3R - 084

QUARTERLY REPORTS

11/10/2008

6121 Indian School Rd. NE Suite 200 Albuquerque, NM 87110 (505) 237-8440

TETRA TECH, INC.

November 14, 2008

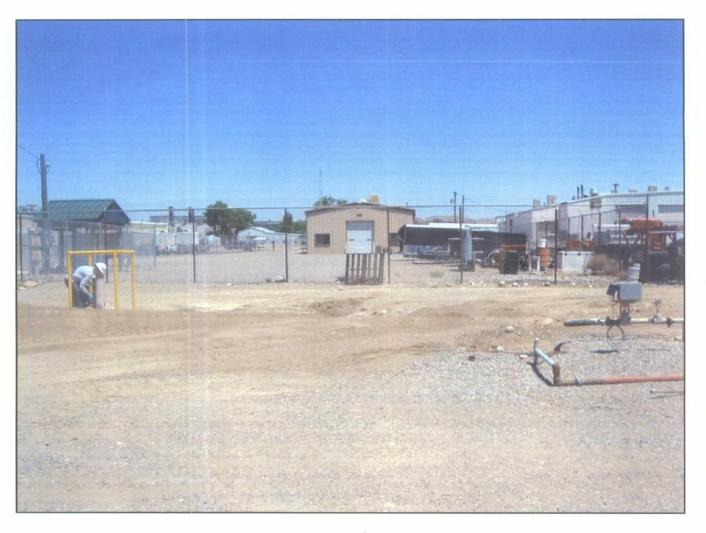
Mr. Glen von Gonten State of New Mexico Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

RE: (1) ConocoPhillips Federal #15 2008 Quarterly Report
Farmington, New Mexico
(2) ConocoPhillips B Com #1E 2008 Quarterly Report
Farmington, New Mexico

Dear Mr. von Gonten:

Enclosed please find a copy of the above-referenced documents as compiled by Tetra Tech, Inc. for these Farmington area ConocoPhillips sites. We are currently working to incorporate the additional elements we discussed during our April 2, 2008 meeting at your office into the next set of reports.

Please do not hesitate to contact me at (505) 237-8440 if you have any questions or require additional information.


Sincerely,

Kelly E. Blanchard

Kelly E. Blanchard Project Manager/Geologist

Enclosures (2)

2008 QUARTERLY MONITORING REPORT FORMER CONOCOPHILLIPS B COM #I E FARMINGTON, NM OCD # 3R0084

1

November 2008

QUARTERLY GROUNDWATER MONITORING REPORT JULY 2008 SAMPLING EVENT

FORMER CONOCOPHILLIPS SITE B COM #IE FARMINGTON, NEW MEXICO

OCD # 3R0084

Prepared for:

ConocoPhillips

420 South Keeler Avenue Bartlesville, OK 74004

Prepared by:

TETRA TECH, INC.

6121 Indian School Rd. NE Suite 200 Albuquerque, NM 87110 Tetra Tech Project No. 8690066.100

November 10, 2008

TABLE OF CONTENTS

1.0	INTRODUCTION	I
	I.I Site History	1
2.0	METHODOLOGY AND RESULTS	2
	2.1 Groundwater Monitoring Methodology	2
	2.2 Groundwater Sampling Analytical Results	3
3.0	CONCLUSIONS	3

FIGURES

- I. Site Location Map
- 2. Site Layout Map
- 3. Constituent of Concern Concentrations and Groundwater Elevation Contour Map

TABLES

- 1. Groundwater Elevation Summary (May 2005 July 2008)
- 2. Groundwater Laboratory Analytical Results Summary (February 1998 July 2008)

APPENDICES

- Appendix A. Groundwater Sampling Field Forms
- Appendix B. Laboratory Analytical Report

QUARTERLY GROUNDWATER MONITORING REPORT CONOCOPHILLIPS B COM #IE, FARMINGTON, NEW MEXICO

I.0 INTRODUCTION

This report presents the results of quarterly groundwater monitoring completed by Tetra Tech, Inc. (Tetra Tech) on July 24, 2008, at the ConocoPhillips B Com #1E Site in Farmington, New Mexico. This event represents the first quarterly groundwater sampling at the site.

The site is located on the southeast side of Farmington, New Mexico near the corner of Murray Road and Carlton Road. The site consists of a gas production well and associated equipment and installations. The location and general features of the B Com #1E site are shown on **Figures 1** and **2**, respectively.

I.I Site History

During March 1997 a site assessment was conducted by On Site Technologies (On Site). Four test pits were advanced and soil samples were collected. Total petroleum hydrocarbon (TPH) and benzene, toluene, ethylbenzene, and xylenes (BTEX) impacts were confirmed north of the production storage tank and west of the separator/dehydrator pit. The impacts were described by On Site as limited to former unlined pit areas, traveling straight down with little lateral migration, due to the porous and permeable subsurface soils. The soils were noncohesive consisting of well rounded gravel and cobbles with sand. The gravel and cobbles were screened out and placed back into the pits with fertilizer to enhance bioremediation.

Six monitoring wells (MW-1 through MW-6) were subsequently installed at the site. Light non-aqueous phase liquid (LNAPL) was discovered in MW-1 and recovery began. During May 2004, Souder Miller and Associates (Souder Miller) placed active and passive skimmers in MW-1 to determine the best method of recovery. The passive skimmer collected a small amount of free product. The active skimmer did not collect any free product. At that time Souder Miller determined that an active skimmer was not a viable method of free product recovery in MW-1. Souder Miller proposed passive skimming or periodic hand bailing as a viable recovery method. The plan for future work at the site includes annual monitoring of MW-1 and MW-6 for BTEX and biodegradation parameters. When MW-1 reaches compliance, quarterly monitoring of MW-1 will commence and all wells will be monitored in the final quarter to verify site closure requirements have been met.

On February 20, 2007, May 15, 2007, August 21, 2007, and November 7, 2007 Tetra Tech was onsite to supervise the pumping of MW-1 using a vacuum truck. Approximately 1900 gallons of fluid were removed from MW-1 during the 2007 pumping activities and fluid was disposed of in a ConocoPhillips waste water tank located at the Federal Com #15 site in Farmington, New Mexico.

Tetra Tech conducted annual groundwater sampling of monitor wells MW-1 and MW-6 in November of 2006 and 2007. The details of each sampling event are summarized in the 2006 and 2007 Annual Groundwater Monitoring and Site Activities Reports, dated January 4, 2007 and January 23, 2008, respectively.

On January 15 and March 18 of 2008, Tetra Tech was onsite to supervise the pumping of MW-1 using a vacuum truck. Approximately 200 gallons of fluid was removed from MW-1 during the 2008 pumping activities and was disposed of in a ConocoPhillips waste water tank located at the Federal Com #15 site in Farmington, New Mexico.

The most current sampling event, conducted on July 24, 2008, marks the first quarterly groundwater monitoring at the B Com #1E site.

2.0 METHODOLOGY AND RESULTS

The following subsections describe the groundwater monitoring methodology and sampling analytical results.

2.1 Groundwater Monitoring Methodology

Groundwater Elevation Measurements

On July 24, 2008, groundwater elevation measurements were recorded in monitor wells MW-1, MW-2, MW-3, MW-4, MW-5, and MW-6. **Table 1** presents the monitor well specifications and groundwater level data. A groundwater elevation contour map is presented on **Figure 3** that illustrates groundwater at the site flows to the west.

Groundwater sampling

Monitor wells MW-1 and MW-6 were sampled during this event to initiate the first round of quarterly groundwater monitoring at the site. Approximately 3 gallons of water, or three well volumes, were purged from MW-1 and MW-6 with 1.5-inch dedicated, clear, poly-vinyl, disposable bailer. The purged water collected was placed in a 55-gallon steel drum onsite for later disposal at a ConocoPhillips approved facility. The groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped with chain of custody documentation to Southern Petroleum Laboratories located in Houston, Texas. The samples were analyzed for the presence of BTEX by Environmental Protection Agency (EPA) Method 8260B, sulfate by EPA Method 300.0, nitrate by EPA Method 353.2, phosphate by EPA Method 365.1, and ferrous iron by Standard Method (SM) 18, 3500-Fe B Modified

2.2 Groundwater Sampling Analytical Results

During the July 2008 quarterly sampling event the samples collected from monitor well MW-6 were below laboratory detection limits for BTEX. The samples collected from monitor well MW-1 contained concentrations of ethylbenzene and xylenes below the New Mexico Water Quality Control Commission (NMWQCC) standards. The sulfate results for MW-1 and MW-6 were below the NMWQCC standards. Ferrous iron was above the NMWQCC standard in MW-1 and MW-6. The NMWQCC has not established a standard for phosphate in groundwater. **Table 2** presents the laboratory analytical results. The laboratory analytical reports are included as **Appendix B**.

