
1625 N. French Dr., Hobbs, NM 88240 Energy Minerals <u>District II</u> Energy Minerals 1301 W. Grand Avenue, Artesia, NM 88210 Oil Conser <u>District III</u> Oil Conser 1000 Rio Brazos Road, Aztec, NM 87410 1220 South District IV 1220 South	New Mexico and Natural Resources vation Division n St. Francis Dr.	Form C-141 Revised October 10, 2003 Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form
Saina r	e, NM 87505	
	n and Corrective Actio	
<u>30-0/5-353/2</u> Name of Company OXY USA 16696	OPERATOR Contact Mark Andersen	🔄 Initial Report 🛛 Final Report
Address 6 Desta Drive, Suite 600	Telephone No. (432) 685-560	0
Facility Name Pure Gold B Federal #19	Facility Type Flow line	
Surface Owner Mineral Owner		Lease No. NM-38463
	N OF RELEASE	
		st/West Line County
B 20 23S 31E 645 North	a 2310 Ea	
		st Eddy
Latitude	Longitude	-
	OF RELEASE	
Type of Release Produced Fluids Source of Release Flowline released	Volume of Release 8 bbls Date and Hour of Occurrence	Volume Recovered 0 Date and Hour of Discovery
Was Immediate Notice Given?	If YES, To Whom? 9/23/07	
Yes No Not Required		
By Whom? Was a Watercourse Reached?	Date and Hour 9/24/07 1:00	
Was a watercourse Reached?	If YES, Volume Impacting the V	vatercourse.
If a Watercourse was Impacted, Describe Fully.*	,	
Tra watercourse was impacted, Describer uny.		
Describe Cause of Problem and Remedial Action Taken.* Restriction in the flow line created high pressure in the line causing the	flow line to leak Well was shut in '	There were not free standing fluids
Restriction in the now line created high pressure in the line causing the	now fine to leak. Well was shut in.	There were not free standing funds.
Describe Area Affected and Cleanup Action Taken.*	<u></u>	
Line was repaired, Spill area was assessed. The TPH and BTEX were a		
below 250 mg/kg at 1-1.5' below surface. Due to road construction, the submitted to NMOCD for review.	road was expanded and encompass	ed the area of concern. A closure report was
submitted to NMOCD to review.		
I hereby certify that the information given above is true and complete to	the best of my knowledge and unde	rstand that pursuant to NMOCD rules and
regulations all operators are required to report and/or file certain release		
public health or the environment. The acceptance of a C-141 report by should their operations have failed to adequately investigate and remedi		
or the environment. In addition, NMOCD acceptance of a C-141 report		
federal, state, or local laws and/or regulations.		DVATION DIVISION
2 /	<u>OIL CONSE</u>	<u>RVATION DIVISION</u> ccepted for record
Signature: //// / (agent for OXY)	-	NMOCD
Printed Name: Ike Tavarez	Approved by District Supervisor:	FEB 2 3 2009
Title: Senior Droject Manager	Approval Deter	Evaluation Data:
Title: Senior Project Manager	Approval Date:	Expiration Date:
E-mail Address: ike.tavarez@tetratech.com	Conditions of Approval:	Attached
Date: 12-19-08 Phone: (432) 682-4559		_
* Attach Additional Sheets If Necessary	······	······································

,IAN 21 2009 OCD-ARTESIA

December 15, 2008

Mr. Mike Bratcher Environmental Bureau Oil Conservation Division, District 2 1301 W. Grand Avenue Artesia, NM 88210

Re: Assessment and Closure Report for the OXY USA, Inc., Pure Gold B Federal Well #19, Unit B, Section 20, Township 23 South, Range 31 East, Eddy County, New Mexico.

Dear Mr. Bratcher:

Tetra Tech (formerly Highlander Environmental Corp.) was contacted by Pogo Producing Company (Now Oxy USA, Inc.) to assess a spill from the Pure Gold B Federal #19 spill, located in Unit B, Section 20, Township 23 South, Range 31 East, Eddy County, New Mexico (Site). The spill site coordinates are N 32° 17.767', W 103° 48.100. The Site is shown on Figure 1 and Figure 2.

Background

According to the State of New Mexico C-141 Initial Report, approximately 8 barrels (bbls) of produced water were released from a flow line and no fluids were recovered. The release occurred when a restriction in the flow line created a high pressure causing the flow line to leak. The State of New Mexico C-141 (Initial) is enclosed in Appendix C.

Groundwater and Regulatory

The State Engineer's Office database showed no wells located in Section 20, Township 23 South, Range 31 East. However the database did show a water well located in Section 7 with a reported water depth of 140 feet bgs and a second well located in Section 4 with a reported water depth of 168 feet bgs. The New Mexico State Engineers Well Reports are shown in Appendix A.

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX

(sum of benzene, toluene, ethylbenzene, and xylene). Based upon the depth to groundwater, the proposed RRAL for TPH is 5,000 mg/kg.

Assessment and Results

On 9/25/07, Highlander personnel inspected the flow line spill, which is located northeast of the Pure Gold Federal Well #14. The release occurred south of the Highway 128 fence line and measured approximately 50' x 100'. The area north of the fence line measured approximately 45' x 100' and consisted of overspray. A total of six (6) auger holes (AH-1 through and AH-6) were installed using a stainless steel hand auger to assess the impacted soils. Two samples (0-1' and 1-1.5') were collected from each auger hole. Select samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix B. The auger hole locations are shown on Figure 2. The results of the sampling are summarized in Table 1.

Sample Results

Of the samples collected, both the TPH and BTEX concentrations were below the RRAL for the site. The chloride analyses showed a shallow impact to the surface soils. The surface samples 0-1' at AH-1, AH-3 and AH-5 showed chloride concentrations of 4,820 mg/kg, 3,320 mg/kg and 1,150 mg/kg, respectively. However, the deeper samples from 1-1.5' showed chloride concentrations below 250 mg/kg. The remaining auger holes were all below 250 mg/kg.

Conclusions and Recommendations

No TPH and BTEX exceeded the RRAL in any of the samples. There was a shallow impact to the surface soils. Based on the results, Tetra Tech had proposed to either excavate or blend the areas of AH-1 and AH-3. However, due to the Highway construction on 128, the road was expanded and encompassed the area of concern. The construction area is shown on Figure 3. Based on the results and construction activities, OXY request closure of the Site. The State of New Mexico C-141 (Final) is enclosed in Appendix C.

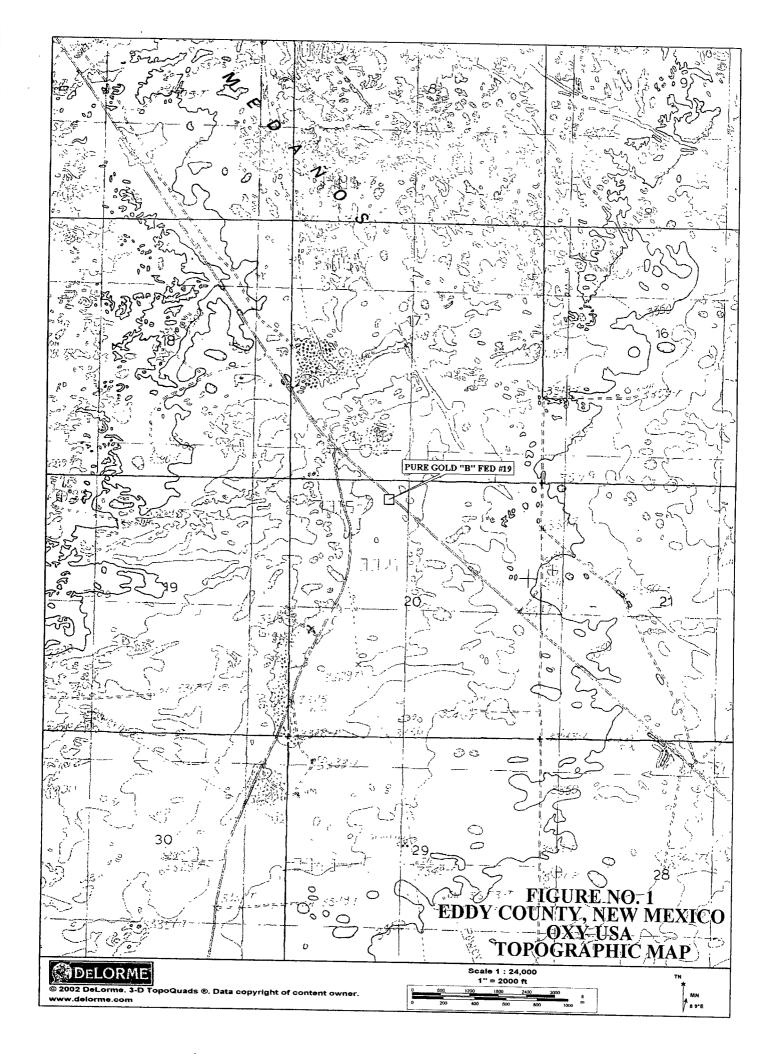
If you require any additional information or have any questions or comments concerning the assessment/closure report, please call at (432) 682-4559.

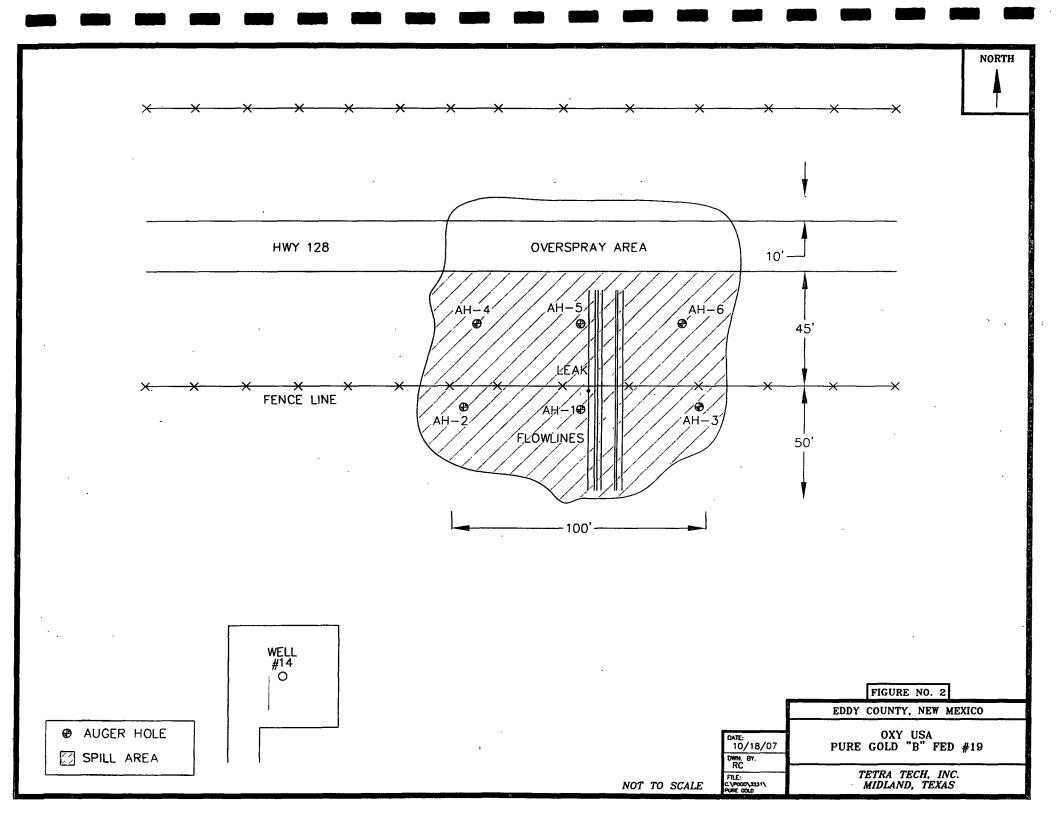
Respectfully submitted, TETRA TECH

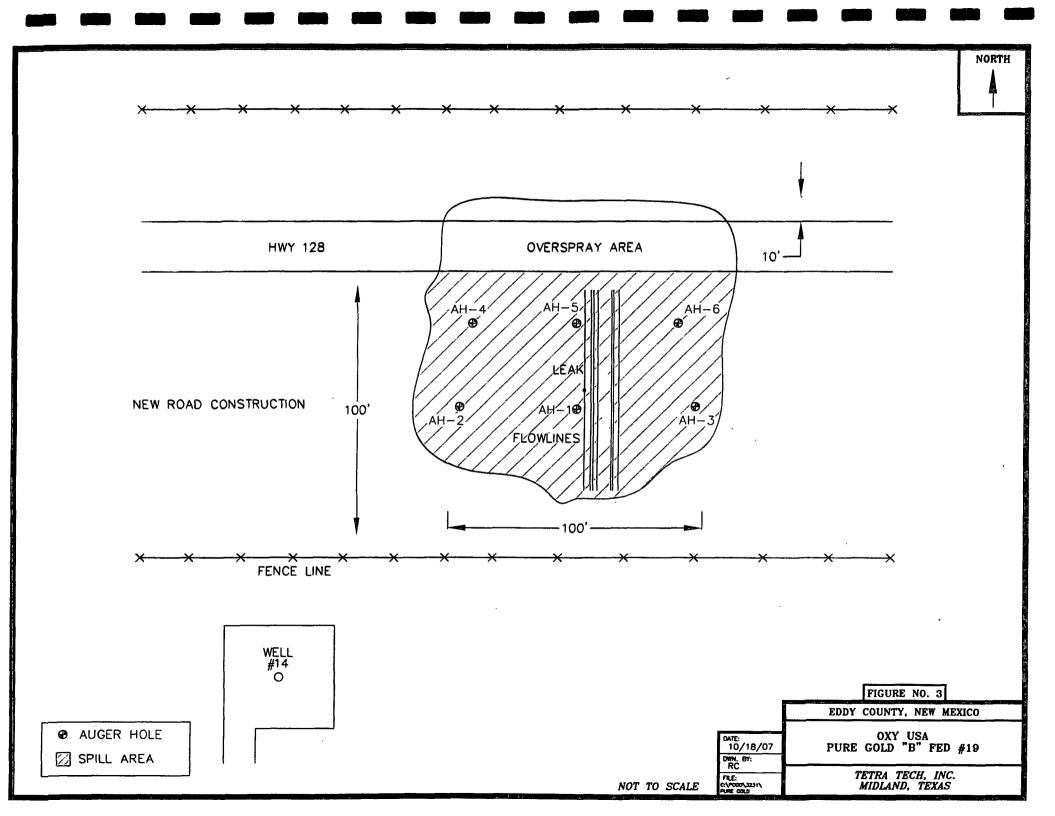
Ike Tavarez, P.G. Senior Environmental Geologist

cc: Mark Andersen – OXY USA, Inc.

