

REPORTS

YEAR(S):

Imagine the result

Marathon Oil Company

Evaluation of Natural Attenuation Indian Basin Remediation Project Eddy County, New Mexico

May 12, 2008

North American Production Operations

P. O. Box 3128 Houston, TX 77253-3128

5555 San Felipe Road Houston, TX 77056-2799

Telephone: (713) 296-3510 FAX: (713) 499-8595

HAND DELIVERED

May 15, 2008

Mr. Wayne Price Environment Bureau - Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87504

RE: Evaluation of Natural Attenuation Indian Basin Remediation Project/GW-21, Eddy County, NM

Dear Mr. Price:

Please find enclosed the Evaluation of Natural Attenuation Report for Indian Basin Remediation Project. The report, which was prepared by ARCADIS G&M, Inc., summarizes the groundwater monitoring and remediation activities associated with the Indian Basin Remediation Project. Based on the the information reviewed and presented in this report, ARCADIS believes that closure of the Indian Basin Remediation Project is warranted.

If you have any questions or need any additional information, please contact me at (713) 296-3510 or at TCPersaud@MarathonOil.com.

Sincerely,

Penylenaico

Terry Persaud, P.E. Senior HES Professional

NM-IBRP-2504

VKK\TCP\ Enclosures

cc: Gail Chenoweth, Oil Asset Team Manager - w\o Encls Mark Treesh, Plant Superintendent - w\ Encls Paul Peacock, NAPO - HES Manager - w\o Encls

Alan J. Reed Jr., P.E.

Alan J. Reed Jr., P. Project Manager

David B. Vance

Principal Scientist

Steven P. Tischer Associate Vice President

Evaluation of Natural Attenuation

Indian Basin Remediation Project

Prepared for: Marathon Oil Company

Prepared by: ARCADIS 1004 North Big Spring Street Suite 300 Midland Texas 79701 Tel 432.687.5400 Fax 432.687.5401

Our Ref.: MT001010.0001

Date: May 12, 2008

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Evaluation of Natural Attenuation Indian Basin Remediation Project

i

Executive Summary	E-1	
Introduction and Background	1	
Shallow Zone	2	
History	2	
Today / Recent History	3	
Lower Queen	3	
History	3	
Today / Recent History	4	
Review of Important Site Specific Natural Attenuation Processes	4	
Observed Site Specific Natural Attenuation	6	
Shallow Zone	8	
Lower Queen	9	
Natural Attenuation and Groundwater Flow Dynamics	9	
Conclusions	14	
References	16	

Tables

1	Key Natural Attenuation Parameters
2	Hydrogeologic Parameters, Groundwater Flow Velocity and Potential Transport Distance Versus Benzene Half Life Decay Rate
Figures	
1	Site Location Map
2	Shallow Zone Groundwater Biogeochemistry Study Area
3	Lower Queen Groundwater Biogeochemistry Study Area

Evaluation of Natural Attenuation Indian Basin Remediation Project

- ii

Appendices

А

Source Data from 1998 IT Corporation and 2007 ARCADIS Reports

В

Benzene Half Life Graphs

Executive Summary

ARCADIS U.S., Inc., on behalf of Marathon Oil Company conducted a review of site biogeochemistry to evaluate the on-going natural attenuation processes at the Indian Basin Remediation Project (IBRP) Site located at the Indian Basin Gas Plant, Eddy County, New Mexico (Site) for the purpose of determining if closure of the IBRP is warranted. Based on the review and evaluation, several conclusions were reached.

Using data from wells monitored, it appears that the natural attenuation rates in the Shallow Zone under the influence of Rocky Arroyo (Shallow Zone 1) have been sufficient to degrade the mass of petroleum hydrocarbons that impacted this vertical zone and area in the past. The average benzene half life in this zone is on the order of 6.5 months. In Shallow Zone 2 (Shallow Zone area outside the influence of Rocky Arroyo) and in the Lower Queen there is a sufficient source of sulfate in the dissolved phase or available as gypsum in the mineral matrix to provide a natural attenuation capacity, with a calculated average half-life on the order of 2.5 to 3 months. Using these half-life values, and considering the hydraulic gradient, effective porosity and hydraulic conductivity, the average dissolved phase hydrocarbon transport distances range from approximately 241 feet in the Lower Queen to approximately 1,283 feet in Shallow Zone 1. Even in the worst case scenario, with the longest half life in an area with the greatest hydraulic conductivity, the potential transport distance as a dissolved phase is still less than 1 mile. In zones where free-phase hydrocarbons have been successfully removed these attenuation processes have been sufficient to completely degrade remaining dissolved-phase hydrocarbons. The transport of liquid hydrocarbons in areas of concern are ultimately limited by absorption processes within the mineral matrix. Migration of dissolved-phase benzene, toluene, ethyl benzene and xylenes (BTEX) constituents originating from these bound up free phase hydrocarbons is controlled by the significant natural attenuation processes described in this report. Even with detectable hydrocarbons present in source areas, the migration distances are tightly constrained.

In the core zone of hydrocarbon impact, within the free phase hydrocarbon source area of the Lower Queen, there are continued sources of dissolved phase BTEX hydrocarbons. The presence of sulfate in the mineral matrix in the form of gypsum continues to provide for significant and undiminished degradation capacity of dissolved phase hydrocarbons due to sulfate-driven natural attenuation. The sulfate-driven attenuation capacity of the Lower Queen is also present in zones outside of and peripheral to the free phase hydrocarbon source area. The capacity to degrade dissolved-phase hydrocarbons as they migrate from source areas is sufficient to

adequately control and confine the migration of dissolved-phase BTEX hydrocarbons over very long (literally geologic) time frames.

Significant hydrocarbon mass has been removed by the on-going remediation program. The relatively small volume of residual free-phase hydrocarbon (compared to the volume of impacted geologic matrix and adjacent mineral matrix) is effectively absorbed by fracture surfaces in the bedrock subsurface. Biogeochemical attenuation processes are then adequate to degrade dissolved-phase hydrocarbons that may elute into groundwater in contact with the absorbed free-phase liquids.

Based on the information reviewed and presented in this report, ARCADIS believes that closure of the Indian Basin Remediation Project is warranted. Upon concurrence by the NMOCD, a plan for formally closing the project (including well plugging and abandonment, and equipment decommissioning) will be prepared and submitted for approval.

Introduction and Background

A review of the site biogeochemistry was performed to evaluate the on-going natural attenuation processes at the Indian Basin Remediation Project (IBRP) site located at the Indian Basin Gas Plant, Eddy County, New Mexico (Site). Figure 1 shows the location of the site. A long term monitoring program has been on-going at the site. That data has been used as part of this review and is available in other historical and recent documentation associated with the monitoring and operation of the environmental programs at the site. A report prepared by IT Corporation (IT Corporation, 1998) presented the results of a detailed inorganic biogeochemical screening of monitor wells at the site. Source data and figures from the IT Corporation 1998 report and a report by ARCADIS in 2007 that was used for this evaluation are included in Appendix A.

There are two dominant groundwater systems at the Site, an upper groundwater zone (Figure 4, ARCADIS, 2007), and a lower groundwater zone (Figure 7, ARCADIS, 2007) and Figure 2-7, IT, 1998). The upper is termed the Shallow Zone, and the deeper is termed the Lower Queen. The Shallow Zone can be classified into two sub-zones based on inorganic chemistry. One sub-zone (Shallow Zone 1, Figure 2) is low in sulfate and is associated with Rocky Arroyo. The low sulfate zone is likely dominated by surface water runoff that infiltrates when there is surface water discharge in the Rocky Arroyo. The second Shallow Zone sub-zone (Shallow Zone 2, Figure 2) is high in sulfate and is associated with areas that are more distant, and largely north of the Rocky Arroyo. Based on groundwater flow direction, the high sulfate zone groundwater has a history of long term horizontal migration through alluvial sediments and shallow bedrock outcrops upgradient of the site. Figure 2-6 from the 1998 IT Corporation report and Figure 4 from the ARCADIS 2007 report illustrate the configuration of the groundwater table in the shallow-water bearing unit. Figure 3-14 of the IT report illustrates the relationship of sulfate to the groundwater table (and its inferred flow direction) with Rock Arroyo. The Lower Queen is similar to Shallow Zone 2 with regard to its biogeochemical dynamics (Figure 3).

In April, 1991 a subsurface release along a pipeline where it crosses Rocky Arroyo was detected 0.2 miles south of the plant. Based on production records it was estimated that the leak began in November, 1990 and that an estimated 35,000 barrels of condensate were reportedly released. At the point of the release the pipeline was located five feet below the Rocky Arroyo channel bed. Since that time assessment and remediation has been performed at the site. Remediation records dating back to April 1991 show that approximately 24,600 barrels of condensate has been removed

1

as free product, as vapor phase, through stimulated aerobic biodegradation. Additionally, substantial degradation from natural anaerobic bio-oxidation by sulfate or iron-reducing microbial activity has occurred, but the volume has not been quantified.

An important issue is how free product was able to migrate from the release point into the Lower Queen. The location of the pipeline five feet below the bottom of Rocky Arroyo may have been a contributing factor. Others include:

- There is a USGS gauging station located on Rocky Arroyo where it meets the Pecos River. In the 47 years the station has been active there has been at least one measurable discharge per year for 39 of those years. Prior to the release in November, 1990 there had been no measurable discharge in Rocky Arroyo between November, 1988 and September, 1990. The event in September, 1990 was a very small one with a flow of 2.21 cubic feet per minute (The maximum recorded flow was 615.5 cubic feet per minute in August, 1966 and the mean discharge for August and September respectively is 19 and 17 cubic feet per second.) Another measurable discharge did not take place for another eight months. This could have attenuated the water levels in the shallow water bearing unit, especially in Rocky Arroyo, allowing for direct conduits of the released condensate to the deeper Lower Queen water bearing unit.
- In addition, given those dry conditions the contour of the upper bedrock surface (Figure 2-1, IT, 1998) would direct fluids at the soil bed rock interface first north towards the plant, then East and Southeast into the area where the impact of condensate has been observed.

As the remediation program has been implemented at the Site the dissolved and freephase light non-aqueous phase liquids (LNAPL) impacts have declined over time. Following is a brief summary of those changes for the Shallow Zone and the Lower Queen.

Shallow Zone

History

- Over the history of the Site, a total of 29 Shallow Zone wells that have been sampled had at least one sample with BTEX above regulatory limits.
- A total of seven wells out of 81 wells with historical gauging data had at least one gauging event with condensate recorded.
- Past VES remediation in the Shallow Zone had limited hydrocarbon recovery and effectiveness.

- A new sampling program was established in 2000 that limited the number of Shallow Zone wells that were sampled. Wells included in sampling program were selected based on their location and whether they contained BTEX compounds. A number of "clean" wells along the perimeter of the impacted area were selected in order to provide a line of compliance monitoring.
- With NMOCD approval, in March 2003, 39 Shallow Zone wells were plugged and abandoned because they were dry and/or were not necessary to continue monitoring the Shallow Zone.

Today / Recent History

- A total of four Shallow Zone wells (MW-14, MW-46, MW-49 and MW-55) in the current monitoring program contain dissolved benzene above regulatory limits.
- Only one Shallow Zone well (MW-126) has contained measurable condensate over the last three years.
- The benzene trend indicates that MW-14 is fairly stable; MW-46 and MW-49 are up slightly in the last year; and MW-55 is generally declining as a result of natural attenuation processes discussed in this report.
- Between 2000 and 2004, active remediation of some shallow zone wells was
 performed using a soil vapor extraction system (VES). There has been no
 active remediation required in the shallow zone during the past three years.

Lower Queen

History

- A total of 32 Lower Queen wells that have been monitored had at least one sample with benzene above the regulatory limit (10 parts per billion (ppb)) over the entire monitoring history. Many of the wells had only one sample that exceeded the regulatory limit, and those exceedences were generally just above the regulatory limit.
- A total of 38 wells out of 72³ wells with historical gauging data had at least one gauging event with condensate recorded.
- Active remediation using VES has been ongoing since 2000. Over time, volatilization has declined, but biological degradation is still significant.

• A new sampling program was established in 2000 that limited the number of Lower Queen wells that were sampled. Wells included in sampling program were selected based on their location and whether they contained BTEX compounds. A number of "clean" wells along the perimeter of the impacted area were selected in order to provide a line of compliance monitoring.

Today / Recent History

- No Lower Queen wells in the current sampling program have contained dissolved benzene above regulatory limits since 2005. In 2005, only one well (MW-74) contained benzene, but it was just above the regulatory limit at 11 ppb.
- A total of five wells contained measurable condensate in 2007. Over the last three years, a total of 13 wells have had condensate reported at least once. By year, there were 12 wells with condensate in 2005, eight wells with condensate in 2007.
- Biological degradation of hydrocarbons via the VES system is still removing significant hydrocarbons. However, volatilization has decreased from a high of approximately 416 barrels in 2003 to approximately 150 barrels in 2007. Over the last three years, the volatilization fraction is generally showing an asymptotic trend.

