# **1RP-1728**

4th Quarter 2008 Groundwater Monitoring

# Work Plan

# DATE: 02.17.09



DCP Midstream 370 17<sup>th</sup> Street, Suite 2500 Denver, CO 80202 303-595-3334

2009 FEB 19 PM 12 03

February 17, 2009

Mr. Wayne Price Environmental Bureau Chief New Mexico Oil Conservation Division 1220 S. St. Francis Dr. Santa Fe, NM 87505

#### RE: 4th Quarter 2008 Groundwater Monitoring Results DCP Midstream, LP J-4-2 Pipeline Release (1RP-1728) Unit C, Section 27, Township 19 South, Range 35 East Lea County, New Mexico

Dear Mr. Price:

DCP Midstream, LP (DCP) is pleased to submit for your review, a copy of the 4th Quarter 2008 Groundwater Monitoring Results for the DCP J-4-2 Pipeline Release located in Lea County, New Mexico (Unit C, Section 27, Township 19 South, Range 35 East).

If you have any questions regarding the report, please call at 303-605-1718 or e-mail me <u>swweathers@dcpmidstream.com</u>.

Sincerely

**DCP** Midstream, LP

Stephen Weathers, PG Principal Environmental Specialist

cc: Larry Johnson, OCD Hobbs District Office (Copy on CD) Environmental Files February 6, 2009

Mr. Stephen Weathers DCP Midstream, LP 370 17<sup>th</sup> Street, Suite 2500 Denver, CO 80202

# Re: Summary of the Fourth Quarter 2008 Groundwater Monitoring Results for the DCP J-4-2 Pipeline Release in Lea County New Mexico (1RP-1728) Unit C, Section 27 Township 19 South, Range 35 East

Dear Mr. Weathers:

This report summarizes the fourth quarter 2008 groundwater monitoring activities completed at the J-4-2 release location for DCP Midstream, LP. The site is located in the northeastern quarter of the northwestern quarter (Unit C) of Section 27, Township 19 South, Range 35 East approximately 3 miles south of the of intersection of US Highway 82 and State Highway 483 in Lea County New Mexico (Figure 1). The approximate coordinates are 32.647° north and 103.447° west.

The monitoring network includes the seven groundwater monitoring wells shown on Figure 2. Table 1 summarizes construction information for each well. Note that monitoring well MW-5 was not installed because of drilling refusal.

The approximate excavation limits are shown on Figure 2. Wells MW-4 and MW-1 were intact and could be accessed by removing blank sections of the threaded PVC. Wells MW-2 and MW-3 were at ground surface approximately 5-to-10 feet south of the southern excavation boundary. Barricade fencing and tape was present around the excavation.

#### **GROUNDWATER SAMPLING**

Groundwater sampling was completed on December 3, 2008. The depth to water and, if present, free phase hydrocarbons (FPH) was measured in each well prior to conducting the purging and sampling activities. The water-table elevations for the wells containing FPH were adjusted using the following formula:

 $GWE_{corr} = MGWE + (PT*PD)$ : where

- MGWE is the actual measured groundwater elevation;
- PT is the measured free-phase hydrocarbon thickness; and
- PD is the free phase hydrocarbon density (assumed 0.75)

Mr. Stephen Weathers February 6, 2009 Page 2

The calculated groundwater elevations for all monitoring episodes are summarized in Table 2. FPH was measured at thicknesses of 0.21 feet in MW-1 and 0.17 feet in MW-2 so they were not sampled. The historic FPH thickness values are summarized in Table 3.

Wells MW-3, MW-4, MW-6, MW-7 and MW-8 were purged and sampled with dedicated bailers. Purging continued until a minimum of three casing volumes of water was removed and the field parameters temperature, pH and conductivity stabilized. The well purging forms are attached. The affected purge water was disposed at the DCP Linam Ranch facility.

Unfiltered samples were collected upon stabilization using the dedicated bailers. All samples were placed in an ice-filled chest immediately upon collection and delivered to ACCUTEST Laboratories using standard chain-of-custody protocol. The samples were analyzed for benzene, toluene, ethylbenzene, total xylenes (BTEX), chlorides and total dissolved solids (TDS).

#### **RESULTS AND INTERPRETATIONS**

The laboratory report is attached. The QA/QC evaluation included:

- The method blanks and blank spikes were all within their respective control limits.
- All of the individual surrogate spikes were within their control limits.
- The matrix spike and matrix spike duplicate results from MW-6 were within the control limits for all four constituents.

The above information indicates that the data is suitable for use as periodic groundwater monitoring data.

The results and interpretations presented below are based upon all of the data collected to date. The laboratory analyses for the fourth quarter 2008 sampling episode are summarized in Table 4. Table 5 summarizes all of the organic data collected during this project. Table 6 summarizes the chloride data collected during this project. The New Mexico Water Quality Control Commission (NMWQCC) groundwater standards are reproduced at the top of each table. The constituents that exceed these standards are highlighted as bold text.

#### **Groundwater Flow**

Figure 3 includes hydrographs for the corrected water-table elevations for all site wells. The water table declined across the site.

The resulting fourth quarter 2008 calculated water table elevation contours as generated using the Surfer® program with the kriging option are shown on Figure 4. The water table exhibits a gradient to the southeast that is consistent with past monitoring events.

Mr. Stephen Weathers February 6, 2009 Page 3

#### **Groundwater Chemistry**

Examination of Table 4 shows that none of the BTEX constituents were detected. The benzene concentrations are plotted on Figure 5 along with the wells where FPH was measured. Comparison of Figure 4 with Figure 5 demonstrates that any dissolved-phase BTEX constituents are attenuating below the method reporting limits within the study area.

It is also important to note that:

- The toluene, ethylbenzene and total xylenes concentrations have never exceeded the NMWQCC standards in any of the wells;
- BTEX constituents were sporadically detected at concentrations near the method quantitation limits in MW-3;
- Benzene has not been detected in MW-4 since March 2007; and
- Benzene has not been detected in down-gradient wells MW-6, MW-7 and MW-8.

Examination of Table 6, the historical chlorides data, indicates that the chlorides concentrations in all wells exceed the NMWQCC secondary standard of 250 mg/l except for the most recent value from MW-4. This sample was reanalyzed by the laboratory; however, the field conductivity measurement indicates that it should be higher. The data were not contoured for that reason along with no data from MW-1 and MW-2. Figure 5 graphs the chloride concentrations over time. This figure highlights the anomalous reading in MW-4.

#### **CONCLUSIONS AND RECOMMENDATIONS**

Based upon the data collected to date, AEC concludes that:

- 1. Groundwater flow remains constant toward the southeast;
- 2. The presence of dissolved phase BTEX constituents is limited to the original release area as defined by MW-1 and MW-2;
- 3. The dissolved-phase hydrocarbon plume associated with the DCP J-4-2 pipeline release is either stable or contracting;
- 4. The salts that are present in the groundwater did not originate from the DCP release. This conclusion is based upon two reasons. First, releases from these types of pipelines typically do not contain elevated chlorides or other salts. Second, and most importantly, the highest chlorides and TDS concentrations were measured in MW-3. MW-3 is upgradient from the DCP release based upon the consistent water table configuration measured over the duration of the project and the fact that the groundwater samples do not contain any detectable BTEX constituents.

Mr. Stephen Weathers February 6, 2009 Page 4

AEC recommends continued quarterly groundwater monitoring to evaluate any effects produced by the open excavation. The next groundwater-monitoring event is scheduled for the first quarter of 2009.

Do not hesitate to contact me if you have any questions or comments on this letter.

Sincerely, AMERICAN ENVIRONMENTAL CONSULTING, LLC

Muchael H. Stewart

Michael H. Stewart, P.E., C.P.G. Principal Engineer

# TABLES

| Name | Date<br>Installed | Stickup | Casing<br>Diameter<br>(inches) | Total<br>Depth<br>(btoc) | Screen<br>Interval<br>(ground) | Sand<br>Interval |
|------|-------------------|---------|--------------------------------|--------------------------|--------------------------------|------------------|
| MW-1 | 2/06              | 3.17    | 2                              | 43.05                    | 19-39                          | 17-39            |
| MW-2 | 2/06              | 3.08    | 4                              | 43.30                    | 19-39                          | 17-39            |
| MW-3 | 2/06              | 3.21    | 2                              | 43.00                    | 19-39                          | 17-39            |
| MW-4 | 9/06              | 3.12    | 2 ·                            | 38.12                    | 20-35                          | 18-35            |
| MW-5 |                   | Not in  | stalled beca                   | use of dril              | ling refusal                   |                  |
| MW-6 | 9/06              | 3.32    | 2                              | 38.32                    | 20-35                          | 18-35            |
| MW-7 | 9/06              | 2.95    | 2                              | 39.45                    | 21.5-36.5                      | 19.5-36.5        |
| MW-8 | 9/06              | 3.32    | 2                              | 38.32                    | 20-35                          | 18-35            |

| Table 1 – Summary of Monitoring Well Completi | ions at | t the. | J-4-2 S | Site |
|-----------------------------------------------|---------|--------|---------|------|
|-----------------------------------------------|---------|--------|---------|------|

All units are feet except as noted btoc: Below top of casing

| Well | 2/15/06 | 9/25/06 | 12/21/06 | 3/14/07 | 6/26/07 | 9/25/07 | 11/30/07 |
|------|---------|---------|----------|---------|---------|---------|----------|
|      |         |         |          | •       |         |         |          |
| MW-1 | 3713.61 | 3712.60 | 3712.63  | 3712.29 | 3712.15 | 3711.86 | 3712.42  |
| MW-2 | 3713.93 | 3713.48 | 3712.49  | 3712.75 | 3712.63 | 3712.34 | 3712.91  |
| MW-3 | 3713.36 | 3712.57 | 3712.57  | 3712.55 | 3712.79 | 3711.50 | 3712.09  |
| MW-4 |         | 3712.80 | 3712.82  | 3712.78 | 3713.25 | 3712.98 | 3713.48  |
| MW-6 |         | 3711.76 | 3712.00  | 3711.96 | 3711.87 | 3711.56 | 3711.92  |
| MW-7 |         | 3711.03 | 3710.80  | 3710.73 | 3710.50 | 3709.87 | 3710.33  |
| MW-8 |         | 3709.22 | 3708.95  | 3708.79 | 3708.54 | 3708.06 | 3708.33  |

| Ta | ab | le | 2 - | Sum | mary | of | W | /ater | Tab | le E | levat | ions | for | the. | <b>J-4-</b> 2 | Site |
|----|----|----|-----|-----|------|----|---|-------|-----|------|-------|------|-----|------|---------------|------|
|----|----|----|-----|-----|------|----|---|-------|-----|------|-------|------|-----|------|---------------|------|

| 3/20/08 | 6/27/08                                                                              | 9/16/08                                                                                                                                                                                                                                                     | 12/3/08                                                                                                                                              |
|---------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                                                      |                                                                                                                                                                                                                                                             |                                                                                                                                                      |
| 3713.48 | NM                                                                                   | NM                                                                                                                                                                                                                                                          | 3711.94                                                                                                                                              |
| 3713.40 | NM                                                                                   | NM                                                                                                                                                                                                                                                          | 3712.14                                                                                                                                              |
| 3713.30 | 3713.09                                                                              | 3712.34                                                                                                                                                                                                                                                     | 3712.25                                                                                                                                              |
| 3713.70 | 3713.13                                                                              | 3712.18                                                                                                                                                                                                                                                     | 3712.10                                                                                                                                              |
| 3712.53 | 3712.20                                                                              | 3711.86                                                                                                                                                                                                                                                     | 3711.70                                                                                                                                              |
| 3711.38 | 3710.95                                                                              | 3710.11                                                                                                                                                                                                                                                     | 3710.00                                                                                                                                              |
| 3709.17 | 3708.78                                                                              | 3708.23                                                                                                                                                                                                                                                     | 3708.13                                                                                                                                              |
|         | 3/20/08<br>3713.48<br>3713.40<br>3713.30<br>3713.70<br>3712.53<br>3711.38<br>3709.17 | 3/20/08         6/27/08           3713.48         NM           3713.40         NM           3713.30         3713.09           3713.70         3713.13           3712.53         3712.20           3711.38         3710.95           3709.17         3708.78 | 3/20/086/27/089/16/083713.48NMNM3713.40NMNM3713.303713.093712.343713.703713.133712.183712.533712.203711.863711.383710.953710.113709.173708.783708.23 |

Units are feet

.