. .


Ş


.


FIGURES

.

,

. .

. .

ι ,

. . .

TABLE

Table 1 Oxy USA Pure Gold Federal #19 Eddy County, New Mexico

Date		tatus	Sample		TPH (mg/kg	g)	Benzene	Toluene	Ethlybenzene	Xylene	Chloride
Sampled	In-situ	Removed	Depth (ft)	DRO	GRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
											L
9/25/2007	<u>x</u>		0-1	304	36.1	340.1	< 0.02	< 0.02	0.0363	0.1840	4,820
9/25/2007	<u>x</u>		1-1.5		-	-					128
9/25/2007	x		0-1	<50.0	3.53	3.53	<0.01	<0.01	<0.01	0.0296	<100
9/25/2007	X		1-1.5		-						<100
9/25/2007	X		0-1	95.3	5.1	100.4	<0.01	< 0.01	<0.01	0.0335	3,320
9/25/2007	X		1-1.5	-	-	-	-		-	_	<100
9/25/2007	x		0-1	<50.0	1.13	1.13	-		· _		<100
9/25/2007	X		1-1.5		-	-	-		-		<100
9/25/2007	x		0-1	100	1.35	101.35	-		-	-	1,150
9/25/2007	X		1-1.5	-		-	-		-	_	<100
9/25/2007	x		0-1	<50.0	<1.0	<50.0	-	-	-	-	<100
9/25/2007	<u> </u>		1-1.5	-	_	-			-		<100
• • • • • • • • • • •	9/25/2007 9/25/2007 9/25/2007 9/25/2007 9/25/2007 9/25/2007 9/25/2007 9/25/2007 9/25/2007 9/25/2007 9/25/2007	9/25/2007 X 9/25/2007 X	9/25/2007 X 9/25/2007 X	SampledIn-situRemovedDepth (ft) $9/25/2007$ X0-1 $9/25/2007$ X1-1.5 $9/25/2007$ X0-1	SampledIn-situRemovedDepth (ft)DRO $9/25/2007$ X0-1 304 $9/25/2007$ X1-1.5- $9/25/2007$ X0-1 <50.0 $9/25/2007$ X0-1 <50.0 $9/25/2007$ X0-1 <50.0 $9/25/2007$ X0-1 95.3 $9/25/2007$ X0-1 95.3 $9/25/2007$ X0-1 95.3 $9/25/2007$ X0-1 <50.0 $9/25/2007$ X0-1 <50.0 $9/25/2007$ X0-1 <50.0 $9/25/2007$ X0-1 100 $9/25/2007$ X0-1 100 $9/25/2007$ X0-1 <50.0	SampledIn-situRemovedDepth (ft)DROGRO $9/25/2007$ X0-1 304 36.1 $9/25/2007$ X1-1.5 $9/25/2007$ X0-1 <50.0 3.53 $9/25/2007$ X0-1 <50.0 3.53 $9/25/2007$ X0-1 <50.0 3.53 $9/25/2007$ X0-1 95.3 5.1 $9/25/2007$ X0-1 95.3 5.1 $9/25/2007$ X0-1 50.0 1.13 $9/25/2007$ X0-1 <50.0 1.13 $9/25/2007$ X0-1 100 1.35 $9/25/2007$ X0-1 100 1.35 $9/25/2007$ X0-1 100 1.35 $9/25/2007$ X0-1 100 1.35 $9/25/2007$ X $0-1$ <50.0 <1.0	SampledIn-situRemovedDepth (ft)DROGROTotal $9/25/2007$ X0-130436.1340.1 $9/25/2007$ X1-1.5 $9/25/2007$ X0-1<50.0	SampledIn-situRemovedDepth (ft)DROGROTotal(mg/kg) $9/25/2007$ X0-130436.1340.1<0.02	SampledIn-situRemovedDepth (ft)DROGROTotal(mg/kg)(mg/kg)9/25/2007X0-130436.1340.1<0.02	SampledIn-situRemovedDepth (ft)DROGROTotal(mg/kg)(mg/kg)(mg/kg)9/25/2007X0-130436.1340.1<0.02	SampledIn-situRemovedDepth (f)DROGROTotal(mg/kg)(mg/kg)(mg/kg)(mg/kg)(mg/kg) $$

(-) Not Analyzed

APPENDIX A GROUNDWATER DATA

Water Well Data Average Depth to Groundwater (ft) OXY - Pure Gold B Federal #19, Eddy County, New Mexico

	_22 S	outh	3	0 East			22 Sc	outh	3	1 East			22 \$	South	_	2 East	
	5 48	4	3	2	1	6	5	4	3	2	1	6	5	4	3	2	1
	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11	12
	17	16	. 15	14	13	18	17	16	15	14	13	18	17	16	15	14 382	13
,	20	21	22	23	24	19	20	448 21	22	23	24	19 (S)	20	21 .	22	23	24
		-	256				47			1		280					_
)	29	28	27	26	25	30	29	28	27	26	25	30	29	28	27	26	25
							413	444									
1	32	33	- 34	35	36	31	32	33 ·	34	35	36	31	32	33	34	35	36
	25	155		<u>,</u>				<u> </u>	<u> </u>								
	23 S	outh	3	0 East	t		23 Se	outh	3	1 East			23 :	South	3	32 East	
	5	4	3	2	1	6	5	4	3	2	1	6	5	4	3	2	1
10				250		85	354	168									
	8	9	10	11	12	7 140	8	9	10	11	12	7	8	9 ·	10	11	12
В	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14	13
9	20	21	22	23	24	19	20 SITE	21	22	23	24	19	20	21 400	22	23	24
0	29	28	27	26	25	30	29	28	27	26	25	30	29	28	27	26	25
1	32	33	34	35	36	31	32	33	34	35	36	· 31	32	33	34	35	36
			440								-						
	24 3	South	3	80 East	t		24 S	outh		81 East			24	South		32 East	
	5	4	3	2	1	6	5	4	3	2 192	1	6	5	4	3	2	1
	8 186	9	10	11	12	7	8	9	10	11	12	7	8	9	10 20	11	12
8	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14	13
9 231	20	21	22	23	24	19	20	21	22	23	24	19	20	21	22	23	24
50 0	29	28	27	400 26	25	30	29	28	27	26	25	30	29	28	27	26	25
1	32	33	34	35	36	31	32	33	34	35	36	31	32	33	34	35	36
	ļ					1	1	1	1				1	290	1	1	

88 New Mexico State Engineers Well Reports

105 USGS Well Reports

90 Geology and Groundwater Conditions in Southern Lea, County, NM (Report 6) Geology and Groundwater Resources of Eddy County, NM (Report 3)

34 NMOCD - Groundwater Data

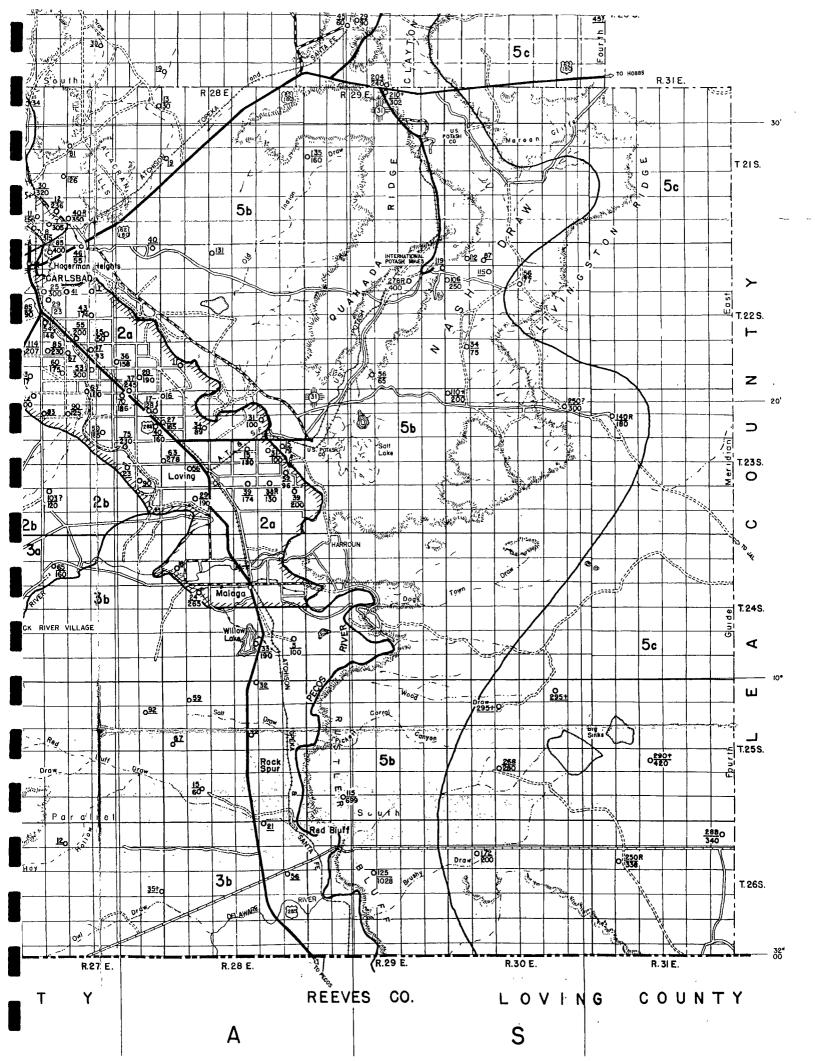


TABLE 1. RECORDS OF WELLS IN EDDY COUNTY, NEW MEXICO. (Continued)

LOCATION	OWNER	DATE		ALTITUDE	DEPTH	DIAMETER	PRINCIPAL WAT	ER-BEARING BED
NUMBER	OR NAME	COM- PLETED	TOPOGRAPHIC SITUATION	ABOVE SEA LEVEL (feet)	OF WELL (feet)	of well. (inches)	CHARACTER OF MATERIAL	GEOLOGIC UNIT
23.28.22.433	J. Joyce	_	Orchard Park Terrace	3,031	174		Alluvium	Quaternary
23.133	Donaldson	-	Hillside	3.020	_	_	do.	do.
23.433	S. F. Williams	-	East slope	3,008	130	16	do.	do.
24.134	B. Yarbro	-	do.	2,992	96		do.	do.
25.213	Ray Howard	-	do.	2,990	200	18	do.	do.
29.144	Kelly-Polk		Orchard Park Terrace	3,100	190	18	do.	do.
29.411	_	-	do.	3,101		14	do.	do.
23.30.2.440	James Bros.		E. trending spur	3,250	300	5	Redbeds	Dockum or Rustler
6.110	do.	-	Closed depression	3,000	200	12 (?)	do.	Rustler
6.420	Nash well	_	do.	2,980	-		Alluvium	Quaternary
21.122	Indian well	-	Valley	3,165	_	12	Redbeds	Rustler
€ 23.31.7.220	James Head- quarters	1900 (?)	Rolling	3,310	180	12	do.	Dockum

See explanation at beginning of table.

144

NEW MEXICO BUREAU OF MINES & MINERAL RESOURCES

	WAT	FER LEVEL					ER
LOCATION NUMBER	BELOW LAND SURFACE (feet)	DATE OF MEASUREMENT	YIELD (g.p.m.)	METHOD OF LIFT	USE OF WATER	REMARES	
23.28.22.433	38.5	Feb. 8, 1947	1,200	Т	I	See analysis, Table 3.	
23.133	52.4	Sept. 22, 1947		т	T	······	ED
23.433	38	_	1.1001	Ť	Ť		Ē
24.134	52.3	Sept. 22, 1947	1,200	Ť	Ĩ	Depth to water measured while pump- ing. See analysis, Table 3.	YC
25.213	39.1	Sept. 23, 1947	1,000 R.	т	I	Cased to 70 ft.	ž
29.144	28.7	Sept. 25, 1947	· _	N	N	Abandoned (?)	Z
29.411	20.7	Jan. 13, 1948	_	N	T	(1)	H
23.30.2.440	250.0	Dec. 22, 1948	_	W&G	ŝ	See analysis, Table 3.	Y
6.110	110.0	do.	_	Ŵ	š	oce analysis, Table 5.	
6.420		_	_	ŵ	ŝ		
21.122	-		8	W & G	š	See analysis, Table 3.	
23.31.7.220	140	_	10 E.	Ŵ	š	Two wells here.	

See explanation at beginning of table. 1 Measured Sept. 23, 1947.