Review of Important Site Specific Natural Attenuation Processes

Natural attenuation of petroleum hydrocarbons via biodegradation requires the stimulation of indigenous microbial populations with requisite electron acceptors. The setting of the site appears to provide for three dominant electron acceptor systems and degradation pathways:

- Aerobic supported by oxygen supplied by the atmosphere.
- Sulfate reduction supported by sulfate available in most of the groundwater at the site, and from gypsum present in the mineral matrix of the water bearing units at the site.
- Iron reduction supported by bio-available iron minerals present in the mineral matrix of the water-bearing units at the site.

Natural aerobic biodegradation is supported by dissolved oxygen present in groundwater at the site. In the case of the Shallow Zone, hydraulic influence from surface water infiltrating from Rocky Arroyo is a point of recharge for oxygen-rich water. Potential hydraulic interaction of those shallow aerated waters via potential-fracture pathways may provide a means of introducing oxygenated water into the deeper Lower Queen water-bearing unit as well. The aerobic degradation pathway is well demonstrated at the site and is exploited as an integral part of the on-going remediation program using soil vapor extraction, bio-venting, and limited air sparging. The demonstrated domination of hydrocarbon removal by the remediation system in the form of carbon dioxide (the degradation product of the aerobic biodegradation of petroleum hydrocarbons) clearly illustrates the robust nature of the indigenous-aerobic microbial populations.

However, while the stimulation of the mass transport of air and oxygen in the unsaturated zone is very effective, the relatively low solubility of oxygen in water (approximately 8 mg/L) limits the stoichiometric efficiency of aerobic biodegradation within the groundwater system in bulk. In the groundwater system the data indicates that the dominant natural attenuation pathway is sulfate reduction. Sulfate reduction is an effective degrader of petroleum (Kleikemper, 2003) and BTEX hydrocarbons (Lovley et al, 1995; and Weiner et al, 1998). Compared to oxygen the solubility limits of sulfate in water are higher by several orders of magnitude. At the Site, the ultimate source of sulfate in the groundwater systems resides with gypsum present in the mineral matrix. A detailed discussion concerning the volume of gypsum in the mineral matrix of the bedrock in the area is presented in Ball et al (1985) based on field work done near Indian Basin, several miles east of the Site. Cox (1967), Sarg (1988) and Weiss (1997) also discuss the presence gypsum within the Queen formation in the area of the site.

Sulfate is consumed and converted to sulfide when petroleum hydrocarbons are degraded by sulfate reducing micro-organisms. The hydrogen sulfide may be removed from the system as gas or it may react with available iron to form pyrite. Limited amounts of the sulfide may be reconverted to sulfate through reaction with available oxygen.

The biodegradation of petroleum hydrocarbons by iron-reducing bacteria is also well understood. The overall process dynamic is keyed into the mineral matrix, the required ferric iron is insoluble in water. But the mineral matrix has the potential to contain substantial amounts of mineralized ferric iron. Sandstones with red coloration are likely to have more abundant ferric iron mineralization than carbonates. But carbonates may

5

also contain some mineralized ferric oxides as well as siderite (iron carbonate). However, for utilization the iron in the minerals must be bioavailable, in circumstances where iron reduction is the dominant available metabolic pathway (when sulfate or oxygen are not available) microbes will excrete extracellular siderophores (biological iron chelators) to aid in the solubilization of iron from the mineral matrix. Lastly, the stoichiometry of hydrocarbon degradation via the iron reduction pathway is about four to five times less efficient than the oxygen or sulfate pathways. The presence of dissolved iron in groundwater is the key indicator that some degree of hydrocarbon degradation via the ferric iron reduction pathway is taking place. Biodegradation through iron reduction is taking place at the site, but it is not a dominant pathway. The ready availability of sulfate from gypsum in the mineral matrix allows indigenous sulfate-reducing microbial populations to dominate the in situ microbial ecology in the presence of petroleum hydrocarbons. In rare instances where sulfate is not available, biodegradation by iron-reducing microbial consortia does take place as well.

Aside from evaluation of the biogeochemical dynamics of oxygen, sulfate and iron at the site, there is a second largely empirical basis to evaluate natural attenuation processes. Monitoring of dissolved phase BTEX hydrocarbon concentrations in monitor wells at the Site over time allows for the observation and quantification of the decay rate of BTEX hydrocarbons. As previously discussed, there are two major types of hydrocarbon impact at the Site. One type is dominated by the presence of dissolved-phase BTEX hydrocarbons; it is not directly associated with the presence of free-phase hydrocarbons and tends to attenuate without any rebound of BTEX concentrations. The second type is also a dissolved-phase impact, but is associated with the presence of free-phase hydrocarbons. In that case attenuation takes place as well, but due to the presence of free-phase hydrocarbons to act as a continuing source there is a greater likelihood for the rebound of dissolved-BTEX concentrations.

Observed Site Specific Natural Attenuation

In some cases there have been measured impacts of dissolved-phase BTEX hydrocarbons that subsequently attenuated with no history of return. In other cases, likely more closely associated with the presence of free-phase hydrocarbons, there are instances of hydrocarbon decay then rebound or instances of relatively continued presence of dissolved-phase hydrocarbons likely coming from the continuous dissolution of BTEX from proximal sources of liquid hydrocarbons. The BTEX hydrocarbon history at each of the appropriate monitor wells at the Site has been evaluated to make an estimate of BTEX decay rate in terms of half-life. Half-life is simply the time it takes for half of an initially-observed concentration to be removed by

6

attenuation processes. A short half-life means more rapid degradation, a longer half-life slower degradation. In most instances the decay rate follows near first order kinetics. First order kinetics is associated with a wide variety of natural processes such as radioactive decay and microbial processing. In essence the degradation processes are associated purely with the material that is being decayed. Other physical processes such as adsorption or volatilization do not play a role. The absolute concentration of the decaying material does not affect the kinetic rate or half-life either. Concentration only effects the total time it will take a series of half-life intervals to cause a concentration decline from an initial to a lower targeted concentration. In the case of 1st order kinetics the half-life is the time required for half of the material to decay. Once half has decayed it will take another half-life for the remaining half to decay and so on at ever decreasing absolute concentrations. The half-life value and rate will be valid over the entire course of the attenuation process.

The history and setting of this Site is complex because of the bedrock geology and interactions of surface water from Rocky Arroyo with the groundwater systems. This has resulted in a large number of wells being installed and sampled over a period of a decade or more. The historical database associated with the on-going site-wide monitoring program was used to evaluate BTEX hydrocarbon half-lives. In most instances the half life was based on the half-life of benzene, which is typically the longest of the BTEX hydrocarbons. In a few cases the data was limited and the half-life was calculated using concentrations of total xylenes. The graphs from which the half-lives were calculated are included in Appendix B. Much of the inorganic biogeochemical data evaluated came from the IT report prepared in 1998 and is included in Appendix A. Specifically:

- Sulfate data was presented for the Shallow Zone in Figure 3-14 and for the Lower Queen in Figure 3-19.
- Dissolved iron data was presented for the Shallow Zone in Figure 3-20 and for the Lower Queen in Figure 3-23.
- Detailed tabulations of the data used to prepare the referenced figures are also included in the IT report. This includes:
 - Table 3-5 for Sulfate in the Shallow Zone.
 - Table 3-7 for Dissolved Iron in the Shallow Zone.
 - o Table 3-6 for Sulfate in the Lower Queen.
 - Table 3-8 for Dissolved Iron in the Lower Queen.

The 22 wells used for the purposes of this evaluation had both inorganic data reported in the 1998 IT report and a history of detectable BTEX hydrocarbons. There were 52 wells not used for this evaluation, largely because of limited sampling history. There are 24 wells with no history of hydrocarbon impact that also are not discussed.

The results of the natural attenuation review are summarized as follows:

Shallow Zone

For Shallow Zone 1, groundwater influenced by Rocky Arroyo (MW-14, 69, 78, and 79) the benzene half-life ranged from 90 to 390 days with an average of 194 days. No sulfate was detected in these wells, but dissolved iron concentrations averaged 3.1 mg/L. This information is summarized in Table 1.

The natural attenuation processes in the Rock Arroyo portion of the Shallow Zone appear to not be governed by sulfate reduction. In the absence of sulfate and low levels of oxygen, iron reduction does appear to be taking place. It is likely that physical flushing by periodic flow in Rocky Arroyo may be playing a role in the attenuation process as well as temporary aerobic degradation following such events. The degradation half-lives are the longest at the Site. However, due to the removal of hydrocarbon source zones the wells monitored in this area have all been clean for a number of years. The natural attenuation capacity due to anaerobic bio-oxidation is limited in this area. However, bio-attenuation via aerobic pathways and limited amount of hydrocarbon impact in this area create a condition where attenuation processes have been sufficient to remove hydrocarbon to levels below concern.

For Shallow Zone 2, groundwater outside of the influence of Rocky Arroyo (MW-43, 46, 49, 54, 55, 61 and 90) the benzene half-life ranges from 25 days to 210 days with an average of 81 days. The average sulfate concentration is 562 mg/L and average dissolved iron 0.7 mg/L. This information is summarized in Table 1.

Due to the availability of sulfate, the benzene half-life in this area is much shorter than in the adjacent Shallow Zone 1. There are a limited number of wells that appear to have permanently attenuated dissolved-phase BTEX impacts (MW-60, 61A, and 67). The remaining wells in this zone have a history of the presence of free-phase hydrocarbons on a periodic basis. When BTEX is present the natural attenuation capacity represented by the available sulfate and highly-viable sulfate reducing microbial populations rapidly attenuate the residual dissolved-phase hydrocarbon mass. In many instances this has only been required once, in others where periodic

dissolved-phase impacts due to the effects of residual free-phase hydrocarbons causes a reoccurrence, the attenuation process is always sufficient to rapidly degrade the BTEX constituents to levels below concern.

Lower Queen

For the Lower Queen (MW-57, 59, 60, 61A, 62, 63, 64, 67, 70, 73, 74, and 98) had a minimum benzene half-life of 20 days, a maximum of 140 days, and an average half-life of 69 days. The average sulfate concentration was 527 mg/L and the average dissolved-iron concentration 0.25 mg/L. This information is summarized in Table 2.

The Lower Queen also appears to be dominated by sulfate-driven natural attenuation processes. Of interest is that a limited number of wells (MW-63, 64, and 74) had sulfate measured at 20 mg/L or less. But the average benzene half-life (83 Days) in those wells is not significantly different than the benzene half-life (63 Days) in wells with more elevated levels of dissolved sulfate. Groundwater in which the only available sulfate is in the dissolved phase will not support sulfate reduction if the initial-dissolved sulfate concentration is 20 mg/L or lower. This is an indication of the ability of the indigenous microbial population of sulfate reducers to exploit sulfate that is present in the mineral matrix. With available carbon and high microbial populations, the sulfate that is provided to the dissolved phase by the gypsum reservoir is rapidly utilized to support hydrocarbon degradation, producing the short-observed benzene half-lives.

Natural Attenuation and Groundwater Flow Dynamics

The empirically derived half life for benzene can in turn be used to calculate a theoretical transport distance from a source area. With a half-life, a groundwater velocity and an initial source area concentration, the distance that a dissolved plume can theoretically travel can be calculated. The shallow groundwater bearing unit has flow through shallow alluvium on top of bedrock and through shallow bedrock. Flow in the Lower Queen is all in bedrock. Groundwater flow in alluvium is via intergranular transport through soil matrix.

Groundwater flow responsible for significant transport is dominated by fractures in the Lower Queen and bedrock portions of the shallow zone. Some intergranular flow does occur through the walls of fractures into the mineral matrix of the Lower Queen. However, that flow does not dominate transport; it has effect on long term releases of free and dissolved-phase hydrocarbons in the source areas into the fracture flow pathways. In general fracture flow responsible for transport must have two critical

components. Fractures must exist with some open aperture, and since all fractures have finite length they must be of sufficient length and fracture density must be high enough to allow individual fractures to connect and support transport over significant distance. The flow in a fracture increases in a ratio that increases with the cube of the fracture aperture. The overall effect of physical distribution and connectivity of fractures with the effects of fracture aperture creates a very high degree of heterogeneity in flow conditions. This effect is seen in all fractured bed rock sites, including Indian Basin.

To calculate the groundwater velocity, three parameters are required: the hydraulic conductivity, the gradient of the water table, and the effective porosity of the respective water bearing unit. Values for groundwater velocity, hydraulic conductivity, gradient and effective porosity are summarized in Table 2.