Blank cells: wells not installed NM: Not measured because of probe malfunction.

| Date     | MW-1 | MW-2 |
|----------|------|------|
|          |      |      |
| 02/15/06 | 0.00 | 0.57 |
| 09/25/06 | 0.00 | 0.15 |
| 12/21/06 | 0.09 | 0.13 |
| 03/14/07 | 0.07 | 0.10 |
| 06/26/07 | 0.09 | 0.00 |
| 09/25/07 | 0.09 | 0.03 |
| 11/30/07 | 0.00 | 0.00 |
| 03/20/08 | 0.00 | 0.00 |
| 06/27/08 | 0.04 | 0.01 |
| 09/16/08 | 0.08 | 0.02 |
| 12/03/08 | 0.21 | 0.17 |

Table 3 - Summary of Free Phase Hydrocarbon Thickness Values for MW-1 and MW-2

ţ

Units are feet

ł

| Well                              | Benzene | Toluene | Ethyl<br>benzene | Total<br>Xylene | Chlorides |
|-----------------------------------|---------|---------|------------------|-----------------|-----------|
| NMWQCC<br>Groundwater<br>Standard | 0.01    | 0.75    | 0.75             | 0.62            | 250*      |
|                                   |         |         |                  |                 |           |
| MW-3                              | <0.002  | <0.002  | <0.002           | <0.006          | 2550      |
| MW-3 Duplicate                    | <0.002  | <0.002  | <0.002           | <0.006          | 2700      |
| MW-4                              | <0.002  | <0.002  | <0.002           | <0.006          | 70        |
| MW-6                              | <0.002  | <0.002  | <0.002           | <0.006          | 391       |
| MW-7                              | <0.002  | <0.002  | <0.002           | <0.006          | 1050      |
| MW-8                              | <0.002  | <0.002  | <0.002           | <0.006          | 480       |

#### Table 4 - Summary of Fourth Quarter 2008 Groundwater Sampling Results

Notes:

Units are mg/l, MW-1 and MW-2 not sampled because free phase hydrocarbons were present MW-5 was not installed because of drilling refusal NMWQCC: New Mexico Water Quality Control Commission

Values above the NMWQCC standard are highlighted as bold text. \* Secondary (aesthetics) rather than primary (health-based) standards.

| Well     | Date  | Benzene | Toluene  | Ethylbenzene | Total Xylenes |
|----------|-------|---------|----------|--------------|---------------|
| NMWQC    | C     | 0.01    | 0.75     | 0.75         | 0.62          |
| Standard | ner   | 0.01    | 0.75     | 0.75         | 0.02          |
| MW-1     | 2/06  | 0.139   | 0.326    | 0.34         | 0.31          |
|          | 9/06  | 0.0418  | 0.0048   | 0.0247       | 0.0605        |
| Dup      | 9/06  | 0.0555  | 0.0068   | 0.032        | 0.0782        |
|          | 12/06 | FPH     | FPH      | FPH          | FPH           |
|          | 3/07  | FPH     | FPH      | FPH          | FPH           |
|          | 6/07  | FPH     | FPH      | FPH          | FPH           |
|          | 9/07  | 0.0114  | 0.0029   | 0.0035       | 0.0978        |
|          | 11/07 | 0.107   | 0.0243   | 0.0401       | 0.39          |
|          | 3/08  | 0.042   | 0.0186   | 0.0177       | 0.260         |
| Dup      | 3/08  | 0.031   | 0.0123   | 0.0107       | 0.170         |
|          | 0,00  |         |          |              |               |
| MW-2     | 6/07  | 0.0262  | 0.0382   | 0.0404       | 0.335         |
|          | 9/07  | 0.0045  | < 0.001  | 0.0027       | 0.0471        |
|          | 11/07 | 0.006   | 0.0033   | 0.0025       | 0.0613        |
| Dup      | 11/07 | 0.0062  | 0.003    | 0.0023       | 0.0577        |
| F        | 3/08  | 0.188   | 0.0062   | 0.0262       | 0.125         |
|          |       | 01100   | 0.0002   | 0.0202       |               |
| MW-3     | 2/06  | < 0.001 | < 0.001  | < 0.001      | < 0.002       |
|          | 9/06  | < 0.002 | < 0.002  | < 0.002      | < 0.006       |
|          | 12/06 | < 0.002 | < 0.002  | <0.002       | <0.006        |
|          | 3/07  | <0.002  | <0.002   | <0.002       | <0.006        |
| Dun      | 3/07  | <0.002  | <0.002   | <0.002       | <0.006        |
| p        | 6/07  | 0.0029  | 0.0053   | 0.0015       | 0.0097        |
| Dup      | 6/07  | < 0.001 | <0.001   | < 0.001      | < 0.001       |
|          | 9/07  | < 0.001 | < 0.001  | < 0.001      | < 0.001       |
| Dup      | 9/07  | < 0.001 | < 0.001  | < 0.001      | < 0.001       |
|          | 11/07 | 0.0011J | < 0.002  | < 0.002      | < 0.006       |
|          | 3/08  | < 0.002 | < 0.002  | < 0.002      | < 0.006       |
|          | 6/08  | < 0.002 | < 0.002  | < 0.002      | < 0.006       |
| Dup      | 6/08  | < 0.002 | < 0.002  | < 0.002      | 0.0072        |
|          | 9/08  | < 0.002 | < 0.002  | < 0.002      | < 0.006       |
|          | 12/08 | < 0.002 | < 0.002  | < 0.002      | < 0.006       |
|          | 12/08 | < 0.002 | < 0.002  | < 0.002      | < 0.006       |
|          |       |         |          |              |               |
| MW-4     | 9/06  | 0.0086  | 0.00093J | 0.0092       | 0.0061        |
|          | 12/06 | 0.0295  | 0.0058   | < 0.002      | 0.0075        |
| Dup      | 12/06 | 0.0207  | 0.004    | < 0.002      | 0.0054        |
|          | 3/07  | 0.0044  | 0.0006   | < 0.002      | 0.0032        |
|          | 6/07  | < 0.001 | < 0.001  | < 0.001      | 0.0025        |
|          | 9/07  | < 0.001 | < 0.001  | < 0.001      | < 0.001       |
|          | 11/07 | < 0.002 | < 0.002  | < 0.002      | < 0.006       |
|          | 3/08  | < 0.002 | < 0.002  | < 0.002      | < 0.006       |
|          | 6/08  | < 0.002 | < 0.002  | < 0.002      | < 0.006       |
|          | 9/08  | < 0.002 | < 0.002  | < 0.002      | 0.0041.       |
|          | 12/08 | < 0.002 | < 0.002  | < 0.002      | < 0.006       |
|          |       |         |          |              |               |

## Table 5 - Summary of Organic Groundwater Data

Notes:

Units are mg/l, MW-5 was not installed. J modifiers are not included in this table Values above the NMWQCC standard are highlighted as bold text

| Well                          | Date      | Benzene  | Toluene | Ethylbenzene | Total Xylenes |
|-------------------------------|-----------|----------|---------|--------------|---------------|
| NMWQC<br>Groundwa<br>Standard | C<br>ater | 0.01     | 0.75    | 0.75         | 0.62          |
| MW-6                          | 9/06      | < 0.002  | < 0.002 | < 0.002      | <0.006        |
|                               | 12/06     | < 0.002  | < 0.002 | < 0.002      | < 0.006       |
|                               | 3/07      | < 0.002  | < 0.002 | < 0.002      | < 0.006       |
|                               | 6/07      | < 0.001  | < 0.001 | < 0.001      | < 0.001       |
|                               | 9/07      | < 0.001  | < 0.001 | < 0.001      | < 0.001       |
|                               | 11/07     | < 0.002  | < 0.002 | < 0.002      | < 0.006       |
|                               | 3/08      | < 0.002  | < 0.002 | < 0.002      | < 0.006       |
|                               | 6/08      | < 0.002  | < 0.002 | < 0.002      | < 0.006       |
|                               | 9/08      | < 0.002  | <0:002  | < 0.002      | < 0.006       |
|                               | 12/08     | < 0.002  | < 0.002 | < 0.002      | . <0.006      |
|                               |           |          |         |              |               |
| MW-7                          | 9/06      | < 0.002  | < 0.002 | < 0.002      | < 0.006       |
|                               | 12/06     | < 0.002  | < 0.002 | < 0.002      | < 0.006       |
|                               | 3/07      | < 0.002  | < 0.002 | < 0.002      | < 0.006       |
|                               | 6/07      | < 0.001  | < 0.001 | < 0.001      | 0.0027        |
|                               | 9/07      | < 0.001  | < 0.001 | < 0.001      | < 0.001       |
|                               | 11/07     | < 0.002  | < 0.002 | < 0.002      | < 0.006       |
|                               | 3/08      | < 0.002  | < 0.002 | < 0.002      | < 0.006       |
|                               | 6/08      | < 0.002  | < 0.002 | < 0.002      | < 0.006       |
|                               | 9/08      | < 0.002  | < 0.002 | < 0.002      | < 0.006       |
|                               | 12/08     | < 0.002  | < 0.002 | < 0.002      | < 0.006       |
| MUVO                          | 0/07      | <0.000   | <0.002  | ~0.000       | -0.007        |
| <u>1 M W - 8</u>              | 9/06      | <0.002   | <0.002  | <0.002       | <0.006        |
| <u> </u>                      | 12/06     |          | <0.002  | <0.002       | <0.006        |
|                               | 3/07      | <0.002   | <0.002  | <0.002       | <0.006        |
| <u> </u>                      | 0/07      | <0.001   | <0.001  | <0.001       | <0.001        |
|                               | 9/07      | <0.001   | <0.001  | <0.001       | <0.001        |
|                               | 2/09      | < 0.002  | <0.002  | <0.002       | <0.006        |
|                               | 5/08      | <0.002   | <0.002  | <0.002       | <0.006        |
|                               | 0/08      | <0.002   | < 0.002 | <0.002       |               |
|                               | 9/08      | <0.002   | < 0.002 | <0.002       |               |
|                               | 12/08     | <u> </u> | 0.002   | <0.002       | <0.006        |

## Table 5 – Summary of Organic Groundwater Data (continued)

Notes:

Units are mg/l, J modifiers are not included in this table Values above the NMWQCC standard are highlighted as bold text

| Well | 3/14/07  | 6/26/07     | 9/16/08     | 12/3/08 |
|------|----------|-------------|-------------|---------|
| NN   | AWQCC Gr | oundwater S | tandard 250 | mg/l    |
| MW-3 | 7,800    | 10,800      | 4,070       | 2,625   |
| MW-4 | 1,300    | 1,380       | 1,440       | 70      |
| MW-6 | 669      | 544         | 537         | 391     |
| MW-7 | 1,230    | 1,150       | 1,180       | 1,050   |
| MW-8 | 609      | 617         | 735         | 480     |

#### Table 6 – Summary of Chlorides Groundwater Data

.

Notes: Unit

Units are mg/l Values above the NMWQCC standard are highlighted as bold text The 250 mg/l standard is based upon secondary (non-health risk) considerations. **FIGURES** 



|                                         |      | ¢<br>8−<br>MM | Figure 2 – Site Details and Limit of Affected<br>Materials Excavation<br>J-4-2 Groundwater Monitoring<br>DRAWN BY: MHS |
|-----------------------------------------|------|---------------|------------------------------------------------------------------------------------------------------------------------|
| ¢W D                                    | €-MW | 200 fæt       |                                                                                                                        |
| Approximate Limit<br>of 2008 Excavation |      |               |                                                                                                                        |





|                                                                               |                       | ×0.002 +       | Figure 5 – Fourth Quarter 2008 Benzene<br>Results<br>J-4-2 Groundwater Monitoring<br>DRAWN BY: MH |
|-------------------------------------------------------------------------------|-----------------------|----------------|---------------------------------------------------------------------------------------------------|
| 9-MM<br>\$                                                                    | MW-7<br>\$<br>\$0.002 | t<br>t         |                                                                                                   |
| MW 4<br><b>COUCE</b><br>MW-1<br>MW-1<br>MW-2<br>MW-2<br>CPH<br>CDUCE<br>CDUCE |                       | SCALE<br>200 F | Units are mg/l<br>FPH: free phase hydrocarbons                                                    |

.

.



# WELL SAMPLING DATA

#### AND LABORATORY ANALYTICAL REPORT

. .

2

.