~ شمارەي ، سىرىت

14. dj.28

TT 1220-

1222

Tara a a

GROUND WATER

145

New Mexico Office of the State Engineer

Page	1	of	1
I uge		01	

		New Mexico Offi POD Repor			•		
	Township:	23S Range: 31E	Sections:				
NAI	D27 X:	Y:	Zone:		Search Radi	us:	
County:		Basin:		Num	ber:	Suffix:	
Owner Name:	(First)	(Last)	W. an digan i dan marka di biyiki kasim ng y	ΟN	lon-Domestic	ODomestic	⊚All
P.	OD://Surface D	ata:Report	Depth to Water	Report	Water Co	lumn Report	
		Clear Form	. iWATERS Mer	<u>)u</u> ,	lelp		-
		ata:Report	• •	Report	wij weter Co		-

AVERAGE DEPTH OF WATER REPORT 11/12/2008

								(Depth)	Water in	Feet)
Bsn	Tws	Rng	Sec	Zone	x	Y	Wells	Min	Мах	Avg
С	23S	31E	04				1	168	168	168
С	23S	31E	05				1	354	354	354
С	23S	31E	06				1	85	85	85

Record Count: 3

U

A

Ì

		Ne	w <i>Mexico Offi</i> POD Repor	-		-		
To	ownship	23S	Range: 30E	Sections:				Promite of Change of Con-
NAD2	27 X:		Y:	Zone:		Search Radiu	18:	
County:		Basi	in:		Num	lber:	Suffix:	
Owner Name: (First)		(Last)		ON	Ion-Domestic	ODomestic	⊚All
POD)://Surface.D	ata Rep	oort al a state Avg	Depth to Water F	Report	Water Col	umn-Report	
			Clear Form	,iWATERS Mer	<u>u</u>][Help		
		****			19 44 al 1 4 al 1 1 al 1 1 1 ann an			
AVE	ERAGE D	EPTH	OF WATER R	EPORT 11/	12/2		ter in Feet	:)

Bsn	Tws	Rng	Sec	Zone	x	Y	Wells	Min	Max	Avg
С	23S	30E	34				1	440	440	440
Reco	rd Co	unt:	1							

http://iwaters.ose.state.nm.us:7001/iWATERS/WellAndSurfaceDispatcher

New Mexico Office of the State Engineer

1 age 1 01 1	Page	1	of	1
--------------	------	---	----	---

1		<i>e of the State Eng</i> s and Downloads			
Township: 24	s Range: 31E	Sections:		, -	
NAD27 X:	Y:	Zone: 🔄 S	Search Radiu	s:	
County: 📓 B	asin:	Numbe	er: S	Suffix:	
Owner Name: (First)	(Last)	ONo	n-Domestic	ODomestic	⊚All
POD / Surface Data	Report 👔 🚺 Avg [Pepth to Water Report	Water Colu	mn Report	
	Clear Form	WATERS Menu Hel	р		

AVERAGE DEP	TH OF WATER RE	PORT 11/12/200	8		
			-	ter in Feet	:)
Bsn Tws Rng Sec Z C 24S 31E 02	one X	Y Wells 3	Min 160	Max Av 212 19	-

Record Count: 3

http://iwaters.ose.state.nm.us: 7001/iWATERS/WellAndSurfaceDispatcher

11/12/2008

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category: Ground Water

Geographic Area: United States

GO

News: Recent changes

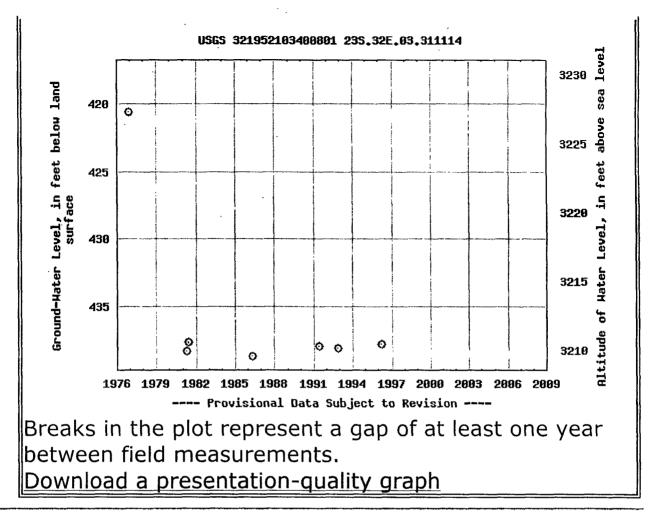
Ground-water levels for the Nation

Search Results -- 1 sites found

Search Criteria

site no list = • 321952103400801

Minimum number of levels = 1


Save file of selected sites to local disk for future upload

USGS 321952103400801 23S.32E.03.311114

Available data for this site Ground-water: Field measurements

GO

Lea County, New Mexico Hydrologic Unit Code Latitude 32°20'00", Longitude 103°	
40'14" NAD27	Output formats
Land-surface elevation 3,648.00 feet above sea level	Table of data
NGVD29	Tab-separated data
The depth of the well is 630 feet	<u>Graph of data</u>
below land surface.	Reselect period
This well is completed in the SANTA	
ROSA SANDSTONE (231SNRS) local aquifer.	

Questions about sites/data? Feedback on this web site

<u>Top</u> Explanation of terms Subscribe to NWISWeb notifications

Automated retrievals

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey

Title: Ground water for USA: Water Levels URL: http://waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>NWISWeb Support Team</u> Page Last Modified: 2008-11-12 15:32:51 EST 4.22 1.99 nadww01

APPENDIX B SUMMARY REPORT October 9, 2007

Report Date: October 9, 2007 3231

Summary Report

Ike Tavarez Highlander Environmental Services 1910 N. Big Spring Street Midland, TX, 79705

Report Date: October 9, 2007.

Work Order:	7100338

Project Location:	Eddy County, NM
Project Name:	Pogo/Pure Gold Fed #19
Project Number:	3231

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
138303	AH-1 0-1'	soil	2007-09-25	00:00	2007-10-03
138304	AH-1 1-1.5'	soil	2007-09-25	00:00	2007-10-03
138305	AH-2 0-1'	soil	2007-09-25	00:00	2007-10-03
138306	AH-2 1-1.5'	soil	2007-09-25	00:00	2007-10-03
138307	AH-3 0-1'	soil	2007-09-25	00:00	2007 - 10 - 03
138308	AH-3 1-1.5'	soil	2007-09-25	00:00	2007 - 10 - 03
138309	AH-4 0-1'	soil	2007-09-25	00:00	2007 - 10 - 03
138310	AH-4 1-1.5'	soil	2007-09-25	00:00	2007 - 10 - 03
138311	AH-5 0-1'	soil	2007-09-25	00:00	2007 - 10 - 03
138312	AH-5 1-1.5'	soil	2007-09-25	00:00	2007-10-03
138313	AH-6 0-1'	soil	2007-09-25	00:00	2007-10-03
138314	AH-6 1-1.5'	soil	2007-09-25	00:00	2007-10-03

		l		TPH DRO	TPH GRO	
	Benzene	Toluene	Ethylbenzene	Xylene	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
138303 - AH-1 0-1'	< 0.0200	< 0.0200	0.0363	0.184	304	36.1
138305 - AH-2 0-1'	$<0\ 0100$	< 0.0100	< 0.0100	0.0296	<50.0	3.53
138307 - AH-3 0-1'	< 0.0100	< 0.0100	< 0.0100	0.0335	95.3	5.10
138309 - AH-4 0-1'					<50.0	1.13
138311 - AH-5 0-1'					100	1.35
138313 - AH-6 0-1'					<50.0	<1.00

Sample: 138303 - AH-1 0-1'

Param	Flag	Result	Units	\mathbf{RL}
Chloride		4820	mg/Kg	2.00

Sample: 138304 - AH-1 1-1.5'

Param	Flag	Result	Units	RL
Chloride		128	mg/Kg	2.00

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296 This is only a summary. Please, refer to the complete report package for quality control data.

Report Date: October 9, 2007 3231		Work Order: 7100338 Pogo/Pure Gold Fed #19		Page Number: 2 of 3 Eddy County, NM	
Sample: 138305 -	- AH-2 0-1'				
Param	Flag	Result	Units	RL	
Chloride		<100	mg/Kg	2.00	
Sample: 138306 -	- AH-2 1-1.5'				
Param	Flag	Result	Units	\mathbf{RL}	
Chloride		<100	mg/Kg	2.00	
Sample: 138307 -	- AH-3 0-1'				
Param	Flag	Result	Units	RL	
Chloride		3320	mg/Kg	2.00	
Sample: 138308 -	- AH-3 1-1.5'				
Param	Flag	Result	Units	\mathbf{RL}	
Chloride		<100	mg/Kg	2.00	
Param Chloride	Flag	Result <100	Units mg/Kg	RL 2.00	
	Flag			RL 2.00	
, C 190910					
Sample: 138310					
Param	Flag	Result	Units	RL	
Chloride		<100	mg/Kg	2.00	
Sample: 138311	- AH-5 0-1'				
Param	Flag	Result	Units	\mathbf{RL}	
Chloride		1150	mg/Kg	2.00	
Sample: 138312	- AH-5 1-1.5'				
Param	Flag	Result	Units	RL	
Chloride	0	<100	mg/Kg	2.00	
Sample: 138313	- AH-6 0-1'		,		
Param	Flag	Result	Units	RL	
Chloride	T tag	· <100	mg/Kg	2.00	

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296 This is only a summary. Please, refer to the complete report package for quality control data.

Report Date: October 9, 2007	Work Order: 7100338	Page Number: 3 of 3
3231	Pogo/Pure Gold Fed #19	Eddy County, NM

Sample: 138314 - AH-6 1-1.5'

Param	Flag	Result	Units	\mathbf{RL}
Chloride		<100	mg/Kg	2.00

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296 This is only a summary. Please, refer to the complete report package for quality control data.

,

6701 Abordeen Avenue Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1 6015 Harris Parkway, Suite 110

Lubbeck, Texas 79424 El Paso, Texas 79922 Midland Texas 79703 Ft Worth, Texas 76132 E-Mail lab@traceanalysis.com

800-378-1296 888 • 588 • 3443

806 • 794 • 1296 FAX 806 • 794 • 1298 915 • 585 • 3443 FAX 915 • 585 • 4944 432•689•6301 FAX 432 • 689 • 6313 817 • 201 • 5260

Analytical and Quality Control Report

Ike Tavarez Highlander Environmental Services 1910 N. Big Spring Street Midland, TX, 79705

Project Location: Eddy County, NM **Project** Name: Pogo/Pure Gold Fed #19 **Project Number:** 3231

Enclosed are t	he Analytical Report and	Quality Control Rep	port for the following sam	ple(s) submitted to '	IraceAnalysis, Inc.
			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
138303	AH-1 0-1'	soil	2007-09-25	00:00	2007-10-03
138304	AH-1 1-1.5'	soil	2007-09-25	00:00	2007-10-03
138305	AH-2 0-1'	soil	2007-09-25	00:00	2007-10-03
138306	AH-2 1-1.5'	soil	2007-09-25	00:00	2007-10-03
138307	AH-3 0-1'	soil	2007-09-25	00:00	2007-10-03
138308	AH-3 1-1.5'	soil	2007-09-25	00:00	2007-10-03
138309	AH-4 0-1'	soil	2007-09-25	00:00	2007-10-03
138310	AH-4 1-1.5'	soil	2007-09-25	00:00	2007 - 10 - 03
138311	AH-5 0-1'	soil	2007-09-25	00:00	2007-10-03
138312	AH-5 1-1.5'	soil	2007-09-25	00:00	2007-10-03
138313	AH-6 0-1'	soil	2007-09-25	00:00	2007 - 10 - 03
138314	AH-6 1-1.5'	soil	2007-09-25	00:00	2007-10-03

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 18 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

١

Report Date: October 9, 2007

Work Order: 7100338

purch Blain

t

Dr. Blair Leftwich, Director

,

Standard Flags

 ${\bf B}\,$ - The sample contains less than ten times the concentration found in the method blank

.

Sample: 138303 - AH-1 0-1'

Analytical Report

QC Batch:	BTEX 41788 36088		Analytical M Date Analyz Sample Prep	ed: 2	8 8021B 2007-10-04 2007-10-04		Prep Me Analyze Prepare	d By:
			RL					
Parameter	Fl	ag	Result		Units		Dilution	\mathbf{RL}
Benzene			< 0.0200		mg/Kg		2	0.0100
Toluene			< 0.0200	1	mg/Kg		2	0.0100
Ethylbenzene			0.0363		mg/Kg		2	0.0100
Xylene			0.184		mg/Kg		2	0.0100
						Spike	Percent	Recovery
Surrogate		Flag_	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotolue			1.84	mg/Kg	2	2.00	92	39.6 - 116
4-Bromofluoro	obenzene (4-BFB)	1.82	mg/Kg	2	2.00	91	47.3 - 144.2
Analysis: QC Batch: Prep Batch:	Chloride (Titrat 41873 36167	·	Date Samp RL	tical Metho Analyzed: le Preparat	2007-10 ion:		Analy Prepa	Method: N/A zed By: AR red By: AR
Parameter	Fla	g	Result		Units		Dilution	RL
Chloride			4820		mg/Kg		50	2.00
Sample: 138 Analysis: QC Batch: Prep Batch:	8303 - AH-1 0- TPH DRO 41767 36070	1'	Date Ana	l Method: lyzed: reparation:	Mod. 8015) 2007-10-04 2007-10-04	В	Analy	Method: N/A zed By: red By:
Parameter	Fla	Q.	f RL Result		Units		Dilution	RL
DRO		0	304		mg/Kg		1	50.0
	Flag	Result	Units	Dilu		Spike mount	Percent Recovery	Recovery Limits
Surrogate n-Triacontane		180	mg/Kg	Diru	101011 A	150	120	17.3 - 169.6

Sample: 138303 - AH-1 0-1'

Analysis:	TPH GRO	Analytical Method:	S 8015B	Prep Method: S 5035
QC Batch:	41802	Date Analyzed:	2007-10-04	Analyzed By:
Prep Batch:	36088	Sample Preparation:	2007-10-04	Prepared By:

Parameter	Flag		RL Result		Units		Dilution	RL
GRO			36.1		mg/Kg		2	1.00
						Spike	Percent	Recovery
Surrogate		\mathbf{Flag}	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			1.30	mg/Kg	2	2.00	65	50.2 - 89.3
4-Bromofluorobenzene (4-BFB)			. 2.46	mg/Kg	2	2.00	123	50.8 - 131.6

Sample: 138304 - AH-1 1-1.5'

Analysis: QC Batch: Prep Batch:	Chloride (Titration) 41873 36167	Analytical Method Date Analyzed: Sample Preparatio	2007-10-08	Prep Metho Analyzed By Prepared By	y: AR
		RL			
Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
Chloride		128	mg/Kg	50	2.00

Sample: 138305 - AH-2 0-1'

Analysis: BTEX		Analytical Method: Date Analyzed:		S 8021B		Prep Method: S Analyzed By:		
QC Batch: 41788				2007 - 10 - 04				
Prep Batch: 36088		Sample Pre	paration:	2007-10-04		Preparec	l By:	
		' RI						
Parameter Flag		\mathbf{Resul}	t	Units	Ι	Dilution	RL	
Benzene		< 0.010	0	mg/Kg		1	0.0100	
Toluene		< 0.010	0	mg/Kg		1	0.0100	
Ethylbenzene		< 0.010	0 · 0	mg/Kg		1	0.0100	
Xylene		0.029	6	mg/Kg		1	0.0100	
		×			Spike .	Percent	Recovery	
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits	
Trifluorotoluene (TFT)		0.940	mg/Kg	1	1.00	94	39.6 - 116	
4-Bromofluorobenzene (4-BFB)		0.871	mg/Kg	1	1.00	87	47.3 - 144.2	

Sample: 138305 - AH-2 0-1'

Analysis: QC Batch: Prep Batch:	Chloride (Titration) 41873 36167	Analytical Meth Date Analyzed: Sample Preparat	2007-10-08	Prep Method Analyzed By . Prepared By	: AR
Parameter	Flag	RL Result	Units	Dilution	RL
Chloride	I lag	<100	mg/Kg	50	2.00

Sample: 138305 - AH-2 0-1'

Analysis:	TPH DRO	Analytical Method:	Mod. 8015B	Prep Method:	N/A
QC Batch:	41767	Date Analyzed:	2007-10-04	Analyzed By:	
Prep Batch:	36070	Sample Preparation:	2007-10-04	Prepared By:	
Parameter	Flag	RL Begult	Units	Dilution	BL.