3.0 CONCLUSIONS

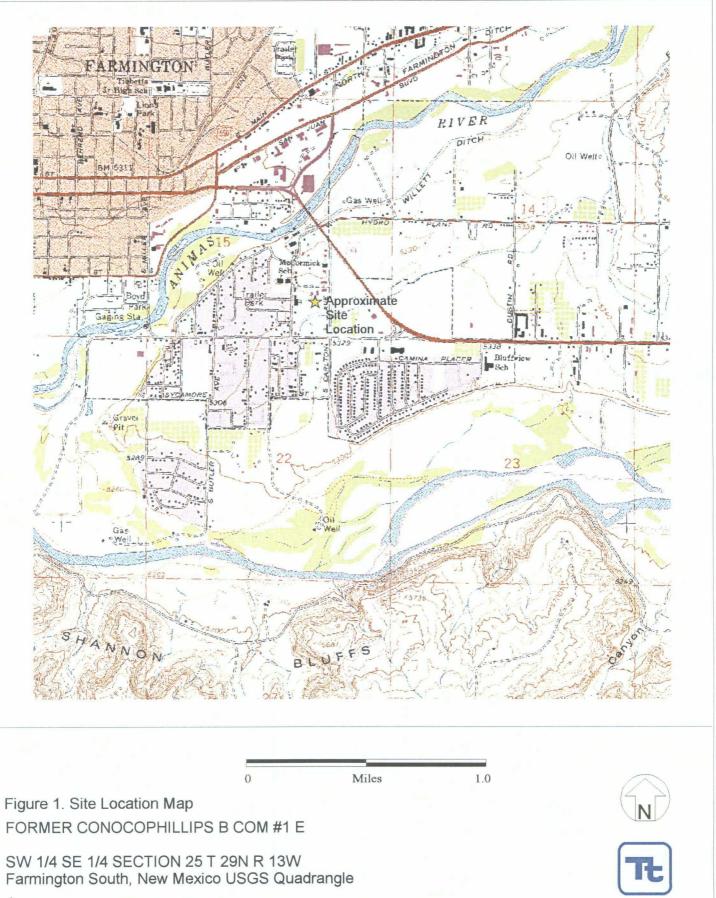
 T_{ω}

Tetra Tech will continue quarterly monitoring of groundwater in MW-I and MW-6. The second quarter monitoring event took place during October of 2008. The third and fourth quarter events are scheduled to take place in January and April of 2009, respectively.

FIGURES

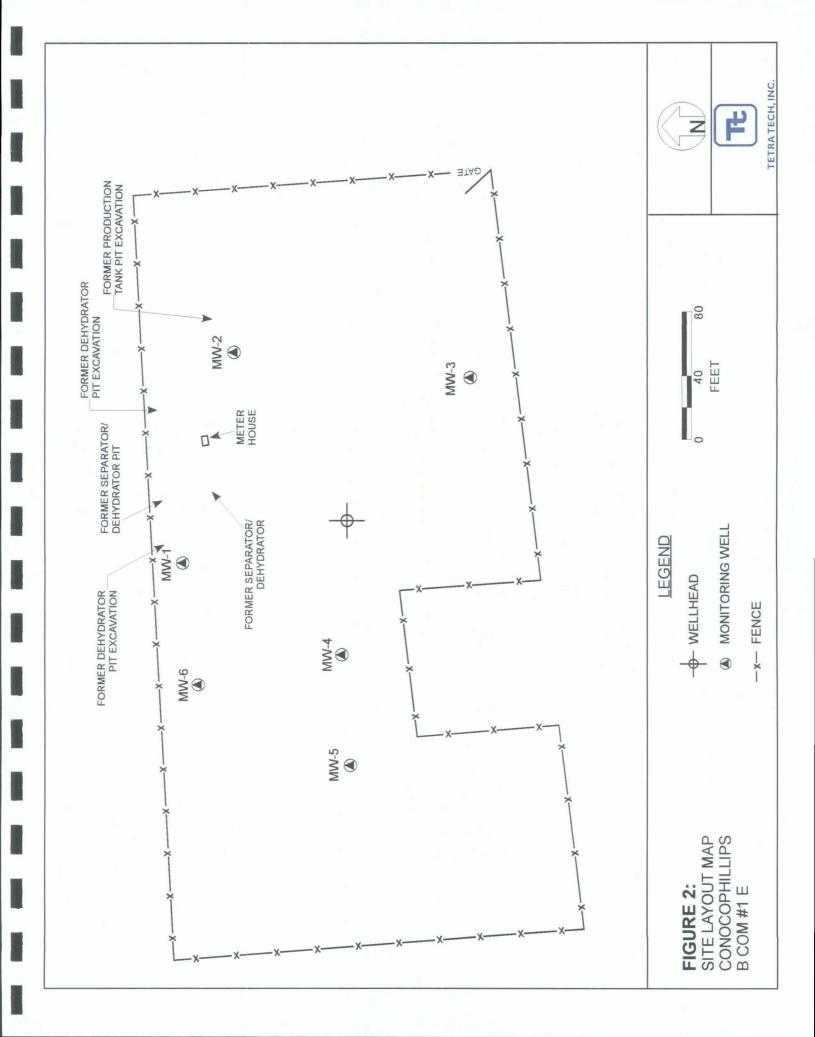
I. Site Location Map

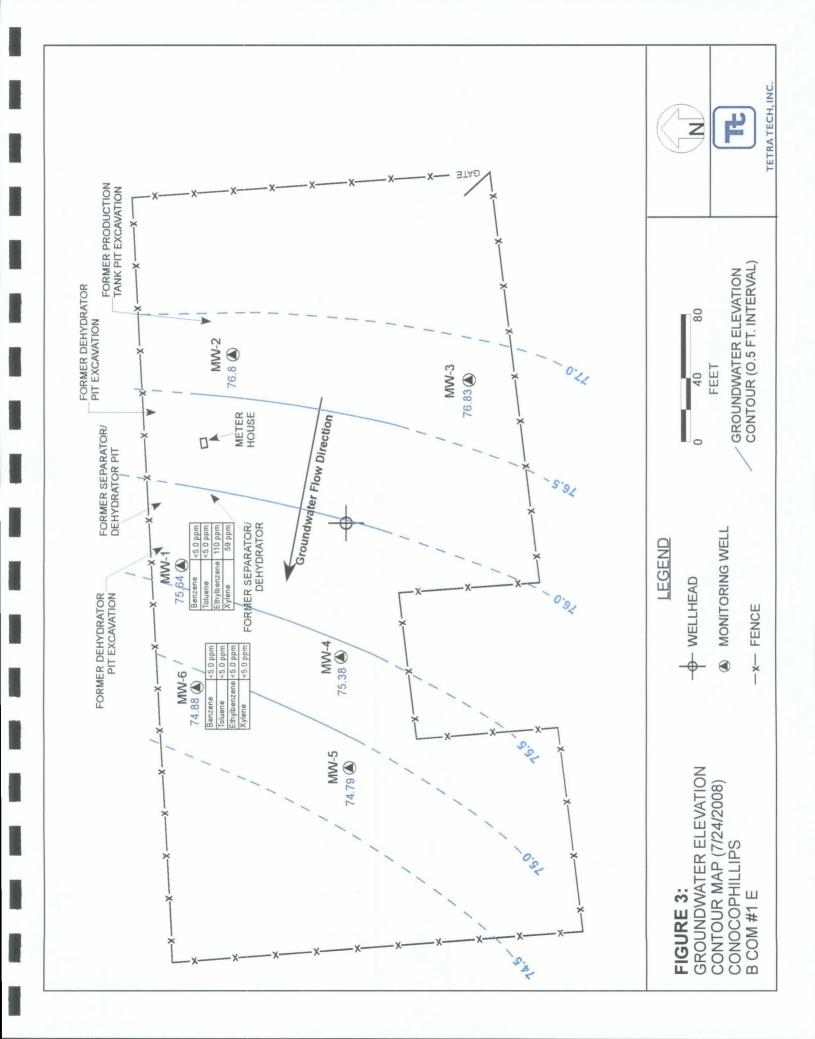
2. Site Layout Map


3. Constituents of Concern Concentrations and Groundwater Elevation Contour Map

2

5. .