- Values of hydraulic conductivity for both water bearing zones were reported in the 1998 IT report.
 - o For the Shallow Zone, the hydraulic conductivity was 9.8 feet/day.
 - For the Lower Queen, the average hydraulic conductivity is 97 feet/day. This is based on a range of hydraulic conductivity values.
- The dimensionless gradients of the groundwater tables are based on groundwater gauging data collected in October 2006 and are approximately 0.015 ft/ft for the Shallow water bearing unit and approximately 0.0002 ft/ft in the Lower Queen.
- Porosity data is not available; however experience with other sites in similar settings can be used to make reasonable estimates.
 - In the Shallow Zone effective porosity in the alluvial sediments is likely to be in the range of 20% with a possible low of 10% and a high of 30%. For the purpose of this evaluation a value of 20% porosity will be used.
 - In the Lower Queen the dominant transport hydraulic flow regime is fracture flow. It is anticipated that the effective porosity in the Lower Queen will range between approximately 2% and 10%. For the purposes of this evaluation a porosity value of 5% is used (Clark, 1966).

The maximum observed benzene concentration since 1991 was in MW-33 in September, 1991 at 6,300 ppb. Using 6,300 ppb, a transport evaluation was completed with a targeted goal of reducing benzene to less than the regulatory limit of 10 ppb. For the purposes of this evaluation the average and maximum half-life in each

10

of the three dynamic natural attenuation zones are used to calculate a potential range of transport distance. Details of this evaluation are presented in Table 2, but the following is a summary of the range of potential transport distances that result from using the above range of hydrodynamic and biogeochemical values:

- For the Shallow Zone influenced by Rocky Arroyo (Shallow Zone 1)
 - The average travel distance is 1,283 feet in 1,746 days.
 - The maximum travel distance is 5,159 feet in 3,510 days.
- For the Shallow Zone away from Rocky Arroyo (Shallow Zone 2)
 - The average travel distance is 534 feet in 729 days.
 - The maximum travel distance is 2,778 feet in 1,890 days.
- For the Lower Queen
 - The average travel distance ranges from 241 feet in 621 days.
 - The maximum travel distance is 3,465 feet in 1,260 days.

In each of the above cases the distance at which the complete attenuation of the maximum dissolved phase benzene concentration would be attenuated is proximal to the site and the existing monitor well network.

The transport of free-phase hydrocarbons presents a different issue than the transport of the dissolved-phase in an attenuating matrix. As dissolved constituents migrate out of the free-phase hydrocarbons they immediately enter into the attenuation pathway. Dissolution of the free-phase liquid is a physical attenuation pathway as well. Additional physical attenuation processes include the effects of hydrocarbon wetting on mineral surfaces and the effects of other interfacial forces between the liquid hydrocarbon, mineral surfaces, groundwater and air that tend to physically retard the transport of liquid-phase hydrocarbons and bind them to mineral surfaces. The degree of interconnectivity driven by fracture length and density also play a role.

The specific physical character of the fracture-system migration pathways in the Lower Queen are to a large degree unknown, and without an assessment program requiring another significant level of effort over and above the extensive assessment done to date at the Site, this will likely remain unknown. Empirically, the limited extent of free phase and dissolved-phase hydrocarbon migration between the time of the release and the implementation of the full-scale remediation program in the late 1990's indicates that the potential of significant migration of free-phase hydrocarbons from the source area is limited.

One further purely physical example of a site conceptual model may be of value to illustrate the lack of migration potential of the free phase hydrocarbons:

- Conservatively assume that 10,000 barrels of the original 35,000 barrels of released condensate remains.
- As the condensate migrates along fracture pathways, due to physical wetting of the hydrocarbon on to mineral surfaces as it interacts with the walls of the fractures, further assume that an irreducible coating of hydrocarbon that is 0.05 inches thick is formed.
- The volume of 10,000 barrels of oil is 56,150 cubic feet. Within a fracture the total-liquid hydrocarbon thickness would be 0.1 inch (with 0.05 inches on each side along the walls of the fracture).
 - The 56,100 cubic feet of liquid hydrocarbon spread out in a layer 0.1 inch thick would occupy would an area of approximately 2,600 square feet.
 - A rough estimate of the size of the historical free-product source area is 1,800 feet by 3600 feet, or approximately 6,500,000 square feet.
 - If fractures are spaced 10 feet apart and present a vertical interval of 1 foot for the support of advective flow containing hydrocarbons that presents approximately 650,000 square feet of surface area within the fracture matrix an area that is 250 times greater than the potential spreading surface.

The history of the site has shown that limited amounts of free-phase hydrocarbons do appear in a limited number of wells. However, those wells are distributed over a relatively wide area. In recent years the on-going VES program has likely accentuated the mobilization of free-phase hydrocarbon by the generation of bio-surfactants. Cessation of the operations of the VES system would stop aerobic microbial activity and the bulk of the production of biosurfactants likely limiting the capacity to mobilize absorbed hydrocarbon from the surfaces of the mineral matrix within the hydrocarbon impacted area.

The site conceptual transport model likely includes multiple zones of volumetrically limited fractures with relatively wide apertures that may preferentially contain volumes of hydrocarbon. These isolated storage pockets have limited connectivity via fracture pathways of much less connectivity and with limited aperture width. Another absorption mechanism at work but not accounted for in the above conceptual assessment is the absorption into the walls of zones in which fractures transect granular or semi-granular bedrock, further enhancing physical immobility under flow conditions.

The empirical history of the Site and the geometric analysis of the Site above indicate that the residual volumes of hydrocarbon that reside within the geologic matrix of the source area are relatively widely distributed within the source area, localized, and immobilized by physical interaction with surfaces in that matrix. Isolated measurable levels of hydrocarbon are occasionally detected in monitor wells, but that is not indicative of the physical state of the liquid hydrocarbons in the bulk matrix. The bioventing program is ideal to remove this residual hydrocarbon mass, but that mass does not present a significant potential for long distance migration as a free-phase hydrocarbon fluid.

Conclusions

In summary, based on wells monitored, it appears that the natural attenuation rates in the Shallow Zone under the influence of Rocky Arroyo (Shallow Zone 1) have been sufficient to degrade the mass of petroleum hydrocarbons that impacted this vertical zone and area in the past. The average benzene half-life in this zone is on the order of 6.5 months. In Shallow Zone 2 (Shallow Zone area outside the influence of Rocky Arroyo) and in the Lower Queen there is a sufficient source of sulfate in the dissolved phase or available as gypsum in the mineral matrix to provide a natural attenuation capacity, with an average half-life on the order of 2.5 to 3 months. Using these half-life values, and considering the hydraulic gradient, effective porosity and hydraulic conductivity, the average dissolved-phase hydrocarbon transport distances range from approximately 241 feet in the Lower Queen to approximately 1,283 feet in Shallow Zone 1. Even in the worst case scenario, with the longest half-life in an area with the greatest hydraulic conductivity, the potential transport distance as a dissolved phase is still less than one mile. In zones where free-phase hydrocarbons have been successfully removed these attenuation processes have been sufficient to completely degrade remaining dissolved-phase hydrocarbons. The transport of liquid hydrocarbons in areas of concern are ultimately limited by absorption processes within the mineral matrix. Migration of dissolved-phase BTEX constituents originating from these bound up free-phase hydrocarbons is controlled by the significant natural attenuation processes described in this report. Even with detectable hydrocarbons present in source areas, the migration distances are tightly constrained.

In the core zone of hydrocarbon impact, within the free-phase hydrocarbon source area of the Lower Queen, there are continued sources of dissolved-phase BTEX hydrocarbons. The presence of sulfate in the mineral matrix in the form of gypsum continues to provide for significant and undiminished degradation capacity of dissolved-phase hydrocarbons due to sulfate-driven natural attenuation. The sulfatedriven attenuation capacity of the Lower Queen is also present in zones outside of and peripheral to the free-phase hydrocarbon source area. The capacity to degrade dissolved-phase hydrocarbons as they migrate from source areas is sufficient to adequately control and confine the migration of dissolved-phase BTEX hydrocarbons over very long (literally geologic) time frames.

Significant hydrocarbon mass has been removed by the on-going remediation program. The relatively small volume of residual free-phase hydrocarbon (compared to the volume of impacted geologic matrix and adjacent mineral matrix) is effectively absorbed by fracture surfaces in the bedrock subsurface. Biogeochemical attenuation

processes are then adequate to degrade dissolved-phase hydrocarbons that may elute into groundwater in contact with the absorbed free-phase liquids.

Based on the information reviewed and presented in this report, ARCADIS believes that closure of the Indian Basin Remediation Project is warranted. Upon concurrence by the NMOCD, a plan for formally closing the project (including well plugging and abandonment, and equipment decommissioning) will be prepared and submitted for approval.

References

ARCADIS U.S., Inc., 2007. Annual Groundwater Monitoring Report, January – December 2006, Indian Basin Remediation Project, Eddy County, New Mexico. Report Prepared for Marathon Oil Company.

Ball, Stanton M., Roberts, J. Wayland, Norton, J.A., and Pollard, William D., 1985. Queen Formation (Guadalupian, Permian) Outcrops of Eddy County, New Mexico, and Their Bearing on Recently Proposed Depositional Models, in: Permian Carbonate/Clastic Sedimentology, Guadalupe Mountains: Analogs for Shelf and Basin Reservoirs, Cunningham, Brenda K. and Hedrick, Carroll L., Eds., SEPM Annual Field Trip, Publication 85-12, pp. 75-115, 1985.

Clark, Syndey P., 1966. Handbook of Physical Constants, GSA Mem. 97, Geol. Soc. Of Am., NY, NY, 587 pp., 1966.

Cox, E.R., 1967. Geology and Hydrology between Lake McMillan and Carlsbad Springs, Eddy County, New Mexico, U.S. Geologic Survey Water-Supply Paper 1828, 48 p., 1967

IT Corporation, 1998. Comprehensive Site Characterization Report Indian Basin Remediation Project New Mexico 1991-1998. Report prepared for Marathon Oil Company, P.O. Box 552, Midland, Texas, 3 Volumes, 1998.

Kleikemper, Jutta 2003. Activity and Diversity of Sulfate-Reducing and Methanogenic Microorganisms in a Petroleum-Contaminated Aquifer, PhD Dissertation, Swiss Federal Institute of Technology, Zurich, 217 pp., 2003.

Lovley, Derek R., Coates, John D., Woodward, Joan C., and Phillips, Elizabeth J.P., 1995. Benzene Oxidation Coupled to Sulfate Reduction, Appl. Environ. Microbiol, Vol. 61, No. 3, pp. 953-958, 1995.

Sarg, Fredrick J., 1988. A Discussion of Central Rocky Arroyo, In: West Texas Geological Society 1988 Field Seminar to Guadalupe Mountains, Road Log: Third Day, Carlsbad to Dark Canyon, Sitting Bull Falls, and Rocky Arroyo, pp. 94-96, 1988.

Weiss, William W., 1997. Integration of Advanced Geoscience and Engineering Technologies to Quantify Interwell Heterogeneity in Reservoir Models, Final Report, Prepared for the USDOE, DOE/BC14893-14, 144 pages, 1997.

Wiener, Jonathan M., Lauck, Terry S., and Lovley, Derek R., 1998. Enhanced Anaerobic Benzene Degradation with the Addition of Sulfate, Biorem. Jour., Vol. 2, No. (3&4), pp. 159-173, 1998.