Parameter	Fla	ıg	Result	Ur	nts	Dilution	KL
DRO			<50.0	mg/	Kg	1	50.0
					Spike	Percent	Recovery
Surrogate	Flag	\mathbf{Result}	Units	Dilution	Amount	Recovery	Limits
n-Triacontane		228	mg/Kg	1	150	152	17.3 - 169.6

Sample: 138305 - AH-2 0-1'

Analysis: QC Batch: Prep Batch:	TPH GRO 41802 36088		Date Ana	Date Analyzed: 2007-10-04 Ana		Analyzed	Method: S 5035 yzed By: ared By:	
			\mathbf{RL}					
Parameter	\mathbf{Flag}		Result		Units		Dilution	\mathbf{RL}
GRO			3.53		mg/Kg		1	1.00
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotolu	ene (TFT)		0.647	mg/Kg	1	1.00	65	50.2 - 89.3
4-Bromofluo	robenzene (4-BFB)		0.887	mg/Kg	1	1.00	89	50.8 - 131.6

Sample: 138306 - AH-2 1-1.5'

Analysis: QC Batch: Prep Batch:	Chloride (Titration) 41873 36167	Analytical Method:SM 4500-Cl BDate Analyzed:2007-10-08Sample Preparation:		Prep Method: Analyzed By: Prepared By:	AR
		RL			
Parameter	Flag	\mathbf{Result}	Units	Dilution	\mathbf{RL}
Chloride		<100	mg/Kg	50	2.00

Sample: 138307 - AH-3 0-1'

Analysis:BTEXQC Batch:41788Prep Batch:36088			Analytical Method: Date Analyzed: Sample Preparation:	S 8021B 2007-10-04 2007-10-04	Prep Method Analyzed By Prepared By:	
			RL			
Parameter		Flag	\mathbf{Result}	Units	Dilution	\mathbf{RL}
Benzene			< 0.0100	mg/Kg	· 1	0.0100
Toluene			< 0.0100	mg/Kg	1 .	0.0100
Ethylbenzen	e		< 0.0100	mg/Kg	1	0.0100
				•	continued	

٠

.

sample 138307 continued ...

ļ

Į

			RI					
Parameter	Flag		Resul	t	Units	I	Dilution	\mathbf{RL}
Xylene			0.033	5	mg/Kg		1	0.0100
						Spike	Percent	Recovery
Surrogate		Flag	\mathbf{Result}	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			0.945	mg/Kg	1	1.00	94	39.6 - 116
4-Bromofluorobenzene (4-BF	Β)		0.863	$\mathrm{mg/Kg}$	1	1.00	86	47.3 - 144.2

Sample: 138307 - AH-3 0-1'

Analysis: QC Batch:	Chloride (Titration) 41873	Analytical Met Date Analyzed		Prep Method: Analyzed By:	'
Prep Batch:		Sample Prepar		Prepared By:	
		RL			
Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
Chloride		3320	mg/Kg	50	2.00

Sample: 138307 - AH-3 0-1'

Analysis:TPH DROQC Batch:41767Prep Batch:36070			Analytical Method: Date Analyzed: Sample Preparation:		Mod. 8015B 2007-10-04 2007-10-04	Ana	p Method: N/A alyzed By: pared By:
Parameter	Fla	g	RL Result		Units	Dilution	RL
DRO	В		95.3		mg/Kg	1	50.0
Surrogate	\mathbf{Flag}	Result	Units	Dilutio	Spik on Amou	_	Recovery Limits
n-Triacontan	e	198	mg/Kg	1	150	132	17.3 - 169.6

Sample: 138307 - AH-3 0-1'

Analysis:TPH GROQC Batch:41802Prep Batch:36088			Analytical Method: Date Analyzed: Sample Preparation:		S 8015B 2007-10-04 2007-10-04	Prep Method: S 5035 Analyzed By: Prepared By:		
			\mathbf{RL}					
Parameter	\mathbf{Flag}		\mathbf{Result}		Units		Dilution	RL
GRO			5.10		mg/Kg		1	1.00
						Spike	Percent	Recovery
Surrogate		Flag	\mathbf{Result}	Units	Dilution	Amount	Recovery	Limits
Trifluorotolu	ene (TFT)		0.628	mg/Kg	1	1.00	63	50.2 - 89.3
4-Bromofluor	robenzene (4-BFB)		1.09	mg/Kg	1	1.00	109	50.8 - 131.6

Sample: 138308 - AH-3 1-1.5'

Analysis: QC Batch: Prep Batch:	Chloride (Titration) 41873 36167	Analytical M Date Analyze Sample Prepa	ed: 2007-10-08	Prep Method: Analyzed By: Prepared By:	AR
		\mathbf{RL}			
Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
Chloride		<100	mg/Kg	50	2.00

Sample: 138309 - AH-4 0-1'

Analysis: QC Batch: Prep Batch:	Chloride (Titration) 41873 36167	Analytical Me Date Analyzed Sample Prepa	d: 2007-10-08	Prep Method: Analyzed By: Prepared By:	\mathbf{AR}
		RL			
Parameter	Flag	\mathbf{Result}	Units	Dilution	\mathbf{RL}
Chloride		<100	mg/Kg	50	2.00

Sample: 138309 - AH-4 0-1'

Analysis: QC Batch: Prep Batch:	atch: 41768		Analytical Method: Date Analyzed: Sample Preparation:		Viod. 8015B 2007-10-04 2007-10-04		Prep Method: Analyzed By: Prepared By:	
D st			RL		TT 1/			זמ
Parameter	Fla	<u>بو</u>	Result		Units	Diluti	on	RL
DRO			<50.0		mg/Kg		1	50.0
					\mathbf{Spil}	ke Perce	ent I	Recovery
Surrogate	Flag	Result	\mathbf{Units}	Dilutio	on Amo	unt Recov	very	Limits
n-Triacontan	le	192	mg/Kg	1	150	0 128	8 1	7.3 - 169.6

Sample: 138309 - AH-4 0-1'

Analysis: QC Batch: Prep Batch:	TPH GRO 41802 36088 ~		Date Ana	l Method: lyzed: reparation:	S 8015B 2007-10-04 2007-10-04	Prep Metl Analyzed Prepared		d By:
			\mathbf{RL}					
Parameter	\mathbf{Flag}		\mathbf{Result}		Units		Dilution	\mathbf{RL}
GRO			1.13		mg/Kg	·····	1	1.00
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotolu	ene (TFT)		0.644	mg/Kg	1	1.00	64	50.2 - 89.3
4-Bromofluor	robenzene (4-BFB)		0.890	mg/Kg	1	1.00	89	50.8 - 131.6

Sample: 138310 - AH-4 1-1.5'

Analysis: QC Batch: Prep Batch:	Chloride (Titration) 41874 36168	Analytical Met Date Analyzed Sample Prepar	l: 2007-10-09	Prep Method Analyzed By: Prepared By:	AR
		\mathbf{RL}			
Parameter	\mathbf{F} lag	Result	Units	Dilution	\mathbf{RL}
Chloride		<100	mg/Kg	50	2.00

Sample: 138311 - AH-5 0-1'

Analysis: QC Batch:	Chloride (Titration) 41874	Analytical M Date Analyze		Prep Method: Analyzed By:	
Prep Batch:		Sample Prepa		Prepared By:	
		\mathbf{RL}			
Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
Chloride		1150	mg/Kg	50	2.00

Sample: 138311 - AH-5 0-1'

Analysis:TPH DROQC Batch:41767Prep Batch:36070		Date Analyzed:		od. 8015B 07-10-04 07-10-04	Analy	Method: N/A yzed By: ared By:	
Parameter	F la	•	RL Result		Units	Dilution	DI
	Flag	<u></u>				Dilution	RL
DRO	В		100	I	ng/Kg	1	50.0
					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontan	e	200	mg/Kg	1	150	133	17.3 - 169.6

Sample: 138311 - AH-5 0-1'

Analysis: QC Batch: Prep Batch:	TPH GRO 41802 36088		Date Ana	l Method: lyzed: reparation:	S 8015B 2007-10-04 2007-10-04	Prep Method: Analyzed By: Prepared By:		l By:
			\mathbf{RL}					
Parameter	Flag		\mathbf{Result}		Units .		Dilution	\mathbf{RL}
GRO			1.35		mg/Kg		1	1.00
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotolu	ene (TFT)		0.646	mg/Kg	1	1.00	65	50.2 - 89.3
- 4-Bromofluor	robenzene (4-BFB)		0.939	mg/Kg	1	1.00	94	50.8 - 131.6

Sample: 138312 - AH-5 1-1.5'

Analysis: QC Batch: Prep Batch:	Chloride (Titration) 41874 36168	Analytical Method:SM 4500-Cl BDate Analyzed:2007-10-09Sample Preparation:		Prep Method: Analyzed By: Prepared By:	AR
Donomotor	Eler	RL Result	Units	Dilution	DŤ
Parameter	Flag	Result	Units	Dilution	RL
Chloride		<100	mg/Kg	50	2.00

Sample: 138313 - AH-6 0-1'

Analysis: QC Batch:	Chloride (Titration) 41874	Analytical M Date Analyze		Prep Method: Analyzed By:	,
Prep Batch:	36168	Sample Prepa		Prepared By:	
		\mathbf{RL}			
Parameter	Flag	\mathbf{Result}	Units	Dilution	\mathbf{RL}
Chloride		<100	mg/Kg	50	2.00

Sample: 138313 - AH-6 0-1'

Analysis: QC Batch: Prep Batch:	TPH DRO 41767 36070		Analytical M Date Analyz Sample Prep	ed: 2007	l. 8015B 7-10-04 7-10-04	Anal	Method: N/A yzed By: ared By:
			RL				
Parameter	Fla	g	Result	τ	Jnits	Dilution	RL
DRO			<50.0	mį	g/Kg	1	50.0
_				_	Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontan	e	160	mg/Kg	1	150	107	17.3 - 169.6

>

Sample: 138313 - AH-6 0-1'

Analysis: QC Batch: Prep Batch:	TPH GRO 41802 36088		Date Ana	Analytical Method: S 8015B Date Analyzed: 2007-10-04 Sample Preparation: 2007-10-04			Prep Method: S Analyzed By: Prepared By:			
			\mathbf{RL}							
Parameter	\mathbf{Flag}		Result		Units		Dilution	RL		
GRO			<1.00		mg/Kg		1	1.00		
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits		
Trifluorotolu	ene (TFT)		0.647	mg/Kg	1	1.00	65	50.2 - 89.3		
4-Bromofluor	robenzene (4-BFB)		0.890	mg/Kg	1	1.00	89	50.8 - 131.6		

.

.

٠

Sample: 13	8314 -	AH-6 1-	1.5'							
Analysis: QC Batch: Prep Batch:	Chlori 41874 36168	de (Titrat	ion)	Date An		SM 4500-Cl B 2007-10-09	Prep Method: N/A Analyzed By: AR Prepared By: AR			
				RL						
Parameter		Fla	g	Result		Units	Dilution	RL		
Chloride				<100	m	g/Kg	50	2.00		
Method Bla	ank (1)	QC	Batch: 41767							
QC Batch:	41767			Date Anal	•	-10-04		Analyzed By:		
Prep Batch:	36070			QC Prepa	ration: 2007	-10-04		Prepared By:		
D					MDL		T T - 1	07		
Parameter DRO			Flag		Result 18.9		Units mg/Kg	RL 50		
					10.9	······	mg/ Kg			
a ,				TT 11.		Spike	Percent	Recovery		
$\frac{\text{Surrogate}}{\text{n-Triacontan}}$		Flag	Result 170	Units mg/Kg	Dilution 1	Amount 150	Recovery 113	Limits 32.9 - 156.1		
QC Batch: Prep Batch:	$41768 \\ 36070$			Date Ana QC Prepa	lyzed: 2007 ration: 2007	-10-04 -10-04		Analyzed By: Prepared By:		
					MDL					
Parameter DRO		<u> </u>	Flag		Result <13.4		Units	RL 50		
					<13.4		_mg/Kg			
~						Spike	Percent	Recovery		
$\frac{\text{Surrogate}}{\text{n-Triacontan}}$. Flag	Result 144	Units mg/Kg	Dilution 1	Amount 150	Recovery 96	Limits 32.9 - 156.1		
n-Irlacontan	<u>1e</u>			mg/Kg	1	150	90	32.9 - 150.1		
Method Bl	ank (1) QC	Batch: 41788							
QC Batch:	41788			Date Ana		7-10-04		Analyzed By:		
Prep Batch:	36088			QC Prepa	ration: 2007	7-10-04		Prepared By:		
Parameter			Flag		$egin{array}{c} { m MDL} \\ { m Result} \end{array}$		Units	RL		
Benzene			Flag		Result <0.00110		mg/Kg	0.01		
Benzene Toluene			Flag		Result <0.00110 <0.00150		mg/Kg mg/Kg	0.01 0.01		
Benzene	e .		Flag		Result <0.00110		mg/Kg	0.01		