1

|                                            | CLIENT:                                      | DC                      | P Midstre                       | am                                    | <u> </u>   | NELL ID:   | MW-1                                                                       |  |  |
|--------------------------------------------|----------------------------------------------|-------------------------|---------------------------------|---------------------------------------|------------|------------|----------------------------------------------------------------------------|--|--|
| S                                          | ITE NAME:                                    | J42                     | (Pipeline L                     | eak)                                  | _          | DATE:      | 12/3/2008                                                                  |  |  |
| PRC                                        | JECT NO.                                     |                         |                                 | -                                     | S/         | AMPLER:    | M. Stewart/A. Taylor                                                       |  |  |
|                                            |                                              |                         |                                 |                                       | • .        | -          |                                                                            |  |  |
| PURGIN                                     | G METHOD:                                    | ļ                       | ☑ Hand Bai                      | led 🗌 Pu                              | mp If Pu   | mp, Type:  | · · · · · · · · · · · · · · · · · · ·                                      |  |  |
| SAMPLIN                                    | IG METHOD                                    | <b>):</b>               | 고 Disposab                      | le Bailer                             | Direct 1   | from Disch | narge Hose 🗌 Other:                                                        |  |  |
| DESCRIE                                    | BE EQUIPMI                                   | ENT DECO                | ΝΤΑΜΙΝΑΤΙ                       | ON METH                               | DD BEFO    | RE SAMP    | LING THE WELL:                                                             |  |  |
| Glove                                      | s 🗆 Alcono                                   | x 🗌 Distill             | ed Water Ri                     | nse 🗆 C                               | Other:     |            |                                                                            |  |  |
| TOTAL D<br>DEPTH T<br>HEIGHT (<br>WELL DI/ | EPTH OF W<br>O WATER:<br>OF WATER<br>AMETER: | /ELL:<br>COLUMN:<br>4.0 | 43.05<br>28.51<br>14.54<br>Inch | Feet<br>Feet<br>Feet                  |            | 28.5       | Minimum Gallons to<br>purge 3 well volumes<br>(Water Column Height x 1 96) |  |  |
| TIME                                       | ME PURGED °C mS/c                            |                         |                                 | рН                                    | DO<br>ma\l | Turb       | PHYSICAL APPEARANCE AND<br>REMARKS                                         |  |  |
|                                            | 0.0                                          |                         | -                               | _                                     | -          | _          |                                                                            |  |  |
|                                            |                                              | -                       |                                 | -                                     | -          | _          | · · · · · · · · · · · · · · · · · · ·                                      |  |  |
|                                            |                                              |                         |                                 |                                       |            |            | <u> </u>                                                                   |  |  |
|                                            |                                              |                         |                                 |                                       |            |            |                                                                            |  |  |
|                                            |                                              |                         |                                 |                                       |            |            |                                                                            |  |  |
|                                            |                                              |                         |                                 |                                       |            |            |                                                                            |  |  |
|                                            |                                              |                         |                                 |                                       |            |            |                                                                            |  |  |
|                                            |                                              |                         |                                 |                                       |            |            |                                                                            |  |  |
|                                            |                                              |                         | -                               |                                       |            |            |                                                                            |  |  |
|                                            |                                              |                         |                                 |                                       |            |            |                                                                            |  |  |
|                                            |                                              |                         |                                 |                                       |            |            |                                                                            |  |  |
|                                            |                                              |                         |                                 |                                       |            |            |                                                                            |  |  |
|                                            |                                              |                         |                                 |                                       |            |            |                                                                            |  |  |
|                                            |                                              |                         |                                 |                                       |            |            |                                                                            |  |  |
|                                            |                                              |                         |                                 |                                       |            |            |                                                                            |  |  |
| SAMP                                       | LE NO.:                                      | Collected S             | ample No.:                      | Not sample                            | d          |            |                                                                            |  |  |
| ANAL                                       | YSES:                                        |                         |                                 |                                       |            |            |                                                                            |  |  |
| COM                                        | MENTS:                                       |                         |                                 |                                       |            |            |                                                                            |  |  |
|                                            |                                              |                         |                                 | · · · · · · · · · · · · · · · · · · · |            |            |                                                                            |  |  |

|                                         | CLIENT:                                      | DC                      | P Midstre                       | am                   | . ۱        | NELL ID:  | MW-2                                                                        |
|-----------------------------------------|----------------------------------------------|-------------------------|---------------------------------|----------------------|------------|-----------|-----------------------------------------------------------------------------|
| S                                       | ITE NAME:                                    | J42                     | (Pipeline L                     | eak)                 |            | DATE:     | 12/3/2008                                                                   |
| PRO                                     | DJECT NO.                                    |                         |                                 |                      | S/         | AMPLER:   | M. Stewart/A. Taylor                                                        |
|                                         |                                              |                         |                                 |                      |            |           |                                                                             |
| PURGIN                                  | G METHOD:                                    | : 1                     | ☑ Hand Bai                      | iled 🗆 Pu            | mp If Pu   | тр, Туре  | · · · · · · · · · · · · · · · · · · ·                                       |
| SAMPLIN                                 |                                              | D:                      | 🗹 Disposab                      | le Bailer            | Direct     | from Disc | harge Hose 🗋 🛛 Other:                                                       |
| DESCRIE                                 |                                              | ENT DECO                | NTAMINATI                       | ON METH              | DD BEFO    | RE SAM    | PLING THE WELL:                                                             |
| 🗹 Glove                                 | s 🗆 Alcono                                   | ox 🗌 Distill            | ed Water Ri                     | nse 🗆 C              | Other:     |           |                                                                             |
| TOTAL D<br>DEPTH T<br>HEIGHT<br>WELL DI | EPTH OF V<br>O WATER:<br>OF WATER<br>AMETER: | VELL:<br>COLUMN:<br>2.0 | 43.30<br>28.48<br>14.82<br>Inch | Feet<br>Feet<br>Feet |            | 7.3       | _Minimum Gallons to<br>purge 3 well volumes<br>(Water Column Height x 0.49) |
| TIME                                    |                                              | TEMP.                   | COND.                           | рН                   | DO<br>ma\l | Turb      | PHYSICAL APPEARANCE AND<br>REMARKS                                          |
|                                         | FUNGLD                                       |                         | moren                           |                      |            |           |                                                                             |
|                                         |                                              |                         |                                 |                      |            |           |                                                                             |
|                                         | 1                                            |                         |                                 |                      |            |           |                                                                             |
|                                         |                                              |                         |                                 |                      |            |           |                                                                             |
|                                         |                                              | ·                       |                                 |                      |            |           |                                                                             |
|                                         |                                              |                         |                                 |                      | 1          |           |                                                                             |
|                                         | · · ·                                        |                         |                                 |                      |            |           |                                                                             |
|                                         |                                              |                         |                                 |                      |            |           |                                                                             |
|                                         |                                              |                         |                                 |                      |            |           |                                                                             |
|                                         |                                              |                         |                                 |                      |            |           |                                                                             |
|                                         |                                              |                         |                                 |                      |            |           |                                                                             |
|                                         |                                              |                         | . '                             |                      | 1          |           |                                                                             |
|                                         |                                              |                         |                                 |                      |            |           |                                                                             |
|                                         | 1                                            |                         |                                 |                      | <b> </b>   |           |                                                                             |
|                                         | 1                                            |                         |                                 | L                    |            |           |                                                                             |
| SAME                                    |                                              | Collected S             | Sample No :                     | Not sample           | ed         | I         |                                                                             |
| ΔΝΔ                                     |                                              |                         |                                 | ot campic            |            |           |                                                                             |
| COM                                     |                                              | ,                       |                                 |                      |            |           |                                                                             |
| COM                                     |                                              |                         |                                 |                      |            |           |                                                                             |
|                                         |                                              |                         |                                 |                      |            |           |                                                                             |

ł

1

1

|          | CLIENT:                           | DC          | P Midstre     | am        |             | WELL ID:    | MW-3                                   |
|----------|-----------------------------------|-------------|---------------|-----------|-------------|-------------|----------------------------------------|
| S        | ITE NAME:                         | J42         | (Pipeline Le  | eak)      |             | DATE:       | 12/3/2008                              |
| PRC      | JECT NO.                          |             |               |           | . S/        | AMPLER:     | M. Stewart/A. Taylor                   |
|          |                                   |             |               |           |             |             | ······································ |
| PURGING  | G METHOD:                         | :           | 🗹 Hand Bai    | led 🗆 Pu  | mp If Pu    | mp, Type:   |                                        |
| SAMPLIN  | IG METHOD                         | D:          | 🗹 Disposab    | le Bailer | Direct      | from Discl  | narge Hose 🛛 Other:                    |
| DESCRIE  |                                   | ENT DECO    | NTAMINATI     | ON METH   | DD BEFC     | RE SAMF     | PLING THE WELL:                        |
| Glove    | s 🗆 Alcono                        | x 🛛 Distill | ed Water Ri   | nse 🗆 C   | Other:      |             | <u></u>                                |
| TOTAL D  | EPTH OF V<br>O WATER <sup>.</sup> | VELL:       | 43.00         | Feet      |             |             |                                        |
| HEIGHT   | OF WATER                          | COLUMN:     | 15.86         | Feet      |             | 7.8         | Minimum Gallons to                     |
| WELL DIA | AMETER:                           | 2.0         | Inch          |           |             |             | purge 3 well volumes                   |
| TIME     | VOLUME                            | TEMP.       | COND.         | nH        | DO          | Turb        | PHYSICAL APPEARANCE AND                |
|          | PURGED                            | <b>℃</b>    | <i>m</i> S/cm |           | <u>mg\L</u> |             | REMARKS                                |
|          | 2.6                               | 19.5        | 3.98          | 7.08      |             |             |                                        |
|          | 5.2                               | 19.4        | 5.64          | 7.00      |             |             |                                        |
|          | 7.8                               | 19.3        | 6.44          | 7.00      |             |             |                                        |
|          |                                   |             |               |           |             |             | · · · · · · · · · · · · · · · · · · ·  |
| ļ        | ·                                 |             |               |           |             | · · · · · · |                                        |
|          |                                   |             |               |           |             |             |                                        |
|          |                                   |             |               |           |             |             |                                        |
| <br>     |                                   |             |               |           |             |             |                                        |
|          |                                   |             |               | ·         |             |             | · · · · · · · · · · · · · · · · · · ·  |
|          |                                   |             |               |           |             |             |                                        |
|          |                                   |             |               |           |             |             | · · · · · · · · · · · · · · · · · · ·  |
|          |                                   |             |               |           |             |             |                                        |
|          |                                   |             |               |           |             |             |                                        |
|          |                                   |             |               |           |             |             |                                        |
|          |                                   |             |               |           |             |             |                                        |
| SAMP     | LE NO.:                           | Collected S | Sample No.:   | MW-3      |             |             |                                        |
| ANAL     | YSES:                             | BTEX, chlo  | rides         |           |             |             |                                        |
| COM      | MENTS:                            | Collected d | uplicate san  | nple DUP  |             |             |                                        |
|          |                                   | <u></u>     | _ <u>.</u>    |           |             |             |                                        |