. . . 19 a ĉ


, , ,

★=Approximate Site Location

TETRA TECH, INC.

TABLES

I. Groundwater Elevation Summary (May 2005 – July 2008)

2. Laboratory Analytical Data Summary (February 1998 – July 2008)

.

ć

а С 1

: ف.

t ve

1 1 1

j.

а <mark>с</mark>.

, . .

ر و آر و ا

> , .

Table 1. ConocoPhillps B Com #1E Monitoring Well Specifications and Groundwater Elevation Table

Well ID	Total Depth (ft. bgs)	Screen Interval (ft)	*Elevation (ft.) (TOC)	Date Measured	Groundwater Level (ft TOC)	Relative Groundwater Elevation (ft TOC)	
				5/9/2005	28.3	73.07	
				10/19/2005	25.12	76.25	
				11/14/2006	26.48	74.89	
MW-1	34.09	19.09 - 34.09	101.37	11/7/2007	26.3	75.07	
				1/16/2008	29.24	72.13	
				3/18/2008	29.27	72.1	
				7/24/2008	25.73	75.64	
				5/9/2005	27.28	74.29	
				10/19/2005	24.3	77.27	
				11/14/2006	26.08	75.49	
MW-2	33.72	18.72 - 33.72	101.57	11/7/2007	25.31	76.26	
				1/16/2008	27.27	74.3	
				3/18/2008	28.68	72.89	
				7/24/2008	24.77	76.8	
				5/9/2005	27.81	74.29	
				10/19/2005	25.06	77.04	
				11/14/2006	26.75	75.35	
MW-3	32.44	17.44 - 32.44	102.1	11/7/2007	26.12	75.98	
				1/16/2008	28.46	73.64	
				3/18/2008	29.97	72.13	
				7/24/2008	25.27	76.83	
			32.72 101.4	5/9/2005	28.73	72.67	
					10/19/2005	25.62	75.78
					· · · · · · · · · · · · · · · · · · ·	27.02	74.38
MW-4	32.72	17.72 - 32.72		11/7/2007	26.5	74.9	
				1/16/2008	28.55	72.85	
				3/18/2008	29.99	71.41	
				7/24/2008	26.02	75.38	
				5/9/2005	28.5	72.02	
				10/19/2005	25.3	75.22	
				11/14/2006	27.67	72.85	
MW-5	34.09	19.09 - 34.09	100.52	11/7/2007	26.13	74.39	
				1/16/2008	28.18	72.34	
				3/18/2008	29.65	70.87	
				7/24/2008	25.73	74.79	
				5/9/2005	29.94	72.2	
				10/19/2005	26.7	75.44	
				11/14/2006	27.91	74.23	
MW-6	34.02	34.02 19.02 - 34.02	102.14	11/7/2007	27.52	74.62	
				1/16/2008	29.43	72.71	
				3/18/2008	30.85	71.29	
				7/24/2008	27.26	74.88	

ft. = Feet TOC = Top of casing bgs = below ground surface * Relative Elevation

- -

ş

•

a) a)

-

. . . .

44. y

1.4

1.5

~
Summar
Results
alytical
rater An
Groundw
om #1E G
llips B C
ConocoPhilli
Table 2.

