
enue, Suite 5 as 79424 t-1296 4-1298	-1296			יין א			Y		5 <u>.</u> 	DATE	111-		/					$\langle $	1/14	· · · ·	. <u>Ti</u>	20/9//	té: TI	te: Ti	
berdeen Avi bbock, Texi Tel (806) 79- ax (806) 79-	1 (800) 378	0712		novati			iture:	SERVATIVI	IETHOD		×	X	X	×	X	×	×	×	×		y: Dat	THACE	ıy: Dai	ly: Dal	
6701 A Lu		one #: 5 2 0 -	:#)	ille @		Ject Name:	npley Signs	PRE		H ² SO ² HNO ³ HCI											Compan	JULY 1	Compan	Compan	erse side o
lnc.	ī	H32-	rax	E-II LYOUNSA		Bab Due	P D Ban	MATRIX		MATER SOIL AIR EEUDGE	×	X	X	X	X	×	×	×	×		Received by:	Helendhe	Received by:	Received by:	tions listed on rev
/SiS,]	alysis.com				2			1 L	inou SA3	MIATNOO # Volume / Am	1 402	-		-	1 /				~	•	Time:	-5-511	Time:	Time:	us and Condit
na ly	Otracean	Env.		carille	Zrit	40	NAN.				۲'	<i>`o</i>	ī	<u>``</u>	,0,	15'	۲,	10	, <i>ک</i> ز		Date:	7/16/08	Date:	Date:	ment to Terr
aceA	email: lab	1014	ty, zipj	Kours	PL4.	-000-	g state):			ELD CODE	4-2	1-6	141	47	9-1	14-	4-	6-1	14-		impany:		ompany:	ompany:	titutes agree
		18: (Stroot Ci	loureer, ci	n: Pon	im above)	1 45 2	on (includin			Ē	R-S.	2-8:	8-5	8-6	8-6	8-6	18-7	8-7,	6-7		py: Cc	Jen J	py: CC	by: Cc	amples const
	N.	mpany Nan Aracs	nieso.	ntact Perso	oice to: different fro	oject #: T/V/A	oject Locati			AB# BUSE) NLY	2 19/19	5 C}	1925	N HE	195	1916 S	1977 5	198 S	199 S	H.	linguished		linguished	linquished	omittal of se

180								рюн		 											<u></u>	
t, Suite		וקפנק 	nsiz r	noni tro	ere liffere	b li ən	niT bru	oiA niuT	-													
d. West as 761 1-5260 10-4336									-										ľ			
h, Tex h, Tex 17) 20	0.)																┦╌┥		J			ŀ
P Bow Tel (8 Fax (8	2 D												<u> </u>						J	ared	ting	
E C B C B	tho					ţu	ietroO s	Moisture								<u> </u>			~	s Requ	quìred Repor d	
880	Me				80	09 / VI	1808 se Ha Sa	Pesticide PC D08	+										R	t Basis	ort Re pecial Neede	
μ. 2 Π	S R			679 /	20/2	80 /01 [.] 87	097 / 60	PCB's 8(B	Weigh	tP Rep ck If S ts Are	
Rd. S 5-343 5-494	YSI:				924	/ 809		SW/20											ARKS C	δ	TRR Chei Limia	
unset l , Texa 15) 58t 15) 58 8) 588	NAL S	····				Si	esticide	RCI RCLP P	-	-									S REAL			
East Si I Paso Tel (9' Fax (9 1 (88)	A O					səlits	samero IoV ima	TCLP Se												ϵ		
200 E	C.	6	H 92 0	Cr Pb	၁၃ ၉၉	3 sA g	etals Ag												ш У У	S Z		
A1	<u> </u>	7.002/80	0109 8	H 92 d	d Cr F	26 25	20 / 207 2A DA ele	728 HA9 Total MetoT												N X X		, I
Suite , 79703 3301 6313					10	80/C	IS GRC	08 Hal	×	\sim	\times	\times	\times	\times					ςγ Ι			$\overline{\boldsymbol{\zeta}}$
Street, Texas (689-6) 689-1	-	(9)	4	29 / 81 E \ 62	8260	1 2001)	(81208)	8 X318	>><	\times	X	X	X	\times		_				ni≘ni≆ (;;		
3asin 9 land, 1 el (432 ix (432			254	9 / 809 T	28/3	209 / 1 	81208	ATBE				$\overline{\mathbf{A}}$	ł					a	ogue ≪	dua	o dme	
5002 f Mid Fa		ļ				LING		TIME		1118	1112	1135	1130	141				}	r Y		۳ ۲	
ത			4			AMP		a i Au	108					1/08		_			ime:	ime:	ime:	
. Suite 9424 96 98		1	ľ		à	ļ			Ē										الم			
venue xas 79 94-129 94-129 8-129	0	ja,						ANON							_	_			ate:	ate:	ate:	
teen A ck, Te 806) 7 806) 7 806) 7 806) 7	172	Vat			V_{ii}	NATIN HOD	3	ICE	\times	χ	Х	X	\times	\times				'	A LT D	ă	ă	0
I Aber Lubbo Tel (Fax (1 (8	10	4		:9	E	ESEF		⁷ OS ² H											in t	any:	any:	ofC
670	N N W			t Nam	er Sig	R		^E ONH												dwo	dmo	ie side
	hone Z - ax #:	-mail		hojec	anna	\	-	IJH										- `	$-\frac{1}{3}$			revers
	43	JS/		13		RIX	Э	SLUDG												l by:	l by:	u o
J J		00.0	a.	5	Z	MAT	-	BIB 80IF	5	*	<u>بر</u>	×	\star	×				_		ceived	ceive	is liste
		5		Bel	J.	<u> </u>	2	A J TAW											<u>ه</u>	Re.	Re	dition
is.co						jun	nomA \ :	əmuloV	402	-	\leq		\leq	~					ie 5	me:	me:	d Cor
V S I						55	RENIAT	# CON.	~	~	-	-	-	-				F	- 1	F	F	ms an
		11/2			•													;	05 05	te:	te:	to Ten
@tra	VV.	Ą	N.	1×						ò	3		_	Ś		l.		ľ	16/ 16/	Da	Da	ment
CA : lab(Ŵ	3	Z	1	<u>н</u>		DE		4-	5-17	4-1.	2-1-2	01-	1-1-					ي ج			agreei
mail	K (d) Z	\otimes	X.	000	state) 27		с С С		1		シ	•	5-							npan	luedu	utes a
	UDV t. city	00	ê	22	guibu S		FIEI		5	M	·m	by to	ارم	5					g N	မီ	Co	constit
	Stree		abovi	1	(inclu				3-5	3	3 - 8	S	~	37					in Y		13	ples c
	ame:	:uosı	from	Z	, ation		A 11 A 7/7		Ś	งั	Sc	3	S	S				ية 1		led by	led by	f sam
	oany ¹ 35S:	act Pe	ce to: ferent	H [#]	<u>a</u> f		*	USE) EY	00C	R	фо С	202	noj	50]						quist	quist	littal o
	Com	Conta	lnvoi (If dif	Proje	Proje Z		S	AB NO	No7				9	Î						Relin	Relin	Subr