,

|                                            | CLIENT:                                      | DC                                    | P Midstre                      | am                   |          | NELL ID:  | MW-4                                                                        |  |  |
|--------------------------------------------|----------------------------------------------|---------------------------------------|--------------------------------|----------------------|----------|-----------|-----------------------------------------------------------------------------|--|--|
| S                                          | ITE NAME:                                    | J42                                   | (Pipeline Le                   | eak)                 | _        | DATE:     | 12/3/2008                                                                   |  |  |
| PRC                                        | DJECT NO.                                    |                                       |                                |                      | . S/     | AMPLER    | . M. Stewart/A. Taylor                                                      |  |  |
|                                            |                                              |                                       |                                | •                    |          |           |                                                                             |  |  |
| PURGING                                    | G METHOD:                                    |                                       | Hand Bai                       | led 🗌 Pu             | mp If Pu | тр, Туре  | :                                                                           |  |  |
| SAMPLIN                                    | IG METHOD                                    | ):                                    | 🗹 Disposab                     | le Bailer            | Direct   | from Disc | charge Hose 🛛 Other:                                                        |  |  |
| DESCRIE                                    |                                              | ENT DECO                              | NTAMINATI                      | ON METH              | OD BEFO  | RE SAM    | PLING THE WELL:                                                             |  |  |
| Glove                                      | s 🗹 Alcono                                   | x 🗹 Distill                           | ed Water Ri                    | nse 🗆 🤇              | Other:   |           |                                                                             |  |  |
| TOTAL D<br>DEPTH T<br>HEIGHT (<br>WELL DI/ | EPTH OF W<br>O WATER:<br>OF WATER<br>AMETER: | /ELL:<br>COLUMN:<br>2.0               | 38.12<br>28.14<br>9.98<br>Inch | Feet<br>Feet<br>Feet |          | 4.9       | _Minimum Gallons to<br>purge 3 well volumes<br>(Water Column Height x 0.49) |  |  |
| TIME                                       |                                              | TEMP.                                 | COND.                          | pН                   |          | Turb      | PHYSICAL APPEARANCE AND                                                     |  |  |
|                                            | 2.0                                          | 19.3                                  | 3.95                           | 7.06                 | IIIg\L   |           | Begin Hand Bailing                                                          |  |  |
| •                                          | 4.0                                          | 19.4                                  | 3.96                           | 7.14                 | -        |           |                                                                             |  |  |
|                                            | 6.0                                          | 19.5                                  | 3.98                           | 7.09                 |          |           |                                                                             |  |  |
|                                            |                                              |                                       |                                |                      |          |           |                                                                             |  |  |
|                                            |                                              |                                       |                                |                      |          |           |                                                                             |  |  |
|                                            |                                              |                                       |                                |                      |          |           |                                                                             |  |  |
|                                            |                                              |                                       |                                |                      |          |           |                                                                             |  |  |
|                                            |                                              |                                       |                                |                      |          |           |                                                                             |  |  |
|                                            |                                              |                                       |                                |                      | I        |           |                                                                             |  |  |
|                                            |                                              |                                       |                                |                      |          |           |                                                                             |  |  |
|                                            |                                              |                                       |                                |                      |          |           |                                                                             |  |  |
|                                            |                                              | · · · · · · · · · · · · · · · · · · · |                                |                      |          |           |                                                                             |  |  |
|                                            |                                              |                                       |                                |                      |          |           |                                                                             |  |  |
|                                            |                                              |                                       |                                |                      |          |           |                                                                             |  |  |
|                                            |                                              |                                       |                                |                      |          |           |                                                                             |  |  |
| SAMP                                       | LE NO.:                                      | Collected S                           | Sample No.:                    | MW-4                 |          |           |                                                                             |  |  |
| ANAI                                       | LYSES:                                       | BTEX, chlo                            | orides.                        |                      |          |           | · · · · · · · · · · · · · · · · · · ·                                       |  |  |
| COM                                        | MENTS:                                       |                                       |                                |                      |          |           |                                                                             |  |  |
|                                            |                                              | · · · · · · · · · · · · · · · · · · · | •                              |                      |          |           | · · · · · · · · · · · · · · · · · · ·                                       |  |  |

2 10 2

.

œ,

ż

ų,

•

· /

j

ба. 1

|                    | CLIENT:             | DC                  | P Midstre              | am           | -          | WELL ID:                    | MW-6                                  |  |  |  |
|--------------------|---------------------|---------------------|------------------------|--------------|------------|-----------------------------|---------------------------------------|--|--|--|
| S                  | ITE NAME:           | J42                 | (Pipeline Le           | eak)         | _          | DATE:                       | 12/3/2008                             |  |  |  |
| PRC                | DJECT NO.           |                     | , ·                    |              |            | AMPLER:                     | M. Stewart/A. Taylor                  |  |  |  |
|                    |                     |                     |                        |              |            |                             |                                       |  |  |  |
| PURGING            | G METHOD:           | : I                 | ☑ Hand Bai             | led 🗌 Pu     | mp If Pu   | mp, Type                    | ·                                     |  |  |  |
| SAMPLIN            | IG METHO            | D: [                | ☑ Disposab             | le Bailer    | Direct     | from Disc                   | harge Hose 🔲 Other:                   |  |  |  |
| DESCRIE            | BE EQUIPM           | ENT DECO            | NTAMINATI              | ON METH      | OD BEFC    | RE SAM                      | PLING THE WELL:                       |  |  |  |
| ☑ Glove            | s 🗌 Alcono          | x 🗌 Distill         | ed Water Ri            | nse 🗆 🤇      | Other:     |                             |                                       |  |  |  |
| TOTAL D<br>DEPTH T | EPTH OF WORTER:     | VELL:               | 34.35                  | Feet<br>Feet |            | 2.0                         |                                       |  |  |  |
| NELL DIA           | OF WATER<br>AMETER: | COLUMN: 2.0         | 6.09                   | Feet         |            | 3.0                         | _Minimum Gallons to                   |  |  |  |
|                    | ····= / =/ ···      |                     |                        |              |            | (Water Column Height x 0.49 |                                       |  |  |  |
| TIME               | VOLUME              | ТЕМР.<br>° <b>С</b> | COND.<br><i>m</i> S/cm | pH.          | DO<br>ma\L | Turb                        | PHYSICAL APPEARANCE AND<br>REMARKS    |  |  |  |
|                    | 1.3                 | 18.9                | 1.87                   | 7.24         |            |                             |                                       |  |  |  |
|                    | 2.6                 | 19.2                | 1.81                   | 7.22         |            |                             |                                       |  |  |  |
|                    | 3.9                 | 19.3                | 1.79                   | 7.19         |            |                             |                                       |  |  |  |
|                    |                     |                     | · · · ·                |              |            |                             |                                       |  |  |  |
|                    |                     |                     |                        |              |            |                             | · · · · · · · · · · · · · · · · · · · |  |  |  |
|                    |                     |                     |                        |              |            |                             |                                       |  |  |  |
| <del></del> ,,     |                     |                     |                        |              |            |                             |                                       |  |  |  |
|                    |                     |                     |                        |              |            |                             |                                       |  |  |  |
| <u> </u>           |                     |                     |                        |              |            |                             |                                       |  |  |  |
|                    |                     | . *                 |                        |              |            |                             |                                       |  |  |  |
|                    |                     |                     |                        |              | ļ          |                             |                                       |  |  |  |
|                    |                     |                     | ······                 | 1            |            |                             |                                       |  |  |  |
|                    |                     |                     | ·                      |              | <u> </u>   |                             |                                       |  |  |  |
|                    | I                   | I                   |                        | l            | I          |                             | L                                     |  |  |  |
| SAMP               | LE NO :             | Collected S         | ample No ·             | <br>MW-6     |            | I                           | <u> </u>                              |  |  |  |
|                    | YSES.               | BTEX chlo           | rides                  |              |            |                             | <u> </u>                              |  |  |  |
| COM                | MENTS.              | Collected m         | natrix spike           | matrix spik  | e duolica  | te sample                   |                                       |  |  |  |
| 00111              |                     |                     | interior opino,        |              |            |                             |                                       |  |  |  |

4

. .

P d

. .....

44

|                     | CLIENT:          | DC                  | DCP Midstream          |           |            | WELL ID:  | : <u>MW-7</u>                         |  |
|---------------------|------------------|---------------------|------------------------|-----------|------------|-----------|---------------------------------------|--|
| S                   | ITE NAME:        | J42                 | (Pipeline Le           | eak)      | _          | DATE:     | 12/3/2008                             |  |
| PRC                 | DJECT NO.        |                     |                        |           | S          | AMPLER:   | M. Stewart/A. Taylor                  |  |
|                     |                  |                     |                        |           |            |           |                                       |  |
| URGINO              | G METHOD:        |                     | 🗹 Hand Bai             | led 🗆 Pu  | mp If Pu   | mp, Type  | · · · · · · · · · · · · · · · · · · · |  |
| AMPLIN              | G METHOD         | ):                  | 🗹 Disposab             | le Bailer | ] Direct   | from Disc | harge Hose 🗌 Other:                   |  |
| ESCRIB              |                  | ENT DECO            | NTAMINATI              | ON METH   | OD BEFC    | RE SAM    | PLING THE WELL:                       |  |
| Glove               | s 🗆 Alcono       | x 🗋 Distill         | ed Water Ri            | nse 🗆 C   | Other:     |           | ·····                                 |  |
| OTAL D              | EPTH OF W        | /ELL:               | 39.45                  | Feet      |            |           |                                       |  |
| EPTH T              | O WATER:         |                     | 30.73                  | Feet      |            |           |                                       |  |
| EIGHT (<br>/ELL DIA | OF WATER         | COLUMN: 2.0         | 8.72                   | Feet      |            | 4.3       | Minimum Gallons to                    |  |
|                     |                  |                     |                        |           |            |           | (Water Column Height x 0.49)          |  |
| TIME                | VOLUME<br>PURGED | TEMP.<br>° <b>C</b> | COND.<br><i>m</i> S/cm | pH_       | DO<br>mg\L | Turb      | PHYSICAL APPEARANCE AND<br>REMARKS    |  |
|                     | 1.6              | 18.7                | 3.43                   | 7.15      |            |           | Begin Hand Bailing                    |  |
|                     | 3.2              | 19.0                | 3.52                   | 7.13      |            |           |                                       |  |
|                     | 4.8              | 19.0                | 3.54                   | 7.13      | L          |           |                                       |  |
|                     |                  | <u> </u>            | · · · · · ·            |           |            |           |                                       |  |
|                     |                  |                     |                        |           |            |           | ·                                     |  |
|                     |                  | <u></u>             |                        | i         |            |           | · · ·                                 |  |
| <u> </u>            |                  |                     |                        |           |            |           |                                       |  |
|                     |                  |                     |                        |           |            |           |                                       |  |
|                     |                  |                     |                        |           |            |           | ·                                     |  |
|                     |                  |                     |                        |           |            |           |                                       |  |
|                     |                  |                     | <u>.</u>               |           |            |           |                                       |  |
|                     |                  | <del></del>         |                        |           |            |           |                                       |  |
| <u> </u>            |                  |                     |                        |           |            |           |                                       |  |
|                     | <u> </u>         |                     |                        |           | I          |           | J                                     |  |
| <br>SAMP            | LE NO.:          | Collected S         | ample No               | MW-7      | ·          | I         |                                       |  |
| ANAI                | YSES             | BTEX chlo           | rides                  |           |            |           |                                       |  |
| , (1 <b>1</b> / 1   |                  |                     |                        |           |            |           |                                       |  |

i

.

. . .

.

1 .

Į

C.

Ĩ

.

4 A

Ŧ

|                                            | CLIENT:                                      | DC                      | P Midstrea                                   | am                                    |                                                                                | NELL ID:  | MW-8                                  |  |  |
|--------------------------------------------|----------------------------------------------|-------------------------|----------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------|-----------|---------------------------------------|--|--|
| S                                          | ITE NAME:                                    | J42                     | (Pipeline Le                                 | eak)                                  |                                                                                | DATE:     | 12/3/2008                             |  |  |
| PRO                                        | DJECT NO.                                    |                         |                                              |                                       | . s/                                                                           | AMPLER:   | M. Stewart/A. Taylor                  |  |  |
|                                            |                                              |                         |                                              |                                       |                                                                                |           |                                       |  |  |
| PURGING                                    | G METHOD:                                    |                         | ☑ Hand Bai                                   | ied 🛛 Pu                              | mp If Pui                                                                      | тр, Туре  | ·<br>·                                |  |  |
| SAMPLIN                                    | IG METHOD                                    | ):                      | ☑ Disposab                                   | le Bailer                             | Direct f                                                                       | from Disc | harge Hose 🗌 Other:                   |  |  |
| DESCRIE                                    |                                              | ENT DECO                | NTAMINATI                                    | ON METH                               | DD BEFO                                                                        | RE SAMI   | PLING THE WELL.                       |  |  |
| 🖸 Glove                                    | s 🗌 Alcono                                   | x 🗌 Distill             | ed Water Ri                                  | nse 🗆 C                               | Other:                                                                         |           |                                       |  |  |
| TOTAL D<br>DEPTH T<br>HEIGHT (<br>WELL DI/ | EPTH OF W<br>O WATER:<br>OF WATER<br>AMETER: | /ELL:<br>COLUMN:<br>2.0 | 38.32<br>29.19<br>9.13<br>Inch               | Feet<br>Feet<br>Feet                  | 4.5 Minimum Gallons to<br>purge 3 well volumes<br>(Water Column Height x 0.49) |           |                                       |  |  |
| TIME                                       |                                              | TEMP.                   | COND.                                        | pН                                    | DO<br>ma\l                                                                     | Turb      | PHYSICAL APPEARANCE AND<br>REMARKS    |  |  |
|                                            | 1.6                                          | 18.5                    | 2.01                                         | 7.20                                  |                                                                                | <u></u>   | Began Hand Bailing                    |  |  |
|                                            | 3.2                                          | 18.7                    | 2.07                                         | 7.21                                  |                                                                                |           |                                       |  |  |
|                                            | 4.8                                          | 18.8                    | 2.05                                         | 7.23                                  |                                                                                |           |                                       |  |  |
|                                            |                                              | ,                       |                                              | 1                                     |                                                                                |           |                                       |  |  |
|                                            |                                              |                         |                                              |                                       |                                                                                |           |                                       |  |  |
|                                            |                                              |                         |                                              |                                       |                                                                                |           |                                       |  |  |
|                                            |                                              |                         |                                              |                                       |                                                                                |           |                                       |  |  |
|                                            |                                              |                         |                                              |                                       |                                                                                |           |                                       |  |  |
|                                            |                                              |                         |                                              |                                       |                                                                                |           |                                       |  |  |
|                                            |                                              |                         |                                              |                                       |                                                                                |           |                                       |  |  |
| <u> </u>                                   | · ·                                          |                         |                                              |                                       |                                                                                |           |                                       |  |  |
| <u> </u>                                   |                                              |                         |                                              | · · · · ·                             |                                                                                |           | · ·                                   |  |  |
| <u> </u>                                   |                                              |                         |                                              |                                       |                                                                                |           |                                       |  |  |
|                                            |                                              |                         |                                              |                                       |                                                                                |           |                                       |  |  |
|                                            |                                              |                         | <u>.                                    </u> | <u>,</u>                              | <u></u>                                                                        |           | l                                     |  |  |
| SAMP                                       | LE NO.:                                      | Collected S             | ample No.:                                   | MW-8                                  |                                                                                | L         | · · · · · · · · · · · · · · · · · · · |  |  |
| ANAI                                       | _YSES:                                       | BTEX. chlo              | rides                                        |                                       |                                                                                |           | · · ·                                 |  |  |
| COM                                        | MENTS:                                       | , <b>, .</b> ,          |                                              |                                       |                                                                                |           |                                       |  |  |
|                                            |                                              |                         |                                              | · · · · · · · · · · · · · · · · · · · |                                                                                |           | · · · · · · · · · · · · · · · · · · · |  |  |