eport Date: October 9, 2007 231				Work Order: 7100338 Pogo/Pure Gold Fed #19					
${ m Flag}$	Result	Units	Dilut	tion	Spike Amount	Percent Recovery	Lim	its	
	0.868	mg/Kg			1.00	87			
FB)	0.587	mg/Kg	1		1.00	59	53.1 -	111.6	
C Batch: 41802									
	Date A	analyzed:	2007-10	-04		A	nalyzed B	y:	
	QC Pr	eparation:							
		MD	ΩT.						
Flag					Uni	its `		RL	
· · · · · · · · · · · · · · · · ·		<0.73	39		mg/	Kg		1	
Ele -	Degult	T	Dil		Spike	Percent		-	
Flag									
FB)	0.566				1.00	57			
Flag		paration: MI	2007-10-0 DL		Un	Prep		AR AR RL	
		< 0.5	00		mg/	′Kg		2	
QC Batch: 41874		v						AR AR	
		MI	DL						
Flag		Resu	ılt					RL	
		< 0.5	00		mg	/Kg		2	
	FB) PC Batch: 41802 Flag FB) PC Batch: 41873 Flag Flag Flag Flag Flag Flag	0.868 FB) 0.587 9C Batch: 41802 Date A QC Pr Flag Flag Result 0.706 0.566 9C Batch: 41873 Date Ar QC Prej Flag Flag QC Prej QC Batch: 41873 Date Ar QC Prej Flag	0.868 mg/Kg (CBatch: 41802 (CBatch: 41802 Date Analyzed: QC Preparation: ME Flag Result Units 0.706 mg/Kg (CBatch: 41873 Date Analyzed: QC Preparation: MI Flag Result QC Preparation: MI Flag Result QC Preparation: MI Flag Result (QC Preparation: MI Flag Result (QC Preparation: MI Flag Result (QC Preparation: MI Flag Result (QC Preparation: MI Flag Result (QC Preparation: (QC Preparation: (Q	0.868 mg/Kg 1 FB) 0.587 mg/Kg 1 QC Batch: 41802 Date Analyzed: 2007-10 QC Preparation: 2007-10 QC Preparation: 2007-10 MDL Flag Result Units Dilu FB 0.706 mg/Kg 1 QC Batch: 41873 0.566 mg/Kg 1 QC Batch: 41873 Date Analyzed: 2007-10- QC Preparation: 2007-10- QC Batch: 41874 QC Batch: 41874 MDL Flag Result MDL Flag Result </td <td>$\begin{array}{c ccccc} 0.868 & mg/Kg & 1 \\ 0.587 & mg/Kg & 1 \\ 0.587 & mg/Kg & 1 \\ \end{array}$</td> <td>FlagResultUnitsDilutionAmount0.868mg/Kg11.00FB)0.587mg/Kg11.00PB0.587mg/Kg11.00PCDate Analyzed:2007-10-04QC Preparation:2007-10-04PlagResultUnitsValueMDLFlagResultUnitsSpikeSpikeFlagResultUnits0.706mg/Kg10.706mg/Kg10.706mg/Kg10.706mg/Kg10.706mg/Kg10.006mg/Kg10.006mg/Kg10.000.566mg/KgQC Batch:41873Date Analyzed:2007-10-08QC Batch:41874Date Analyzed:2007-10-09QC Batch:41874Date Analyzed:2007-10-09QC Preparation:2007-10-09MDLFlagMDLFlagResultUn</td> <td>FlagResultUnitsDilutionAmountRecovery0.868mg/Kg11.0087FB)0.587mg/Kg11.0059PCDate Analyzed:2007-10-04AQC Preparation:2007-10-04PMDLFlagResultUnits< 0.739mg/KgSpikePlagResultUnits< 0.739mg/KgSpikePlagResultUnitsUnitsDilutionAmountRecovery11.0071FB)0.566mg/Kg11.000.706mg/Kg11.0057QC Batch:418732007-10-08Anal QC Preparation:2007-10-08MDLFlagResultUnitsMDLGate Analyzed:2007-10-09QC Batch:418742007-10-09PrepMDLDate Analyzed:2007-10-09PrepMDLFlagResultUnitsMDLMDLFlagMDLFlagMDLFlagMDLFlagMDLFlagResultUnits</td> <td>FlagResultUnitsDilutionAmountRecoveryLim0.868mg/Kg11.008758.2-FB)0.587mg/Kg11.005953.1C Batch: 41802Date Analyzed:2007-10-04Analyzed BQC Preparation:2007-10-04Prepared BMDLFlagResultUnitsFlagResultUnitsVariable0.706mg/KgFB)0.706mg/Kg0.706mg/Kg10.566mg/Kg11.005755.4QC Batch: 41873Date Analyzed:207 Preparation:2007-10-08Analyzed:2007-10-08Prepared By:MDLQC Batch: 41873MDLQC Batch: 41874UnitsQC Batch: 41874Date Analyzed:207 Batch: 41874MDLMDLFlagResultUnitsMDLFlagResultUnitsMDLFlagPrepared By:MDLFlagPrepared By:MDLFlagResultUnitsMDLFlagResultUnitsFlagResultUnitsMDLFlagResultUnits</td>	$\begin{array}{c ccccc} 0.868 & mg/Kg & 1 \\ 0.587 & mg/Kg & 1 \\ 0.587 & mg/Kg & 1 \\ \end{array}$	FlagResultUnitsDilutionAmount0.868mg/Kg11.00FB)0.587mg/Kg11.00PB0.587mg/Kg11.00PCDate Analyzed:2007-10-04QC Preparation:2007-10-04PlagResultUnitsValueMDLFlagResultUnitsSpikeSpikeFlagResultUnits0.706mg/Kg10.706mg/Kg10.706mg/Kg10.706mg/Kg10.706mg/Kg10.006mg/Kg10.006mg/Kg10.000.566mg/KgQC Batch:41873Date Analyzed:2007-10-08QC Batch:41874Date Analyzed:2007-10-09QC Batch:41874Date Analyzed:2007-10-09QC Preparation:2007-10-09MDLFlagMDLFlagResultUn	FlagResultUnitsDilutionAmountRecovery0.868mg/Kg11.0087FB)0.587mg/Kg11.0059 PC Date Analyzed:2007-10-04AQC Preparation:2007-10-04PMDLFlagResultUnits < 0.739 mg/KgSpikePlagResultUnits < 0.739 mg/KgSpikePlagResultUnitsUnitsDilutionAmountRecovery11.0071FB)0.566mg/Kg11.000.706mg/Kg11.0057QC Batch:418732007-10-08Anal QC Preparation:2007-10-08MDLFlagResultUnitsMDLGate Analyzed:2007-10-09QC Batch:418742007-10-09PrepMDLDate Analyzed:2007-10-09PrepMDLFlagResultUnitsMDLMDLFlagMDLFlagMDLFlagMDLFlagMDLFlagResultUnits	FlagResultUnitsDilutionAmountRecoveryLim0.868mg/Kg11.008758.2-FB)0.587mg/Kg11.005953.1C Batch: 41802Date Analyzed:2007-10-04Analyzed BQC Preparation:2007-10-04Prepared BMDLFlagResultUnitsFlagResultUnitsVariable0.706mg/KgFB)0.706mg/Kg0.706mg/Kg10.566mg/Kg11.005755.4QC Batch: 41873Date Analyzed:207 Preparation:2007-10-08Analyzed:2007-10-08Prepared By:MDLQC Batch: 41873MDLQC Batch: 41874UnitsQC Batch: 41874Date Analyzed:207 Batch: 41874MDLMDLFlagResultUnitsMDLFlagResultUnitsMDLFlagPrepared By:MDLFlagPrepared By:MDLFlagResultUnitsMDLFlagResultUnitsFlagResultUnitsMDLFlagResultUnits	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

3231	9, 2007		Work Order: 7100338 Pogo/Pure Gold Fed #19						Page Number: 12 of 18 Eddy County, NM			
		LCSD			Spike	Matrix	_	Rec.		RPD		
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit		
DRO			mg/Kg	1	250	<13.4		9.1 - 142.3		20		
Percent recovery is base	ed on the spi	ike result.	RPD is b	based of	n the spike	and spike du	iplicate re	sult.				
	LCS	LCSD				Spike	LCS	LCSD		Rec.		
Surrogate	Result	Result		nits	Dil.	Amount	Rec.	Rec.		Limit		
n-Triacontane	163	175		g/Kg	1	150	109	117		- 133.2		
Laboratory Control QC Batch: 41768	Spike (LCS	5-1)	Date A	analyze	d: 2007-1	10-04		А	nalyzed	Bv		
Prep Batch: 36070				eparati					repared			
		LCS	3			Spike	Matrix	2]	Rec.		
Param		Resu		Jnits	Dil.	Amount	Result			Limit		
DRO		261	m	g/Kg	1	250	<13.4		49.1	- 142.3		
Percent recovery is base	ed on the sp	ike result.			n the spike	and spike d	uplicate re	esult.				
	-r				-	-	_			מחת		
Danam	,	LCSD	Unite	וית	Spike	Matrix	Dee	Rec.	חחם	RPD		
Param DRO		Result 286	Units mg/Kg	Dil. 1	Amount 250	Result <13.4	Rec. 114 4	Limit 9.1 - 142.3	$\frac{\text{RPD}}{9}$	Limit 20		
Percent recovery is base	ed on the sp											
<i>J</i>	LCS	LCSD			1	-	-			D		
Cumpanto				nits	נים	\mathbf{Spike}	LCS	LCSD		Rec. Limit		
	Rogult					Amount	Roc	Roo				
	Result 156	Result 163		g/Kg	Dil.	Amount 150	Rec. 104	Rec. 109		-133.2		
Surrogate n-Triacontane Laboratory Control QC Batch: 41788 Prep Batch: 36088	156	163	m		1 ed: 2007-	150		109 A		9 - 133.2 1 By:		
n-Triacontane Laboratory Control QC Batch: 41788	156	163 S-1) LCS	Date A QC Pi	g/Kg Analyze eparat	1 ed: 2007- ion: 2007-	150 10-04 10-04 Spike	104 Matrix	109 A P	49 Inalyzec Prepared	9 - 133.2 l By: l By: Rec.		
n-Triacontane Laboratory Control QC Batch: 41788 Prep Batch: 36088 Param	156	163 S-1) LCS Resul	Date A QC Pr	g/Kg Analyze Teparat	1 ed: 2007- ion: 2007- Dil.	150 10-04 10-04 Spike Amount	104 Matrix Result	109 A P Rec.	49 Inalyzed Prepared) - 133.2 l By: l By: Rec. Limit		
n-Triacontane Laboratory Control QC Batch: 41788 Prep Batch: 36088 Param Benzene	156	163 S-1) LCS Resu 0.928	Date A QC Pr It U 3 mt	g/Kg Analyze reparat nits g/Kg	1 ed: 2007- ion: 2007- Dil. 1	150 10-04 10-04 Spike <u>Amount</u> 1.00	104 Matrix Result <0.0011	109 A P	49 Inalyzec Prepared 1 71.) - 133.2 l By: l By: Limit 2 - 119		
n-Triacontane Laboratory Control QC Batch: 41788 Prep Batch: 36088 Param Benzene Toluene	156	163 S-1) LCS <u>Resul</u> 0.926 0.934	Date A QC Pr It U 3 mg 4 mg	g/Kg Analyze ceparat nits g/Kg g/Kg	1 ed: 2007- ion: 2007- Dil. 1 1	150 10-04 10-04 Spike <u>Amount</u> 1.00 1.00	104 Matrix Result <0.0011 <0.0015	109 A P c. .0 93 50 93	49 Inalyzed Prepared 71. 76.3) - 133.2 l By: l By: Limit 2 - 119 3 - 116.5		
n-Triacontane Laboratory Control QC Batch: 41788 Prep Batch: 36088 Param Benzene Toluene Ethylbenzene	156	163 S-1) LCS Resu 0.928 0.934 0.945	Date A QC Pr It U 3 mg 4 mg 9 mg	g/Kg Analyze ceparat nits g/Kg g/Kg g/Kg	1 ed: 2007- ion: 2007- Dil. 1 1 1	150 10-04 10-04 Spike Amount 1.00 1.00 1.00	104 Matrix Result <0.0011 <0.0015 <0.0016	109 A P C Rec. 0 93 50 93 50 95	49 Inalyzed Prepared 71. 76.8 77.) - 133.2 l By: l By: Limit 2 - 119 3 - 116.5 6 - 114		
n-Triacontane Laboratory Control QC Batch: 41788 Prep Batch: 36088 Param Benzene Toluene Ethylbenzene Xylene	156 Spike (LC	163 S-1) LCS Resul 0.928 0.934 0.949 2.85	mi Date A QC Pi Ut U 3 mi 4 mi 9 mi	g/Kg Analyze reparat g/Kg g/Kg g/Kg g/Kg	1 ed: 2007- ion: 2007- Dil. 1 1 1 1 1	150 10-04 10-04 Spike Amount 1.00 1.00 1.00 3.00	104 Matrix Result <0.0011 <0.0015 <0.0016 <0.0041	109 A P C C Rec. 0 93 50 93 50 95 10 95	49 Inalyzed Prepared 71. 76.8 77.) - 133.2 l By: l By: Limit 2 - 119 3 - 116.5 6 - 114		
n-Triacontane Laboratory Control QC Batch: 41788 Prep Batch: 36088 Param Benzene Toluene Ethylbenzene Xylene	156 Spike (LC	163 S-1) LCS Resu 0.928 0.934 0.949 2.85 sike result.	mi Date A QC Pi Ut U 3 mi 4 mi 9 mi	g/Kg Analyze reparat g/Kg g/Kg g/Kg g/Kg	1 ed: 2007- ion: 2007- Dil. 1 1 1 1 1	150 10-04 10-04 Spike Amount 1.00 1.00 1.00 3.00	104 Matrix Result <0.0011 <0.0015 <0.0016 <0.0041	109 A P C C Rec. 0 93 50 93 50 95 10 95	49 Inalyzed Prepared 71. 76.8 77.) - 133.2 l By: l By: Rec. Limit 2 - 119 3 - 116.5 6 - 114 3 - 113.9		
n-Triacontane Laboratory Control QC Batch: 41788 Prep Batch: 36088 Param Benzene Toluene Ethylbenzene Xylene Percent recovery is bas	156 Spike (LC	163 S-1) CCS Resul 0.928 0.934 0.949 2.85 sike result. LCSD	m Date 4 QC Pr QC Pr Ut U B m 4 M 9 M 9 RPD is	g/Kg Analyze reparat g/Kg g/Kg g/Kg based o	1 ed: 2007- ion: 2007- Dil. 1 1 1 1 1 0n the spike Spike	150 10-04 10-04 Spike Amount 1.00 1.00 1.00 3.00 e and spike d Matrix	104 Matrix Result <0.0011 <0.0015 <0.0041 uplicate r	109 A P c C C S C S C S S S S S S S S S S S S S	49 Inalyzec Prepared 71. 76.: 77. 78.8) - 133.2 l By: l By: Limit 2 - 119 3 - 116.5 6 - 114 3 - 113.6 RPD		
n-Triacontane Laboratory Control QC Batch: 41788 Prep Batch: 36088 Param Benzene Toluene Ethylbenzene Xylene Percent recovery is bas Param	156 Spike (LC	163 S-1) CCS Resul 0.928 0.934 0.949 2.85 sike result. LCSD Result	m Date A QC Pr QC Pr Ut U B m A m B M B RPD is Units	g/Kg Analyze reparat g/Kg g/Kg g/Kg g/Kg based o Dil.	1 ed: 2007- ion: 2007- Dil. 1 1 1 1 1 on the spike Spike Amount 1	150 10-04 10-04 Spike Amount 1.00 1.00 1.00 3.00 e and spike d Matrix Result	104 Matrix Result <0.0011 <0.0015 <0.0041 uplicate r Rec.	109 A P C C C C C C C C C C C C C C C C C C	49 Inalyzec Prepared 71. 76.2 77. 78.8 RPD) - 133.2 l By: l By: Limit 2 - 119 3 - 116.5 6 - 114 3 - 113.9 RPD Limit		
n-Triacontane Laboratory Control QC Batch: 41788 Prep Batch: 36088 Param Benzene Toluene Ethylbenzene Xylene Percent recovery is bas Param Benzene	156 Spike (LC	163 S-1) LCS Resul 0.928 0.934 2.85 oike result. LCSD Result 0.885	mi Date A QC Pi Ut U B mi A mi 9 mi 6 mi RPD is Units mg/Kg	g/Kg Analyze reparat g/Kg g/Kg g/Kg g/Kg based o Dil. 1	1 id: 2007- ion: 2007- Dil. 1 1 1 1 1 on the spike Spike Amount 1.00	150 10-04 10-04 Spike Amount 1.00 1.00 3.00 e and spike d Matrix Result <0.00110	104 Matrix Result <0.0011 <0.0015 <0.0041 uplicate r Rec. 88	109 A P S C C C C C C C C C C C C C C C C C C	49 Inalyzec Prepared 71. 76.2 77. 78.8 RPD 5) - 133.2 l By: l By: Limit 2 - 119 3 - 116.5 6 - 114 8 - 113.9 RPD Limit 20		
n-Triacontane Laboratory Control QC Batch: 41788 Prep Batch: 36088 Param Benzene Toluene Ethylbenzene Xylene Percent recovery is bas Param Benzene Toluene Toluene	156 Spike (LC	163 LCS Resul 0.928 0.934 0.949 2.85 bike result. LCSD Result 0.885 0.910	Date A QC Pr QC Pr Ut U B mg A mg B mg B mg RPD is Units mg/Kg mg/Kg	g/Kg Analyze reparat g/Kg g/Kg g/Kg based o Dil. 1 1	1 id: 2007- ion: 2007- Dil. 1 1 1 1 1 on the spike Spike Amount 1.00 1.00 1.00	150 10-04 10-04 Spike Amount 1.00 1.00 3.00 e and spike d Matrix Result <0.00110 <0.00150	104 Matrix Result <0.0011 <0.0015 <0.0041 uplicate r Rec. 88 91	109 A P C Rec. 0 93 50 93 50 95 10 95 esult. Rec. Limit 71.2 - 119 76.3 - 116.5	49 Inalyzec Prepared 71. 76.2 77. 78.8 <u>RPD</u> 5 3) - 133.2 l By: l By: l By: Limit 2 - 119 3 - 116.5 6 - 114 8 - 113.5 RPD Limit 20 20		
n-Triacontane Laboratory Control QC Batch: 41788 Prep Batch: 36088 Param Benzene Toluene Ethylbenzene Xylene Percent recovery is bas Param Benzene	156 Spike (LC	163 S-1) LCS Resul 0.928 0.934 2.85 oike result. LCSD Result 0.885	mi Date A QC Pi Ut U B mi A mi 9 mi 6 mi RPD is Units mg/Kg	g/Kg Analyze reparat g/Kg g/Kg g/Kg g/Kg based o Dil. 1	1 id: 2007- ion: 2007- Dil. 1 1 1 1 1 on the spike Spike Amount 1.00	150 10-04 10-04 Spike Amount 1.00 1.00 3.00 e and spike d Matrix Result <0.00110	104 Matrix Result <0.0011 <0.0016 <0.004 uplicate r Rec. 88 91 91	109 A P S C C C C C C C C C C C C C C C C C C	49 Inalyzec Prepared 71. 76.2 77. 78.8 RPD 5) - 133.2 l By: l By: Limit 2 - 119 3 - 116.5 6 - 114 3 - 113.9 RPD Limit 20		