34 370 2,044 NS NS NS 3" free product in bailer - not sampled free product - not sampled BDL 420 2,800 NS NS NS < 0.7 74 2,800 NS NS NS $< < 0.7$ 74 2,500 NS NS NS $< < 0.7$ 74 2,500 0.15 38.9 39.9 $< < 0.7$ 190 1400 0.15 38.4 38.4 $< < 0.7$ 190 1400 0.15 38.4 38.4 $< < 0.7$ 120 2550 < 0.015 38.4 38.4 $< < 5.0$ 90 35 < 0.5 38.4 38.4 $< < 5.0$ 110 59 NA NA NA < 50 8DL BDL BDL NS NS NS < 50 8DL BDL NS NS NS NS < 1.8 0.7 1.9 <td< th=""><th>Weil ID</th><th>Date</th><th>Benzene (µg/L)</th><th>Toluene (µg/L)</th><th>Ethylbenzene (µg/L)</th><th>Xylenes (μg/L)</th><th>Nitrate (mg/L)</th><th>Sulfate (mg/L)</th><th>Ferrous Iron (mg/L)</th><th>Phosphate (mg/L)</th></td<>	Weil ID	Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)	Nitrate (mg/L)	Sulfate (mg/L)	Ferrous Iron (mg/L)	Phosphate (mg/L)
88 37. free product in bailer - not sampled free product - not sampled 88 free product - not sampled 98 350 BDL 420 2,800 NS NS 94 77.8 74 250 0.40 77.8 94 77 <0.7		2/19/1998	210	34	370	2,044	SN	NS	NS	NS
Refer free product - not sampled Refer A20 2,800 NS NS 17 <0.7 74 250 <0.40 77.8 18 <1.0 170 170 0.15 39.9 145 17 <0.7 74 250 <0.40 77.8 7 17 <0.7 170 1400 0.15 39.9 145 18 <0.7 120 250 <0.015 38.4 39.9 18 <0.7 120 250 <0.015 38.4 38.4 19 <5.0 <0.7 120 250 <0.16 38.4 50.6 18 BDL BDL BDL BDL NS NS NS 99 BDL BDL BDL NS NS NS 91 BDL BDL NS NS NS NS 92 SOS SOS </th <th></th> <th>6/12/1998</th> <th></th> <th></th> <th>3" fre</th> <th>ee product in b</th> <th>ailer - not sam</th> <th>ipled</th> <th></th> <th></th>		6/12/1998			3" fre	ee product in b	ailer - not sam	ipled		
98 350 BDL 420 2,800 NS NS 5 17 <0.7 74 250 <0.40 77.8 65 34 <1.0 170 1400 0.15 39.9 77.8 <1.0 170 1400 0.15 39.9 76 7.1 190 1600 <0.015 38.4 77.8 77 7 <0.7 190 1600 <0.015 38.4 76 76 <5.0 <0.7 100 1600 <0.015 38.4 76 76 <5.0 <0.7 100 1600 80.15 38.4 76 77 < 37 38.4 76 38.4 76 < 35 <0.5 38.4 76 78 35 <0.5 38.4 76 8 BDL BDL BDL NS		9/15/1998				free product -	- not sampled			
04 free product - not sampled 5 17 <0.7 74 250 <0.40 77.8 05 34 <1.0 170 1400 0.15 39.9 06 18 <0.7 190 1600 <0.015 1455 07 7 <0.7 120 250 <0.015 38.4 07 7 <0.7 120 250 <0.015 38.4 08 <5.0 <0.0 35 <0.5 4.76 38.4 08 <5.0 <0.01 BDL BDL BDL BDL NS NS 98 BDL BDL BDL BDL NS NS NS 99 BDL BDL BDL NS NS NS NS 91 BDL BDL BDL NS NS NS NS 92 BDL BDL BDL NS NS NS NS		12/29/1998	350	BDL	420	2,800	NS	NS	NS	NS
5 17 <0.7	_	1/22/2004					- not sampled			
05 34 <1.0	MW-1	5/9/2005	17	<0.7	74	250	<0.40	77.8	14.9	0.42
06 18 <0.7		10/19/2005	34	<1.0	170	1400	0.15	39.9	15	0.43
7 7 <0.7		11/14/2006	18	2.0>	190	1600	<0.015	145	8.8	4.4
8 <5.0		11/7/2007	7	<0.7	120	250	<0.015	38.4	6.4	0.57
(e) <5.0		7/24/2008	<5.0	<5.0	90	35	<0.5	4.76	17.2	<0.5
88 BDL BDL BDL BDL NS NS NS 98 BDL BDL BDL BDL BDL NS NS NS 9 BDL BDL BDL BDL BDL NS NS NS 99 BDL BDL BDL BDL BDL NS NS NS 99 BDL 1.1 BDL BDL NS NS NS NS 99 BDL 1.1 BDL NS NS NS NS 91 BDL 1.1 BDL NS NS NS NS 92 BDL 1.1 BDL NS NS NS NS NS 94 BDL BDL BDL BDL NS		Duplicate	<5.0	<5.0	110	59	AN	AN	NA	AN
68 BDL BDL BDL BDL BDL NS NS NS 9 BDL BDL BDL BDL BDL NS NS NS 99 BDL BDL BDL BDL BDL NS NS NS 99 BDL 1.1 BDL NS NS NS NS 99 BDL 1.8 0.7 1.1 BDL NS NS NS 99 BDL 1.8 0.7 1.9 NS NS NS NS 94 BDL 1.8 0.7 1.9 NS NS NS NS 94 BDL 1.8 0.7 1.9 NS		9/15/1998	BDL	BDL	BDL	BDL	SN	SN	SN	SN
9 BDL BDL BDL BDL BDL NS NS NS 99 BDL 0.7 1.1 BDL NS NS NS NS 99 BDL 0.7 1.1 BDL NS NS NS NS 99 BDL 1.8 0.7 1.9 NS NS NS NS 94 BDL 1.8 0.7 1.9 NS	_ 10	12/29/1998	BDL	BDL	BDL	BDL	NS	NS	NS	NS
99 BDL BDL BDL BDL NS NS NS NS 99 BDL 0.7 1.1 BDL NS NS NS NS 99 BDL 1.8 0.7 1.1 BDL NS NS NS 04 BDL BDL BDL BDL NS NS NS NS 5 <0.5 <0.7 <0.8 <0.8 <0.4 97 NS N		3/3/1999	BDL	BDL	BDL	BDL	NS	SN	SN	SN
99 BDL 0.7 1.1 BDL NS NS NS 99 BDL 1.8 0.7 1.9 NS NS NS NS 94 BDL BDL BDL BDL BDL NS NS NS NS 5 <0.5 <0.7 <0.8 <0.8 <0.4 97 NS 05 <0.5 <0.7 <0.8 <0.8 <0.4 97 NS 06 <0.5 <0.7 <0.8 <0.8 5.4 52.6 NS 07 <0.5 <0.7 <0.8 <0.8 5.4 52.6 NS 08 <0.5 <0.7 <0.8 <0.8 5.4 52.6 NS 159 NS NS 159 NS 159 NS 159 NS NS 159 NS 160 NS 160 160 160 160 160 160 160 150 160 160		6/15/1999	BDL	BDL	BDL	BDL	NS	SN	SN	SN
99 BDL 1.8 0.7 1.9 NS NS <th< th=""><th>_</th><th>9/15/1999</th><td>BDL</td><td>0.7</td><td>1.1</td><td>BDL</td><td>NS</td><td>SN</td><td>NS</td><td>NS</td></th<>	_	9/15/1999	BDL	0.7	1.1	BDL	NS	SN	NS	NS
34 BDL BDL BDL BDL BDL NS NS NS 5 <0.5 <0.7 <0.8 <0.4 97 97 05 <0.5 <0.7 <0.8 <0.8 <0.4 97 75 05 <0.5 <0.7 <0.8 <0.8 5.4 52.6 7 06 <0.5 <0.7 <0.8 7 750 7 750 7 7 07 <0.5 <0.7 <0.8 <0.8 7	MW-6	12/14/1999	BDL	1.8	0.7	1.9	NS	NS	NS	NS
5 <0.5		1/22/2004	BDL	BDL	BDL	BDL	SN	SN	SN	NS
05 <0.5		5/9/2005	<0.5	<0.7	<0.8	<0.8	<0.4	67	15.9	2
06 <0.5		10/19/2005	<0.5	<0.7	<0.8	<0.8	5.4	52.6	1.4	1.7
77 <0.5		11/14/2006	<0.5	<0.7	<0.8	1	<0.015	159	5.8	2
38 <5.0		11/7/2007	<0.5	<0.7	<0.8	<0.8	<0.015	112	3	0.99
10 (µg/L) 750 (µg/L) 750 (µg/L) 620 (µg/L) 10 (mg/L) 600 (mg/L)		7/24/2008	<5.0	<5.0	<5.0	<5.0	<0.5	44.4	28.5	<0.5
	NMWQCC	Standards	10 (µg/L)	750 (µg/L)	750 (µg/L)	620 (µg/L)	10 (mg/L)	600 (mg/L)	1 (mg/L)	NE

NMWQCC = New Mexico Water Quality Control Commission mg/L = milligrams per liter (parts per million) µg/L = micrograms per liter (parts per billion) NE=Not Extablished NA = Not Analyzed BDL = Below laboratory detection limits <0.7 = Below laboratory detection limit of 0.7 ug/L

APPENDIX A

GROUNDWATER SAMPLING FIELD FORMS

1 . .

1 6 V.

e = 1. - 41 - 1 - 10

"tz

and a second

والمحرقة الم

1. 2. 2.

1

	B Com #1E			F	Page 1 of
Project No.	1158690096				
Site Location	Fármington, NM				
Site/Well No.	MW-6	Coded/ Replicate No.	N/A	Date	7/24/2008
Weather	hot	Time Sampling Began	3:50	Time San Complete	
		EVACUATI	ON DATA		
Description of	Measuring Point (MP) Top	of Casing			
-	Above/Below Land Surface	Approx. 3.5"	MP Elevati	on	102.14*
Total Sounde	d Depth of Well Below MP	33.65	Water-Leve	el Elevation	74.62*
Held	Depth to Water Below Mf	· · · · · · · · · · · · · · · · · · ·	Diameter o	-	2"
Wet	Water Column in We	· · · · · · · · · · · · · · · · · · ·		mped/Bailed	3 gallons
	– Gallons per Foc				
	Galoris per l'oc		Sampling F	Pump Intake Set	tina
Puraina Eauir	Gallons in We ment 1.5" Polyvinyl Disp	· · · · · · · · · · · · · · · · · · ·		and surface)	
Purging Equip	oment <u>1.5" Polyvinyl Disp</u>	osable Bailer	(feet below	RS	
Time 1545	oment <u>1.5" Polyvinyl Disp</u> Sa Temperature 66.1	oosable Bailer AMPLING DATA/FII pH Conduc 7.13 75	(feet below ELD PARAMETE ctivity TDS in p 3 387	RS	
Time	oment <u>1.5" Polyvinyl Disp</u> Sa Temperature	osable Bailer AMPLING DATA/FII pH Conduc	(feet below ELD PARAMETE ctivity TDS in p 3 387	RS	
Time 1545	oment <u>1.5" Polyvinyl Disp</u> SA Temperature 66.1 63.7	AMPLING DATA/FII pH Conduc 7.13 75 7.02 74	(feet below ELD PARAMETE ctivity TDS in p 3 387	RS	
Time 1545 1610 Sampling Equ	ipment <u>1.5" Polyvinyl Disp</u> <u>1.5" Polyvinyl Disp</u> <u>66.1</u> <u>63.7</u> <u>1.5" Polyvinyl Disp</u>	AMPLING DATA/FII pH Conduc 7.13 75 7.02 74	(feet below ELD PARAMETEI Stivity TDS in p 3 387 5 387	RS	
Time 1545 1610 Sampling Equ	oment <u>1.5" Polyvinyl Disp</u> SA Temperature 66.1 63.7	AMPLING DATA/FII pH Conduc 7.13 75 7.02 74 bosable Bailer	(feet below ELD PARAMETEI Stivity TDS in p 3 387 5 387	RS	N/A
Time 1545 1610 Sampling Equ	ipment <u>1.5" Polyvinyl Disp</u> <u>1.5" Polyvinyl Disp</u> <u>66.1</u> <u>63.7</u> <u>1.5" Polyvinyl Disp</u> <u>1.5" Polyvinyl Disp</u>	AMPLING DATA/FII pH Conduc 7.13 75 7.02 74 bosable Bailer	(feet below ELD PARAMETEI Stivity TDS in p 3 387 5 387	RS	N/A
Time 1545 1610 Sampling Equ <u>Cons</u> BTEX, Sulfate	ipment <u>1.5" Polyvinyl Disp</u> <u>1.5" Polyvinyl Disp</u> <u>66.1</u> <u>63.7</u> <u>1.5" Polyvinyl Disp</u> <u>1.5" Polyvinyl Disp</u>	AMPLING DATA/FII pH Conduc 7.13 75 7.02 74 bosable Bailer	(feet below ELD PARAMETEI Stivity TDS in p 3 387 5 387	RS	N/A
Time 1545 1610 Sampling Equ <u>Cons</u> BTEX, Sulfate	ipment <u>1.5" Polyvinyl Disp</u> <u>1.5" Polyvinyl Disp</u> <u>66.1</u> <u>63.7</u> <u>1.5" Polyvinyl Disp</u> <u>1.5" Polyvinyl Disp</u>	AMPLING DATA/FII pH Conduc 7.13 75 7.02 74 bosable Bailer	(feet below ELD PARAMETEI Stivity TDS in p 3 387 5 387	RS	N/A
Time 1545 1610 Sampling Equ <u>Cons</u> BTEX, Sulfate	ipment <u>1.5" Polyvinyl Disp</u> <u>1.5" Polyvinyl Disp</u> <u>66.1</u> <u>63.7</u> <u>1.5" Polyvinyl Disp</u> <u>1.5" Polyvinyl Disp</u>	AMPLING DATA/FII pH Conduc 7.13 753 7.02 744 bosable Bailer Container I	(feet below ELD PARAMETEI tivity TDS in p 3 387 5 387 Description	RS	N/A
Time 1545 1610 Sampling Equ <u>Cons</u> BTEX, Sulfate Ferrous Iron	1.5" Polyvinyl Disp Temperature 66.1 63.7 ipment 1.5" Polyvinyl Disp tituents Sampled a, Nitrate, Phosphate, Water is brown in color and	AMPLING DATA/FII pH Conduct 7.13 753 7.02 744 oosable Bailer	(feet below ELD PARAMETEI tivity TDS in p 3 387 5 387 Description	RS	N/A