01/17/09

**Technical Report for** 

DCP Midstream, LLC

DEFS J-4-2

Accutest Job Number: T24886

Sampling Date: 12/03/08

Report to:

American Environmental Consulting

mstewart@aecdenver.com

ATTN: Mike Stewart

Total number of pages in report: 28





Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: William Reeves 713-271-4700

Certifications: TX (T104704220-06-TX) AR (88-0756) FL (E87628) KS (E-10366) LA (85695/04004) OK (9103) UT(7132714700) This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Gulf Coast • 10165 Harwin Drive • Suite 150 • Houston, TX 77036 • tel: 713-271-4700 • fax: 713-271-4770 • http://www.accutest.com



Paul Canevaro Laboratory Director



# Table of Contents

ල

ß

യ

#### -1-

| Section 1: Sample Summary                        | 3  |
|--------------------------------------------------|----|
| Section 2: Sample Results                        | 4  |
| <b>2.1:</b> T24886-1: MW-3                       | 5  |
| <b>2.2:</b> T24886-2: MW-4                       | 7  |
| <b>2.3:</b> T24886-3: MW-6                       | 9  |
| <b>2.4:</b> T24886-4: MW-7                       | 11 |
| <b>2.5:</b> T24886-5: MW-8                       | 13 |
| <b>2.6:</b> T24886-6: DUP                        | 15 |
| Section 3: Misc. Forms                           | 17 |
| 3.1: Chain of Custody                            | 18 |
| Section 4: GC/MS Volatiles - QC Data Summaries   | 21 |
| 4.1: Method Blank Summary                        | 22 |
| 4.2: Blank Spike Summary                         | 23 |
| 4.3: Matrix Spike/Matrix Spike Duplicate Summary | 24 |
| Section 5: General Chemistry - QC Data Summaries | 25 |
| 5.1: Method Blank and Spike Results Summary      | 26 |
| 5.2: Duplicate Results Summary                   | 27 |
| 5.3: Matrix Spike Results Summary                | 28 |



# Sample Summary

DCP Midstream, LLC

Job No: T24886

DEFS J-4-2

| Sample<br>Number | Collected<br>Date | l<br>Time By | Received | Matr<br>Code | іх<br>Туре         | Client<br>Sample ID |
|------------------|-------------------|--------------|----------|--------------|--------------------|---------------------|
| T24886-1         | 12/03/08          | 09:00 AEC    | 12/05/08 | AQ           | Ground Water       | MW-3                |
| T24886-2         | 12/03/08          | 08:45 AEC    | 12/05/08 | AQ           | Ground Water       | MW-4                |
| T24886-3         | 12/03/08          | 08:15 AEC    | 12/05/08 | AQ           | Ground Water       | MW-6                |
| T24886-3D        | 12/03/08          | 08:15 AEC    | 12/05/08 | AQ           | Water Dup/MSD      | MW-6 MSD            |
| T24886-3S        | 12/03/08          | 08:15 AEC    | 12/05/08 | AQ           | Water Matrix Spike | MW-6 MS             |
| T24886-4         | 12/03/08          | 07:35 AEC    | 12/05/08 | AQ           | Ground Water       | MW-7                |
| T24886-5         | 12/03/08          | 07:20 AEC    | 12/05/08 | AQ           | Ground Water       | MW-8                |
| T24886-6         | 12/03/08          | 00:00 AEC    | 12/05/08 | AQ           | Ground Water       | DUP                 |









# Report of Analysis

Sample Results

4 of 28

|                                                           |                                                                                     | Repo                         | rt of An                   | alysis                                          |                   | Page 1 of                  |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------|----------------------------|-------------------------------------------------|-------------------|----------------------------|
| Client Sam<br>Lab Sampl<br>Matrix:<br>Method:<br>Project: | ple ID: MW-3<br>e ID: T24886-1<br>AQ - Ground Wat<br>SW846 8260B<br>DEFS J-4-2      | er                           |                            | Date Sampled<br>Date Received<br>Percent Solids |                   |                            |
| Run #1<br>Run #2                                          | File ID DF<br>Y0028946.D 1                                                          | Analyzed<br>12/08/08         | By<br>JL                   | Prep Date<br>n/a                                | Prep Batch<br>n/a | Analytical Batch<br>VY1977 |
| Run #1<br>Run #2                                          | Purge Volume<br>5.0 ml                                                              |                              |                            |                                                 |                   |                            |
| Purgeable                                                 | Aromatics                                                                           | . –                          |                            | •                                               |                   |                            |
| CAS No.                                                   | Compound                                                                            | Result                       | RL                         | MDL Units                                       | Q                 |                            |
| 71-43-2<br>108-88-3<br>100-41-4                           | Benzene<br>Toluene<br>Ethylbenzene                                                  | ND<br>ND<br>ND               | 0.0020<br>0.0020<br>0.0020 | 0.00046 mg/l<br>0.00048 mg/l<br>0.00045 mg/l    |                   |                            |
| 1330-20-7<br>CAS No.                                      | Xylene (total)<br>Surrogate Recoveries                                              | ND<br>Run# 1                 | 0.0060<br>Run# 2           | 0.0014 mg/l<br>Limits                           |                   |                            |
| 1868-53-7<br>17060-07-0<br>2037-26-5<br>460-00-4          | Dibromofluoromethane<br>1,2-Dichloroethane-D4<br>Toluene-D8<br>4-Bromofluorobenzene | 100%<br>112%<br>113%<br>105% |                            | 79-122%<br>75-121%<br>87-119%<br>80-133%        |                   |                            |

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



2550

Chloride

| Client Sample ID:<br>Lab Sample ID:<br>Matrix: | MW-3<br>T24886-1<br>AQ - Ground Water |    | Date Sampled: 12/03/08<br>Date Received: 12/05/08<br>Percent Solids: n/a |           |          |    |        |  |  |
|------------------------------------------------|---------------------------------------|----|--------------------------------------------------------------------------|-----------|----------|----|--------|--|--|
| Project:                                       | DEFS J-4-2                            |    |                                                                          | · · · · · |          |    |        |  |  |
| General Chemistry                              |                                       |    |                                                                          |           |          |    |        |  |  |
| Analyte                                        | Result                                | RL | Units                                                                    | DF        | Analyzed | By | Method |  |  |

mg/l

100

12/09/08 20:00 кр

100

Report of Analysis





Page 1 of 1

SM 4500 CL C

Report of Analysis

| Client Sam<br>Lab Sample<br>Matrix:<br>Method:<br>Project: | ple ID: MW-4<br>e ID: T24886<br>AQ - G<br>SW846<br>DEFS J                           | i-2<br>round Water<br>8260B<br>I-4-2 |                            |                                      | Date Sa<br>Date Ro<br>Percent           | mpled:<br>eceived:<br>t Solids: | 12/03/08<br>: 12/05/08<br>: n/a |                      |       |
|------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------|----------------------------|--------------------------------------|-----------------------------------------|---------------------------------|---------------------------------|----------------------|-------|
| Run #1<br>Run #2                                           | File ID<br>Y0028947.D                                                               | DF<br>1                              | Analyzed<br>12/08/08       | By<br>JL                             | Prep Da<br>n/a                          | te                              | Prep Batch<br>n/a               | Analytical<br>VY1977 | Batch |
| Run #1<br>Run #2                                           | Purge Volume<br>5.0 ml                                                              |                                      |                            |                                      |                                         |                                 |                                 |                      |       |
| Purgeable                                                  | Aromatics                                                                           |                                      |                            |                                      |                                         |                                 |                                 | ,                    |       |
| CAS No.                                                    | Compound                                                                            |                                      | Result                     | RL                                   | MDL                                     | Units                           | Q                               |                      |       |
| 71-43-2<br>108-88-3<br>100-41-4<br>1330-20-7               | Benzene<br>Toluene<br>Ethylbenzene<br>Xylene (total)                                |                                      | ND<br>ND<br>ND<br>ND       | 0.0020<br>0.0020<br>0.0020<br>0.0060 | 0.00046<br>0.00048<br>0.00045<br>0.0014 | mg/l<br>mg/l<br>mg/l<br>mg/l    |                                 |                      |       |
| CAS No.                                                    | Surrogate Rec                                                                       | overies                              | Run# 1                     | Run# 2                               | Limit                                   | s                               |                                 |                      |       |
| 1868-53-7<br>17060-07-0<br>2037-26-5<br>460-00-4           | Dibromofluoromethane<br>1,2-Dichloroethane-D4<br>Toluene-D8<br>4-Bromofluorobenzene |                                      | 96%<br>106%<br>106%<br>99% |                                      | 79-12<br>75-12<br>87-11<br>80-13        | 2%<br>1%<br>9%                  |                                 |                      |       |

ND = Not detectedMDL - Method Detection LimitRL = Reporting LimitE = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



Report of Analysis

| Client Sample ID:<br>Lab Sample ID:<br>Matrix: | MW-4<br>T24886-2<br>AQ - Ground Water |     |       | Date S<br>Date I<br>Percer | Sampled: 12/03/0<br>Received: 12/05/0<br>nt Solids: n/a | 18<br>18 |              |
|------------------------------------------------|---------------------------------------|-----|-------|----------------------------|---------------------------------------------------------|----------|--------------|
| Project:                                       | DEFS J-4-2                            |     |       | 1 01 00                    | nt bonds. ma                                            |          |              |
| General Chemistry                              | y                                     |     |       |                            |                                                         |          |              |
| Analyte                                        | Result                                | RL  | Units | DF                         | Analyzed                                                | By       | Method       |
| Chloride                                       | 70.0                                  | 2.0 | mg/l  | 2                          | 12/09/08 20:00                                          | KD       | SM 4500 CL C |



.

2.2

T24886-3

4-Bromofluorobenzene

AO - Ground Water

SW846 8260B

Client Sample ID: MW-6

Lab Sample ID:

Matrix:

Method:

Project:

Run #1

Run #2

Run #1

Run #2

CAS No.

71-43-2

108-88-3

100-41-4

CAS No.