N

1

.

、 -

•

Report Date: October 9, 2007 3231		k Order: Pure Gol			Page Number: 13 of 18 Eddy County, NM				
Surrogate	$\begin{array}{c} \mathrm{LCS} \\ \mathrm{Result} \end{array}$	LCSD Result	Units	Dil	Spike I. Amoun	LCS t Rec.	LCSD Rec.		lec. imit
Trifluorotoluene (TFT)	0.812	0.809	mg/K	g 1	1.00	81	81	56.1	- 107.8
-Bromofluorobenzene (4-BFB)	0.766	0.752	mg/K	g1	1.00	77	75	56.2	- 118.8
aboratory Control Spike (LC	CS-1)								
QC Batch: 41802		Date Anal	vzed:	2007-10-	-04		А	nalyzed	By:
Prep Batch: 36088		QC Prepa	v	2007-10				repared	
	LCS				Spike	Matrix			Rec.
Param	Result			Dil.	Amount	Result	Rec.		Limit
GRO	. 7.16	mg/l	ζg	1	10.0	< 0.739	72	56	- 105.2
Percent recovery is based on the s	pike result. R	PD is base	d on the	spike ar	nd spike dup	licate resul	lt.		
	LCSD		ç	pike	Matrix		Rec.		RPD
Param		Units I		nount			Limit	RPD	Limit
GRO		ng/Kg		10.0	<0.739		- 105.2	2	20
Percent recovery is based on the s	pike result. R	PD is base	d on the	spike a	nd spike dup	licate resu	lt.		
·				-				T	
Surrogate	$\begin{array}{c} \mathrm{LCS} \\ \mathrm{Result} \end{array}$	$\begin{array}{c} \mathrm{LCSD} \\ \mathrm{Result} \end{array}$	Units	s Di	Spike 1. Amour		LCSD Rec.		Rec. imit
Irifluorotoluene (TFT)	0.876	0.880	mg/K			<u>10 Nec.</u> 88	<u></u>		- 148.1
4-Bromofluorobenzene (4-BFB)	0.770	0.784	mg/K			77	78		- 119.2
Laboratory Control Spike (Lo QC Batch: 41873 Prep Batch: 36167	I	Date Analy 2C Prepara		007-10-0 007-10-0				lyzed By oared By	
	LCS				Spike	Matrix	c		Rec.
Param	Resul			Dil.	Amount	Result			Limit
Chloride	97.7	mg/	′Kg	1	100	< 0.50	98 0	3 8	35 - 115
Percent recovery is based on the s	spike result. R	PD is base	ed on the	spike a	nd spike dup	olicate resu	lt.		
	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil. A	mount	Result	Rec.	Limit	RPD	Limit
Chloride	98.7	mg/Kg	1	100	< 0.500	99 8	35 - 115	1	20
Percent recovery is based on the	spike result. F	PD is bas	ed on the	spike a	nd spike du	olicate resu	lt.		
Laboratory Control Spike (L	CS-1)								
]	Date Analy	zed: 2	007-10-0)9		Ana	lyzed By	7: AR
QC Batch: 41874		QC Prepar	ation: 2	007-10-0	09		Prep	pared By	r: AR
QC Batch: 41874 Prep Batch: 36168	(•							
					<i>.</i>				
Prep Batch: 36168	LCS	 ,	ita	Dil	Spike	Matri			Rec.
		lt Ur	uits /Kg	Dil.	Spike Amount 100	Matri Resul <0.50	t Re		Rec. Limit 85 - 115

2

.

3231	2007			Vork Ord go/Pure		Page Number: 14 of 18 Eddy County, NM				
		LCSD			Spike	Matrix		Rec.		RPD
Param			Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride		99.6 r	ng/Kg	1	100	< 0.500	100	85 - 115	i 1	20
Percent recovery is based	on the spik	e result. Rl	PD is b	based on	the spike a	and spike du	iplicate i	esult.		
Matrix Spike (MS-1)	Spiked Sa	ample: 1383	05							
QC Batch: 41767 Prep Batch: 36070				nalyzed: eparatior					Analyzed Prepared	
_		MS	-			Spike	Matri			Rec.
Param		Result		Inits	Dil.	Amount	Resu			Limit
DRO		298		g/Kg	1	250	<13.		9 30.5	2 - 201.4
Percent recovery is based			PD is ł	oased on		and spike di	iplicate i	result.	,	
D		MSD	• •	-	Spike	Matrix	-	Rec.		RPD
Param]		Jnits		Amount	Result	Rec.	Limit	RPD	Limit
DRO			g/Kg	1	250	<13.4		30.2 - 201.	.4 14	20
Percent recovery is based	on the spik	e result. R	PD is ł	pased on	the spike a	and spike d	uplicate 1	result.		
	MS	MSD				Spike	Ν	IS N	ASD	Rec.
Surrogate	Result	Result		Units	Dil.	Amount	: R		Rec	Limit
n-Triacontane	166	180	n	1g/Kg	1	150	1	11	120	10 - 194
Matrix Spike (MS-1) QC Batch: 41768 Prep Batch: 36070	Spiked S		Date A	Analyzed: reparation					Analyze Prepare	v
		MS		• •	~	Spike	Matr			Rec.
Param		Result		Jnits	Dil.	Amount	Resu	lt Re		Limit
DRO		Result 229	m	g/Kg	1	Amount 250	Resu <13	lt Re 4 92		
Param DRO Percent recovery is based	on the spil	Result 229	m	g/Kg	1	Amount 250	Resu <13	lt Re 4 92		Limit
DRO Percent recovery is based	_	Result 229 xe result. R MSD	m PD is l	g/Kg pased on	1 the spike Spike	Amount 250 and spike d Matrix	Resu <13. uplicate	lt Re 4 99 result. Rec.	2 30.	Limit 2 - 201.4 RPD
DRO Percent recovery is based Param	_	Result 229 ke result. R MSD Result	m PD is l Units	g/Kg pased on Dil.	1 the spike Spike Amount	Amount 250 and spike d Matrix Result	Resu <13 uplicate Rec.	lt Re 4 9 result. Rec. Limit	2 30. RPD	Limit 2 - 201.4 RPD Limit
DRO Percent recovery is based Param DRO		Result 229 xe result. R MSD Result 191 m	m PD is l Units 1g/Kg	g/Kg pased on 	1 the spike Spike Amount 250	Amount 250 and spike d Matrix Result <13.4	Resu <13 uplicate Rec. 76	It Re 4 9 result. Rec. Limit 30.2 - 201	2 30. RPD	Limit 2 - 201.4 RPD
DRO Percent recovery is based Param DRO		Result 229 xe result. R MSD Result 191 m	m PD is l Units 1g/Kg	g/Kg pased on 	1 the spike Spike Amount 250	Amount 250 and spike d Matrix Result <13.4	Resu <13 uplicate Rec. 76	It Re 4 9 result. Rec. Limit 30.2 - 201	2 30. RPD	Limit 2 - 201.4 RPD Limit
DRO Percent recovery is based Param DRO Percent recovery is based		Result 229 xe result. R MSD Result 191 m xe result. R MSD	m PD is I Units ng/Kg PD is I	g/Kg pased on Dil. 1 pased on	1 the spike Amount 250 the spike	Amount 250 and spike d Matrix Result <13.4	Resu <13 uplicate Rec. 76 uplicate	It Re 4 9 result. Rec. Limit 30.2 - 201 result. Result.	2 30. RPD	Limit 2 - 201.4 RPD Limit
DRO Percent recovery is based Param DRO Percent recovery is based Surrogate	on the spil MS Result	Result 229 xe result. R MSD Result 191 m xe result. R MSD Result	m PD is I Units ng/Kg PD is I	g/Kg pased on Dil. 1 based on Units	1 the spike Spike Amount 250	Amount 250 and spike d Matrix Result <13.4 and spike d Spike Amoun	Resu <13 uplicate Rec. 76 uplicate t R	It Re 4 9 result. Rec. Limit 30.2 - 201 result. MS	2 30. RPD .4 18 MSD Rec.	Limit 2 - 201.4 RPD Limit 20 Rec. Limit
DRO Percent recovery is based Param DRO Percent recovery is based	on the spil MS	Result 229 xe result. R MSD Result 191 m xe result. R MSD	m PD is I Units ng/Kg PD is I	g/Kg pased on Dil. 1 pased on	1 the spike Amount 250 the spike	Amount 250 and spike d Matrix Result <13.4 and spike d Spike	Resu <13 uplicate Rec. 76 uplicate t R	It Re 4 9 result. Rec. Limit 30.2 - 201 result. MS	2 30. RPD .4 18 MSD	Limit 2 - 201.4 RPD Limit 20 Rec. Limit
DRO Percent recovery is based Param DRO Percent recovery is based Surrogate	on the spil MS Result 199	Result 229 xe result. R MSD Result 191 m xe result. R MSD Result	m PD is l Units ng/Kg PD is l	g/Kg pased on Dil. 1 based on Units	1 the spike Amount 250 the spike Dil.	Amount 250 and spike d Matrix Result <13.4 and spike d Spike Amoun	Resu <13 uplicate Rec. 76 uplicate t R	It Re 4 9 result. Rec. Limit 30.2 - 201 result. MS	2 30. RPD .4 18 MSD Rec.	Limit 2 - 201.4 RPD Limit 20 Rec.
DRO Percent recovery is based Param DRO Percent recovery is based Surrogate n-Triacontane	on the spil MS Result 199	Result 229 (ce result. R MSD Result 191 m (ce result. R MSD Result 180	m PD is l Units ng/Kg PD is l r 467	g/Kg pased on Dil. 1 based on Units	1 the spike Amount 250 the spike Dil. 1	Amount 250 and spike d Matrix Result <13.4 and spike d Spike Amoun 150	Resu <13 uplicate Rec. 76 uplicate t R	It Re 4 9 result. Rec. Limit 30.2 - 201 result. MS	2 30. RPD .4 18 MSD Rec.	Limit 2 - 201.4 RPD Limit 20 Rec. Limit 10 - 194

-

,

.

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	\mathbf{Limit}
Benzene	5.03	mg/Kg	5	5.00	0.1905	97	65.7 - 119.1
Toluene	4.80	$\mathrm{mg/Kg}$	5	5.00	0.0087	96	47.7 - 153.8
Ethylbenzene	7.86	mg/Kg	5	5.00	2.1707	114	73.5 - 126.3
Xylene	23.7	mg/Kg	5	15.0	6.6022	114	73.6 - 125.9

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{Result}	Units	Dil.	Amount	\mathbf{Result}	Rec.	Limit	RPD	Limit
Benzene	4.38	mg/Kg	5	5.00	0.1905	84	65.7 - 119.1	14	20
Toluene	4.02	mg/Kg	5	5.00	0.0087	80	47.7 - 153.8	18	20
Ethylbenzene	6.95	mg/Kg	5	5.00	2.1707	96	73.5 - 126.3	12	20
Xylene	21.0	mg/Kg	5	15.0	6.6022	96	73.6 - 125.9	12	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MS	MSD			Spike	MS	MSD	Rec.
Surrogate		Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)		3.62	3.66	mg/Kg	5	5	72	73	51 - 109.6
4-Bromofluorobenzene (4-BFB)	12	6.63	7.25	mg/Kg	5	5	133	145	60.3 - 124.3

Matrix Spike (MS-1) Spiked Sample: 138305

QC Batch:	41802	Date Analyzed:	2007-10-04	Analyzed By:
Prep Batch:	36088	QC Preparation:	2007-10-04	Prepared By:

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
GRO	 6.68	mg/Kg	1	10.0	3.5312	31	10 - 102.2

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
GRO	6.30	mg/Kg	1	10.0	3.5312	28	10 - 102.2	6	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	\mathbf{Limit}
Trifluorotoluene (TFT)	0.566	0.563	mg/Kg	1	1	57	56	47.2 - 84.2
4-Bromofluorobenzene (4-BFB)	0.903	0.877	mg/Kg	1	1	90	88	58 - 162.6

Matrix Spike (MS-1) Spiked Sample: 138309

QC Batch: Prep Batch:	Date Analyzed: QC Preparation:	Analyzed By: Prepared By:	

continued ...