n Kaji E sa

Project Name	B Com #1E				F	age	_2	_ of	2
Project No.	1158690096								
Site Location	Farmington, NM								
Site/Well No.	 MW-1	Coded/ Replicate N	o. D	ouplicate	Date		7/24	4/2008	
		Time Samp			Time Sam			0.20	
Weather	hot	Began	2:1		Complete	a _	m. · · · · · · ·	2:30	
		EVA	CUATION I	DATA					÷
Description of	Measuring Point (MP)	Top of Casing				<u></u>			
Height of MP	Above/Below Land Surfac	e <u>Approx.</u>	3.5'	MP Elevation			101.37	*	
Total Sounded	d Depth of Well Below MP	. 34.09		Water-Level Ele	evation		7	5.07*	
Held	_ Depth to Water Below	v MP25.73		Diameter of Cas				2"	
Wet	- Water Column in	Well 8.36		Gallons Pumper Prior to Samplin		_		4	
	– Gallons per	<u></u>			-				
	Collops in	Mall 1 3376		Sampling Pump			1	NI/A	
	Gallons in			(feet below land				N/A	
Purging Equip		Well <u>1.3376</u> disposable bailer t		(feet below land				N/A	
	oment <u>1.5" polyvinyl c</u>	disposable bailer t	o collect sar	(feet below land mple PARAMETERS	I surface) _			N/A	
Purging Equip		disposable bailer t	o collect sar	(feet below land				N/A	
	oment <u>1.5" polyvinyl c</u>	disposable bailer t	o collect sar	(feet below land mple PARAMETERS	I surface) _			N/A	
	oment <u>1.5" polyvinyl c</u>	disposable bailer t	o collect sar	(feet below land mple PARAMETERS	I surface) _			N/A	
	oment <u>1.5" polyvinyl c</u>	disposable bailer t	o collect sar	(feet below land mple PARAMETERS	I surface) _			N/A	
	Temperature	disposable bailer t	o collect sar	(feet below land mple PARAMETERS	I surface) _			N/A	
Time Sampling Equ	Temperature	Disposable bailer t	o collect sar	(feet below land mple PARAMETERS TDS in ppm	I surface) _		eserva		
Time Sampling Equ	ipment <u>1.5" polyvinyl c</u> Temperature	Disposable bailer t	o collect sar	(feet below land mple PARAMETERS TDS in ppm	I surface) _				
Time Sampling Equ <u>Const</u>	ituents Sampled	Disposable bailer t	o collect sar	(feet below land mple PARAMETERS TDS in ppm	I surface) _				
Time Sampling Equ	ituents Sampled	Disposable bailer t	o collect sar	(feet below land mple PARAMETERS TDS in ppm	I surface) _				
Time Sampling Equ <u>Const</u>	ituents Sampled	Disposable bailer t	o collect sar	(feet below land mple PARAMETERS TDS in ppm	I surface) _				
Time Sampling Equ <u>Const</u> BTEX, Sulfate Ferrous Iron	ipment <u>1.5" polyvinyl c</u> <u>Temperature</u> <u>1.5" Polyvinyl f</u> <u>1.5" Polyvinyl f</u> <u>tituents Sampled</u> <u>e, Nitrate, Phosphate,</u>	Disposable bailer t	o collect sar	(feet below land mple PARAMETERS TDS in ppm	Surface) _	<u>Pre</u>	eserva	tive	ed
Time Sampling Equ <u>Const</u> BTEX, Sulfate Ferrous Iron	Image: Temperature Temperature Image: T	disposable bailer to SAMPLING D pH (C) Disposable Bailer Cont diler; sheen in pure	o collect sar	(feet below land mple PARAMETERS TDS in ppm	Surface) _	<u>Pre</u>	eserva	tive	ed
Time Sampling Equ <u>Const</u> BTEX, Sulfate	Image: Temperature Temperature Image: T	Disposable bailer t	o collect sar	(feet below land mple PARAMETERS TDS in ppm	Surface) _	<u>Pre</u>	eserva	tive	ed
Time Sampling Equ <u>Const</u> BTEX, Sulfate Ferrous Iron Remarks	Image: Temperature Temperature Image: T	disposable bailer to SAMPLING D pH (C) Disposable Bailer Cont diler; sheen in purg	o collect sar	(feet below land mple PARAMETERS TDS in ppm	Surface) _	<u>Pre</u>	eserva	tive	ed
Time Sampling Equ <u>Const</u> BTEX, Sulfate Ferrous Iron Remarks	Image: Temperature Temperature Image: T	disposable bailer to SAMPLING D pH (0) Disposable Bailer Cont diler; sheen in pure d, Christine Mathe We	o collect sar ATA/FIELD Conductivity ainer Descri ge water; pu ews ell Casing V	(feet below land mple PARAMETERS TDS in ppm TDS in ppm intion	Surface) _	<u>Pre</u>	eserva	tive s collect	ed

8. 1911 - 1

APPENDIX B

LABORATORY ANALYTICAL REPORT

· .

. . .

.

. . . .

 $\frac{V^{+}}{n_{e}}$

. .

1. . W. .

1

Ŋ

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

	nalysis Number: 71595	
Report To:	Project Name:	COP BCom #1E
Tetra Tech EM, Inc.	<u>Site:</u>	Farmington, NM
Kelly Blanchard	Site Address:	
6121 Indian School Road, N.E.		
Suite 200	PO Number:	4509596739
Albuquerque	State:	New Mexico
NM	State.	New Mexico
87110-	State Cert. No .:	
ph: (505) 881-3188 fax:	Date Reported:	8/6/2008

This Report Contains A Total Of 15 Pages

Excluding This Page, Chain Of Custody

And

Any Attachments

8/7/2008

Test results meet all requirements of NELAC, unless specified in the narrative.

Case Narrative for: Conoco Phillips

	f Analysis Number: 8071595	
Report To:	Project Name:	COP BCom #1E
Tetra Tech EM, Inc.	<u>Site:</u>	Farmington, NM
Kelly Blanchard	Site Address:	
6121 Indian School Road, N.E.		
Suite 200 Albuquerque	PO Number:	4509596739
NM	State:	New Mexico
87110-	State Cert. No.:	
ph: (505) 881-3188 fax:	Date Reported:	8/6/2008

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Betha

08071595 Page 1 8/7/2008

Bethany A. Agarwal Senior Project Manager

Test results meet all requirements of NELAC, unless specified in the narrative.