460-00-4

**Report of Analysis** 

DEFS J-4-2 File ID DF By Prep Date Prep Batch Analyzed Y0028948.D 1 12/08/08 JL n/a n/a Purge Volume 5.0 ml **Purgeable Aromatics** Compound RL MDL Units Q Result Benzene ND 0.0020 0.00046 mg/l 0:00048 mg/l Toluene ND 0.0020

Ethylbenzene ND 0.0020 0.00045 mg/l 1330-20-7 Xylene (total) ND 0.0060 0.0014 mg/l Surrogate Recoveries Run#1 Run# 2 Limits 1868-53-7 Dibromofluoromethane 95% 79-122% 17060-07-0 1,2-Dichloroethane-D4 75-121% 107% 2037-26-5 Toluene-D8 104% 87-119%

101%

ND = Not detectedMDL - Method Detection Limit **RL** = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



Page 1 of 1

**Analytical Batch** 

VY1977

12/03/08

Date Sampled:

80-133%

Date Received: 12/05/08

Percent Solids: n/a

| Client Sample ID:<br>Lab Sample ID:<br>Matrix: | MW-6<br>T24886-3<br>AQ - Ground Water | Sampled: 12/03/0<br>Received: 12/05/0<br>nt Solids: n/a | npled: 12/03/08<br>ceived: 12/05/08<br>Solids: n/a |    |                |    |              |  |
|------------------------------------------------|---------------------------------------|---------------------------------------------------------|----------------------------------------------------|----|----------------|----|--------------|--|
| Project:                                       | DEFS J-4-2                            |                                                         |                                                    |    |                |    |              |  |
| General Chemistry                              | 1                                     | <b></b> .                                               |                                                    |    |                |    |              |  |
| Analyte                                        | Result                                | RL                                                      | Units                                              | DF | Analyzed       | By | Method       |  |
| Chloride                                       | 391                                   | 10                                                      | mg/l                                               | 10 | 12/09/08 20:00 | KD | SM 4500 CL C |  |

Report of Analysis

RL = Reporting Limit

•





Report of Analysis

| Client Sam<br>Lab Sample<br>Matrix:<br>Method:<br>Project: | ple ID: MW-7<br>e ID: T2488<br>AQ -<br>SW84<br>DEFS      | 7<br>66-4<br>Ground Water<br>6 8260B<br>9 J-4-2 |                              |                                      | Date Samp<br>Date Recei<br>Percent So               | oled: 12/03/08<br>ved: 12/05/08<br>lids: n/a |                            |
|------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|------------------------------|--------------------------------------|-----------------------------------------------------|----------------------------------------------|----------------------------|
| Run #1<br>Run #2                                           | File ID<br>Y0028949.D                                    | DF<br>1                                         | Analyzed<br>12/08/08         | By<br>JL                             | Prep Date<br>n/a                                    | Prep Batch<br>n/a                            | Analytical Batch<br>VY1977 |
| Run #1<br>Run #2                                           | Purge Volume<br>5.0 ml                                   | 3                                               |                              |                                      |                                                     |                                              |                            |
| Purgeable                                                  | Aromatics                                                |                                                 |                              |                                      |                                                     |                                              |                            |
| CAS No.                                                    | Compound                                                 |                                                 | Result                       | RL                                   | MDL Un                                              | nits Q                                       |                            |
| 71-43-2<br>108-88-3<br>100-41-4<br>1330-20-7               | Benzene<br>Toluene<br>Ethylbenzene<br>Xylene (total)     | •                                               | ND<br>ND<br>ND<br>ND         | 0.0020<br>0.0020<br>0.0020<br>0.0060 | 0.00046 mg<br>0.00048 mg<br>0.00045 mg<br>0.0014 mg | 2/1<br>2/1<br>2/1<br>2/1                     |                            |
| CAS No.                                                    | Surrogate R                                              | ecoveries                                       | Run# 1                       | Run# 2                               | Limits                                              |                                              |                            |
| 1868-53-7<br>17060-07-0<br>2037-26-5<br>460-00-4           | Dibromofluo<br>1,2-Dichloro<br>Toluene-D8<br>4-Bromofluo | romethane<br>ethane-D4<br>robenzene             | 101%<br>112%<br>111%<br>109% |                                      | 79-122%<br>75-121%<br>87-119%<br>80-133%            |                                              |                            |

ND = Not detected MDL - Method Detection Limit RL = Reporting LimitE = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



Report of Analysis

Client Sample ID: MW-7 T24886-4 Date Sampled: 12/03/08 Lab Sample ID: Matrix: AQ - Ground Water Date Received: 12/05/08 Percent Solids: n/a DEFS J-4-2 Project: General Chemistry Result RL Units DF Analyzed By Method Analyte Chloride 1050 50 mg/l 50 12/09/08 20:00 KD SM 4500 CL C



| Client Sam<br>Lab Sampl<br>Matrix:<br>Method:<br>Project: | ple ID: MW-8<br>le ID: T24886-5<br>AQ - Ground Wat<br>SW846 8260B<br>DEFS J-4-2     | er                          |                                      | Date Sampled:<br>Date Received<br>Percent Solids            | 12/03/08<br>: 12/05/08<br>: n/a |                            |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------|--------------------------------------|-------------------------------------------------------------|---------------------------------|----------------------------|
| Run #1<br>Run #2                                          | File ID         DF           Y0028950.D         1                                   | Analyzed<br>12/08/08        | By<br>JL                             | Prep Date<br>n/a                                            | Prep Batch<br>n/a               | Analytical Batch<br>VY1977 |
| Run #1<br>Run #2                                          | Purge Volume<br>5.0 ml                                                              |                             |                                      |                                                             |                                 | •                          |
| Purgeable                                                 | Aromatics                                                                           |                             |                                      |                                                             |                                 |                            |
| CAS No.                                                   | Compound                                                                            | Result                      | RL                                   | MDL Units                                                   | Q                               | •                          |
| 71-43-2<br>108-88-3<br>100-41-4<br>1330-20-7              | Benzene<br>Toluene<br>Ethylbenzene<br>Xylene (total)                                | ND<br>ND<br>ND<br>ND        | 0.0020<br>0.0020<br>0.0020<br>0.0060 | 0.00046 mg/l<br>0.00048 mg/l<br>0.00045 mg/l<br>0.0014 mg/l |                                 |                            |
| CAS No.                                                   | Surrogate Recoveries                                                                | Run# 1                      | Run# 2                               | Limits                                                      |                                 |                            |
| 1868-53-7<br>17060-07-0<br>2037-26-5<br>460-00-4          | Dibromofluoromethane<br>1,2-Dichloroethane-D4<br>Toluene-D8<br>4-Bromofluorobenzene | 97%<br>109%<br>106%<br>104% |                                      | 79-122%<br>75-121%<br>87-119%<br>80-133%                    |                                 |                            |

Report of Analysis

ND = Not detected MDL - Method Detection Limit RL = Reporting LimitE = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



|                                                |                                       | Repo     | rt of Ar | alysis                |                                                         |          | Page 1 of 1  |
|------------------------------------------------|---------------------------------------|----------|----------|-----------------------|---------------------------------------------------------|----------|--------------|
| Client Sample ID:<br>Lab Sample ID:<br>Matrix: | MW-8<br>T24886-5<br>AQ - Ground Water |          |          | Date<br>Date<br>Perce | Sampled: 12/03/0<br>Received: 12/05/0<br>nt Solids: n/a | )8<br>)8 |              |
| Project:                                       | DEFS J-4-2                            |          |          |                       |                                                         |          |              |
| General Chemistry                              | y .                                   | <u>_</u> |          | . <u>.</u>            |                                                         |          | <u> </u>     |
| Analyte                                        | Result                                | RL       | Units    | DF                    | Analyzed                                                | Ву       | Method       |
| Chloride                                       | 480                                   | 10       | mg/l     | 10                    | 12/09/08 20:00                                          | KD       | SM 4500 CL C |

RL = Reporting Limit

2



2.5

|                                                             |                                   |                                           |                                         | Repo                        | rt of Ana                            | alysis                                  |                                  |                             | Page 1 of                  |
|-------------------------------------------------------------|-----------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------|--------------------------------------|-----------------------------------------|----------------------------------|-----------------------------|----------------------------|
| Client Samp<br>Lab Sample<br>Matrix:<br>Method:<br>Project: | ple ID:<br>e ID:                  | DUP<br>T24886<br>AQ - C<br>SW846<br>DEFS  | 5-6<br>Ground Water<br>5 8260B<br>J-4-2 |                             |                                      | Date Sa<br>Date R<br>Percent            | ampled:<br>eceived:<br>t Solids: | 12/03/08<br>12/05/08<br>n/a |                            |
| Run #1<br>Run #2                                            | File ID<br>Y0028                  | 951.D                                     | DF<br>1                                 | Analyzed<br>12/08/08        | By .<br>JL                           | Ртер Da<br>n/a                          | te                               | Prep Batch<br>n/a           | Analytical Batch<br>VY1977 |
| Run #1<br>Run #2                                            | Purge<br>5.0 ml                   | Volume                                    |                                         |                             |                                      |                                         |                                  |                             |                            |
| Purgeable                                                   | Aromat                            | ics                                       |                                         |                             |                                      |                                         |                                  |                             |                            |
| CAS No.                                                     | Comp                              | oound                                     |                                         | Result                      | RL                                   | MDL                                     | Units                            | Q                           |                            |
| 71-43-2<br>108-88-3<br>100-41-4<br>1330-20-7                | Benze<br>Tolue<br>Ethyll<br>Xylen | ene<br>ne<br>benzene<br>le (total)        |                                         | ND<br>ND<br>ND<br>ND        | 0.0020<br>0.0020<br>0.0020<br>0.0060 | 0.00046<br>0.00048<br>0.00045<br>0.0014 | mg/l<br>mg/l<br>mg/l<br>mg/l     |                             |                            |
| CAS No.                                                     | Surro                             | gate Re                                   | coveries                                | Run# 1                      | Run# 2                               | Limi                                    | ts                               |                             |                            |
| 1868-53-7<br>17060-07-0<br>2037-26-5<br>460-00-4            | Dibro<br>1,2-D<br>Tolue<br>4-Bro  | mofluore<br>ichloroe<br>ne-D8<br>mofluore | omethane<br>thane-D4<br>obenzene        | 96%<br>106%<br>106%<br>107% |                                      | 79-12<br>75-12<br>87-11<br>80-13        | 22%<br>21%<br>19%<br>33%         |                             |                            |

MDL - Method Detection Limit ND = Not detected RL = Reporting Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound



2.6

2700

Chloride

P.C.

|                                                |                                      | Repo | rt of An | alysis                    |                                                     |              | Page 1 of |
|------------------------------------------------|--------------------------------------|------|----------|---------------------------|-----------------------------------------------------|--------------|-----------|
| Client Sample ID:<br>Lab Sample ID:<br>Matrix: | DUP<br>T24886-6<br>AQ - Ground Water |      |          | Date S<br>Date D<br>Perce | Sampled: 12/03<br>Received: 12/05<br>nt Solids: n/a | 3/08<br>5/08 |           |
| Project:                                       | DEFS J-4-2                           |      |          |                           |                                                     |              |           |
| General Chemistry                              | 7                                    |      |          |                           |                                                     |              |           |
| Analyte                                        | Result                               | RL   | Units    | DF                        | Analyzed                                            | Ву           | Method    |

mg/l

100

12/09/08 20:00 KD

100





Page 1 of 1

SM 4500 CL C



Misc. Forms

**Custody Documents and Other Forms** 

Includes the following where applicable:

• Chain of Custody

A .

×.