Table 1. Key Natural Attenuation Parameters Marathon Oil Company, Indian Basin Remediation Project, Eddy County, New Mexico

			Average Value and the
Groundwater Unit	Minimum Value and Well in	Maximum Value and Well	Number of Wells Used for
	Which it was Detected	in Which it was Detected	Calculation
Shallow Zone 1	90 in MW-78	390 in MW-69	194 in 4 Wells
Shallow Zone 2	25 in MW-90	210 in MW-55	81 in 7 Wells
Lower Queen	20 in MW-63	140 in MW-98	69 in 12 Wells

Benzene Half-Life in Days

Sulfate Concentration in mg/L

			Average Value and the
Groundwater Unit	Minimum Value and Well in	Maximum Value and Well	Number of Wells Used for
	Which it was Detected	in Which it was Detected	Calculation
Shallow Zone 1	< 5 in all evaluated wells	< 5 in all evaluated wells	< 5 in all evaluated wells
Shallow Zone 2	22 in MW-46	1,600 in MW-61	562 in 7 Wells
Lower Queen	< 5 in MW-64	2,800 in MW-73	527 in 12 Wells

Dissolved Iron Concentration in mg/L

				Average Value and the
	Groundwater Unit	Minimum Value and Well in	Maximum Value and Well	Number of Wells Used for
1		Which it was Detected	in Which it was Detected	Calculation
	Shallow Zone 1	1.6 in MW-78	4.7 in MW-14	3.1 in 4 Wells
	Shallow Zone 2	<0.013 in MW-54, 90	2.6 in MW-43	0.7 in 7 Wells
	Lower Queen	<0.013 MW-60, 63, 70	1.3 in MW-74	0.25 in 12 Wells

Table 2. Hydrogeologic Parameters, Groundwater Flow Velocity, and Potential Transport Distance Versus Benzene^(a) Half-Life Decay Rate Marathon Oll Company, Indian Basin Remediation Project, Eddy County, New Mexico

	Í	Hydrau	ilic Conduct	ivty (K)	Effective Pot	osity (% of	Fotal Volume)	Benzene	Half-Life De	cay Rate	0 Gro	undwater Velo	ocity	Benzene Tra	nsport Distan	ce and Time
											Maximum	Minimum	Average	Maximum	Minimum	Average
		Maximum	Minimum	Average	Porosity	Porosity	Porosity Used	Maximum	Minimum	Average	Groundwater	Groundwater	Groundwater	Transport	Transport	Transport
	Gradient	Value for K	Value for K	Value for K	High Value	Low Value	for Calculation	Half-Life	Half-Life	Half-Life	Velocity	Velocity	Velocity	Distance and	Distance and	Distance and
Groundwater Unit	(ft/ft)	(feet/day)	(feet/day)	(feet/day)	(%)	(%)	(%)	(days)	(days)	(days)	(feet/day)	(feet/day)	(feet/day)	Time	Time	Time
														5,159 Feet in	397 Feet in	1,283 Feet in
Shallow Zone 1	0.015			9.8	30%	10%	20%	390	06	194	537	179	268	3,510 Days	810 Days	1,746 Days
														2,778 Feet in	110 Feet in	534 Feet in
Shallow Zone 2	0.015			9.8	30%	10%	20%	210	25	81	537	179	268	1,890 Days	225 Days	729 Days
														3,465 Feet in	0.29 Feet in	241 Feet in
Lower Queen	0.0002	275	0.8	67	10%	2%	5%	140	20	69	1004	0.6	142	1,260 Days	180 Days	621 Days
											1					

Notes: (a)

For the determination of the number of half lives required for natural attenuation to degrade benzene to less than 0.01 mg/L. An initial benzene concentration of 6.3 mg/L (6.300 ppb) is used (The highest observed historical benzene concentration in MW-33 in September 1991). ,

DB:HC LD: AM: BG PD: AIR2 TH¢ AIR TR: LYR

DIV READED FAV. DB: HC

Appendix A

Source Data from 1998 IT Corporation and 2007 ARCADIS Reports

. . .

DISSOLVED-PHASE INORGANIC COMPOUNDS (JUNE 1998) SHALLOW ZCNE

Page: 1A of 1B Date: 10/19/98

Indian Basin Remediation Project Eddy County, NM

						Nitrate/Nitrite			
SITE	DATE	Chloride	Cyanide	Fluoride	NITRITE NITROGEN		NITRATE NITROGEN	H	Phenois total
		(mg/l)	(mg/l)	(l/6u)	(l/ōm)	(mg/l)	(l/ɓɯ)	(l/gm)	(I/ɓɯ)
LYMAN 0	6/29/98	13	< 0.005	0.6	< 0.1	0.6	0.6	7.4	< 0.005
MW-013 0	6/21/98	230	< 0.005	0.3	<0.1	0.1	0.1	7.0	0.023
MW-014 0	6/22/98	330	< 0.005	0.4	< 0.1	0.1	0.1	7.0	0.008
MW-041 0	86/61/9	120	<0.005	1.5	<0.1	<0.1	<0.1	7.5	0.024
MW-043 0	6/22/98	210	< 0.005	0.8	< 0.1	<0.1	<0.1	7.3	0.007
MW-044 0	6/22/98	260	<0.005	0.8	<0.1	<0.1	<0.1	7.2	0.040
MW-046 0	6/21/98	140	< 0.005	1.1	<0.1	<0.1	< 0.1	7.2	0.034
MW-049 0	6/21/98	630	0.050	1.3	<0.1	<0.1	<0.1	7.0	0.012
MW-050 0	6/19/98	340	< 0.005	1.2	< 0.1	0.5	0.5	8.2	< 0.005
MW-054 0	6/25/98	110	< 0.005	1.8	<0.1	<0.1	<0.1	7.1	< 0.005
MW-055 0	6/25/98	300	< 0.005	1.5	<0.1	0.1	0.1	7.0	0.016
MW-061 0	6/18/98	480	< 0.005	2.2	<0.1	<0.1	< 0.1	6.9	< 0.005
MW-069 0	6/29/98	120	< 0.005	0.3	<0.1	< 0.1	< 0.1	6.9	0.015
MW-078 0	6/19/98	47	<0.005	<0.2	<0.1	<0.1	<0.1	7.1	< 0.005
060-WM	6/11/98	35	< 0.005	0.5	< 0.1	7.1	7.1	7.5	< 0.005
MW-106 0	6/18/98	4	<0.005	0.3	<0.1	1.9	1.9	7.3	<0.005
	6/26/98	13	< 0.005	0.7	< 0.1	< 0.1	< 0.1	7.2	0.006
_									
Values represent total o	oncentratic	ons unless noted	< = Not detected at	indicated reporting l	imit = Not analy:	ed			
For RCL INORGANICS									

DISSOLVED-PHASE INORGANIC COMPOUNDS (JUNE 1998) SHALLOW ZONE

Page: 1B of 1B Date: 10/19/98

Indian Basin Remediation Project

Eddy County, NM

SITE	DATE	Sulfata	Total dissolved solids (TDS)							
		(l/gm)	(l/6m)							
LYMAN	06/29/98	670	1000							
MW-013	06/21/98	<5	1000							
MW-014	06/22/98	< 5	1400							
MW-041	06/19/98	190	1200							
MW-043	06/22/98	53	1500							
MW-044	06/22/98	66	1000							
MW-046	06/21/98	22	940							
MW-049	06/21/98	780	2800							
MW-050	06/19/98	3800	5900							
MW-054	06/25/98	1300	2200							
MW-055	06/25/98	55	1500	×						
MW-061	06/18/98	1600	3200							
MW-069	06/29/98	5	860							
MW-078	06/19/98	<5	490							
060-WM	06/17/98	130	530							
MW-106	06/18/98	33	380							
UIHS_ARROYO	06/26/98	590	940							
		•						(
Values represent total	l concentrat	ions unless noted	< = Not detected at	indicated reportir	ng limit	Not analyzed				
For RCL INORGANICS										

DISSOLVED-PHASE INORGANIC COMPOUNDS (JUNE 1998) LOWER QUEEN

.

Page: 1A of 2B Date: 10/19/98

Indian Basin Remediation Project Eddy County, NM

(mg/l) 06/25/98 50 06/22/98 42 06/24/98 560 06/21/98 12	(mo/l)						
/ 06/25/98 50 3 06/22/98 42 9 06/24/98 560 06/21/98 12	7-A-1-A	(mg/l)	(l/ôu)	(mg/l)	(I/6w)	(V6m)	(mg/l)
3 06/22/98 42 3 06/24/98 560 3 06/21/98 12	< 0.005	0.5	< 0.1	<0.1	<0.1	7.3	0.006
) 06/24/98 560 3 06/21/98 12	< 0.005	0.9	<0.1	<0.1	<0.1	7.4	<0.005
06/21/98 12	< 0.005	0.6	< 0.1	0.1	0.1	7.5	0.022
	< 0.005	1.4	<0.1	0.3	0.3	7.3	<0:005
IA 06/18/98 4	0.025	0.8	< 0.1	< 0.1	< 0.1	7.3	< 0.005
2 06/26/98 91	< 0.005	0.8	<0.1	<0.1	<0.1	7.1	<0.005
3 06/25/98 10	< 0.005	0.4	< 0.1	7.1	7.1	7.4	0.005
1 06/23/98 15	< 0.005	0.7	<0.1	0.7	0.7	7.3	<0.005
5A 06/25/98 24	< 0.005	0.7	<0.1	< 0.1	<0.1	7.2	0.005
3 06/17/98 13	0.761	0.8	<0.1	0.3	0.3	7.2	< 0.005
7 06/24/98 11	< 0.005	0.7	< 0.1	<0.1	<0.1	7.3	0.005
1 06/26/98 29	< 0.005	0.6	<0.1	1.7	1.7	7.3	0.025
06/16/98 12	< 0.005	0.6	< 0.1	2.7	2.7	7.5	< 0.005
06/19/98 4	<0.005	2.2	<0.1	<0.1	<0.1	7.2	<0:005
06/30/98 49	< 0.005	0.8	<0.1	<0.1	< 0.1	6.9	0.015
1 06/30/98 320	< 0.005	1.3	<0.1	<0.1	<0.1	6.9	< 0.005
1 06/24/98 340	< 0.005	1.1	< 0.1	<0.1	< 0.1	7.0	0.025
i 06/30/98 54	< 0.005	1.2	<0.1	0.1	0.1	7.3	0.077
06/29/98 23	< 0.005	0.5	< 0.1	1.3	1.3	7.3	0.008
06/29/98 16	< 0.005	0.7	<0.1	<0.1	<0.1	7.4	< 0.005
06/25/98 72	< 0.005	0.7	<0.1	0.14	0.14	7.1	0.006
06/25/98 49	< 0.005	0.7	<0.1	<0.1	<0.1	7.2	< 0:005
06/23/98 7	< 0.005	0.5	<0.1	<0.1	<0.1	7.5	0.008
06/23/98 120	< 0.005	1.3	<0.1	0.1	0.1	7.5	0.034
06/26/98 330	< 0.005	1.1	< 0.1	0.1	0.1	7.0	0.068
. 06/19/98 13	<0.005	6.0	<0.1	0.8	0.8	7.4	<0:005
A 06/19/98 160	< 0.005	2.4	< 0.1	<0.1	<0.1	7.7	< 0.005

For RCL INORGANICS

DISSOLVED-PHASE INORGANIC COMPOUNDS (JUNE 1998) LOWER QUEEN

Page: 1B of 2B Date: 10/19/98

tion Project	NM
n Remedia	y County,
Indian Basir	Edd

SITE DATE	Sulfate	I otal dissolved solids (TDS)							
	(I/6m)	(mg/l)							
MW-057 06/25/98	110	490							
MW-058 06/22/98	<5	760							
MW-059 06/24/98	2300	4100							
MW-060 06/21/98	390	720							
MW-061A 06/18/98	300	690							
MW-062 06/26/98	140	650							
MW-063 06/25/98	39	370							
MW-064 06/23/98	<5	600							
MW-065A 06/25/98	250	550						•	
MW-066 06/17/98	430	760							
MW-067 06/24/98	140	480							
MW-068 06/26/98	100	480							
MW-070 06/16/98	80	370							
MW-071 06/19/98	650	1100							
MW-072 06/30/98	530	890							
MW-073 06/30/98	2800	3700							
MW-074 06/24/98	13	1500							
MW-075 06/30/98	390	870							
MW-076 06/29/98	51	400							
MW-081 06/29/98	450	800							
MW-082 06/25/98	360	730							
MW-083 06/25/98	270	640							
MW-084 06/23/98	< 2	370							
MW-085 06/23/98	<5	1100							
MW-086 06/26/98	29	1500							
MW-087 06/19/98	360	710							
MW-087A 06/19/98	2200	3100							
Values represent total concentrat	ions unless noted <	<pre>< = Not detected at indicated</pre>	reporting limit	= Not analyz	red				

For RCL INORGANICS

DISSOLVED-PHASE INORGANIC COMPOUNDS (JUNE 1998) LOWER QUEEN

Page: 2A of 2B Date: 10/19/98

,

Indian Basin Remediation Project Eddy County, NM

l

						Nitrate/Nitrite			
SITE	DATE	Chloride	Cyanide (mc/l)	Fluoride (mo.ii)	NITROGEN VITROGEN (modil	(mont)	NITROGEN INTROGEN	H H H	Phenols, total (moth
MW-088	36/18/98	22	< 0.005	1.1	<0.1	<0.1	<0.1	7.2	< 0.005
MW-089 (36/17/98	61	0.247	0.7	<0.1	<0.1	<0.1	7.1	<0.005
MW-094 (06/26/98	24	< 0.005	0.7	<0.1	2.5	2.5	7.3	0.008
MW-095 (06/22/98	5	<0.005	0.4	<0.1	3.2	3.2	7.5	<0.005
) 960-MM	06/21/98	14	< 0.005	0.4	<0.1	0.5	0.5	7.2	< 0.005
MW-097 (06/21/98	00	<0.005	0.7	<0.1	1.6	1.6	7.2	<0.005
MW-098	06/29/98	14	< 0.005	0.3	<0.1	2.5	2.5	7.6	0.010
MW-104 (06/21/98	14	<0.005	1.4	<0.1	0.5	0.5	7.3	<0.005
MW-108 (06/22/98	ى ك	< 0.005	0.4	<0.1	2.4	2.4	7.4	< 0.005
) WW-110 (06/30/98	54	< 0.005	0.7	<0.1	1.4	1.4	7.2	0.010
MW-111 (06/29/98	100	< 0.005	0.7	<0.1	0.4	0.4	7.2	< 0.005
SW-01 (86/08/98	23	< 0.005	0.6	<0.1	2.5	2.5	7.3	<0.005
SW-02 (06/24/98	150	< 0.005	0.5	<0.1	0.9	0.9	7.2	< 0.005
SW-03 (06/24/98	6	<0.005	0.7	<0.1	5.9	5.9	7.5	<0.005
						•			
Values represent total	concentrat	ions unless noted	< = Not detected a	t indicated reporting	l limit = Not analy:	zed			
For RCL INORGANICS									