Conoco Phillips

		Certifica	te of Analysis Num	nber:	
			<u>08071595</u>		
Report To:	Tetra Tech EM, Inc.			Project Name:	COP BCom #1E
	Kelly Blanchard			Site:	Farmington, NM
	6121 Indian School Ro Suite 200	ad, N.E.		Site Address:	
	Albuquerque				
	NM			PO_Number:	4509596739
	87110-			State:	New Mexico
	ph: (505) 881-3188	fax: (505) 881-3283		<u>State Cert. No.:</u>	
<u>Fax To:</u>				Date Reported:	8/6/2008

Client Sample ID	Lab Sample ID	Matrix	Date Collected	Date Received	COC ID	HOLD
MW-6	08071595-01	Water	7/24/2008 4:10:00 PM	7/26/2008 10:00:00 AM		
MW-1	08071595-02	Water	7/24/2008 4:50:00 PM	7/26/2008 10:00:00 AM		
Duplicate	08071595-03	Water	7/24/2008 4:55:00 PM	7/26/2008 10:00:00 AM		
Trip Blank	08071595-04	Water	7/24/2008 4:50:00 PM	7/26/2008 10:00:00 AM		

0 Aqa Betha

Bethany A. Agarwal Senior Project Manager

8/7/2008

Date

Richard R. Reed Laboratory Director

Ted Yen Quality Assurance Officer

> 08071595 Page 2 8/7/2008 12:45:07 PM

1.2

. 8. 8.

1

.

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Client Sample ID:MW	-6		Coll	ected: 07	//24/200	8 16:10	SPL Sar	nple	D: 0807	1595-01
			Site	e: Farn	nington	, NM				
Analyses/Method	Result	QUAL	Re	p.Limit		Dil. Factor	Date Ana	lyzed	Analyst	Seq. #
ION CHROMATOGRA	PHY				MCL		E300.0	Ur	nits: mg/L	
Ortho-phosphate (As P)	ND			0.5		1	07/26/08	12:31	A_E	4592091
Sulfate	44.4			2		4	07/28/08	23:30	A_E	4596427
Nitrogen, Nitrite (As N)	ND			0.5		1	07/26/08	12:31	A_E	4591673
METALS BY METHOD	0 6010B, TOTAL				MCL	SI	N6010B	Ur	nits: mg/L	
Iron	28.5			0.02		1	08/02/08	14:31	EG	4606676
Prep Method	Prep Date	Prep Initials	Prep	Factor						
SW3010A	07/29/2008 18:40	DDW	1.00							
VOLATILE ORGANICS	S BY METHOD 8260E	3			MCL	SI	N8260B	Ur	nits: ug/L	······
Benzene	ND			5		1	07/30/0	8:13	LU_L	4604320
Ethylbenzene	ND			5		1	07/30/0	8 8:13	LU_L	4604320
Toluene	ND			5		1	07/30/0	8 8:13	LU_L	4604320
m,p-Xylene	ND			5		1	07/30/0	8:13	LU_L	4604320
o-Xylene	ND			5		1	07/30/0	8:13	LU_L	4604320
Xylenes, Total	ND			5		1	07/30/0	3 8:13	LU_L	4604320
Surr: 1,2-Dichloroetha	ne-d4 90.0		%	62-130		1	07/30/0	3 8:13	LU_L	4604320
Surr: 4-Bromofluorobe	nzene 96.0		%	70-130		1	07/30/0	3 8:13	LU_L	4604320
Surr: Toluene-d8	96.0		%	74-122		1	07/30/0	3 8:13	LU_L	4604320

Qualifiers:

- ND/U Not Detected at the Reporting Limit
- B/V Analyte detected in the associated Method Blank
- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL
- E Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

08071595 Page 3 8/7/2008 12:45:16 PM

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Client Sample ID:MW	-1		Coll	ected: 0	7/24/20	08 16:50	SPL Sam	nple	ID: 0807	1595-02
			Site	e: Fari	mingtor	n, NM				
Analyses/Method	Result	QUAL	Re	p.Limit		Dil. Factor	Date Anal	yzed	Analyst	Seq. #
ION CHROMATOGRA					MCL		E300.0	Ur	nits: mg/L	
Ortho-phosphate (As P)	ND			0.5		1	07/26/08	12:47	A_E	4592092
Sulfate	4.76			0.5		1	07/29/08	3 0:19	A_E	4596430
Nitrogen, Nitrite (As N)	ND	_		0.5		1	07/26/08	12:47	A_E	4591674
METALS BY METHOD	0 6010B, TOTAL				MCL	. SI	W6010B	Ur	nits: mg/L	
Iron	17.2			0.02		1	08/02/08	14:36	EG	4606677
Prep Method	Prep Date	Prep Initials	Prep	Factor						
SW3010A	07/29/2008 18:40	DDW	1.00							
VOLATILE ORGANIC	S BY METHOD 8260E	3			MCL	SI	W8260B	Ur	nits: ug/L	
Benzene	ND			5		1	07/30/08			4604321
Ethylbenzene	90			5		1	07/30/08	8:42	LU_L	4604321
Toluene	ND			5		1	07/30/08	8:42	LU_L	4604321
m,p-Xylene	35			5		1	07/30/08	8:42	LU_L	4604321
o-Xylene	ND			5		1	07/30/08	8:42	LU_L	4604321
Xylenes,Total	35			5		1	07/30/08	8:42	LU_L	4604321
Surr: 1,2-Dichloroetha	ne-d4 92.0		%	62-130		1	07/30/08	8:42	LU_L	4604321
Surr: 4-Bromofluorobe	nzene 98.0		%	70-130		1	07/30/08	8:42	LU_L	4604321
Surr: Toluene-d8	96.0		%	74-122		1	07/30/08	8:42	LU_L	4604321

Qualifiers:

- ND/U Not Detected at the Reporting Limit
- B/V Analyte detected in the associated Method Blank
- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL
- E Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution MI - Matrix Interference

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

> (713) 660-0901 SPL Sample ID:

08071595-03

Client Sample I	D:Duplicate
-----------------	-------------

.

Collected: 07/24/2008 16:55

			Sit	e: Farn	nington	, NM				
Analyses/Method	Result	QUAL	R	ep.Limit		Dil. Factor	Date Analy	zed	Analyst	Seq. #
VOLATILE ORGANICS BY MET	HOD 8260B				MCL	SV	V8260B	Ur	nits: ug/L	
Benzene	ND			5		1	07/30/08	9:11	LU_L	4604322
Ethylbenzene	110			5		1	07/30/08	9:11	LU_L	4604322
Toluene	ND			5		1	07/30/08	9:11	LU_L	4604322
m,p-Xylene	59			5		1	07/30/08	9:11	LU_L	4604322
o-Xylene	ND			5	-	1	07/30/08	9:11	LU_L	4604322
Xylenes,Total	59			5		1	07/30/08	9:11	LU_L	4604322
Surr: 1,2-Dichloroethane-d4	92.0		%	62-130		1	07/30/08	9:11	LU_L	4604322
Surr: 4-Bromofluorobenzene	98.0		%	70-130		1	07/30/08	9:11	LU_L	4604322
Surr: Toluene-d8	96.0		%	74-122		1	07/30/08	9:11	LU_L	4604322

Qualifiers:

- ND/U Not Detected at the Reporting Limit
- B/V Analyte detected in the associated Method Blank
- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution MI - Matrix Interference

> 08071595 Page 5 8/7/2008 12:45:16 PM

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE

HOUSTON, TX 77054

(713) 660-0901

Client Sample ID: Trip Blan	ĸ
-----------------------------	---

Collected: 07/24/2008 16:50

SPL Sample ID:

08071595-04

			Sit	e: Farn	nington,	NM				
Analyses/Method	Result	QUAL	R	ep.Limit	[Dil. Factor	Date Anal	yzed	Analyst	Seq. #
VOLATILE ORGANICS BY MET	HOD 8260B				MCL	SV	V8260B	Ur	its: ug/L	
Benzene	ND			5		1	07/30/08	3 4:52	LU_L	4604319
Ethylbenzene	ND			5		1	07/30/08	3 4:52	LU_L	4604319
Toluene	ND			5		1	07/30/08	3 4:52	LU_L	4604319
m,p-Xylene	ND			5		1	07/30/08	4:52	LU_L	4604319
o-Xylene	ND			5		1	07/30/08	4:52	LU_L	4604319
Xylenes,Total	ND			5		1	07/30/08	4:52	LU_L	4604319
Surr: 1,2-Dichloroethane-d4	88.0		%	62-130		1	07/30/08	4:52	LU_L	4604319
Surr: 4-Bromofluorobenzene	96.0		%	70-130		1	07/30/08	4:52	LU_L	4604319
Surr: Toluene-d8	96.0		%	74-122		1	07/30/08	4:52	LU_L	4604319

Qualifiers:

- ND/U Not Detected at the Reporting Limit
- B/V Analyte detected in the associated Method Blank
- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution MI - Matrix Interference

> 08071595 Page 6 8/7/2008 12:45:16 PM

Quality Control Documentation

£

1.00

é

5 21

4 . 2

4 - E

+ °

- 22 - 1 -

. . 08071595 Page 7 8/7/2008 12:45:17 PM

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Conoco Phillips COP BCom #1E

Method:	Metais by Method SW6010B	6010B, Total					WorkOrder: Lab Batch IC		171595 221		
	<u></u> <u>M</u> e	thod Blank			Samples i	in Analytica	Batch:				
RunID: TJA_08	0802A-4606666	Units:	mg/L		Lab Samp	ole ID	Client	Sample ID	2		
Analysis Date:	08/02/2008 13:45	Analyst:	EG		08071595-	-01B	MW-6		-		
Preparation Date:	07/29/2008 18:40	Prep By:	DD Method S	SW3010A	08071595-	-02B	MW-1				
Iron	Analyte		Result Rep Lim								
		<u> </u>	Laboratory	/ Control Sam	ole (LCS)						
	Runl	D: T	JA_080802A-4606	667 Units:	mg/L						
	Analy	sis Date: 0	8/02/2008 13:50	Analys	t: EG						
	Prepa	aration Date: 0	7/29/2008 18:40	Prep B	y: DD	Method SW	3010A				
		Analyte		Spike Re Added			wer Upper imit Limit				
	Iron			1.000	1.063	106.3	80 12	20			
		Matrix S	Spike (MS) / Mat	rix Spike Dupl	icate (MSI	<u>2)</u>					
		nple Spiked:	08071570-04		icate (MSI	<u>)</u>					
	Sar Rui	nple Spiked:			: mg/L	_					
	Rui	nple Spiked:	08071570-04 TJA_080802A-466 08/02/2008 13:5	06669 Units 59 Analy	: mg/L /st: EG	-					
	Rur Ana	nple Spiked: hID:	08071570-04 TJA_080802A-466	06669 Units 59 Analy	: mg/L /st: EG	_	W3010A				
A	Rur Ana	nple Spiked: hID: hIvsis Date: paration Date: Sample Result	08071570-04 TJA_080802A-466 08/02/2008 13:5	06669 Units 59 Analy 10 Prep MS %	: mg/L /st: EG	-	W3010A MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit

Qualifiers: ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

E - Estimated Value exceeds calibration curve

* - Recovery Outside Advisable QC Limits J - Estimated value between MDL and PQL

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

08071595 Page 8 8/7/2008 12:45:18 PM

.

.

Conoco Phillips COP BCom #1E

			, c	COP BCom	#12					
Analysis: Method:	Volatile Organics by M SW8260B	ethod 8260B						(Order: Batch ID:	08071595 R246994	
		Blank			Samr	oles in Analy				<u> </u>
			0		Jaing	Jies III Analy	tical Date	1.		
RunID: K_0807	29H-4604318	Units: ug	J∕L		Lab S	Sampl <u>e ID</u>		Client Sam	ple ID	
Analysis Date:	07/30/2008 4:23	Analyst: Ll	J_L		0807	1595-01C		MW -6		
Preparation Date:	07/30/2008 4:23	Prep By:	Method		0807	1595-02C		MW - 1		
					0807	1595-03C		Duplicate		
ſ	Anaiyte	- Do	sult Rep Lir	nit	0807	1595-04C		Trip Blank		
Ben	zene			5.0						
	lbenzene			5.0						
	ene			5.0						
	Xylene			5.0 5.0						
	nes,Total			5.0						
	urr: 1,2-Dichloroethane-d4		92.0 62-1							
	urr: 4-Bromofluorobenzene		94.0 70-1							
	urr: Toluene-d8		98.0 74-1	22						
			<u></u>						,,	
				y Control S	Sample (L	<u>CS)</u>				
	RunID:		80729H-46043			g/L				
	Analysis [30/2008 3:54	Ai	nalyst: L	U_L				
	Preparatio	on Date: 07/3	80/2008 3:54	Pr	ер Ву:	Method				
		Analyte		Spike	Result	Percent	Lower	Upper		
				Added		Recovery	Limit	Limit		
	Benzene			20.0	18.0			126		
	Toluene	Ethylbenzene					67 70	122 131		
	m,p-Xylene			20.0		90.0 87.5	70	150		
	o-Xylene			20.0	19.0	95.0		130		
	Xylenes, Tota			60	54	90	70	141		
		jichloroethane-		50.0		92.0	62	130		
		omofluorobenzi		50.0			70	130		
	Surr: Tolu			50.0			70	130		
	Sur lou				45	50.0	74	122		
		Matrix Spi	ke (MS) / Ma	trix Spike I	Duplicate	(MSD)				
	Sample		071558-02			<u>_</u> _				
	Sample RunID:		071558-02 080729H-4604	324 (Jnits:	108				
	Analysis		/30/2008 11:0			ug/L LV L				
	, that you	Date. 07	100/2000 11.	,	undry St.	20_2				
Qualifiers:	ND/U - Not Detected at	he Reporting)	imit	N/1	- Matrix Int	erference				
gaunnerg.	B/V - Analyte detected in					Unreportable	due to Dilu	tion		
	J - Estimated value betw				-	Dutside Advis				
	E - Estimated Value exc									
	N/C - Not Calculated - S			er than 4 tin	nes the om	ount of snike	added Co	otrol limite do	not apply	
	TNTC - Too numerous t		addin ia great	or since i 44 Uli		ount of spike	auu c u. U01	na or arraits do		1595 Pa
		n count								

2. 4. 6

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips COP BCom #1E

Analysis: Method:	Volatile Organic SW8260B	s by Method 826	0B					WorkOrder: Lab Batch II)71595 46994		
A	nalyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Benzene		ND	20	20.0	100	20	20.0	100	0	22	76	127
Ethylbenzene		ND	20	20.0	100	20	19.0	95.0	5.13	20	35	175
Toluene		ND	20	20.0	100	20	19.0	95.0	5.13	24	70	131
m,p-Xylene		ND	40	40.0	100	40	38.0	95.0	5.13	20	35	175
o-Xylene	· · · · · · · · · · · · · · · · · · ·	ND	20	21.0	105	20	20.0	100	4.88	20	35	175
Xylenes,Total		ND	60	61	100	60	58	97	5.0	20	35	175
Surr: 1,2-Dichlor	roethane-d4	ND	50	47	94.0	50	47.0	94.0	0	30	62	130
Surr: 4-Bromoflu	uorobenzene	ND	50	49	98.0	50	48.0	96.0	2.06	30	70	130
Surr: Toluene-da	3	ND	50	49	98.0	50	49.0	98.0	0	30	74	122

Qualifiers: ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

- J Estimated value between MDL and PQL
- E Estimated Value exceeds calibration curve

MI - Matrix Interference

ank D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

08071595 Page 10 8/7/2008 12:45:18 PM

Conoco Phillips COP BCom #1E

Analysis: Method:	lon Chromatography E300.0	1			WorkOrder: Lab Batch ID:	08071595 R246276L
	Meth	nod Blank		Samples in Analytica	l Batch:	
RunID: IC1_08	0725A-4591667	Units:	mg/L	Lab Sample ID	Client San	nple ID
Analysis Date:	07/26/2008 10:36	Analyst:	A_E	08071595-01A	MW-6	
				08071595-02A	MVV-1	

Analyte	Result	Rep Limit
Nitrogen, Nitrite (As N)	ND	0.50

Laboratory Control Sample (LCS)

RunID:	IC1_080725A-4591668	Units:	mg/L
Analysis Date:	07/26/2008 10:52	Analyst:	A_E

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Nitrogen, Nitrite (As N)	10.00	10.06	100.6	85	115

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:	08071588-01		
RunID:	IC1_080725A-4591670	Units:	mg/L
Analysis Date:	07/26/2008 11:25	Analyst:	A_E

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Nitrogen, Nitrite (As N)	ND	10	9.452	93.92	10	9.454	93.94	0.02116	20	80	120

Qualifiers:

. θ.