¹High surrogate recovery due to peak interference.

.

²High surrogate recovery due to peak interference.

			MS			Spike	Mat			Rec.
aram		R	esult	Units	Dil.	Amount	Res	ult	Rec.	Limit
			MS			Spike	Mat	rix		Rec.
Param		R	esult	Units	Dil.	Amount	Res	ult	Rec.	Limit
Chloride		5	6040	mg/Kg	50	5000	<25	5.0	101	85 - 115
Percent reco	overy is based	on the spike resul	t. RPD is	based on	the spike ar	d spike dur	olicate re	sult.		
		MSD			Spike	Matrix		Rec.		RPD
Param		Result			Amount	Result	Rec.	Limit	RPD	Limit
Chloride		5080	mg/K	g 50	5000	<25.0	102	85 - 115	<u>i 1</u>	20
	ike (MS-1)	on the spike result. Spiked Sample:		based on	ine spike ai	la spike du		.5410.		
QC Batch:	41874	of		.nalyzed:	2007-10-0	9		А	nalyzed E	By: AR
Prep Batch	: 36168		•	eparation:	2007-10-0	9			repared B	
			MS			Spike	Mat	rix		Rec.
Param			esult	Units	Dil.	Amount	Res		Rec.	Limit
Chloride		2	4000	mg/Kg	50	5000	185	595	108	85 - 115
Percent rec	overy is based	on the spike resu	lt. RPD is	based on	the spike as	nd spike du	plicate re	esult.		
		MSD			Spike	Matrix	•	Rec.		RPD
Param										
	· · · · · · · · · · · · · · · · · · ·	Resul			Amount	Result	Rec.	Limit	RPD	Limit
Chloride		24000	mg/K	g 50	5000	18595	108	85 - 11		Limit 20
Chloride Percent rec Standard	(ICV-1)		0 mg/K lt. RPD is	g 50 based on	5000 the spike as	18595 nd spike du	108	85 - 11	5 0	20
Chloride Percent rec Standard	(ICV-1)	24000	0 mg/K lt. RPD is Date	g 50 based on Analyzed:	5000 the spike as 2007-10-0	18595 ad spike du)4	108 plicate re	85 - 11! esult.		20
Chloride Percent rec Standard	(ICV-1)	24000) mg/K lt. RPD is Date ICVs	g 50 based on Analyzed: IC	5000 the spike as 2007-10-0 Vs	18595 nd spike du)4 ICVs	108 plicate re	85 - 11 esult. Percent	5 0	20 ed By:
Chloride Percent rec Standard QC Batch:	(ICV-1) 41767	24000 I on the spike resu) mg/K lt. RPD is Date ICVs True	g 50 s based on Analyzed: IC Fou	5000 the spike as 2007-10-0 Vs ind	18595 nd spike du)4 ICVs Percent	108 plicate re	85 - 11 esult. Percent Recovery	5 0 Analyze	20 ed By: Date
Chloride Percent rec Standard QC Batch: Param	(ICV-1)	24000 I on the spike resu Units) mg/K lt. RPD is Date ICVs True Conc.	g 50 s based on Analyzed: IC Fou Co	5000 the spike as 2007-10-0 Vs ind nc.	18595 nd spike du)4 ICVs Percent Recovery	108 plicate re	85 - 11 esult. Percent Recovery Limits	5 0 Analyze	20 ed By: Date Analyzed
Chloride Percent rec Standard QC Batch: Param	(ICV-1) 41767	24000 I on the spike resu) mg/K lt. RPD is Date ICVs True	g 50 s based on Analyzed: IC Fou	5000 the spike as 2007-10-0 Vs ind nc.	18595 nd spike du)4 ICVs Percent	108 plicate re	85 - 11 esult. Percent Recovery	5 0 Analyze	20 ed By:
Chloride Percent rec Standard QC Batch: Param DRO	(ICV-1) 41767 Flag	24000 I on the spike resu Units) mg/K lt. RPD is Date ICVs True Conc.	g 50 s based on Analyzed: IC Fou Co	5000 the spike as 2007-10-0 Vs ind nc.	18595 nd spike du)4 ICVs Percent Recovery	108 plicate re	85 - 11 esult. Percent Recovery Limits	5 0 Analyze	20 ed By: Date Analyzed
Chloride Percent rec Standard QC Batch: Param DRO Standard	(ICV-1) 41767 Flag (CCV-1)	24000 I on the spike resu Units) mg/K lt. RPD is Date ICVs True Conc. 250	g 50 s based on Analyzed: IC Fot Co 26	5000 the spike as 2007-10-0 Vs ind nc.	18595 nd spike du)4 ICVs Percent Recovery 106	108 plicate re	85 - 11 esult. Percent Recovery Limits	5 0 Analyze	20 ed By: Date Analyzed 007-10-04
Chloride Percent rec Standard QC Batch: Param DRO Standard	(ICV-1) 41767 Flag (CCV-1)	24000 I on the spike resu Units) mg/K lt. RPD is Date ICVs True Conc. 250	g 50 s based on Analyzed: IC Fot Co 26 Analyzed	5000 the spike as 2007-10-0 Vs ind nc. 56	18595 nd spike du)4 ICVs Percent Recovery 106	108 plicate re	85 - 11 esult. Percent Recovery Limits	5 0 Analyze 2	20 ed By: Date Analyzed 007-10-04
Chloride Percent rec Standard QC Batch: Param DRO Standard	(ICV-1) 41767 Flag (CCV-1) 41767	24000 I on the spike resu Units) mg/K lt. RPD is Date ICVs True Conc. 250 Date	g 50 s based on Analyzed: IC Fou Co 26 Analyzed CC	5000 the spike as 2007-10-0 Vs ind nc. 56 : 2007-10-0	18595 nd spike du)4 ICVs Percent Recovery 106)4 CCVs Percent	108 plicate re	85 - 11 esult. Percent Recovery Limits 85 - 115	5 0 Analyze 2	20 ed By: Date Analyzed 007-10-04
Chloride	(ICV-1) 41767 Flag (CCV-1)	24000 I on the spike resu Units) mg/K lt. RPD is Date ICVs True Conc. 250 Date CCVs	g 50 s based on Analyzed: IC For Co 26 Analyzed CC For Cc	5000 the spike as 2007-10-0 Vs ind nc. 56 : 2007-10-0 CVs	18595 nd spike du)4 ICVs Percent Recovery 106	108 plicate re H	85 - 11 esult. Percent Recovery Limits 85 - 115 Percent	5 0 Analyza 2 Analyz	20 ed By: Date Analyzed 007-10-0 ed By:

Standard (ICV-1)

.

QC Batch: 41768

Date Analyzed: 2007-10-04

•

Analyzed By:

.

.

	October 9, 2	707		rk Order: 71003 /Pure Gold Fed			umber: 17 of 18 dy County, NM
Param DRO	Flag	Units mg/Kg	ICVs True Conc. 250	ICVs Found Conc. 240	ICVs Percent Recovery 96	Percent Recovery Limits 85 - 115	Date Analyzed 2007-10-04
Standard (C	CV_{-1}						
QC Batch: 4	,		Date Ana	lyzed: 2007-10	0-04	А	nalyzed By:
•							v J
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
DRO		mg/Kg	250	240	96	85 - 115	2007-10-04
Standard (I QC Batch: 4	·			llyzed: 2007-10		A	nalyzed By:
_ ·		 .	ICVs True	ICVs Found	ICVs Percent	Percent Recovery	Date
Param Benzene	Flag	Units mg/Kg	<u> </u>	<u> </u>	Recovery 93	Limits 85 - 115	Analyzed 2007-10-04
Toluene		mg/Kg	0.100	0.0930 0.0949	95 95	85 - 115	2007-10-04 2007-10-04
Ethylbenzene		mg/Kg	0.100	0.0967	97	85 - 115	2007-10-04
Xylene		mg/Kg	0.300	0.291	97	85 - 115	2007-10-04
Standard (C QC Batch:	-		CCVs	ulyzed: 2007-1 CCVs	CCVs	Percent	nalyzed By:
QC Batch:	41788	Units	CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
	-	Units mg/Kg	CCVs	CCVs	CCVs	Percent	Date Analyzed
QC Batch:	41788	Units mg/Kg mg/Kg	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed 2007-10-04
QC Batch: Param Benzene Toluene Ethylbenzene	41788 Flag	mg/Kg mg/Kg mg/Kg	CCVs True Conc. 0.100 0.100 0.100	CCVs Found Conc. 0.0861 0.0884 0.0873	CCVs Percent Recovery 86 88 88 87	Percent Recovery Limits 85 - 115 85 - 115 85 - 115	Date Analyzed 2007-10-04 2007-10-04 2007-10-04
QC Batch: Param Benzene Toluene	41788 Flag	mg/Kg mg/Kg	CCVs True <u>Conc.</u> 0.100 0.100	CCVs Found Conc. 0.0861 0.0884	CCVs Percent Recovery 86 88	Percent Recovery Limits 85 - 115 85 - 115	Date Analyzed 2007-10-04 2007-10-04 2007-10-04
QC Batch: Param Benzene Toluene Ethylbenzene	41788 Flag	mg/Kg mg/Kg mg/Kg	CCVs True Conc. 0.100 0.100 0.100	CCVs Found Conc. 0.0861 0.0884 0.0873	CCVs Percent Recovery 86 88 88 87	Percent Recovery Limits 85 - 115 85 - 115 85 - 115	Date Analyzed 2007-10-04 2007-10-04 2007-10-04
QC Batch: Param Benzene Toluene Ethylbenzene Xylene	41788 Flag	mg/Kg mg/Kg mg/Kg	CCVs True Conc. 0.100 0.100 0.100 0.300	CCVs Found Conc. 0.0861 0.0884 0.0873	CCVs Percent Recovery 86 88 87 88	Percent Recovery Limits 85 - 115 85 - 115 85 - 115 85 - 115	Date Analyzed 2007-10-04 2007-10-04 2007-10-04
QC Batch: Param Benzene Toluene Ethylbenzene Xylene Standard (1	41788 Flag	mg/Kg mg/Kg mg/Kg	CCVs True Conc. 0.100 0.100 0.100 0.300	CCVs Found Conc. 0.0861 0.0884 0.0873 0.264	CCVs Percent Recovery 86 88 87 88	Percent Recovery Limits 85 - 115 85 - 115 85 - 115 85 - 115	Date Analyzed 2007-10-04 2007-10-04 2007-10-04
QC Batch: Param Benzene Toluene Ethylbenzene Xylene Standard (I QC Batch:	41788 Flag (CV-1) 41802	mg/Kg mg/Kg mg/Kg	CCVs True Conc. 0.100 0.100 0.100 0.300 Date Ana ICVs True	CCVs Found Conc. 0.0861 0.0884 0.0873 0.264 alyzed: 2007-1 ICVs Found	CCVs Percent Recovery 86 88 87 88 0-04 ICVs Percent	Percent Recovery Limits 85 - 115 85 - 115 85 - 115 85 - 115 85 - 115 A Percent Recovery	Date Analyzed 2007-10-04 2007-10-04 2007-10-04 2007-10-04 analyzed By: Date Analyzed
QC Batch: Param Benzene Toluene Ethylbenzene Xylene Standard (I QC Batch: Param	41788 Flag CV-1) 41802 Flag	mg/Kg mg/Kg mg/Kg Units	CCVs True Conc. 0.100 0.100 0.100 0.300 Date Ana ICVs True Conc.	CCVs Found Conc. 0.0861 0.0884 0.0873 0.264 alyzed: 2007-1 ICVs Found Conc.	CCVs Percent Recovery 86 88 87 88 0-04 ICVs Percent Recovery	Percent Recovery Limits 85 - 115 85 - 115 85 - 115 85 - 115 85 - 115 A Percent Recovery Limits	Date Analyzed 2007-10-04 2007-10-04 2007-10-04 2007-10-04

,

1

۰.

E

Report Date 3231	e: October 9,	2007		ork Order: 710 /Pure Gold Fe			ımber: 18 of 18 dy County, NM
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
GRO	1 146	mg/Kg	1.00	1.07	107	85 - 115	2007-10-04
Standard ((ICV-1)						
QC Batch:	41873		Date Ana	lyzed: 2007-10	0-08	Anal	yzed By: AR
			ICVs True	ICVs Found	ICVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	100	100	100	85 - 115	2007-10-08
Standard (QC Batch:			Date Ana	lyzed: 2007-10	D-08	Anal	yzed By: AR
			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	100	99.6	100	85 - 115	2007-10-08
Standard (QC Batch:	. ,		Date Ana	lyzed: 2007-1	0-09	Anal	yzed By: AR
			ICVs True	ICVs Found	ICVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc. 100	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	100	99.3	99	85 - 115	2007-10-09
Standard	(CCV-1)						
QC Batch:	41874		Date Ana	alyzed: 2007-1	0-09	Ana	lyzed By: AR
		Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Param	\mathbf{Flag}				necoverv	LUMITS	ADAIVZEG

.