DISSOLVED-PHASE INORGANIC COMPOUNDS (JUNE 1998) LOWER QUEEN

Page: 2B of 2B Date: 10/19/98

Indian Basin Remediation Project Eddy County, NM

STE	DATE	Sulfate	Total dissolved solids (TDS)							
		(I/6uu)	(mg/l)							2 같은 3
MW-088	06/18/98	450	840							
MW-089	06/17/98	340	780							15.1
MW-094	06/26/98	240	600							
MW-095	06/22/98	21	360							
MW-096	06/21/98	210	560							
MW-097	06/21/98	190	520							\sim
MW-098	06/29/98	32	310							
MW-104	06/21/98	230	560							1.1
MW-108	06/22/98	35	340							
MW-110	06/30/98	130	600							-3393
MW-111	06/29/98	310	006							
SW-01	06/30/98	230	550							12
SW-02	06/24/98	120	730			•				
SW-03	06/24/98	110	410							12
										2.5
										1
										N
										1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
										195
										14.1
Values represent tota	al concentrati	ions unless noted	< = Not detected	at indicated reportir	ng limit = No	ot analyzed				
For RCL INORGANIC	Ņ								·	

DISSOLVED-PHASE METALS (JUNE 1998) SHALLOW ZONE

TABLE 3-7

Page: 1A of 1F Date: 10/19/98

Indian Basin Remediation Project Eddy County, NM

	Construction of the second	000000000000000000000000000000000000000	Construction of the local sectors of the local sect		Contraction of the second s	Contraction of the second s													
	< ب					Ċ		l											
	5					MUIBO		Boron		Cad	mum	J	alcium		Chromiu	Ę	Coba	¥	
	E.	ng/l}		(µĝ/J)		(l/gm)		{l//ɓɯ}		ъ́ш)	1)	1)	()/Bu		(I/ɓɯ)		(//gm)	1	
LYMAN 06/29/	86/	•	•	•		1		1		1					;				
MW-013 06/21/	86/			-		-				1							1		
MW-014 06/22/	86/			1		.		1		1		•	•		•		1		
MW-041 06/19/	- 86/	,		-				-		-		1					-		
MW-043 06/22/	86/	•		ł		ł		-		:		-					or the host of the second second second		
MW-044 06/22/	86/					:				-									
MW-046 06/21/	/98			ł	•	1		1		1			-				1		
MW-049 06/21/	86/	+		1		-		1		1									
MW-050 06/19/	/98		•	ł		.		1		1		1			1		1		
MW-054 06/25/	- 86/			-		-				1							1		
MW-055 06/25/	86/		•			ł		ł		ł		1							
MW-061 06/18/	86/					-		-		1		1			-				
MW-069 06/29/	86/		•	1		ł		ł		1		;			ł		ł		
MW-078 06/19/	/98	-	•	1		-		;		1		4			-		-		
MW-090 06/17/	/98		•	ł		1	- - - - - - - - - - - - - - - - - - -	1		1		1					1		
MW-106 06/18/	86)			+		•				-		3							
UIHS_ARROYO 06/26/	86/		·	1		Ì		ł		1		1			1		1		
		•																	
			000000000000000000000000000000000000000	Anteopool Accounts									40000-00000000000000	2014/02/02/02/02/02				10000000000000000000000000000000000000	1
																	•		
Values represent total concer	ntration:	s unless ne	oted <	c = Not d	stected	at indicate	d reportir	ng limit -	= Not a	nalyzed									
For RCL METALS																			

.

•

Page: 1B of 1F Date: 10/19/98

TABLE 3-7

.

DISSOLVED-PHASE METALS (JUNE 1998) SHALLOW ZONE

Indian Basin Remediation Project Eddy County, NM

SITE	DATE	Copper (mg/l)	lron (mg/l)	Lead (mg/l)	Magnesium (mg/l)	Manganese I (mg/l)	Mercury (mg/l)	Molybdenum (mg/l)	Nickel (mg/l)
LYMAN 0	6/29/98				1	-		;	1
MW-013 0	16/21/98	1	1	1		;			
MW-014 0	6/22/98	1	1	I	1	•	:	1	:
MW-041 0	86/61/9	1	1	-			-		
MW-043 0	6/22/98	1	1	1	1	:	:	1	
MW-044 0	16/22/98	1	1	-	1	+	1	-	
MW-046 0	6/21/98	ł	-	.1	I	1	1	4	1
MW-049 0	6/21/98	1	1	1			-	-	
MW-050 0	6/19/98		1	1	1	!	ł		1
MW-054 0	/6/25/98	1	-	1	-	-	1		· · · ·
MW-055 0	6/22/98	1	1	ł	1	1	•	1	8
MW-061 0	6/18/98	1		-	-	-			
0 690-MM	6/29/98	1	:	1	1	- - 	1	1	:
0 WW-078	6/19/98	•		-	-	:			-
0 060-MW	6/11/98	1		ł	ł	1		1	
MW-106 0	6/18/98	1	-	-		:			
UIHS_ARROYO 0	6/26/98	1	-	1	:	1	1	;	
1									
Values represent total c	oncentrat	ions unless noted	< = Not detected a	t indicated reporting	j limit = Not analyz	pa			

DISSOLVED-PHASE METALS (JUNE 1998) SHALLOW ZONE

Page: 1C of 1F Date: 10/19/98

Indian Basin Remediation Project Eddy County, NM

SITE	DATE	Potassium	Radium 226,228	Selenium :	Silicon	Silver	Sodi	Uranium	Zinc
		(mg/l)	(pCi/l)	(I/Bu)	(mg/l)	(Ing/I)	(mg/l)	(pCi/l) (mg/l)
LYMAN 01	6/29/98		3.50			1		No convert	1
MW-013 0	6/21/98	:	0.87	:	•	-	-	No convert	
MW-014 0	6/22/98	ł	13.72	1	1	1		<no convert<="" th=""><th>1</th></no>	1
MW-041 01	86/61/9	-	6.24	-	-	-	1	No convert	
MW-043 0(6/22/98	1	5.90	1	1	1	1	No convert	
MW:044 0	6/22/98	ł	0.63	}	1	1	1	<no convert<="" th=""><th>1</th></no>	1
MW-046 01	6/21/98		13.60	1	1		1	No convert	
MW-049 0	6/21/98	1	11.76		1	1	:	No convert	
MW-050 01	6/19/98	1	10.46	1	1	-	•	No convert	
MW-054 0	6/22/98	1	17.05		-	-	1	No convert	
MW-055 0(6/25/98	ł	9.95	•			-	No convert	
MW-061 Ot	6/18/98		7.4		-		-	<no convert<="" th=""><th></th></no>	
MW-069 0(6/29/98	ł	1.03	:	1	1	1	< No convert	
MW-078 OI	6/19/98	ŧ	15.61	:		1	1	No convert	
060-WM	6/17/98	I	3.60			-	1	No convert	
MW-106 Of	6/18/98		5.63			-		No convert	
UIHS_ARROYO 01	6/26/98	ł	2.82		;		1	< No convert	
							·		
Values represent total c	concentrat	tions unless noted	< = Not detected at	indicated reporting li	imit = Not analyz	ed			
For RCL METALS									

•

DISSOLVED-PHASE METALS (JUNE 1998) SHALLOW ZONE

Page: 1D of 1F Date: 10/19/98

Project	
Remediation	County, NM
Basin	Eddy
Indian	

STTE	DATE	Dissoived Aluminum	Dissolved Arsenic	Dissolved Barium	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved
-	; S	(mod)	(ma/l)		boron (mo/l)			Cobalt	Copper
		Ď			hiRin	IORIN	InAm	Ingin	August
LYMAN	06/29/98	<0.026	< 0.0018	0.018	0:090	0.0003	< 0.0008	< 0.0003	< 0.0018
MW-013	06/21/98	<0.026	0.015	0.52	0.22	0.0004	< 0.0008	0.0005	< 0.0018
MW-014	06/22/98	< 0.026	0.0062	0.56	0.31	0.0005	0.0009	< 0.0003	< 0.0018
MW-041	86/61/90	0.030	0.011	0.36	0.27	< 0.0002	0.0038	0.0026	<0.0018
MW-043	06/22/98	< 0.026	0.0052	0.28	0.30	0.0003	< 0.0008	0.0082	< 0.0018
MW-044	06/22/98	<0.026	<0.0018	0.23	0.33	< 0.0002	< 0.0008	< 0.0003	<0.0018
MW-046	06/21/98	< 0.026	0.0033	0.32	0.20	< 0.0002	0.0016	< 0.0003	< 0.0018
MW-049	06/21/98	<0.026	<0.0018	0.048	0.054	<0.0002	0.0038	< 0.0003	<0.0018
MW-050	06/19/98	< 0.026	0.0052	0.028	0.48	< 0.0002	0.0009	< 0.0003	< 0.0018
MW-054	06/25/98	<0.026	<0.0018	0.015	0.29	< 0.0002	0.0008	0.0003	< 0.0018
MW-055	06/25/98	< 0.026	0.0094	0.40	0.34	0.0004	0.0013	0.0012	< 0.0018
MW-061	06/18/98	0:090	0.0024	0.025	0.068	< 0.0002	< 0.0008	<0.0003	< 0:0018
MW-069	06/29/98	< 0.026	0.0062	1.2	0.16	0.0005	0.0010	0.0005	< 0.0018
MW-078	06/19/98	<0.026	0.0097	0.93	0.10	0.0003	0.0031	0.0013	<0.0018
060-WM	06/17/98	< 0.026	0.0044	0.14	0.11	< 0.0002	0.0010	< 0.0003	< 0.0018
MW-106	06/18/98	<0.026	0.0035	0.22	0.074	< 0.0002	<0.0008	<0.0003	0.0033
UIHS_ARROYO	06/26/98	< 0.026	< 0.0018	0.044	0.078	< 0.0002	< 0.0008	0.0004	< 0.0018
									· · · · · · · · · · · · · · · · · · ·
Values represent tot	al concentration	ons unless note	<pre>d <= Not detectec</pre>	d at indicated repor	ting limit = Not a	inalyzed			
For RCI METALS									

DISSOLVED-PHASE METALS (JUNE 1998) SHALLOW ZONE

Page: 1E of 1F Date: 10/19/98

> Indian Basin Remediation Project Eddv Countv, NM

				1222					
STE	DATE	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved
:	:	(l/ôu)	(mg/l)	(mg/l)	(Vg/I)	(mg/l)	Lead (mg/)	Setenum (mg/l)	Silicon (mg/l)
YMAN	06/29/98	0.035	< 0.0002	< 0.0001	0.0034	< 0.0009	< 0.0022	< 0.0023	
AW-013	06/21/98	3.4	0.22	< 0.0001	0.0031	0.014	<0.0022	<0.0023	-
MW-014	06/22/98	4.7	0.24	< 0.0001	0.0039	0.0025	< 0.0022	< 0.0023	
MW-041	06/19/98	0.93	0.20	< 0.0001	0:0030	0.0054	<0.0022	< 0.0023	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
MW-043	06/22/98	2.6	0.20	< 0.0001	0.054	0.039	< 0.0022	< 0.0023	:
MW-044	06/22/98	<0.013	0.043	< 0.0001	0.0007	<0.000	<0.0022	< 0.0023	
MW-046	06/21/98	0.014	060.0	< 0.0001	0.0007	0.0036	< 0.0022	< 0.0023	:
MW-049	06/21/98	0.055	0.079	< 0.0001	0.0050	< 0.0009	<0.0022	<0.0023	
MW-050	06/19/98	< 0.013	0.035	< 0.0001	0.0055	0.0053	< 0.0022	0.0037	
MW-054	06/25/98	<0.013	0.0050	< 0.0001	0.0026	< 0.0009	<0.0022	<0.005	· · · · · · · · · · · · · · · · · · ·
MW-055	06/25/98	2.2	0.12	< 0.0001	0.0031	< 0.0009	< 0.0022	< 0.005	:
MW-061	06/18/98	0.032	0.0010	0.0010	0.0011	<0.0009	<0.0022	<0.0023	
MW-069	06/29/98	2.7	0.59	<0.0001	0.0033	< 0.0009	<0.0022	< 0.005	i
MW-078	06/19/98	1.6	0.82	<0.0001	0.0034	0.0065	<0.0022	0.0035	
060-WW	06/17/98	<0.013	< 0.0002	< 0.0001	0.0025	0.0021	< 0.0022	< 0.0023	•
MW-106	06/18/98	<0.013	0.0066	0.0005	0.0019	<0.0009	<0.0022	<0.0023	
UIHS ARROYO	06/26/98	0.015	0.012	< 0.0001	0.0021	< 0.0009	<0.0022	< 0.005	1
ŀ									
			,						
Values represent to	tal concentrat	tions unless noted	< = Not detected at	t indicated reporting	g limit Not anal	lyzed			
For RCL METALS									

. . .