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

MI - Matrix Interference D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

08071595 Page 11 8/7/2008 12:45:18 PM

Conoco Phillips COP BCom #1E

Analysis: Method:	Ion Chromatography E300.0	у			WorkOrder: Lab Batch ID:	08071595 R246284L			
	Metl	hod Blank		Samples in Analytical Batch:					
RunID: IC1_0	80725D-4 5 92085	Units:	mg/L	Lab Sample ID	Client Sar	nple ID			
Analysis Date:	07/26/2008 10:36	Analyst:	A_E	08071595-01A	MW-6				
				08071595-02A	MW-1				

Analyte	Result	Rep Limit
Ortho-phosphate (As P)	ND	0.50

Laboratory Control Sample (LCS)

RunID: Analysis Date: IC1_080725D-4592086 07/26/2008 10:52 Units: mg/L Analyst: A_E

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Ortho-phosphate (As P)	10.00	10.24	102.4	85	115

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:	08071588-01	
RunID:	IC1_080725D-4592088	Units:
Analysis Date:	07/26/2008 11:25	Analyst:

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Ortho-phosphate (As P)	0.8230	10	10.33	95.11	10	10.28	94.54	0.5531	20	80	120

Qualifiers:

ND/U - Not Detected at the Reporting Limit

J - Estimated value between MDL and PQL

B/V - Analyte detected in the associated Method Blank

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

mg/L

A_E

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

- N/C Not Calculated Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.
- TNTC Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

08071595 Page 12 8/7/2008 12:45:18 PM

Conoco Phillips COP BCom #1E

Analysis: Method:	Ion Chromatography E300.0					WorkOrder: Lab Batch ID:	08071595 R246534D
	Met	hod Blank		·	Samples in Analyti	cal Batch:	
RunID: IC1_080	0728C-4596425	Units:	mg/L		Lab Sample ID	Client Sar	nple ID
Analysis Date:	07/28/2008 22:57	Analyst:	A_E		08071595-01A	MW-6	
					08071595-02A	MW-1	
[Analyte		Result	Rep Limit			
Sulf	ate		ND	0.50			

Laboratory Cont	trol Sampl	<u>e (LCS)</u>
IC1_080728C-4596426	Units:	mg/L

07/28/2008 23:13

RunID: Analysis Date:

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Sulfate	10.00	10.02	100.2	85	115

Analyst: A_E

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:	08071595-01		
RunID:	IC1_080728C-4596428	Units:	mg/L
Analysis Date:	07/28/2008 23:46	Analyst:	ΑE

	Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
:	Sulfate	44.41	40	88.46	110.1	40	88.45	110.1	0.01583	20	80	120

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

MI - Matrix Interference D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

- N/C Not Calculated Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.
- TNTC Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

08071595 Page 13 8/7/2008 12:45:19 PM Sample Receipt Checklist And Chain of Custody

1. F

·

j

8

.

11

Þ¢

*

1

4 N. 4

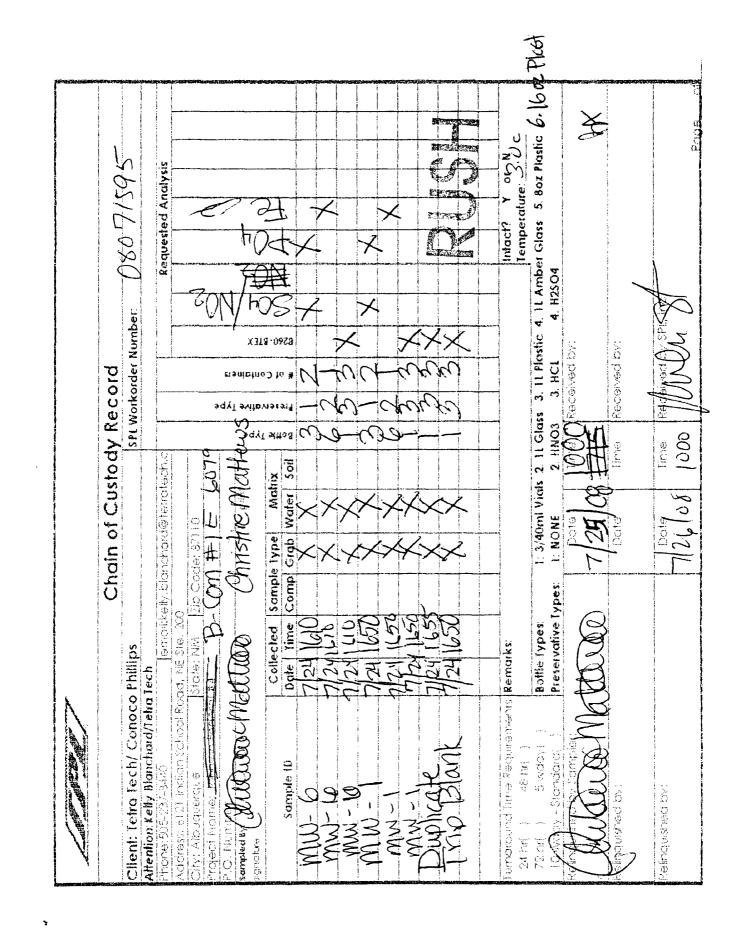
1

े **ग्रे**ड इ

1944 - 1947 - 19

08071595 Page 14 8/7/2008 12:45:19 PM

1.44


5 **5** 5

`.£,

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Sample Receipt Checklist

Workor Date ar	der: nd Time Received:	08071595 7/26/2008 10:00:00 AM			Received By: Carrier name:	RE Fedex-Priority	
Tempe	rature:	3.0°C			Chilled by:	Water Ice	
1. ^{Shi}	ipping container/co	oler in good condition?	Yes		No 🗌	Not Present	
2. ^{Cu}	stody seals intact o	n shippping container/cooler?	Yes		No 🗌	Not Present	
3. ^{Cu}	stody seals intact o	n sample bottles?	Yes		No 🗌	Not Present	\checkmark
4. ^{Ch.}	ain of custody pres	ent?	Yes		Νο		
5. ^{Ch}	ain of custody sign	ed when relinquished and received?	Yes		No		
6. ^{Ch.}	ain of custody agre	es with sample labels?	Yes		No 🗌		
1	mples in proper cor .Client did not specify hain of custody	ntainer/bottle? y what method for Iron (Total or Ferrous) on	Yes		No 🗹		
8. ^{Sar}	mple containers int	act?	Yes		No 🗌		
9. ^{Sut}	fficient sample volu	me for indicated test?	Yes		No 🗌		
10. ^{All}	samples received v	vithin holding time?	Yes		No 🗌		
11. ^{Co}	ntainer/Temp Blank	temperature in compliance?	Yes		No		
12. ^{Wa}	ter - VOA vials hav	e zero headspace?	Yes		No 🗌 🛛 V	DA Vials Not Present	
13. ^{Wa}	iter - Preservation o	hecked upon receipt (except VOA*)?	Yes		No 🗌	Not Applicable	
*V0	DA Preservation Ch	ecked After Sample Analysis					
		/e:Rodriguez, Alisha Christine	Cont	act Date & 1	ime: 7/28/2008 4	:27:00 PM	
CI	ient Name Contacte	ed: Christine Matthews		_			
No	n Conformance Issues:						
Clie	ent Instructions: Ple	ease log in Fe by Method 6010not Fe+2 per cl	ient.				

تەر. مەر

· 16

* * *

 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$

A Ferrer o

т. Т.

> 3 - 4 - 4

.....

13 20