|                                   |              |                 | Ac<br>101        | cutest Lal<br>65 Harw | in Drive | s Gulf (       | Coast<br>150 H | lousto    | on, TX 77 | 036       |             |           | Accutest  | Job #:     |          |           |           |               |         |
|-----------------------------------|--------------|-----------------|------------------|-----------------------|----------|----------------|----------------|-----------|-----------|-----------|-------------|-----------|-----------|------------|----------|-----------|-----------|---------------|---------|
|                                   |              |                 | /13              | -2/1-4/(              | O F      | ax: /13-       | Z/1-4          | +//0      |           |           |             |           | ACCUTEST  | Quote #:   | 72488    | <b>36</b> |           |               |         |
| Client Information                |              |                 | Facili           | ty inform             | ation    |                |                |           |           |           | Analy       | vtical In | formation |            | Į        | T         |           |               |         |
| DCP Midstream                     |              | An              | nerican Envi     | ronment               | al Cons  | ulting, l      | LP             |           |           |           |             |           | · ·       |            |          |           |           |               |         |
| ame<br>270 Soucesteenth Street St |              | Project Nan     | 1e               |                       | •        |                |                |           |           |           | 8           |           |           |            |          | · ·       |           |               |         |
| ddress                            | III.e 2000   | Location        | ·                | DCP J-4               | -2       |                |                |           |           |           | 326         |           |           |            | 1        |           |           |               |         |
| Denver CO                         | 80202        |                 |                  |                       |          |                |                |           |           |           |             |           |           |            |          |           |           |               |         |
| ty State                          | Zip          | Project/PO      | Ø:               |                       |          |                |                |           | ].        |           | E E         |           |           |            |          |           |           |               |         |
| Stephen Weathers                  |              |                 |                  | DCP                   | Aidstre  | am J42         | 2              |           |           |           | R R         |           |           |            |          |           |           |               |         |
| hone #: 303.605.1718              |              | FAX #:          |                  |                       |          |                |                |           | 1 ig      |           | E<br>E      |           |           | 1          |          | i i       |           |               |         |
|                                   | Т            | 1<br>Collection |                  |                       |          | Pres           | ervat          | ion       | 82        | ide       | S           |           |           |            | 1        | 1         |           |               |         |
|                                   | <b></b>      |                 | Sampled          |                       | # 01     | <u> </u>       | 2              | 5 .       | ΙĚ        | i je      | W/S         |           |           |            |          |           |           |               |         |
| Field ID / Point of Collection    | Date         | Time            | By               | Matrix                | bottles  | Į Į Į          | Ĭ              | 월 호       | <u> </u>  | 5         | Ĭ           |           | _         |            | ļ        | <u> </u>  | ļ         |               |         |
| IW-1                              |              |                 |                  | GW``                  | 3        | x              |                |           | x         | x         |             |           |           |            |          |           |           |               |         |
| AW-2                              | 1            |                 |                  | GW                    | 3        | x              |                |           | x         | x         |             |           |           |            | 1        |           |           |               |         |
| IW-3                              | B 108        | 900             | AC               | GW                    | 3        | x              |                |           | x         | X         |             |           |           |            |          |           |           |               |         |
| W-4                               | 12/3/08      | 845             | HSC.             | GW                    | 3        | x              |                |           | x         | x         |             |           |           |            |          |           |           |               |         |
| AW-6                              | 12/2/18      | RIS             | ASC              | GW                    | 3        | X              | H              |           | ×         | ×         |             |           | -         | <u> </u>   | 1        |           |           |               |         |
| -                                 | 13/2/28      | 775             | ACC              | 011                   | 2        | <del>i t</del> | ++             |           |           | Ŷ         | <u> </u>    |           |           | -          |          | —         |           | 1             | 1       |
| <u>w-</u>                         | 1212 P       | 11-1-           | 12               | GW                    | 3        |                | $\vdash$       | -         |           | <u> </u>  |             |           |           |            |          |           |           |               |         |
| IW-8                              | 12308        | 640             | ACC              | GW                    | 3        |                |                |           | X         | ×         | -           | <u> </u>  |           |            |          |           | <u> </u>  |               |         |
| up                                | 1 2 2 12     | 000             | the              | GW                    | 3        | ×              | $\square$      |           | X         | X         |             | <u> </u>  |           |            | l        |           | 1         |               |         |
| rip Blank                         | 12/208       | 000             | hab              | GW                    | 3        | X              |                | -         | ×         |           | ļ           |           |           |            | <u> </u> | <u> </u>  |           |               | <b></b> |
| IW- MS/MSD MW-6                   | 12/18        | 815             | ACC              | GW                    | 6        | X              |                |           | ·         |           | X           |           |           |            |          |           | L         |               |         |
|                                   | <u> </u>     |                 |                  |                       |          |                |                |           |           |           |             |           |           |            |          |           |           | 1             |         |
| Turnaround Information            | n            | <u> </u>        |                  | 1-1.1                 | Data     | Delivera       | able li        | nform     | ation     | 5 G. 1    |             |           | Comm      | ents / Rer | narks    |           | Į.        |               |         |
| 21 Day Standard                   | Approved     | By:             | NJ Rec           | luced                 |          | c.             | omme           | rcial *   | -A-       |           |             |           |           |            |          |           |           |               |         |
| 14 Dav                            |              |                 |                  |                       |          | ٦a             | omme           | incial *  | "B"       |           | 1           |           |           |            |          |           |           |               |         |
|                                   |              | · · · · ·       |                  |                       |          |                |                |           | -<br>-    |           | Please      | send      | electroni | ic (PDF)   | copy o   | f results | s to Step | phen W        | eathers |
|                                   |              |                 |                  |                       |          | <u> </u>       | r cau          | egory     | ь         | •         | at DCP      | (SWV      | Veathers  | @dcpm      | idstrea  | n.com)    |           |               |         |
| Other (Days)                      |              |                 | 니느 Disk D        | eliverable            |          | St             | tate F         | orms      |           |           |             |           |           |            |          |           |           |               |         |
| RUSH VAT is for FAD data          |              |                 | Other (          | Specify)              |          |                |                |           |           | -         |             |           |           |            |          |           |           |               |         |
| uniess previously approved.       | le Custody - | ust be door     | I                | anch time             | eample   | chance         |                | orlor     | Includio  | onurior 4 | l<br>thunnu |           |           |            | T        |           |           |               | ·       |
| Relinguighed by Sampler.          | Date Time:   | uar de docur    | Received By      | eech unie             | sample   | s change       | - poss         | telinqu   | ished By: | couner a  | euvery.     | Date Tin  | ne:       |            | Received | By:       |           | <u>,</u> с. : |         |
| 1/1/1                             | 12/4/08      | 400             | 1                |                       |          |                | 2              | 2         |           |           |             |           |           |            | 2        |           |           |               |         |
| Relinquished by Sampler:          | Date/Tinle:  |                 | Received By      |                       |          |                | F              | telingu   | Ished By: |           |             | Date Tin  | ne:       |            | Received | By:       | -         |               |         |
| 3<br>Relinquished by Sampler:     | Date Time:   |                 | 3<br>Received By |                       |          |                |                | i<br>eal# |           | F         | reserved wh | ere appli | cat       |            | 0n lce:  |           |           |               |         |
| 5 1                               | 17 5.08      | Brit            | 5 1/20           | 1 hours               | li,      |                |                |           |           |           |             | .,        |           |            |          |           | 1. 4      | <del>,</del>  |         |

4-2-5

÷.

. .

28. v. j.

48 × 1, 38

- (TA)

6. w . A

÷ .

.....

## T24886: Chain of Custody Page 1 of 3



| SAMPLE | INSPECTION | FORM |
|--------|------------|------|
|--------|------------|------|

di G

:

- c4 J2 -

N. N.

100 m

| Acculest Job Number: 724896                                                        | Client: MP middreen                                                                                                        | Project: 060 5-4-2                                                           |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Date/Time Received: " 12.5.08 0445                                                 | # of Coolers Received:(                                                                                                    | Thermometer #                                                                |
| Cooler Temps: #1: #2:                                                              | _ #3: #4: #5:                                                                                                              | #6: #7: #8:                                                                  |
| Method of Delivery:                                                                | Acculest Courier Greyhound                                                                                                 | Delivery Other                                                               |
| Airbill Numbers:                                                                   | 8663 2305 708 F                                                                                                            |                                                                              |
| COOLER INFORMATION<br>Custody seal missing or not intact                           | Sample INFORMATION Sample containers received broken                                                                       | TRIP BLANK INFORMATION                                                       |
| Wet ice received in cooler                                                         | Sample labels missing or illegible                                                                                         | Trip Blank not infact<br>Received Water Trip Blank                           |
| CHAIN OF CUSTODY<br>Chain of Custody not received<br>Sample D/T unclear or missing | D/T on COC does not match label(s)<br>Sample/Bottles revd but no analysis on COC<br>Sample listed on COC, but not received |                                                                              |
| Analyses unclear or missing                                                        | Bottles missing for requested analysis<br>Insufficient volume for analysis<br>Sample received unproperty preserved         | Number of Encores?<br>Number of 5035 kits?<br>Number of Jab-Mitered Austals? |
| Summary of Discrepancies:<br>Sui not received the block but it is listed on the s  | Q.C                                                                                                                        |                                                                              |
|                                                                                    |                                                                                                                            |                                                                              |
| TERSTANDARD CLONATEDE / DATE: 1. 1/                                                |                                                                                                                            | ······                                                                       |
| TECHNICIAN SIGNATURE/DATE: Parte                                                   | San Alle than I                                                                                                            |                                                                              |
| INFORMATION AND SAMPLE LABELING VE                                                 | RIFIED BY: SUNION LONG                                                                                                     | · · · · · · · · · · · · · · · · · · ·                                        |
|                                                                                    | · · · CORRECTIVE ACTION                                                                                                    |                                                                              |
| Client Representative Notified:                                                    | 1                                                                                                                          | Date: 12-7-08                                                                |
| By Accutest Representative:                                                        | Ngyen                                                                                                                      | Via: Hume Email                                                              |
| Mike Stewart w                                                                     | es not there. Soal                                                                                                         | ke to Cort and let                                                           |
| him know that                                                                      | we did not received                                                                                                        | a (TB) for this Tob.                                                         |
| Daged Willing                                                                      | lucie white etc                                                                                                            | ve any question .                                                            |
|                                                                                    | okhproce                                                                                                                   | eed wandysis 1480                                                            |

T24886: Chain of Custody Page 2 of 3



3.1

હ્ય

#### SAMPLE RECEIPT LOG

.

2.8.7.0

1. 1. 2.

ي. يوني (ي:

\_\_\_\_\_. ₩\_\_\_\_.

.

, o , v , v

| LIENT:             | <u> </u>                              | DCP MIOSTRE                           | <u>wy</u>   |        | - INITIALS | :        | 17       |                                                                   |     | . <u> </u> |
|--------------------|---------------------------------------|---------------------------------------|-------------|--------|------------|----------|----------|-------------------------------------------------------------------|-----|------------|
| OOLER#             | SAMPLE ID                             | FIELD ID                              | DATE        | MATRIX | VOL        | BOTTLE # | LOCATION | PRESERV                                                           | F   | ч          |
| `                  | I I                                   | Mw 8                                  | 12.3.04 900 | 6700   | 250mc      | 1        | tu       | U 2 3 4<br>.5678                                                  | <2  | >          |
| 1                  | J                                     | 4                                     | Ł           |        | 40.22      | e-4      | UR.      | 1 0 3 4<br>5 6 7 8                                                | <2  | >          |
|                    | 2                                     | Mus¥                                  | 12-3.06 245 |        | 250 m      | i        | ユレレ      | 0 2 3 4<br>5 6 7 8                                                | <2  |            |
|                    | Ŷ                                     | l                                     | L           |        | tune       | 2.4      | VR       | 1 02 3 4<br>5 6 7 8                                               | <2  | :          |
|                    | 3                                     | ethuin                                | 12.6.0% 85  |        | 25Unc      | 1        | 1u       | $\mathcal{O}_{5}^{2}$ $\mathcal{O}_{5}^{3}$ $\mathcal{O}_{7}^{4}$ | <2  |            |
|                    |                                       | ₽                                     | U           |        | HOAL       | 2-10     | v 12     | 1 (2) 3 4<br>5 6 7 8                                              | <2  |            |
|                    | 4                                     | Mw 7                                  | 12 5,04 735 |        | 200ml      | i        | 100      | 0 2 3 4<br>5 6 7 8                                                | <2  | :          |
|                    | i                                     | <u> </u>                              | U U         |        | 1 your     | 2-4      | JE       | 1 (2) 3 4<br>5 6 7 8                                              | <2  |            |
| $\overline{\cdot}$ | 5                                     | Mw&                                   |             |        | enal       | ,        | 111      | $O_{5}^{2} = 3 4$                                                 | <2  |            |
|                    | 4                                     | <u>ر المراجع</u>                      | 1           | 1-1-   | wit        | 2.4      | VE       | 1 (2) 3 4<br>5 6 7 8                                              | <2  |            |
|                    | æ.                                    |                                       | 10.1.19     |        | 271,44     | 1        | 111      | $ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 5 & 7 & 8 \end{pmatrix} $  | <2  |            |
| 1                  | 4                                     |                                       |             | 1 J    | yorl       | 2-4      | · v#     | 1 0 3 4<br>5 6 7 8                                                | <2  |            |
|                    |                                       | · · · · · · · · · · · · · · · · · · · |             |        |            |          |          | 1 2 3 4<br>5 6 7 8                                                | <2  | _          |
|                    |                                       |                                       | · ·         | 1      |            |          |          | 1 2 3 4                                                           | <2  |            |
|                    |                                       | 17 11 11 13                           |             |        |            |          |          | 1 2 3 4<br>5 6 7 8                                                | <2  |            |
|                    |                                       | · · · · · · · · · · · · · · · · · · · |             |        |            |          |          | 1 2 3 4<br>5 6 7 8                                                | <2  |            |
|                    |                                       |                                       |             |        |            |          | i        | 1 2 3 4<br>5 6 7 8                                                | <2  |            |
|                    |                                       |                                       |             |        | · · · · ·  |          | A        | 1 2 3 4<br>5 5 7 8                                                | <2  |            |
|                    |                                       |                                       |             |        |            |          |          | 1 2 3 4<br>5 6 7 8                                                | <2  |            |
|                    |                                       |                                       |             |        |            |          |          | 1 2 3 4<br>5 6 7 8                                                | <2  | _          |
|                    |                                       |                                       |             |        |            |          |          | 1 2 3<br>5 6 7 8                                                  | -22 |            |
|                    | · · · · · · · · · · · · · · · · · · · |                                       |             |        |            |          |          | 1 2 3 4<br>5 6 7 R                                                | <2  |            |