DISSOLVED-PHASE METALS (JUNE 1998) SHALLOW ZONE

Page: 1F of 1F Date: 10/19/98

Indian Basin Remediation Project Eddy County, NM

5	Ĩ	Dissolved Silvar	Dissolved Zinn								
	!	(mg/l)	(mg/l)								
LYMAN 06/2	29/98	< 0.0007	< 0.014								
MW-013 06/2	21/98	<0.0007	0,037								
MW-014 06/2	22/98	< 0.0007	< 0.014					•			
MW-041 06/1	19/98	<0.0007	0.037								
MW-043 06/2	22/98	< 0.0007	< 0.014								
MW-044 06/2	22/98	<0.0007	<0.014								
MW-046 06/2	21/98	< 0.0007	< 0.014								
MW-049 06/2	21/98	0.022	<0.014								
MW-050 06/1	19/98	0.0075	0.039				•				
MW-054 06/2	25/98	<0.0007	0.015								
MW-055 06/2	25/98	< 0.0007	< 0.014								
MW-061 06/1) 86/81	0.0025	0.054								
MW-069 06/2	86/62	<0.0007	0.024								
MW-078 06/1	86/61	<0.0007	0.087								
MW-090 06/1	. 86/2	<0.0007	0.018								
MW-106 06/18	86/8	<0.0007	0.046								
UIHS_ARROYO 06/20	6/98	<0.0007	0.024								
	a de registra de la construction de									 2002 - 2012 - 2010 2012 - 2012 - 2010 2012 - 2012 - 2010	
											ः ॥ . (
										and and the sector	
Values represent total conc	centration	ns unless noted	< = Not detected	1 at indicated reportir	g limit =	Not analyzed					
For RCL METALS											

Page: 1A of 2F Date: 10/19/98

TABLE 3-8 D-PHASE METALS (111N

DISSOLVED-PHASE METALS (JUNE 1998) LOWER QUEEN

Indian Basin Remediation Project

Eddy County, NM

SITE	DATE	Aluminum	Arsenic (mc/l)		Barlum	Boron	Cadmi	Ē	alcium	Chromium	Cobalt	
		IIAm	10Am		4DBDD	li/6un	(I/BШ)	5	(1/6u	(I/6m)	(l/6m)	
MW-057	06/25/98	1	1		1	1	1	ł		1	ł	
MW-058	06/22/98	1			1	1	1	1				
MW-059	06/24/98		!		1	1	ł	I		•		
MW-060	06/21/98	1	:		-		-	-		:		
MW-061A	06/18/98	1	ł			4		1	-			
MW-062	06/26/98	1	:			:	-	1		-		
MW-063	06/25/98	ł	ł		1	1	ł	1				
MW-064	06/23/98	1	1		-	1	1	1				
MW-065A	06/22/98	-	1		•	ł	1					
MW-066	06/17/98	•	-		ł	:	1	1				
MW-067	06/24/98	ł	ł		•	ł						
MW-068	06/26/98	1			1	1	:	1				
MW-070	06/16/98	1	I		1	I	1	•				
MW-071	06/19/98	1			1	ł	1	1		:	-	
MW-072	06/30/98	ł	:		-	:	ł	1			-	
MW-073	06/30/98	-	•		-	1	1	1		+		
MW-074	06/24/98	ł	ł		I	ł	:	i		-	1	
MW-075	86/02/98	-	1		1	1	1	-			:	
MW-076	06/29/98	ł	ł		-	ł	ł	ł		ł	1	
MW-081	06/29/98	-	:		-	1	1	1				
MW-082	06/25/98	1	1		1	1		i		I	ł	
MW-083	06/25/98	-	1		:	-	:					
MW-084	06/23/98	ł	ł		1	ł	ł	i			ł	
MW-085	06/23/98	-	1			.	:					
MW-086.	06/26/98	1	1		ł	ł	ł	1		1	1	
MW-087	06/19/98	1			:	:	I	1		1	1	
MW-087A	06/19/98	ł	ł		1	1	!	i	·		1	
Values represent tota	al concentrati	ons unless not	ed <=Not	detected a	at indicated rep	orting limit	= Not analyzed					
E DCI METALC												

DISSOLVED-PHASE METALS (JUNE 1998) LOWER QUEEN

Page: 1B of 2F Date: 10/19/98

Indian Basin Remediation Project

.

V	
×N.	
ount	
Ω Å	
B	

SITE DATE	Copper (mo/l)	ita Man	Lead (mol)	Magnesium (mo/l)	Manganese fmod/l)	Mercury (ma/l)	Molybde (mail)	num Nickel (ma/l)	
MW-057 06/25/98	2				2	2 1	1	;	
MW-058 06/22/98	ł	1	1	•		1	-	ł	
MW-059 06/24/98	***	ł	*	1	;	ł	1	ł	
MW-060 06/21/98	1	-	1	1	-	•	+	•	
MW-061A 06/18/98	1	1	ł	1	!	1		ł	
MW-062 06/26/98	1	:	1	-	;	1	ł	•	
Mẁ-063 06/25/98	1	1	1	ł	ł	1	1	I	•
MW-064 06/23/98	1		1	-	;	:	:		
MW-065A 06/25/98	1	1	;	1		1	1	1	
MW-066 06/17/98	1	1	1	-	-	1	1	1	
MW-067 06/24/98	I	1	ļ	ł	ł	I	ł	!	
MW-068 06/26/98	1	-	1		•	Ŧ	1		
MW-070 06/16/98	ł	1	1	1	1	1	ł	:	
MW-071 06/19/98	-	1	1	1	1		1		
MW-072 06/30/98	ł	1	1	:	ł	1	•	1	
MW-073 06/30/98	1	1	-		1		1		
MW-074 06/24/98	1	1	•	1	ł	1	ł	1	
MW-075 06/30/98	-	+	1	1	1	:	-	1	
MW-076 06/29/98	!	ł	•	1	I		I	1	
MW-081 06/29/98	1	1	1	1	ł		1	•	
MW-082 06/25/98	1	1	***	•	1	1	1		
MW-083 06/25/98	1	:	1	:			:		
MW-084 06/23/98	•	1	-	ł	•	1	•	••••••••••••••••••••••••••••••••••••••	
MW-085 06/23/98	1	•	1	ł		:	1		
MW-086 06/26/98	-	1	ł	1	1	1	1	1	
MW-087 06/19/98	1	1	-	1	•		ł	:	
MW-087A 06/19/98	I	ł	•	1		:	1	-	
Values represent total concentra	tions unless noted	< = Not detecte	ed at indicated rep	orting limit= Not	analyzed				

-

Page: 1C of 2F Date: 10/19/98

DISSOLVED-PHASE METALS (JUNE 1998) LOWER QUEEN

TABLE 3-8

Indian Basin Remediation Project

Eddy County, NM

SITE DATE	Potassium	Radium 226,228	Selenium	Silicon	Silver	Sodi	Uranium	Zinc
	(l/6w)	(pCi/l)	(mg/l)	(I/gm)	(mg/l)	(mg/l)	(pCi/l)	(mg/l)
MW-057 06/25/	98	3.06	1	-	-		<no convert<="" th=""><th></th></no>	
MW-058 06/22/	98	4,14	!		1	1	<no convert<="" th=""><th></th></no>	
MW-059 06/24/	86	1.36	:	;	ł	•	No convert	•
MW-060 06/21/	98	5.16			-	-	No convert	
MW-061A 06/18/	98	6.06	•	•	:	ł	< No convert	
MW-062 06/26/	98	3.7	1		:	-	<no convert<="" th=""><th></th></no>	
MW-063 06/25/	98	0.40	:	:	1	1	No convert	
MW-064 06/23/	98	4.47	-		1	1	No convert	
MW-065A 06/25/	98	0.67	1	1	-	ł	< No convert	•
MW-066 06/17/	98	0.47	-		-		No convert	
MW-067 06/24/	86	2.98	1	ł	1	ł	< No convert	;
MW-068 06/26/	98	3.7	:	-	-	1	<no convert<="" th=""><th></th></no>	
MW-070 06/16/	98	2.8	ł	ł	1	ł	No convert	
MW-071 06/19/	98	0.79	:	:	1	:	No convert	
MW-072 06/30/	86	3.9	:	1	ł		No convert	
MW-073 06/30/	86	13.25	:	1	1		No convert	
MW-074 06/24/	86	18.2	1	ł	I	:	<no convert<="" th=""><th>1</th></no>	1
MW-075 06/30/:		3.50	-	-	-	1	No convert	
MW-076 06/29/		5.46	1	ł	ł	ł	No convert	1
MW-081 06/29/	86	3.32	-	1	1	1	<no convert<="" th=""><th></th></no>	
MW-082 06/25/	86	0.30	1	1	I	i	No convert	1
MW-083 06/25/	98 86	0.25	1	:	1	:	No convert	
MW-084 06/23/	86	3.4	1	ł	:		No convert	÷
MW-085 06/23/1	98	12.2	1	;	1	1	<no convert<="" th=""><th></th></no>	
MW-086 06/26/5	- 86	1.75		1	1	;	No convert	ł
MW-087 06/19/5	38	1.02	-	•	:	:	No convert	
MW-087A 06/19/5		1.94	I	I	ł	1	No convert	1
Values represent total concen	itrations unless noted	< = Not detected a	at indicated reportin	ng limit = Not ana	yzed			
For RCL METALS								

Page: 1D of 2F Date: 10/19/98

TABLE 3-8 LVED-PHASE METALS (JUNE

DISSOLVED-PHASE METALS (JUNE 1998) . LOWER QUEEN

Indian Basin Remediation Project Eddy County, NM

		Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved
SITE I	DATE	Aluminum	Arsenic	Barium	Boron	Cadmium	Chromium	Cobalt	Copper
		(mg/l)	(J/Gur)	(mg/l)	(mg/l)	(mg/l)	(I/gm)	(mg/l)	(mg/l)
MW-057 06	3/25/98	< 0.026	0.0018	0.42	0.075	0.0002	0.0008	0.0005	< 0.0018
MW-058 Of	3/22/98	0.088	0.019	0.062	0.12	<0.0002	< 0.0008	< 0.0003	<0.0018
MW-059 06	3/24/98	< 0.026	0.026	0.24	0.23	< 0.0002	0.038	0.0008	< 0.0018
MW-060 Of	3/21/98	<0.026	<0.0018	0.016	0.057	<0.0002	<0.0008	< 0.0003	<0.0018
MW-061A 06	3/18/98	0.25	0.0047	0.054	0.073	< 0.0002	< 0.0008	< 0.0003	< 0.0018
MW-062 Of	3/26/98	<0.026	0.0033	0.36	0.12	0.0002	0.0024	0.0006	<0.0018
MW-063 06	3/25/98	< 0.026	0.0028	0.32	0.064	< 0.0002	0.0012	0.0005	< 0.0018
MW-064 06	3/23/98	0.066	(0.0015)	0.035	0.071	<0.0002	0.0008	<0.0003	<0.0018
MW-065A 06	3/25/98	< 0.026	0.0087	0.095	0.066	0.0002	0.0008	0.0052	< 0.0018
MW-066 Of	3/17/98	0.048	0.0024	0.014	0.085	<0.0002	0.0022	<0.0003	0.0024
MW-067 06	3/24/98	<0.026	< 0.0018	0.29	0.054	< 0.0002	< 0.0008	0.0027	< 0.0018
MW-068 06	3/26/98	<0.026	0.0085	0.15	0.10	0.0002	0.0014	0.0019	<0.0018
MW-070 06	3/16/98	0.036	< 0.0018	0.057	0.073	< 0.0002	< 0.0008	< 0.0003	< 0.0018
MW-071 06	3/19/98	<0.026	<0.0018	0.013	0.24	<0.0002	< 0.0008	< 0.0003	<0.0018
MW-072 06	3/30/98	<0.026	0.0027	0.14	0.086	0.0002	0.0077	0.0004	< 0.0018
MW-073 06	3/30/98	<0.026	0.0032	0.034	0.31	<0.0002	0.0084	< 0.0003	<0.0018
MW-074 06	3/24/98	<0.026	0.011	0.57	0.28	< 0.0002	< 0.0008	0.0024	< 0.0018
MW-075 06	3/30/98	0.033	0.0045	0.082	0.11	<0.0002	0.0068	< 0.0003	<0.0018
MW-076 06	3/29/98	<0.026	0.0031	0.27	0.066	< 0.0002	0.0010	< 0.0003	< 0.0018
MW-081 06	3/29/98	<0.026	0.011	0.054	0.087	0.0002	0.0010	< 0.0003	<0.0018
MW-082 06	3/25/98	<0.026	0.010	0.063	0.11	0.0002	0.0009	0.0009	< 0.0018
MW-083 06	1/25/98	<0.026	0.024	0.11	0.083	0.0002	0.0026	0.0013	<0.0018
MW-084 06	1/23/98	< 0.026	0.019	0.25	0.062	< 0.0002	< 0.0008	0.0003	< 0.0018
MW-085 06	1/23/98	<0.026	0.012	0.26	0.22	< 0.0002	<0.0008	< 0.0003	0.0018
MW-086 06	1/26/98	<0.026	0.0030	0.66	0.28	0.0002	0.0017	0.0020	< 0.0018
MW-087 06	86/61/	<0.026	<0.0018	0.016	0.060	<0.0002	< 0.0008	<0.0003	<0.0018
MW-087A . 06	3/19/98	< 0.026	0.0036	0.024	0.40	< 0.0002	0.0013	0.0009	< 0.0018
Values represent total co	ncentratic	ons unless noted	< = Not detected at	indicated reporting	} limit = Not analy	yzed			
() = Less than Reporting I	Limit								