. - -

, ,

																w	ork	io	rle	w:	71	00	33	8										<u> </u>		
ſ	Ana	alysi	is R	ec	lu	est	and	1 C	'hai	n	of	Cu	sto	dy	I	Re	cc	r	1						·····		PAG		POT	(OF	<u> </u>	2		
┢			-										•					•••••						(Cir				S RI cify			d No	.)				
	(432	2) 682	-4559]	1910 Midl	EN. 1 N. 1 land,	Big Te:	Spri xas	ing 797	St. 705		Fax			68	32-3					D) 120.005		Cd Cr Ph Hg Se				22	3		(Inlorida)	}				
	CLIENT NA	-	~	in	9_	Cu.	SI	TE 14	NACER:	il an	A e 2	<u>-</u>		INERS		<i>P</i> .		ERV. ETH(ATTVI DD	E		8015 MOD)		Ba	5 8			8260/824 8270/895	1	1 1		'				
	PROJECT	NO.: 32	-31	F	Ro.	ECT N.	ST AME:) UNE	Ca	sldt	Sec.	s/ ₩	19		CONTA	(M)					000	1800	・トノ		a Ag As	a Ag As	Volatile		8240/8	/608	808	pH, TDS,	80. (Alr)	tos) (
	LAB I.D. NUMBER	DATE	TIME		COMP.		Lat.	ELE, C SAMPL	CU · A E IDEN	ω ГТІРІС	A . CATION			NUMBER OF CONTAINERS	FILTERED (Y/N)	HCL	FONH	ICE	NONE		WTRE ADEA/ADE	TPH (Hat	PAH 6270	RCRA Metals Ag As Ba C	TCLP Volati	TCLP Semi Volatiles	RCI	GC.MS Vol.	PCB's 8080/608	Peet. 808/603	BOD, TSS, pH,	Gamme Spec. Alpha Beta (A	PLM (Asbestos)			
18	03 9/0	5/07		5		A	4-1		0-1	1				1				· /				X	1								Ϋ́					
	304			5		10	H 1		1-1.	5	/			1				1													X					L
	305			\$		10	1H-2	-	0-	/	<u></u>			1				_				X									Ŷ					
	306			¢		11.	H-Z	-	1-1.	5	/			1				-													Ý					L
	307			5		1A	4-3		0-	1				۱					,			X									K					Ĺ
	308			5		11	H-3		1-1	1:5	_'			1				1													¢					
	309			5			4-4		0-1					1				1				X									Ý					
	310		<u> </u>	F		A	H-4		1-1.	:5	1			۱				1													Ŷ					
	3()			5		Al	4-5		0-	/				1				1				X									Ý					
	312			Ž			14.5							(1						4	1	ļ					Q					
	USLINGUISHIT	///~	\sim					-7-0			ED BY: (Dat	e:										a Si				Dat Tin					<u> </u>
	RELINQUISHE					Dat Tim Dat	le:				ED BY: (·····			Dat Tim Dat	o:				-	FEL			-			BUS UPS			URBII OTHEI					
	ECEIVING LA			R	яĊ,	Tim			<u> </u>	·····					Δc	Ωm.											T PE	RSON	 f:		_		lts by	:		
	UDRESS: UTY: CONTACT:			STATI			ZIP:				0 BY: (S (&·∠·		<u>"(i</u>	TIME			 :00	\overline{C})			d	$\langle \rangle$		to	1		/					i Chui orized	Ŀ	io	
\$	2.5°C						MATR	DX:	W-Water 8-Sall		A-Air SL-Sludg		SD-Salid 0-Other			R	EMAR	KS:	Ru DH	. N . U	(3 VCe) Lo	8 15	77 5	121	S- Dn	e.[-e ~9]	.T 109	3	تما 111	t'h di	is. Ier	tesi	D e	TP	Į4

Please Fill out all copies - Laboratory rotains yellow copy - Return original copy to Highlander Environmental Corp. - Project Manager retains pink copy - Accounting receives Gold copy.

		V	181	K	orde	ر :	71	00	33	8											
Analysis Request and Chain of	Custody	y]	Re	co	rd						A	_	PAGE		QUE	$\sum_{r \in T}$)	OF	7.	0	
		20	$\overline{\mathbf{n}}$	n	·					(Cir					Met		I No	o.)			
HIGHLANDER ENVIRONMEN 1910 N. Big Spring St. Midland, Texas 79705 (432) 682-4559	Fax (4				946			77005		Cr Pb Hg Se											
CLIENT NAMES		·		RESE	ERVAT.		ł	8015 MBD.)		Ra Cd			YCB/ UB	8270/625			AL OT				
PROJECT NO .: PROJECT NAME: Use Cold Fed to		V/N)					/802 /809	2		8 Ag As	lear l	Volatiles	6a/ 0768	L. Val. 8	608	808	pH, TDS,	80. (41-)	tos)		
LAB I.D. NUMBER DATE TIME E G G SAMPLE IDENTIFICATION	40 83891W	FILTERED (Y/N)	HCL	HN03	ICE		BTEX 8020/802	TPHY AIB.1	PAH 8270	RCRA Metals Ag As Ba Cd Cr Pb Hg	TCLP Volati	TCLP Semi Volatiles	RCI CC MG Vol	GC.MS Semi. Yol. 8270/62	PCB's 8080/608	Pest. 808/803	BOD, 783, pH,	Gamma Spec.	PLN (Ashestos)		
2013 9-25-27 5 - AH-6 (0-1)	1	1			1			X									ß				
3149-2507 > FAH.6 (1-1.5')	((/												X				
		_												_							
												_			$\left \right $		_	_			
			-									\downarrow	_		$\left \right $			+			
						╉┈╉		+		_	$\left - \right $	-	_	+-	$\left - \right $		_	+		_	+
RELENGUISHERY BY: (Signature) Date: () 307 RECEIVED BY: (S	ignature)	1	Dat					SAM	FLA		(17)			(m			Dat				
REFINQUISHED BY: (Signature) Date: RECEIVED BY: (S. Time:	ignature)		Tin Dai Tin				-	SAM FED		SHIP.	PED	BY:		ile) BUS			Tin Tin	10: LL #			
RELINQUISHED BY; (Signature) Date: RECEIVED BY; (S	ignature)		Dat	to:			-4			Tive	RED			JPS			THE	R: .	Its by		
RECEIVING LABORATORY: VC-Cl- RECEIVED BY: (Sig ADDRESS:	لمما	<u>2.</u>		<u> </u>)			/	TAN U		com W		PER	SON:	:		┢	RUM Auth	I Cha orized	rgos i:	
CONTACT: PHONE: DATE: 10-3.0 SAMPLE CONDITION WHEN RECEIVED: MATRIX: W-Water A-Air 2.5° (; indicated) S-Sall SL-Sludge	SD–Solid	<u>LE:</u>	_	EMAR	KS:		<u> </u>			0		V				<u></u>		Yea			io

Please Fill out all copies - Laboratory retains yellow copy - Return original copy to Highlander Environmental Corp. - Project Manager retains pink copy - Accounting receives Gold copy.

.

....

APPENDIX C NMOCD FORM C-141

.

.

-

.

.

<u>District 1</u> 1625 N. French Dr., Hobbs, NM 88240 <u>District II</u> 1301 W. Grand Avenue, Artesia, NM 88210	Stat Energy Mine		New Mex and Natura			Rev	Fo Vised Octo	orm C-141 ober 10, 2003
<u>District III</u> 1000 Rio Brazos Road, Aztec, NM 87410 <u>District IV</u> 1220 S. St. Francis Dr., Santa Fe, NM 87505	1220 S	Sout	rvation Div h St. Franc e, NM 875	is Dr.		District (office in the Rule	appropriate accordance 116 on back side of form
R	elease Notifica	tio	n and Co	orrective A	ction			
			OPERAT	FOR	🗹 Initi	al Report	I	inal Report
Name of Company Pogo PRoduce	ng Company	-		ATRICK EI				
Address P.O. Box 10340 Midl Facility Name PLAE Gold B F	ANA, 1X 1970 e de RAL # 19			No. (432) (e Flow /,	685-8148 We			
Surface Owner	Mineral Ow					lo. NM	. 7.94	4/2
			NOEDEI	TRACIE			-387	0.3
Unit Letter Section Township Ran			N OF REI	Feet from the	East/West Line	County		
B 20 235 31			Vorth	2310	EAST	Eda		
					LASI	Eaq	Y	
	Latitude		Longitud	e	1			
		RE	OF RELI		Pre la sur sur			·
Type of Release PRoduced fluid Source of Release Flow live tele,				our of Occurrence	Date and	Hour of Disc	overy	
Was Immediate Notice Given?		d	If YES, To	Whom? 9-2:	1-07 10:00			
By Whom? PATRICK EIlis	🗌 No 🗌 Not Requ		1	AMOS BLN our 9-24-0				
Was a Watercourse Reached?			If YES, Vo	lume Impacting th	e Watercourse.	1		
Yes						·		
If a Watercourse was Impacted, Describe Fu	lly.*							
None								
Describe Cause of Problem and Remedial A					6	/ /.		
Restriction in flow line Well WAS shut-in. There WAS CAlled to take soil	CFEATED N WAS NO FI SAMPLES.	194	stand in	s product	High AND	er En	TO IL VIRONI	Mental
Describe Area Affected and Oleanus Action	Takan *							
Describe Area Anecied and Cleanup Action Up on evaluation of so Affected was small al	oil SAmples,	A	NORKPIA	IN WIT D	e Supmitt	ed. An	?A	{
Attected WAS SMAIL AN	rea Adjacen	t	to High	WAY 128.				
I hereby certify that the information given at regulations all operators are required to repor- public health or the environment. The accep should their operations have failed to adequa	rt and/or file certain rele tance of a C-141 report	ase n by th	otifications an e NMOCD ma	d perform correct irked as "Final Re	ive actions for rele port" does not reli	eases which r	nay enda tor of lia	unger ability
or the environment. In addition, NMOCD ad federal, state, or local laws and/or regulation	cceptance of a C-141 rep							
	·	T	,	OIL CONS	ERVATION	DIVISIO	N	{
Signature: Catink L. Ell	ti							
Printed Name: PATRICK L. E.	llis	_	Approved by I	District Superviso	r: ´			
Title: EH+S Supervisor			Approval Date		Expiration	Date:		
E-mail Address: <u>e///:s p@ pogoph</u> Date: <u>9-24-07</u> Phi * Attach Additional Sheats If Nacessary	oducing com		Conditions of	Approval:		Attached		
Date: 9-24-07 Phi * Attach Additional Sheets If Necessary	one: 685-8148		<u> </u>					

09/28/200 ¢							IG COMPANY			Ø 002/	002
District I 1625 N. French District II 1301 W Grand District III 1000 Rio Braze District IV 1220 S. St. Fran	Dr., Hobbs, Avenue, Art os Road, Azto neis Dr., Sant	NM 88240 lesia, NM 8821 cc, NM 87410 la Fe, NM 8751	OPY FI	S Energy M M W H 1220 S	tate of inerals Conser) South anta Fe	New Mex and Natura vation Di St. France, NM 873		SEP OCD-	28 200 ³	Revised Octob bmit 2 Copies to ap District Office in a	ppropria ccordan
20 N	15-35:	217	Rele	ase Notifi	catior						
$\frac{3v-v}{\text{Name of }C}$	mpany	Page Pa	due ino	<i></i>		OPERA Contact	PATRICK E		Initial Re	eport [] Fu	nal Rep
Address /	P.O. Box	10340	MidlArd	Company 1, TX 79 1, RAI # 19	702	Telephone I	No. (432)	685-	8148		
Facility Na	me Pute	Gold	B Fedd	RAI # 19		Facility Typ	be Flow	line			
Surface Ow	тег			Mineral (Owner.	····			Lease No.	NM-384	63
		•		LOC	ATIO	OF RE	LEASE				
Unit Letter	Section	Township	Range	Feet from the			Feet from the	East/W	est Line Co	unty	
B	20	235	31E	645		lorth	2310	F	is f man	Eddy	
<u> </u>	-	423	ل				1				
			Lat	itude		_ Longitud	le				
				NAT	URE	OF REL					
Type of Rele	ase PRop	luced f	luid			Volume of			Volume Recov		
Was Immedi		ow line	FELEASE				Whom? 9-2		Date and Hour		
			Yes 🗌	No 🔲 Not R	equired	Jim	AMOS BL.	M	, <i>-</i>		
By Whom?	PATRIC	K Ellis					lour 9-24		1:00 pM		
Was a Water	course Read	ched?	Yes 🗹	No		If YES, Vo	olume Impacting	the Water	course.		
If a Watercon	irse was Im	pacted, Desc	ribe Fully.*				·			<u> </u>	
None						COPY	FROM W	ÆLL F	TLE		
WAS UN	tion , NAS SH Iled f	n flow ut-in. 7 o take	line c here n soil sA	Mples.						line to lea Environm	k.
Describe Are <i>Vpar</i> <i>Affecte</i>	a Affected : evalua a was	and Cleanup, htion of SSMAI	Action Take So;/ AreA	Adjace	, A n ent t	ork pla to High	an will way 128.	be si	bm i He d.	AreA	
regulations al public health should their o	l operators or the envir perations h ment. In a	are required t conment. The ave failed to a ddition, NMC	o report and acceptance adequately in CD accepta	/or file certain re of a C-141 repo nvestigate and re	elease no ort by the emediate	tifications an NMOCD ma contaminatio	d perform correct arked as "Final R on that pose a thr the operator of	tive action eport" doe eat to grou responsibi	as for releases as not relieve the and water, surfa- lity for compli-	to NMOCD rules a which may endang ne operator of liabi ace water, human l ance with any othe	ger ility health
Signature:	2 tim	:L. E	eli			,	<u>OIL CON</u>	<u>SERVA</u>	TION DIV	<u>ISION</u>	
Printed Name				•	A	pproved by 1	District Supervis	or: [0,	inf	Jun	
Title: EA	1+5.	Supervi	SOR			pproval Date	0CT 2	2007×	piration Date:		
E-mail Addres Date: 9-2	s: <u>ellis</u> 4-07	pe pog	Phone:	129 . COM 132) 685-8148	C	onditions of SEE	Approval: Attach	<i>zd</i>	ł	ached	

Attach Additional Sheets If Necessary

Guye, Gerry, EMNRD

From: Sent: To: Subject: Guye, Gerry, EMNRD Tuesday, October 02, 2007 11:46 AM 'ellisp@pogoproducing.com' C-141 (Pure Gold B Federal #8 and #19

COPY FROM WELL FILE

This office is in receipt of your C-141 on the oil and produced water release, at this facility.

NMOCD Rule 19.15.3.116 states in part ... "The responsible person must complete division approved corrective action for releases which endanger public health or the environment. Releases will be addressed in accordance with a remediation plan submitted to and approved by the division or with an abatement plan submitted in accordance with Section 19 of 19.15.1 NMAC."

Information and tools for proper corrective action may be found in the Environmental Handbook on our web site www.emnrd.state.nm.us/ocd under the heading publications.

Remediation requirements may be subject to other federal, state and local laws or regulations.

Within 30 days, on or before October 24, 2007, completion of a remediation plan should be finalized and a report summarizing all actions taken to mitigate environmental damage related to the leak, spill or release will be provided to OCD for approval.

Please be advised that NMOCD acceptance and/or approval of documents or work plans does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance and/or approval of documents or work plans do not relieve the operator of responsibility for compliance with any other federal, state, local laws and/or regulations.

If I may be of further service or if you have any questions please feel free to contact me.

Cerry Guye Deputy Field Inspector NMOCD - Artesia Office (505)748-1283x105 Mobile (505)626-0843 E-Mail: gerry.guye@state.nm.us

COPY FROM WELL FILE