T24886: Chain of Custody Page 3 of 3



ල



Section 4

| GC/MS | Volatiles |
|-------|-----------|
|       | 6         |

4 F

# QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries



#### Method Blank Summary

17060-07-0 1,2-Dichloroethane-D4

4-Bromofluorobenzene

2037-26-5 Toluene-D8

460-00-4

| Job Number: | T24886                  |
|-------------|-------------------------|
| Account:    | DUKE DCP Midstream, LLC |
| Project:    | DEFS J-4-2              |

| Sample    | File ID    | DF | Analyzed | By | Prep Date | Prep Batch | Analytical Batch |
|-----------|------------|----|----------|----|-----------|------------|------------------|
| VY1977-MB | Y0028944.D | 1  | 12/08/08 | JL | n/a       | n/a        | VY1977           |
|           |            |    |          |    |           |            |                  |

75-121%

87-119%

80-133%

The QC reported here applies to the following samples:

Method: SW846 8260B

T24886-1, T24886-2, T24886-3, T24886-4, T24886-5, T24886-6

| CAS No.                                      | Compound                                             | Result               | RL                       | MDL                         | Units Q                      | ļ |
|----------------------------------------------|------------------------------------------------------|----------------------|--------------------------|-----------------------------|------------------------------|---|
| 71-43-2<br>100-41-4<br>108-88-3<br>1330-20-7 | Benzene<br>Ethylbenzene<br>Toluene<br>Xylene (total) | ND<br>ND<br>ND<br>ND | 2.0<br>2.0<br>2.0<br>6.0 | 0.46<br>0.45<br>0.48<br>1.4 | ug/l<br>ug/l<br>ug/l<br>ug/l |   |
| CAS No.                                      | Surrogate Recoveries                                 |                      | Limi                     | ts                          |                              |   |
| 1868-53-7                                    | Dibromofluoromethane                                 | 92%                  | 79-12                    | 22%                         |                              |   |

102%

102%

97%



Page 1 of 1

4.1

# Blank Spike Summary

| Job Number: | T24886                  |
|-------------|-------------------------|
| Account:    | DUKE DCP Midstream, LLC |
| Project:    | DEFS J-4-2              |

| Sample    | File ID    | DF  | <b>Analyzed</b> 12/09/08 | By | Prep Date | Prep Batch | Analytical Batch |
|-----------|------------|-----|--------------------------|----|-----------|------------|------------------|
| VY1977-BS | Y0028960.I | ) 1 |                          | JL | n/a       | n/a        | VY1977           |
|           |            |     |                          |    |           |            |                  |

The QC reported here applies to the following samples:

Method: SW846 8260B

T24886-1, T24886-2, T24886-3, T24886-4, T24886-5, T24886-6

| CAS No.    | Compound              | Spike<br>ug/l | BSP<br>ug/l | BSP<br>% | Limits |
|------------|-----------------------|---------------|-------------|----------|--------|
| 71-43-2    | Benzene               | 25            | 24.1        | 96       | 76-118 |
| 100-41-4   | Ethylbenzene          | .25           | 23.7        | 95       | 75-112 |
| 108-88-3   | Toluene               | 25            | 25.5        | 102      | 77-114 |
| 1330-20-7  | Xylene (total)        | 75            | 70.9        | 95       | 75-111 |
| CAS No.    | Surrogate Recoveries  | BSP           | Li          | Limits   |        |
| 1868-53-7  | Dibromofluoromethane  | <b>97</b> %   | 79          | -122%    |        |
| 17060-07-0 | 1,2-Dichloroethane-D4 | 114%          | 75          | -121%    |        |
| 2037-26-5  | Toluene-D8            | 114%          | . 87        | -119%    |        |
| 460-00-4   | 4-Bromofluorobenzene  | 105%          | - 80        | -133%    |        |



j

## Matrix Spike/Matrix Spike Duplicate Summary

| Job Number: | T24886                  |
|-------------|-------------------------|
| Account:    | DUKE DCP Midstream, LLC |
| Project:    | DEFS J-4-2              |

| Sample<br>T24886-3MS<br>T24886-3MSD<br>T24886-3 | File ID<br>Y0028961.D<br>Y0028962.D<br>Y0028948.D | DF<br>1<br>1<br>1 | Analyzed<br>12/09/08<br>12/09/08<br>12/08/08 | By<br>JL<br>JL<br>JL | Prep Date<br>n/a<br>n/a<br>n/a | Prep Batch<br>n/a<br>n/a<br>n/a | Analytical Batch<br>VY1977<br>VY1977<br>VY1977<br>VY1977 |
|-------------------------------------------------|---------------------------------------------------|-------------------|----------------------------------------------|----------------------|--------------------------------|---------------------------------|----------------------------------------------------------|
|-------------------------------------------------|---------------------------------------------------|-------------------|----------------------------------------------|----------------------|--------------------------------|---------------------------------|----------------------------------------------------------|

The QC reported here applies to the following samples:

Method: SW846 8260B

T24886-1, T24886-2, T24886-3, T24886-4, T24886-5, T24886-6

| Compound              | T24886-3                                                                                                                                                                        | Spike                                                                                                                                                                                    | MS                                                                                                                                                                                                                                   | MS<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MSD<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | רועע                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Limits<br>Rec/RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compound              | ug/i (                                                                                                                                                                          | Į ug/i                                                                                                                                                                                   | ug/I                                                                                                                                                                                                                                 | /0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ug/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KI D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Benzene               | ND                                                                                                                                                                              | 25                                                                                                                                                                                       | 24.7                                                                                                                                                                                                                                 | <b>99</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 76-118/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ethylbenzene          | ND                                                                                                                                                                              | 25                                                                                                                                                                                       | 24.3                                                                                                                                                                                                                                 | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 75-112/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Toluene               | ND                                                                                                                                                                              | 25                                                                                                                                                                                       | 26.0                                                                                                                                                                                                                                 | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 77-114/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Xylene (total)        | ND                                                                                                                                                                              | 75                                                                                                                                                                                       | 72.9                                                                                                                                                                                                                                 | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 71.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 75-111/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Surrogate Recoveries  | MS                                                                                                                                                                              | MSD                                                                                                                                                                                      | Т2                                                                                                                                                                                                                                   | 4886-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Dibromofluoromethane  | 96%                                                                                                                                                                             | 96%                                                                                                                                                                                      | 95                                                                                                                                                                                                                                   | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 79-122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1,2-Dichloroethane-D4 | 112%                                                                                                                                                                            | 115%                                                                                                                                                                                     | 10                                                                                                                                                                                                                                   | 7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75-121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Toluene-D8            | 115%                                                                                                                                                                            | 105%                                                                                                                                                                                     | 10                                                                                                                                                                                                                                   | 4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 87-119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4-Bromofluorobenzene  | 109%                                                                                                                                                                            | 113%                                                                                                                                                                                     | 10                                                                                                                                                                                                                                   | 1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80-133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                       | Compound<br>Benzene<br>Ethylbenzene<br>Toluene<br>Xylene (total)<br>Surrogate Recoveries<br>Dibromofluoromethane<br>1,2-Dichloroethane-D4<br>Toluene-D8<br>4-Bromofluorobenzene | T24886-3<br>ug/lCompoundug/lBenzeneNDEthylbenzeneNDTolueneNDXylene (total)NDSurrogate RecoveriesMSDibromofluoromethane96%1,2-Dichloroethane-D4112%Toluene-D8115%4-Bromofluorobenzene109% | T24886-3<br>ug/lSpike<br>ug/lCompoundug/lQug/lBenzeneND25EthylbenzeneND25TolueneND25Xylene (total)ND75Surrogate RecoveriesMSMSDDibromofluoromethane96%96%1,2-Dichloroethane-D4112%115%Toluene-D8115%105%4-Bromofluorobenzene109%113% | T24886-3<br>ug/l         Spike<br>ug/l         MS<br>ug/l           Benzene         ND         25         24.7           Ethylbenzene         ND         25         24.3           Toluene         ND         25         26.0           Xylene (total)         ND         75         72.9           Surrogate Recoveries         MS         MSD         T2           Dibromofluoromethane         96%         96%         95           1,2-Dichloroethane-D4         112%         115%         10           Toluene-D8         115%         105%         10           4-Bromofluorobenzene         109%         113%         10 | T24886-3<br>ug/l       Spike<br>ug/l       MS<br>ug/l       MS<br>ug/l       MS<br>ug/l       MS<br>ug/l       MS<br>ws/l         Benzene       ND       25       24.7       99         Ethylbenzene       ND       25       24.3       97         Toluene       ND       25       26.0       104.         Xylene (total)       ND       75       72.9       97         Surrogate Recoveries       MS       MSD       T24886-3         Dibromofluoromethane       96%       96%       95%         1,2-Dichloroethane-D4       112%       115%       107%         Toluene-D8       115%       105%       104%         4-Bromofluorobenzene       109%       113%       101% | T24886-3<br>ug/l       Spike<br>ug/l       MS<br>ug/l       MS<br>ug/l       MS<br>ug/l       MS<br>ug/l       MS<br>ug/l         Benzene       ND       25       24.7       99       24.5         Ethylbenzene       ND       25       24.3       97       24.2         Toluene       ND       25       26.0       104       24.5         Xylene (total)       ND       75       72.9       97       71.0         Surrogate Recoveries       MS       MSD       T24886-3       Limits         Dibromofluoromethane       96%       96%       95%       79-122'         1,2-Dichloroethane-D4       112%       115%       107%       75-121'         Toluene-D8       115%       105%       104%       87-119'         4-Bromofluorobenzene       109%       113%       101%       80-133' | T24886-3<br>ug/l       Spike<br>ug/l       MS<br>ug/l       MSD<br>ug/l       MSD<br>ug/l       MSD<br>ug/l       MSD<br>wg/l       MSD<br>wg/l | T24886-3<br>ug/l       Spike<br>ug/l       MS<br>ug/l       MS<br>ug/l       MSD<br>ug/l       MSD<br>ug/l       MSD<br>wg/l       MSD<br>wg/l      MSD<br>wg/l       MSD<br>wg/l |



Page 1 of 1

4.3



#### Section 5

## General Chemistry

## QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries

T24886 Laboratories

# METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

# Login Number: T24886 Account: DUKE - DCP Midstream, LLC Project: DEFS J-4-2

| Analyte                                                             | Batch ID                             | RL        | MB<br>Result       | Units  | Spike<br>Amount | BSP<br>Result | BSP<br>%Recov | QC<br>Limits |          |
|---------------------------------------------------------------------|--------------------------------------|-----------|--------------------|--------|-----------------|---------------|---------------|--------------|----------|
| Chloride                                                            | GP5919/GN15638                       | 1.0       | <1.0               | ' mg/l | 1000            | 1000          | 100.0         | 92-107%      | <u>ب</u> |
| Associated Samples:<br>Batch GP5919: T24886<br>(*) Outside of QC li | 5-1, T24886-2, T24886-3, T24<br>mits | 886-4, T2 | ,<br>24886-5, T248 | 86-6   |                 |               |               |              | জ        |



#### DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

# Login Number: T24886 Account: DUKE - DCP Midstream, LLC Project: DEFS J-4-2

| Analyte                                                                                                                                                                                | Batch ID       | QC<br>Sample | Units | Original<br>Result | DUP<br>Result | RPD     | QC<br>Limits |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|-------|--------------------|---------------|---------|--------------|----|
| Chloride                                                                                                                                                                               | GP5919/GN15638 | T24886-3     | mg/l  | 391                | 415           | 6.0*(a) | 0-5%         | ເກ |
| AnalyteBatch IDSampleUnitsResultRPDLimitsChlorideGF5919/GN15638T24886-3mg/l3914156.0*(a)0-5%Associated Samples:Batch GF5919:T24886-1, T24886-2, T24886-3, T24886-4, T24886-5, T24886-6 |                |              |       |                    |               | জ       |              |    |



#### MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

.

#### Login Number: T24886 Account: DUKE - DCP Midstream, LLC Project: DEFS J-4-2

| Analyte                                                                                                           | Batch ID                              | QC<br>Sample | Units       | Original<br>Result | Spike<br>Amount | MS<br>Result | %Rec  | QC<br>Limits |         |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|-------------|--------------------|-----------------|--------------|-------|--------------|---------|
| Chloride                                                                                                          | GP5919/GN15638                        | T24886-3     | mg/l        | 391                | 400             | 825          | 109.0 | 81-119%      | ,<br>сл |
| Associated Samples:<br>Batch GP5919: T24886-1, T2488<br>(*) Outside of QC limits<br>(N) Matrix Spike Rec. outside | 86-2, T24886-3, T24<br>e of QC limits | 886-4, T2488 | 6-5, T24886 | 5-6                |                 |              |       |              | ଭା      |



T24886 Laboratories