DISSOLVED-PHASE METALS (JUNE 1998) LOWER QUEEN

.

Indian Basin Remediation Project Eddy County, NM

					•		÷	•	
SITE DA	LTE I	Dissolved Iron	Manganese 1	Mercury	Uissoiveti Molvbdenum	Uissoived Nickel	Uissoived Lead	Dissolved Selenium	Uissolved Silicon
	-	(mg/l)	(mg/l) (mg/l)	(l/6m)	{mg/l}	(l/6m)	(l/6m)	(l/6m)
MW-057 06/2	55/98	1.0	0.20	< 0.0001	0.0017	< 0.0009	<0.0022	< 0.005	
MW-058 06/2	22/98 (0.29	0.28	< 0.0001	0.0057	0.0015	<0.0022	<0.0023	
MW-059 06/2	24/98 (0.053	1.5	< 0.0001	0.0074	0.074	< 0.0022	< 0.0023	1
MW-060 06/2	21/98	<0.013	0.0004 (0.0003	0.0024	<0.0009	<0.0022	<0.0023	
MW-061A 06/1	18/98 (0.061	0.11	< 0.0001	0.0013	0.0048	< 0.0022	< 0.0023	*
MW-062 06/2	26/98 (0.25	0.39 (0.0001	0.0040	<0:000	<0.0022	<0.005	
MW-063 06/2	25/98	< 0.013	0.0015	< 0.0001	0.0008	< 0.0009	< 0.0022	< 0.005	1
MW-064 06/2	23/98 (0.021	0.026	< 0.0001	0.036	0.0028	<0.0022	<0.0023	
MW-065A 06/2	25/98 (0.59	0.44	< 0.0001	0.0049	0.024	< 0.0022	< 0.005	
MW-066 06/1	17/98	<0.013	0.0008 (0.0005	0.0040	<0.0009	< 0.0022	<0.0023	-
MW-067 06/2	24/98 (0.017	0.82	< 0.0001	0.0093	0.090	< 0.0022	< 0.0023	
MW-068 06/2	26/98 (0.080	0.10 (0.0002	0.0046	<0.0009	<0.0022	<0.005	
MW-070 06/1	16/98	< 0.013	0.0026	0.0003	0.0023	< 0.0009	< 0.0022	< 0.0023	-
MW-071 06/1	86/61	<0.013	0.0027	< 0.0001	0.0005	< 0.0009	<0.0022	<0.0023	
MW-072 06/3	30/98 (0.89	0.65	< 0.0001	0.0035	0.0014	< 0.0022	< 0.0023	1
MW-073 06/3	30/98 (0.26	0.065	< 0.0001	0.0028	0.0015	<0.0022	<0.0023	····
MW-074 06/2	24/98	1.3	0.33	< 0.0001	0.0033	0.0037	< 0.0022	< 0.0023	1
MW-075 06/3	30/98 (0.18	0.26	< 0.0001	0.0023	0.0039	<0.0022	<0.0023	
MW-076 06/2	29/98 (0.031	0.15	0.0003	0.0042	< 0.0009	< 0.0022	< 0.005	
MW-081 06/2	29/98 (0.99	0.20	< 0.0001	<0.0003	<0.009	<0.0022	<0.005	
MW-082 06/2	25/98 (0.44	0.18	< 0.0001	0.0040	0.0027	< 0.0022	< 0.005	
MW-083 06/2	25/98 (0.81	0.54	< 0.0001	0.0045	0.0047	<0.0022	<0.005	
MW-084 06/2	23/98 (0.86	0.25	< 0.0001	0.0043	0.0020	< 0.0022	< 0.0023	-
MW-085 06/2	23/98	1.0	0.19	< 0.0001	0.0020	0.0020	<0.0022	<0.0023	
MW-086 06/2	26/98 (0.53	0.17	0.0001	0.0012	< 0.0009	< 0.0022	< 0.005	•
MW-087 06/1	86/61	<0.013	0.0012	<0.0001	0.0025	<0.0009	<0.0022	<0.0023	
MW-087A 06/1) 86/61	0.24	0.012	< 0.0001	0.0053	0.0099	< 0.0022	0.0025	1
Values represent total con	centratio	ins unless noted	< = Not detected at i	indicated reporting	limit = Not analy	zed			

Page: 1E of 2F Date: 10/19/98

DISSOLVED-PHASE METALS (JUNE 1998) LOWER QUEEN

Page: 1F of 2F Date: 10/19/98

Indian Basin Remediation Project Eddy County, NM

SITE	DATE	Dissolved Silver	Dissolved Zinc						
		(mg/l)	(J/Gu)						
MW-057 (06/25/98	< 0.0007	0.020						
MW-058	06/22/98	0.0007	0.091						
MW-059	06/24/98	< 0.0007	0.028						
MW-060 (06/21/98	< 0.0007	0.026						
MW-061A (06/18/98	0.0007	0.17						
MW-062 (06/26/98	<0.0007	0.015						
MW-063	06/25/98	< 0.0007	0.042					۰	
MW-064 (06/23/98	0.0013	0.086						
MW-065A (06/22/98	< 0.0007	0.030						
MW-066 (06/17/98	< 0.0007	0.045						
MW-067 (06/24/98	< 0.0007	0.026						
MW-068 (06/26/98	< 0.0007	0.10						
) 070 WM	06/16/98	< 0.0007	0.051						
MW-071 (06/19/98	0.0011	<0.014						
MW-072 (06/30/98	< 0.0007	< 0.014						
MW-073 (86/02/90	0.008	0.052				•		
MW-074 (36/24/98	< 0.0007	0.037						
MW-075 (36/30/98	< 0.0007	0.041						
MW-076 C	36/23/98	< 0.0007	0.041						
MW-081 C	36/23/38	<0.0007	<0.014						
MW-082 C	36/25/98	< 0.0007	< 0.014						
MW-083 C	36/25/98	<0.0007	<0.014						
MW-084 C	06/23/98	< 0.0007	0.014						
MW-085 C	36/23/98	< 0.0007	0.067						
MW-086 C	06/26/98	< 0.0007	0.039						
MW-087 C	36/19/98	<0.0007	0.014						
MW-087A C	06/19/98	0.0030	0.014						
Values represent total (concentrati	ions unless noted	< = Not detected	d at indicated reporting li	nit Not ana	lyzed			

Page: 2A of 2F Date: 10/19/98

TABLE 3-8

DISSOLVED-PHASE METALS (JUNE 1998) LOWER QUEEN

Indian Basin Remediation Project

MΝ
County,
Eddy

Ste	DATE	Aluminum (mg/l)	Arsenic (mg/l)		Bartum (mg/l)	<u>8</u> £	ron (Vg	Cadmi (mg/l)	Ę	Calclum (mg/l)	•••	Chromium (mg/l)	Cobalt (mg/l)	
MW-088	06/18/98		:			1								
MW-089	06/17/98	1	-		1	ł		-						
MW-094	06/26/98	:	i			1		ł		ł	·	;	ł	
MW-095	06/22/98	1			1	1		:		1				
MW-096	06/21/98	1	I		1	1		:		ł	•	:	1	
MW-097	06/21/98	1	:		-			:		:			•	
MW-098	06/29/98	1	ł		1	1		I		:	·	;	ł	
MW-104	06/21/98	1	:		1	+		1		-				
MW-108	06/22/98	ĺ	1		•	:		ł		ł		I	ł	
011-WM	06/30/98	•			-	•		1		1		-		
MW-111	06/29/98	1	1		1	1		ł		ł	•	:	:	
SW-01	06/30/98	1						1		-		1		
SW-02	06/24/98	1	ł		ł	1		ł		ł	•	1	ł	
SW-03	06/24/98	-	-		1	1		1						
Values represent tota	al concentrati	ons unless no	ted < = Not	detected at	indicated re	sporting limi	t= Not a	ınalyzed						<u> </u>
For RCL METALS														

.

DISSOLVED-PHASE METALS (JUNE 1998) LOWER QUEEN

Page: 2B of 2F Date: 10/19/98

Project	
Remediation	County, NM
Basin	Eddv
Indian	

				read county.	, INIVI			÷			
SITE DATE	Copper (mg/l)	lron (mg/l)	Lead (mg/l)	ngeM (l\gm)	estum 7	Manganese mg/i)	Mercury (mg/l)	(jem)	bdenum 0	Nickel (mg/l)	
MW-088 06/18/98			1	1							
MW-089 06/17/98	:	1	1	1				-		-	
MW-094 06/26/98		ţ	ł		·	;	ł	ł		-	
MW-095 06/22/98		1	1	ł		-	-				
MW-096 06/21/98		1	ł	1	•	:	:	ł		1	
MW-097 06/21/98	+	1		1	1	1	1				
MW-098 06/29/98			1	!	•	-	ł	ł	,	1	
MW-104 06/21/98	+	1	1	+			:	1		1	
MW-108 06/22/98			1	1	•	1	1	1		1	
MW-110 06/30/98	-	-		1	•	-		1		-	
MW-111 06/29/98	1	ł	1	1	•	1	ł	1			
SW-01 06/30/95	1	-	1				1	1			
SW-02 06/24/95	;	ł	1	1	i	:	ł	1			<u> </u>
SW-03 06/24/95	1	1	-	:		1	:	-			
Values represent total concentr	ntions unless n	oted <=Not detect	ed at indicated	reporting limit -	= Not analyze			i			
For RCL METALS											

Page: 2C of 2F Date: 10/19/98

TABLE 3-8

DISSOLVED-PHASE METALS (JUNE 1998) LOWER QUEEN

Indian Basin Remediation Project Eddy County, NM

SITE D	DATE	Potassium	Radium 226,228	Selenium	Silicon	Silver	Sodi	Uranium	Zinc
		(mg/l}	(pCi/l)	(l/ĝu)	(mg/l)	(l/gm)	(l//Buu)	(pCi/l)	(mg/l)
MW-088 · 06/	118/98/	1	1.07	1	i	1		<no convert<="" th=""><th>1</th></no>	1
MW-089 06	/17/98	1	0.19	:		:	1	No convert	
MW-094 , 06/	//26/98	•	4.8			:	-	No convert	
MW-095 06	/22/98	1	8.73		-	;		No convert	•
MW-096 06	//21/98	1	10.95			1		No convert	1
MW-097 06,	//21/98	1	3.21	-		1	1	No convert	1
MW-098 06/	1/29/98		2.43	1	:	ł		No convert	1
MW-104 06	//21/98	1	0.13	-	:	ł	1	No convert	1
MW-108 06/	//22/98	1	0.21	ł	1	ł	ł	< No convert	1
MW-110 06/	/30/98	1	0.76			-	:	No convert	
MW-111 06/	//29/98	1	4.45	1	1	:	-	No convert	-
SW-01 06/	/30/98	1	0.17	1	1		1	No convert	
SW-02 06/	/24/98	-	DN			ł		< No convert	
SW-03 06/	/24/98	-	3.06	-		1	-	No convert	
			、						
Values represent total cor	ncentratio	ons unless noted	<pre>< = Not detected at i</pre>	indicated reporting	limit = Not analy	zed			
ND = Not Detected									
For RCL METALS									

Page: 2D of 2F Date: 10/19/98

TABLE 3-8 LVED-PHASE METALS (JUN

DISSOLVED-PHASE METALS (JUNE 1998) LOWER QUEEN

Indian Basin Remediation Project Eddy County, NM

Dissolved Copper (mg/l)	< 0.0018 < 0.0018	< 0.0018	<0.0018	< 0.0018	<0.0018	< 0.0018	<0.0018	< 0.0018	< 0.0018	< 0.0018	< 0.0018	< 0.0018	< 0:0018				
Dissolved Cobalt (mg/l)	< 0.0003 < 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	<0.0003	< 0.0003	<0.0003	< 0.0003	0.0004				
Dissolved Chromium (mg/l)	< 0.0008< 0.0008	0.0066	<0.0008	0.0016	0.0009	0.0010	<0:008	< 0.0008	0:0010	0.0010	0.0011	< 0.0008	0.0010				
Dissolved Cadmium (mg/l)	< 0.0002 < 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0003	< 0.0002	< 0.0002	<0.0002	< 0.0002	<0.0002	< 0.0002	0.0003				
Dissolved Boron (mg/l)	0.11 0.074	0.058	0.049	0.064	0.056	0.055	0.066	0.046	0.071	0.13	0.056	0.084	0.11				
Dissolved Barium (mg/l)	0.016 0.018	0.040	0.28	0.015	0.054	0.20	0.017	0.11	0.18	0.035	0.027	0.072	0.044				
Dissolved Arsenic (mg/l)	< 0.0018 < 0.0018	< 0.0018	< 0.0018	< 0.0018	<0.0018	0.0047	< 0.0018	0.0019	0.0046	< 0.0018	< 0.0018	< 0.0018	0.0022				
DATE Dissolved DATE Aluminum (mg/l)	6/18/98 0.055 5/17/98 <0.026	5/26/98 <0.026	5/22/98 <0.026	5/21/98 <0.026	6/21/98 <0.026	6/29/98 <0.026	6/21/98 <0.026	6/22/98 <0.026	5/30/98 <0.026	5/29/98 <0.026	5/30/98 <0.026	5/24/98 <0.026	6/24/98 <0.026				
SITE	089	-094 0	-095 0	Ó 960-	0 260-	0 860-	-104 0	-108 0	-110 0	-111	01 0	02 0	03 03				

DISSOLVED-PHASE METALS (JUNE 1998) LOWER QUEEN

Page: 2E of 2F Date: 10/19/98

Indian Basin Remediation Project

Eddy County, NM

L

SITE DAT		Dissolved ron	Dissolved Manganese	Dissolved Marcury	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved
)	mg/l}	(//ɓu/)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	Setenium (mg/l)	Salicon (mg/l)
MW-088 06/1E	8/98 (0.064	0.0062	< 0.0001	0.0041	< 0.0009	<0.0022	< 0.0023	:
MW-089 06/17	7/98 (0.014	0.046	0.0003	0.0033	0.0040	< 0.0022	< 0.0023	-
MW-094 06/26	. 86/9	< 0.013	0.0023	0.0001	0.0023	< 0.0009	< 0.0022	< 0.005	
MW-095 06/22	2/98	<0.013	0.019	< 0.0001	0.0025	<0.0009	<0.0022	<0.0023	
MW-096 06/21	1/98 ·	< 0.013	0.0071	0.0003	0.0026	< 0.0009	< 0.0022	< 0.0023	-
MW-097 06/21	1/98	<0.013	< 0.0002	<0.0001	0.0021	0.000	<0.0022	0.0026	
MW-098 06/25) 86/6	0.034	< 0.0002	< 0.0001	0.0034	<0.0009	<0.0022	< 0.005	ł
MW-104 06/21	1/98	<0.013	<0.0002	< 0.0001	0.0034	<0.009	<0.0022	<0.0023	-
MW-108 06/22	2/98	< 0.013	0.0004	< 0.0001	0.0028	< 0.0009	< 0.0022	< 0.0023	
MW-110 06/30) 86/O	7.043	0.065	<0.0001	0.0038	<0.009	< 0.0022	< 0.0023	-
MW-111 06/25) 86/6	0.092	0.22	< 0.0001	0.0044	< 0.0009	< 0.0022	< 0.005	
SW-01 06/3C) 86/0	0.060	0.0032	<0.0001	0.0019	<0.0009	0.0031	<0.0023	•
SW-02 06/24	4/98	< 0.013	0.060	< 0.0001	0.0020	< 0.0009	0.018	< 0.0023	
SW-03 06/24	4/98 C	0.015	0.0015	<0.0001	0.0024	< 0.0009	< 0.0022	< 0.005	
							•		
Values represent total conce	entratio	ns unless noted	< = Not detected at	: indicated reporting	limit = Not analyz	ed			
For RCL METALS									

•

DISSOLVED-PHASE METALS (JUNE 1998) LOWER QUEEN

Page: 2F of 2F Date: 10/19/98

lasin Remediation Project	Eddy County, NM
Indian B	ш

ł	ł	Dissolved	Dissolved					
u iii		Silver (mg/l)	zinc (mg/l)					
MW-088	06/18/98	0.0007	0.055					
MW-089	06/17/98	0.0009	0.026					
MW-094	06/26/98	< 0.0007	0.022					
MW-095	06/22/98	<0.0007	0:017					
MW-096	06/21/98	<0.0007	<0.014					
MW-097	06/21/98	< 0.0007	<0.014					
MW-098	06/29/98	< 0.0007	0.022					
MW-104	06/21/98	<0.0007	0.022					
MW-108	06/22/98	<0.0007	<0.014					_
MW-110	86/02/98	<0.0007	0.024					
MW-111	06/29/98	< 0.0007	< 0.014					
SW-01	86/02/90	< 0.0007	060.0					
SW-02	06/24/98	< 0.0007	0.028					
SW-03	06/24/98	<0.0007	0.048					
								i i
Values represent total	l concentrativ	ons unless noted	< = Not detected at in	dicated reporting limit	= Not analyzed			
For RCL METALS								

.

ARCADIS

.

.

Fight of the second s

.

·

. · ·

Appendix B

Benzene Half-Life Graphs

. . .

. .

.

90-q92 Half-life approximately 270 days 31.9 Cep-05 \$0-q92 Ð Sep-03 330 Sep-02 ro-qa2 MW-14 Shallow Zone 00-q92 66-q92 8e-qa2 79-qa2 96-q92 Sep-95 \$6-q92 Sep-93 Sep-92 re-qa2 10000 1000 10 100

90-unr գo-սոր Half-life approximately 140 days to-nuℓ 20-unc Jun-02 10-unc MW-46 Shallow Zone 5 00-unr 66-unr 6100 86-unr 26-unr 96-unr գ6-սոր the-ung 26-unc 26-nuL l6-unγ 10000 1000 100 10 7

Π	V-128	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00	0.0000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Former Counduries Duration must be assured another [[[1200 Counduries Duration Molls abouted to assured association Molls abouted to assure duration in the second months.]	-79 MV	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 0.00 0.00	0.0000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	1-12 MM	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00	0.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.
	V-14 MM	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00	0.0000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 00.00 00.00 00.00	0.00 0.00 0.00 #V	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	-117AMV	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00	0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 ALUE! ALUE!	0.00 0.00 0.00 0.00 0.00	
	16 MW	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00		0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 #V/ 0.00 0.00	0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	19 VE-	0.00 0.37 0.37 0.18 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00	0.12 0.00 0.83 0.22 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	V-130 VE-		0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	V-129 MV	0.00 1.17 0.00 0.00 0.00 0.00 0.00 0.00	2.84 0.00 0.00 0.00 0.00	0.37 -2.98 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	N-126 MV	0.00 2.88 3.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.55 0.00 0.00 0.01	0.00 0.00 0.00 0.00 0.00	0.00 00.00 00.00 00.00	0.00 0.00 0.12 0.02	00000000000000000000000000000000000000
	125 M	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.48 0.24 0.24 0.21 0.21	0.0000000000000000000000000000000000000	0.00 0.07 0.02 0.00 0.00 0.00 0.00	0.02 0.04 0.00 0.02 0.03	0.00 0.02 0.11 NLUE!		
	e gauged montniy W-124 MW-	0.40 00.0 00.0 00.0 00.0 00.0 00.0 00.0	0.00 85.0 85.0 10.0	0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 2000 2000 2000 2000 2000	00.0 00.0 00.0 00.0 00.0	00.0 00.0 4V# 00.0	4V# 00.0 4V# 00.0 4V# 00.0 4V# 00.0 4V# 00.0	0.00 #VP 0.00 #VP 0.00 #VP 0.00 #VP 0.00 #VP 0.00 #VP 0.00 #VP 0.00 #VP 0.00 #VP 0.00 #VP
	W-123M	0000 0000 00000 00000 00000 00000 00000 0000	0.00 0.	20.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0 0.0 0 0.0 0 0 0 0 0 0 0
	V-121 M	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	10 00 00 10 00	0.00 0.000 0.00 0.000000	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00	0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	W-120 MV	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.15 0.15 0.15	0.00 0.38 0.03 0.00 0.00 0.00	0.03 0.35 0.01 0.01 0.03	0.00 0.01 0.01 0.02	0.37 0.42 1.31 0.74 0.15	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	W-113 M	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.15 0.15 0.00 0.00 0.21	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00	0.00	0.00	0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	W-113M	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.16 0.42 0.42 0.00	00.000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	W-74	0.00	0.00 00.00 00.00 00.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	00.0 00.0 00.0 00.0 00.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	W-69	0.00 0.00 0.00 0.21 0.21 0.00 0.00 0.00	0.44 1.22 0.38 0.00 0.43	0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	$\begin{smallmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$
	MW-68	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00	0.0000000000000000000000000000000000000	0.00 00.0 00.0 00.0 00.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	MW-11	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.
	AW-86	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.0000000000000000000000000000000000000
	W-85	0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 00.0 00.0	0.00 00.0 00.0 00.0	0.00 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! 0.00
	e gaugeo	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00	0.00 0.000 0.000000	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.
	AW-83 N	0.0000000000000000000000000000000000000	0.00 0.00 0.00 0.00	0.14 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	MW-82	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.02 0.00 0.00	0.00 0.00 00.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	MW-81	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00	0.21 2.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00	2.85 0.00 2.61 0.07 0.39 0.00	0.00 0.00 0.03 0.03 0.03	0.00 0.00 0.00 0.00	0.00 0.01 0.00 0.00	0000 0000 0000 0000 0000 0000 0000 0000 0000
	MW-75	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	MW-72	0.38 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.01 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	-0.02 -0.02 0.00 0.00 0.00 0.00 0.00 0.0
	AW-65A	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
mess in feet	MW-58		0.00 0.00 0.10 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	80.0 00.0 00.0 00.0 00.0 00.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Product Thick		2/13/2003 3/10/2003 5/15/2003 6/5/2003 6/5/2003 6/24/2003 8/6/2003 8/6/2003 8/6/2003 8/6/2003 8/6/2003 8/6/2003 8/1/2/2003	11/07/03 12/04/03 01/08/04 02/12/04 3/25/04	5/27/04 6/17/04 6/18/04 6/19/04 7/15/04 7/16/04 8/19/04 8/20/04 9/9/04	11/19/04 11/22/04 12/07/04 1/11/2005 02/08/05 3/8/05	5/9/2005 6/21/2005 7/19/2005 8/8/2005 9/20/2005	11/14/2005 12/15/2005 1/17/2006 02/07/06 3/7/2006	5/25/2006 6/6/2006 7/19/2006 8/12/2006 9/14/2006	11/29/2006 12/28/2006 1/30/2007 2/13/2007 2/13/2007 6/19/2007 6/19/2007 8/29/2007 9/20/2007 1/25/2007 1/22/2007 1/2/22007 1/120/2007 1/2/22007 2/2007 2/2007 2/2007 2/2007 1/2/2007 2/2007 2/2007 2/2007 2/2007 2/2007 2/2007 2/2007 2/2007 2/2007 2/2007 2/2007 2/15/2007 2/2/2007 2/2/2007 2/2007 2/2/2007 2/2/2007 2/2/2007 2/2/2007 2/2/2007 2/2/2007 2/2/2007 2/2/2007 2/2007 2/2/2007 2/2/2007 2/2/2007 2/2007 2/2/2007 2/2007 2/2/2007 2/20000 2/2000 2/